WO2007043280A1 - 放射線遮蔽ガラス - Google Patents

放射線遮蔽ガラス Download PDF

Info

Publication number
WO2007043280A1
WO2007043280A1 PCT/JP2006/318264 JP2006318264W WO2007043280A1 WO 2007043280 A1 WO2007043280 A1 WO 2007043280A1 JP 2006318264 W JP2006318264 W JP 2006318264W WO 2007043280 A1 WO2007043280 A1 WO 2007043280A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
twenty
radiation shielding
component
shielding glass
Prior art date
Application number
PCT/JP2006/318264
Other languages
English (en)
French (fr)
Inventor
Jie Fu
Original Assignee
Ohara Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc. filed Critical Ohara Inc.
Priority to JP2007539838A priority Critical patent/JPWO2007043280A1/ja
Publication of WO2007043280A1 publication Critical patent/WO2007043280A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/087Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for X-rays absorbing glass
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/06Ceramics; Glasses; Refractories

Definitions

  • the present invention relates to radiation shielding glass, and more particularly to radiation shielding glass containing bismuth oxide.
  • Radiation shielding glass is used in facilities that handle radiation such as X-rays and ⁇ -rays! In order to facilitate work and to protect people engaged in work from radiation. Such glass is required to have high transparency in the visible range and excellent shielding ability (absorption ability) against radiation. Since the shielding ability is proportional to the mass absorption coefficient and density of glass, lead glass has been used for a long time.
  • radiation shielding glass containing a large amount of the lead component needs to take measures for environmental measures when it is manufactured, processed, and disposed of. Had the problem of becoming higher.
  • radiation shielding glass containing a large amount of lead components generates “scratches” on the glass surface after the surface has been cleaned in order to remove dirt on the glass surface. It has also become a problem that the performance is significantly reduced.
  • the surface hardness is low, in the processing steps such as polishing and cutting, the surface may be scratched or the glass may be cracked due to the scratch.
  • Patent Document 1 listed below is a SiO—BaO glass having essentially no lead component and having a density of 3 . 01
  • Patent Document 2 essentially contains no lead component, contains SiO and Al 2 O, and is suitable for lOOkV X-rays.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-127973
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-315489
  • Patent Documents 1 and 2 since the radiation shielding glass of Patent Documents 1 and 2 has a lower shielding ability than lead glass, it cannot be completely replaced with lead glass, and mainly receives radiation with low energy. The use is limited to the place to handle!
  • the present invention has been made in view of the above problems, and does not contain a lead component.
  • Radiation shielding gas having a shielding ability equal to or higher than that of lead glass.
  • the present inventors have found that it has a high density, high transparency, and excellent radiation shielding ability, and has completed the present invention. More specifically, the present invention provides the following.
  • Radiation shielding glass that is more than 05mmPbZmm.
  • the density of the glass can be increased, it has a high radiation shielding ability. Also 15
  • the lead equivalent of OkV to X-rays is 0.05 mmPbZmm or more, it can be suitably used even when handling high-energy radiation.
  • the density is 3.5 gZcm 3 or more, high shielding ability is provided.
  • the transmittance at a wavelength of 550 nm is 70% or more, it is possible to provide a radiation shielding glass that easily observes the inside with a high light transmittance.
  • the SiO content is 50% or less, the radiation shielding ability is stably provided.
  • High-power glass can be provided.
  • SiO and B 2 O are glass-forming oxides and are contained within the above range.
  • RnO is 5-60% (R is one selected from the group consisting of Zn, Ba, Sr, Ca, Mg)
  • Rn represents one or more selected from the group consisting of Li, Na, K, and Cs. ), Sb
  • Each component is contained in the total amount of O and As O in the range of 0-5% (1) to (5)
  • the GeO and PO components are used as glass-forming oxides, B2O and Si
  • BaO and SrO are components that can improve the meltability of the glass, and are excellent in the effect of enhancing the radiation shielding ability, and provide a glass having a high radiation shielding ability. can do.
  • Ce 2 O is a component that contributes to improving the radiation shielding ability
  • the radiation shielding glass having transparency to the glass can be provided even when used for a long period of time.
  • the Al 2 O, Ga 2 O, and In 2 O components contain glass meltability and chemical durability.
  • TiO improves the chemical durability of the glass and the surface hardness of the glass.
  • the LnO component has the shielding ability, the chemical durability of the glass, and the glass
  • mole 0/0 can provide an excellent radiation shielding glass, TeO, ZrO, SnO, Nb O, Ta O, 1 kind of WO Or 2 or more
  • the above components are effective in improving the radiation shielding ability, the chemical durability of the glass and the surface hardness of the glass. Therefore, the glass containing the above components is suitable as a radiation shielding glass. Used for.
  • BO 0-70% and Z or GeO: 0-30%
  • Ga O 0-20%, and / or
  • BaO 0-50%, and Z or TiO: 0-15%
  • Nb O 0-20%, and / or
  • Ta O 0-15%, and / or
  • ZnO 0-50%, and Z or MgO: 0-50%, and Z or CaO: 0-50%, and Z or SrO: 0-50%, and Z or Li O: 0-15%
  • La O 0-50%, and / or
  • Gd O 0-50%, and / or
  • Lu O 0-50%, and Z or
  • Bi O 0.5-80% and / or
  • Ga O 0-20%, and Z or
  • BaO 0-50%, and Z or TiO: 0-15%
  • ZnO 0-50%, and Z or MgO: 0-50%, and Z or CaO: 0-50%, and Z or SrO: 0-50%, and Z or LiO: 0-30%, and Z Or
  • a radiation shielding glass having radiation shielding ability equivalent to or higher than that of a glass containing a lead component can be produced.
  • the radiation shielding glass of the present invention contains Bi 2 O as a glass component. Therefore, Gala
  • Radiation density that is equivalent to or higher than that of glass that contains lead components even if it does not contain lead components, because the lead density can be increased and the lead equivalent can be increased. Glass can be provided.
  • FIG. 1 is a diagram showing a spectral transmittance curve in a glass having a thickness of 10 mm in Examples 1 to 3. DESCRIPTION OF EMBODIMENTS
  • each component constituting the optical glass of the present invention is described below.
  • the content of each component is described in mol% unless otherwise specified.
  • all glass compositions represented by mol% or mass% are represented by mol% or mass% on the basis of oxides.
  • the “acidic acid standard” means that oxides, nitrates, etc. used as raw materials for the glass constituents of the present invention are all melted. Assuming that the total number of moles of the product oxide is 100 mol% or the sum of the mass of the product oxide is 100 mass%, it is contained in the glass. It is a composition that describes each component.
  • Bi O component improves the stability of the glass, especially increases the density of the glass and increases the glass
  • the amount of BiO is preferably 0.5%, more preferably
  • the lower limit is 3%, most preferably 5%
  • the upper limit is preferably 80%, more preferably 70%, and most preferably 60%.
  • the B 2 O and SiO components are glass-forming oxides, and are at least required to obtain a stable glass.
  • the lower limit of the total content of these components is preferably 3%, more preferably 15%, and most preferably 20%. Also, if the content of these components is too high, the radiation shielding ability may decrease. Therefore, in order to obtain a high radiation shielding capability, it is most preferable to set the upper limit of the content to 70%, preferably 65%, and more preferably 60%.
  • This B 2 O and SiO component achieves the object of the present invention even when it is introduced into the glass alone.
  • the simultaneous use increases the meltability, stability and chemical durability of the glass, and also improves the transparency in the visible range.
  • the ratio of B 2 O 3 / SiO is set to 0.1 to 1
  • the GeO component functions in the same manner as the SiO component, a part or all of the SiO component is placed.
  • the upper limit value is preferably 30% or less, more preferably 20% or less, and most preferably 15% or less.
  • the Po component can be added and contained in the glass composition.
  • Al O, Ga O, and In O components are the glass meltability, chemical durability, and glass surface.
  • SiO is contained at a content of 70% or less.
  • the total amount of one or more of Al 2 O, Ga 2 O and In 2 O is 2
  • the SiO component is 0% or less, more preferably 10% or less, and even more preferably 5% or less. Further, it is most preferably less than 5% by mass.
  • the SiO component is 0% or less, more preferably 10% or less, and even more preferably 5% or less. Further, it is most preferably less than 5% by mass.
  • the SiO component is 0% or less, more preferably 10% or less, and even more preferably 5% or less. Further, it is most preferably less than 5% by mass.
  • the content of SiO is preferred.
  • the TiO component is a component effective in improving the chemical durability and surface hardness of glass.
  • Power a component that can be added arbitrarily. If the amount is too large, the stability of the glass tends to be low. Therefore, 15% or less is preferable, 10% or less is more preferable, and 5% or less is more preferable.
  • the NbO component is a component that is effective in improving the shielding ability and chemical durability of glass.
  • Power a component that can be added arbitrarily. If the amount is too large, the stability of the glass tends to be low. Accordingly, 20% or less is preferable, 15% or less is more preferable, and 8% or less is more preferable.
  • the WO component is a component that is effective in improving the glass shielding ability and chemical durability.
  • Ta O component is a component effective in improving the shielding ability and chemical durability of glass.
  • the TeO component can be used to melt glass melt with an appropriate amount of additive.
  • the ZrO component is a component that is effective in improving the shielding ability and chemical durability of glass.
  • the SnO component is an optional component effective in improving the shielding ability of the glass.
  • the upper limit is set to 15%, more preferably 10%, and more preferably 5%.
  • TeO, ZrO, SnO, NbO, TaO, and WO is used.
  • the upper limit of the total amount of two or more types is preferably 20%, more preferably 10%, and most preferably 5%.
  • the RO component (R represents one or more selected from the group consisting of Zn, Ba, Sr, Ca, and Mg) is a component that is effective in improving the meltability and stability of the glass. If the amount is too large, the stability of the glass tends to be lowered. Therefore, the upper limit of the total amount is preferably 60%, more preferably 50%, and most preferably 40%.
  • the RO component, particularly the BaO component and the SrO component has a significant effect on improving the radiation shielding ability, which is the object of the present invention, in addition to the above-mentioned effects. Is desirable.
  • the total amount of BaO and SrO components is preferably at least Sl%, more preferably at least 3%, more preferably at least 5%.
  • the ZnO component is an effective component for improving the meltability of the glass and the stability of the glass. However, if the amount is too large, devitrification is likely to occur. Therefore, the upper limit is preferably 50%, more preferably 45%, and most preferably 35%.
  • the CaO component is an effective component for improving the meltability of the glass. If there is too much, devitrification tends to occur. Therefore, it is preferable to set the upper limit to 50%.
  • the BaO component is a component that increases the density of the glass, and is an effective component for improving the devitrification and coloring of the glass. If the amount is too large, the stability of the glass decreases. There is a tendency. Therefore, the upper limit is preferably 50%, more preferably 45%.
  • the MgO component is an effective component for improving the meltability of the glass. If the amount thereof is too large, devitrification tends to occur. Therefore, it is preferable to set the upper limit to 50%.
  • the SrO component is a component for increasing the density of the glass and is an effective component for improving the devitrification property of the glass. However, if the amount is too large, devitrification is likely to occur. . Therefore, if the amount is too large, devitrification is likely to occur. . Therefore, if the amount is too large, devitrification is likely to occur. . Therefore, if the amount is too large, devitrification is likely to occur. . Therefore
  • the upper limit is preferably 50%, more preferably 45%, and most preferably 35%.
  • Rn O component (Rn represents one or more selected from the group consisting of Li, Na, K, and Cs)
  • This component is effective in improving the meltability and stability of the lath and is also effective in preventing coloring due to irradiation. However, if the amount is too large, the radiation shielding ability is lowered and the chemical durability is also lowered. Accordingly, it is most preferable to set the upper limit of the total amount to 40%, preferably 35%, and more preferably 25%. Two or more Rn O components
  • the Li O component is an effective component for improving the meltability and stability of glass.
  • the upper limit is set to 30%, preferably 15%, and more preferably 5%.
  • the Na O component is effective in improving the meltability and stability of the glass.
  • the upper limit is preferably 30%, more preferably 15%, and most preferably 5%.
  • the K 2 O component is effective in improving the meltability and stability of the glass.
  • Devitrification is likely to occur and the radiation shielding ability is also reduced.
  • the upper limit of KO content is 20 15% is preferred 15% is more preferred 10% is most preferred
  • the lower limit of the total amount of RO component and Rn O component is set to 5%. Less than
  • the upper limit is preferably 10% or more, and more preferably 20% or more.
  • the upper limit is preferably 60%, more preferably 55% or less, and most preferably 50% or less.
  • Ln O component (Ln is selected from the group consisting of Y, La, Eu, Gd, Tb, Dy, Yb, Lu 1
  • the upper limit of the total amount of the Ln O component is set to 50%, preferably 40%.
  • the O and Lu O components are effective for improving the transparency of the glass.
  • the Ce O component is a component that has an effect of preventing coloring due to irradiation of radiation.
  • the upper limit is preferably 15% or less, more preferably 3% or less, and most preferably 1% or less.
  • the SbO and AsO components can be optionally added for defoaming the glass melt.
  • the total amount of Sb 2 O and As 2 O is sufficiently effective at 5% or less.
  • the upper limit is set to 5% for the total amount of Sb 2 O and As 2 O 3
  • the F component is effective in improving the meltability and stability of the glass, but if the amount is too large, the stability of the glass is significantly reduced. Therefore, it is most preferable to set the upper limit to 10%, preferably 5%, and more preferably 3%. More preferably not. ⁇ Ingredients that should not be contained>
  • the radiation shielding glass of the present invention is substantially free of U.
  • Pb, Th, Cd, Tl, and Os components have tended to be refrained from being used as harmful chemicals in recent years, leading to not only the glass manufacturing process but also the processing process and disposal after commercialization. Until then, environmental measures are required. Therefore, it is preferable that the environmental impact is not included if it is important.
  • each component is preferably contained in the following range in terms of mol%.
  • BaO 0-50%, and Z or
  • ZnO 0-50%
  • Z or MgO 0-50%
  • Z or MgO 0-50%
  • Lu O 0-50%, and Z or
  • the radiation shielding glass of the present invention a glass having a wavelength of 50 nm or less, which is a wavelength at which the transmittance of a glass having high transparency in the visible region becomes 80%, can be obtained. More favorable
  • the 80 80 range is 525 nm or less, more preferably 500 nm or less.
  • the radiation shielding glass of the present invention can be obtained with a density of 3.5 gZcm 3 or more.
  • a more preferable density range is 4. OgZcm 3 or more, and more preferably 4.2 gZcm 3 or more.
  • the radiation shielding ability is expressed in terms of lead equivalent.
  • the lead equivalent is expressed by the thickness of the lead plate, such as the X-ray shielding ability, which means that the higher this value, the better the radiation shielding ability.
  • the lead equivalent for 150 kV X-rays was determined by converting the lead equivalent measured by a method according to JIS4501 to a thickness of 1 mm.
  • the lead equivalent of the glass of the present invention is preferably 0.05 mmPb / mm or more, more preferably 0.1 mmPb / mm or more, and preferably 0.15 mmPbZmm or more.
  • the radiation shielding glass of the present invention is not particularly limited as long as it is a method for producing ordinary glass, but for example, it can be produced by the following method. Weigh out a predetermined amount of each starting material (oxide, carbonate, nitrate, phosphate, sulfate, fluoride salt, etc.) and mix uniformly. The mixed raw material is put into a quartz crucible or alumina crucible. After rough melting, it is put into a gold crucible, a white gold crucible, a platinum alloy crucible or an iridium crucible, and melted at 850 to 1350 ° C for 1 to 10 hours. . Then, after stirring and homogenizing, the temperature is lowered to an appropriate temperature and placed in a mold or the like to produce glass.
  • each starting material oxide, carbonate, nitrate, phosphate, sulfate, fluoride salt, etc.
  • the mixed raw material is put into a quartz crucible or alumina crucible.
  • Composition Examples 1 shown in Table 1 11 (in mole 0/0), a raw material was weighed in a total amount of force OOg ⁇ Konaru so, were uniformly mixed. Use a quartz crucible and a platinum crucible to melt at 850-1100 ° C for 2-3 hours, then lower to 700-900 ° C, and keep it warm for about 1 hour, then pour into a mold to make glass did. Further, Comparative Example 1 was also produced in the same manner as in the above example.
  • the glasses of Examples 1 to 11 of the present invention have radiation shielding ability equivalent to or higher than that of lead glass having a higher lead equivalent than the glass of Comparative Example 1 containing a lead component. .
  • Fig. 1 shows a spectral transmittance curve in the glass of Examples 1 to 3 having a thickness of 10mm.
  • the horizontal axis represents wavelength (nm) and the vertical axis represents spectral transmittance (%). These transmittances include reflection loss.
  • all the glasses have high transparency in the visible range, and it is obvious that the wavelength of 80% transmittance is 550 nm or less.

Abstract

 鉛成分を含有しないBi2O3系ガラスにおいて、鉛ガラスと同等又はそれ以上の遮蔽能力を有する放射線遮蔽ガラスを提供すること。  モル%で、Bi2O3を0.5~80%含有し、150kVのX線に対する鉛当量が0.05mmPb/mm以上である放射線遮蔽ガラスである。また、SiO2の含有量を70%以下とし、SiO2とB2O3の合計量を3~70%含有させることで、より安定で、放射線遮蔽能力の高いガラスを得ることができる。

Description

明 細 書
放射線遮蔽ガラス
技術分野
[0001] 本発明は、放射線遮蔽ガラスに関し、更に詳しくは、酸化ビスマスを含有する放射 線遮蔽ガラスに関する。
背景技術
[0002] X線、 γ線等の放射線を取り扱う施設にお!、て、仕事をしやすくするため、及び業 務に携わる人々を放射線から守るために、放射線遮蔽ガラスが使用されている。この ようなガラスとしては、可視域に高い透明性と、放射線に対して優れた遮蔽能力(吸 収能力)が要求される。遮蔽能力はガラスの質量吸収係数と密度に比例するので、 昔から密度の大き 、鉛ガラスが使われて 、る。
[0003] しかし、鉛成分は有害物質であるため、鉛成分を多量に含む放射線遮蔽ガラスは、 その製造、加工、及び廃棄をする際に環境対策上の措置を講ずる必要があるため、 コストが高くなるという問題を有していた。また、鉛成分を多量に含む放射線遮蔽ガラ スは、ガラス表面の汚れを落とすために、表面をクリーニングした後、ガラス表面に「 ャケ」が発生し、この「ャケ」により、ガラスの透明性が著しく低下することも問題となつ ていた。
[0004] また、表面硬度が低いため、研磨や切断等の加工工程において、表面にキズがつ きやすぐキズを原因としてガラスが割れることがあった。
[0005] 従って、鉛成分を含まない放射線遮蔽ガラスが開発されており、下記の特許文献 1 には、本質的に鉛成分を含有せず、 SiO—BaO系のガラスであって、密度が 3. 01
2
gZcm3以上である放射線遮蔽ガラスが開示されている。また、下記の特許文献 2に は、本質的には、鉛成分を含有せず、 SiOと Al Oを含有し、 lOOkVの X線に対す
2 2 3
る鉛当量が、 0. 03mmPb/mm以上である放射線遮蔽ガラスが開示されている。 特許文献 1:特開平 6— 127973号公報
特許文献 2:特開 2003— 315489号公報
発明の開示 発明が解決しょうとする課題
[0006] しカゝしながら、特許文献 1、 2の放射線遮蔽ガラスは、遮蔽能力が鉛ガラスに比べて 低いため、完全に鉛ガラスとの代替はできず、主にエネルギーの低い放射線を取り 扱う場所に使用が限定されて!、た。
[0007] 本発明は以上のような課題に鑑みてなされたものであり、鉛成分を含有しない Bi O
2 系ガラスにおいて、鉛ガラスと同等又はそれ以上の遮蔽能力を有する放射線遮蔽ガ
3
ラスを提供する。
課題を解決するための手段
[0008] 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、 Bi O系ガラスは、
2 3
鉛ガラスと同様に、高い密度を有し、高い透明性と優れた放射線遮蔽能力を有する ことを見出し、本発明を完成するに至った。より具体的には、本発明は以下のようなも のを提供する。
[0009] (1) モル0 /0で、 Bi Oを 0. 5〜80%含有し、 150kVの X線に対する鉛当量は 0.
2 3
05mmPbZmm以上である放射線遮蔽ガラス。
[0010] X線等のような高工ネルギ一の放射線に対する遮蔽能力は、密度に比例することが 知られている。本発明の放射線遮蔽ガラスによれば、 Bi Oを含有させることにより、
2 3
ガラスの密度を大きくすることができるため、高い放射線遮蔽能力を有する。また、 15
OkVの X線に対する鉛当量が 0. 05mmPbZmm以上であるため、高エネルギーの 放射線を取り扱う場合においても、好適に用いることができる。
[0011] (2) 密度が 3. 5gZcm3以上である(1)記載の放射線遮蔽ガラス。
[0012] この態様によれば、密度が 3. 5gZcm3以上であるため、高い遮蔽能力を有する。
[0013] (3) 厚みが 10mmの前記放射線遮蔽ガラスにおいて、 550nmの波長における透 過率が 70%以上である(1)又は(2)記載の放射線遮蔽ガラス。
[0014] この態様によれば、 550nmの波長における透過率が 70%以上であるため、光透 過率がよぐ内部の観察をしやすい放射線遮蔽ガラスを提供することができる。
[0015] (4) モル%で、 SiOの含有量が 70%以下である(1)から(3)いずれか記載の放
2
射線遮蔽ガラス。
[0016] この態様によれば、 SiOの含有量が 50%以下であるため、安定して放射線遮蔽能 力の高いガラスを提供することができる。
[0017] (5) モル%で、 SiOと B Oの含有量の合計が 3〜70%である(1)から(4)いずれ
2 2 3
か記載の放射線遮蔽ガラス。
[0018] この態様によれば、 SiOと B Oは、ガラス形成酸ィ匕物であり、上記範囲内で含有さ
2 2 3
せることにより、安定なガラス、放射線遮蔽能力の高いガラスを提供することができる [0019] (6) モル0 /0で、 Bi Oを 3〜80%、 B O及び SiOの合計量を 3〜60%、 RO及び
2 3 2 3 2
Rn Oの合計量を 5〜60% (Rは Zn、 Ba、 Sr、 Ca、 Mgからなる群より選択される 1種
2
以上を示し、 Rnは Li、 Na、 K、 Csからなる群より選択される 1種以上を示す。)、 Sb
2
O及び As Oの合計量を 0〜5%の範囲で各成分を含有する(1)から(5)いずれか
3 2 3
記載の放射線遮蔽ガラス。
[0020] この態様によれば、 Bi Oを含有しているため、ガラスの密度を大きくすることができ
2 3
る。また、 RO成分の内、特に BaO及び SrO成分も同様に、ガラスの密度を高める効 果を有する。 Sb O及び As Oは、ガラス溶融時の脱泡性を良くするために使用され
2 3 2 3
、ガラス内の泡を無くし、密度を大きくすることができる。
[0021] (7) B O及び
3 Z又は SiOの一部又は全部を GeO又は P Oで置換してなる(5)
2 2 2 2 5 又は(6)記載の放射線遮蔽ガラス。
[0022] この態様によれば、 GeO及び P O成分はガラス形成酸化物として、 B O及び Si
2 2 5 2 3
O成分と同様の効果を有する。従って、 B O及び Z又は SiOの一部又は全部を G
2 2 3 2
eO又は P Oと置換しても安定したガラス、放射線遮蔽能力の高いガラスを提供す
2 2 5
ることがでさる。
[0023] (8) モル%で、 BaO及び Z又は SrOを 1%以上含有する(1)から(7)いずれか記 載の放射線遮蔽ガラス。
[0024] この態様によれば、 BaO及び SrOは、ガラスの溶融性を向上させることができ、更 に、放射線遮蔽能力を高める効果に優れた成分であり、放射線遮蔽能力の高いガラ スを提供することができる。
[0025] (9) モル%で、 Ce Oを 0〜 15%以上含有する(1)から(8)いずれか記載の放射
2 3
線遮蔽ガラス。 [0026] この態様によれば、 Ce Oは、放射線遮蔽能力の向上に寄与する成分であり、特
2 3
に、放射線の照射による着色を防ぐ効果を有する成分である。従って、長期間の使 用にお 、ても、ガラスに透明性を有する放射線遮蔽ガラスを提供することができる。
[0027] (10) モル%で、 Al O、 Ga O、 In Oの 1種又は 2種以上を合計 0〜20%含有
2 3 2 3 2 3
する(1)から (9) V、ずれか記載の放射線遮蔽ガラス。
[0028] この態様によれば、 Al O、 Ga O、 In O成分は、ガラスの溶融性、化学的耐久性
2 3 2 3 2 3
及びガラスの表面の硬さの向上に効果がある成分であり、ガラスの安定性に優れた 放射線遮蔽ガラスを提供することができる。
[0029] (11) モル%で、 TiOを 0〜 15%含有する(1)から(10)いずれか記載の放射線
2
遮蔽ガラス。
[0030] この態様によれば、 TiOは、ガラスの化学的耐久性とガラスの表面硬さを向上させ
2
る効果を有する成分であり、ガラスの安定性に優れた放射線遮蔽ガラスを提供するこ とがでさる。
[0031] (12) モル0 /0で、 Ln O (Lnは Y、 La、 Eu、 Gd、 Tb、 Dy、 Yb、: Luからなる群より
2 3
選択される 1種以上を示す。 )を合計 0〜50%含有する(1)から(11) V、ずれか記載 の放射線遮蔽ガラス。
[0032] この態様によれば、 Ln O成分は遮蔽能力、ガラスの化学的耐久性及びガラスの
2 3
表面硬さの向上に効果があるため、優れた放射線遮蔽ガラスを提供することができる [0033] (13) モル0 /0で、 TeO、 ZrO、 SnO、 Nb O、 Ta O、 WOの 1種又は 2種以上
2 2 2 2 5 2 5 3
を合計 0〜20%含有する( 1)から( 12) 、ずれか記載の放射線遮蔽ガラス。
[0034] この態様によれば、上記成分は放射線遮蔽能力、ガラスの化学的耐久性及びガラ スの表面硬さの向上に効果があるため、上記成分を含有したガラスは、放射線遮蔽 ガラスとして好適に用いられる。
[0035] (14) モル%で
Bi O : 0. 5〜80%、及び
2 3 Z又は
SiO : 0〜70%
2 、及び Z又は
B O : 0〜70%、及び Z又は GeO :0〜30%
2 、及び Z又は
P O :0〜10%、及び Z又は
2 5
Al O :0〜20%、及び Z又は
2 3
Ga O :0〜20%、及び/又は
2 3
In O :0〜20%、及び Z又は
2 3
BaO:0〜50%、及び Z又は TiO :0〜15%
2 、及び Z又は
Nb O :0〜20%、及び/又は
2 5
WO :0〜15%
3 、及び Z又は
Ta O :0〜15%、及び/又は
2 5
TeO :0〜20%
2 、及び Z又は
ZrO :0〜10%
2 、及び Z又は
SnO :0〜15%
2 、及び Z又は
ZnO:0〜50%、及び Z又は MgO:0〜50%、及び Z又は CaO:0〜50%、及び Z又は SrO:0〜50%、及び Z又は Li O:0〜15%
2 、及び Z又は
Na O:0〜15%
2 、及び Z又は
K O:0〜20%、及び Z又は
2
Y O :0〜50%、及び
3 Z又は
2
La O :0〜50%、及び/又は
2 3
Gd O :0〜50%、及び/又は
2 3
Yb O :0〜50%、及び Z又は
2 3
Lu O :0〜50%、及び Z又は
2 3
Ce O :0〜15%、及び/又は
2 3
Sb O :0〜3%
2 3 、及び Z又は
As O :0〜5%、及び Z又は F:0〜5% を含有する放射線遮蔽ガラス。
(15) モル%で
Bi O :0.5〜80%、及び/又は
2 3
SiO :0〜70%
2 、及び Z又は
B O :0〜70%、及び Z又は
2 3
GeO :0〜30%
2 、及び Z又は
P O :0〜10%、及び Z又は
2 5
Al O :0〜20%、及び
2 3 Z又は
Ga O :0〜20%、及び Z又は
2 3
In O :0〜20%、及び Z又は
2 3
BaO:0〜50%、及び Z又は TiO :0〜15%
2 、及び Z又は
Nb O :0〜20%
2 5 、及び Z又は
WO :0〜15%
3 、及び Z又は
Ta O :0〜15%
2 5 、及び Z又は
TeO :0〜20%
2 、及び Z又は
ZrO :0〜10%
2 、及び Z又は
SnO :0〜15%
2 、及び Z又は
ZnO:0〜50%、及び Z又は MgO:0〜50%、及び Z又は CaO:0〜50%、及び Z又は SrO:0〜50%、及び Z又は Li O:0〜30%、及び Z又は
2
Na O:0〜30%、及び Z又は
2
Κ Ο:0〜20%、及び Ζ又は
2
Υ Ο :0〜50%、及び Ζ又は
2 3
La Ο :0〜50%、及び Ζ又は Gd O : 0〜50%、及び
2 3 Z又は
Yb O : 0〜50%、及び
2 3 Z又は
Lu O : 0〜50%、及び
2 3 Z又は
Dy O : 0〜50%、及び
2 3 Z又は
Ce O : 0〜15%、及び
2 3 Z又は
Sb O : 0〜3%
2 3 、及び Z又は
As O : 0〜5%、及び
2 3 Z又は
F: 0〜5%
を含有する放射線遮蔽ガラス。
[0037] 上記組成により放射線遮蔽ガラスを製造することで、鉛成分を含有するガラスと同 等又はそれ以上の放射線遮蔽能力を有する放射線遮蔽ガラスを製造することができ る。
発明の効果
[0038] 本発明の放射線遮蔽ガラスは、ガラス成分として、 Bi Oを含有する。従って、ガラ
2 3
スの密度を大きくすることができ、かつ、鉛当量を大きくすることができるため、鉛成分 を含有しなくても、鉛成分を含有するガラスと同等又はそれ以上の放射線遮蔽能力 を有する放射線遮蔽ガラスを提供することができる。
図面の簡単な説明
[0039] [図 1]実施例 1から 3の厚さ 10mmのガラスにおける分光透過率曲線を示す図である 発明を実施するための形態
[0040] 次に、本発明の光学ガラスにおいて、具体的な実施態様について説明する。
[0041] [ガラス成分]
本発明の光学ガラスを構成する各成分の組成範囲を以下に述べる。本明細書中に おいて、各成分の含有率は特に断りがない場合は全てモル%で記載されるものとす る。なお、本願明細書中においてモル%又は質量%で表されるガラス組成は全て酸 化物基準でのモル%又は質量%で表されたものである。ここで、「酸ィ匕物基準」とは、 本発明のガラス構成成分の原料として使用される酸化物、硝酸塩等が溶融時にすべ て分解され酸化物へ変化すると仮定した場合に、当該生成酸化物のモル数の総和 を 100モル%として、又は当該生成酸ィ匕物の質量の総和を 100質量%として、ガラス 中に含有される各成分を表記した組成である。
[0042] <必須成分、任意成分にっ 、て >
Bi O成分は、ガラスの安定性を向上し、特にガラスの密度を大きくし、ガラスに高
2 3
い放射線遮蔽能力を付与するため、本発明の目的を達成するのに欠かせない成分 である。しかし、 Bi Oを過剰に含有するとガラス安定性が損なわれ、少なすぎると本
2 3
発明に目的を満たすことができない。よって、 Bi O量は好ましくは 0. 5%、より好まし
2 3
くは 3%、最も好ましくは 5%を下限とし、上限としては好ましくは 80%、より好ましくは 70%、最も好ましくは 60%である。
[0043] B O及び SiO成分はガラス形成酸化物で、安定したガラスを得るのに少なくとも ヽ
2 3 2
ずれかが必要とされる。安定したガラスを得るためには、これらの成分含量の合計量 の下限値は好ましくは 3%、より好ましくは 15%、最も好ましくは 20%とする。また、こ れらの成分の含有量が多すぎると、放射線遮蔽能力が減少することがある。従って、 高い放射線遮蔽能力を得るためには、含有量の上限を 70%とすることが好ましぐ 6 5%とすることがより好ましぐ 60%とすることが最も好ましい。
[0044] この B O及び SiO成分は、単独でガラス中に導入しても本発明の目的を達成する
2 3 2
ことができるが、同時に使用することにより、ガラスの溶融性、安定性及び化学的耐久 性が増すと共に、可視域における透明性も向上するので、同時に使用することが好 ましい。また、上記の効果を最大限に引き出すために、 B O /SiOの比を 0. 1〜1
2 3 2
0の範囲にすることが好まし 、。
[0045] GeO成分は、 SiO成分と同様な働きをするので、 SiO成分の一部又は全部を置
2 2 2
換することが可能である力 高価であるため、上限値を 30%以下とすることが好ましく 、 20%以下とすることがより好ましぐ 15%以下とすることが最も好ましい。
[0046] P O成分は、 B O、 SiO成分と同様な働きをするので、 B O又は SiO成分の
2 5 2 3 2 2 3 2 一 部又は全部を置換することが可能である。し力しその量が多すぎるとガラスの分相傾 向が強くなる。従って、上限値を 10%とすることが好ましぐ 5%とすることがより好まし ぐ 2%とすることが最も好ましい。 [0047] また、 GeO、 P O成分は、 B O、 SiO成分と置換して含有させる以外に、 GeO
2 2 5 2 3 2 2
、 P o成分をガラス組成中に添加し含有させることもできる。
2 5
[0048] Al O、 Ga O、 In O成分は、ガラスの溶融性、化学的耐久性及びガラスの表面
2 3 2 3 2 3
の硬さの向上に効果がある成分である。任意に添加することができる成分であるが、 特に SiO成分の一部を置き換える形で導入される。 SiOは 70%以下の含有量で含
2 2
有させることができる。また、 Al O、 Ga O、 In Oの 1種又は 2種以上の合計量は 2
2 3 2 3 2 3
0%以下とすることが好ましぐ 10%以下とすることがより好ましぐ 5%以下とすること が特に好ましい。また、 5質量%未満であることが最も好ましい。ただし、 SiO成分の
2 含有量が 50%を超えるような場合には、これら Al O、 Ga O、 In O成分を導入す
2 3 2 3 2 3
るとガラスの融点が高くなる傾向にある。従って、 Al O、 Ga O、 In O成分の合計
2 3 2 3 2 3
量が大きい場合、特に 0. 5質量%以上であるような場合には、 SiOの含有量を好ま
2
しくは 50%以下、より好ましくは 45%以下、最も好ましくは 40%以下とする。
[0049] TiO成分は、ガラスの化学的耐久性と表面の硬さの向上に効果がある成分である
2
。任意に添加することができる成分である力 その量が多すぎるとガラスの安定性が 低くなる傾向にある。従って、 15%以下とすることが好ましぐ 10%以下とすることが より好ましぐ 5%以下とすることが最も好ましい。
[0050] Nb O成分は、ガラスの遮蔽能力と化学的耐久性の向上に効果がある成分である
2 5
。任意に添加することができる成分である力 その量が多すぎるとガラスの安定性が 低くなる傾向にある。従って、 20%以下とすることが好ましぐ 15%以下とすることが より好ましぐ 8%以下とすることが最も好ましい。
[0051] WO成分は、ガラスの遮蔽能力と化学的耐久性の向上に効果がある成分である。
3
任意に添加することができる成分である力 その量が多すぎるとガラスの安定性が低 くなる傾向にある。従って、 15%以下とすることが好ましぐ 10%以下とすることがより 好ましぐ 8%以下とすることが最も好ましい。
[0052] Ta O成分は、ガラスの遮蔽能力と化学的耐久性の向上に効果がある成分である
2 5
。任意に添加することができる成分である力 その量が多すぎるとガラスの安定性を 低下させやすくする。従って、上限値を 15%とすることが好ましぐ 10%とすること力 S より好ましぐ 5%とすることが最も好ましい。さらに好ましくは含まない。 [0053] TeO成分は、高い屈折率を実現できるほかに、適量の添カ卩によって、ガラス融液
2
の清澄を促す効果がある成分である。任意に添加することができる成分であるが、そ の量が多すぎるとガラスが着色しやすくなる。従って、上限値を 20%とすることが好ま しぐ 15%とすることがより好ましぐ 10%とすることが最も好ましい。
[0054] ZrO成分は、ガラスの遮蔽能力と化学的耐久性の向上に効果がある成分である。
2
任意に添加することができる成分である力 その量が多すぎるとガラスの安定性を低 下させやすくする。従って、上限値を 10%とすることが好ましぐ 8%とすることがより 好ましぐ 3%とすることが最も好ましい。
[0055] SnO成分は、ガラスの遮蔽能力の向上に効果がある任意成分である力 その量が
2
多すぎるとガラスの安定性を低下させやすくする。従って、上限値を 15%とすること が好ましぐ 10%とすることがより好ましぐ 5%とすることが最も好ましい。
[0056] なお、ガラスの化学的耐久性と表面の硬さ、特に本発明の目的である放射線遮蔽 能力を向上させるためには、 TeO、 ZrO、 SnO、 Nb O、 Ta O、 WOの 1種又は
2 2 2 2 5 2 5 3
2種以上の合計量の上限値を 20%とすることが好ましぐ 10%とすることがより好まし ぐ 5%とすることが最も好ましい。
[0057] RO成分 (Rは Zn、 Ba、 Sr、 Ca、 Mgからなる群より選択される 1種以上を示す。 )は 、ガラスの溶融性と安定性の向上に効果がある成分であるが、その量が多すぎると、 ガラスの安定性を低下させやすくする。従って、合計量で上限値を 60%とすることが 好ましぐ 50%とすることがより好ましぐ 40%とすることが最も好ましい。また、 RO成 分の内、特に BaO成分と SrO成分は上記の効果以外に、本発明の目的である放射 線の遮蔽能力の向上にも大きな効果があるので、どちらか又は両方を含有させること が望ましい。放射線遮蔽能力を向上させるためには、 BaO成分と SrO成分の合計量 力 Sl%以上であることが好ましぐ 3%以上であることがより好ましぐ 5%以上であるこ とが最も好ましい。
[0058] ZnO成分は、ガラスの溶融性とガラスの安定性の向上に効果的な成分であるが、 その量が多すぎると失透が発生しやすくなる。従って、上限値を 50%とすることが好 ましぐ 45%とすることがより好ましぐ 35%とすることが最も好ましい。
[0059] CaO成分は、ガラスの溶融性を改善させるのには効果的な成分であるが、その量 が多すぎると失透が発生しやすくなる。従って、上限値を 50%とすることが好ましぐ
45%とすることがより好ましぐ 35%とすることが最も好ましい。
[0060] BaO成分は、ガラスの密度を高める成分であり、ガラスの失透性及び着色を改善さ せるのには効果的な成分である力 その量が多すぎるとガラスの安定性が低くなる傾 向にある。従って、上限値を 50%とすることが好ましぐ 45%とすることがより好ましく
、 35%とすることが最も好ましい。
[0061] MgO成分は、ガラスの溶融性を向上させるのには効果的な成分である力 その量 が多すぎると失透が発生しやすくなる。従って、上限値を 50%とすることが好ましぐ
45%とすることがより好ましぐ 35%とすることが最も好ましい。
[0062] SrO成分は、ガラスの密度を高めるために成分であり、ガラスの失透性を改善させ るのに効果的な成分であるが、その量が多すぎると失透が発生しやすくなる。従って
、上限値を 50%とすることが好ましぐ 45%とすることがより好ましぐ 35%とすること が最も好ましい。
[0063] Rn O成分 (Rnは Li、 Na、 K、 Csからなる群より選択される 1種以上を示す。)は、ガ
2
ラスの溶融性と安定性の向上に効果があると共に、放射線照射による着色の防止に も効果がある成分である。しかし、その量が多すぎると、放射線遮蔽能力が低下し、 化学的耐久性も低下する。従って、合計量の上限値を 40%とすることが好ましぐ 35 %とすることがより好ましぐ 25%とすることが最も好ましい。また、 Rn O成分を 2種以
2
上組み合わせると、放射線照射による着色の防止により大きな効果が得られる。
[0064] Li O成分は、ガラスの溶融性と安定性の向上に効果的な成分である力 その量が
2
多すぎると、失透が発生しやすくなり放射線遮蔽能力も低下する。従って、上限値を 30%とすることが好ましぐ 15%とすることがより好ましぐ 5%とすることが最も好まし い。
[0065] Na O成分は、ガラスの溶融性と安定性の向上に効果がある力 その量が多すぎる
2
と失透が発生しやすくなり、放射線遮蔽能力も低下する。従って、上限値を 30%とす ることが好ましぐ 15%とすることがより好ましぐ 5%とすることが最も好ましい。
[0066] K O成分は、ガラスの溶融性と安定性の向上に効果がある力 その量が多すぎると
2
失透が発生しやすくなり放射線遮蔽能力も低下する。 K Oの含有量の上限値は 20 %とすることが好ましぐ 15%とすることがより好ましぐ 10%とすることが最も好ましい
[0067] なお、良好なガラス溶融性と安定性を得ると同時に、本発明の目的である放射線遮 蔽能力を向上させるためには、 RO成分及び Rn O成分の合計量の下限値を 5%以
2
上とすることが好ましぐ 10%以上とすることがより好ましぐ 20%以上とすることが最 も好ましい。また、上限値は、 60%とすることが好ましぐ 55%以下とすることがより好 ましぐ 50%以下とすることが最も好ましい。
[0068] Ln O成分(Lnは、 Y、 La、 Eu、 Gd、 Tb、 Dy、 Yb、 Luからなる群より選択される 1
2 3
種以上を示す。)は、ガラスの化学的耐久性とガラスの表面の硬さの向上に効果があ ると共に、放射線の遮蔽能力の向上にも効果が大きい成分である。任意に添加する ことができる成分であるが、その量が多すぎるとガラスの安定性が低くなる傾向にある
。従って、 Ln O成分の合計量の上限値を 50%とすることが好ましぐ 40%とすること
2 3
力 り好ましぐ 35%とすることが最も好ましい。 Ln O成分の内、 Y O、 La O、 Gd
2 3 2 3 2 3
O、 Lu O成分は、上記の効果以外にガラスの透明性の向上にも効果を有する成
2 3 2 3
分であり、特に重要な成分である。
[0069] Ce O成分は、放射線の照射による着色を防ぐ効果がある成分である。任意に添
2 3
加することができる成分であるが、その量が多すぎると、ガラスの吸収端が長波長側 にシフトし、可視域での透明性の低下を招くことがある。従って、上限値を 15%以下 とすることが好ましぐ 3%以下とすることがより好ましぐ 1%以下とすることが最も好ま しい。
[0070] Sb O、 As O成分は、ガラス溶融の脱泡のために任意に添加することができる成
2 3 2 3
分である。 Sb O及び As Oの合計量で、 5%以下で十分に効果を有する。また、 A
2 3 2 3
s Oは、ガラスを製造、加工、及び廃棄をする際に環境対策上の措置を講ずる必要
2 3
がある。従って、 Sb O及び As Oの合計量で、上限値を 5%とすることが好ましぐ 3
2 3 2 3
%とすることがより好ましぐ 1%とすることが最も好ましい。
[0071] F成分は、ガラスの溶融性と安定性の改善に効果があるが、その量が多すぎると、 ガラスの安定性が著しく低下する。従って、上限値を 10%とすることが好ましぐ 5%と することがより好ましぐ 3%とすることが最も好ましい。さらに好ましくは含まない。 [0072] <含有させるべきでない成分について >
他の成分を本願発明のガラスの特性を損なわな 、範囲で必要に応じ、添加するこ とができる。ただし、 Tiを除く V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Ag及び Mo等の各遷移 金属成分は、それぞれを単独又は複合して少量含有した場合においても、ガラスが 着色し、可視域の特定の波長に吸収を生じさせる。従って、本発明の放射線遮蔽ガ ラスにお 、ては、実質的に含まな 、ことが好ま U、。
[0073] Pb、 Th、 Cd、 Tl、 Osの各成分は、近年有害な化学物資として使用を控える傾向に あるため、ガラスの製造工程のみならず、加工工程、及び製品化後の処分に至るま で環境対策上の措置が必要とされる。従って、環境上の影響を重視する場合には実 質的に含まな 、ことが好ま 、。
[0074] 本発明は、各成分をモル%で、以下の範囲で含有させることが好ましい。
Bi O :0.5〜80%、及び
2 3 Z又は
SiO :0〜70%
2 、及び Z又は
B O :0〜70%
2 3 、及び Z又は
GeO :0〜30%
2 、及び Z又は
P O :0〜10%
2 5 、及び Z又は
Al O :0〜20%
2 3 、及び Z又は
Ga O :0〜20%
2 3 、及び Z又は
In O :0〜20%
2 3 、及び Z又は
BaO:0〜50%、及び Z又は
TiO :0〜15%
2 、及び Z又は
Nb O :0〜20%、及び
2 5 Z又は
WO :0〜15%
3 、及び Z又は
Ta O :0〜15%、及び
2 5 Z又は
TeO :0〜20%
2 、及び Z又は
ZrO :0〜10%
2 、及び Z又は
SnO :0〜15%
2 、及び Z又は
ZnO:0〜50%、及び Z又は MgO:0〜50%、及び Z又は
CaO:0〜50%、及び Z又は
SrO:0〜50%、及び Z又は
Li O:0〜15%、及び
2 Z又は
Na O:0〜15%、及び
2 Z又は
K O:0〜20%、及び
2 Z又は
Y O :0〜50%、及び
2 3 Z又は
La O :0〜50%、及び
2 3 Z又は
Gd O :0〜50%、及び
2 3 Z又は
Yb O :0〜50%、及び
2 3 Z又は
Lu O :0〜50%、及び Z又は
2 3
Dy O :0〜50%
2 3 、及び Z又は
Ce O :0〜15%
2 3 、及び Z又は
Sb O :0〜3%
2 3 、及び Z又は
As O :0〜5%
2 3 、及び Z又は
F:0〜5%
[0075] 本発明の放射線遮蔽ガラスは、可視域での透明性が高ぐガラスの透過率が 80% となる波長であるえ 力 50nm以下のものを得ることができる。さらにえ の好ましい
80 80 範囲は、 525nm以下であり、さらに好ましくは 500nm以下である。
[0076] また、本発明の放射線遮蔽ガラスは、密度が 3.5gZcm3以上のものを得ることが できる。さらに好ましい密度の範囲は、 4. OgZcm3以上であり、さらに好ましくは、 4. 2gZcm3以上である。
[0077] 本明細書において、放射線遮蔽能力は鉛当量で表される。鉛当量とは X線の遮蔽 能力が等 、鉛板の厚みで表され、この値が大き!、ほど放射線遮蔽能力が優れるこ とを意味する。本発明のガラスについて 150kVの X線に対する鉛当量は、 JIS4501 に準じた方法で測定した鉛当量を厚み lmmに換算して求めた。本発明のガラスの 鉛当量は 0.05mmPb/mm以上とすることが好ましぐ 0. ImmPb/mm以上とす ることがより好ましぐ 0.15mmPbZmm以上とすることが好ましい。 [0078] [製造方法]
本発明の放射線遮蔽ガラスは、通常のガラスを製造する方法であれば、特に限定 されないが、例えば、以下の方法により製造することができる。各出発原料 (酸化物、 炭酸塩、硝酸塩、リン酸塩、硫酸塩、フッ化物塩等)を所定量秤量し、均一に混合す る。混合した原料を石英坩堝又はアルミナ坩堝に投入し、粗溶融の後、金坩堝、白 金坩堝、白金合金坩堝又はイリジウム坩堝に投入し、溶解炉で 850〜1350°Cで 1〜 10時間熔解する。その後、攪拌、均質化した後、適当な温度に下げて金型等に铸込 み、ガラスを製造する。
実施例
[0079] 以下、実施例及び比較例を用いて本発明を更に詳細に説明するが、本発明は以 下の実施例に限定されるものではない。
[0080] 表 1に示す実施例 1から 11の組成(単位はモル0 /0)で、合計量力 OOg〖こなるように 原料を秤量し、均一に混合した。石英坩堝と白金坩堝を用いて 850〜1100°Cで 2〜 3時間熔解した後、 700〜900°Cに下げて、更に約 1時間、保温してから金型に铸込 み、ガラスを作製した。また、上記の実施例と同様の方法で、比較例 1についても作 製した。
[0081] 実施例 1から 11、比較例 1の放射線遮蔽ガラスについて、密度、鉛当量の測定を行 つた。密度は、アルキメデス法により測定を行った。また、鉛当量は、 JIS4501に準じ て、管電圧 150kVで測定した。
[0082] [表 1]
Figure imgf000017_0001
[0083] 本発明の実施例 1から 11のガラスは、鉛成分を含有する比較例 1のガラスに比べ、 鉛当量が高ぐ鉛ガラスと同等又はそれ以上の放射線遮蔽能力を有することがわか る。
[0084] また、図 1に実施例 1から 3の厚さ 10mmのガラスにおける分光透過率曲線を示す。 横軸に波長 (nm)、縦軸に分光透過率(%)を示す。なお、これらの透過率には反射 損失が含まれている。図 1に示すように、いずれのガラスも可視域で高い透明性を有 し、透過率 80%の波長が 550nm以下であることがわ力る。

Claims

請求の範囲
[I] モル0 /0で、 Bi Oを 0. 5〜80%含有し、 150kVの X線に対する鉛当量は 0. 05m
2 3
mPbZmm以上である放射線遮蔽ガラス。
[2] 密度が 3. 5gZcm3以上である請求項 1記載の放射線遮蔽ガラス。
[3] 厚みが 10mmの前記放射線遮蔽ガラスにおいて、 550nmの波長における透過率 が 70%以上である請求項 1又は 2記載の放射線遮蔽ガラス。
[4] モル%で、 SiOの含有量が 70%以下である請求項 1から 3いずれか記載の放射線
2
遮蔽ガラス。
[5] モル%で、 SiOと B Oの含有量の合計が 3〜70%である請求項 1から 4いずれか
2 2 3
記載の放射線遮蔽ガラス。
[6] モル0 /0で、 Bi Oを 3〜80%、 B O及び SiOの合計量を 3〜60%、 RO及び Rn
2 3 2 3 2 2
Oの合計量を 5〜60% (Rは Zn、 Ba、 Sr、 Ca、 Mgからなる群より選択される 1種以上 を示し、 Rnは Li、 Na、 K、 Csからなる群より選択される 1種以上を示す。)、 Sb O及
2 3 び As Oの合計量を 0〜5%の範囲で各成分を含有する請求項 1から 5いずれか記
2 3
載の放射線遮蔽ガラス。
[7] B O及び Z又は SiOの一部又は全部を GeO又は P Oで置換してなる請求項 5
2 3 2 2 2 5
又は 6記載の放射線遮蔽ガラス。
[8] モル%で、 BaO及び Z又は SrOを 1%以上含有する請求項 1から 7いずれか記載 の放射線遮蔽ガラス。
[9] モル%で、 Ce Oを 0〜15%以上含有する請求項 1から 8いずれか記載の放射線
2 3
遮蔽ガラス。
[10] モル%で、 Al O、 Ga O、 In Oの 1種又は 2種以上を合計 0〜20%含有する請
2 3 2 3 2 3
求項 1から 9 、ずれか記載の放射線遮蔽ガラス。
[II] モル%で、 TiOを 0〜15%含有する請求項 1から 10いずれか記載の放射線遮蔽
2
ガラス。
[12] モル%で、 Ln O (Lnは Y、 La、 Eu、 Gd、 Tb、 Dy、 Yb、 Luからなる群より選択さ
2 3
れる 1種以上を示す。 )を合計 0〜50%含有する請求項 1から 11いずれか記載の放 射線遮蔽ガラス。 モル%で、 TeO、 ZrO、 SnO、 Nb O、 Ta O、 WOの 1種又は 2種以上を合計
2 2 2 2 5 2 5 3
〜20%含有する請求項 1から 12いずれか記載の放射線遮蔽ガラス。
モル0 /0
Bi O :0.5〜80%、及び Z又は
2 3
SiO :0〜70%
2 、及び Z又は
B O :0〜70%、及び Z又は
2 3
GeO :0〜30%
2 、及び Z又は
P O :0〜10%、及び Z又は
2 5
Al O :0〜20%、及び Z又は
2 3
Ga O :0〜20%、及び Z又は
2 3
In O :0〜20%、及び Z又は
2 3
BaO:0〜50%、及び Z又は
TiO :0〜15%
2 、及び Z又は
Nb O :0〜20%
2 5 、及び Z又は
WO :0〜15%
3 、及び Z又は
Ta O :0〜15%
2 5 、及び Z又は
TeO :0〜20%
2 、及び Z又は
ZrO :0〜10%
2 、及び Z又は
SnO :0〜15%
2 、及び Z又は
ZnO:0〜50%、及び Z又は
MgO:0〜50%、及び Z又は
CaO:0〜50%、及び Z又は
SrO:0〜50%、及び Z又は
Li O:0〜15%、及び Z又は
2
Na O:0〜15%、及び Z又は
2
Κ Ο:0〜20%、及び Ζ又は
2
Υ Ο :0〜50%、及び Ζ又は
2 3
La Ο :0〜50%、及び Ζ又は Gd O :0〜50%、及び
2 3 Z又は
Yb O :0〜50%、及び
2 3 Z又は
Ce O :0〜15%、及び
2 3 Z又は
Sb O :0〜3%
2 3 、及び Z又は
As O :0〜5%、及び
2 3 Z又は
F:0〜5%
を含有する放射線遮蔽ガラス。
[15] モル%で
Bi O :0.5〜80%、及び
2 3 Z又は
SiO :0〜70%
2 、及び Z又は
B O :0〜70%、及び
2 3 Z又は
GeO :0〜30%
2 、及び Z又は
P O :0〜10%
2 5 、及び Z又は
Al O :0〜20%
2 3 、及び Z又は
Ga O :0〜20%
2 3 、及び Z又は
In O :0〜20%
2 3 、及び Z又は
BaO:0〜50%、及び Z又は TiO :0〜15%
2 、及び Z又は
Nb O :0〜20%
2 5 、及び Z又は
WO :0〜15%
3 、及び Z又は
Ta O :0〜15%、及び
2 5 Z又は
TeO :0〜20%
2 、及び Z又は
ZrO :0〜10%
2 、及び Z又は
SnO :0〜15%
2 、及び Z又は
ZnO:0〜50%、及び Z又は MgO:0〜50%、及び Z又は CaO:0〜50%、及び Z又は SrO:0〜50%、及び Z又は Li O:0〜30%、及び 又は
2
Na O:0〜30%、及び,又は
2
K Ο:0〜20%、及び/又は
2
Υ Ο :0〜50%、及び 又は
2 3
La O :0〜50%、及び Z又は
2 3
Gd O :0〜50%、及び,又は
2 3
Yb O :0〜50%、及び
3 Z又は
2
Lu O :0〜50%、及び/又は
2 3
Dy O :0〜50%、及び 又は
2 3
Ce O :0〜15%、及び,又は
2 3
Sb O :0〜3%、及び/又は
2 3
As O :0〜5%、及び 又は
2 3
F:0〜5%
を含有する放射線遮蔽ガラス。
PCT/JP2006/318264 2005-10-13 2006-09-14 放射線遮蔽ガラス WO2007043280A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007539838A JPWO2007043280A1 (ja) 2005-10-13 2006-09-14 放射線遮蔽ガラス

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005298368 2005-10-13
JP2005-298368 2005-10-13
JP2005-348935 2005-12-02
JP2005348935 2005-12-02

Publications (1)

Publication Number Publication Date
WO2007043280A1 true WO2007043280A1 (ja) 2007-04-19

Family

ID=37942534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318264 WO2007043280A1 (ja) 2005-10-13 2006-09-14 放射線遮蔽ガラス

Country Status (2)

Country Link
JP (1) JPWO2007043280A1 (ja)
WO (1) WO2007043280A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105865A (ja) * 2006-10-23 2008-05-08 Ohara Inc 光学ガラス
JP2008120655A (ja) * 2006-11-15 2008-05-29 Tohoku Univ ガラス、結晶化ガラス、結晶化ガラスの製造方法及び光触媒部材
JP2008174421A (ja) * 2007-01-19 2008-07-31 Isuzu Seiko Glass Kk 光学ガラス
CN102584013A (zh) * 2010-08-03 2012-07-18 宁波大学 稀土掺杂的氟氧碲酸盐闪烁玻璃及其制备方法
JP2013061279A (ja) * 2011-09-14 2013-04-04 Kawahara Technical Research Inc 放射線遮蔽材及びその製造方法
JP2013076696A (ja) * 2011-09-14 2013-04-25 Kawahara Technical Research Inc 放射線遮蔽材及びその製造方法
WO2014049880A1 (ja) * 2012-09-28 2014-04-03 株式会社カワハラ技研 放射線遮蔽材及びその製造方法
CN108623146A (zh) * 2018-06-26 2018-10-09 成都光明光电有限责任公司 环境友好型特种防护玻璃
CN110255891A (zh) * 2016-11-21 2019-09-20 成都光明光电股份有限公司 光学玻璃
WO2021200531A1 (ja) * 2020-03-31 2021-10-07 Hoya株式会社 ガラスおよびガラスを含む物品
CN116655241A (zh) * 2023-04-23 2023-08-29 西北核技术研究所 耐高温高硼玻璃砂中子吸收材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073228A1 (fr) * 1999-05-28 2000-12-07 Baruch Nachmansohn Compositions de verre
JP2004002060A (ja) * 2002-05-29 2004-01-08 Rikogaku Shinkokai 光増幅ガラスおよび光増幅導波路製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073228A1 (fr) * 1999-05-28 2000-12-07 Baruch Nachmansohn Compositions de verre
JP2004002060A (ja) * 2002-05-29 2004-01-08 Rikogaku Shinkokai 光増幅ガラスおよび光増幅導波路製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SINGH K. ET AL.: "Gamma-ray attenuation coefficients in bismuth borate glasses", NUCL. INSTRUM. METHODS PHYS. RES. SECT. B, vol. 194, no. 1, July 2002 (2002-07-01), pages 1 - 6, XP004367268 *
SINGH N. ET AL.: "Comparative study of lead borate and bismuth lead borate glass systems as gamma-radiation shielding materials", NUCL. INSTRUM. METHODS PHYS. RES. SECT. B, vol. 225, no. 3, September 2004 (2004-09-01), pages 305 - 309, XP004543779 *
SINGH N. ET AL.: "Gamma-ray shielding properties of lead and bismuth borosilicate glasses", GLASS TECHNOLOGY, vol. 46, no. 4, August 2005 (2005-08-01), pages 311 - 314, XP001237917 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105865A (ja) * 2006-10-23 2008-05-08 Ohara Inc 光学ガラス
JP2008120655A (ja) * 2006-11-15 2008-05-29 Tohoku Univ ガラス、結晶化ガラス、結晶化ガラスの製造方法及び光触媒部材
JP2008174421A (ja) * 2007-01-19 2008-07-31 Isuzu Seiko Glass Kk 光学ガラス
CN102584013A (zh) * 2010-08-03 2012-07-18 宁波大学 稀土掺杂的氟氧碲酸盐闪烁玻璃及其制备方法
JP2013061279A (ja) * 2011-09-14 2013-04-04 Kawahara Technical Research Inc 放射線遮蔽材及びその製造方法
JP2013076696A (ja) * 2011-09-14 2013-04-25 Kawahara Technical Research Inc 放射線遮蔽材及びその製造方法
WO2014049880A1 (ja) * 2012-09-28 2014-04-03 株式会社カワハラ技研 放射線遮蔽材及びその製造方法
CN110255891A (zh) * 2016-11-21 2019-09-20 成都光明光电股份有限公司 光学玻璃
CN110255891B (zh) * 2016-11-21 2022-01-25 成都光明光电股份有限公司 光学玻璃
CN108623146A (zh) * 2018-06-26 2018-10-09 成都光明光电有限责任公司 环境友好型特种防护玻璃
WO2021200531A1 (ja) * 2020-03-31 2021-10-07 Hoya株式会社 ガラスおよびガラスを含む物品
EP4129941A4 (en) * 2020-03-31 2024-04-24 Hoya Corp GLASS AND ARTICLE CONTAINING GLASS
CN116655241A (zh) * 2023-04-23 2023-08-29 西北核技术研究所 耐高温高硼玻璃砂中子吸收材料及其制备方法
CN116655241B (zh) * 2023-04-23 2024-04-26 西北核技术研究所 耐高温高硼玻璃砂中子吸收材料及其制备方法

Also Published As

Publication number Publication date
JPWO2007043280A1 (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
WO2007043280A1 (ja) 放射線遮蔽ガラス
JP6740422B2 (ja) 光学ガラス及び光学素子
TWI585056B (zh) Optical glass and optical components
JP5727719B2 (ja) 光学ガラス及び光ファイバ用コア材
JP6341836B2 (ja) 光学ガラス及び光学素子
JP2008088019A (ja) ガラス組成物
JP2009096662A (ja) ガラス組成物
JP2012229148A (ja) 光学ガラス及び光学素子
CN105565658B (zh) 光学玻璃、预成型体及光学元件
JP2016121035A (ja) 光学ガラス、プリフォーム及び光学素子
JP7075895B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2011093731A (ja) 光学ガラス、プリフォーム及び光学素子
JP2016121034A (ja) 光学ガラス、プリフォーム及び光学素子
JP2015059060A (ja) 光学ガラス及び光学素子
JP6113614B2 (ja) 光学ガラス及び光学素子
JP2016074557A (ja) 光学ガラス及び光学素子
JP2007290899A (ja) ガラス組成物
JP5698442B2 (ja) 光学ガラス及び光学素子
JP2016088835A (ja) 光学ガラス、プリフォーム及び光学素子
JP2015059064A (ja) 光学ガラス及び光学素子
JP5706231B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2009007194A (ja) ガラス組成物
WO2007077680A1 (ja) ガラス組成物
JP2015059061A (ja) 光学ガラス及び光学素子
JP2008088021A (ja) ガラス組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797976

Country of ref document: EP

Kind code of ref document: A1