WO2007049631A1 - スプレー又はインクジェット塗布用電荷輸送性ワニス - Google Patents

スプレー又はインクジェット塗布用電荷輸送性ワニス Download PDF

Info

Publication number
WO2007049631A1
WO2007049631A1 PCT/JP2006/321218 JP2006321218W WO2007049631A1 WO 2007049631 A1 WO2007049631 A1 WO 2007049631A1 JP 2006321218 W JP2006321218 W JP 2006321218W WO 2007049631 A1 WO2007049631 A1 WO 2007049631A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
varnish
charge
charge transporting
spray
Prior art date
Application number
PCT/JP2006/321218
Other languages
English (en)
French (fr)
Inventor
Taku Kato
Takuji Yoshimoto
Go Ono
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to CN200680043223.XA priority Critical patent/CN101331625B/zh
Priority to KR1020087011342A priority patent/KR101413129B1/ko
Priority to EP06822195A priority patent/EP1950816A4/en
Priority to US12/091,725 priority patent/US9172043B2/en
Priority to JP2007542613A priority patent/JP5401791B2/ja
Publication of WO2007049631A1 publication Critical patent/WO2007049631A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]

Definitions

  • the present invention relates to a charge transporting varnish for spraying or inkjet coating.
  • organic compounds particularly polymers and oligomers
  • organic compounds are used as electronic device materials, they are often used as thin films.
  • examples include an insulating film, a charge transport film, a protective film, and a planarization film.
  • EL organic electoluminescence
  • hole transport layer buffer layer
  • charge injection layer for example, Patent Document 1.
  • a charge-transporting thin film can be formed on a flat electrode such as indium tin oxide (hereinafter abbreviated as ITO) or indium zinc oxide (hereinafter abbreviated as IZO), and a uniform and uneven film can be formed. Is required.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • a structure is formed on the electrode. Specifically, the structure may be configured simply or complexly with one or more patterns having a film thickness of several zm.
  • Charge transporting varnish for selectively and flatly forming a charge transporting thin film on exposed electrode parts such as ITO or IZO on a substrate on which a structure composed of simple or complex patterns is formed Is different from the liquid physical properties of the charge transporting varnish when it is intended to uniformly form a charge transporting thin film on a flat electrode, and the liquid physical properties of the charge transporting varnish suitable for the structure on the substrate are different. It will be necessary to study in detail.
  • Processes for producing charge transporting thin films can be broadly classified into dry process forces represented by vacuum deposition methods and wet processes represented by spin coating methods. Comparing the dry process with the wet process, it is more uniform to deposit foreign matter on the electrode surface when the charge transporting thin film is produced with the wet process than with the dry process.
  • the film can be uniformly coated with a thickness, and the electrical short-circuit characteristics when an electronic device is manufactured are dramatically improved. In this respect, the wet process is advantageous and has a high advantage.
  • Examples of a process for producing a charge transporting thin film with high efficiency include a spray method and an ink jet method.
  • the spray method is effective as a wet process that can produce large-area devices.
  • exposed ITO on the substrate where a structure composed of simple or complex patterns is formed by spraying or ink-jet method is a uniform and uneven charge transporting thin film on the electrode part such as IZO. It has become necessary to prepare an optimal charge transporting varnish for formation.
  • the problem of forming a charge transporting thin film on a substrate on which a structure composed of simple or complex patterns is formed is not limited to the thin film for electronic devices, but is applied to other technical fields using the thin film. Even important.
  • Patent Document 1 JP 2002-151272 A
  • Patent Document 2 International Publication No. 2004Z043117 Pamphlet Disclosure of the invention
  • the present invention has been made in view of such circumstances, and an exposed ITO or substrate on a substrate on which a structure composed of a simple or complex pattern is formed by a spray method or an ink jet method.
  • An object of the present invention is to provide a charge transporting varnish for forming a charge transporting thin film that is uniform and has no unevenness on an electrode portion such as IZO.
  • Another object of the present invention is to provide an organic EL device having a charge transporting thin film produced from the varnish for use in an electronic device.
  • the present inventors have surprisingly found that a good solvent, at least one kind of high leveling poor solvent, and at least one kind or more.
  • a varnish containing a volatile poor solvent is exposed ITO on a substrate where a structure composed of a simple or complex pattern is formed.
  • the present inventors have found that a transportable thin film can be formed and completed the present invention.
  • the present invention provides the following inventions [1] to [21].
  • a substrate made of an organic compound having a molecular weight of 200 to 1000 or an oligomer having a molecular weight of 200 to 5000, a good solvent, at least one highly leveling poor solvent, and at least one volatile poor solvent.
  • a varnish for spraying or inkjet coating characterized by containing
  • Charge transporting material comprising a charge transporting monomer or a charge transporting oligomer having a number average molecular weight of 200 to 5000, or a charge transporting property comprising the charge transporting material and an electron accepting dopant material or a hole accepting dopant material.
  • Charge transporting varnish for spray or ink jet coating characterized by containing an organic material, a good solvent, at least one highly leveling poor solvent and at least one volatile poor solvent .
  • the good solvent is N, N-dimethylformamide, N, N-dimethylacetamide, N
  • the high leveling poor solvent includes cyclohexanol, 2,3-butanediol and Charge transporting varnish for spray or ink jet coating according to [2] or [3], which is at least one selected from propylene glycol power.
  • the combination of the good solvent, at least one high leveling poor solvent, and at least one volatile poor solvent is 1,3 dimethyl-2-imidazolidinone, cyclohexanol and isopropanol.
  • the charge transporting substance is a charge transporting monomer having a conjugated unit or a charge transporting oligomer having a conjugated unit and a number average molecular weight of 200 to 5000, and a single conjugated unit is continuously provided. Two or more of the above-mentioned conjugated units are successively combined in any order, and [2] to [6]! Charge transportable varnish for cloth.
  • the conjugated unit is substituted or unsubstituted, and is a divalent to tetravalent dialkylene, thiophene, dithiin, furan, pyrrole, ethynylene, vinylene, phenylene, naphthalene, anthracene, imidazole, oxazole, Oxadiazole, quinoline, quinoxaline, siloxane, silicon, pyridine, pyrimidine, pyrazine, phenylene vinylene, funole len, canolezole, triarylamine, metal- or metal-free phthalocyanine, and metal- or metal-free Porphyrinka [7] A charge transporting varnish for spray or ink jet coating, which is at least one selected.
  • R 2 and R 3 are each independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group, amide group, nitro group
  • a and B are each independently represented by the general formula (2) or (3) The divalent group represented is shown.
  • R 4 to R U are independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, ester group, amide.
  • D represents a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring or heterocyclic ring, and R 12 and R 13 each independently represents a carboxyl group or a hydroxyl group.
  • R ′′ to R 18 each independently represent a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group or a halogen atom
  • X represents a single bond, 0, S or NH
  • A represents hydrogen.
  • a Si, P, P (O) group or a monovalent or higher-valent unsubstituted or substituted hydrocarbon group is shown.
  • y is an integer that satisfies 1 ⁇ , which is equal to the valence of A, and is the number of sulfone groups attached to the benzene ring part of the 1,4 benzodioxane skeleton, and l ⁇ x ⁇ 4.
  • X represents 0, S or NH
  • A has a substituent other than X and n (SO 2 H) groups.
  • B represents an unsubstituted or substituted hydrocarbon group, 1, 3, 5-triazine group, or an unsubstituted or substituted formula (3) or (4)
  • N represents the number of sulfone groups bonded to A and is an integer satisfying l ⁇ n ⁇ 4, q is the number of bonds between B and X, and is an integer satisfying l ⁇ q. ]
  • a method for producing a thin film characterized in that the varnish of [1] is applied onto a substrate by a spray or ink jet method and the solvent is evaporated.
  • [20] A method for producing a charge transporting thin film, characterized in that the charge transporting varnish according to any one of [2] to [13] is applied onto a substrate by a spray or ink jet method and the solvent is evaporated.
  • the thin film obtained with the varnish of the present invention has a uniform film thickness distribution between structures. It was confirmed that the thin film had a constant flatness and high uniformity.
  • the varnish of the present invention can be easily produced using an organic solvent not containing water.
  • This varnish is suitable for forming a film by various wet processes, particularly by a spray method or an inkjet method.
  • a thin film can be formed on the substrate at a low cost and with a good yield.
  • the inkjet method or spray method is more practical as an industrial process than the spin coating method and printing method in terms of device yield and production efficiency.
  • the charge transporting varnish of the present invention is compatible with these industrial processes and can provide a highly reliable charge transporting thin film with good reproducibility.
  • a charge transporting varnish that can be selectively and flatly formed on an exposed electrode portion such as ITO or IZO on a substrate on which a structure composed of simple or complex patterns is formed.
  • an exposed electrode portion such as ITO or IZO
  • a substrate on which a structure composed of simple or complex patterns is formed.
  • the structure of the central part of the substrate and the structure of the edge part as the substrate size increases with the spin coating method.
  • the film thickness distribution is likely to occur within a single structure, although the firing conditions depend on the leveling conditions. This is because the spin coating method is a wet process in which the dropped varnish is deposited and dried by the stress acting on the outside of the rotating substrate.
  • the APR plate which is mainly used as a printing plate, comes into direct contact with the structure. Therefore, there is a possibility that a structure composed of fine patterns will be destroyed.
  • the structure is formed on the base material in advance, it is preferable not to touch the structure so as not to destroy the structure. U, therefore, the printing method is not suitable.
  • the charge transporting varnish of the present invention is formed by a spray method or an ink jet method
  • a spray method or an ink jet method Selective to exposed electrode parts such as ITO or IZO on the substrate where a structure composed of simple or complex patterns without the disadvantages resulting from processes such as spin coating and printing is formed
  • the film can be formed flatly, it becomes possible to manufacture an organic EL device stably with high yield and high production efficiency in the industry of organic EL elements.
  • the charge transporting thin film of the present invention is a thin film having excellent planarity and uniformity compared to conventional charge transporting thin films when used in a hole injection layer or a hole transporting layer of an EL element. It is possible to remarkably suppress the short circuit of the electrode caused by the foreign matter existing on the electrode.
  • the charge transporting thin film of the present invention the EL element light emission starting voltage is lowered, the current efficiency is improved, and the device life is extended, and the yield of an inexpensive and high-productivity EL device is improved. It is possible to produce.
  • the charge transporting thin film of the present invention can be formed by coating on various substrates by various coating methods, it is possible to form a capacitor electrode protective film, an antistatic film, a gas sensor, a temperature sensor, Organic membranes used in humidity sensors, pressure sensors, light sensors, radiation sensors, ion sensors, biosensors, or field emission transistor sensors; used in primary batteries, secondary batteries, fuel cells, solar cells, or polymer batteries Organic film; electromagnetic shielding film, ultraviolet absorbing film, gas barrier film, optical information recording medium, or application to organic film used in optical integrated circuit is also useful.
  • FIG. 1 is a diagram showing the result of measuring the shape of a substrate with a structure.
  • FIG. 2 is a diagram showing a result of measuring an ITO portion of a substrate with a structure.
  • FIG. 3 is a graph showing the result of measuring the film thickness distribution of the charge transporting thin film of Example 1.
  • FIG. 4 is a graph showing the result of measuring the film thickness distribution of the charge transporting thin film of Comparative Example 1.
  • the varnish according to the present invention comprises an organic compound having a molecular weight of 200 to 1000 or a substrate having an oligomeric force of 200 to 5000, a good solvent, and at least one highly leveling poor solvent. And at least one volatile poor solvent.
  • the substrate is a charge transporting substance comprising a charge transporting monomer or a charge transporting oligomer having a number average molecular weight of 200 to 5000, or the charge transporting substance and an electron accepting dopant substance or a hole accepting dopant substance.
  • a charge transporting varnish is a charge transporting organic material comprising:
  • the charge transport property is synonymous with conductivity, and means any one of hole transport property, electron transport property, and both charge transport properties of holes and electrons.
  • the charge transporting varnish of the present invention may have a charge transporting property in a solid film obtained by using a varnish that may have a charge transporting property.
  • the method for applying the varnish of the present invention is not particularly limited, but a method of applying the varnish in a mist is preferable.
  • the force S including the spray method and the ink jet method, in particular, the spray method is optimal.
  • the charge transporting varnish takes three optimum liquid properties in the process from spraying the charge transporting varnish onto the substrate and landing on the substrate.
  • the three liquid properties of the spray method are 1) the liquid properties of the varnish filled in the tank before spraying, 2) the liquid properties in the spray and fog, and 3) the liquid properties of the varnish after landing on the substrate. .
  • the dynamic viscosity (hereinafter abbreviated as “viscosity”) is low in order to improve the spray coatability.
  • Spray applicability is a characteristic that standardizes the particle size of spray mist discharged from a force spray head that is dependent on spray conditions in a stable and constant manner. A decrease in sprayability tends to be seen in varnishes that are difficult to grind at any arbitrary amount of nitrogen, and high-viscosity varnishes are sprayed with finely atomized spray mist with a uniform and narrow particle size distribution after grinding with nitrogen. Don't be.
  • a charge transporting varnish having a low viscosity becomes a spray mist having a uniform and narrow particle size distribution after being pulverized with a certain amount of nitrogen.
  • the leveling property of the finely divided varnish after landing on the substrate is good.
  • the varnish needs to have an appropriate viscosity.
  • a charge transporting thin film is formed on an electrode part such as IZO or the like when exposed on a substrate where a structure composed of simple or complex patterns is formed, the structure is exposed to a low varnish viscosity. It is difficult to obtain a uniform and flat charge transporting thin film between structures.
  • it includes at least one kind of volatile poor solvent for the liquid physical property of 1), and includes a process in which at least one kind of volatile poor solvent evaporates for the liquid physical property of 2), 3)
  • it is a mixture of three kinds of organic solvents that contains at least one highly leveling poor solvent that improves leveling properties and does not contain a volatile poor solvent. It is a concept to adopt.
  • the good solvent is an organic solvent (highly soluble solvent) that dissolves the substrate well. It is preferable that a good solvent suppresses the precipitation of the substrate and can maintain a dissolved state.A good solvent in which the good solvent in the spray mist evaporates and the substrate is precipitated during spray coating is not suitable. I don't like it. Precipitation of the substrate causes foreign substances, and the effect of the present invention for forming a uniform and highly flat organic thin film cannot be fully exhibited. When foreign matter is deposited to form an organic thin film that is uniform and low in flatness, it may cause low efficiency, short life, non-uniform surface emission, or deterioration of electrical short-circuit characteristics when incorporated into an organic EL device. become.
  • Evaporation of good solvent in the spray mist during spray application is spray application conditions, for example: 1) increase nitrogen amount, 2) decrease chemical amount, 3) increase gap, 4) increase pitch, 5) XY In many cases, it depends on conditions such as a wide scan range, but basically it is preferable to select spray coating conditions that do not evaporate the good solvent in the spray mist.
  • the good solvent examples include N, N-dimethylformamide (hereinafter abbreviated as DMF), N, N-dimethylacetamide (hereinafter abbreviated as DMAc), N-methylpyrrolidone (hereinafter referred to as NMP). Abbreviations), 1,3-dimethyl-2-imidazolidinone (hereinafter abbreviated as DMI), dimethyl sulfoxide, N-cyclohexylo 2-pyrrolidinone and the like. It is not something. Among these good solvents, NMP and DMI are preferred. DMI is more preferred.
  • the content ratio of the good solvent to the whole solvent used for the varnish is not particularly limited as long as the substrate is dissolved by the good solvent, but it is usually 1 to 90% by weight.
  • the high leveling poor solvent does not dissolve the substrate, is freely mixed with the good solvent and the volatile poor solvent, remains in the spray mist without evaporating at the time of spray coating, and adheres to the substrate. It is an organic solvent that exhibits a leveling effect.
  • the leveling effect is an effect that determines the uniformity of the thin film in a wet state before firing. If the leveling effect is low, a uniform and high flatness organic thin film cannot be obtained. . Specifically, it has the effect of widening the difference (history) between the advancing angle and the receding angle of fine droplets divided into approximately 0.1 to 50 m when spray mist has landed on the substrate! / It refers to a poor solvent.
  • high leveling poor solvent examples include styrene, propylene glycol monomethyl etherenole, propylene glycol monole, propylene glycol mono monoethyl etherate, propylene glycol monomethyl ether acetate, propylene glycol mono mono butinore.
  • Ether diethylene glycol dimethyl ether, diethylene glycol jetyl ether, dipropylene glycol methanol monomethyl ether, diethylene glycol monomer monomer methyl ether, dipropylene glycol monomer monomer ether, diethylene glycol monomer monomer ether, tri Ethylene glycol dimethyl ether, diethylene glycol monoethyl etherate acetate, diethylene glycol, 1-octanol, ethylene glycol Nole, hexylene glycol, trimethylene glycol, cyclohexanol, 1,3 butanediol, 1,4 butanediol, 2,3 butanediol, benzyl alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, and butyl latatatone.
  • propylene glycol diethylene glycol, cyclohexanol, 1,3 butanediol, 1,4 butanediol, 2,3 butanediol, y propylene glycol, where butyllataton is preferred, Cyclohexanol and 2,3 butanediol are more preferred.
  • the content ratio of the high leveling poor solvent to the whole solvent used in the varnish is particularly limited. Although not specified, it is usually 1 to 90% by weight.
  • the volatile poor solvent is an organic solvent that does not dissolve the substrate, freely mixes with a good solvent and a high leveling poor solvent, and evaporates from the spray mist during spray coating.
  • Volatile poor solvents have the effect of improving spray application by reducing the viscosity of the charge transporting varnish before spray application, and concentrating the varnish by evaporating from the spray mist.
  • Spray applicability is a force that depends on the spray conditions.
  • Spray head force A characteristic that regulates the particle size of the spray mist to be discharged stably and constantly.
  • the concentration of varnish depends on the amount of volatile poor solvent added and the amount of evaporation, but is a parameter that regulates or changes the thickness of the organic thin film that is uniform and has high flatness.
  • the volatile poor solvent in the present invention is different in significance from a general volatile solvent.
  • a general volatile solvent is often specified by an arbitrary temperature, a vapor pressure at a pressure, or a relative vapor pressure. It may depend on the size, potential energy such as landing distance to the base material, landing speed, and kinetic energy.
  • volatile poor solvent examples include toluene, p-xylene, o-xylene, ethylene glycol resin methinoleatenole, ethylene glycol monomethino ethenole, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether.
  • volatile poor solvents methyl ethyl ketone, methanol, ethanol, iso Ethanol, isopropanol, isobutanol, and ethylene glycol monobutyl ether are preferred, with propanol, tert-butanol, normalorepropanol, isobutanol, normalole butanol, and ethylene glycol monobutyl ether being preferred.
  • the content ratio of the volatile poor solvent to the whole solvent used in the varnish is not particularly limited, but is usually 1 to 90% by weight, preferably 1 to 50% by weight.
  • Preferred solvent compositions include DMI and cyclohexanol and isobutanol, DMI and cyclohexanol and ethanol, NMP and cyclohexanol and isobutanol, NMP and cyclohexanol and ethanol, and DMAc and cyclohexane.
  • the method for producing the charge transporting varnish is not particularly limited. In general, it can be manufactured by mixing each material.
  • the organic compound and oligomer used in the present invention are not particularly limited as long as they are soluble in a solvent.
  • the charge transporting monomer and charge transporting oligomer used in the present invention are not particularly limited as long as they can be dissolved in a solvent. However, it is desirable that at least one conjugated unit is a continuous structure.
  • the conjugated unit is not particularly limited as long as it is an atom capable of transporting an electric charge, an aromatic ring, or a conjugated group, but is preferably a substituted or unsubstituted divalent to tetravalent aline group, thiophene.
  • substituent of the conjugated unit are independently hydrogen, hydroxyl group, group, rogen group, amino group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group.
  • the monovalent hydrocarbon group examples include alkyl groups such as a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, and a decyl group; a cyclopentyl group and a cyclohexyl group.
  • a cycloalkyl group such as a group; a bicycloalkyl group such as a bicyclohexyl group; a bule group, a 1-propylene group, a 2-propellyl group, an isopropole group, a 1-methyl-2-probe group, 1 or 2 or 3 alkyl groups such as butyr group, hexyl group; aryl groups such as phenyl group, xylyl group, tolyl group, biphenyl group, naphthyl group; benzyl group, phenyl group, Examples thereof include aralkyl groups such as a phenylcyclohexyl group and those in which some or all of the hydrogen atoms of these monovalent hydrocarbon groups are substituted with halogen atoms, hydroxyl groups, alkoxy groups, or the like.
  • organooxy group examples include an alkoxy group, an alkoxy group, an aryloxy group, and the like, and examples of the alkyl group, alkenyl group, and aryl group include the same groups as those exemplified above.
  • organoamino group examples include phenylamino group, methylamino group, ethylamino group, propylamino group, butylamino group, pentylamino group, hexylamino group, heptylamino group, octylamino group, noramino group, decylamino group, laurylamino group.
  • Alkylamino groups such as dimethylamino groups, dialkylamino groups such as dimethylamino groups, jetylamino groups, dipropylamino groups, dibutylamino groups, dipentylamino groups, dihexylamino groups, diheptylamino groups, dioctylamino groups, dino-luminamino groups, didecylamino groups, etc.
  • organosilyl groups include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, tributylsilyl group, tripentylsilyl group, trihexylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, octyldimethylsilyl group. And decyldimethylsilyl group.
  • organothio group examples include alkylthio groups such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, and laurylthio group.
  • alkylthio groups such as methylthio group, ethylthio group, propylthio group, butylthio group, pentylthio group, hexylthio group, heptylthio group, octylthio group, nonylthio group, decylthio group, and laurylthio group.
  • acyl group examples include a formyl group, a acetyl group, a propionyl group, a butyryl group, an isoptyryl group, a valeryl group, an isovaleryl group, and a benzoyl group.
  • the number of carbon atoms in the alkyl group, alkoxy group, thioalkyl group, alkylamino group, organosiloxy group, organosilyl group, etc. is not particularly limited, but is generally 1-20, preferably 1-8.
  • the substituent includes fluorine, a sulfone group, a substituted or unsubstituted organooxy group, an alkyl group, an organosilyl group, and the like.
  • the conjugated chain formed by linking the conjugated units may include a cyclic moiety.
  • the molecular weight of the charge transporting monomer is 200 to 1000.
  • the number average molecular weight of charge transporting oligomers can be used to control material volatilization and charge transporting properties.
  • the lower limit is usually 200 or more, preferably 400 or more
  • the upper limit is usually 5000 or less, preferably 2000 or less for improving the solubility.
  • a charge transporting oligomer having no molecular weight distribution is preferable, and the molecular weight is usually 200 or more as a lower limit, preferably 400 or more as a lower limit from the viewpoint of suppression of volatilization of the material and expression of charge transporting property.
  • the upper limit is usually 5000 or less, preferably 2000 or less.
  • the number average molecular weight is a value measured by gel permeation chromatography (polystyrene conversion).
  • the charge transporting substance it exhibits high solubility and high charge transporting property and has an appropriate ionization potential. Therefore, the oligo-phosphorus derivative represented by the general formula (1) is particularly preferable. Alternatively, it is preferable to use a quinonedimine derivative that is an acid complex thereof. It is more desirable that the oligourine derivative is reduced with hydrazine.
  • R and R 3 are each independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, thioester group, amide group.
  • a nitro group, a monovalent hydrocarbon group, an organooxy group, an organoamino group, an organosilyl group, an organothio group, an acyl group or a sulfone group, and A and B are each independently represented by the following general formula (2) or (3) It is a bivalent group represented by these.
  • R 4 to R U are each independently hydrogen, hydroxyl group, halogen group, amino group, silanol group, thiol group, carboxyl group, phosphate group, phosphate ester group, ester group, Steal group, amide group, nitro group, monovalent hydrocarbon group, organooxy group, organoamino group
  • the quinone dimine body means a compound having a partial structure represented by the following formula in its skeleton.
  • the charge transporting property of the resulting charge transporting thin film is improved by extending the ⁇ -conjugated system in the molecule as much as possible, in particular, the oligo-line derivative represented by the general formula (4), or It is preferable to use a quinonedimine derivative which is the acid complex.
  • m + n has a force of exerting a good charge transporting property, and has a force of 4 or more from the viewpoint of improving the solubility in a preferred solvent.
  • the following is preferable.
  • charge transport materials may be used alone, or two or more materials may be used in combination! Specific examples of such compounds include ferrule tetralin and ferpentar phosphorus.
  • oligo-line derivatives soluble in organic solvents such as tetralin (aline tetramer), octaline (aline octamer), and the like.
  • the method for synthesizing these charge transporting oligomers is not particularly limited, but the oligo-phosphorus synthesis method (Bulletin of Chemical Society of Japan (Bulletin of Chemical Society of Japan), 1994, 67th, p. 1749-1752, and Synthetic Metals, USA, 1997, 84th, p. 119-120), origothiophene synthesis methods (for example, Heterocycles, 1987, 26th, p. 939-942, and Heterocycles, 1987, 26th, p. 1793-1796).
  • a charge transporting organic material comprising the above-described charge transporting material and a charge-accepting dopant material can also be used.
  • the charge transporting organic material is not particularly limited as long as it dissolves in a solvent.
  • an electron-accepting dopant material can be used for the hole-transporting material, and a hole-accepting dopant material can be used for the electron-transporting material. It is also desirable to have high charge acceptability.
  • the charge transporting oligoline generally exhibits hole transporting properties, it is preferable to use an electron accepting dopant material as the charge accepting dopant material.
  • the electron-accepting dopant include benzenesulfonic acid, tosylic acid, camphorsulfonic acid, hydroxybenzenesulfonic acid, 5-sulfosalicylic acid, dodecylbenzenesulfonic acid, strong organic acids such as polystyrene sulfonic acid, 7, 7, Powers including oxidants such as 8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-1,5,6-disyano 1,4-benzoquinone (DDQ), but are not limited thereto.
  • TCNQ 8,8-tetracyanoquinodimethane
  • DDQ 2,3-dichloro-1,5,6-disyano 1,4-benzoquinone
  • These electron-accepting dopant materials may be used alone or in combination of two or more materials.
  • both the charge transport material and the charge-accepting dopant material are amorphous solids, but it is necessary to use a crystalline solid as at least one of the materials. If necessary, it is preferable to use a material exhibiting amorphous solidity after forming a charge transporting varnish.
  • At least one of the charge transport material and the charge-accepting dopant material is a crystalline solid
  • at least one of the materials is preferably a material having a random intermolecular interaction.
  • a molecular compound for example, a compound having three or more different polar functional groups in the same molecule is preferable.
  • Examples of such compounds include, but are not limited to, for example, Tyrone, dihydroxybenzenesulfonic acid, and sulfonic acid derivatives represented by the general formula (5).
  • the sulfonic acid derivatives shown are preferred U ⁇ .
  • Specific examples of the sulfonic acid derivative include sulfosalicylic acid derivatives such as 5-sulfoslicylic acid.
  • D represents a benzene ring, naphthalene ring, anthracene ring, phenanthrene ring or heterocyclic ring, and R 12 and R 13 each independently represent a carboxyl group or a hydroxyl group.
  • a sulfonic acid derivative represented by the general formula (6) or (7) can also be suitably used. These sulfonic acid derivatives can be synthesized based on the descriptions in International Publication No. 2005Z000832 pamphlet and International Publication No. 2006Z025342.
  • R 14 to R 18 each independently represents a hydrogen atom, an unsubstituted or substituted monovalent hydrocarbon group or a halogen atom, X represents a single bond, 0, S or NH;
  • A is a hydrogen atom, a halogen atom, 0, S, S (O) group, S (0) group, or N to which an unsubstituted or substituted group is bonded,
  • a Si, P, P (O) group or a monovalent or higher-valent unsubstituted or substituted hydrocarbon group is shown.
  • y is an integer that satisfies 1 ⁇ , which is equal to the valence of A, and is the number of sulfone groups attached to the benzene ring part of the 1,4 benzodioxane skeleton, and l ⁇ x ⁇ 4.
  • X represents 0, S or NH
  • A has a substituent other than X and n (SO 2 H) groups.
  • B represents an unsubstituted or substituted hydrocarbon group, 1, 3, 5-triazine group, or an unsubstituted or substituted formula (3) or (4)
  • W 1 and W 2 are each independently o, S, S (O) group, s (o) group,
  • N represents the number of sulfone groups bonded to A and is an integer satisfying l ⁇ n ⁇ 4, q is the number of bonds between B and X, and is an integer satisfying l ⁇ q. ]
  • B includes one or more aromatic rings! /,
  • a divalent or higher-valent unsubstituted or substituted hydrocarbon group, divalent Or a trivalent 1,3,5-triazine group, a substituted or unsubstituted divalent diphenylsulfone group is preferred, in particular a divalent or trivalent substituted or unsubstituted benzyl group, a divalent substituted or Unsubstituted p-xylylene group, divalent or trivalent substituted or unsubstituted naphthyl group, divalent Or a trivalent 1, 3, 5 triazine group, a divalent substituted or unsubstituted diphenylsulfone group, a divalent to tetravalent perfluorobiphenyl group, a divalent substituted or unsubstituted 2, 2 bis. ((Hydroxypropoxy) phenol) propyl group and substituted or unsubstituted
  • the charge-accepting dopant substance is usually 0.01, preferably 0.2, as the lower limit for the charge-transporting substance 1, and the upper limit is the charge-transporting substance and the charge-accepting dopant substance completely dissolved in the solvent.
  • the mass ratio is preferably 10.
  • the conductive thin film of the present invention can be prepared by evaporating a solvent such as a varnish applied on a substrate.
  • the method for evaporating the solvent is not particularly limited, and evaporates in an appropriate atmosphere, that is, in an inert gas such as air or nitrogen, or in a vacuum using a hot plate, a proximity hot plate or an oven.
  • an inert gas such as air or nitrogen
  • a vacuum using a hot plate, a proximity hot plate or an oven to obtain a thin film having a uniform film formation surface.
  • the process in which finely sprayed spray droplets evaporate by spontaneous fall until they reach the substrate during spray application is simple or simple. This is an extremely important factor when depositing selectively and flatly on the exposed ITO or IZO electrodes on the substrate where a structure with a complex pattern is formed. .
  • the firing temperature is not particularly limited as long as the temperature can evaporate the solvent.
  • 50 ° C is preferred. Also, in order to develop high flatness and uniformity of the thin film, or to allow the reaction to proceed on the substrate, two or more temperature changes may be applied during film formation.
  • the film thickness distribution can be measured, for example, by Kosaka Laboratory Ltd.
  • UREFCORDER ET4000A can be used. By this measurement, the flatness and uniformity between structures can be evaluated.
  • a low-molecular-weight organic EL (hereinafter referred to as a “low molecular weight organic EL”) using the charge transporting varnish (charge transporting thin film) of the present invention
  • OLED organic light-emitting diode
  • the electrode substrate to be used is cleaned in advance by cleaning with a detergent, alcohol, pure water or the like, and the anode substrate is subjected to surface treatment such as ozone treatment or oxygen plasma treatment immediately before use. It is preferable to perform the operation. However, when the anode material is mainly composed of an organic material, the surface treatment may not be performed.
  • a thin film may be formed by the following method.
  • the hole transporting varnish is applied to the anode substrate by the above coating method, and a hole transporting thin film is produced on the anode.
  • This is introduced into a vacuum deposition apparatus, and a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode metal are sequentially deposited to form an OLED element.
  • a carrier block layer may be provided between arbitrary layers.
  • anode material examples include transparent electrodes typified by ITO and IZO, and those subjected to flattening treatment are preferable. It is possible to use polythiophene derivatives having a high charge transport property or polyarine derivatives.
  • a material for forming the hole transport layer for example, a (triphenylamine) dimer derivative is used.
  • TPD (a-naphthyldiphenylamine) dimer ( ⁇ NPD), [(Triphenylamine) dimer] Spiro-dimer (Spiro-TAD) and other triarylamines, 4, 4, 4 "tris [3-Methylphenol (Phenol) amino] Triphenylamine (m—MTDATA), 4, 4,, 4 "-Tris [1 Naphthyl (Phenol) amino] Triphenylamine (1--) 5, 5 "-bis ⁇ 4— [bis (4-methylphenol) amino] phenol ⁇ —2, 2 ': 5', 2" tarthiophene ( ⁇ -3 ⁇ ), etc.
  • oligothiophenes can be mentioned.
  • the light-emitting layer may be formed by co-evaporation of the above-described material for forming the hole transport layer or the material for forming the following electron transport layer and a light-emitting dopant.
  • the luminescent dopants include quinacridone, rubrene, coumarin 540, 4- (disyanomethylene) 2-methyl 6- (p dimethylaminostyryl) 4H pyran (DCM), tris (2-phenylpyridine) iridium (III) ( lr (ppy)) and (1, 10 phenant mouth phosphorus) —Tris (4, 4, 4 trifluoro 1— (2—Che-
  • Examples of the material for forming the electron transport layer include Alq, BAlq, DPVBi, (2- (4-Bi
  • MgO alumina
  • LiF lithium fluoride
  • MgF magnesium fluoride
  • cathode material examples include aluminum, magnesium silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • Examples of the material for forming the carrier block layer include PBD, TAZ, and BCP.
  • a thin film may be formed by the following method.
  • the electron transporting varnish is applied to the cathode substrate by the above coating method, and an electron transporting thin film is produced on the cathode substrate.
  • This is introduced into a vacuum deposition apparatus, and after forming an electron transport layer, a light emitting layer, a hole transport layer, and a hole injection layer using the same materials as described above, an anode material is formed by a method such as sputtering.
  • the OLED element is a method such as sputtering.
  • the method for producing a polymer organic EL (hereinafter abbreviated as PLED) element using the charge transporting varnish of the present invention includes, but is not limited to, the following methods.
  • the light-transport charge varnisher of the present invention is formed by forming a light-emitting charge transport polymer layer.
  • a PLED device including a charge transporting thin film can be fabricated. Specifically, a hole transporting thin film is formed on the anode substrate in the same manner as the OLED device, a light emitting charge transporting polymer layer is formed on the thin film, and a cathode electrode is vapor-deposited.
  • an electron transporting thin film is formed on the cathode substrate by the same method as that for the OLED element, a light emitting charge transporting polymer layer is formed thereon, and further, sputtering, vapor deposition, sputtering is performed.
  • An anode electrode is produced by a method such as pin coating to form a PLED element.
  • the cathode and anode materials to be used the same materials as exemplified in the OLED element can be used. Cleaning treatment and surface treatment can be performed in the same manner as the treatment method described for the OLED element.
  • a solvent is added to the light emitting charge transporting polymer material or a material to which a light emitting dopant is added to dissolve or disperse the hole injecting layer.
  • An example is a method in which a film is formed by evaporating the solvent after coating on a previously formed electrode substrate.
  • Examples of light-emitting charge transporting polymer materials include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2, ethylhexoxy) 1 , 4-phenolene-ylene) (MEH-PPV), polythiophene derivatives such as poly (3-alkylthiophene) (PAT), and polyvinylcarbazole (PVCz).
  • PDAF poly (9,9-dialkylfluorene)
  • MEH-PPV 4-phenolene-ylene
  • PAT polythiophene derivatives
  • PVCz polyvinylcarbazole
  • Examples of the solvent include toluene, xylene, black mouth form, and the like.
  • Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
  • Examples of the application method include, but are not limited to, dipping method, spin coating method, transfer printing method, roll coating method, ink jet method, spray method, brush coating, etc., and inert such as nitrogen and argon It is desirable to apply under gas.
  • Examples of the solvent evaporation method include a method of heating in an oven or a hot plate under an inert gas or in a vacuum.
  • Phenyltetralin (hereinafter abbreviated as PTA) shown in Formula (10) is a bulletin of Chemical Society of Japan, 1994, No. 67, 1749-1752 was synthesized from p-hydroxydiphenylamine and p-phenylenediamine (yield 85%). [0064] [Chemical 16]
  • the ITO substrate with structure was prepared as follows using a positive photosensitive polyimide varnish.
  • a positive photosensitive polyimide varnish was synthesized according to the method described in Example 1 of the pamphlet of International Publication No. 2003-029899.
  • the number average molecular weight was measured by GPC system S SC-7200 manufactured by Senshu Science Co., Ltd.
  • the obtained positive photosensitive polyimide varnish was dropped onto an ITO solid substrate of 50 ⁇ 50 mm and a thickness of 0.7 mm, and a film was formed by spin coating.
  • a spin coater a spin coater 1H—DX2 manufactured by Mikasa Corporation was used. After film formation, it was pre-beta for 5 min at 80 ° C.
  • an ultraviolet irradiation device PLA-501 manufactured by Canon Inc. was irradiated for 28 seconds (150 n3j / cm 2 ).
  • the resulting pattern has a polyimide structure with a film thickness of 700 ⁇ 10 ⁇ m, a line (polyimide width) of 30 ⁇ m, a space (between structures) of 50 ⁇ m, and a pure water contact angle of 85.5 °. I got a thing.
  • the production of the photosensitive polyimide structure was performed in a Class 1000 clean room.
  • the shape and development of the photosensitive polyimide structure can be removed by using the SUREFCOR DER ET4000A, a high-precision fine shape measuring instrument manufactured by Kosaka Laboratory. It was measured.
  • the measurement conditions were a measurement range of 0.4 mm, a feed rate of 0. Olmm / sec, and a stylus pressure as a measurement force of 10 N.
  • Figure 1 shows the measurement results of the ITO substrate with structure.
  • Figure 2 shows the result of measuring the ITO part of the substrate with structure. Defeated by development! The flatness of O had a maximum roughness of 10 nm.
  • the obtained varnish was spray-coated on the ITO substrate with the structure prepared in Reference Example 2 using a spray coating device NVD-200 manufactured by Fujimori Technology Research Co., Ltd.
  • the coating conditions of the spray coating equipment are as follows: film thickness is 30nm, X and Y scan direction is 240mm, X and Y offset is Omm, scan pitch is 10mm, gap is 150mm, nozzle speed is 50 Omm / sec, nitrogen amount is 10LZmin, chemical volume was 1mLZmin, application waiting time was 15sec, tact time was 60sec.
  • the film was baked at 180 ° C for 2 hours in air on a hot plate to produce a charge transporting thin film.
  • FIG. 3 shows the result of measuring the thickness distribution of the charge transporting thin film of Example 1.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • Example 5 The varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the ceptor 5-SSA was changed to the naphthalene disulfonic acid oligomer (N 2 SO-2) described in formula (12) to prepare a varnish as follows.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the ceptor 5-SSA was changed to the benzodioxane sulfonic acid oligomer (BDSO-3) described in formula (13) to prepare a varnish as follows.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the host PTA was changed to polyarlin (Pani), and a varnish was prepared as follows.
  • Pani 0.00637g and 5-SSA 0.1256g (0.5757mmol) were dissolved in DMI 2.4820g under nitrogen atmosphere, but they were not completely dissolved, resulting in an organic solvent dispersion.
  • the resulting dispersion solution CHA 3. 7230g, then ethanol (EtOH) 6. added and stirred 2050 g, to prepare a charge transporting varnish (ideal solid 1.5%) 0
  • the Cheral Emeraldine Base Mw ca.50000 was used.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • Polyethylenedioxythiophene Polystyrene sulfonic acid aqueous solution (PEDOT; PSS) (manufactured by Bayer) was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • Example 26 As in f column 1, PTA 0.00637 g (0.1439 mmol) and 5-SSAO. 1256 g (0.5757 mmol) were completely dissolved in 2410 g DMI under a nitrogen atmosphere. 6.2050 g of CHA and then 4.9640 g of ethylene glycol monobutyl ether (Butyl Seolo Sorb) were added to the obtained solution and stirred to prepare a charge transporting varnish (solid content 1.5%). The obtained varnish was spray-coated on the ITO substrate with the structure prepared in Reference Example 2 using a spray coating device NVD-200 manufactured by Fujimori Technology Research Co., Ltd.
  • the coating conditions of the spray coating device are as follows: film thickness 30nm, X and Y scan direction 240mm, X and Y offset 0mm, scan pitch 10mm, gap 150mm, nozzle speed 500mmZsec, nitrogen amount 10LZmin, chemical solution The amount was 0.8 mL / min, the coating standby time was 15 seconds, and the tact time was 60 seconds. After coating, it was baked at 180 ° C for 2 hours in air on a hot plate to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • Example 26 By the method described in Example 26, the varnish was spray-coated to produce a charge transporting thin film.
  • the varnish was spray-coated by the method described in Example 1 to produce a charge transporting thin film.
  • the obtained varnish was applied by a spin coating method aiming at a film thickness of 30 nm.
  • the film was baked at 180 ° C for 2 hours in air on a hot plate to produce a charge transporting thin film.
  • the obtained varnish was applied by an offset printing method aiming at a film thickness of 30 nm.
  • the printing machine was a simple printing machine S-15 type manufactured by Nakan Co., Ltd., and printed using the APR version (400 mesh).
  • the indentation pressure was set to 0.25 mm, the blank printing was discarded twice, and the coating was applied to the ITO substrate three times and then printed on the substrate with the structure.
  • a charge transporting thin film was prepared by baking at 180 ° C for 2 hours in air on a hot plate.
  • Table 1 shows the results of measurement of the viscosity, surface tension, and solid content of the charge transporting varnishes prepared in Example 1 and Comparative Examples 1 to 3 during spray application and landing, and a film formed by the spray method.
  • the result of visual observation of the ITO solid part of the charge transporting thin film and the result of film thickness distribution are shown.
  • the numerical values before and after the arrow ( ⁇ ) for the viscosity, surface tension and solid content indicate the physical properties of the varnish before spraying and the varnish when spraying after spraying.
  • a FNA-35 interference manuscript inspection lamp manufactured by Funatech Co., Ltd. was used. When the interference inspection lamp is visually observed, fine uneven coating can be reliably confirmed visually.
  • indicates that when a uniform film formation surface is obtained, ⁇ indicates a film formation surface that is slightly inferior to ⁇ due to uneven coating. In this case, X indicates a case where a uniform film formation surface is obtained.
  • the surface tension was measured using an automatic surface tension meter CBVP-Z type manufactured by Kyowa Interface Science Co., Ltd.
  • the solid content was measured as follows. Weigh the target varnish with a capacity of 23 mL, ⁇ upper part 51 mm, ⁇ lower part 45 mm, 12 mm depth Al standard pan, about 2 g, put it in a vacuum dryer that has been kept at 160 ° C in advance, and put 23 mmHg It was dried for 60 minutes after reducing the pressure to 10 minutes. Dryer power It was transferred to a desiccator where the humidity was maintained at 50 RH%, allowed to stand for 5 minutes, and then the solid content was weighed.
  • the viscosity was measured using an E-type viscometer manufactured by Toki Sangyo Co., Ltd. In spray coating, the viscosity of the varnish at the time of landing was sprayed under the conditions for film formation, and the varnish was collected by placing a shear on the stage and measuring the viscosity.
  • Example 1 is a mixture of three organic solvent varnishes composed of DMI as a good solvent, CHA as a high leveling poor solvent, and IBA as a volatile poor solvent. It is a charge transporting varnish in which the liquid physical properties change. CHA is a solvent that remains during spray application and IBA evaporates during spray application.
  • Example 1 As shown in Table 1, in Example 1, the viscosity before spray application was 8.8 mPa's, but because IBA evaporated during spraying, the viscosity at the time of landing on the substrate increased to 17.6 mPa's. A varnish whose viscosity increases twice as much. Although the surface tension slightly increased with the evaporation of IBA, it was possible to control the surface tension during spraying (29.6 mNZm) and when the substrate was applied (33.8 mNZm). In addition, the solid content of varnish at the time of landing on the substrate due to the evaporation of IBA increased and increased from 1.5 wt% to 2.4 wt%.
  • Two types of evaluation methods were used to evaluate the film-forming surface of the charge transporting thin film.
  • One is the unevenness of the film thickness, which is a micro evaluation of the film deposition surface to confirm the film thickness distribution force between 50 m structures.
  • the other is uneven coating, which is a macroscopic observation of the film-forming surface of the charge transporting thin film. Evaluation of the film surface.
  • the charge transporting thin film of Example 1 was formed by coating ITO with a film thickness distribution of 30 ⁇ 5 nm. It is desirable that this film thickness distribution is ⁇ 5 nm or less of the target film thickness. When the film thickness is ⁇ 10 nm or more, when the charge transporting thin film is incorporated into an EL element to emit light, the film thickness unevenness is visually observed as light emission unevenness. I can do it.
  • coating unevenness ( ⁇ or X in film-forming surface observation) that could be visually confirmed with an interference inspection lamp was emitted by incorporating the charge transporting thin film into an EL element. Sometimes, coating unevenness can be visually observed as light emission unevenness.
  • Comparative Example 1 is a mixture of two organic solvent varnishes composed of DMI as a good solvent and IBA as a volatile poor solvent, excluding the high leveling poor solvent. Force that is a charge transporting varnish that changes the liquid physical properties during spray coating and substrate landing The coating unevenness is eliminated by removing the high leveling poor solvent that improves the leveling properties remaining in the spray. occured.
  • Comparative Example 1 was formed by coating ITO with a film thickness distribution of 30 1 nm. Unlike the case where the varnish of Example 1 was used, it was found that the film thickness unevenness between the structures was large. This is because the viscosity at the time of substrate deposition is 7.2 mPa's, and since the viscosity is low, film thickness unevenness that easily flows between structures is considered to have occurred.
  • Comparative Example 2 is a mixture of two organic solvent varnishes composed of DMI as a good solvent and CHA as a high leveling poor solvent, excluding the volatile poor solvent.
  • Comparative Example 3 is a varnish composed only of a good solvent DMI, and excludes the volatile poor solvent and the high leveling poor solvent.
  • the liquid physical properties during spray coating and substrate landing do not change, the viscosity at the time of landing is as low as 7.2 mPa's, and a high leveling poor solvent that improves leveling is included. From this, it is considered that coating unevenness occurred.
  • Table 2 shows the results of measurement of the viscosity, surface tension, and solid content of the charge transporting varnishes prepared in Examples 2 to 8 during spray coating and liquid landing, and the charge transporting thin film formed by the spray method. The results of visual observation of the ITO solid part and the film thickness distribution are shown.
  • Viscosity during spray application and substrate landing is 4.8mPa's to 11.2mPa-s (2.3 times) in Example 2, and 5.2.5mPa-s (2.5 times) in Example 3 from OmPa-s force.
  • Example 4 is from 5.4mPa-s to 14.5mPa-s (2.7 times)
  • Example 5 is from 6.7mPa's to 16.6mPa-s (2.5 times)
  • F row 6 force 11.7 mPa's force 22.5 mPa-s (l.9 times)
  • Example 7 15.2 mPa * s force 26.
  • Example 8 19.5 mPa's force, etc. 31.8mPa-s (l.6 times) It was possible to increase the viscosity from 1.6 to 2.7 times.
  • the surface tension during spray application and substrate application is 28.8 mNZm to 34.6 mN / m in Example 2, 29. lmNZm to 34.4 mN / m in Example 3, and 29.3 mN / m in Example 4.
  • the ability to control the surface tension is very useful in that the optimum liquid properties can be selected according to the surface energy of the substrate.
  • the solid content at the time of spray application and substrate landing is 1.5 wt% to 7. Owt in Examples 1 to 8. It was possible to concentrate to%.
  • the ability to concentrate the solid content of the varnish during spray application and substrate application is useful for controlling the film thickness and is an index for selecting spray application parameters.
  • the film thickness distribution of the charge transporting thin films of Examples 1 to 8 was 30 ⁇ 6 nm or less, and it was found that the film thickness unevenness was suppressed to such an extent that it did not affect the light emission unevenness.
  • Table 3 shows the results of measurement of the viscosity, surface tension, and solid content of the charge transport varnish prepared in Example 1 and Examples 9 to 12 during spray application and liquid deposition, and a film formed by the spray method. The result of visual observation of the ITO solid part of the charge transporting thin film and the result of film thickness distribution are shown.
  • Example 12 The solid content of the varnish of each example was 1. Owt% in Example 9, 1.5 wt% in Example 1, 2.0 wt% in Example 10, and 2.5 wt% in Example 11.
  • Example 12 is 3.0%.
  • Example 9 is 8.4 mPa's force, etc. 16.7 mPa-s (2.0 times), implementation f row 1 force 8.8 mPa's force, etc. 17. 6mPa-s (2.0 times), f row 10 force 9.2mPa • s to 18.4mPa-s (2.0 times), Example 11 is 9.7mPa-s force 19.3mPa-s ( 20 times), It was found that Example 12 was able to increase the viscosity up to about 2.0 times by 10. OmPa's force and 20.0 mPa-s (2.0 times).
  • the surface tension at the time of spray application and substrate deposition is from 99.4 mNZm to 33.7 mN / m in Example 9, 29.6 mNZm force and 33.8 mN / m in Example 1. 29.6 mN / m force, 33.9 mNZm, Example 11 from 29.7 mNZm to 34. lmN / m, and Example 12 from 29.8 mNZm to 34.2 mNZm.
  • the ability to control the surface tension is very useful in that the optimum liquid properties can be selected according to the surface energy of the substrate.
  • the thickness distribution of the charge transporting thin films of Examples 9 to 12 was about 30 ⁇ 5 nm, and it was found that the film thickness unevenness was suppressed to such an extent that it did not affect the light emission unevenness.
  • the change in the solid content of the varnish is an index for controlling the film thickness.
  • Table 4 shows the results of measurement of the viscosity, surface tension, and solid content at the time of spray application and application of the charge transport varnish prepared in Example 1 and Example 13, and the charge formed by the spray method. Looking at the solid ITO part of the transportable thin film?
  • the varnishes of Example 1 and Example 13 showing the results of observation and film thickness distribution were fixed to CHA in a high leveling poor solvent, IBA in a volatile poor solvent, and the solvent composition ratio was determined as a good solvent:
  • Table 5 shows the results of measurement of the viscosity, surface tension, and solid content of the charge transporting varnishes prepared in Examples 14 to 16, Comparative Example 4 and Comparative Example 5 at the time of spray coating and liquid landing, and spraying. The results of visual observation of the ITO solid part of the charge transporting thin film deposited by this method and the results of film thickness distribution are shown.
  • the varnishes of Comparative Example 4 and Comparative Example 5 are varnishes using a polymer as a host.
  • the varnish of Comparative Example 4 is an organic solvent dispersion varnish
  • the Comparative Example 5 varnish is an aqueous dispersion varnish.
  • the viscosities during spray application and substrate deposition were from 7.2 mPa 's to 14.2 mPa-s (2.0 times) in Example 14, and from 4.4 mPa' s in Example 15. 8. It is possible to increase the viscosity from 6 lmPa-s (2.0 times), Example 16 from 4. lm Pa's to 7.8 mPa-s (l. 9 times) to about 2.0 times. I was divided.
  • the surface tension at the time of spray application and substrate application is 30.lmNZm to 35.lmN / m in Example 14, 29.8mNZm force, etc. in Example 15 34.9mN / m, and 29.2mN in Example 16. It was found that the surface tension could be controlled by changing from Zm to 34.5 mNZm. The ability to control the surface tension is very useful in that the optimal liquid properties can be selected according to the surface energy of the substrate.
  • Example 14 The solid content at the time of spray coating and substrate landing was 1.5 wt% to 3. Owt% (2.0 times) in Example 14, and 1.5 wt% to 3. Owt% in Example 15. (2.0 times), Example 16 increased from 1.5 wt% to 3. Owt% (2.0 times), and it was possible to concentrate.
  • the film thickness distribution of Examples 14 to 16 was 30 ⁇ 6 nm or less, and the film thickness unevenness did not affect the light emission unevenness!
  • Comparative Example 4 and Comparative Example 5 although the surface tension viscosity and surface tension at the time of spray application and substrate landing liquid vary, the surface tension at the time of spray application and substrate landing of Comparative Example 5 varies. In the film thickness distribution, comparative example 4 is 15 ⁇ 30 nm, comparative example 5 is 10 ⁇ 30 nm, and the film thickness unevenness is very large. Furthermore, in Comparative Example 4 and Comparative Example 5, in addition to coating unevenness with a very large roughness on the film formation surface, it was confirmed that the skin was uneven due to foreign matter, the sea island structure near the center of the substrate, the shrinkage of the substrate edge, etc. .
  • Table 6 shows the results of measurement of the viscosity, surface tension, and solid content at the time of spray application and landing of the charge transporting varnishes prepared in Examples 1, 17 and 18 and Comparative Examples 2, 6 and 7, and Look at the ITO solid part of the charge-transporting thin film deposited by the spray method? Results of observation and film thickness distribution are shown.
  • the high leveling poor solvent contained in each varnish is CHA in Example 1 and Comparative Example 2, propylene glycol (PG) in Example 17 and Comparative Example 6, and 2, 3 in Example 18 and Comparative Example 7. Butanediol (2,3-BD).
  • the varnishes of Comparative Examples 2, 6, and 7 are varnishes that do not contain a volatile poor solvent.
  • Viscosity at the time of spray application and substrate deposition was 8.8 mPa's to 17.6 mPa-s in Example 1 (
  • the viscosities of Comparative Examples 2, 6 and 7 at the time of spray coating and substrate landing are spray coating.
  • the viscosity was 17.6 mPa's, 30.6 mPa's, and 44. OmPa's.
  • the surface tension at the time of spray application and substrate deposition was from 29.6 mNZm to 33.8 mN / m in Example 1, 28. lmNZm force and 33.2 mN / m in Example 17. Changed from 28.6 mN / m to 33.5 mNZm, and it was possible to control the surface tension.
  • the ability to control the surface tension is very useful in that the optimum liquid properties can be selected according to the surface energy of the substrate. By changing the type of high leveling poor solvent, it was possible to contrast the surface tension at the time of substrate landing.
  • the solid content at the time of spray application and substrate deposition was 1.5 wt% to 2.4 wt% (l.
  • Example 17 increased from 1.5 wt% to 2.4 wt% (l. 6 times)
  • Example 18 increased from 1.5 wt% to 2.4 wt% (l. 6 times). It was possible to concentrate.
  • the solid content at the time of spray application and substrate application liquid in Comparative Examples 2, 6 and 7 was not different from the solid content at the time of spray application, and was 2.4 wt%, 2.4 wt%, and 2.4 wt%. there were.
  • Example 1 the film thickness distribution of Examples 1, 17 and 18 was about 30 ⁇ 6 nm, and it was found that the film thickness unevenness was suppressed to the extent that the light emission unevenness was not affected.
  • Examples 1, 17 and 18 were uniform film formation surfaces with no uniform coating unevenness.
  • the film thickness distributions of Comparative Example 6 and Comparative Example 7 were 25 ⁇ 12 nm and 25 ⁇ 11 nm, and it was found that the film thickness unevenness was very large.
  • Example 17 11.1 ⁇ 30.6 28.1 ⁇ 33.2 1.5 ⁇ 2.4 30 ⁇ 5 O
  • Table 7 shows the results of the measurement of the viscosity, surface tension, and solid content of the charge transport varnish prepared in Examples 1, 19 to 26 and Comparative Examples 8 to 10 at the time of application and landing, and the spray. The result of visual observation of the ITO solid part of the charge transporting thin film formed by the method and the result of film thickness distribution are shown.
  • Example 1 with isobutanol (IBA), Example 19 with acetone (ACE), Example 20 with ethanol (EtOH), and Example 2 1 is methyl ethyl ketone (MEK),
  • Example 22 is isopropyl alcohol (IPA)
  • Example 23 is butanol (BuOH)
  • Example 24 is 2-methyl-1-pentanol (2MelPe OH)
  • Example 25 is Cyclohexanone (CHN)
  • Example 26 is ethylene glycol monobutyl ether (Butyl sorb).
  • Examples 1, 19 to 26 are varnishes for which concentration was confirmed, and Comparative Examples 8 to 10 were varnishes for which confirmation was not possible.
  • the film thickness distribution of Examples 1 and 19 to 26 was about 30 ⁇ 611111, and it was found that the film thickness unevenness was suppressed to the extent that it did not affect the light emission unevenness.
  • Comparative Examples 8 to 10 were 30 ⁇ 18 nm, 30 ⁇ 19 nm, and 30 ⁇ 15 nm, respectively, indicating that the film thickness unevenness was very large.
  • Table 8 shows the results of film thickness distribution and film formation surface observation when the coating process is changed.
  • Example 1 was evaluated using the varnish of Example 1 by spraying, Comparative Example 11 by spin coating, and Comparative Example 12 by offset printing.
  • the film thickness distribution was 30 ⁇ lOnm, and the film forming property was good, but the film thickness unevenness was large. This unevenness in film thickness is considered to be caused by the flow between structures when a film having a viscosity of about 8.8 mPa's is formed by spin coating.
  • the film thickness distribution was 28 ⁇ 12 nm, and coating unevenness was observed in the film forming property where the film thickness unevenness was large. If the viscosity is about 8.8 mPa's, the optimum viscosity in the printing method is low. Furthermore, since the APR plate directly contacts the structure in the printing method, it was confirmed that the fine structure would be destroyed at the frictional part such as the edge of the printing surface.
  • the charge transporting thin film produced in Example 1 was introduced into a vacuum deposition apparatus, and a NPD, A1 q, LiF, and A1 were sequentially deposited.
  • the film thickness respectively 40 nm, 60 nm, 0. 5 nm, as Iotaomikuron'omikuron'ita m, the force also was deposited operation becomes 8 X 10- 4 Pa pressure below respectively.
  • the deposition rate was 0.3 to 0.4 nmZs for materials other than LiF and 0.02 to 0.04 nmZs for LiF.
  • a series of deposition operations were performed under vacuum until all layers were deposited.
  • Table 9 shows the characteristics and Ip of the OLED elements of Example 27 and Comparative Example 13.
  • the characteristics of the OLED element showed the light emission starting voltage or the voltage, luminance, and luminous efficiency when lOmAZcm 2 and 50 mAZcm 2 were used as threshold values.
  • the characteristics of the OLED element were measured using an organic EL luminous efficiency measuring device (EL1003, manufactured by Precise Gage). Ip was measured using a photoelectron spectrometer AC-2 manufactured by Riken Keiki Co., Ltd.
  • the light emitting surface of the OLED element of Example 27 had a uniform surface light emission. One light emission.
  • the results in Table 9 are considered to be caused by unevenness in film thickness between structures, and the difference between the OLED element of Example 27 with a film thickness distribution of 30 ⁇ 5 nm and the OLED element of Comparative Example 13 with 30 ⁇ 10 nm. It is. In particular, in the OLED element of Comparative Example 13, since the light emission in the thick film part was darkened instead of the light emission in the thin film part, the light emission was localized and the efficiency of surface light emission occurred. Is estimated to have decreased. In addition, it is obvious that the OLED element of Comparative Example 13, which has been unevenly luminescent, can easily determine that the charge is biased, and thus has a short life and a short-circuit characteristic.
  • the charge transporting varnish of the present invention the EL element light emission starting voltage is reduced, the current efficiency is improved, and the device life is extended, and the yield of an inexpensive and high-productivity EL device is improved. It is possible to produce.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 電荷輸送性モノマー、若しくは数平均分子量200~5000の電荷輸送性オリゴマーからなる電荷輸送物質、又はこの電荷輸送物質及び電子受容性ドーパント物質若しくは正孔受容性ドーパント物質からなる電荷輸送性有機材料と、良溶媒、少なくとも1種類の高レベリング性貧溶媒及び少なくとも1種類の揮発性貧溶媒を含有する電荷輸送性ワニス。これにより、スプレー法又はインクジェット法により、単純若しくは複雑なパターンで構成された構造物が形成されている基板の露出したITOあるいはIZOなどの電極部分に均一で凹凸がない電荷輸送性薄膜を形成させるための電荷輸送性ワニスが提供できる。

Description

明 細 書
スプレー又はインクジェット塗布用電荷輸送性ワニス
技術分野
[0001] 本発明は、スプレー又はインクジェット塗布用電荷輸送性ワニスに関する。
背景技術
[0002] 有機化合物、特にポリマー及びオリゴマーを電子デバイス材料として用いる場合、 薄膜として使用されることが多い。例として、絶縁膜、電荷輸送性膜、保護膜及び平 坦化膜が挙げられる。
有機エレクト口ルミネッセンス(以下、 ELと略す)素子においては、正孔輸送層(バッ ファ層)、電荷注入層に、ポリマーやオリゴマー等カゝらなる電荷輸送性薄膜が使用さ れている(例えば、特許文献 1参照)。
電荷輸送性薄膜は、インジウム錫酸化物(以下、 ITOと略す。 )、インジウム亜鉛酸 化物(以下、 IZOと略す。)などの平坦な電極上に、均一で凹凸がない薄膜が形成で きることが求められている。しカゝしながら、実際に電子デバイスに電荷輸送性薄膜を 形成させる時には、電極に構造物が形成されている場合がほとんどである。具体的 には、数/ z mの膜厚を有する 1種類以上のパターンで単純若しくは複雑に構造物が 構成されている場合がある。単純若しくは複雑なパターンで構成された構造物が形 成されている基板における露出した ITOあるいは IZOなどの電極部分に、選択的、 且つ、平坦に電荷輸送性薄膜を形成させるための電荷輸送性ワニスは、平坦な電極 に均一に電荷輸送性薄膜を形成させようとする場合の電荷輸送性ワニスの液物性と 異なる場合が多ぐその基板上の構造物に適合した電荷輸送性ワニスの液物性を詳 細に検討する必要が生じてくる。
[0003] 一方、電子デバイスの中でも有機 ELデバイスは、近年、実用化されつつある次世 代型薄型ディスプレイとして注目されており、実用化検討の最中にある電子デバイス の一つである。実用化が現実的になる様相に伴い、生産ラインでは信頼性の高いデ ノ イスを、安価で且つ歩留まり良ぐ高効率で作製できることが要求されるようになつ てきた。特に安価であるという点は自明の要求項目であり、電荷輸送性薄膜を作製 する時のプロセスを試行錯誤することで解決を図る傾向にある。
電荷輸送性薄膜を作製するためのプロセスは大きく分けて、真空蒸着法などに代 表されるドライプロセス力、スピンコート法に代表されるウエットプロセスに分類できる。 ドライプロセスとウエットプロセスとを比較すると、ドライプロセスよりもウエットプロセスで 電荷輸送性薄膜を作製した方が、 ITO若しくは IZOなどの電極を被膜する能力が高 ぐ電極表面の異物などを一様の膜厚で均一に被膜することができ、電子デバイスを 作製した時の電気短絡特性が飛躍的に向上する。この点からウエットプロセスが有利 であり、優位性が高い。
そこで、本発明者らはウエットプロセスが可能な各電子デバイスに対応した電荷輸 送性薄膜を作製するための検討を続けてきた。(例えば、特許文献 2参照)
[0004] ウエットプロセスは、例えば、電荷輸送性薄膜をスピンコート法あるいは印刷法によ つて作製する場合、必要となる電荷輸送性ワニスの量が非常に多くなつてしまう。即 ち、電荷輸送性薄膜の形成に寄与する電荷輸送性ワニスの他に廃棄する電荷輸送 性ワニスの割合が非常に多ぐコストパフォーマンスが悪い。
電荷輸送性薄膜を高効率で作製するためのプロセスとしては、スプレー法あるいは インクジェット法が挙げられる。特に、装置の汎用性からスプレー法は大面積のデバ イスを作製できるウエットプロセスとして有効である。
そこで、スプレー法あるいはインクジェット法により、単純若しくは複雑なパターンで 構成された構造物が形成されて ヽる基板における露出した ITOある ヽは IZOなどの 電極部分に均一で凹凸がない電荷輸送性薄膜を形成させるための最適な電荷輸送 性ワニスの調製が必要になってきた。
この単純若しくは複雑なパターンで構成された構造物が形成されている基板への 電荷輸送性薄膜形成の問題は、電子デバイス用薄膜に限らず、薄膜を使用するそ の他の技術分野にぉ ヽても重要である。
以上のような理由から、スプレー法あるいはインクジェット法に適した電荷輸送性ヮ ニスの開発が求められている。
[0005] 特許文献 1 :特開 2002— 151272号公報
特許文献 2:国際公開第 2004Z043117号パンフレット 発明の開示
発明が解決しょうとする課題
[0006] 本発明は、このような事情に鑑みてなされたものであり、スプレー法あるいはインク ジェット法により、単純若しくは複雑なパターンで構成された構造物が形成されている 基板における露出した ITOあるいは IZOなどの電極部分に、均一で凹凸がない電荷 輸送性薄膜を形成させるための電荷輸送性ワニスを提供することを目的とする。 また、本発明は、電子デバイス用途として、該ワニスから作製される電荷輸送性薄 膜を備える有機 EL素子を提供することを他の目的とする。
課題を解決するための手段
[0007] 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、驚くべきことに 、良溶媒、少なくとも 1種類以上の高レべリング性貧溶媒、及び少なくとも 1種類以上 の揮発性貧溶媒を含有するワニスが、単純若しくは複雑なパターンで構成された構 造物が形成されて ヽる基板における露出した ITOある 、は IZOなどの電極部分に選 択的、且つ、平坦に電荷輸送性薄膜を形成できることを見出し、本発明を完成した。
[0008] すなわち、本発明は、以下の〔1〕〜〔21〕の発明を提供する。
〔1〕 分子量 200〜1000の有機化合物又は分子量 200〜5000のオリゴマーからな る基質と、良溶媒と、少なくとも 1種類の高レべリング性貧溶媒と、少なくとも 1種類の 揮発性貧溶媒とを含有することを特徴とするスプレー又はインクジェット塗布用ワニス
〔2〕 電荷輸送性モノマー、若しくは数平均分子量 200〜5000の電荷輸送性オリゴ マーからなる電荷輸送物質、又はこの電荷輸送物質及び電子受容性ドーパント物質 若しくは正孔受容性ドーパント物質力 なる電荷輸送性有機材料と、良溶媒と、少な くとも 1種類の高レべリング性貧溶媒と、少なくとも 1種類の揮発性貧溶媒とを含有す ることを特徴とするスプレー又はインクジェット塗布用電荷輸送性ワニス。
〔3〕 前記良溶媒が、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N
—メチルピロリドン、及び 1, 3—ジメチル— 2—イミダゾリジノン力も選ばれる少なくとも
1種である〔2〕のスプレー又はインクジェット塗布用電荷輸送性ワニス。
〔4〕 前記高レべリング性貧溶媒が、シクロへキサノール、 2, 3—ブタンジオール及 びプロピレングリコール力も選ばれる少なくとも 1種である〔2〕又は〔3〕のスプレー又 はインクジェット塗布用電荷輸送性ワニス。
[5] 前記揮発性貧溶媒が、エタノール、イソプロパノール、イソブタノール、及びェ チレングリコールモノブチルエーテル力 選ばれる少なくとも 1種である〔2〕〜〔4〕の いずれかのスプレー又はインクジェット塗布用電荷輸送性ワニス。
〔6〕 前記良溶媒、少なくとも 1種類以上の高レべリング性貧溶媒、及び少なくとも 1 種類以上の揮発性貧溶媒の組合わせが、 1, 3 ジメチルー 2 イミダゾリジノンとシ クロへキサノールとイソブタノール、 1, 3 ジメチルー 2 イミダゾリジノンとシクロへキ サノールとエチレングリコールモノブチルエーテル、 1, 3 ジメチルー 2 イミダゾリジ ノンとシクロへキサノールとエタノール、 N メチルピロリドンとシクロへキサノールとィ ソブタノール、 N—メチルピロリドンとシクロへキサノールとエタノール、 N, N—ジメチ ルァセトアミドとシクロへキサノールとイソブタノール、 N, N ジメチルァセトアミドとシ クロへキサノールとエタノール、 1, 3 ジメチルー 2 イミダゾリジノンと 2, 3 ブタン ジオールとイソブタノール、 1, 3 ジメチルー 2 イミダゾリジノンと 2, 3 ブタンジォ ールとエタノール、 N メチルピロリドンと 2, 3 ブタンジオールとイソブタノール、 N メチルピロリドンと 2, 3 ブタンジオールとエタノール、 N, N ジメチルァセトアミド と 2, 3 ブタンジオールとイソブタノール、 N, N ジメチルァセトアミドと 2, 3 ブタ ンジオールとエタノール、 1, 3 ジメチルー 2 イミダゾリジノンとジプロピレングリコー ルとイソブタノール、 1, 3 ジメチルー 2 イミダゾリジノンとジプロピレングリコールと エタノール、 N メチルピロリドンとジプロピレングリコールとイソブタノール、 N—メチ ルピロリドンとジプロピレングリコールとエタノール、 N, N ジメチルァセトアミドとジプ ロピレングリコールとイソブタノール、又は N, N ジメチルァセトアミドとジプロピレン グリコールとエタノールである〔2〕のスプレー又はインクジェット塗布用電荷輸送性ヮ ニス。
〔7〕 前記電荷輸送物質が、共役単位を有する電荷輸送性モノマー又は共役単位を 有する数平均分子量 200〜5000の電荷輸送性オリゴマーであり、かつ、単一の前 記共役単位が連続して 、る、又は相異なる 2種以上の前記共役単位が任意の順序 の組み合わせで連続して 、る〔2〕〜〔6〕の!、ずれかのスプレー又はインクジェット塗 布用電荷輸送性ワニス。
〔8〕 前記共役単位が、置換若しくは非置換、かつ、 2〜4価の、ァ-リン、チォフェン 、ジチイン、フラン、ピロール、ェチニレン、ビニレン、フエ二レン、ナフタレン、アントラ セン、イミダゾール、ォキサゾール、ォキサジァゾール、キノリン、キノキザリン、シロー ノレ、シリコン、ピリジン、ピリミジン、ピラジン、フエ二レンビニレン、フノレ才レン、カノレノ ゾール、トリアリールァミン、金属—若しくは無金属—フタロシアニン、及び金属—若 しくは無金属一ポルフィリンカ 選ばれる少なくとも 1種である〔7〕のスプレー又はイン クジェット塗布用電荷輸送性ワニス。
〔9〕 前記電荷輸送物質が、一般式(1)で表されるオリゴァ-リン誘導体、又は一般 式(1)の酸ィ匕体であるキノンジィミン誘導体であることを特徴とする〔7〕のスプレー又 はインクジェット塗布用電荷輸送性ワニス。
[化 1]
R (
Figure imgf000006_0001
〔式中、
Figure imgf000006_0002
R2及び R3はそれぞれ独立して水素、水酸基、ハロゲン基、アミノ基、シラ ノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、 チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、オルガノ アミノ基、オルガノシリル基、オルガノチォ基、ァシル基又はスルホン基を示し、 A及 び Bは、それぞれ独立して、一般式(2)又は(3)で表される二価の基を示す。
[化 2]
Figure imgf000006_0003
(式中、 R4〜RUはそれぞれ独立して水素、水酸基、ハロゲン基、アミノ基、シラノール 基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チォェ ステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、オルガノアミノ基 、オルガノシリル基、オルガノチォ基、ァシル基又はスルホン基を示し、 m及び nは、 それぞれ独立して、 1以上の整数で、 m+n≤20を満足する。 ) 0
〔10〕 前記電荷輸送物質が、一般式 (4)で表されるオリゴァ-リン誘導体、又は一般 式 (4)の酸ィ匕体であるキノンジィミン誘導体であることを特徴とする〔9〕のスプレー又 はインクジェット塗布用電荷輸送性ワニス。
[化 3]
Figure imgf000007_0001
(式中、 〜 、 m, nは、上記と同じ意味を示す。 )
〔11〕 前記電子受容性ドーパント物質が一般式 (5)で表されるスルホン酸誘導体で あることを特徴とする〔2〕〜〔10〕のいずれかのスプレー又はインクジェット塗布用電 荷輸送性ワニス。
[化 4]
R 13 S03H
D ( 5 )
R 12
(式中、 Dはベンゼン環、ナフタレン環、アントラセン環、フエナントレン環又は複素環 を表し、 R12及び R13は、それぞれ独立して、カルボキシル基若しくはヒドロキシル基を 表す。)
〔 12〕 前記電子受容性ドーパント物質が一般式 (6)で表されるスルホン酸誘導体で あることを特徴とする〔2〕〜〔10〕のいずれか 1項記載のスプレー又はインクジェット塗 布用電荷輸送性ワニス。
[化 5] ( 6
(SOsH),
(式中、 R"〜R18はそれぞれ独立して水素原子、非置換若しくは置換の一価炭化水 素基又はハロゲン原子を示し、 Xは単結合、 0、 S又は NHを示し、 Aは水素原子、ハ ロゲン原子、 0、 S、 S (O)基、 S (0 )基、又は、非置換若しくは置換基が結合した N、
2
Si、 P、 P (O)基、又は、一価以上で非置換若しくは置換の炭化水素基を示す。 yは A の価数と等しぐ 1≤ を満足する整数でぁり、 は1, 4一べンゾジォキサン骨格のうち ベンゼン環部分に結合したスルホン基数を示し、 l≤x≤4である。 )
〔13〕 前記電子受容性ドーパント物質が一般式(7)で表されるァリールスルホン酸 誘導体であることを特徴とする〔2〕〜〔10〕のいずれかのスプレー又はインクジェット 塗布用電荷輸送性ワニス。
[化 6]
Figure imgf000008_0001
〔式中、 Xは、 0、 S又は NHを表し、 Aは、 X及び n個の(SO H)基以外の置換基を有
3
していてもよいナフタレン環又はアントラセン環を表し、 Bは、非置換若しくは置換の 炭化水素基、 1, 3, 5—トリアジン基、又は非置換若しくは置換の下記式 (3)若しくは (4)
[化 7]
Figure imgf000008_0002
で示される基 (式中、 W1及び w2は、それぞれ独立して、 o、 s、 s(o)基、 s(o )基、
2 又は非置換若しくは置換基が結合した N、 Si、 P、 P (O)基を示す。)を表し、 nは、 A に結合するスルホン基数を表し、 l≤n≤4を満たす整数であり、 qは、 Bと Xとの結合 数を示し、 l≤qを満たす整数である。〕
〔14〕 〔1〕のスプレー又はインクジェット塗布用ワニスを使用して作製されることを特 徴とする薄膜。
〔15〕 〔2〕〜〔13〕のいずれか 1項記載のスプレー又はインクジェット塗布用電荷輸 送性ワニスを使用して作製されることを特徴とする電荷輸送性薄膜。
〔16〕 スプレー法により作製されることを特徴とする〔15〕の電荷輸送性薄膜。
〔17〕 〔 15〕又は〔 16〕の電荷輸送性薄膜を備える有機エレクト口ルミネッセンス素子
〔18〕 前記電荷輸送性薄膜が、正孔注入層又は正孔輸送層である〔17〕の有機ェ レクト口ルミネッセンス素子。
〔19〕 〔1〕のワニスを基材上にスプレー又はインクジェット法により塗布し、溶媒を蒸 発させることを特徴とする薄膜の作製方法。
〔20〕 〔2〕〜〔13〕のいずれかの電荷輸送性ワニスを基材上にスプレー又はインクジ エツト法により塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の作製方 法。
〔21〕 スプレー法により塗布することを特徴とする〔20〕の電荷輸送性薄膜の作製方 法。
発明の効果
本発明のワニスを用いることにより、単純若しくは複雑なパターンで構成された構造 物が形成されて ヽる基板における露出した ITOある 、は IZOなどの電極部分に選択 的に、且つ、平坦に電荷輸送性薄膜を再現性よく形成することができる。
これは、本発明者らによる構造物付き基板における、構造物間の膜厚分布を高精 度微細形状測定器 SUREFCORDER ET4000Aにより測定することで証明され た。
この測定により、本発明のワニスにより得られた薄膜が、構造物間の膜厚分布が一 定で平坦ィ匕性及び均一性が高い薄膜であることが確認された。
[0010] 本発明のワニスは、水を含まない有機溶媒を用いて簡便に製造できる。このワニス は、種々のウエットプロセスでの成膜が可能である力 特にスプレー法又はインクジェ ット法による成膜が好適である。また、安価で、且つ、良好な歩留まりで基板上に薄 膜を形成し得る。
有機 EL素子に使用される電荷輸送性ワニスの塗布方法では、素子の歩留まり、生 産効率の点からスピンコート法及び印刷法よりもインクジェット法又はスプレー法など が工業的プロセスとして現実性が高い。本発明の電荷輸送性ワニスは、これら工業 的プロセスに対応し、再現性良ぐ信頼性の高い電荷輸送性薄膜を提供し得る。
[0011] 単純若しくは複雑なパターンで構成された構造物が形成されている基板の露出し た ITOあるいは IZOなどの電極部分に選択的、且つ、平坦に成膜できる電荷輸送性 ワニスは、有機 EL素子に使用した場合、その優れた画素内の膜厚均一性及び成膜 性から、優れた電気短絡防止効果を発揮するとともに、画素内で均一に発光させる 効果を発揮する。この効果は、有機 ELにおけるパッシブマトリクスあるいはアクティブ マトリクスなどの単純若しくは複雑なパターンで構成された構造物が形成されている 基材に塗布する場合、多大な効果を発揮する。
単純若しくは複雑なパターンで構成された構造物が形成されている基材に塗布す る場合、スピンコート法では基板サイズが大きくなるのに伴って、基板の中央部分とェ ッジ部分の構造物内での膜厚分布が生じ易ぐさらに、焼成条件ゃレべリング条件に も依存するが、一つの構造物内でも膜厚分布が生じることがある。これは、スピンコー ト法が、滴下したワニスを回転する基板の外側に働く応力によって成膜、乾燥するゥ エツトプロセスだからである。
また、印刷法は単純若しくは複雑なパターンで構成された構造物が形成されている 基材に塗布する場合、主に印刷版として使用されている APR版が構造物に直接接 触してしまうことで、微細なパターンで構成された構造物が破壊されてしまう可能性が ある。基材に予め構造物が形成されている場合、構造物を破壊しないよう、これに接 触しな 、ことが好ま U、ことから、印刷法は好適ではな 、。
[0012] 本発明の電荷輸送性ワニスをスプレー法又はインクジェット法で成膜を試みた場合 、スピンコート法及び印刷法で生じるようなプロセスに由来するデメリットがなぐ単純 若しくは複雑なパターンで構成された構造物が形成されて ヽる基板の露出した ITO あるいは IZOなどの電極部分に選択的、且つ、平坦に成膜できることから、有機 EL 素子の工業ィ匕において、高い歩留まり及び高い生産効率で、安定的に有機 ELデバ イスを製造することが可能となる。
また、本発明の電荷輸送性薄膜は、 EL素子の正孔注入層又は正孔輸送層に用い た場合、従来の電荷輸送性薄膜に比べ、平坦化性及び均一性に優れた薄膜であり 、 ITO電極の凹凸ゃ電極上に存在する異物によって引き起こされる電極の短絡を著 しく抑制できる。
したがって、本発明の電荷輸送性薄膜を用いることにより、 EL素子の発光開始電 圧の低下、電流効率の向上、素子の長寿命化が達成され、安価で生産効率の高い EL素子を歩留まり良ぐ作製することが可能である。
[0013] さらに、本発明の電荷輸送性薄膜は、様々な塗布方法で種々の基板に塗布して成 膜が可能であることから、コンデンサ電極保護膜、帯電防止膜、ガスセンサ、温度セ ンサ、湿度センサ、圧力センサ、光センサ、放射線センサ、イオンセンサ、バイオセン サ、又はフィールドェミッショントランジスタセンサに利用される有機膜;一次電池、二 次電池、燃料電池、太陽電池又はポリマー電池に利用される有機膜;電磁シールド 膜、紫外線吸収膜、ガスバリア膜、光情報記録媒体、又は光集積回路に利用される 有機膜への応用も有用である。
図面の簡単な説明
[0014] [図 1]構造物付き基材の形状を測定した結果を示す図である。
[図 2]構造物付き基材の ITO部分を測定した結果を示す図である。
[図 3]実施例 1の電荷輸送性薄膜の膜厚分布を測定した結果を示す図である。
[図 4]比較例 1の電荷輸送性薄膜の膜厚分布を測定した結果を示す図である。 発明を実施するための最良の形態
[0015] 以下、本発明についてさらに詳しく説明する。
本発明に係るワニスは、分子量 200〜1000の有機化合物又は分子量 200〜500 0のオリゴマー力 なる基質と、良溶媒と、少なくとも 1種類の高レべリング性貧溶媒と 、少なくとも 1種類の揮発性貧溶媒とを含有するものである。
また、このワニスのうち、基質が電荷輸送性モノマー又は数平均分子量 200〜500 0の電荷輸送性オリゴマーからなる電荷輸送物質、又はこの電荷輸送物質及び電子 受容性ドーパント物質若しくは正孔受容性ドーパント物質からなる電荷輸送性有機 材料であるものは、電荷輸送性ワニスである。
ここで電荷輸送性とは、導電性と同義であり、正孔輸送性、電子輸送性、正孔及び 電子の両電荷輸送性のいずれかを意味する。本発明の電荷輸送性ワニスは、それ 自体に電荷輸送性があるものでもよぐワニスを使用して得られる固体膜に電荷輸送 '性があるものでもよい。
本発明のワニスの塗布方法としては、特に限定されるものではないが、ワニスを霧 状にして塗布する方法が好ましい。具体的には、スプレー法及びインクジェット法等 が挙げられる力 S、特にスプレー法が最適である。
スプレー法は基材に電荷輸送性ワニスをスプレーし、基材に着液するまでの過程 で、電荷輸送性ワニスが 3つの最適な液物性を取ることが好ましい。スプレー法の 3 つの液物性とは 1)スプレーする前のタンク内に充填するワニスの液物性、 2)スプレ 一霧中の液物性、 3)基材へ着液した後のワニスの液物性である。
具体的に示すと、 1)はスプレー塗布性を良好にするために動的粘度(以下、粘度と 略す。)が低いことが好ましい。スプレー塗布性とは、スプレー条件に依存する力 ス プレーヘッドから排出されるスプレー霧の粒径を安定に且つ、一定に規格する特性 である。スプレー塗布性の低下は、ある任意の窒素量で粉砕し難いワニスで見られる 傾向であり、粘度が高いワニスは窒素で粉砕後に均一で粒径分布の狭い細粒ィ匕さ れたスプレー霧とならない。一方、粘度が低い電荷輸送性ワニスはある任意の窒素 量で粉砕後に均一で粒径分布の狭いスプレー霧となる。 3)は基材に着液後の細粒 化されたワニスのレべリング性が良好であることが好ましい。そのためには、ワニスに 適度な粘度が必要となる。特に単純若しくは複雑なパターンで構成された構造物が 形成されて ヽる基板の露出した ITOある 、は IZOなどの電極部分に電荷輸送性薄 膜を作製する場合、ワニスの粘度が低いと構造物間で液の流動が生じることが多ぐ 構造物間で均一に、且つ平坦な電荷輸送性薄膜を得ることが困難になる。一方、ヮ ニスの粘度が高いと、着液後のワニスのレべリング性が悪ぐ均一な成膜面とならず、 モャムラやゆず肌ムラを生じやすい。さらに、ワニスの粘度が高いと、レべリングに要 する放置時間を長くとる必要性があり、タクトタイムの面で優位性が低くなる。
[0017] 1)及び 3)の液物性を同一のワニスによって達成するためには、スプレー霧中でヮ ニスが濃縮される工程を加える必要がある。よって、 2)の液物性は経過的に変化す るものであり、 3)の液物性時にワニスの濃縮工程はほぼ飽和して収束し、一定の液 物性となることが好ましい。
すなわち、 1)の液物性のために、少なくとも 1種類の揮発性貧溶媒を含み、 2)の液 物性のために、少なくとも 1種類の揮発性貧溶媒が蒸発している過程を含み、 3)の液 物性のために、レべリング性を向上させる少なくとも 1種類の高レべリング性貧溶媒を 含み、且つ、揮発性貧溶媒を含まないことが、本発明において 3種の有機溶媒混合 系を採用するコンセプトである。
[0018] 良溶媒とは、基質をよく溶解する有機溶媒 (高溶解性溶媒)である。良溶媒は基質 が析出することを抑制し、溶解している状態を保持し得ることが好ましぐスプレー塗 布時にスプレー霧中の良溶媒が蒸発し、基質が析出してしまうような良溶媒は好まし くない。基質の析出は異物の原因となり、均一で且つ平坦ィ匕性の高い有機薄膜を形 成する本発明の効果を十分に発現することができない。異物が析出し、均一で且つ 平坦ィ匕性の低 、有機薄膜となった場合、有機 ELデバイスに組み込んだ時に低効率 ィ匕、短寿命化、不均一面発光あるいは電気短絡特性の低下の要因になる。
スプレー塗布時におけるスプレー霧中の良溶媒の蒸発は、スプレー塗布条件、例 えば、 1)窒素量を増やす、 2)薬液量を減らす、 3)ギャップを上げる、 4)ピッチを上げ る、 5) XYスキャン範囲を広くするなどの条件に依存する場合が多いが、スプレー塗 布条件は基本的にスプレー霧中の良溶媒が蒸発しない条件を選択することが好まし い。
[0019] 良溶媒の具体例としては、 N, N—ジメチルホルムアミド(以下、 DMFと略記)、 N, N—ジメチルァセトアミド(以下、 DMAcと略記)、 N—メチルピロリドン(以下、 NMPと 略記)、 1, 3—ジメチルー 2—イミダゾリジノン(以下、 DMIと略記)及びジメチルスル ホキシド、 N—シクロへキシルー 2—ピロリジノン等が挙げられる力 これらに限定され るものではない。これらの良溶媒の中でも、 NMP、 DMIが好ましぐ DMIがより好ま しい。
ワニスに使用する溶媒全体に対する良溶媒の含有割合は、良溶媒によって基質が 溶解する限り特に限定されないが、通常、 1〜90重量%の割合である。
[0020] 高レべリング性貧溶媒とは、基質を溶解せず、良溶媒及び揮発性貧溶媒と自在に 混合し、スプレー塗布時にスプレー霧中から蒸発しないで残留し、基材に着液し、レ ベリング効果を示す有機溶媒である。レべリング効果は焼成させる前のウエットな状 態での薄膜の均一性を決定する効果であり、レべリング効果が低いと均一で且つ平 坦ィ匕性の高い有機薄膜を得ることができない。具体的には、スプレー霧が基材に着 液した 0. 1〜50 m程度に区分される微小な液滴の前進角と後退角との差 (履歴) を広げる効果を有して!/ヽる貧溶媒を指す。
[0021] 高レべリング性貧溶媒の具体例としては、スチレン、プロピレングリコールモノメチル エーテノレ、プロピレングリコーノレ、プロピレングリコーノレモノェチノレエーテノレ、プロピレ ングリコールモノメチルエーテルアセテート、プロピレングリコーノレモノブチノレエーテ ル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジェチルエーテル 、ジプロピレングリコーノレモノメチノレエーテル、ジエチレングリコーノレモノメチノレエーテ ル、ジプロピレングリコーノレモノェチノレエーテル、ジエチレングリコーノレモノェチノレエ 一テル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノェチルェ ーテノレアセテート、ジエチレングリコール、 1ーォクタノール、エチレングリコーノレ、へ キシレングリコール、トリメチレングリコール、シクロへキサノール、 1, 3 ブタンジォー ル、 1, 4 ブタンジオール、 2, 3 ブタンジオール、ベンジルアルコール、フルフリル アルコール、テトラヒドロフルフリルアルコール、 Ύ ブチルラタトン等が挙げられるが
、これらに限定されるものではない。
これらの高レべリング性貧溶媒の中でも、プロピレングリコール、ジエチレングリコー ル、シクロへキサノール、 1, 3 ブタンジオール、 1, 4 ブタンジオール、 2, 3 ブタ ンジオール、 y ブチルラタトンが好ましぐプロピレングリコール、シクロへキサノー ル、 2, 3 ブタンジオールがより好ましい。
ワニスに使用する溶媒全体に対する高レべリング性貧溶媒の含有割合は、特に限 定されないが、通常、 1〜90重量%の割合である。
[0022] 揮発性貧溶媒とは、基質を溶解せず、良溶媒及び高レべリング性貧溶媒と自在に 混合し、スプレー塗布時にスプレー霧中から蒸発する有機溶媒である。
揮発性貧溶媒は、スプレー塗布前の電荷輸送性ワニスの粘度を下げることでスプレ 一塗布性を良好にし、スプレー霧中から蒸発することでワニスが濃縮される効果を有 している。スプレー塗布性は、スプレー条件に依存する力 スプレーヘッド力 排出さ れるスプレー霧の粒径を安定に且つ、一定に規格する特性である。ワニスの濃縮は、 揮発性貧溶媒を加える分量と蒸発する量に依存するが、均一で且つ平坦化性が高 い有機薄膜の膜厚を一定に規定する、あるいは変更するパラメーターである。
本発明における揮発性貧溶媒は一般的な揮発性溶媒とはその意義が異なる。一 般的な揮発性溶媒は任意の温度、圧力時における蒸気圧、若しくは相対蒸気圧で 規定されることが多いが、本発明における揮発性貧溶媒は、温度、圧力が規定でき ても粒子のサイズや、基材への着液距離、着液速度など位置エネルギー、運動エネ ルギ一に依存する場合がある。
[0023] 揮発性貧溶媒の具体例としては、トルエン、 p キシレン、 o キシレン、エチレング リコーノレジメチノレエーテノレ、エチレングリコーノレモノメチノレエーテノレ、エチレングリコー ルモノェチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコ 一ノレメチノレエーテノレアセテート、エチレングリコーノレエチノレエーテノレアセテート、ェチ レングリコールモノブチルエーテル、アセトン、メチルェチルケトン、メチルイソプロピ ルケトン、ジェチルケトン、メチルイソブチルケトン、メチルノーマルブチルケトン、シク 口へキサノン、酢酸ェチル、酢酸イソプロピルケトン、酢酸ノーマルプロピル、酢酸イソ ブチル、酢酸ノーマルブチル、メタノール、エタノール、イソプロパノール、 tert—ブタ ノール、ァリルアルコール、ノーマルプロパノール、 2—メチルー 2—ブタノール、イソ ブタノール、ノーマルブタノール、 2—メチルー 1 プロパノール、 2—メチルー 1ーブ タノ一ノレ、 1 ペンタノ一ノレ、 2—メチノレー 1 ペンタノ一ノレ、 2—ェチノレへキサノーノレ 、 1ーメトキシー2 ブタノール、ジアセトンアルコール、イソプロピルエーテル、 1, 4 ジォキサンなどが挙げられる力 これらに限定されるものではない。
これらの揮発性貧溶媒の中でも、メチルェチルケトン、メタノール、エタノール、イソ プロパノーノレ、 tert—ブタノ一ノレ、ノーマノレプロパノーノレ、イソブタノーノレ、ノーマノレブ タノール、エチレングリコールモノブチルエーテルが好ましぐエタノール、イソプロパ ノール、イソブタノール、エチレングリコールモノブチルエーテルがより好ましい。 ワニスに使用する溶媒全体に対する揮発性貧溶媒の含有割合は、特に限定されな いが、通常、 1〜90重量%、好ましくは 1〜50重量%の割合である。
[0024] ただし、良溶媒に高レべリング性貧溶媒及び揮発性貧溶媒を混合したときに、均一 な溶液とならず、分液又はエマルシヨン状態となってしまう良溶媒及び貧溶媒の組み 合わせは、好ましくない。
[0025] 好適な溶媒組成としては、 DMIとシクロへキサノールとイソブタノール、 DMIとシク 口へキサノールとエタノール、 NMPとシクロへキサノールとイソブタノール、 NMPとシ クロへキサノールとエタノール、 DMAcとシクロへキサノールとイソブタノール、 DMA cとシクロへキサノールとエタノール、 DMIと 2, 3—ブタンジオールとイソブタノール、 DMIと 2, 3—ブタンジオールとエタノール、 NMPと 2, 3—ブタンジオールとイソブタ ノール、 NMPと 2, 3—ブタンジオールとエタノール、 DMAcと 2, 3—ブタンジオール とイソブタノール、 DMAcと 2, 3—ブタンジオールとエタノール、 DMIとジプロピレン グリコールとイソブタノール、 DMIとジプロピレングリコールとエタノール、 NMPとジプ ロピレングリコールとイソブタノール、 NMPとジプロピレングリコールとエタノール、 D MAcとジプロピレングリコールとイソブタノール、 DMAcとジプロピレングリコールとェ タノール、 DMIとシクロへキサノールとエチレングリコールモノブチルエーテル等が挙 げられる力 これらに限定されるものではない。
これらの溶媒組成の中でも、 DMIとシクロへキサノールとイソブタノール、 DMIとシ クロへキサノールとエタノール、 DMIと 2, 3—ブタンジオールとイソブタノール、 DMI と 2, 3—ブタンジオールとエタノール、 NMPとシクロへキサノールとイソブタノール、 NMPとシクロへキサノールとエタノール、 DMIとシクロへキサノールとエチレングリコ ールモノブチルエーテルが好ましぐ DMIとシクロへキサノールとイソブタノール、 D Mlと 2, 3—ブタンジオールとエタノール、 DMIと 2, 3—ブタンジオールとイソブタノ ール、 DMIとシクロへキサノールとエチレングリコールモノブチルエーテルがより好ま しい。 [0026] 電荷輸送性ワニスの製造法は、特には限定されな ヽ。一般的には、各材料を混合 すること〖こより製造できる。
[0027] 本発明で用いる有機化合物及びオリゴマーは、溶媒に溶解するものであれば、特 に限定されない。
本発明で用いる電荷輸送性モノマー及び電荷輸送性オリゴマーも、溶媒に溶解す るものであれば、特に限定されないが、少なくとも一種類の共役単位が連続した構造 であることが望ましい。
[0028] 共役単位とは電荷を輸送できる原子、芳香環、共役基であれば良ぐ特に限定され るものではないが、好ましくは置換若しくは非置換で 2〜4価のァ-リン基、チォフェン 基、フラン基、ピロール基、ェチ-レン基、ビ-レン基、フエ-レン基、ナフタレン基、 ォキサジァゾール基、キノリン基、シロール基、シリコン原子、ピリジン基、フエ-レンビ 二レン基、フルオレン基、力ルバゾール基、トリアリールアミン基、金属 若しくは無金 属—フタロシアニン基、金属―若しくは無金属―ポルフィリン基が挙げられる。
ここで上記共役単位の置換基の具体例としては、それぞれ独立して水素、水酸基、 ノ、ロゲン基、アミノ基、シラノール基、チオール基、カルボキシル基、リン酸基、リン酸 エステル基、エステル基、チォエステル基、アミド基、ニトロ基、一価炭化水素基、ォ ルガノォキシ基、オルガノアミノ基、オルガノシリル基、オルガノチォ基、ァシル基及 びスルホン基等が挙げられ、これらの官能基に対してさらに 、ずれかの官能基が置 換されていてもよい。
[0029] 一価炭化水素基の具体例としては、メチル基、ェチル基、プロピル基、ブチル基、 t ブチル基、へキシル基、ォクチル基、デシル基等のアルキル基;シクロペンチル基 、シクロへキシル基等のシクロアルキル基;ビシクロへキシル基等のビシクロアルキル 基;ビュル基、 1 プロぺ-ル基、 2—プロぺ-ル基、イソプロぺ-ル基、 1ーメチルー 2 プロべ-ル基、 1又は 2又は 3 ブテュル基、へキセ -ル基等のァルケ-ル基;フ ェニル基、キシリル基、トリル基、ビフヱ-ル基、ナフチル基等のァリール基;ベンジル 基、フエ-ルェチル基、フエ-ルシクロへキシル基等のァラルキル基などや、これらの 一価炭化水素基の水素原子の一部又は全部がハロゲン原子、水酸基、アルコキシ 基などで置換されたものを例示することができる。 オルガノォキシ基の具体例としては、アルコキシ基、ァルケ-ルォキシ基、ァリール ォキシ基などが挙げられ、これらのアルキル基、アルケニル基、ァリール基としては、 先に例示した基と同様のものが挙げられる。
オルガノアミノ基の具体例としては、フエニルァミノ基、メチルァミノ基、ェチルァミノ 基、プロピルアミノ基、ブチルァミノ基、ペンチルァミノ基、へキシルァミノ基、へプチ ルァミノ基、ォクチルァミノ基、ノ-ルァミノ基、デシルァミノ基、ラウリルアミノ基等のァ ルキルアミノ基;ジメチルァミノ基、ジェチルァミノ基、ジプロピルアミノ基、ジブチルァ ミノ基、ジペンチルァミノ基、ジへキシルァミノ基、ジヘプチルァミノ基、ジォクチルアミ ノ基、ジノ -ルァミノ基、ジデシルァミノ基等のジアルキルアミノ基;シクロへキシルアミ ノ基、モルホリノ基などが挙げられる。
オルガノシリル基の具体例としては、トリメチルシリル基、トリェチルシリル基、トリプロ ビルシリル基、トリブチルシリル基、トリペンチルシリル基、トリへキシルシリル基、ペン チルジメチルシリル基、へキシルジメチルシリル基、ォクチルジメチルシリル基、デシ ルジメチルシリル基などが挙げられる。
オルガノチォ基の具体例としては、メチルチオ基、ェチルチオ基、プロピルチオ基、 ブチルチオ基、ペンチルチオ基、へキシルチオ基、へプチルチオ基、ォクチルチオ 基、ノニルチオ基、デシルチオ基、ラウリルチオ基などのアルキルチオ基が挙げられ る。
ァシル基の具体例としては、ホルミル基、ァセチル基、プロピオニル基、ブチリル基 、イソプチリル基、バレリル基、イソバレリル基、ベンゾィル基等が挙げられる。
アルキル基、アルコキシ基、チォアルキル基、アルキルアミノ基、オルガノシロキシ 基、オルガノシリル基などにおける炭素数は特に限定されるものではないが、一般に 炭素数 1〜20、好ましくは 1〜8である。
[0030] 好まし 、置換基としては、フッ素、スルホン基、置換若しくは非置換のオルガノォキ シ基、アルキル基、オルガノシリル基等が挙げられる。
共役単位が連結して形成される共役鎖は、環状である部分を含んで 、てもよ 、。
[0031] 電荷輸送性モノマーの分子量は、 200〜1000である。
電荷輸送性オリゴマーの数平均分子量は、材料の揮発の抑制及び電荷輸送性発 現のために、下限として通常 200以上、好ましくは 400以上であり、また溶解性向上 のために、上限として通常 5000以下、好ましくは 2000以下である。さらに、好ましく は、分子量分布のない電荷輸送性オリゴマーであり、その分子量は材料の揮発の抑 制及び電荷輸送性発現という点から、下限として通常 200以上、好ましくは 400以上 であり、また溶解性向上という点から、上限として通常 5000以下、好ましくは 2000以 下である。
なお、数平均分子量は、ゲル浸透クロマトグラフィー (ポリスチレン換算)による測定 値である。
[0032] 電荷輸送物質としては、高溶解性及び高電荷輸送性を示すとともに、適切なイオン 化ポテンシャルを有していることから、特に、一般式(1)で表されるオリゴァ-リン誘導 体、又はその酸ィ匕体であるキノンジィミン誘導体を用いることが好ましい。オリゴァユリ ン誘導体に関してはヒドラジンによる還元操作を行うとさらに望ましい。
[0033] [化 8]
Figure imgf000019_0001
(式中、 R 及び R3はそれぞれ独立して水素、水酸基、ハロゲン基、アミノ基、シラ ノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、 チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、オルガノ アミノ基、オルガノシリル基、オルガノチォ基、ァシル基又はスルホン基を示し、 A及 び Bはそれぞれ独立に下記一般式(2)又は(3)で表される二価の基である。
[0034] [化 9]
( 3:
Figure imgf000019_0002
(式中、 R4〜RUはそれぞれ独立して水素、水酸基、ハロゲン基、アミノ基、シラノール 基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チォェ ステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、オルガノアミノ基
、オルガノシリル基、オルガノチォ基、ァシル基又はスルホン基を示し、 m及び nはそ れぞれ独立に 1以上の整数で、 m+n≤20を満足する。 )
[0035] なお、キノンジィミン体とは、その骨格中に、下記式で示される部分構造を有する化 合物を意味する。
[0036] [化 10]
Figure imgf000020_0001
(式中、 R4〜R7は上記と同じ。)
[0037] この場合、 の具体例としては、先に共役単位上の置換基で述べたものと同 様の置換基が挙げられ、これらの置換基は、さらにその他の任意の置換基で置換さ れていてもよい。
さらに分子内の π共役系をなるベく拡張させた方が、得られる電荷輸送性薄膜の 電荷輸送性が向上することから、特に、一般式 (4)で表されるオリゴァ-リン誘導体、 又はその酸ィ匕体であるキノンジィミン誘導体を用いることが好まし 、。
[0038] [化 11]
Figure imgf000020_0002
(式中、 〜 、 m, nは、上記と同じ意味を示す。 )
[0039] 一般式(1)及び (4)において、 m+nは、良好な電荷輸送性を発揮させるという点 力 4以上であることが好ましぐ溶媒に対する溶解性を向上させるという点から 16以 下であることが好ましい。
これらの電荷輸送物質は 1種類のみを使用してもよく、また 2種類以上の物質を組 み合わせて使用しても良!、。 このような化合物の具体例としては、フエ-ルテトラァ-リン、フエ-ルペンタァ-リン
、テトラァ-リン (ァ-リン 4量体)、ォクタァ-リン (ァ-リン 8量体)等の有機溶媒に可 溶なオリゴァ-リン誘導体が挙げられる。
[0040] なお、これらの電荷輸送性オリゴマーの合成法としては、特に限定されないが、オリ ゴァ-リン合成法(ブレティン'ォブ ·ケミカル ·ソサエティ ·ォブ ·ジャパン(Bulletin of C hemical Society of Japan) , 1994年、第 67卷、 p. 1749— 1752、及びシンセティック •メタルズ(Synthetic Metals)、米国、 1997年、第 84卷、 p. 119— 120参照)や、オリ ゴチォフェン合成法(例えば、ヘテロサイクルズ(Heterocycles)、 1987年、第 26卷、 p. 939— 942、及びへテロサイクルズ(Heterocycles)、 1987年、第 26卷、 p. 1793 — 1796参照)などが挙げられる。
[0041] 本発明の電荷輸送性ワニスには、電荷輸送物質を用いる態様に加え、上述した電 荷輸送物質と電荷受容性ドーパント物質とからなる電荷輸送性有機材料を用いるこ ともできる。なお、電荷輸送性有機材料は、溶媒によって溶解すれば特に限定されな い。
ここで、電荷受容性ドーパント物質としては、正孔輸送性物質に対しては電子受容 性ドーパント物質を、電子輸送性物質に対しては正孔受容性ドーパント物質を用い ることができ、 、ずれも高 、電荷受容性を有することが望ま 、。
さらに、電荷輸送性オリゴァ-リンが一般的に正孔輸送性を示すことから、電荷受 容性ドーパント物質としては、電子受容性ドーパント物質を用いることが好ま 、。 電子受容性ドーパントの具体例としては、ベンゼンスルホン酸、トシル酸、カンファス ルホン酸、ヒドロキシベンゼンスルホン酸、 5—スルホサリチル酸、ドデシルベンゼンス ルホン酸、ポリスチレンスルホン酸のような有機強酸、 7, 7, 8, 8—テトラシァノキノジ メタン(TCNQ)、 2, 3—ジクロロ一 5, 6—ジシァノー 1, 4—ベンゾキノン(DDQ)のよ うな酸化剤が挙げられる力 これに限定されるものではない。
これらの電子受容性ドーパント物質は 1種類のみを使用してもよぐまた 2種類以上 の物質を組み合わせて使用しても良 、。
[0042] 本発明にお 、ては、電荷輸送物質、電荷受容性ドーパント物質の両者とも非晶質 固体であることが好ましいが、少なくとも一方の物質として結晶性固体を使用する必 要がある場合、電荷輸送性ワニスを成膜した後、非晶質固体性を示す材料を用いる ことが好ましい。
特に、電荷輸送物質又は電荷受容性ドーパント物質の少なくとも一方が、結晶性固 体の場合、少なくとも一方の物質はランダムな分子間相互作用を有する物質であるこ とが好ましぐ電荷受容性ドーパントとして低分子化合物を使用する場合、例えば、同 一分子内に 3種類以上の異なった極性官能基を持つ化合物が良い。
[0043] このような化合物としては、特に限定されるものではなぐ例えば、タイロン、ジヒドロ キシベンゼンスルホン酸、一般式(5)で示されるスルホン酸誘導体が挙げられるが、 特に一般式(5)で示されるスルホン酸誘導体が好ま Uヽ。このスルホン酸誘導体の具 体例としては、スルホサリチル酸誘導体、例えば、 5—スルホサリチル酸などが挙げら れる。
[0044] [化 12]
Figure imgf000022_0001
(式中、 Dはベンゼン環、ナフタレン環、アントラセン環、フエナントレン環又は複素環 を表し、 R12及び R13は、それぞれ独立して、カルボキシル基又はヒドロキシル基を表 す。)
[0045] また、一般式 (6)又は(7)で示されるスルホン酸誘導体も好適に用いることができる 。これらのスルホン酸誘導体は、国際公開第 2005Z000832号パンフレットや、国 際公開第 2006Z025342号パンフレットの記載に基づいて合成することができる。
[0046] [化 13]
Figure imgf000022_0002
[0047] (式中、 R14〜R18はそれぞれ独立して水素原子、非置換若しくは置換の一価炭化水 素基又はハロゲン原子を示し、 Xは単結合、 0、 S又は NHを示し、 Aは水素原子、ハ ロゲン原子、 0、 S、 S (O)基、 S (0 )基、又は、非置換若しくは置換基が結合した N、
2
Si、 P、 P (O)基、又は、一価以上で非置換若しくは置換の炭化水素基を示す。 yは A の価数と等しぐ 1≤ を満足する整数でぁり、 は1, 4一べンゾジォキサン骨格のうち ベンゼン環部分に結合したスルホン基数を示し、 l≤x≤4である。 )
[0048] [化 14]
Figure imgf000023_0001
〔式中、 Xは、 0、 S又は NHを表し、 Aは、 X及び n個の(SO H)基以外の置換基を有
3
していてもよいナフタレン環又はアントラセン環を表し、 Bは、非置換若しくは置換の 炭化水素基、 1, 3, 5—トリアジン基、又は非置換若しくは置換の下記式 (3)若しくは (4)
[化 15]
Figure imgf000023_0002
で示される基 (式中、 W1及び W2は、それぞれ独立して、 o、 S、 S(O)基、 s(o )基、
2 又は非置換若しくは置換基が結合した N、 Si、 P、 P (O)基を示す。)を表し、 nは、 A に結合するスルホン基数を表し、 l≤n≤4を満たす整数であり、 qは、 Bと Xとの結合 数を示し、 l≤qを満たす整数である。〕
[0049] Bとしては、耐久性向上及び電荷輸送性向上を図ることを考慮すると、一つ以上の 芳香環を含んで!/、る 2価以上の非置換若しくは置換の炭化水素基、 2価若しくは 3価 の 1, 3, 5—トリアジン基、置換若しくは非置換の 2価のジフエ-ルスルホン基が好ま しぐ特に、 2価若しくは 3価の置換若しくは非置換べンジル基、 2価の置換若しくは 非置換 p—キシリレン基、 2価若しくは 3価の置換若しくは非置換ナフチル基、 2価若 しくは 3価の 1, 3, 5 トリアジン基、 2価の置換若しくは非置換ジフエ-ルスルホン基 、 2〜4価のパーフルォロビフエ-ル基、 2価の置換若しくは非置換 2, 2 ビス((ヒド ロキシプロポキシ)フエ-ル)プロピル基、置換若しくは非置換ポリビュルベンジル基 が好適である。
[0050] 電荷受容性ドーパント物質は電荷輸送物質 1に対し、下限として通常 0. 01、好ま しくは 0. 2、上限は電荷輸送物質と電荷受容性ドーパント物質が溶媒に完全に溶解 している限り特に限定されないが、好ましくは 10の質量比でカ卩える。
[0051] 本発明の導電性薄膜は、基材上に塗布されたワニスカゝら溶媒を蒸発させることによ り、作製できる。
溶媒の蒸発法としては、特に限定されるものではないが、ホットプレート、プロキシミ ティホットプレートやオーブンなどを用いて、適切な雰囲気下、即ち大気、窒素等の 不活性ガス、又は真空中で蒸発を行い、均一な成膜面を有する薄膜が得られる。 特にスプレー法に特化した場合の蒸発法として、スプレー塗布時に基材へ着液す るまでの細粒ィ匕されたスプレー液滴が自然落下により蒸発していく過程は、単純若し くは複雑なパターンで構成された構造物が形成されて ヽる基板の露出した ITOある いは IZOなどの電極部分に選択的、且つ、平坦に成膜するときの非常に重要なファ クタ一である。
焼成温度としては、溶媒を蒸発できる温度であれば、特に限定されないが、 40〜2
50°Cが好ましい。また、薄膜の高平坦化性及び高均一性を発現させるため、又は基 材上で反応を進行させるために、成膜時に 2段階以上の温度変化をつけてもょ 、。
[0052] 膜厚分布の測定は、例えば、株式会社小坂研究所製 高精度微細形状測定器 S
UREFCORDER ET4000Aを使用できる。この測定により、構造物間の平坦化性 及び均一性を評価することができる。
[0053] 本発明の電荷輸送性ワニス (電荷輸送性薄膜)を使用する低分子系有機 EL (以下
、 OLEDと略す)素子の作製方法、使用材料としては、下記のものが挙げられるが、 これに限定されるものではない。
使用する電極基板は、洗剤、アルコール、純水等による液体洗浄を予め行って浄 化しておき、陽極基板では使用直前にオゾン処理、酸素 プラズマ処理等の表面処 理を行うことが好ましい。ただし陽極材料が有機物を主成分とする場合、表面処理は 行わなくともよい。
[0054] 正孔輸送性ワニスを OLED素子に使用する場合は、以下の方法により薄膜を形成 すればよい。
すなわち、正孔輸送性ワニスを上記の塗布方法により陽極基板に塗布し、陽極上 に正孔輸送性薄膜を作製する。これを真空蒸着装置内に導入し、正孔輸送層、発光 層、電子輸送層、電子注入層、陰極金属を順次蒸着して OLED素子とする。発光領 域をコントロールするために任意の層間にキャリアブロック層を設けてもよ 、。
陽極材料としては、 ITOや IZOに代表される透明電極が挙げられ、平坦化処理を 行ったものが好ましい。高電荷輸送性を有するポリチォフェン誘導体や、ポリア-リン 類を用いることちできる。
[0055] 正孔輸送層を形成する材料としては、例えば、(トリフエ-ルァミン)ダイマー誘導体
(TPD)、 ( a—ナフチルジフエ-ルァミン)ダイマー( α NPD)、 [ (トリフエ-ルアミ ン)ダイマー]スピロダイマー(Spiro— TAD)等のトリアリールアミン類、 4, 4,, 4"ート リス [3—メチルフエ-ル(フエ-ル)ァミノ]トリフエ-ルァミン(m— MTDATA)、 4, 4, , 4" -トリス [ 1 ナフチル(フエ-ル)ァミノ]トリフエ-ルァミン( 1— ΤΝΑΤΑ)等のス ターバーストアミン類; 5, 5"—ビス一 {4— [ビス(4—メチルフエ-ル)ァミノ]フエ-ル} —2, 2' : 5 ' , 2"ターチォフェン(ΒΜΑ—3Τ)等のオリゴチォフェン類が挙げられる。
[0056] 発光層を形成する材料としては、例えば、トリス(8 キノリノラート)アルミニウム (III)
(Alq )、ビス(8 キノリノラート)亜鉛 (II) (Znq )、ビス(2—メチルー 8 キノリノラート
3 2
) (p—フエ-ルフエノラート)アルミニウム(III) (BAlq)、 4, 4,一ビス(2,2 ジフエ-ル ビュル)ビフエニル (DPVBi)等が挙げられる。なお、上述した正孔輸送層を形成する 材料又は下記電子輸送層を形成する材料と発光性ドーパントとを共蒸着することに よって発光層を形成してもよい。この場合、発光性ドーパントとしては、キナクリドン、 ルブレン、クマリン 540、 4— (ジシァノメチレン) 2—メチル 6— (p ジメチルァミノ スチリル) 4H ピラン(DCM)、トリス(2—フエ-ルビリジン)イリジウム(III) (lr (ppy ) )及び(1, 10 フエナント口リン)—トリス(4, 4, 4 トリフルォロ 1— (2—チェ-
3
ル) ブタン 1, 3 ジオナート)ユーロピウム(III) (Eu (TTA) phen)等が挙げられ る。
[0057] 電子輸送層を形成する材料としては、例えば、 Alq、 BAlq、 DPVBi、(2—(4ービ
3
フエ-ル)ー5—(4 t—ブチルフエ-ル)—1, 3, 4 ォキサジァゾール)(PBD)、ト リアゾール誘導体 (TAZ)、バソクプロイン (BCP)、シロール誘導体等が挙げられる。 電子注入層を形成する材料としては、例えば、酸化リチウム (Li 0)、酸化マグネシ
2
ゥム(MgO)、アルミナ(Al O )、フッ化リチウム(LiF)、フッ化マグネシウム(MgF )、
2 3 2 フッ化ストロンチウム(SrF )、 Liq、 Li(acac)、酢酸リチウム、安息香酸リチウム等が
2
挙げられる。
陰極材料としては、例えば、アルミニウム、マグネシウム 銀合金、アルミニウムーリ チウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
キャリアブロック層を形成する材料としては、例えば、 PBD、 TAZ、 BCP等が挙げら れる。
[0058] 電子輸送性ワニスを OLED素子に使用する場合は、以下の方法により薄膜を形成 すればよい。
すなわち、電子輸送性ワニスを上記の塗布方法により陰極基板に塗布し、陰極基 板上に電子輸送性薄膜を作製する。これを真空蒸着装置内に導入し、上記と同様の 材料を用いて電子輸送層、発光層、正孔輸送層、正孔注入層を形成した後、陽極材 料をスパッタリング等の方法により成膜して OLED素子とする。
[0059] 本発明の電荷輸送性ワニスを用いた高分子系有機 EL (以下、 PLEDと略す)素子 の作製方法としては、以下の方法が挙げられる力 これに限定されるものではない。
OLED素子作製で行った正孔輸送層、発光層、電子輸送層、電子注入層の真空 蒸着操作の代わりに、発光性電荷輸送性高分子層を形成することで、本発明の電荷 輸送性ワニスカゝらなる電荷輸送性薄膜を含む PLED素子を作製することができる。 具体的には、 OLED素子と同様の方法で陽極基板上に正孔輸送性薄膜を作製し 、その上部に発光性電荷輸送性高分子層を形成し、さらに陰極電極を蒸着して PLE D素子とする。
あるいは、 OLED素子と同様の方法により陰極基板上に電子輸送性薄膜を作製し 、その上部に発光性電荷輸送性高分子層を形成し、さらに、スパッタリング、蒸着、ス ピンコート等の方法により陽極電極を作製して PLED素子とする。
[0060] 使用する陰極及び陽極材料としては OLED素子で例示した材料と同様のものが使 用できる。洗浄処理、表面処理も、 OLED素子で説明した処理法と同様に行うことが できる。
発光性電荷輸送性高分子層の形成法としては、発光性電荷輸送性高分子材料又 はこれに発光性ドーパントを加えた材料に対し、溶媒を加えて溶解又は分散し、正孔 注入層を予め形成した電極基板に塗布した後に、溶媒を蒸発させて成膜する方法 が挙げられる。
発光性電荷輸送性高分子材料としては、例えば、ポリ(9, 9ージアルキルフルォレ ン)(PDAF)等のポリフルオレン誘導体、ポリ(2—メトキシー 5—(2,ーェチルへキソ キシ) 1, 4 フエ-レンビ-レン)(MEH— PPV)等のポリフエ-レンビ-レン誘導 体、ポリ(3—アルキルチオフェン)(PAT)などのポリチォフェン誘導体、ポリビ-ルカ ルバゾール(PVCz)等が挙げられる。
[0061] 溶媒としては、トルエン、キシレン、クロ口ホルム等が挙げられ、溶解又は均一分散 法としては、例えば、攪拌、加熱攪拌、超音波分散等の方法が挙げられる。
塗布方法としては、特に限定されるものではなぐ例えば、ディップ法、スピンコート 法、転写印刷法、ロールコート法、インクジェット法、スプレー法、刷毛塗り等が挙げら れ、窒素、アルゴン等の不活性ガス下で塗布することが望ましい。
溶媒の蒸発法としては、例えば、不活性ガス下又は真空中、オーブン又はホットプ レートで加熱する方法が挙げられる。
実施例
[0062] 以下、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は 下記の実施例に制限されるものではな 、。
[0063] [参考例 1]
式(10)に示すフエニルテトラァ-リン(以下 PTAと略す)は、ブレティン ·ォブ 'ケミカ ル.ソサエティ.ォブ.ジャパン(Bulletin of Chemical Society of Japan)、 1994年、第 6 7卷、 P.1749— 1752に従って、 p ヒドロキシジフエ-ルァミンと p フエ-レンジアミ ンとから合成した (収率 85%)。 [0064] [化 16]
Figure imgf000028_0001
[0065] [参考例 2]
構造物付き ITO基板は、ポジ型感光性ポリイミドワニスを用いて、以下のように作製 した。
国際公開第 2003Ζ029899号パンフレットの実施例 1に記載の方法により、ポジ 型感光性ポリイミドワニスを合成した。
得られたポリイミドの数平均分子量は 46400 (繰り返し単位換算で η= 70)分子量 分布 1. 66であった。尚、数平均分子量は (株)センシユー科学社製 GPCシステム S SC— 7200により測定した。
50 X 50mm,厚みが 0. 7mmの ITOベタ基板に、得られたポジ型感光性ポリイミド ワニスを滴下し、スピンコート法によって成膜した。スピンコーターは、ミカサ株式会社 製スピンコーター 1H— DX2を使用した。成膜後 80°Cで 5minプリベータした。次い で、凸版印刷株式会社製のフォトマスクを使用して、紫外線照射装置 (キャノン社製 P LA- 501)を 28秒間(150n3j/cm2)照射した。その後、アルカリ現像液 (東京応化 社製 NMD— 3)を用いて 30sec現像後、純水で 2min流水洗浄した。さら〖こ、大気下 、ホットプレート上で 200°C10min焼成した。得られたパターンは膜厚が 700 ± 10η m、 Line (ポリイミドの幅)が 30 μ m、スペース(構造物間)が 50 μ mであり、純水の接 触角が 85. 5° のポリイミド構造物を得た。なお、感光性ポリイミド構造物の作製はク ラス 1000のクリーンルーム内で全工程を行った。
感光性ポリイミド構造物 (構造物付き ITO基板)の形状及び現像で抜!ヽた部分の IT Oの平坦化性を、株式会社小坂研究所製 高精度微細形状測定器 SUREFCOR DER ET4000Aを使用して測定した。測定条件は、測定範囲を 0. 4mm,送り速さ を 0. Olmm/sec,測定力である触針圧を 10 Nとした。
図 1に構造物付き ITO基板の形状を測定した結果を示す。
図 2に構造物付き基材の ITO部分を測定した結果を示す。現像で抜!ヽた部分の IT Oの平坦化性は、最大ラフネスが 10nmであった。
[0066] [実施例 1]
参考例 1で合成した PTA 0. 0637g (0. 1439mmol)と、式(11)に示す 5—スル ホサリチル酸(5— SSA) (和光純薬社品) 0. 1256g (0. 5757mmol)とを窒素雰囲 気下、 1, 3—ジメチル— 2—イミダゾリジノン(DMI) l. 2410gに完全に溶解させた。
[0067] [化 17]
Figure imgf000029_0001
[0068] 得られた溶液にシクロへキサノール(CHA) 6. 2050g、次!、でイソブタノール(IBA ) 4. 9640gを加えて攪拌し、電荷輸送性ワニスを調製した(固形分 1. 5%)。
得られたワニスは、株式会社藤森技術研究所製スプレー塗布装置 NVD— 200を 用いて、参考例 2で作製した構造物付きの ITO基板にスプレー塗布した。スプレー塗 布装置の塗布条件は、膜厚が 30nm狙い、 X及び Yスキャン方向が 240mm、 X及び Yオフセットが Omm、スキャンピッチが 10mm、ギャップが 150mm、ノズル速度が 50 Omm/sec,窒素量が 10LZmin、薬液量が lmLZmin、塗布待機時間が 15sec、 タクトタイムが 60secとした。塗布後、空気中、ホットプレート上で 180°C2h焼成を行 い、電荷輸送性薄膜を作製した。
図 3に実施例 1の電荷輸送性薄膜の膜厚分布を測定した結果を示す。
[0069] [比較例 1]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。
得られた溶液に IBA 9. 9280gを加えて攪拌し、電荷輸送性ワニスを調製した(固 形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。 図 4に比較例 1の電荷輸送性薄膜の膜厚分布を測定した結果を示す。
[0070] [比較例 2] 実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。
得られた溶液に CHA 9. 9280gを加えて攪拌し、電荷輸送性ワニスを調製した( 固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0071] [比較例 3]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 12. 4100gに完全に溶解させ、電荷輸送性 ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0072] [実施例 2]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液にシクロへキサノール(CHA) l. 2410g、次いでイソブタノール(IBA) 9. 9280g を加えて攪拌し、電荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0073] [実施例 3]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 2. 4820g、次!/ヽで IBA 8. 6870gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0074] [実施例 4]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 3. 7230g、次!/ヽで IBA 7. 4460gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。 [0075] [実施例 5]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 4. 9640g、次!/ヽで IBA 6. 2050gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0076] [実施例 6]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 7. 4460g、次!/ヽで IBA 3. 7230gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0077] [実施例 7]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 8. 6870g、次!/ヽで IBA 2. 4820gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0078] [実施例 8]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液に CHA 9. 9280g、次いで IBA 1. 241 Ogをカ卩えて攪拌し、電荷輸送性ワニス を調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0079] [実施例 9]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 8720gに完全に溶解させた。得られた溶 液【こ CHA 9. 3600g、次!/ヽで IBA 7. 4880gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 1. 0%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0080] [実施例 10]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 0. 9255gに完全に溶解させた。得られた溶 液【こ CHA 4. 6275g、次!/ヽで IBA 3. 7020gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 2. 0%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0081] [実施例 11]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 0. 7362gに完全に溶解させた。得られた溶 液に CHA 3. 6810g、次いで IBA 2. 9448gをカ卩えて攪拌し、電荷輸送性ワニス を調製した (固形分 2. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0082] [実施例 12]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 0. 6100gに完全に溶解させた。得られた溶 液【こ CHA 3. 0500g、次!/ヽで IBA 2. 4400gをカロえて携枠し、電荷輸送'性ワニス を調製した (固形分 3. 0%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0083] [実施例 13]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 NMP 1. 2410gに完全に溶解させた。得られた 溶液に CHA 6. 2050g、次いで IBA 4. 9640gをカ卩えて攪拌し、電荷輸送性ヮ- スを調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0084] [実施例 14]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 2. 4820g〖こ完全〖こ溶解させた。得られた溶 液【こ CHA 3. 7230g、次!/、でエタノーノレ(EtOH) 6. 2050gをカロえて携枠し、電 荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0085] [実施例 15]
ァクセプターである 5— SSAを式(12)記載のナフタレンジスルホン酸オリゴマー(N SO— 2)に変更して、以下のようにワニスを調製した。
PTA 0. 0637g (0. 1439mmol)と、式(12)に示す NSO— 2 0. 5601g (0. 57 57mmol)とを窒素雰囲気下、 DMI 8. 1926gに完全に溶解させた。得られた溶液 【こ CHA 12. 2889g、次!/、でエタノーノレ(EtOH) 20. 4814gをカロえて携枠し、電 荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0086] [化 18]
Figure imgf000033_0001
[0087] [実施例 16]
ァクセプターである 5— SSAを式(13)記載のベンゾジォキサンスルホン酸オリゴマ 一(BDSO— 3)に変更して、以下のようにワニスを調製した。
PTA 0. 0637g (0. 1439mmol)と、式(13)に示す BDSO— 3 0. 5647g (0. 5 757mmol)とを窒素雰囲気下、 DMI 8. 2530gに完全に溶解させた。得られた溶 液【こ CHA 12. 3795g、次!/、でエタノーノレ(EtOH) 20. 6324gをカロえて携枠し、 電荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0088] [化 19] ( 1 3 )
(S03H)2 (S03H)2
[0089] [比較例 4]
ホストである PTAをポリア-リン (Pani)に変更して、以下のようにワニスを調製した。 Pani 0. 0637gと 5— SSA 0. 1256g (0. 5757mmol)とを窒素雰囲気下、 DM I 2. 4820gに溶解させたが完全に溶解せず、有機溶媒分散液となった。得られた 分散溶液に CHA 3. 7230g、次いでエタノール (EtOH) 6. 2050gを加えて攪拌 し、電荷輸送性ワニスを調製した (理想固形分 1. 5%) 0なお、ポリア-リンは、 Aldri ch社製 ェメラルデインベース Mw ca.50000を使用した。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0090] [比較例 5]
ポリエチレンジォキシチォフェン ポリスチレンスルホン酸水溶液(PEDOT; PSS) (Bayer社製)を、実施例 1に記載の方法でスプレー塗布し電荷輸送性薄膜を作製し た。
[0091] [実施例 17]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こプロピレングリコーノレ 6. 2050g、次!/ヽで IBA 4. 9640gをカロえて携枠し、電 荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0092] [実施例 18]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ 2, 3 ブタンジ才ーノレ 6. 2050g、次!/、で IBA 4. 9640gをカロえて携枠し、電 荷輸送性ワニスを調製した(固形分 1. 5%) 0 実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0093] [比較例 6]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 2. 0683gに完全に溶解させた。得られた溶 液にプロピレングリコール 10. 3417gをカ卩えて攪拌し、電荷輸送性ワニスを調製し た(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0094] [比較例 7]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMAc 2. 0683gに完全に溶解させた。得られた 溶液に 2, 3—ブタンジオール 10. 3417gをカ卩えて攪拌し、電荷輸送性ワニスを調 製した(固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0095] [実施例 19]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/ヽでアセトン 4. 9640gをカロえて携枠し、電荷輸送'性ヮ ニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0096] [実施例 20]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液に CHA 6. 2050g、次いでエタノール 4. 9640gを加えて攪拌し、電荷輸送性 ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0097] [実施例 21]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/ヽでメチノレエチノレケトン 4. 9640gをカロえて携枠し、電荷 輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0098] [実施例 22]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/、でイソプロピノレアノレコーノレ 4. 9640gをカロえて携枠し、 電荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0099] [実施例 23]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液に CHA 6. 2050g、次いでブタノール 4. 9640gをカ卩えて攪拌し、電荷輸送性 ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0100] [実施例 24]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/ヽで 2—メチノレー 1 プロノノーノレ 4. 9640gをカロえて携 拌し、電荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0101] [実施例 25]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/ヽでシクロへキサノン 4. 9640gをカロえて携枠し、電荷輸 送性ワニスを調製した (固形分 1. 5%)。
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0102] [実施例 26] 実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液に CHA 6. 2050g、次いでエチレングリコールモノブチルエーテル(ブチルセ口 ソロブ) 4. 9640gを加えて攪拌し、電荷輸送性ワニスを調製した(固形分 1. 5%)。 得られたワニスは、株式会社藤森技術研究所製 スプレー塗布装置 NVD— 200 を用いて、参考例 2で作製した構造物付きの ITO基板にスプレー塗布した。スプレー 塗布装置の塗布条件は、膜厚が 30nm狙い、 X及び Yスキャン方向が 240mm、 X及 び Yオフセットが 0mm、スキャンピッチが 10mm、ギャップが 150mm、ノズル速度が 500mmZsec、窒素量が 10LZmin、薬液量が 0. 8mL/min,塗布待機時間が 1 5sec、タクトタイムが 60secとした。塗布後、空気中、ホットプレート上で 180°C2h焼 成を行い、電荷輸送性薄膜を作製した。
[0103] [比較例 8]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/ヽで γ—ブチノレラタトン 4. 9640gをカロえて携枠し、電荷 輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0104] [比較例 9]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/、でフタノレ酸ジメチノレ 4. 9640gをカロえて携枠し、電荷 輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 26に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した
[0105] [比較例 10]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 DMI 1. 2410gに完全に溶解させた。得られた溶 液【こ CHA 6. 2050g、次!/ヽでプロピレングリコーノレ 4. 9640gをカロえて携枠し、電 荷輸送性ワニスを調製した(固形分 1. 5%) 0
実施例 1に記載の方法で、該ワニスをスプレー塗布し電荷輸送性薄膜を作製した。
[0106] [比較例 11]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 1, 3—ジメチルー 2—イミダゾリジノン(DMI) 1. 24 10gに完全に溶解させた。
得られた溶液にシクロへキサノール(CHA) 6. 2050g、次いでイソブタノール(IBA ) 4. 9640gを加えて攪拌し、電荷輸送性ワニスを調製した(固形分 1. 5%)。
得られたワニスはスピンコート法によって膜厚 30nm狙いで塗布した。
塗布後、空気中、ホットプレート上で 180°C2h焼成を行い、電荷輸送性薄膜を作製 した。
[0107] [比較例 12]
実施 f列 1と同様に、 PTA 0. 0637g (0. 1439mmol)と、 5— SSAO. 1256g (0. 5757mmol)とを窒素雰囲気下、 1, 3—ジメチルー 2—イミダゾリジノン(DMI) 1. 24 10gに完全に溶解させた。
得られた溶液にシクロへキサノール(CHA) 6. 2050g、次いでイソブタノール(IBA ) 4. 9640gを加えて攪拌し、電荷輸送性ワニスを調製した(固形分 1. 5%)。
得られたワニスはオフセット印刷法によって膜厚 30nm狙いで塗布した。 印刷機はナカン株式会社製 簡易印刷機 S— 15型を使用し、 APR版 (400メッシ ュ)を用いて印刷した。押し込み圧は 0. 25mmとし、空印刷を 2回、捨て ITO基板へ 3回塗布後に構造物付き基板へ印刷した。
印刷後、空気中、ホットプレート上で 180°C2h焼成を行い、電荷輸送性薄膜を作製 した。
[0108] 表 1に実施例 1及び比較例 1〜3で調製した電荷輸送性ワニスのスプレー塗布時と 着液時の粘度、表面張力、及び固形分測定の結果、並びにスプレー法によって成膜 した電荷輸送性薄膜の ITOベタ部分を目視観察した結果及び膜厚分布の結果を示 す。なお、粘度、表面張力及び固形分に示した矢印 (→)前後の数値は、前がスプレ 一前のワニス、後がスプレー後の着液時のワニスの物性値を示して 、る。 目視観察は、フナテック株式会社製 干渉稿検査ランプ FNA— 35型を使用した 。干渉稿検査ランプは目視で観察する際に、微細な塗布ムラを目視でも確実に確認 できる。評価の基準として、〇、△及び Xとして評価を行ったが、〇は均一な成膜面 が得られた場合、△は塗布ムラ等が生じて〇よりも若干劣る成膜面が得られた場合、 Xは均一な成膜面が得られて 、な 、場合を指す。
表面張力は、協和界面科学社製 自動表面張力計 CBVP— Z型を使用して測定 した。
固形分は、次のように測定した。測定する対象のワニスを容量が 23mL、 φ上部 51 mm、 φ下部 45mm、深さ 12mmの Al規格パンに約 2gを秤量し、予め 160°Cに保持 しておいた減圧乾燥機に入れ、 23mmHgまで 10分かけて減圧後、 60分間乾燥さ せた。乾燥機力 湿度が 50RH%に保持したデシケータ中に移し変え 5分間静置後 、固形分を秤量した。
粘度は、東機産業社製 E型粘度計を使用して測定した。スプレー塗布において、 着液時のワニスの粘度は実際に成膜する条件でスプレー塗布を行 、、ステージにシ ヤーレを置いて、ワニスを収集し、粘度を測定した。
実施例 1は、良溶媒として DMI、高レべリング性貧溶媒として CHA、揮発性貧溶媒 として IBAで構成されて ヽる 3種の有機溶媒混合系ワニスであり、スプレー塗布時と 基材着液時の液物性が変化する電荷輸送性ワニスである。 CHAがスプレー塗布中 に残留し、 IBAがスプレー塗布中に蒸発する溶媒である。
表 1のように、実施例 1はスプレー塗布前の粘度が 8. 8mPa' sであったが IBAがス プレー中に蒸発したため、基板着液時の粘度は 17. 6mPa' sにまで増加し、 2倍も 粘度が増加するワニスである。表面張力は IBAが蒸発したことで、若干増加するもの の、スプレー時(29. 6mNZm)と基板着液時(33. 8mNZm)の表面張力をコント ロールできることが分力つた。また、 IBAが蒸発したことで基板に着液した時のワニス 固形分は増加し、 1. 5wt%から 2. 4wt%まで増加することが分力つた。
電荷輸送性薄膜の成膜面を評価する方法は、 2種類の評価法で行った。一つは膜 厚ムラであり、 50 mの構造物間の膜厚分布力 確認するミクロな成膜面の評価で ある。他方は塗布ムラであり、電荷輸送性薄膜の成膜面を目視で観察したマクロな成 膜面の評価である。
[0110] 実施例 1の電荷輸送性薄膜は、図 3から 30± 5nmの膜厚分布で ITOを被膜し、成 膜できていることが分力 た。この膜厚分布は目的の膜厚 ± 5nm以下であることが望 ましぐ ± 10nm以上になると、該電荷輸送性薄膜を EL素子に組み入れて発光させ たときに、膜厚ムラが発光ムラとして目視できてしまう。
成膜面の観察においても、干渉稿検査ランプで目視確認できてしまうような、塗布 ムラ (成膜面観察の△あるいは X )は、該電荷輸送性薄膜を EL素子に組み入れて発 光させたときに、塗布ムラが発光ムラとして目視できてしまう。
比較例 1は、良溶媒として DMI、揮発性貧溶媒として IBAで構成されている 2種の 有機溶媒混合系ワニスであり、高レべリング性貧溶媒を除いた系である。スプレー塗 布時と基材着液時の液物性が変化する電荷輸送性ワニスである力 スプレー中に残 存するレべリング性を向上させる高レべリング性貧溶媒を除いたために、塗布ムラが 生じた。
[0111] 比較例 1の電荷輸送性薄膜は、図 4から 30士 1 lnmの膜厚分布で ITOを被膜し、 成膜できていることが分力つた。実施例 1のワニスを用いたときとは異なり、構造物間 の膜厚ムラが大きいことが分力つた。これは、基板着液時の粘度が 7. 2mPa' sであり 、粘度が低いことから、構造物間で流動し易ぐ膜厚ムラが生じたと考えられる。 比較例 2は、良溶媒として DMI、高レべリング性貧溶媒として CHAで構成されてい る 2種の有機溶媒混合系ワニスであり、揮発性貧溶媒を除いた系である。スプレー塗 布時と基材着液時の液物性は変化せず、スプレー塗布時の粘度が 25. 4mPa' sと 高いため、窒素でワニスを粉砕し難ぐ霧が均一に出来づらい状態となり、成膜面に 塗布ムラが生じたと考えられる。
比較例 3は、良溶媒の DMIのみで構成されているワニスであり、揮発性貧溶媒及 び高レべリング性貧溶媒を除 、た系である。スプレー塗布時と基材着液時の液物性 は変化せず、着液時の粘度が 7. 2mPa' sと低く、レべリング性を向上させる高レベリ ング性貧溶媒も含まれて 、な 、ことから、塗布ムラが発生したと考えられる。
[0112] [表 1] 、、、皿 粘度 [mPa.s] 表面張力 [mN/m] 固形分 [wt¾] 膜厚分布 成膜面観察 実施例 1 8.8→17.6 29.6→33.8 1 -5→2— 4 30±5 〇
比較例 1 3.5→7.2 27.2→37.0 1.5→7.0 30±11 Δ
比較例 2 25.4→25.4 35.0→35.0 1.5→1.5 Δ
比較例 3 7.2→7.2 37.0→37.0 1.5→1.5 X
[0113] 表 2に実施例 2〜8で調製した電荷輸送性ワニスのスプレー塗布時と着液時の粘度 、表面張力、及び固形分測定の結果、並びにスプレー法によって成膜した電荷輸送 性薄膜の ITOベタ部分を目視観察した結果及び膜厚分布の結果を示す。
実施例 2〜8のワニスは、固形分を 1.5 %に固定し、良溶媒に DMI、高レベリン グ性貧溶媒に CHA、揮発性貧溶媒に IBAを固定し、溶媒組成比率のみを変更させ たワニスである。
[0114] 実施例 2〜8のワニスは固形分が 1.5wt%と一定で IBA比率を変更していることか ら粘度及び表面張力にコントラストをつけ、コントロールできることが分力つた。
スプレー塗布時と基材着液時の粘度は、実施例 2が 4.8mPa'sから 11.2mPa-s( 2.3倍)、実施例 3が 5. OmPa-s力ら 12.5mPa-s(2.5倍)、実施例 4が 5.4mPa- sから 14.5mPa-s(2.7倍)、実施例 5が 6.7mPa'sから 16.6mPa-s(2.5倍)、実 施{列 1力 8.8mPa's力ら 17.6mPa-s(2.0倍)、実施 f列 6力 11.7mPa's力ら 22.5 mPa-s(l.9倍)、実施例 7が 15.2mPa*s力ら 26. OmPa-s(l.7倍)、実施例 8が 1 9.5mPa's力ら 31.8mPa-s(l.6倍)と 1.6〜2.7倍まで粘度を増加させることが 可能であることが分力つた。
[0115] スプレー塗布時と基材着液時の表面張力は、実施例 2が 28.8mNZmから 34.6 mN/m,実施例 3が 29. lmNZmから 34.4mN/m,実施例 4が 29.3mN/m 力ら 34.2mNZm、実施例 5が 29.4mNZmから 34. OmN/m,実施例 1が 29.6 mNZmから 33.8mN/m,実施例 6が 30.3mNZmから 33.7mN/m,実施例 7 力 31. lmN/mから 33.4mN/m,実施例 8が 32. OmNZm力ら 33.3mNZmと 表面張力をコントロールできることが分かった。表面張力のコントロールが可能である ことは、基材の表面エネルギーに合わせて最適な液物性を選択することができる点 が非常に有用である。
[0116] スプレー塗布時と基材着液時の固形分は、実施例 1〜8までで 1.5wt%〜7. Owt %まで濃縮することが可能であることが分力つた。スプレー塗布時と基材着液時のヮ ニスの固形分が濃縮できることは膜厚をコントロールするときに有用であり、スプレー 塗布のパラメーターを選択するときの指標になる。
また、実施例 1〜8の電荷輸送性薄膜の膜厚分布は 30±6nm以下であり、膜厚ム ラが発光ムラに影響しない程度の膜厚ムラに抑制できていることが分力つた。
さらに、成膜面観察の結果、実施例 1〜実施例 8の電荷輸送性薄膜は一様に塗布 ムラが確認できな力 た。
[0117] [表 2]
Figure imgf000042_0001
[0118] 表 3に実施例 1及び実施例 9〜 12で調製した電荷輸送性ワニスのスプレー塗布時 と着液時の粘度、表面張力、及び固形分測定の結果、並びにスプレー法によって成 膜した電荷輸送性薄膜の ITOベタ部分を目視観察した結果及び膜厚分布の結果を 示す。
実施例 1及び実施例 9〜 12のワニスは、良溶媒に DMI、高レべリング性貧溶媒に C HA、揮発性貧溶媒に IBAを固定し、溶媒組成比率を 10 : 50 :40に固定し、固形分 を変更させたワニスである。
[0119] 各実施例のワニスの固形分は、実施例 9が 1. Owt%、実施例 1が 1. 5wt%、実施 例 10が 2. 0wt%、実施例 11が 2. 5wt%、実施例 12が 3. 0 %である。
スプレー塗布時と基材着液時の粘度は、実施例 9が 8. 4mPa' s力ら 16. 7mPa- s ( 2. 0倍)、実施 f列 1力 8. 8mPa' s力ら 17. 6mPa- s (2. 0倍)、実施 f列 10力 9. 2mPa •sから 18. 4mPa- s (2. 0倍)、実施例 11が 9. 7mPa- s力ら 19. 3mPa- s (2. 0倍)、 実施例 12が 10. OmPa's力ら 20. 0mPa-s (2. 0倍)と約 2. 0倍まで粘度を増加させ ることが可能であることが分力つた。
[0120] スプレー塗布時と基材着液時の表面張力は、実施例 9が 29. 4mNZmから 33. 7 mN/m,実施例 1が 29. 6mNZm力ら 33. 8mN/m,実施例 10が 29. 6mN/m 力ら 33. 9mNZm、実施例 11が 29. 7mNZmから 34. lmN/m,実施例 12が 29 . 8mNZmから 34. 2mNZmと表面張力をコントロールできることが分かった。表面 張力のコントロールが可能であることは、基材の表面エネルギーに合わせて最適な 液物性を選択することができる点が非常に有用である。
また、実施例 9〜12の電荷輸送性薄膜の膜厚分布は 30±5nm程度であり、膜厚 ムラが発光ムラに影響しない程度に抑制されていることが分力つた。
さらに、成膜面観察の結果、実施例 9〜12の電荷輸送性薄膜は一様に塗布ムラが 確認されず、均一な成膜面であることが分力つた。
ワニスの固形分の変更は膜厚をコントロールする際の指標となる。
[0121] [表 3]
Figure imgf000043_0001
[0122] 表 4に実施例 1及び実施例 13で調製した電荷輸送性ワニスのスプレー塗布時と着 液時の粘度、表面張力、及び固形分測定の結果、並びにスプレー法によって成膜し た電荷輸送性薄膜の ITOベタ部分を目?見観察した結果及び膜厚分布の結果を示す 実施例 1及び実施例 13のワニスは、高レべリング性貧溶媒に CHA、揮発性貧溶媒 に IBAを固定し、溶媒組成比率を良溶媒: CHA:IBA= 10: 50:40に固定し、固形 分を 1. 5wt%に固定し、良溶媒を変更させたワニスである。
良溶媒に NMPを使用した実施例 13の電荷輸送性ワニスに関しても、構造物間に 非常に良好な電荷輸送性薄膜を形成することができた。 [0123] [表 4]
Figure imgf000044_0001
[0124] 表 5に実施例 14〜16、比較例 4及び比較例 5で調製した電荷輸送性ワニスのスプ レー塗布時と着液時の粘度、表面張力、及び固形分測定の結果、並びにスプレー 法によって成膜した電荷輸送性薄膜の ITOベタ部分を目視観察した結果及び膜厚 分布の結果を示す。
実施例 14のワニスは、実施例 1と同様の溶質を含み溶媒組成比率を良溶媒: CHA : EtOH = 20 : 30 : 50に変更したワニスである。
実施例 15及び実施例 16のワニスは、溶媒組成比率を良溶媒: CHA: EtOH = 20 : 30 : 50に固定し、固形分を 1. 5wt%に固定し、ドーパントの種類を変更したワニス である。
比較例 4及び比較例 5のワニスは、ホストとしてポリマーを使用したワニスである。比 較例 4のワニスは有機溶媒系分散のワニスであり、比較例 5のワニスは水系分散のヮ ニスである。
[0125] スプレー塗布時と基材着液時の粘度は、実施例 14が 7. 2mPa' sから 14. 2mPa- s (2. 0倍)、実施例 15が 4. 4mPa' sから 8. 6mPa- s (2. 0倍)、実施例 16が 4. lm Pa' sから 7. 8mPa- s (l. 9倍)と約 2. 0倍まで粘度を増加させることが可能であるこ とが分力つた。
スプレー塗布時と基材着液時の表面張力は、実施例 14が 30. lmNZmから 35. lmN/m,実施例 15が 29. 8mNZm力ら 34. 9mN/m,実施例 16が 29. 2mN Zmから 34. 5mNZmと変化し、表面張力をコントロールできることが分かった。表 面張力のコントロールが可能であることは、基材の表面エネルギーに合わせて最適 な液物性を選択することができる点が非常に有用である。
[0126] スプレー塗布時と基材着液時の固形分は、実施例 14が 1. 5wt%から 3. Owt% (2 . 0倍)、実施例 15が 1. 5wt%から 3. Owt% (2. 0倍)、実施例 16が 1. 5wt%から 3 . Owt% (2. 0倍)に増加し、濃縮できることが分力つた。 また、実施例 14〜16の膜厚分布は 30±6nm以下であり、膜厚ムラが発光ムラに 影響しな!、程度に抑制されて 、ることが分力つた。
一方、比較例 4及び比較例 5はスプレー塗布時と基材着液時の表面張力の粘度、 表面張力が変化するものの(但し比較例 5のスプレー塗布時と基材着液時の表面張 力は誤差範囲)、膜厚分布において、比較例 4が 15± 30nm、比較例 5が 10± 30n mとなり、膜厚ムラが非常に大きいことが分力つた。さらに、比較例 4及び比較例 5は 成膜面のラフネスが非常に大きぐ塗布ムラの他に異物に起因するゆず肌ムラ、基板 中央付近の海島構造、基板エッジ部分のシュリンク等が確認された。
[0127] [表 5]
Figure imgf000045_0001
[0128] 表 6に実施例 1, 17及び 18並びに比較例 2, 6及び 7で調製した電荷輸送性ワニス のスプレー塗布時と着液時の粘度、表面張力、及び固形分測定の結果、並びにスプ レー法によって成膜した電荷輸送性薄膜の ITOベタ部分を目?見観察した結果及び 膜厚分布の結果を示す。
各ワニスに含まれる高レべリング性貧溶媒は、実施例 1及び比較例 2が CHA、実施 例 17及び比較例 6がプロピレングリコール (PG)、実施例 18及び比較例 7が 2, 3— ブタンジオール(2, 3— BD)である。
ここで、比較例 2, 6及び 7のワニスは、揮発性貧溶媒を含まないワニスである。
[0129] スプレー塗布時と基材着液時の粘度は、実施例 1が 8. 8mPa' sから 17. 6mPa- s (
2. 0倍)、実施 f列 17力 S i 1. ImPa' s力ら 30. 6mPa- s (2. 8倍)、実施 f列 18力 12. 2 mPa' s力ら 44. 0mPa- s (3. 6倍)と変化し、 2. 0〜3. 6倍まで粘度を増加させること が可能であることが分力つた。高レべリング性貧溶媒の種類を変化させることで粘度 にコントラストをつけることが可能であることが分力つた。
一方、比較例 2, 6及び 7のスプレー塗布時と基材着液時の粘度は、スプレー塗布 時の粘度と変わらず、 17. 6mPa' s、 30. 6mPa' s、44. OmPa' sであった。
[0130] スプレー塗布時と基材着液時の表面張力は、実施例 1が 29. 6mNZmから 33. 8 mN/m,実施例 17が 28. lmNZm力ら 33. 2mN/m,実施例 18が 28. 6mN/ mから 33. 5mNZmと変化し、表面張力をコントロールできることが分力つた。表面 張力のコントロールが可能であることは、基材の表面エネルギーに合わせて最適な 液物性を選択することができる点が非常に有用である。高レべリング性貧溶媒の種類 を変化させることで、基板着液時の表面張力にコントラストをつけることが可能である ことが分力つた。
一方、比較例 2, 6及び 7のスプレー塗布時と基材着液時の表面張力は、スプレー 塗布時の表面張力と変わらず、 33. 8mNZm、 33. 2mN/m, 33. 5mNZmであ つた o
[0131] スプレー塗布時と基材着液時の固形分は、実施例 1が 1. 5wt%から 2. 4wt% (l.
6倍)、実施例 17が 1. 5wt%から 2. 4wt% (l. 6倍)、実施例 18が 1. 5wt%から 2. 4wt% (l. 6倍)と固形分が増加し、濃縮できることが分力つた。
一方、比較例 2, 6及び 7のスプレー塗布時と基材着液時の固形分は、スプレー塗 布時の固形分と変わらず、 2. 4wt%、 2. 4wt%、 2. 4wt%であった。
また、実施例 1, 17及び 18の膜厚分布は 30±6nm程度であり、膜厚ムラが発光ム ラに影響しな 、程度に抑制されて 、ることが分力つた。
さらに、成膜面観察の結果、実施例 1, 17及び 18は一様に塗布ムラが確認されず 、均一な成膜面であることが確認された。
一方、比較例 6及び比較例 7の膜厚分布は 25 ± 12nm、 25± l lnmとなり、膜厚ム ラが非常に大きいことが分力つた。
さらに、成膜面観察の結果、比較例 2, 6及び 7は成膜面で塗布ムラが確認できた。
[0132] [表 6] \\、 粘度 [mPa-s] 表面張力 [mN/m] 固形分 [wt¾] 膜厚分布 [nm] 成膜面観察 実施例 1 8.8→17.6 29.6→33.8 卜5→2-4 30±5 〇
実施例 17 11.1→30.6 28.1→33.2 1.5→2.4 30±5 O
実施例 18 12.2→44.0 28.6→33.5 1.5→2.4 30±6 O
比較例 2 17.6 33.8 1.5→1.5 Δ
比較例 6 30.6 33.2 1.5→1.5 25 + 12 △
比較例 Ί 44.0 33.5 1.5→1.5 25±11 Δ
[0133] 表 7に実施例 1, 19〜26及び比較例 8〜 10で調製した電荷輸送性ワニスのスプレ 一塗布時と着液時の粘度、表面張力、及び固形分測定の結果、並びにスプレー法 によって成膜した電荷輸送性薄膜の ITOベタ部分を目視観察した結果及び膜厚分 布の結果を示す。
実施例 1, 19〜26の各ワニスに含まれる揮発性貧溶媒は、実施例 1がイソブタノー ル (IBA)、実施例 19がアセトン (ACE)、実施例 20がエタノール (EtOH)、実施例 2 1がメチルェチルケトン(MEK)、実施例 22がイソプロピルアルコール(IPA)、実施 例 23がブタノール(BuOH)、実施例 24が 2—メチル— 1—ペンタノール(2MelPe OH)、実施例 25がシクロへキサノン(CHN)、実施例 26がエチレングリコールモノブ チルエーテル(ブチルセ口ソルブ)である。
比較例 8〜: L0の各ワニスでは、揮発性貧溶媒の代わりに、 γ—プチルラクトン(γ -BL) (比較例 8)、フタル酸ジメチル(比較例 9)、プロピレングリコール(比較例 10) を使用した。
[0134] スプレー塗布時と基材着液時の固形分は、実施例 1, 19〜26は濃縮が確認できた ワニスであり、比較例 8〜 10は確認できなかったワニスである。
実施例 1, 19〜26の膜厚分布は30±611111程度でぁり、膜厚ムラが発光ムラに影 響しな 、程度に抑制されて 、ることが分力つた。
一方、比較例 8〜10はそれぞれ 30±18nm、 30±19nm、 30±15nmとなり、膜 厚ムラが非常に大き 、ことが分力つた。
さらに、成膜面観察の結果、実施例 1, 19〜26は一様に塗布ムラが確認されず、 均一な成膜面を確認した。
一方、比較例 8〜10は成膜面で塗布ムラが確認できた。 [0135] [表 7]
Figure imgf000048_0001
[0136] 表 8に塗布プロセスを変更した時の膜厚分布及び成膜面観察の結果を示す。
実施例 1はスプレー法、比較例 11はスピンコート法、比較例 12はオフセット印刷法 によって実施例 1のワニスを使用し、評価を行った。
比較例 11のスピンコート法は膜厚分布が 30± lOnmとなり、成膜性は良好であるも のの、膜厚ムラが大きい結果となった。この膜厚ムラは粘度が 8. 8mPa' s程度のヮ- スをスピンコート法で成膜すると構造物間での流動が生じることに起因すると考えら れる。
また、比較例 12のオフセット印刷法は膜厚分布が 28± 12nmとなり、膜厚ムラが大 きぐ成膜性も塗布ムラが観察された。粘度が 8. 8mPa' s程度であると、印刷法にお ける最適粘度としては低ぐ APR版になじまず上手く転写されないことが考えられる。 さらに、印刷法は APR版が構造物に直接接触するため、印刷面のエッジ部分などの 摩擦が発生し易い部分で微細な構造物が破壊されてしまうことも確認できた。
[0137] [表 8]
粘度 表面張力 固形分 膜厚分布 成膜面観察
実施例
比較例
比較例 [0138] [実施例 27]
実施例 1で作製した電荷輸送性薄膜を、真空蒸着装置内に導入し、 a NPD、 A1 q 、 LiF、及び A1を順次蒸着した。膜厚は、それぞれ 40nm、 60nm、 0. 5nm、 ΙΟΟη mとして、それぞれ 8 X 10— 4Pa以下の圧力となって力も蒸着操作を行った。その際の 蒸着レートは LiF以外の材料については 0. 3〜0. 4nmZs、また LiFについては 0. 02〜0. 04nmZsとした。一連の蒸着操作は全ての層を蒸着するまで真空下で行つ た。
[0139] [比較例 13]
比較例 2の電荷輸送性ワニスを使用した以外は、実施例 27と同様にして、 OLED 素子を作製し、特性を評価した。
表 9に実施例 27及び比較例 13の OLED素子の特性、 Ipを示す。 OLED素子の特 性は、発光開始電圧あるいは lOmAZcm2及び 50mAZcm2を閾値とした時の電圧 、輝度、発光効率を示した。
なお、 OLED素子の特性は、有機 EL発光効率測定装置 (EL1003、プレサイスゲ ージ社製)を使用して測定した。 Ipは理研計器社製 光電子分光装置 AC— 2を使 用して測定した。
[0140] [表 9]
Figure imgf000049_0001
[0141] 表 9の OLED素子特性において、実施例 27の OLED素子と比較例 13の OLED素 子とを比較すると lOmAZcm2通電時の電圧は 8. 23Vと 8. 32V、輝度は 714cdZ m2と 689cd/m2、発光効率は 7. l lcdZAと 3. 32cd/Aとなり、 50mA/cm2通電 時の電圧は 10. 27Vと 10. 71V、輝度は 4005cdZm2と 3155cdZm2、発光効率は 8. OOcdZAと 4. 44cdZAとなり、全ての特性で実施例 27の OLED素子が比較例 13の OLED素子を上回る結果となった。
また、実施例 27の OLED素子の発光面は面発光が均一であった力 比較例 13の OLED素子は面発光のエッジ部分が明るぐ中央部が暗いコントラストがついて不均 一発光であった。
表 9の結果は構造物間の膜厚ムラに起因していると考えられ、膜厚分布が 30± 5n mの実施例 27の OLED素子と 30± 10nmの比較例 13の OLED素子との差である。 特に、比較例 13の OLED素子は膜厚が薄い部分の発光が明るくなる代わりに、膜厚 が厚い部分の発光が暗くなつていたことから、発光の局在化が生じ、面発光としての 効率が低下したものと推測される。また、不均一発光であった比較例 13の OLED素 子は電荷の偏りが生じていることが容易に判断できることから、短寿命となり、短絡特 性が低下することは自明である。
したがって、本発明の電荷輸送性ワニスを用いることにより、 EL素子の発光開始電 圧の低下、電流効率の向上、素子の長寿命化が達成され、安価で生産効率の高い EL素子を歩留まり良ぐ作製することが可能である。

Claims

請求の範囲
[1] 分子量 200〜 1000の有機化合物又は分子量 200〜5000のオリゴマーからなる 基質と、良溶媒と、少なくとも 1種類の高レべリング性貧溶媒と、少なくとも 1種類の揮 発性貧溶媒とを含有することを特徴とするスプレー又はインクジェット塗布用ワニス。
[2] 電荷輸送性モノマー、若しくは数平均分子量 200〜5000の電荷輸送性オリゴマー からなる電荷輸送物質、又はこの電荷輸送物質及び電子受容性ドーパント物質若し くは正孔受容性ドーパント物質からなる電荷輸送性有機材料と、良溶媒と、少なくとも 1種類以上の高レべリング性貧溶媒と、少なくとも 1種類の揮発性貧溶媒とを含有す ることを特徴とするスプレー又はインクジェット塗布用電荷輸送性ワニス。
[3] 前記良溶媒が、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メ チルピロリドン、及び 1, 3—ジメチル— 2—イミダゾリジノン力も選ばれる少なくとも 1種 である請求項 2記載のスプレー又はインクジェット塗布用電荷輸送性ワニス。
[4] 前記高レべリング性貧溶媒が、シクロへキサノール、 2, 3—ブタンジオール及びプ ロピレンダリコール力 選ばれる少なくとも 1種である請求項 2又は 3記載のスプレー 又はインクジェット塗布用電荷輸送性ワニス。
[5] 前記揮発性貧溶媒が、エタノール、イソプロパノール、イソブタノール、及びェチレ ングリコールモノブチルエーテルから選ばれる少なくとも 1種である請求項 2〜4のい ずれか 1項記載のスプレー又はインクジェット塗布用電荷輸送性ワニス。
[6] 前記良溶媒と、少なくとも 1種類以上の高レべリング性貧溶媒と、少なくとも 1種類以 上の揮発性貧溶媒との組み合わせが、 1, 3—ジメチルー 2—イミダゾリジノンとシクロ へキサノールとイソブタノール、 1, 3—ジメチルー 2—イミダゾリジノンとシクロへキサノ ールとエチレングリコールモノブチルエーテル、 1, 3—ジメチルー 2—イミダゾリジノン とシクロへキサノールとエタノール、 N—メチルピロリドンとシクロへキサノールとイソブ タノール、 N—メチルピロリドンとシクロへキサノールとエタノール、 N, N—ジメチルァ セトアミドとシクロへキサノールとイソブタノール、 N, N—ジメチルァセトアミドとシクロ へキサノールとエタノール、 1, 3—ジメチルー 2—イミダゾリジノンと 2, 3—ブタンジォ ールとイソブタノール、 1, 3—ジメチルー 2—イミダゾリジノンと 2, 3—ブタンジオール とエタノール、 N—メチルピロリドンと 2, 3—ブタンジオールとイソブタノール、 N—メチ ルピロリドンと 2, 3 ブタンジオールとエタノール、 N, N ジメチルァセトアミドと 2, 3 ブタンジオールとイソブタノール、 N, N ジメチルァセトアミドと 2, 3 ブタンジォ ールとエタノール、 1, 3 ジメチルー 2 イミダゾリジノンとジプロピレングリコールとィ ソブタノール、 1, 3 ジメチルー 2 イミダゾリジノンとジプロピレングリコールとェタノ ール、 N—メチルピロリドンとジプロピレングリコールとイソブタノール、 N—メチルピロ リドンとジプロピレングリコールとエタノール、 N, N ジメチルァセトアミドとジプロピレ ングリコールとイソブタノール、又は N, N ジメチルァセトアミドとジプロピレングリコ ールとエタノールである請求項 2記載のスプレー又はインクジェット塗布用電荷輸送 性ワニス。
[7] 前記電荷輸送物質が、共役単位を有する電荷輸送性モノマー又は共役単位を有 する数平均分子量 200〜5000の電荷輸送性オリゴマーであり、かつ、単一の前記 共役単位が連続して 、る、又は相異なる 2種以上の前記共役単位が任意の順序の 組み合わせで連続して!/、る請求項 2〜6の 、ずれか 1項記載のスプレー又はインクジ エッド塗布用電荷輸送性ワニス。
[8] 前記共役単位が、置換若しくは非置換、かつ、 2〜4価の、ァ-リン、チォフェン、ジ チイン、フラン、ピロ一ノレ、ェチ-レン、ビ-レン、フエ二レン、ナフタレン、アントラセン 、イミダゾール、ォキサゾール、ォキサジァゾール、キノリン、キノキザリン、シロール、 シリコン、ピリジン、ピリミジン、ピラジン、フエ二レンビニレン、フノレ才レン、力ノレノ ゾ一 ル、トリアリールァミン、金属—若しくは無金属—フタロシアニン、及び金属—若しくは 無金属 ポルフィリンカ 選ばれる少なくとも 1種である請求項 7記載のスプレー又は インクジェット塗布用電荷輸送性ワニス。
[9] 前記電荷輸送物質が、一般式(1)で表されるオリゴァ-リン誘導体、又は一般式(1 )の酸ィ匕体であるキノンジィミン誘導体であることを特徴とする請求項 7記載のスプレ 一又はインクジェット塗布用電荷輸送性ワニス。
[化 1]
Figure imgf000052_0001
〔式中、
Figure imgf000053_0001
R2及び R3はそれぞれ独立して水素、水酸基、ハロゲン基、アミノ基、シラ ノール基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、 チォエステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、オルガノ アミノ基、オルガノシリル基、オルガノチォ基、ァシル基又はスルホン基を示し、 A及 び Bは、それぞれ独立して、一般式(2)又は(3)で表される二価の基を示す。
[化 2]
Figure imgf000053_0002
(式中、 R4〜RUはそれぞれ独立して水素、水酸基、ハロゲン基、アミノ基、シラノール 基、チオール基、カルボキシル基、リン酸基、リン酸エステル基、エステル基、チォェ ステル基、アミド基、ニトロ基、一価炭化水素基、オルガノォキシ基、オルガノアミノ基 、オルガノシリル基、オルガノチォ基、ァシル基又はスルホン基を示し、 m及び nは、 それぞれ独立して、 1以上の整数で、 m+n≤20を満足する。 ) 0
[10] 前記電荷輸送物質が、一般式 (4)で表されるオリゴァ-リン誘導体、又は一般式 (4 )の酸ィ匕体であるキノンジィミン誘導体であることを特徴とする請求項 9記載のスプレ 一又はインクジェット塗布用電荷輸送性ワニス。
[化 3]
Figure imgf000053_0003
(式中、 R ~R7, m, nは、上記と同じ意味を示す。 )
[11] 前記電子受容性ドーパント物質が一般式(5)で表されるスルホン酸誘導体であるこ とを特徴とする請求項 2〜 10のいずれ力 1項記載のスプレー又はインクジェット塗布 用電荷輸送性ワニス。 [化 4]
Figure imgf000054_0001
(式中、 Dはベンゼン環、ナフタレン環、アントラセン環、フエナントレン環又は複素環 を表し、 R12及び R13は、それぞれ独立して、カルボキシル基若しくはヒドロキシル基を 表す。)
前記電子受容性ドーパント物質が一般式 (6)で表されるスルホン酸誘導体であるこ とを特徴とする請求項 2〜 10のいずれ力 1項記載のスプレー又はインクジェット塗布 用電荷輸送性ワニス。
[化 5]
Figure imgf000054_0002
(式中、 R"〜RlQはそれぞれ独立して水素原子、非置換若しくは置換の一価炭化水 素基又はハロゲン原子を示し、 Xは単結合、 0、 S又は NHを示し、 Aは水素原子、ハ ロゲン原子、 0、 S、 S (O)基、 S (0 )基、又は、非置換若しくは置換基が結合した N、
2
Si、 P、 P (O)基、又は、一価以上で非置換若しくは置換の炭化水素基を示す。 yは A の価数と等しぐ 1≤ を満足する整数でぁり、 は1, 4一べンゾジォキサン骨格のうち ベンゼン環部分に結合したスルホン基数を示し、 l≤x≤4である。 )
前記電子受容性ドーパント物質が一般式(7)で表されるァリールスルホン酸誘導体 であることを特徴とする請求項 2〜10のいずれか 1項記載のスプレー又はインクジェ ット塗布用電荷輸送性ワニス。
[化 6]
Figure imgf000055_0001
〔式中、 Xは、 0、 S又は NHを表し、 Aは、 X及び n個の(SO H)基以外の置換基を有
3
していてもよいナフタレン環又はアントラセン環を表し、 Bは、非置換若しくは置換の 炭化水素基、 1, 3, 5—トリアジン基、又は非置換若しくは置換の下記式 (3)若しくは (4)
[化 7]
Figure imgf000055_0002
で示される基 (式中、 w1及び w2は、それぞれ独立して、 o、 s、 s(o)基、 s(o 2 )基、 又は非置換若しくは置換基が結合した N、 Si、 P、 P (O)基を示す。)を表し、 nは、 A に結合するスルホン基数を表し、 l≤n≤4を満たす整数であり、 qは、 Bと Xとの結合 数を示し、 l≤qを満たす整数である。〕
[14] 請求項 1記載のスプレー又はインクジェット塗布用ワニスを使用して作製されること を特徴とする薄膜。
[15] 請求項 2〜13のいずれか 1項記載のスプレー又はインクジェット塗布用電荷輸送性 ワニスを使用して作製されることを特徴とする電荷輸送性薄膜。
[16] スプレー法により作製されることを特徴とする請求項 15記載の電荷輸送性薄膜。
[17] 請求項 15又は 16記載の電荷輸送性薄膜を備える有機エレクト口ルミネッセンス素 子。
[18] 前記電荷輸送性薄膜が、正孔注入層又は正孔輸送層である請求項 17記載の有 機エレクト口ルミネッセンス素子。
[19] 請求項 1記載のワニスを基材上にスプレー又はインクジェット法により塗布し、溶媒 を蒸発させることを特徴とする薄膜の作製方法。
[20] 請求項 2〜13のいずれか 1項記載の電荷輸送性ワニスを基材上にスプレー又はィ ンクジヱット法により塗布し、溶媒を蒸発させることを特徴とする電荷輸送性薄膜の作 製方法。
[21] スプレー法により塗布することを特徴とする請求項 20記載の電荷輸送性薄膜の作 製方法。
PCT/JP2006/321218 2005-10-28 2006-10-25 スプレー又はインクジェット塗布用電荷輸送性ワニス WO2007049631A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200680043223.XA CN101331625B (zh) 2005-10-28 2006-10-25 用于喷雾或喷墨涂覆的电荷传输性清漆
KR1020087011342A KR101413129B1 (ko) 2005-10-28 2006-10-25 스프레이 또는 잉크젯 도포용 전하 수송성 바니시
EP06822195A EP1950816A4 (en) 2005-10-28 2006-10-25 CHARGE TRANSPORT VARNISH FOR A SPRAYING OR INKJET PROCESS
US12/091,725 US9172043B2 (en) 2005-10-28 2006-10-25 Charge-transporting varnish for spray or ink jet application
JP2007542613A JP5401791B2 (ja) 2005-10-28 2006-10-25 スプレー又はインクジェット塗布用電荷輸送性ワニス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-313599 2005-10-28
JP2005313599 2005-10-28
JP2006093058 2006-03-30
JP2006-093058 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007049631A1 true WO2007049631A1 (ja) 2007-05-03

Family

ID=37967741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321218 WO2007049631A1 (ja) 2005-10-28 2006-10-25 スプレー又はインクジェット塗布用電荷輸送性ワニス

Country Status (7)

Country Link
US (1) US9172043B2 (ja)
EP (1) EP1950816A4 (ja)
JP (2) JP5401791B2 (ja)
KR (1) KR101413129B1 (ja)
CN (1) CN101331625B (ja)
TW (1) TWI418241B (ja)
WO (1) WO2007049631A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058777A1 (ja) * 2008-11-19 2010-05-27 日産化学工業株式会社 電荷輸送性材料および電荷輸送性ワニス
WO2010110280A1 (ja) * 2009-03-27 2010-09-30 富士フイルム株式会社 有機電界発光素子用塗布液
WO2011027749A1 (ja) * 2009-09-01 2011-03-10 富士フイルム株式会社 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置
CN102150475A (zh) * 2008-09-12 2011-08-10 住友化学株式会社 有机电致发光元件制造用的墨液、有机电致发光元件的制造方法以及显示装置
CN102272968A (zh) * 2008-11-19 2011-12-07 日产化学工业株式会社 电荷传输性材料及电荷传输性清漆
JP5136406B2 (ja) * 2006-03-07 2013-02-06 コニカミノルタIj株式会社 非水系インクジェットインク及びインクジェット記録方法
JP2013091711A (ja) * 2011-10-25 2013-05-16 Konica Minolta Ij Technologies Inc 機能性インクジェットインク及び機能性塗膜の形成方法
JP2013143324A (ja) * 2012-01-12 2013-07-22 Panasonic Corp 有機el素子の製造方法
WO2013129249A1 (ja) 2012-03-02 2013-09-06 日産化学工業株式会社 電荷輸送性ワニス
US8575392B2 (en) 2006-07-18 2013-11-05 Nissan Chemical Industries, Ltd. Charge-transporting varnish
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2015053320A1 (ja) 2013-10-09 2015-04-16 日産化学工業株式会社 アリールスルホン酸化合物及びその利用並びにアリールスルホン酸化合物の製造方法
WO2017150412A1 (ja) 2016-03-03 2017-09-08 日産化学工業株式会社 電荷輸送性ワニス
WO2017164158A1 (ja) 2016-03-24 2017-09-28 日産化学工業株式会社 アリールアミン誘導体とその利用
WO2018147204A1 (ja) 2017-02-07 2018-08-16 日産化学工業株式会社 電荷輸送性ワニス
WO2018186340A1 (ja) 2017-04-05 2018-10-11 日産化学株式会社 電荷輸送性ワニス
JP6407499B1 (ja) * 2017-11-28 2018-10-17 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP6470476B1 (ja) * 2017-11-28 2019-02-13 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP6470475B1 (ja) * 2017-11-28 2019-02-13 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
WO2019106715A1 (ja) * 2017-11-28 2019-06-06 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP2019102466A (ja) * 2019-01-17 2019-06-24 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP2020198313A (ja) * 2019-01-17 2020-12-10 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0814971D0 (en) * 2008-08-15 2008-09-24 Cambridge Display Tech Ltd Opto-electrical devices and methods of manufacturing the same
GB2462653B (en) * 2008-08-15 2013-03-20 Cambridge Display Tech Ltd Opto-electrical devices and methods of manufacturing the same
EP2339659B1 (en) * 2008-10-09 2016-02-10 Nissan Chemical Industries, Ltd. Charge-transporting varnishes
WO2011128034A1 (en) * 2010-04-12 2011-10-20 Merck Patent Gmbh Composition having improved performance
EP2559079B1 (en) 2010-04-12 2020-04-01 Merck Patent GmbH Composition and method for preparation of organic electronic devices
JP4579343B1 (ja) * 2010-04-23 2010-11-10 富士フイルム株式会社 有機電界発光素子用材料及び有機電界発光素子
US20170031525A1 (en) 2010-05-14 2017-02-02 Racing Optics, Inc. Touch screen shield
US9299932B2 (en) * 2011-12-28 2016-03-29 Sony Corporation Solid-state assembly of layers and an electric device comprising such assembly
JP6201538B2 (ja) * 2013-09-03 2017-09-27 セイコーエプソン株式会社 機能層形成用インクの製造方法、有機el素子の製造方法
EP3118187A4 (en) 2014-03-14 2017-11-01 Nissan Chemical Industries, Ltd. Aniline derivative and use thereof
CN106132923B (zh) * 2014-03-17 2019-11-15 日产化学工业株式会社 低聚苯胺衍生物、电荷传输性清漆以及有机电致发光元件
WO2015182667A1 (ja) * 2014-05-30 2015-12-03 日産化学工業株式会社 薄膜の平坦化方法、平坦化薄膜の形成方法及び薄膜形成用ワニス
US9295297B2 (en) 2014-06-17 2016-03-29 Racing Optics, Inc. Adhesive mountable stack of removable layers
JP6702319B2 (ja) * 2015-06-09 2020-06-03 日産化学株式会社 インクジェット塗布用膜形成用組成物
EP3457449A4 (en) * 2016-05-10 2020-01-22 Hitachi Chemical Company, Ltd. CHARGE TRANSPORTATION MATERIAL, ORGANIC ELECTRONIC ELEMENT, AND ORGANIC ELECTROLUMINESCENT ELEMENT
JP6470477B1 (ja) * 2017-11-28 2019-02-13 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
CN112313012B (zh) * 2018-06-12 2023-08-18 新泽西鲁特格斯州立大学 厚度限制式电喷雾沉积
JP6755344B2 (ja) * 2019-01-17 2020-09-16 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP6752305B2 (ja) * 2019-01-17 2020-09-09 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
US11846788B2 (en) 2019-02-01 2023-12-19 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
CA3128223A1 (en) 2019-02-01 2020-08-06 Racing Optics, Inc. Thermoform windshield stack with integrated formable mold
US11364715B2 (en) 2019-05-21 2022-06-21 Racing Optics, Inc. Polymer safety glazing for vehicles
CN110172275A (zh) * 2019-05-22 2019-08-27 深圳市华星光电半导体显示技术有限公司 电子传输层墨水及其制备方法、电致发光器件
CN110085655B (zh) * 2019-05-30 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
US11648723B2 (en) 2019-12-03 2023-05-16 Racing Optics, Inc. Method and apparatus for reducing non-normal incidence distortion in glazing films
JP6933399B2 (ja) * 2019-12-17 2021-09-08 株式会社Joled 機能層形成用インクおよび自発光素子の製造方法
US11548356B2 (en) 2020-03-10 2023-01-10 Racing Optics, Inc. Protective barrier for safety glazing
US11490667B1 (en) 2021-06-08 2022-11-08 Racing Optics, Inc. Low haze UV blocking removable lens stack
US11307329B1 (en) 2021-07-27 2022-04-19 Racing Optics, Inc. Low reflectance removable lens stack
US11709296B2 (en) 2021-07-27 2023-07-25 Racing Optics, Inc. Low reflectance removable lens stack
US11933943B2 (en) 2022-06-06 2024-03-19 Laminated Film Llc Stack of sterile peelable lenses with low creep
US11808952B1 (en) 2022-09-26 2023-11-07 Racing Optics, Inc. Low static optical removable lens stack

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328229A (ja) * 1988-09-30 1991-02-06 Nitto Denko Corp 有機重合体又は導電性有機重合体組成物のフィルム,繊維又は複合体の製造方法
JP2000204158A (ja) * 1998-11-10 2000-07-25 Nissan Chem Ind Ltd 芳香族アミン誘導体及び可溶性導電性化合物
JP2001052861A (ja) * 1999-08-06 2001-02-23 Sharp Corp 有機ledディスプレイの有機層形成用塗液及び有機ledディスプレイの製造法
WO2003071559A1 (fr) * 2002-02-20 2003-08-28 Nissan Chemical Industries, Ltd. Materiau organique conducteur et vernis conducteur
JP2004095406A (ja) * 2002-08-30 2004-03-25 Seiko Epson Corp 発光装置の製造方法及び発光装置、並びに電子機器
JP2004127897A (ja) * 2002-08-02 2004-04-22 Seiko Epson Corp 組成物とこれを用いた有機導電性膜及びその製造方法、該有機導電性膜を備えた有機el素子及びその製造方法、該有機導電性膜を備えた半導体素子及びその製造方法、電子装置並びに電子機器
WO2004043117A1 (ja) * 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス
WO2005000832A1 (ja) * 2003-06-25 2005-01-06 Nissan Chemical Industries, Ltd. 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
JP2006066111A (ja) * 2004-08-25 2006-03-09 Optrex Corp 有機el表示装置の製造方法、素子基板の検査方法及び有機el表示装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728321A (en) 1988-09-30 1998-03-17 Nitto Denko Corporation Organic polymer, conducting organic polymer, production methods and uses of the same
DE69828573T2 (de) * 1997-12-03 2005-06-16 Nissan Chemical Industries, Ltd. Transparente leitfähige Polymere
KR100495740B1 (ko) 1999-03-29 2005-06-17 세이코 엡슨 가부시키가이샤 조성물, 막의 제조방법, 및 기능 소자와 이의 제조방법
JP4868099B2 (ja) 2000-11-09 2012-02-01 日産化学工業株式会社 電界発光素子
TW574620B (en) * 2001-02-26 2004-02-01 Toray Industries Precursor composition of positive photosensitive resin and display device using it
KR100905682B1 (ko) 2001-09-26 2009-07-03 닛산 가가쿠 고교 가부시키 가이샤 포지티브형 감광성 폴리이미드 수지 조성물
JP2003140336A (ja) * 2001-10-31 2003-05-14 Hitachi Chemical Dupont Microsystems Ltd 感光性エレメントおよびそのパターンを有する表示装置
JP4077675B2 (ja) * 2002-07-26 2008-04-16 ナガセケムテックス株式会社 ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体およびその製造方法
JP4092261B2 (ja) * 2002-08-02 2008-05-28 三星エスディアイ株式会社 基板の製造方法及び有機エレクトロルミネッセンス素子の製造方法
TW200502277A (en) * 2003-05-20 2005-01-16 Nissan Chemical Ind Ltd Charge-transporting varnish
JP5024498B2 (ja) * 2003-09-11 2012-09-12 日産化学工業株式会社 電荷輸送性ワニス、電荷輸送性薄膜および有機エレクトロルミネッセンス素子
JP4600284B2 (ja) 2003-10-28 2010-12-15 住友金属鉱山株式会社 透明導電積層体とその製造方法及び透明導電積層体を用いたデバイス
JP4811573B2 (ja) * 2003-10-31 2011-11-09 日産化学工業株式会社 1,4−ジチイン環を有する化合物を含む電荷輸送性有機材料
JP2005141934A (ja) 2003-11-04 2005-06-02 Seiko Epson Corp 画像表示装置、その製造方法および電子機器
DE102004007777A1 (de) * 2004-02-18 2005-09-08 Covion Organic Semiconductors Gmbh Lösungen organischer Halbleiter
WO2005092984A1 (ja) 2004-03-25 2005-10-06 Nissan Chemical Industries, Ltd. 電荷輸送性ワニス及びそれを用いた有機エレクトロルミネッセンス素子
JP4431461B2 (ja) * 2004-08-09 2010-03-17 オプトレックス株式会社 表示装置の製造方法
TW200615254A (en) * 2004-08-31 2006-05-16 Nissan Chemical Ind Ltd Arylsulfonic acid compound and use thereof as electron-acceptor material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328229A (ja) * 1988-09-30 1991-02-06 Nitto Denko Corp 有機重合体又は導電性有機重合体組成物のフィルム,繊維又は複合体の製造方法
JP2000204158A (ja) * 1998-11-10 2000-07-25 Nissan Chem Ind Ltd 芳香族アミン誘導体及び可溶性導電性化合物
JP2001052861A (ja) * 1999-08-06 2001-02-23 Sharp Corp 有機ledディスプレイの有機層形成用塗液及び有機ledディスプレイの製造法
WO2003071559A1 (fr) * 2002-02-20 2003-08-28 Nissan Chemical Industries, Ltd. Materiau organique conducteur et vernis conducteur
JP2004127897A (ja) * 2002-08-02 2004-04-22 Seiko Epson Corp 組成物とこれを用いた有機導電性膜及びその製造方法、該有機導電性膜を備えた有機el素子及びその製造方法、該有機導電性膜を備えた半導体素子及びその製造方法、電子装置並びに電子機器
JP2004095406A (ja) * 2002-08-30 2004-03-25 Seiko Epson Corp 発光装置の製造方法及び発光装置、並びに電子機器
WO2004043117A1 (ja) * 2002-11-07 2004-05-21 Nissan Chemical Industries,Ltd. 電荷輸送性ワニス
WO2005000832A1 (ja) * 2003-06-25 2005-01-06 Nissan Chemical Industries, Ltd. 1,4-ベンゾジオキサンスルホン酸化合物及び電子受容性物質としての利用
JP2006066111A (ja) * 2004-08-25 2006-03-09 Optrex Corp 有機el表示装置の製造方法、素子基板の検査方法及び有機el表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1950816A4 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136406B2 (ja) * 2006-03-07 2013-02-06 コニカミノルタIj株式会社 非水系インクジェットインク及びインクジェット記録方法
US8575392B2 (en) 2006-07-18 2013-11-05 Nissan Chemical Industries, Ltd. Charge-transporting varnish
CN102150475A (zh) * 2008-09-12 2011-08-10 住友化学株式会社 有机电致发光元件制造用的墨液、有机电致发光元件的制造方法以及显示装置
WO2010058777A1 (ja) * 2008-11-19 2010-05-27 日産化学工業株式会社 電荷輸送性材料および電荷輸送性ワニス
TWI492999B (zh) * 2008-11-19 2015-07-21 Nissan Chemical Ind Ltd Charge transport material and charge transport varnish
JP5617640B2 (ja) * 2008-11-19 2014-11-05 日産化学工業株式会社 正孔または電子輸送性薄膜形成用ワニス
US9049771B2 (en) 2008-11-19 2015-06-02 Nissan Chemical Industries, Ltd. Charge-transporting material and charge-transporting varnish
CN102272968A (zh) * 2008-11-19 2011-12-07 日产化学工业株式会社 电荷传输性材料及电荷传输性清漆
JPWO2010058777A1 (ja) * 2008-11-19 2012-04-19 日産化学工業株式会社 電荷輸送性材料および電荷輸送性ワニス
JP2011066388A (ja) * 2009-03-27 2011-03-31 Fujifilm Corp 有機電界発光素子用塗布液
WO2010110280A1 (ja) * 2009-03-27 2010-09-30 富士フイルム株式会社 有機電界発光素子用塗布液
JP2011077494A (ja) * 2009-09-01 2011-04-14 Fujifilm Corp 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置
WO2011027749A1 (ja) * 2009-09-01 2011-03-10 富士フイルム株式会社 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置
JP2013091711A (ja) * 2011-10-25 2013-05-16 Konica Minolta Ij Technologies Inc 機能性インクジェットインク及び機能性塗膜の形成方法
JP2013143324A (ja) * 2012-01-12 2013-07-22 Panasonic Corp 有機el素子の製造方法
JPWO2013129249A1 (ja) * 2012-03-02 2015-07-30 日産化学工業株式会社 電荷輸送性ワニス
US10233337B2 (en) 2012-03-02 2019-03-19 Nissan Chemical Industries, Ltd. Charge-transporting varnish
WO2013129249A1 (ja) 2012-03-02 2013-09-06 日産化学工業株式会社 電荷輸送性ワニス
KR20200051825A (ko) 2012-03-02 2020-05-13 닛산 가가쿠 가부시키가이샤 전하 수송성 바니시
WO2015050253A1 (ja) 2013-10-04 2015-04-09 日産化学工業株式会社 アニリン誘導体およびその利用
WO2015053320A1 (ja) 2013-10-09 2015-04-16 日産化学工業株式会社 アリールスルホン酸化合物及びその利用並びにアリールスルホン酸化合物の製造方法
WO2017150412A1 (ja) 2016-03-03 2017-09-08 日産化学工業株式会社 電荷輸送性ワニス
WO2017164158A1 (ja) 2016-03-24 2017-09-28 日産化学工業株式会社 アリールアミン誘導体とその利用
WO2018147204A1 (ja) 2017-02-07 2018-08-16 日産化学工業株式会社 電荷輸送性ワニス
WO2018186340A1 (ja) 2017-04-05 2018-10-11 日産化学株式会社 電荷輸送性ワニス
WO2019106716A1 (ja) * 2017-11-28 2019-06-06 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP6407499B1 (ja) * 2017-11-28 2018-10-17 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP6470476B1 (ja) * 2017-11-28 2019-02-13 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
WO2019106717A1 (ja) * 2017-11-28 2019-06-06 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
WO2019106715A1 (ja) * 2017-11-28 2019-06-06 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
WO2019106719A1 (ja) * 2017-11-28 2019-06-06 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP6530144B1 (ja) * 2017-11-28 2019-06-12 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP6470475B1 (ja) * 2017-11-28 2019-02-13 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
US11005082B2 (en) 2017-11-28 2021-05-11 Sakai Display Products Corporation Organic EL light-emitting element and manufacturing method thereof
US11101431B2 (en) 2017-11-28 2021-08-24 Sakai Display Products Corporation Organic EL light-emitting element and manufacturing method thereof
JP2019102466A (ja) * 2019-01-17 2019-06-24 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法
JP2020198313A (ja) * 2019-01-17 2020-12-10 堺ディスプレイプロダクト株式会社 有機el発光素子及びその製造方法

Also Published As

Publication number Publication date
EP1950816A1 (en) 2008-07-30
US20090239045A1 (en) 2009-09-24
JP5720709B2 (ja) 2015-05-20
KR20080064974A (ko) 2008-07-10
CN101331625A (zh) 2008-12-24
JPWO2007049631A1 (ja) 2009-04-30
TWI418241B (zh) 2013-12-01
CN101331625B (zh) 2016-03-09
JP5401791B2 (ja) 2014-01-29
JP2013136784A (ja) 2013-07-11
US9172043B2 (en) 2015-10-27
TW200733806A (en) 2007-09-01
EP1950816A4 (en) 2012-02-22
KR101413129B1 (ko) 2014-07-01

Similar Documents

Publication Publication Date Title
JP5720709B2 (ja) スプレー塗布用電荷輸送性ワニス
JP4662073B2 (ja) 良溶媒及び貧溶媒を含有するワニス
JP5262717B2 (ja) 電荷輸送性ワニス
JP5729496B2 (ja) 電荷輸送性材料
JP5617640B2 (ja) 正孔または電子輸送性薄膜形成用ワニス
KR101641674B1 (ko) 전하수송성 바니시
JP4591681B2 (ja) 電荷輸送性ワニス
JP5196175B2 (ja) 電荷輸送性ワニス
US10199578B2 (en) Fluorine-atom-containing polymer and use thereof
KR20200051825A (ko) 전하 수송성 바니시
JP2013163710A (ja) ポリイミド前駆体、ポリイミド、電荷輸送性組成物、及びポリイミド前駆体の製造方法
JP2010123930A (ja) 電荷輸送性材料および電荷輸送性ワニス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043223.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542613

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006822195

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12091725

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087011342

Country of ref document: KR