WO2007043645A1 - 素子の製造方法 - Google Patents

素子の製造方法 Download PDF

Info

Publication number
WO2007043645A1
WO2007043645A1 PCT/JP2006/320450 JP2006320450W WO2007043645A1 WO 2007043645 A1 WO2007043645 A1 WO 2007043645A1 JP 2006320450 W JP2006320450 W JP 2006320450W WO 2007043645 A1 WO2007043645 A1 WO 2007043645A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy film
film
etching
acid
Prior art date
Application number
PCT/JP2006/320450
Other languages
English (en)
French (fr)
Inventor
Takashi Kubota
Yoshinori Matsuura
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2007043645A1 publication Critical patent/WO2007043645A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to a method for manufacturing an element in a display device such as a liquid crystal display, and more particularly to a technique for manufacturing an element using an aluminum alloy film as a wiring circuit material.
  • liquid crystal displays have been used for display of various electronic devices, and the development of display devices constituting the liquid crystal display is proceeding remarkably.
  • a display device for this liquid crystal display for example, a thin film transistor (hereinafter abbreviated as “TFT”) is known.
  • TFT thin film transistor
  • A1 alloy aluminum (A1) alloy is used. Is used! /
  • the electrode constituting the wiring or electrode is a force formed by an aluminum alloy film.
  • An electrode made of this aluminum alloy film (hereinafter referred to as an aluminum alloy layer)
  • a so-called contact barrier layer (also called a cap layer) made of Mo, Cr or the like is formed at the bonding interface between a transparent electrode layer such as ITO or IZO and an aluminum alloy layer.
  • Non-Patent Document 1 edited by Tatsuo Uchida, “Next Generation Liquid Crystal Display Technology”, first edition, Industrial Research Co., Ltd., November 1, 1994, p. 36- 38
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-214606
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2003-89864
  • the aluminum alloy materials disclosed in these prior arts are basically composed mainly of aluminum, chemicals used in the manufacturing process of display devices, such as developers, resists, etc. Direct contact with the stripping solution, etc. tends to cause pinhole erosion and contamination. If defects such as pinholes occur in the aluminum alloy layer, there is a concern that the electrical characteristics of the element may be affected, for example, the bonding characteristics may be reduced when the aluminum alloy layer and the transparent electrode layer are directly bonded. . In other words, with regard to the method of manufacturing the element of the display device using the aluminum alloy film, the detailed examination has been made on more effective measures.
  • the present invention has been made in the background as described above, and relates to a method for manufacturing an element including a step of etching an aluminum alloy film to form a wiring circuit, and damages the aluminum alloy film.
  • the objective is to propose a manufacturing technology that can suppress this as much as possible and realize a highly reliable device.
  • an element manufacturing method comprising: forming an aluminum alloy film on a substrate; and etching the aluminum alloy film to form a wiring circuit. After forming the film, the surface of the aluminum alloy film was oxidized.
  • the aluminum alloy film formed on the substrate is generally processed into a wiring circuit by photolithography after the film is formed. Resist application, resist image liquid, There is an opportunity for the chemical solution such as a resist stripping solution to come into contact with the aluminum alloy film. Therefore, the surface of the aluminum alloy film is highly likely to cause erosion and surface contamination such as pinholes due to contact with various chemicals. Therefore, in the present invention, after the aluminum alloy film is formed, the surface of the aluminum alloy film is positively treated with an acid so as to form a surface acid film as a protective film. Surface acid of this aluminum alloy film
  • the conversion coating is mainly an aluminum oxide coating. Since this aluminum oxide coating has excellent corrosion resistance, erosion and contamination of the aluminum alloy film can be suppressed even when in contact with various chemical solutions.
  • an oxidation treatment is performed after an aluminum alloy film is formed on a substrate.
  • other film formation treatments, semiconductor layers, insulating layers are formed on the substrate.
  • a layer or the like may be formed.
  • an acid treatment is performed to form a surface acid film on the aluminum alloy film.
  • a known method such as so-called annealing treatment or oxygen gas ashing treatment can be employed.
  • the oxidation treatment on the surface of the aluminum alloy film is calculated when the entire thickness of the aluminum alloy film having a natural oxide film with a predetermined thickness is etched with an etching solution for aluminum alloy. It is desirable to form an acid film so that an etching rate of 80% or more can be secured with respect to the etching rate in the thickness direction.
  • the upper limit of the etching rate in the aluminum alloy film that has been subjected to the prescribed acid / oxidation treatment is less than 100% of the etching rate of the natural acid / oil film, but it is substantially natural oxidation.
  • Oxidation on the surface is more advanced than the coating, and it is necessary to carry out an acidification treatment so that the surface of the aluminum alloy film is not eroded or contaminated by contact with the chemical solution.
  • the oxidation treatment is 95% or less of the etching rate of the natural oxide film, there is a tendency that the surface of the aluminum alloy film is not eroded or contaminated by the chemical solution. I have confirmed that.
  • the aluminum oxide film formed as the surface acid film has excellent corrosion resistance, but at the same time has electrical insulation. Therefore, for example, when direct bonding is performed with a transparent electrode layer such as ITO, if an aluminum oxide film is present at the bonding interface, contact resistance is increased, and a practical device cannot be manufactured. Therefore, the present inventors examined the structure of the surface acid film formed on the surface of the aluminum alloy film. As a result, it has been found that an aluminum alloy film having a surface oxide film formed by oxidation treatment can protect the aluminum-alloy film without greatly affecting the electrical characteristics of the device if the etching rate is predetermined. It was.
  • a naturally formed aluminum oxide film is generally formed by forced acid treatment such as force annealing, which is generally known to have a thickness of about 5 to: LOnm. Further, it is known that the thickness of the surface oxide film does not change greatly even when compared with the thickness of the natural oxide film, and the structure of the aluminum oxide film itself becomes dense. In other words, it is not easy to specify the structure itself, such as the density of the surface oxide film! Therefore, the inventors focused on the etching rate in the thickness direction of the aluminum alloy film. When an aluminum alloy film is etched with an aluminum alloy etching solution, the rate-limiting process when the etching proceeds is when the surface oxide film of the aluminum alloy film is etched.
  • the change in the etching rate in the thickness direction of the aluminum alloy film having the same composition corresponds to the difference in the structure of the surface oxide film itself including the difference in thickness. From this, the oxidation treatment of the aluminum alloy film in the present invention was specified based on the etching rate in the thickness direction when an aluminum alloy film having a natural oxide film and having a predetermined thickness was etched.
  • an aluminum alloy film having a thickness of 1000 A or more is formed on the substrate and left in the air without any treatment to form a natural acid film on the surface of the aluminum alloy film.
  • the etching rate in the direction (here, referred to as the reference etching rate) is calculated.
  • an aluminum alloy film having the same thickness is formed, a surface oxide film is formed by oxidation treatment under a predetermined condition, and the entire thickness of the aluminum alloy film is etched with the same etching solution to obtain an etching rate in the thickness direction.
  • the etching rate force when the acid treatment under the predetermined conditions is performed. If the etching rate is 80% or more of the reference etching rate obtained in advance, the aluminum alloy can be used without greatly affecting the electrical characteristics of the device.
  • a surface acid film capable of protecting the film can be formed.
  • the element manufacturing method according to the present invention described above includes an aluminum alloy containing at least one element selected from nickel, cobalt, iron, carbon, and boron, with the balance being aluminum.
  • a membrane is desirable. This is particularly effective when the aluminum alloy film is an Al—Ni alloy.
  • Al-Ni alloy containing nickel in aluminum has excellent bonding characteristics in direct bonding with the transparent electrode layer.
  • direct bonding with low contact resistance is possible. It is possible to manufacture an element having a good bonding state. If an Al—Ni—B alloy is used among these A1—Ni-based alloys, it is possible to manufacture an element having excellent bonding characteristics even in direct bonding with a semiconductor layer.
  • the oxidation treatment of the present invention described above is preferably performed by so-called annealing treatment or ashing treatment with oxygen gas.
  • annealing it is desirable that the annealing atmosphere be 20% to 100% in terms of oxygen partial pressure.
  • the annealing temperature is a treatment time of 30 minutes to less than 24 hours at an annealing temperature of 150 ° C to less than 500 ° C, with a force S that varies with the acidity of the annealing atmosphere.
  • the oxygen concentration in the ashing atmosphere is 80 to 100%, the processing time is less than 10 seconds to 2 minutes, and the input power during ashing is 50 to 300W. If these oxidation treatment condition ranges are not met, an appropriate oxide film will not be formed, or the oxidation process will proceed excessively and the contact resistance value at the direct junction will tend to increase.
  • FIG. 1 is a schematic diagram of a resistance value measuring element by a four-terminal method.
  • FIG.2 SEM observation photograph of 200 ° C annealing treated aluminum alloy film surface.
  • FIG. 3 SEM observation photograph of the surface of an aluminum alloy film treated with oxygen gas ashing for 1 minute.
  • FIG. 4 SEM observation photograph of untreated aluminum alloy film surface.
  • FIG. 5 Enlarged SEM observation photograph of Fig. 4.
  • the aluminum alloy film is formed on a glass substrate using an A1 alloy target having the above composition, sputtering conditions, input power 3. OWatt / cm 2 , argon gas flow rate 100 ccm, An aluminum alloy film having a thickness of 2000 A was formed using a magnetron sputtering apparatus (manufactured by Tokine Earth Co., Ltd .: multi-chamber type sputtering apparatus MSL464) at a Lugon pressure of 0.5 Pa.
  • the aluminum alloy film was then subjected to an oxidation treatment under various conditions.
  • oxidation conditions annealing at 100 ° C to 300 ° C in air (30 minutes) and oxygen gas ashing (oxygen gas flow rate 50ccm, pressure 10Pa, input power 100Watt, room temperature: treatment time 1 to 3 minutes) was formed.
  • Each oxidized sample was covered with a resist (OFPR800: Tokyo Ohka Kogyo Co., Ltd.), and a pattern film for forming a 20 m wide circuit was placed and exposed to light. Liquid temperature 23.
  • the film was developed with an alkali developer containing C tetramethylammonium and id-oxide (hereinafter abbreviated as TMAH developer). After development, phosphoric acid mixed acid etching solution (manufactured by Kanto Chemical Co., Ltd.
  • DMSO DMSO
  • DMSO DMSO
  • the etching rate was measured by etching the entire circuit with the phosphoric acid mixed acid etching solution.
  • Table 1 shows the results of the phosphoric acid mixed acid etching solution. After forming the aluminum alloy film, the same etching process was performed on the sample with the natural oxide film (untreated) that was left in the atmosphere for about 60 minutes at room temperature, and the etching rate was measured. did.
  • an aluminum alloy film having a thickness of 2000A was formed on a glass substrate under the same sputtering conditions as described above using an A1 alloy target having the above composition. Then, after each of the oxidation treatments described above, a 20 m wide circuit made of an aluminum alloy film was formed under the above-described circuit formation conditions.
  • the substrate on which the 20 ⁇ m width circuit was formed was subjected to pure water cleaning and drying treatment, and an SiNx insulating layer (thickness 4200 A) was formed on the surface thereof.
  • This insulating layer was formed using a sputtering apparatus under sputtering conditions of input power RF3. OWatt / cm 2 , argon gas flow rate 90 ccm, nitrogen gas flow rate 10 ccm, pressure 0.5 Pa, substrate temperature 300 ° C.
  • a positive resist (Tokyo Oka Kogyo Co., Ltd .: TFR-970) was covered on the surface of the insulating layer, and a 10 m x 10 m square contact hole opening pattern film was placed for exposure treatment. And developed with TMAH developer. CF dry etching gas
  • Contact hole formation condition is CF gas field
  • the resist was stripped with the following resist stripping solution DMSO.
  • Each evaluation sample subjected to the resist stripping treatment was subjected to a drying treatment after washing the remaining stripping solution with pure water.
  • an ITO target (composition of InO-10wt% SnO) was used to transparent ITO in and around the contact hole.
  • the transparent electrode layer is formed by sputtering (substrate temperature 70 ° C, input power 1.8 WattZcm 2 , argon gas flow rate 80ccm, oxygen gas flow rate 0.7ccm, pressure 0.37Pa), and the thickness of the transparent electrode layer 1000 A An ITO film was formed.
  • a resist (OFPR800: manufactured by Tokyo Ohka Kogyo Co., Ltd.) is coated on the surface of the ITO film. Then, pattern film is placed and exposed to light, developed with TMAH image solution with a density of 2.38% and a liquid temperature of 23 ° C, and oxalic acid mixed acid etchant (manufactured by Kanto Chemical Co., Ltd.) A 20 m wide circuit was formed by ITO05N). After forming the ITO film circuit, the resist was removed with a stripping solution (DMSO 100 wt%).
  • the contact resistance value is measured for an evaluation sample in which a contact hole is formed by the procedure as described above and a circuit made of an aluminum-alloy film and the transparent electrode layer are directly bonded via the contact hole. did.
  • Table 2 shows the measurement results.
  • This contact resistance measurement method is based on the four-terminal method as shown in Fig. 1.After the element, which is an evaluation sample, is annealed in air at 250 ° C for 30 minutes, the resistance value of each evaluation sample is measured. It was.
  • the four-terminal method shown in FIG. 1 measures the resistance by applying a continuous current (3 mA) from the terminal portion of the evaluation sample after heat treatment.
  • FIGS. 2 to 5 show SEM observation photographs of the aluminum alloy film surface.
  • Fig. 2 shows 200 ° C annealing
  • Fig. 3 Force S 1 minute oxygen gas ashing
  • Fig. 4 shows no treatment (natural oxidation)!
  • FIG. 5 shows an enlarged SEM observation photograph (magnification 200,000 times) of FIG. It was confirmed that many small pinholes were formed on the surface of the aluminum alloy film. On the other hand, in the case of the oxidation treatment shown in FIGS. 2 and 3, erosion such as pinholes was not observed on the surface of the aluminum-alloy film. From the above, in the case of untreated (natural oxidation), although the contact resistance is low, the existence of pinholes is considered to be not reliable, and in contrast to the oxidation of the present invention, In the case of processing, it has been found that a practical junction resistance value can be satisfied, and a highly reliable direct bonding structure can be realized.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Weting (AREA)

Abstract

【課題】 アルミニウム合金膜をエッチングして配線回路を形成する工程を備える素子の製造方法に関し、アルミニウム合金膜へダメージを与えることを極力抑制し、信頼性の高い素子を実現可能とする製造技術を提案する。 【解決手段】 基板上に、アルミニウム合金膜を形成し、当該アルミニウム合金膜をエッチングして配線回路を形成する工程を備える、素子の製造方法において、アルミニウム合金膜を形成後、アルミニウム合金膜表面を酸化させるものとした。この時の酸化処理は、自然酸化被膜を備えた所定厚みのアルミニウム合金膜を、アルミニウム合金用エッチング液にて全厚みをエッチングした際に算出される厚さ方向のエッチング速度に対して、80%以上のエッチング速度が確保できるように酸化被膜を形成するようにする。

Description

明 細 書
素子の製造方法
技術分野
[0001] 本発明は、液晶ディスプレイなどの表示デバイスにおける素子の製造方法に関し、 特に、配線回路材料としてアルミニウム合金膜を用いた素子の製造技術に関する。 背景技術
[0002] 近年、液晶ディスプレイは、様々な電子機器の表示に使用されており、この液晶デ イスプレイを構成する表示デバイスの開発は目覚ましく進行している。この液晶ディス プレイの表示デバイスとしては、例えば薄膜トランジスター(Thin Film Transistor,以 下、 TFTと略称する)が知られており、この TFTを構成する配線材料としては、アルミ -ゥム (A1)合金が用いられて!/、る。
[0003] TFTなどの表示デバイスを製造する場合、配線又は電極を構成する電極はアルミ -ゥム合金膜により形成される力 このアルミニウム合金膜による電極 (以下、アルミ- ゥム合金層と称す)を形成する際には、従来、 ITOや IZOなどの透明電極層とアルミ -ゥム合金層との接合界面に、 Moや Crなどからなる、いわゆるコンタクトバリアー層( 或いは、キャップ層と呼ばれる)が設けられていた (例えば、非特許文献 1参照)。 非特許文献 1 :内田龍男 編著, 「次世代液晶ディスプレイ技術」,初版,株式会社 工業調査会, 1994年 11月 1日, p. 36- 38
[0004] このコンタクトバリアー層を介在させると、アルミニウム合金層と透明電極層との酸ィ匕 還元電位値の相違により生じる、電気化学的反応を抑制し、接合界面の破壊ゃコン タクト抵抗値の増加を防止できるのである。しかし、このコンタクトバリアー層を設ける 場合、表示デバイス構造が自ずと複雑になり、生産コストの増加に繋がる傾向となる。 また、最近は、コンタクトバリアー層を構成する材料の中の Crの使用を排除する巿場 動向もあり、コンタクトバリアー層の形成技術に大きな制約が生じ始めている。
[0005] そのため、最近では、コンタクトバリアー層を省略し、アルミニウム合金層と透明電極 層との直接接合が可能となる、表示デバイス構造が提案されている (例えば、特許文 献 1、特許文献 2参照) 特許文献 1:特開 2004— 214606号公報
特許文献 2:特開 2003— 89864号公報
[0006] し力しながら、これら先行技術に開示されたアルミニウム合金材料は、基本的には アルミニウムを主成分とするため、表示デバイスの製造工程で使用される薬液、例え ば、現像液、レジストの剥離液などに直接接触すると、ピンホールなどの浸食や汚染 が生じやすい。このアルミニウム合金層にピンホールなどの欠陥が生じると、素子の 電気的特性への影響、例えば、アルミニウム合金層と透明電極層とを直接接合した 際の接合特性が低下することなどが懸念される。つまり、アルミニウム合金膜を用いた 表示デバイスの素子の製造方法に関し、より有効な対策について具体的な検討を十 分にされて 、な 、のが現状である。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、以上のような事情を背景になされたものであり、アルミニウム合金膜をェ ツチングして配線回路を形成する工程を備える素子の製造方法に関し、アルミニウム 合金膜へダメージを与えることを極力抑制し、信頼性の高 ヽ素子を実現可能とする 製造技術を提案することが目的である。
課題を解決するための手段
[0008] 上記課題を解決すベぐ本発明は、基板上に、アルミニウム合金膜を形成し、当該 アルミニウム合金膜をエッチングして配線回路を形成する工程を備える、素子の製造 方法において、アルミニウム合金膜を形成後、アルミニウム合金膜表面を酸化させる ものとした。
[0009] 基板上に形成されるアルミニウム合金膜は、膜形成後、フォトリソグラフィ一により配 線回路へと加工されるのが一般的である力 その際のレジストの塗布、レジストの現 像液、レジストの剥離液などの薬液とアルミニウム合金膜とが接触する機会が生じる。 そのため、アルミニウム合金膜の表面では様々な薬液との接触により、ピンホールな どの浸食や表面汚染が生じる可能性が非常に高い。そこで、本発明では、アルミ-ゥ ム合金膜形成後、そのアルミニウム合金膜の表面を積極的に酸ィ匕処理をし、保護膜 として表面酸ィ匕被膜形成させることにしたのである。このアルミニウム合金膜の表面酸 化被膜は、主にアルミニウム酸ィ匕被膜である。このアルミゥム酸ィ匕被膜は、耐食性に 優れるため、各種の薬液に接触してもアルミニウム合金膜の浸食や汚染を抑制する ことができる。本発明の素子の製造方法では、基板上にアルミニウム合金膜を形成し た後に、酸化処理をするものとしているが、アルミニウム合金膜形成前に、基板上に その他の成膜処理、半導体層、絶縁層などが形成されてあつても構わない。要は、ァ ルミ-ゥム合金膜の形成後、アルミニウム合金膜に対して何らかの処理を行う前に、 酸ィ匕処理を行ってアルミニウム合金膜へ表面酸ィ匕被膜を形成しておけばょ 、。また、 アルミニウム合金膜の酸化処理は、いわゆるァニール処理、酸素ガスアツシング処理 などの周知の手法を採用することができる。
[0010] そして、本発明では、アルミニウム合金膜表面の酸ィ匕処理は、自然酸化被膜を備え た所定厚みのアルミニウム合金膜を、アルミニウム合金用エッチング液にて全厚みを エッチングした際に算出される厚さ方向のエッチング速度に対して、 80%以上のエツ チング速度が確保できるように酸ィ匕被膜を形成することが望まし 、。この場合にお!/ヽ て、所定の酸ィ匕処理を施したアルミニウム合金膜におけるエッチング速度の上限は、 自然酸ィ匕被膜のエッチング速度の 100%未満となるが、実質的には自然酸化被膜よ りも表面の酸ィ匕程度が進行しており、薬液との接触によってアルミニウム合金膜表面 の浸食や汚染がされない程度の酸ィ匕処理が施されておく必要がある。具体的には、 本発明者等の研究によると、 自然酸化被膜のエッチング速度の 95%以下となる酸化 処理であると、薬液によるアルミニウム合金膜表面の浸食や汚染が生じな 、傾向とな ることを確認している。
[0011] 表面酸ィ匕被膜として形成されるアルミニウム酸ィ匕被膜は耐食性に優れるものの、同 時に電気絶縁性も兼ね備えている。そのため、例えば、 ITOなどの透明電極層と直 接接合を行う場合、その接合界面にアルミニウム酸化被膜が存在するとコンタクト抵 抗の増加を引き起こし、実用的な素子を製造できないこととなる。そこで、本発明者等 は、アルミニウム合金膜の表面に形成する表面酸ィ匕被膜の構造にっ 、て検討した。 その結果、酸化処理により表面酸化被膜を形成したアルミニウム合金膜が、所定の エッチング速度であれば、素子の電気的特性に大きな影響を与えることなぐアルミ -ゥム合金膜の保護が図れることを見出した。 [0012] 自然に形成されるアルミニウム酸ィ匕被膜は、一般的に 5〜: LOnm程度の厚みを有す ることが知られている力 ァニール処理などの強制的な酸ィ匕処理により形成された表 面酸化被膜は、自然酸化被膜の厚みと比較しても、その厚みは大きく変化することな ぐアルミニウム酸ィ匕被膜自体の構造が緻密となることが知られている。即ち、表面酸 化被膜の緻密性のような構造自体を特定することが容易には行えな!/ヽため、本発明 者等はアルミニウム合金膜の厚み方向のエッチング速度に着目したのである。アルミ -ゥム合金用エッチング液により、アルミニウム合金膜をエッチングした場合、そのェ ツチングが進行する際の律速過程は、アルミニウム合金膜の表面酸ィ匕被膜をエッチ ングする時である。従って、同じ組成のアルミニウム合金膜について、厚み方向のェ ツチング速度が変化するのは、その厚みの相違を含めて表面酸化被膜自体の構造 が異なることに対応するものである。このことから、本発明におけるアルミニウム合金 膜の酸化処理は、 自然酸化被膜を備えた、所定厚みのアルミニウム合金膜をエッチ ングした際に、その厚み方向のエッチング速度を基準にして特定したのである。
[0013] より具体的には、 1000A以上の厚みのアルミニウム合金膜を基板上に形成し、何 ら処理をすることなく大気中に放置して、アルミニウム合金膜の表面に自然酸ィ匕被膜 を生成させる。この自然酸ィ匕被膜を備えたアルミニウム合金膜に対して、アルミニウム 合金用エッチング液、例えば、リン酸系混酸エッチング液 (関東ィ匕学 (株)社製:アルミ 混酸エツチャント、組成 (容量比) Zリン酸:蓚酸:酢酸:水 = 16: 1: 2: 1、液温 32°C) のようなアルミニウム合金を溶解できる溶液を用いて、アルミニウム合金膜の全厚みを エッチングして、その厚み方向におけるエッチング速度 (ここでは、基準エッチング速 度という)を算出する。そして、同厚みのアルミニウム合金膜を形成し、所定条件の酸 化処理による表面酸化被膜を形成して、同じエッチング液にてアルミニウム合金膜の 全厚みをエッチングして厚み方向のエッチング速度を求める。この所定条件の酸ィ匕 処理を行った場合のエッチング速度力 予め求めておいた基準エッチング速度の 80 %以上のエッチング速度であれば、素子の電気的特性に大きな影響を与えることなく 、アルミニウム合金膜の保護が図れる表面酸ィ匕被膜を形成できる。
[0014] 上述した本発明に係る素子の製造方法は、ニッケル、コバルト、鉄、炭素、ボロンの うち少なくとも 1種以上の元素を含有し、残部がアルミニウムであるアルミニウム合金 膜が望ましい。特に、アルミニウム合金膜が Al—Ni系合金である場合に有効である。 アルミニウムに、ニッケルを含有した Al— Ni系合金は、透明電極層との直接接合に おける接合特性に優れており、本発明の製造方法を採用することで、低コンタクト抵 抗値で、直接接合の接合状態が良好な素子を製造することが可能となる。この A1— Ni系合金のなかでも Al— Ni— B合金を採用すると、半導体層との直接接合におい ても接合特性が優れた素子の製造が可能となる。
[0015] 上記した本願発明の酸化処理は、いわゆるァニール処理や酸素ガスによるアツシ ング処理により行うことが望ましい。ァニール処理であれば、ァニール雰囲気が酸素 分圧で 20%〜 100%であることが望まし 、。ァニール温度ゃァニール処理時間は、 ァニール雰囲気の酸ィ匕能力で変動する力 S、好ましくは 150°C〜500°C未満のァニー ル温度で、 30分間から 24時間未満の処理時間である。また、アツシング処理におい ては、アツシング雰囲気の酸素濃度が 80〜100%で、処理時間は 10秒から 2分間未 満で、アツシング時の投入電力は 50〜300Wであることが望ましい。これらの酸化処 理条件範囲を外れてしまうと、適正な酸化被膜が形成されないか、あるいは、酸化程 度が進行しすぎて直接接合におけるコンタクト抵抗値が高くなる傾向となる。
図面の簡単な説明
[0016] [図 1]四端子法による抵抗値測定素子の概略図。
[図 2]200°Cァニール処理のアルミニウム合金膜表面の SEM観察写真。
[図 3]1分間酸素ガスアツシング処理のアルミニウム合金膜表面の SEM観察写真。
[図 4]未処理のアルミニウム合金膜表面の SEM観察写真。
[図 5]図 4の拡大 SEM観察写真。
発明を実施するための最良の形態
[0017] 以下、本発明に関する最良の実施形態について説明する。本実施形態では、アル ミニゥム合金膜として A1— 0. 4at%B- 5. Oat%Niの Al— Ni系合金を、また、透明 電極層として ITO (組成 In O - 10wt%SnO )を用いた。
2 3 2
[0018] まず、初めに、酸ィ匕処理とエッチング速度との関係を調べた結果について説明する 。アルミニウム合金膜の成膜は、ガラス基板上に、上記組成の A1合金ターゲットを用 い、スパッタリング条件、投入電力 3. OWatt/cm2,アルゴンガス流量 100ccm、ァ ルゴン圧力 0. 5Paとしてマグネトロン'スパッタリング装置(トツキネ土製:マルチチャン バータイプスパッタ装置 MSL464)を用い、厚み 2000 Aのアルミニウム合金膜を形 成した。
[0019] そして、このアルミニウム合金膜の各条件の酸ィ匕処理を行った。酸化処理条件とし ては、大気雰囲気中 100°C〜300°Cのァニール処理(30分間)、及び酸素ガスアツ シング処理(酸素ガス流量 50ccm、圧力 10Pa、投入電力 100Watt、室温:処理時 間 1〜3分間)を行ったサンプルを形成した。
[0020] この酸化処理した各サンプルに対し、レジスト(OFPR800:東京応化工業 (株))を 被覆し、 20 m幅回路形成用パターンフィルムを配置して露光処理をし、濃度 2. 38 %、液温 23。Cのテトラメチルアンモ-ゥムノ、イド口オキサイドを含むアルカリ現像液 ( 以下、 TMAH現像液と略す)で現像処理をした。現像処理後、リン酸系混酸エッチ ング液 (関東化学 (株)社製::アルミ混酸エツチャント、組成 (容量比) Zリン酸:蓚酸: 酢酸:水 = 16 : 1 : 2 : 1、液温 32°C)により回路形成を行い、 DMSO (ジメチルスルフ ォキシドの略、以下 DMSOとする)剥離液によりレジストの除去を行って、 20 /z m幅 回路を形成した。
[0021] このような回路形成を行ったサンプルを、上記リン酸系混酸エッチング液により回路 全てをエッチング処理することで、そのエッチング速度を測定した。表 1にリン酸系混 酸エッチング液の結果を示す。尚、アルミニウム合金膜形成後、そのまま大気雰囲気 に室温で 60分間程度放置しただけの、自然酸化被膜形成のサンプル (未処理)に関 しても同様なエッチング処理を行 、、そのエッチング速度を測定した。
[0022] [表 1]
Figure imgf000008_0001
(エッチンク '速度: AZ秒) 表 1に示すように、エッチング速度は同一酸化処理条件で、 2つのサンプルについ て行った。また、表中には、未処理の自然酸化被膜形成サンプルにおける平均エツ チング速度に対する、各酸ィ匕処理条件における平均エッチング速度の割合を百分率 で示している。表 1の結果より、酸素ガスアツシングを 2分間以上行うと、自然酸化被 膜の場合よりも 80%未満のエッチング速度になることが判明した。
[0024] 次に、透明電極層との直接接合を行う場合において、各酸ィ匕処理とそのコンタクト 抵抗値にっ 、て調査した結果にっ 、て説明する。このコンタクト抵抗値を測定した評 価サンプルの作製は次のようにして行った。
[0025] まず、ガラス基板上に、上記組成の A1合金ターゲットを用い、上述したスパッタリン グ条件と同じにして、厚み 2000Aのアルミニウム合金膜を形成した。そして、上記し た各酸化処理を行った後、上述した回路形成条件により、アルミニウム合金膜からな る 20 m幅回路を形成した。
[0026] 次に、 20 μ m幅回路を形成した基板を、純水洗浄、乾燥処理を行! ヽ、その表面に SiNxの絶縁層(厚み 4200 A)を形成した。この絶縁層の成膜は、スパッタリング装 置を用い、投入電力 RF3. OWatt/cm2,アルゴンガス流量 90ccm、窒素ガス流量 10ccm、圧力 0. 5Pa、基板温度 300°Cのスパッタ条件により行った。
[0027] 続いて、絶縁層表面にポジ型レジスト (東京応化工業 (株)社製: TFR— 970)を被 覆し、 10 mX 10 m角のコンタクトホール開口用パターンフィルムを配置して露光 処理をし、 TMAH現像液により現像処理をした。そして、 CFのドライエッチングガス
4
を用いて、コンタクトホールを形成した。コンタクトホール形成条件は、 CFガスの場
4 合、 CFガス流量 50ccm、酸素ガス流量 5ccm、圧力 4. OPa、出力 150Wとした。コ
4
ンタクトホール形成後、以下に示すレジスト剥離液 DMSOによりレジストの剥離を行 つた。レジストの剥離処理を行った各評価サンプルは、残存する剥離液を純水洗浄し た後、乾燥処理を行った。
[0028] 続!、て、このレジストの剥離処理が終了した各サンプルに対し、 ITOターゲット(組 成 In O - 10wt%SnO )を用いて、コンタクトホール内及びその周囲に ITOの透明
2 3 2
電極層を形成した。透明電極層の形成は、スパッタリング (基板温度 70°C、投入電力 1. 8WattZcm2、アルゴンガス流量 80ccm、酸素ガス流量 0. 7ccm、圧力 0. 37Pa )を行い、透明電極層となる厚み 1000 Aの ITO膜を形成した。
[0029] そして、この ITO膜表面にレジスト (OFPR800 :東京応化工業 (株)社製)を被覆し 、パターンフィルムを配置して露光処理をし、濃度 2. 38%、液温 23°Cの TMAH現 像液で現像処理をし、しゅう酸系混酸エッチング液(関東ィ匕学 (株)社製 ITO05N)に より 20 m幅回路の形成を行った。 ITO膜回路形成後、剥離液 (DMSO100wt%) によりレジストを除去した。
[0030] 以上のような手順により、コンタクトホールを形成し、コンタクトホールを介してアルミ -ゥム合金膜からなる回路と透明電極層とが直接接合された評価サンプルについて 、そのコンタクト抵抗値を測定した。その測定結果を表 2に示す。このコンタクト抵抗値 の測定法は、図 1に示すような四端子法に基づき、評価サンプルである素子を大気 中、 250°C、 30分間のァニール処理後、各評価サンプルの抵抗値測定を行った。尚 、この図 1に示す四端子法は、熱処理後の評価サンプルの端子部分から連続通電( 3mA)をして、その抵抗を測定するものである。
[0031] [表 2]
Figure imgf000010_0001
( Ω )
[0032] 表 2の結果より、コンタクト抵抗値が 200 Ω以下とするためには、 100°C〜300°Cの ァニール処理、 1. 5分間以下の酸素ガスアツシング処理によって表面酸化被膜を形 成した場合であることが判明した。
[0033] 表 1のエッチング速度の測定結果及び表 2のコンタクト抵抗値の結果より、自然酸化 被膜のエッチング速度の 80%以上のエッチング処理が可能であった酸ィ匕処理(100 °C〜300°Cァニール処理、酸素ガスアツシング 1分間或いは 1. 5分間)であれば、 IT O膜と直接接合した場合のコンタ外抵抗値を低くできることが判明した。
[0034] 続!、て、上記したコンタクトホール形成にぉ 、て、 ITO膜形成前のコンタクトホール 内のアルミニウム合金膜表面を観察した結果について説明する。図 2〜図 5に、アル ミニゥム合金膜表面の SEM観察写真示す。図 2が 200°Cァニール処理の場合、図 3 力 S 1分間酸素ガスアツシングの場合、図 4は未処理(自然酸化)の場合を示して!/ヽる( 倍率 5万倍)。
[0035] 図 5には、図 4の拡大 SEM観察写真 (倍率 20万倍)を示しているが、自然酸化被 膜の場合におけるアルミニウム合金膜表面には、多数の小さなピンホールが形成さ れていることが確認された。一方、図 2及び図 3に示す酸化処理の場合では、アルミ -ゥム合金膜表面には、ピンホールなどの浸食は認められな力つた。以上のことより、 未処理(自然酸化)の場合では、コンタクト抵抗は低くなるものの、ピンホールの存在 力 直接接合の信頼性は良好ではないものと考えられ、これに対し、本願発明の酸 化処理を行う場合であれば、実用的なコンタ外抵抗値を満足するとともに、信頼性 の高 、直接接合構造を実現できることが判明した。
[0036] さらに、 SEM観察写真は省略するが、 100°Cのァニール処理の場合におけるアル ミニゥム合金膜表面には、非常に個数は少ないものの、小さなピンホールが形成され て!、ることが確認された。 100°Cのァニール処理程度よりも酸ィ匕処理が進行して!/、な い場合、ピンホールなどの浸食が発生する可能性があり、直接接合の信頼性の点で 今ひとつ不十分と考えられる。以上のことから、表面酸化被膜の形成条件としては、 自然酸ィ匕被膜のエッチング速度の 80%〜95%となるような酸ィ匕処理を行うことが実 用上好適な素子の形成が可能となると判断された。
産業上の利用可能性
[0037] 以上のように、本発明によれば、アルミニウム合金膜へダメージを与えることなぐ信 頼性の高い素子を製造可能となる。また、アルミニウム合金膜を透明電極層や半導 体層と直接接合させる場合であっても、本発明によればコンタクト抵抗値の低い素子 を製造可能となる。

Claims

請求の範囲
[1] 基板上に、アルミニウム合金膜を形成し、当該アルミニウム合金膜をエッチングして配 線回路を形成する工程を備える、素子の製造方法において、
アルミニウム合金膜を形成後、アルミニウム合金膜表面を酸化させることを特徴とす る素子の製造方法。
[2] 前記アルミニウム合金膜により形成される配線回路は、透明電極層および Zまたは 半導体層と直接接合される部分を有する請求項 1に記載の素子の製造方法。
[3] アルミニウム合金膜表面の酸ィ匕処理は、
自然酸ィ匕被膜を備えた所定厚みのアルミニウム合金膜を、アルミニウム合金用エツ チング液にて全厚みをエッチングした際に算出される厚さ方向のエッチング速度に 対して、
80%以上のエッチング速度が確保できるように酸ィ匕被膜を形成するようにした請求 項 1または請求項 2に記載の素子の製造方法。
[4] 前記アルミニウム合金用エッチング液は、容量比でリン酸:蓚酸:酢酸:水 = 16 : 1 : 2 : 1の組成であり、エッチング時の液温が 32°Cである請求項 3に記載の素子の製造方 法。
[5] 前記アルミニウム合金膜は、ニッケル、コバルト、鉄、炭素、ボロンのうち少なくとも 1種 以上の元素を含有し、残部がアルミニウムである請求項 1〜請求項 4いずれかに記載 の素子の製造方法。
[6] 前記酸化処理は、ァニール処理または酸素ガスによるアツシング処理である請求項 1 〜請求項 5いずれかに記載の素子の製造方法。
PCT/JP2006/320450 2005-10-14 2006-10-13 素子の製造方法 WO2007043645A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005299666A JP2007109916A (ja) 2005-10-14 2005-10-14 素子の製造方法
JP2005-299666 2005-10-14

Publications (1)

Publication Number Publication Date
WO2007043645A1 true WO2007043645A1 (ja) 2007-04-19

Family

ID=37942866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320450 WO2007043645A1 (ja) 2005-10-14 2006-10-13 素子の製造方法

Country Status (5)

Country Link
JP (1) JP2007109916A (ja)
KR (1) KR20080063339A (ja)
CN (1) CN101283443A (ja)
TW (1) TWI371082B (ja)
WO (1) WO2007043645A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091352A (ja) * 2009-09-28 2011-05-06 Kobe Steel Ltd 薄膜トランジスタ基板およびその製造方法並びに表示装置
CN102034832A (zh) * 2009-09-28 2011-04-27 株式会社神户制钢所 薄膜晶体管基板及其制造方法以及显示装置
CN110993694B (zh) * 2019-10-22 2023-08-25 清华大学 自氧化方式制备亚10nm沟道的二维薄膜场效应晶体管

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102151A (ja) * 1991-10-07 1993-04-23 Fujitsu Ltd 半導体装置の製造方法
JPH0618912A (ja) * 1992-07-03 1994-01-28 Fujitsu Ltd 液晶表示装置及びその製造方法
JPH06148658A (ja) * 1992-11-02 1994-05-27 Sharp Corp 配線構造
JPH07169966A (ja) * 1993-12-16 1995-07-04 Sharp Corp 電子部品及びその製造方法
JPH11284195A (ja) * 1998-03-31 1999-10-15 Mitsubishi Electric Corp 薄膜トランジスタおよび該薄膜トランジスタを用いた液晶表示装置
JP2001023990A (ja) * 1999-07-07 2001-01-26 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2003273109A (ja) * 2002-03-14 2003-09-26 Advanced Display Inc Al配線用薄膜及びその製造方法並びにこれを用いた液晶表示装置
JP2004214606A (ja) * 2002-12-19 2004-07-29 Kobe Steel Ltd 表示デバイスおよびその製法、ならびにスパッタリングターゲット
JP2005062802A (ja) * 2003-07-28 2005-03-10 Advanced Display Inc 薄膜トランジスタアレイ基板の製法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102151A (ja) * 1991-10-07 1993-04-23 Fujitsu Ltd 半導体装置の製造方法
JPH0618912A (ja) * 1992-07-03 1994-01-28 Fujitsu Ltd 液晶表示装置及びその製造方法
JPH06148658A (ja) * 1992-11-02 1994-05-27 Sharp Corp 配線構造
JPH07169966A (ja) * 1993-12-16 1995-07-04 Sharp Corp 電子部品及びその製造方法
JPH11284195A (ja) * 1998-03-31 1999-10-15 Mitsubishi Electric Corp 薄膜トランジスタおよび該薄膜トランジスタを用いた液晶表示装置
JP2001023990A (ja) * 1999-07-07 2001-01-26 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2003273109A (ja) * 2002-03-14 2003-09-26 Advanced Display Inc Al配線用薄膜及びその製造方法並びにこれを用いた液晶表示装置
JP2004214606A (ja) * 2002-12-19 2004-07-29 Kobe Steel Ltd 表示デバイスおよびその製法、ならびにスパッタリングターゲット
JP2005062802A (ja) * 2003-07-28 2005-03-10 Advanced Display Inc 薄膜トランジスタアレイ基板の製法

Also Published As

Publication number Publication date
CN101283443A (zh) 2008-10-08
TWI371082B (en) 2012-08-21
TW200725805A (en) 2007-07-01
KR20080063339A (ko) 2008-07-03
JP2007109916A (ja) 2007-04-26

Similar Documents

Publication Publication Date Title
US10395928B2 (en) Depositing a passivation layer on a graphene sheet
JP3916334B2 (ja) 薄膜トランジスタ
JP4247772B2 (ja) 配線とこれを用いた薄膜トランジスタ基板およびその製造方法と液晶表示装置
TWI249070B (en) Electronic device, method of manufacture of the same, and sputtering target
WO2006117954A1 (ja) Al-Ni-B合金配線材料及びそれを用いた素子構造
JP3979605B2 (ja) Al−Ni−B合金配線材料及びそれを用いた素子構造
WO2007043645A1 (ja) 素子の製造方法
WO2008047667A1 (en) Multilayer film for wiring and wiring circuit
JP4180102B2 (ja) 反射膜用Al−Ni−B合金材料
JP4160110B2 (ja) 表示デバイスの素子構造及びその製造方法
JP2006310814A (ja) 薄膜配線層
CN106920753A (zh) 薄膜晶体管及其制作方法、阵列基板和显示器
JP2007189120A (ja) Tft基板及びその製造方法
JP4657882B2 (ja) 表示デバイスの素子構造
JP2009043797A (ja) 薄膜トランジスター
CN106887468A (zh) 薄膜晶体管、阵列基板及其制造方法和显示面板
JP2005079130A (ja) 薄膜配線層
TWI326309B (en) A1-ni-b alloy wiring material and device structure using the same
JP2009088381A (ja) 半導体装置およびその製造方法
JP2007258553A (ja) 表示デバイスの製造方法
JP2012032521A (ja) 耐透明導電膜ピンホール腐食性に優れた薄膜トランジスタ基板
JP4284315B2 (ja) センサー用電極およびその製造方法
JP3055289B2 (ja) 透明電極材料の劣化防止方法
JPH0818061A (ja) 電子素子及びその製造方法
JP2011216782A (ja) 耐itoピンホール腐食性に優れた薄膜トランジスタ基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037806.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009478

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06821853

Country of ref document: EP

Kind code of ref document: A1