WO2007029862A1 - 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法 - Google Patents

炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法 Download PDF

Info

Publication number
WO2007029862A1
WO2007029862A1 PCT/JP2006/318094 JP2006318094W WO2007029862A1 WO 2007029862 A1 WO2007029862 A1 WO 2007029862A1 JP 2006318094 W JP2006318094 W JP 2006318094W WO 2007029862 A1 WO2007029862 A1 WO 2007029862A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
hydrocarbon
gas
partial oxidation
reaction
Prior art date
Application number
PCT/JP2006/318094
Other languages
English (en)
French (fr)
Inventor
Hirokazu Fujie
Yoshiyuki Watanabe
Chizu Murata
Original Assignee
Jgc Corporation
Osaka Gas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jgc Corporation, Osaka Gas Co., Ltd. filed Critical Jgc Corporation
Priority to US11/991,116 priority Critical patent/US20080224097A1/en
Priority to EP06797886A priority patent/EP1930076A1/en
Priority to BRPI0615450-6A priority patent/BRPI0615450A2/pt
Priority to AU2006288168A priority patent/AU2006288168A1/en
Publication of WO2007029862A1 publication Critical patent/WO2007029862A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • oxygen is added to light hydrocarbons such as natural gas and associated gas containing methane and hydrocarbons having 2 or more carbon atoms, and oxygen is added to perform partial acidification.
  • the present invention relates to a catalyst used when producing a synthesis gas containing gas and a synthesis gas production method. Background art
  • GTL clean fuel produced from natural gas, etc.
  • DME dimethyl ether
  • ATR method autothermal reforming method
  • This method is suitable for large-scale tanks and is easy to control the H2 / CO ratio, and has recently been proven. However, if it contains components of C2 or higher, such as natural gas, etc. It is known that traps are generated by carbonaceous precipitation in the burner part. For this reason, a steam reforming reactor is installed in front of the ATR equipment, and in this reactor, components of C 2 (carbon number 2) or more in natural gas and a part of methane are reformed to obtain a hydrogen-containing gas. The method of supplying this to the ATR device is adopted (non-special Permissible literature 1).
  • catalytic partial oxidation that obtains synthesized gas by partially oxidizing a hydrocarbon feedstock with high-concentration oxygen in the presence of a catalyst has attracted attention.
  • the catalytic partial oxidation method is superior to the photothermal reforming method in that it does not require a pre-reformer even if it contains more than C2 components because it does not have a partner.
  • the reaction rate by the catalyst is extremely fast, there is an advantage that the reactor is small because the reaction is completed even under high SV conditions of tens of thousands to several millions.
  • This reaction mainly includes the following reactions when methane is taken as an example.
  • the formation of carbonaceous matter on the catalyst can be achieved by adding steam to the raw material gas and increasing the steam z carbon ratio in the raw material gas. There is a way to suppress it.
  • the sintering of the carrier is accelerated and the deterioration due to the reduction of the active surface area is accelerated.
  • the catalyst is required to have extremely high heat resistance. From the above, the contact partial oxidation method is a technology that is extremely difficult to put into practical use.
  • Patent Document 3 proposes a combined process of a catalytic partial oxidation process with a low oxygen ratio with little heat generation and an ATR process.
  • the two-stage reformation is the same as the ATR, and there is a disadvantage that the equipment is enlarged and the operation is complicated.
  • the reason why the commercial partial oxidation process is difficult is the generation of a hot spot at the inlet of the catalyst layer under the high oxygen ratio condition. Furthermore, as a highly active catalyst for the catalytic partial oxidation reaction.
  • the known P't and Rh are rare metals and are very expensive.
  • Non-Patent Document 4 in order to suppress the occurrence of this hot spot and reduce the amount of expensive noble metal supported, Ni and (1) have high methane reforming activity expressed by the equations (3) to (5).
  • Pt-Ni pi-metal catalysts combined with Pt having high methanate activity are proposed.
  • Ni is highly active in both the partial acid-oxidation reaction and the reforming reaction, but NiO has no reforming activity that is an endothermic reaction, so the presence of NiO is the cause of hot spots. It becomes.
  • Non-Patent Document 4 reports that oxidation of Ni can be suppressed by using a pi-metal catalyst of Pt that is difficult to be oxidized and has both acid activity and reforming activity.
  • the present invention has been made under such circumstances, and an object of the present invention is to provide a catalyst for catalytic partial oxidation having high activity, high selectivity, and long-term durability. . Another object of the present invention is to provide a method capable of carrying out a stable catalytic partial oxidation reaction over a long period of time by using this catalyst.
  • the inventor first focused on nickel, which is active in partial oxidation and steam reforming and is relatively inexpensive, and the high temperature, high steam required as a catalyst for catalytic partial oxidation. Attention was focused on nickel aluminate, which is a stable support even under the heating conditions, and contains a lot of spinel structure made by firing nickel and alumina at a high temperature of 60 ° C or higher.
  • nickel aluminate alone does not provide sufficient heat resistance, and as a result of intensive studies, nickel aluminate is also contained in the reaction at high temperature and high steam partial pressure by adding lanthanum or palium. It was found that the sintering of the carrier is remarkably suppressed.
  • platinum group catalysts with high catalytic partial oxidation reaction activity using this thermally stable nickel aluminate as a support. The present invention is made from such a viewpoint.
  • the present invention provides a synthesis gas containing carbon monoxide and hydrogen by catalytically oxidizing the raw material hydrocarbon by adding at least oxygen and steam to the raw material hydrocarbon containing methane and a light hydrocarbon having 2 or more carbon atoms.
  • a catalyst according to another invention includes a support obtained by adding nickel and lanthanum to alumina or an alumina precursor and calcining, and a platinum group element supported on the support.
  • the light hydrocarbon includes, for example, a hydrocarbon having 6 or less carbon atoms.
  • the carrier may be fired by adding nickel, barium and lanthanum to alumina or an alumina precursor.
  • the platinum group element is, for example, an element selected from rhodium, ruthenium and platinum.
  • a carrier containing nickel aluminate may be obtained by setting the baking temperature for obtaining the carrier to 600 ° C. or higher.
  • nickel aluminate is in the form of a complex oxide of nickel and aluminum, and nickel (N i) and aluminum (A 1) atoms are coordinated to each other via oxygen atoms. Refers to the structure.
  • the carrier at the time of catalyst preparation in the present invention is required to contain nickel aluminate rich spinel structure represented by at least N i Al 2 Rei_4, metal aluminate having a structure other than the spinel Yahexa Alumina It may coexist with
  • the nickel content in the carrier is preferably 1 to 35% by weight. Further, the total content of barium and / or lanthanum in the carrier is preferably 1 to 20% by weight. The total content of palyme and / or lanthanum in the carrier is 0.1 to 2.0 weight. /. It is preferable that The platinum group element content in the catalyst is 0.05 to 5.0 weight. / 0 is preferred.
  • the platinum group element is preferably supported in the form of oxide, hydroxide, metal, or the like so as to be present at 60% or more in a depth region within 1 mm from the surface of the support.
  • the method for producing a synthesis gas according to the present invention is a raw material gas obtained by adding at least oxygen and steam to a raw material hydrocarbon containing methane and a light hydrocarbon having 2 or more carbon atoms, and the raw material hydrocarbon contains hydrogen. Supplying a source gas containing hydrogen into the reactor by adding hydrogen and / or adding hydrogen;
  • a process of producing a synthesis gas containing carbon monoxide and hydrogen by bringing the catalyst of the present invention provided in the reactor into contact with the raw material gas in a heated state to subject the raw material hydrocarbon to partial oxidation of the raw material hydrocarbon.
  • the number of moles of oxygen in the raw material gas is the number of moles of carbon in the Z hydrocarbon, for example, 0.2 to 0.8
  • the number of moles of steam / the number of moles of carbon in the hydrocarbon is, for example, 0. .2 to 0.8
  • the number of moles of hydrogen Z in the raw material gas is, for example, from 0.01 to 0.1.
  • the pressure is normal pressure to 8 MPa
  • the superficial velocity is 5, OOO hr- 1 to
  • An example is a method in which the catalyst is supplied into the reactor under the conditions of 5 0 0, 0 0 0 hr- 1 and is contacted with the catalyst under adiabatic reaction conditions.
  • the catalyst does not require reduction treatment as a pretreatment.
  • the platinum group can be reduced before use, for example, at 400 ° C. or lower.
  • “adding at least oxygen and steam to the raw material hydrocarbon” as used in the present invention includes the case of adding nitrogen in addition to oxygen and steam, for example, the case of adding air and steam.
  • the “synthesis gas” is a gas containing carbon monoxide, hydrogen, and nitrogen, and becomes a synthesis raw material gas of ammonia by removing carbon monoxide in a subsequent process.
  • nickel aluminate containing a large amount of spinel is obtained as a support by adding nickel to alumina or an alumina precursor and firing, and further adding at least one of barium and lanthanum.
  • nickel aluminate shrinks at a high temperature and the sintering action that reduces the surface area is suppressed. For this reason, sintering in the calcination stage during catalyst preparation can be suppressed, so that a small amount of a platinum group element can be supported in a highly dispersed state, high activity can be obtained, and an expensive platinum group element can be obtained. The amount used can be reduced.
  • the catalyst surface is occupied by platinum group elements and nickel that are active in partial oxidation and steam reforming. And the occurrence of hot spots is suppressed.
  • a synthesis gas gas containing carbon monoxide and hydrogen
  • the method for producing a synthesis gas (gas containing carbon monoxide and hydrogen) of the present invention using the above-mentioned catalyst it is possible to carry out a stable catalytic partial oxidation reaction over a long period of time.
  • synthesis gas which is a raw material for GTL and DME, from natural gas. Since a catalyst that is stable and highly active even at high temperatures is used, the reactor can be downsized and an economical process can be performed.
  • the raw material gas can be preheated at a low temperature and supplied to the reactor, so that it is possible to prevent spontaneous ignition of the raw material gas with a high oxygen concentration, resulting in improved operational safety of the device and Instrumentation can be simplified.
  • FIG. 1 is an explanatory view showing a state in which a platinum group element is present in a high concentration near the surface in a support in the catalyst of the present invention.
  • FIG. 2 is a schematic view showing an apparatus used in the synthesis gas production method of the present invention.
  • Fig. 3 is a characteristic diagram showing the relationship between the addition amount of barium or lanthanum to the alumina in the support and the specific surface area of the support.
  • FIG. 4 is a characteristic diagram showing the relationship between the position in the gas flow direction in the reactor and the temperature of the catalyst layer.
  • this mixture is put into an extrusion molding machine and extrusion molding is performed to a certain size, for example, a group of granules having a particle size of 5 mm, for example, is heated and dried, and then put into an electric furnace, for example, 60 0 Bake for 5 hours at ° C.
  • the particle size of the granular material group is not particularly limited, but when filling a large apparatus such as a commercial apparatus, it is preferably 3 mm or more, more preferably 5 mm or more in order to reduce the pressure loss of the reactor. .
  • methods such as tableting molding and rolling granulation may be used, and the molding method is not particularly limited.
  • the alumina carrier added with the lanthanum or palium as the calcined product is immersed in a container containing a nickel salt aqueous solution such as a nickel nitrate aqueous solution, impregnated with the aqueous solution, and then the calcined product is dried. Thereafter, firing is performed in an electric furnace at, for example, 1100 ° C. for 24 hours. By performing such a treatment, a carrier containing nickel aluminate to which lanthanum (L a) or barium (B a) is added can be obtained.
  • the carrier containing nickel aluminate is placed in a container, and the carrier is impregnated with the aqueous solution by spraying a salt of a platinum group element, for example, a rhodium nitrate aqueous solution, while heating and rotating the container. .
  • the carrier is dried, and then calcined in an electric furnace at, for example, 60 ° C. for 3 hours, thereby obtaining the catalyst of the present invention in which a platinum group element such as a dome is supported on the carrier.
  • the salt of lanthanum or palyum is not limited to nitrates such as palynium nitrate or lanthanum nitrate, nitrites, but also oxides such as barium oxide and lanthanum oxide, water Hydroxides such as barium oxide and lanthanum hydroxide, carbonates such as barium carbonate and lanthanum carbonate, and organic acid salts such as barium acetate and lanthanum acetate are preferably used.
  • the nickel salt may be nickel hydroxide or nickel oxide, or may be an organic salt such as nickel formate, nickel acetate, or nickel oxalate.
  • the fired product may be impregnated with an aqueous nickel salt solution by, for example, placing the fired product in a container and heating and rotating the nickel salt aqueous solution onto the fired product while rotating the container.
  • a method for supporting the platinum group element on the carrier a method such as coating the carrier with an aqueous solution or solution of the platinum group element, a pore filling method, or selective adsorption on the carrier may be employed.
  • alumina shows excellent stability and dispersibility of active metals as a carrier, but ⁇ -alumina, which is usually used as a carrier, has a surface area of several m 2 / g or less under catalytic partial oxidation conditions. Transition to alumina. In this way, the structure of the support changes during the reaction, and the surface area is significantly reduced. Therefore, even if the platinum group element is supported in a highly dispersed state during the preparation of the catalyst, the active sites are increased by the active metal particles growing during the reaction. Decrease occurs and catalyst activity deteriorates. Moreover, when it is supported on alumina from the beginning, platinum group elements are supported on an extremely small surface, so it is impossible to achieve high dispersion.
  • lanthanum or palyme and nickel are included, and a carrier containing nickel aluminate having a high surface area and excellent thermal stability is obtained by firing at a high temperature of, for example, 800 ° C. or higher. I can do it.
  • the support containing nickel aluminate to which barium or lanthanum is added is not only stable during the heat treatment (firing process) during catalyst preparation, but also is subjected to severe contact partial oxidation reactions under high temperature and high steam partial pressure. The ring can be suppressed. Therefore, since the steam ratio can be increased in the catalytic partial oxidation process, the carbon precipitation reaction can be suppressed.
  • the carbon deposition reaction shown in the formulas (6) to (8) described in the background art is considered to occur at the acid point on the catalyst surface.
  • a strong acid point is obtained. It is considered that there is an effect of moderate adjustment. Therefore, it can be said that the precipitation of carbon can be effectively suppressed in the catalytic partial acid reaction using the catalyst of the present invention in combination with the ability to increase the steam ratio.
  • lanthanum and barium are thought to not only suppress the decrease in the surface area of the support containing nickel aluminate, but also improve the dispersibility and reaction activity of the supported platinum group elements. . Therefore, a small amount of platinum group element can be supported in a highly dispersed manner on the nickel aluminate carrier. As a result, the amount of necessary noble metal (platinum group element) supported can be reduced, and at the same time, a highly active catalytic partial oxidation catalyst can be obtained.
  • the amount of nickel supported in the support is 1% by weight or less, the amount of nickel added to alumina is too small to form a stable spinel nickel nickel aluminate. The effect is obtained because less metal nickel is produced. I can't.
  • the supported amount of nickel is 35% by weight or more, excessive NiO is generated and the heat resistance is impaired.
  • a sulfur that remains in a minute amount in the source gas and poisons the activity of the platinum group element. Part is adsorbed on the support at the inlet of the catalyst layer and the reduced nickel.
  • the supported amount of nickel is more preferably 3 to 25% by weight, still more preferably 5 to 25% by weight.
  • the present invention it is not limited to adding one of the components of palyme and lanthanum, but the effect can be obtained by adding both, but as can be seen from the experimental results described later, the effect of adding palyme compared to lanthanum. Therefore, it is more preferable to add barium. Further, the present invention does not exclude the addition of other components in addition to barium or lanthanum.
  • Nickel aluminate shows almost no activity for catalytic partial oxidation reaction, and NiO shows a complete oxidative activity of methane at 400 ° C to 700 ° C. However, it reports almost no modification activity. However, at temperatures higher than 7500 ° C, some nickel nickel aluminate is reduced by H 2 and CO to form metal nickel, which is highly active in the catalytic partial oxidation reactions shown in (1) to (5).
  • dissanayake et Al Journal Of Catalysis, 1 3 2, 1 1 7-1 2 7 (1 9 9 1)
  • nickel aluminate is reduced in a high temperature H 2, CO reducing atmosphere by catalytic partial oxidation reaction to produce metallic nickel, which can contribute to the reaction.
  • H 2 high temperature
  • platinum group elements used can be reduced, but it is necessary to suppress oxidation by oxygen and steam in the raw material gas. If hydrogen is not contained in the raw material gas, nickel will be introduced at an inlet temperature of 500 ° C or less. Is re-acidified.
  • the platinum group element is supported on the molded support containing the non-reducible nickel aluminate, the following effects can be obtained.
  • the catalytic partial oxidation catalyst is packed in an adiabatic fixed bed reactor, but the platinum group element supported on the outer surface of the support containing nickel aluminate is low even at temperatures as low as 200 ° C to 500 ° C. Has activity to initiate catalytic partial oxidation reaction. For this reason, the easily reducible platinum group element present on the outer surface of the support first raises the catalyst layer temperature to 700 ° C. or higher by catalytic partial acid-acid reaction under adiabatic conditions. The nickel and alumina etc.
  • NiO has strong partial acid activity and is a major cause of hot spots, so it suppresses hot spots by suppressing the generation of NiO.
  • platinum group elements to nickel aluminate contributes to the progress of a stable reforming reaction.
  • the particle diameter of the support 1 is 3 to 5 mm, it is preferable that 60% or more of the entire platinum group element 2 exists at a depth within 1 mm from the surface 3 of the support 1.
  • a method of supporting the white metal element on the support there is a method of coating the support with a solution or an aqueous solution of a platinum group element as described above, or a method of selectively adsorbing the platinum group element on the support. .
  • the carrier is impregnated with an alkaline solution such as a sodium nitrate solution, then the carrier is dried and calcined, and then impregnated with a metal salt solution of a white metal element such as an aqueous rhodium nitrate solution. And a method in which a white metal element is fixed to the support surface by reacting an alkali with a metal salt.
  • a white metal element is fixed to the support surface by reacting an alkali with a metal salt.
  • the platinum group element gallium (R h), ruthenium (R u), platinum (P t) is particularly preferable.
  • the reactor becomes large, and if it is 5% by weight or more, it becomes expensive and the dispersibility is poor, so it is not economical.
  • the platinum group element content in the catalyst is preferably 0.1 to 3% by weight, more preferably 0.1 to 2% by weight.
  • FIG. 2 is a schematic view of an apparatus for producing synthesis gas using the catalyst of the present invention.
  • a cylindrical reactor 4 is filled with the catalyst of the present invention to form a catalyst layer 5.
  • a raw material gas obtained by adding oxygen, steam, and carbon dioxide to a light hydrocarbon as a raw material is supplied from an inlet 41 at the upper part of the reactor 4, and is passed through a catalyst layer 5 to be partially oxidized. The reaction is performed, and the synthesis gas is taken out from the outlet 4 2 on the lower side of the reactor 4.
  • the number of moles of carbon dioxide / the number of moles of carbon in the hydrocarbon is preferred. Or from 0.01 to 0.6, and more preferably from 0.1 to 0.3.
  • the synthesis gas produced using the catalyst of the present invention is not limited to being used as a raw material for 0 to 12 and includes a gas used as a synthetic raw material for ammonia gas.
  • a gas used as a synthetic raw material for ammonia gas for example, air is used instead of pure oxygen from an oxygen plant, and air and steam are added to the feed hydrocarbons to obtain a synthesis gas containing hydrogen, nitrogen and carbon monoxide.
  • This synthesis gas is used as a raw material for ammonia synthesis by removing carbon monoxide in a later step.
  • Catalyst A containing 10% by weight as Ni.
  • Catalyst A has a color peculiar to cobalt blue spinel nickel aluminate, and X-ray diffraction measurements confirmed the formation of spinel nickel nickel aluminate.
  • Catalyst A containing 10% by weight of Ni is placed in a beaker, and this beaker is heated and rotated while spraying a rhodium nitrate aqueous solution (Tanaka Kikinzoku Co., Ltd.) into the beaker (by the spray method).
  • the catalyst was impregnated with A, dried, and then calcined at 80 ° C. to obtain catalyst R.
  • the catalyst R contained 0.5% by weight Rh.
  • Catalyst D containing 3% by weight of lanthanum and 10% by weight of 1 ⁇ : 1.
  • the catalyst was impregnated with an aqueous rhodium nitrate solution, dried, and then calcined at 800 ° C. to obtain catalyst S containing 0.5% by weight of 111.
  • dinitrodiammine platinum nitric acid solution (manufactured by Tanaka Kikinzoku Co., Ltd.) was impregnated in catalyst K, and the catalyst was dried and calcined in air at 800 ° C to obtain catalyst V containing 0.5 wt% Pt.
  • the shaped support containing 1,000 8 containing Ce was impregnated with 600 ccc of an aqueous solution in which 593 g of nickel nitrate hexahydrate was dissolved in the same manner as Catalyst 3.
  • the support was then dried and calcined to prepare catalyst P containing nickel aluminate added with 10% by weight as ⁇ and 3.0% by weight as Ce.
  • the catalyst P was impregnated with an aqueous rhodium nitrate solution in the same manner as the catalyst R, and dried and calcined to obtain a catalyst W carrying 0.5 wt% Rh.
  • a catalyst made of Hastelloy with an inner diameter of 14 mm ⁇ was filled with 1.4 cc of the catalyst, and a contact partial acid reaction was performed.
  • a sheath tube having an outer diameter of 3 ⁇ and an inguinal diameter of 2 ⁇ was inserted to measure the temperature.
  • the catalyst layer length was approximately 1.0 cm.
  • the reaction tube It was placed in a sand fluid bath heated uniformly at a predetermined temperature.
  • the raw material hydrocarbon used the mixed gas of the following specification The raw material hydrocarbon used the mixed gas of the following specification.
  • a raw material gas in which oxygen was mixed with a mixed gas of hydrocarbon, hydrogen and steam having the above composition was supplied to the reactor.
  • the raw material gas was mixed and preheated at a high linear velocity in an SUS pipe having an outer diameter of 6 ⁇ and an inner diameter of 4 ⁇ before being supplied to the reactor.
  • the reaction rate and selectivity were determined by gas flow measurement and composition analysis by gas chromatography. The reaction was carried out for 10 hours for each catalyst.
  • the hydrogen-to-hydrocarbon molar ratio (hydrogen / hydrocarbon) was increased to 0.08, but the C P O reaction did not start. Further, the temperature of the sand fluid bath was raised to 300 ° C, and the hydrogen to hydrocarbon molar ratio was increased from 0.02 to 0.08 in the same manner, but no CPO reaction occurred.
  • a CPO reaction test was conducted at 270 ° C in the same manner as in Comparative Example 1 except that catalyst D was charged.
  • the feed gas was supplied with the hydrogen to hydrocarbon molar ratio increased from 0.02 to 0.08, but almost no exotherm was observed and no CPO reaction was observed.
  • Catalyst W was charged into the reactor in the same manner as in Comparative Example 1, and the raw material gas was supplied at 270 ° C.
  • the hydrogen to hydrocarbon molar ratio was increased from 0.02 to 0.08, but the CPO reaction did not start.
  • Catalyst S was charged into the reactor in the same manner as in Comparative Example 1, and a CPO reaction test was performed under the conditions of 270 ° C and 0.3 MPa.
  • the maximum temperature in the catalyst layer after 10 hours was 1,097 ° C, and the hydrocarbon conversion rates of oxygen and C 2 or higher were all 100%.
  • the amount of carbon in the catalyst after the reaction was measured and found to be 0.02% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

本発明の目的は、高活性で長期間の耐久性を有する接触部分酸化用の触媒を提供することにある。また長期に亘って安定した接触部分酸化反応を実施することのできる方法を提供することにある。具体的な解決手段としては、接触部分酸化用の触媒は、アルミナまたはアルミナ前駆体に、ニッケルとバリウム及びランタンの少なくとも一方とを添加して焼成することにより得られた担体と、この担体に担持されたロジウムなどの白金族元素と、を備えている。担体は例えば600℃以上の温度で焼成することにより得られ、この焼成工程においてニッケルアルミネートが生成される。この触媒を断熱反応器に充填し、原料炭化水素に酸素及びスチーム及び水素を添加し(原料炭化水素に水素が含まれている場合は不要である)、反応器に供給する。

Description

明細書
炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法 技術分野
本発明は、 メタン及び炭素数 2以上の炭化水素を含む天然ガスや随伴ガス等の 軽質炭化水素に対し、 酸素を添加して部分酸ィヒを行うことにより一酸ィヒ炭素と水 素とを含む合成ガスを製造するときに用いられる触媒、 及び合成ガスの製造方法 に関する。 背景技術
近年、 石油、 石炭等化石燃料の大量消費に起因する地球環境問題や将来の石油 資源の枯渴問題が取り上げられていることから、 天然ガス等から製造されるクリ ーンな燃料である GTL (炭化水素液体燃料) や DME (ジメチルエーテル) が 注目されている。 GTLや DMEを製造する原料ガスは合成ガスと呼ばれ、 一酸 化炭素と水素とを含んでいる。
これまでの合成ガス製造法としては、 実績のあるスチーム改質法(SMR)や無 触媒下で酸素を用いる部分酸ィ匕法 (POX) が主流であつたが、 これらの製造方 法は、 大型の合成ガス製造装置が必要となる GTLや DMEプラントに適用する 場合には次のような難点がある。 例えば SMR法では、 大型の SMR装置は多数 の反応管を必要とするため、 設置面積が大きくなり経済性の面でも不利である。 また天然ガスを原料とした場合、 POX法は GT L, DME用の原料合成ガスとし て必要な H2/CO比の調整が困難である等の欠点がある。
また合成ガス製造法の他の手法として、 酸素パーナ一を用いた酸化反応とスチ 一ム改質反応とを同一反応器内で行うォートサーマノレリフォーミング法 (ATR 法) がある。 この方法は、 大型ィ匕に適していると共に H2/CO比のコントロー ルが容易であり、 最近実績をあげてきているが、 天然ガス等のように C 2以上成 分が含まれているとバーナー部分に炭素質析出によるトラプルが発生することが 知られている。 そのため AT R装置の前段にスチーム改質反応器を設置し、 この 反応器にて天然ガス中の C 2 (炭素数 2) 以上の成分とメタンの一部とを改質し 水素含有ガスを得て、 これを ATR装置に供給する方法が採用されている (非特 許文献 1) 。
しかしこのような 2段改質を行うと、 大型商業装置ではスタートアップ、 ター ンダウン、 シャットダウン等における操作が煩雑であり、 また設備が大型化する といつ欠点カ§めった。
これに対し触媒の存在下において、 炭化水素原料を高濃度酸素で部分酸化し合 成ガスを得る接触部分酸ィ匕法(C P O: Catalytic Partial Oxidation)の開発 が注目されている。 接触部分酸化法はパーナ一が無いため C 2以上の成分が含ま れていてもプレリフォーマーを必要としない点において、 ォートサーマルリフォ 一ミング法に比較して優れている。 更に触媒による反応の速度が極めて速いため 、 数万〜数百万の高 SV条件下でも反応が完結することから反応器が小さくなる という利点がある。
この反応はメタンを例にとれば主として下記の反応が含まれる。
(1) CH4+l/202→ 2H2+CO 厶 H 298 = — 36 kj/mol
(2) CH4+2 θ2→ CO2+2H2O ΔΗ298 = - 879 k J/ mol
(3) CO+H2〇→ CO2+H2 ΔΗ298 =— 42kJ7 mol
(4) CH4+H20→CO+3H2 ΔΗ298 = + 206 kj/ mol
(5) CH4+C02→2 CO+2H2 Δ H 298 = + 248 kj/ mol
( 1 )〜( 5 )の反応は併発あるレ、は逐次的に進行し、 出口ガス組成は平衡に支配 されるが、 反応全体としては非常に大きな発熱反応である。 この反応は(1)と( 2)の反応速度が極めて速く、 特に(2)の完全酸ィヒの反応熱が大きいため触媒層 入り口部でホットスポットが発生する。 図 4は、 反応器の入り口側から出口側に 至るまでの位置を横軸にとり、 縦軸に触媒層の温度をとつたグラフであり、 ホッ トスポットとは、 触媒層の入り口にて点線のように局所的に非常に高温になる現 象をいう。 ホットスポットが発生すると、 触媒のシンタリング (収縮) 及ぴ炭素 質の析出による劣化が起こり、 また触媒に炭素質が析出付着すると反応容器内の 上流側部位の圧力が下流側部位の圧力に比べて過大になり、 容器の耐圧を越える おそれなどの問題がある。 なお図 4におレ、て実線の山の部分はホットスポットが 抑えられた状態を示しており、 この場合には触媒のシンタリング及び炭素質の析 出による触媒の劣化が少ない。 触媒のシンタリングに関しては、 仮にホットス ポットが抑えられたとしても、 上述のように極めて高い発熱反応により下記に示 したように副反応である炭素質の生成が起こり、 その結果、 触媒活性の低下や反 応器の閉塞が起こることが知られている。
(6) CH4→C+2H2
(7) 2 CO→C+C02
(8) CnHm→nC+ (m/2) H2
この炭素質の生成による触媒の劣ィヒを抑制する方法としては、 原料ガス中にス チームを添加して原料ガス中のスチーム z炭素比を大きくすることにより触媒上 での炭素質の生成を抑制する方法がある。 しかし高温 ·高スチーム分圧下では逆 に担体のシンタリングが促進され活性表面積の減少による劣化が加速するという 問題がある。
そしてまた接触部分酸化プロセスは非常に大きな発熱反応であることから、'触 媒は極めて高い耐熱性が要求される。 以上のことから、 接触部分酸化法は、 実用 化が極めて困難な技術である。
一方、 (1)式で示される反応だけが選択的に進行すれば発熱が少なくかつ高収 率で H2/CO=2.0の GTL用として理想的な合成ガスを製造することができ るため、 直接的部分酸化反応として( 1 )式反応を選択的に進行させる手法が最近 盛んに研究されている。
特許文献 2では、 このような直接的部分酸化法(D C P O)が提案されている。 ここでは、 耐熱性に優れた アルミナや安定化ジルコユアからなる担体に、 活 性種として1 11.1^八1204等で表されるスピネル構造体 (Μは、 Co、 Al、 L i、 T i、 N i、 Mn、 C d、 Z n、 Cu、 Mg、 Caヽ F e、 Mo及び L aから 選ばれる物質あるいはこれらの混合物) を担持した触媒が用いられる。 そして高 SV条件下において炭化水素と酸素とを混合した原料ガスを 10ミリ秒以下の接 触時間で通過させることによって( 1 )式で示した反応だけを選択的に行うように している。
ところで長時間にわたって( 1 )式のみの反応を選択的に維持することは極めて 困難であり、 特許文献 2には、 触媒の添加物質が列挙されていても、 どの添加物 質が効果的であるか、 あるいはどの添加物質の組み合わせが効果的であるかとい つた点については触れられていない。
他方、 (1 )〜(5 )の平衡で支配される接触部分酸ィヒ法反応に関しては、 特許文 献 3において、 天然ガス原料にスチームを添加しスチームモル数 Z炭素モル数を 0. 2 0、 酸素モル数/炭素モル数が 0. 5 8、 入り口温度 2 0 0 °C、 反応器出口 ガス温度 1 0 3 3 °Cでの接触部分酸ィ匕反応の例を開示している。 このような高酸 素比の反応条件下において接触部分酸化触媒として公知の貴金属系や N i系触媒 を用いると、 (2 )の反応が優先するために触媒層入り口部でホットスポットが発 生し、 その結果シンタリングゃ炭素質生成による触媒劣化が著しくなる。 このた め特許文献 3では、 発熱の少ない低酸素比の接触部分酸化プロセスと AT Rプロ セスとの組み合わせプロセスを提案している。 この場合 A T Rと同様に 2段改質 となることから設備の大型化、 操作の煩雑化という欠点がある。
このような背景から、 上記した如く将来的な G T Lや DMEの需要増大に対処 するための大容量の合成ガス製造方法として、 1段改質である接触部分酸化法の 開発が期待されている。 しかしその実現のためには、 ホットスポットを生成しな いような反応の選択性及ぴ耐久性に優れた触媒及ぴプロセスの開発が求められて いる。
上記したように接触部分酸化プロセスの商業ィヒが困難な理由として、 高酸素比 条件下における触媒層入り口部でのホッ小スポットの発生が挙げられるが、 更に 接触部分酸化反応に対する高活性触媒として知られる P' tや R hは希少金属であ り、 非常に高価であるという点も挙げられる。
そこで非特許文献 4では、 このホットスポットの発生を抑制し、 かつ高価な貴 金属の担持量を減らすため(3 )〜(5 )式で表されるメタン改質活性が高い N iと ( 1 )〜(2 )式で示されるメタン酸ィ匕活性が高い P tとを組み合わせた P t -N i パイメタル触媒を提案している。 N iは部分酸ィ匕反応と改質反応のいずれにも高 い活性を示すが、 N i Oは吸熱反応である改質活性を持たないことから、 N i O の存在はホットスポットの要因となる。 非特許文献 4では、 酸化され難く、 酸ィ匕 活性と改質活性を併せ持つ P tとのパイメタル触媒とすることで、 N iの酸化を 抑制できると報告している。 しかし高価な貴金属をできるだけ有効に利用するた めの具体的方法が開示されていない。 即ち、 N i Oは、 予備還元処理することで N iとなるが、 この N iの酸化を抑制するためには N iに対して相当量の P tを 要し、 結果として P tの量の大幅な低減を期待できず、 従って P t-N iバイメ タル触媒についても商業化が困難であると考えられる。
また接触部分酸化反応は前記した如く極めて高い発熱反応であるため、 触媒層 は 1◦ 00°C以上の高温 ·高スチーム分圧雰囲気に長時間晒される。 このため接 触部分酸化プロセスを商業化させるためには、 ホットスポットの生成を抑制する だけでなく、 いかにして触媒のシンタリング及び炭素質の生成を抑制するかが重 要な鍵となる。 以上のことから、 接触部分酸ィ匕反応における課題としては、 主に 下記の事項が挙げられる。
(l)Rh, P t, Ru等の貴金属量の低減 (2)ホットスポット発生の抑制 (3) 高温 .高スチーム分圧条件下でのシンタリングの抑制 (4)炭素質析出の抑制 ( 5 )耐熱衝撃性に優れた担体の開発
非特許文献 1
PEC-2000 L-07、 「天然ガス ·重質残油を原料とする液体燃料化技術 に関する調査」 (2001年 3月、 (財) 石油産業活性化センター)
特許文献 1
. WO 02/066403 A 1のクレーム 2及ぴ第 6頁 3段〜第 7頁 7行 特許文献 2
特開 2002-97479号公報:段落 0031 非特許文献 2
富重圭一,国森公夫, PERROTECH, 26, 433 (2003) 発明の開示
本発明は、 このような事情の下になされたものであり、 その目的は、 高活性で かつ高選択性であり長期間の耐久性を有する接触部分酸化用の触媒を提供するこ とにある。 また本発明の他の目的は、 この触媒を用いることで、 長期に亘つて安 定した接触部分酸化反応を実施することのできる方法を提供することにある。 本発明者は、 部分酸化とスチーム改質に活性がありかつ比較的安価である二ッ ケルに先ず着目し、 そして接触部分酸化用の触媒として要求される高温、 高スチ ーム下でも安定な担体である、 ニッケルとアルミナとを 6 0 0 °C以上の高温で焼 成してなるスピネル型構造を多く含むニッケルアルミネートに着目した。 しかし ニッケルアルミネートだけでは、 十分な耐熱性が得られないことから鋭意研究の 結果、 更にランタン又はパリゥムを添加することにより反応中の高温'高スチー ム分圧雰囲気下においてもニッケルアルミネートを含む担体のシンタリングが著 しく抑制されることを見出した。 この熱的に安定な二ッケルアルミネ一トを担体 として接触部分酸化反応活性が高い白金族触媒の使用を検討した。 このような観 点から本発明がなされている。
本発明は、 メタン及ぴ炭素数 2以上の軽質炭化水素を含む原料炭化水素に少な くとも酸素及びスチームを添加して原料炭化水素を接触部分酸化し、 一酸化炭素 と水素とを含む合成ガスを製造するときに用いられる炭化水素の接触部分酸化用 の触媒において、
アルミナまたはアルミナ前駆体に、 ニッケルとバリゥムとを添加して焼成する ことにより得られた担体と、
この担体に担持された白金族元素と、 を含むことを特徴とする。
他の発明に係る触媒は、 アルミナまたはアルミナ前駆体に、 ニッケルとランタ ンとを添加して焼成することにより得られた担体と、 この担体に担持された白金 族元素と、 を含むことを特徴とする。
前記軽質炭化水素は、 例えば炭素数が 6以下の炭化水素を含む。 前記担体は、 アルミナまたはアルミナ前駆体に、 ニッケルとバリウムとランタンとを添加して 焼成するようにしてもよい。
白金族元素としては、 例えばロジウム、 ルテニウム及ぴ白金の中から選択され た元素である。 担体を得るときの焼成温度は 6 0 0 °C以上とすることにより、 二 ッケルアルミネートを含む担体を得るようにしてもよい。 本発明では、 ッケル アルミネートとは、 ニッケルとアルミニウムの複合酸ィ匕物の形態をもち、 ニッケ ル (N i ) 及ぴアルミニウム (A 1 ) 原子が酸素原子を介して互いに配位してい る構造をいう。 本発明における触媒調製時の担体には少なくとも N i Al 2〇4で 表されるスピネル型構造を多く含むニッケルアルミネートが含まれていることが 必要であり、 スピネル以外の構造を有する金属アルミネートやへキサアルミネー ト等と共存するものでもよい。 また担体中におけるニッケルの含有割合は、 1 〜3 5重量%であることが好ましい。 更に担体中におけるバリゥム及び/または ランタンの合計含有割合は◦. 1〜2 0重量%であることが好ましレ、。 担体中に おけるパリゥム及び/またはランタンの合計含有割合は 0 . 1〜 2 .0重量。/。であ ることが好ましい。 触媒中における白金族元素の含有割合は 0 . 0 5〜5 . 0重 量。 /0であることが好ましい。 白金族元素は、 酸化物、 水酸化物または金属等の形 態で担体の表面から 1 mm以内の深さ領域に 6 0 %以上存在するように担持され ていることが好ましい。
また本発明の合成ガスの製造方法は、 メタン及び炭素数 2以上の軽質炭化水素 を含む原料炭化水素に少なくとも酸素及びスチームを添加してなる原料ガスであ つて、 原料炭化水素に水素が含まれていることにより及び/または水素を添加す ることにより水素が含まれる原料ガスを、 反応器内に供給する工程と、
前記反応器内に設けられた本発明の触媒と前記原料ガスとを加熱状態で接触さ せて、 原料炭化水素を接触部分酸化し、 一酸化炭素と水素とを含む合成ガスを製 造する工程と、
前記合成ガスを前記反応器から取り出す工程と、 を含むことを特徴とする。 本発明方法において、 原料ガス中における酸素のモル数 Z炭化水素中の炭素の モル数は例えば 0 . 2 ~ 0 . 8であり、 スチームのモル数/炭化水素中の炭素の モル数は例えば 0 . 2〜0 . 8である。 また原料ガス中における水素のモル数 Z 炭化水素のモル数は例えば 0 . 0 0 1〜0 . 1である。
原料ガス中には、 例えば二酸化炭素のモル数/炭化水素中の炭素のモル数が 0 . 0 1〜0 . 6で二酸化炭素ガスが含まれるようにしてもよく、 この場合、 反応 器出口からのガスから回収した二酸ィヒ炭素ガスをリサイクルすることが好ましい 。 また本発明方法は、 触媒に対して前処理としての還元処理を行わずに、 原料ガ スを反応器内に供給し、 接触部分酸ィ匕反応を開始するようにしてもよい。 本発明 方法の具体例としては、 原料ガスを 2◦ 0 °C〜5 0 0 °Cに予備加熱した後に、 圧 力が常圧〜 8 M P a、 空塔速度が 5, O O O h r―1〜 5 0 0, 0 0 0 h r - 1の条 件で反応器内に供給し、 断熱反応条件下で触媒と接触させる方法を挙げることが できる。 なお本発明方法において、 触媒は前処理としての還元処理を必要としな いが、 反応前に例えば 4 0 0 °C以下で白金族を還元して用いることもできる。 以上において、 本発明でいう 「原料炭化水素に少なくとも酸素及びスチームを 添加して」 とは、 酸素及びスチームの他に窒素を添加する場合、 例えば空気及び スチームを添加する場合も含まれる。 この場合には、 「合成ガス」 は、 一酸化炭 素と水素と窒素とを含むガスになり、 後工程で一酸化炭素を除去することにより 、 アンモニアの合成原料ガスとなる。
本発明によれば、 アルミナまたはアルミナの前駆体にニッケルを添加して焼成 することでスピネル型を多く含むニッケルアルミネートを担体として得ているが 、 更にバリウム及びランタンのうちの少なくとも一方を添カ卩しているため、 ニッ ケルアルミネートが高温で収縮し表面積が減少するシンタリング作用が抑えられ る。 このため触媒調製時の焼成段階におけるシンタリングを抑制できるので、 白 金族元素を少量でありながら高い分散状態で担持することができ、 高い活性を得 ることができると共に高価な白金族元素の使用量を低減できる。 また接触部分酸 化反応時における高温、 高スチーム分圧下にお ヽても担体であるニッケルアルミ ネートのシンタリングが抑えられる。 接触部分酸化反応においては、 スチームを 加えることで触媒上における炭素質の生成を抑えることができるが、 一般にスチ ームの存在により担体のシンタリングが加速される。 従ってこの発明では、 スチ ームの存在による担体のシンタリングが抑えられることから、 反応中における高 温、 高スチーム分圧下での安定性が実現でき、 結果として触媒上における炭素質 の生成を抑えることができることになる。
またニッケル触媒を用いた接触部分酸ィヒ反応では、 大きな発熱反応を伴うメタ ンと酸素との反応が優先し、 ニッケル酸ィ匕物 (N i O) が生成され、 N i Oは部 分酸化活性が強いことから、 特に触媒層の入り口において触媒の温度が異常に高 くなるホットスポットの現象が起こる。 しかし本発明では、 二ッケルアルミネ一 トを含む担体に白金族元素を担持させていることから、 まず白金族元素によって 水素及び一酸化炭素が生成され、 触媒表面上で還元雰囲気が形成されるので、 二 ッケルアルミネートの還元が促進され、 また原料ガス中の水素によりニッケルの 再酸化が抑えられる。 この結果触媒表面は、 部分酸化とスチーム改質に活性を有 する白金族元素とニッケルとが占めることになるので、 安定した接触部分酸化反 応が得られ、 ホットスポットの発生が抑えられる。 このようにホットスポットが 抑えられることと、 パリゥム及び/またはランタンの添加によりシンタリングが 抑制されることと、 が相俟って、 接触部分酸化プロセス中のシンタリング及び炭 素質生成による触媒劣化を効果的に抑えることができる。
以上のことから、 上述の触媒を用いた本発明の合成ガス (一酸化炭素と水素と を含むガス) の製造方法によれば、 長期に亘つて安定した接触部分酸化反応を実 施することができ、 例えば天然ガスから、 G T Lや DM Eの原料となる合成ガス を得るにあたって、 極めて有効な手法である。 そして高温でも安定で高活性な触 媒を用いているため、 反応器が小型化でき、 経済性に優れたプロセスを行うこと ができる。 また触媒の活性が高いので原料ガスを低温で予熱し、 反応器に供給で きるため、 高酸素濃度の原料ガスの自発着火を防ぐことが可能となり、 その結果 装置の運転上の安全性向上および計装の簡略化が可能となる。 図面の簡単な説明
図 1は、 本発明の触媒において担体中に白金族元素が表面近くに高濃度に存在し ている状態を示す説明図である。
図 2は、 本発明の合成ガスの製造方法に用いられる装置を示す概略図である。 図 3は、 担体中のアルミナに対するバリゥムまたはランタンの添加量と担体の比 表面積との関係を示す特性図である。
図 4は、 反応器内のガスの流れ方向における位 ¾と触媒層の温度との関係を示す 特性図である。 発明を実施するための最良の形態
本発明の炭化水素の接触部分酸ィ匕用の触媒は、 例えば次のようにして製造する ことができるが、 特に例に開示する方法に限定するものでは無い。 先ずべ一マイ ト、 擬ベーマイトあるいは水酸ィヒアルミニウム等のアルミナ前駆体の粉末又は γ , T] ,ズ—アルミナ等の αアルミナ以外のアルミナの粉末を用意し、 これら粉末に 例えばランタンあるいはパリゥムの塩、 例えば硝酸塩の粉末あるいはその水溶液 等と更に必要に応じて成型助剤としてのバインダーとを混合し、 その混合物に水 を添加して水分の調整を行う。 次いで、 この混合物を押し出し成型機に入れて一 定のサイズに押し出し成型を行い、 例えば粒径 5 mmの粒状体群を得、 これを加 熱乾燥した後、 電気炉に入れて例えば 6 0 0 °Cで 5時間焼成する。 なお粒状体群 の粒径は特に限定されないが、 商業装置のような大型装置に充填する場合には反 応器の圧損を小さくするために 3 mm以上が好ましく、 5 mm以上がより好まし い。 また押出し成型以外にも打錠成型や転動造粒等の方法でも良く成型法は特に 限定されない。
そしてこの焼成物であるランタンあるいはパリゥムを添加したアルミナ担体を 、 二ッケル塩水溶液である例えば硝酸二ッケル水溶液の入った容器内に浸漬して 、 当該水溶液を含浸させ、 次いでこの焼成物を乾燥した後、 電気炉内にて例えば 1 1 0 0 °Cで 2 4時間焼成を行う。 このような処理を施すことにより、 ランタン ( L a ) あるいはバリウム (B a ) が添加されたニッケルアルミネートを含む担 体が得られる。
また前記焼成物を二ッケル塩水溶液に浸漬する代わりにランタンあるいはバリ ゥムを添加したアルミナ担体の吸水率に相当する液量になるように濃度調整した ニッケル塩水溶液を前記焼成物に含浸する方法 (ポアフィリング法) も好適に用 いられる。 ニッケルの担持量が多い場合には含浸を繰り返すことにより担持する ことが出来る。
その他の方法として例えば予めニッケル塩とアルミナ前駆体またはアルミナの 粉末とランタンあるいはパリウムの塩又は酸ィ匕物を成型助剤と一緒に混合し水を 加えて成型し焼成する方法でも上記したニッケルアルミネートを含む担体を得る ことが出来る。
その後、 前記ニッケルアルミネートを含む担体を容器内に入れてこの容器を加 熱しかつ回転させながら白金族元素の塩、 例えば硝酸ロジウム水溶液を担体に噴 霧することにより、 当該水溶液を担体に含浸させる。 続いてこの担体を乾燥した 後、 電気炉内にて例えば 6 0 0 °Cで 3時間焼成を行うことにより、 前記担体に口 ジゥムなどの白金族元素が担持された本発明の触媒を得る。
ランタンあるいはパリゥムの塩としては、 硝酸パリゥムゃ硝酸ランタンなどの 硝酸塩、 亜硝酸塩等に限らず、 酸化バリウム、 酸化ランタンのような酸化物、 水 酸化バリウム、 水酸化ランタン等の水酸化物、 炭酸バリウムや炭酸ランタン等の 炭酸塩、 酢酸バリウムや酢酸ランタン等の有機酸塩等が好適に用いられる。 またニッケル塩としては、 既述の硝酸ニッケルの他、 水酸化ニッケルや酸化二 ッケルなどであってもよいし、 あるいはギ酸ニッケル、 酢酸ニッケル、 シユウ酸 ニッケルなどの有機塩であってもよい。 焼成物に二ッケル塩水溶液を含浸する方 法は、 例えば容器内に焼成物を入れてこの容器を加熱しかつ回転させながらニッ ケル塩水溶液を焼成物に噴霧するようにしてもよレ、。
また触媒の形状は、 円柱状、 球形やタブレットに限らず、 反応器の圧損を小さ くする目的でハニカム状、 モノリス状、 リング状、 ガーゼ状、 発泡体等の多孔体 構造としてもよい。
ハ-カムのようなモノリス構造体を採用する場合、 アルミナ前駆体またはアル ミナの粉末にランタンあるいはバリゥム塩と水を混合したスラリーを、 金属ゃセ ラミックスのような耐火性無機構造体に塗布し、 乾燥、 焼成し、 その後ニッケル 塩溶液に浸漬、 乾燥、 焼成するようにしてもよく、 この方法によってもニッケル アルミネートを含む担体に白金族元素を担持することができる。 この場合、 ニッ ケル塩を最初から混合し、 焼成の工程を 1回で行う方法でもニッケルアルミネー トを形成することが出来、 本発明の触媒を製造することができる。
更に担体に白金族元素を担持する手法としては、 白金族元素の水溶液又は溶液 を担体にコーティングするかまたはポアフイリング法あるいは担体に選択吸着さ せるなどの方法を採用してもよい。
ところでアルミナは担体として優れた安定性と活性金属の分散性を示すが、 通 常担体として用いられている γアルミナは、 接触部分酸化反応条件下では表面積 が数 m2 / g以下しかない ο;アルミナに転移する。 このように反応中に担体が構造 変化して表面積が著しく低下するため、 触媒調製時に白金族元素を高分散に担持 しておいても反応中に活性金属の粒子が成長することによる活性点の減少が起こ り、 触媒活性の劣化が起こってしまう。 また aアルミナに最初から担持した場合 は極めて小さな表面に白金族元素を担持することになるため高分散化することは 不可能である。
また接触部分酸化反応は極めて高い発熱反応であり、 触媒は高温 ·高スチーム 分圧下に晒されることから、 ニッケルアルミネートを含んだ担体は予め 6 0 0 °C 以上、 好ましくは 7 0 0 °C以上の高温で焼成しておくのが好ましい。 しかしニッ ケルアルミネートを含む担体を高温で焼成した場合、 二ッケルアルミネートを含 んだ担体が焼成時の熱処理によりシンタリング (収縮) してしまい表面積が小さ くなつて白金族元素の分散が悪くなつてしまう。 即ち、 ランタンやバリゥムを添 加しないで焼成することによって得られたニッケルアルミネートを含む担体は表 面積が小さく、 またこのような表面積が小さい担体に担持した白金族元素の分散 性は低く、 反応活性が低 ヽ結果となる。
これに対してランタン又はパリゥムとニッケルを含有させ、 例えば 8 0 0 °C以 上の高温で焼成することによつて高表面積で熱安定性に優れた二ッケルアルミネ ートを含んだ担体を得ることが出来る。 そしてバリウム又はランタンを添加した ニッケルアルミネートを含む担体は、 触媒調製時における熱処理 (焼成工程) に おいて安定であるだけでなく、 高温 ·高スチーム分圧下での過酷な接触部分酸化 反応中でもシンタリングを抑制できる。 従って接触部分酸化プロセスにおいてス チーム比を高くすることが可能となったことから、 炭素の析出反応を抑えること ができる。 また背景技術の項目で記載した( 6 )〜( 8 )式に示す炭素析出反応は、 触媒表面上の酸点で起きると考えられるが、 塩基性のバリウムやランタンの添加 により、 強い酸点を適度に調整する効果があると考えられる。 従って、 スチーム 比を高くできることと相俟って、 本発明の触媒を用いた接触部分酸ィヒ反応では、 炭素の析出を効果的に抑えることができるといえる。
また詳しい理由は不明だが、 ランタン及びバリゥムはニッケルアルミネートを 含んだ担体の表面積の低下を抑制するだけでなく、 担持された白金族元素の分散 性及び反応活性を向上させる効果があると考えられる。 従ってニッケルアルミネ 一ト担体に少量の白金族元素を高分散に担持することが可能となる。 その結果必 要な貴金属 (白金族元素) の担持量を低減させると同時に高活性な接触部分酸化 触媒を得ることが出来る。
ここで、 担体中の二ッケルの担持量が 1重量%以下では、 アルミナに対し添加 された二ッケルの量が少なすぎて安定なスピネル型二ッケルアルミネ一トを形成 することが出来ず、 また還元されて生成する金属ニッケルが少ないため効果が得 られない。 またニッケルの担持量が 3 5重量%以上では過剰な N i Oが生成し耐 熱性が損なわれる。 そしてニッケルとして 1〜3 5重量%の範囲のニッケルアル ミネートを含む担体に白金族元素を担持していることによって、 原料ガス中に微 量に残存し、 白金族元素の活性を被毒するサルファー分が触媒層入り口部の担体 及び還元されたニッケルに吸着する。 この結果触媒層下流の白金族元素の失活を 防止することができる利点もある。 ニッケルの担持量は、 より好ましくは 3〜 2 5重量%であり、 更により好ましくは 5 ~ 2 5重量%である。
ニッケルアルミネートに対するバリウム及びランタンの添加量は、 0 . 1重量 %以下では効果が得られず、 2 0重量%以上添加しても効果の向上はそれほど見 られない。 バリウム及びランタンの添加量は、 より好ましくは 0 . 5〜1 5重量 %であり、 更により好ましくは 1〜1 5重量%である。
本発明ではパリゥム及ぴランタンのうちの一方の成分を添加することに限られ ず、 両方添加しても効果が得られるが、 後述の実験結果から分かるようにランタ ンに比べてパリゥムの添加効果の方が大きいことから、 バリゥムを添加すること がより好ましい。 また本発明はバリゥムあるいはランタンに加えて他の成分が添 加されることを排除するものではない。
そして本発明のように、 ランタン又はパリゥムを添カ卩したニッケルアルミネー トを含む担体に白金族元素を担持すると、 担持された白金族元素や N iが還元さ れ易くなり高温での予備還元処理無しでも原料ガスを 2 0 0 °C〜4 0 0 °Cで供給 すれば反応を開始する。
Dissanayake等の報告によればニッケルアルミネートは接触部分酸化反応に対 して殆ど活性を示さず、 N i Oは 4 0 0 °C〜7 0 0 °Cでメタンの完全酸ィヒ活性は 示すが改質活性は殆ど示さないことを報告している。 しかし 7 5 0 °C以上では一 部の二ッケルアルミネートが生成した H 2と C Oにより還元され金属二ッケルが 生成し、 (1 )〜(5 )に示した接触部分酸化反応に高い活性と選択性を示すことを 報告している [Dissanayake et Al , Journal Of Catalysis, 1 3 2, 1 1 7 - 1 2 7 ( 1 9 9 1 ) ]
この報告にあるようにニッケルアルミネートは接触部分酸化反応による高温の H 2 , C O還元雰囲気下では還元されて金属ニッケルを生成し、 反応に寄与出来 る。 その結果白金族元素の使用量を低減できるが、 原料ガス中の酸素とスチーム による酸化を抑制する必要があり、 水素が原料ガス中に含まれていないと入り口 温度 5 0 0 °C以下ではニッケルが再酸ィヒされる。
本発明では成型した難還元性のニッケルアルミネートを含む担体に、 白金族元 素を担持しているため次のような作用が得られる。 接触部分酸化触媒は断熱型固 定床反応器に充填されるが、 ニッケルアルミネートを含む担体の外表面に担持さ れた白金族元素は 2 0 0 °C〜5 0 0 °Cの低温でも接触部分酸化反応を開始する活 性を有する。 このため担体の外表面に存在する易還元性の白金族元素がまず断熱 条件下で接触部分酸ィ匕反応によって触媒層温度を 7 0 0 °C以上に上昇させる。 そ してこの反応によ.り生成した C O及び H 2によってニッケルアルミネ一ト等がー 部還元されて微細な金属二ッケルとなるが、 この金属二ッケルは原料ガス中に含 まれる低濃度水素により還元状態を維持することができる。 N i Oは、 背景技術 の項目にて記載したように、 部分酸ィヒ活性が強く、 ホットスポットの大きな要因 になっていることから、 N i Oの生成が抑えられることによりホットスポットが 抑制され、 ニッケルアルミネートへの白金族元素の添加は、 安定した改質反応の 進行に寄与することとなる。
ここで成型した二ッケルアルミネートを含む担体に白金族元素を担持させるに あたっては、 図 1に示すように担体 1の表面から浅い領域に白金族元素 2が多く 存在するように担持することが望ましい。 例えば担体 1の粒径が 3〜 5 mmであ れば、 担体 1の表面 3から l mm以内の深さにおいて、 白金族元素 2全体の 6 0 %以上が存在するように構成することが好ましい。 このように白金属元素を担体 に担持させる手法としては、 既述のように白金族元素の溶液または水溶液を担体 にコーティングする方法、 または白金族元素を担体に選択吸着させるなどの方法 が挙げられる。 また他の方法としては、 硝酸ナトリゥム溶液などのアル力リ溶液 を担体に含浸させた後、 担体を乾燥、 焼成し、 その後硝酸ロジウム水溶液などの 白金属元素の金属塩溶液を含浸させ、 担体上でアルカリと金属塩とを反応させて 白金属元素を担体表面に固定するなどの方法が挙げられる。 白金族元素として口 ジゥム (R h ) 、 ルテニウム (R u) 、 白金 (P t ) 特にロジウムが好ましいが 、 触媒中における白金族元素の含有量が 0 . 0 5重量%以下では活性が低いため 反応器が大きくなり、 また 5重量%以上では高価格になりまた分散性が悪くなる ため経済性に欠ける。 触媒中における白金族元素の含有量は、 好ましくは 0 . 1 ~ 3重量%、 更に好ましくは 0 . 1〜2重量%でぁる。
図 2は本発明の触媒を用いて合成ガスを製造するための装置を概略的に示した 図である。 4は円筒状の反応器であり、 この中に本発明の触媒を充填して触媒層 5が形成されている。 この装置では、 原料である軽質炭化水素に酸素、 スチーム 、 二酸ィヒ炭素を添加してなる原料ガスを反応器 4の上部の入り口 4 1から供給し 、 触媒層 5を通過させて部分酸化反応を行わせ、 反応器 4の下方側の出口 4 2か ら合成ガスが取り出される。
N i Oの再酸化を防止するためには、 原料ガス中において水素が水素対炭化水 素モル比 (水素/炭化水素) で 0 . 0 0 1〜0 . 1の範囲で含有されることが必 要であるが、 原料炭化水素を前処理脱硫反応器で処理する場合、 水素濃度がこの 範囲に入っていれば添加する必要は無く、 脱硫後の炭化水素をそのまま供給する ことが出来る。 また原料炭化水素中に水素が含まれていない場合には、 水素を添 加すればよい。
さらに特願 2 0 0 4 - 2 9 8 9 7 1に開示された如く、 脱硫後の原料炭化水素 をスチームで低温水蒸気改質し、 炭素数 2以上の炭化水素をメタンと水素に変換 した後で接触部分酸ィ匕する方法でも実施できる。
原料ガス中における酸素は、 少なすぎると原料炭化水素が部分酸化されずに排 出されてしまい、 逆に多すぎると触媒層のピーク温度が高くなりすぎて、 触媒の 劣化を促進してしまう。 このため酸素の含有量については、 酸素のモル数ノ炭化 水素中の炭素のモゾレ数が 0 . 2〜0 . 8であることが好ましい。 また触媒表面に おける炭素の析出を抑えるためにスチームを入れることが必要であるが、 あまり 多すぎると、 触媒のシンタリングを促進してしまうため、 スチームの含有量につ いては、 スチームのモル数/炭化水素中の炭素のモル数は 0 . 2〜0 . 8である ことが好ましい。
また、 背景技術の項目の (5 ) 式の反応を進行させて合成ガスの収率を高くす るために、 原料ガス中には二酸化炭素を含有させることが好ましい。 二酸化炭素 の含有量については、 二酸化炭素のモル数/炭化水素中の炭素のモル数が好まし くは 0. 01〜0. 6であり、 より好ましくは 0. 1〜0. 3である。
原料ガスは例えば 200°C〜500°Cに予備加熱されて反応器 4内に供給され 、 反応器 4の入り口 41における圧力は例えば常圧〜 8MP aである。 また空塔 速度 (GHS V) は、 好ましくは例えば 5 , 000 h r -1〜 500 , 000 h r-1であり、 より好ましくは 20, O O O h r -1〜 200, O O O h r-1である 反応器 4内に原料ガスを供給すると、 触媒により背景技術の項目の (1) 式と (2) 式に示した酸ィヒ反応が起こり触媒層 5の入り口では大きな発熱が生じるの で当該部位の温度が上昇する。 そして触媒層 5の入り口よりも下流側では、 既述 の (1) 〜 (5) 式が同時に進行し平衡組成に到達するので、 触媒層 5の温度は 原料ガスの組成と反応圧力によつて決定される出口ガス組成の平衡温度、 例えば 1 100°C程度の温度に安定する。 反応器 4の出口 42では、 1 100°Cにおけ る平衡で決まる組成のガス、 即ちほとんど一酸化酸素及び水素カゝらなる合成ガス が得られる。 この合成ガス中には二酸化炭素が含まれるが、 後段の工程にて合成 ガスから二酸化炭素が分離され、 この二酸化炭素が原料ガスに加えられて反応器 4内に供給され、 こうして二酸化炭素が再使用 (リサイクル) される。
このように本発明の触媒は低温での活性が高レ、ことから、 原料ガスを低温で反 応器 4内に供給することができ、 そのため高酸寧濃度の原料ガスによる自発着火 を防止することが可能となり、 プロセス設計上安全性が高められる。
また本発明では、 触媒表面において接触部分酸化反応に寄与する金属二ッケル が反応中に生成するので、 高価な白金族元素の添加量を低減でき、 安価な接触部 分酸化触媒の製造が可能である。
本発明に係る接触部分酸化触媒を製造する場合、 原料ガス中に塩素分が含まれ て、 焼成後においても一定濃度で塩素が残留すると。 反応器下流において露点以 下の温度条件になる配管、 機器等で応力腐食割れや減肉腐食が起こる。 従って本 発明の接触部分酸ィヒ触媒を製造する原料には塩素を含まない原料を用いるか、 或 いは塩素を除去することが好ましい。 触媒中に残留する塩素はバリゥム及びラン タンや白金族元素、 ニッケル原料に起因する。 その為原料として水酸化物および 硝酸塩や有機酸塩を用いることにより塩素を含有しない接触部分酸ィヒ触媒を製造 することが出来る。 また白金族原料として例えば塩化ロジウムや塩化ルテニウム 等を使用する場合、 担持工程において塩素を除去する方法が採用される。 この塩 素除去方法については特開昭 6 0 - 1 9 0 2 4 0に開示されている方法によって も 1 0 0 p p m以下に除去することが出来るが、 アルカリ水溶液で洗浄する等の 方法によっても可能である。
以上において、 本発明の触媒を用いて製造する合成ガスは、 0丁しゃ01^ £の 原料として用いられることに限らず、 アンモニアガスの合成原料として用いられ るガスも含まれる。 この場合には、 例えば酸素プラントからの純粋な酸素の代わ りに空気を用い、 空気及びスチームを原料炭化水素に添加して、 水素、 窒素及び 一酸化炭素を含む合成ガスが得られる。 この合成ガスは、 後工程で一酸化炭素が 除去されてアンモニアの合成原料となる。
【実施例】
(触媒の調製)
ィ. ニッケルアルミネートを含有する触媒の調製
擬ベーマイト粉末 (触媒化成工業社製 商品名 : Cataloid- AP) 2 , 0 0 0 g (A I 2 O 3換算で 1, 5 0 0 g ) に成型助剤であるセランダー (ュケン工業 社製) を 2 0 0 g添加し、 水分調整しながらニーダ一で混練した後、 2. 5 mm Φで押出し成型を行った。 この押出し物を更に 2 mm前後に切断した後、 マルメ ライザ一により球状に成型加工した。 この成型体を加熱乾燥した後、 空気中電 気炉にて 6 0 0 °C、 5時間焼成し、 その後この成型体アルミナ 1, 0 0 0 gに、 硝酸ニッケル 6水和物 (和光純薬工業社製) 5 6 8 gを溶解した水溶液 6 0 0 c cを室温で含浸した。
その後乾燥させ、 しかる後 1 , 1 0 0 °Cにて 2 4時間焼成を行って N iとして 1 0重量%含有する触媒 Aを調製した。 触媒 Aはコバルトブルーのスピネル型二 ッケルアルミネ一ト特有の色をしており X線回折測定からもスピネル型二ッケル アルミネートの生成が確認された。
口 . ランタンを添加した二ッケルアルミネートを含有する触媒の調製 擬ベーマイト粉末 2, 0 0 0 gに硝酸ランタン 6水和物 (和光純薬工業社製) 5 7 gを溶解した水溶液及び既述の成型助剤を添加し、 水分調整した後同様に成 型カ卩ェした。 その後乾燥し更に 6 0 0 °Cで 5時間焼成して担体アルミナを得た。 この担体はランタンを含有しており、 その含有量は 1 . 2重量%であった。 この ランタンを含有する成型した担体 1, 0 0 0 gに硝酸ニッケル 6水和物 5 7 6 g を溶解した水溶液 6 0 0 c cを室温で含浸しその後乾燥した。 乾燥後 1, 1 0 0 °Cにて 2 4時間焼成を行って N iとして 1 0重量%、 ランタンとして 1 . 0重量 %含有する触媒 Bを調製した。
同様にしてランタンの含有量を変化させ 2重量%、 3重量%、 4重量%、 5重 量0 /0、 1 0重量0 /0、 1 5重量%のランタンを含有し N iを 1 0重量。 /0含む触媒 C 、 D、 E、 F、 G、 Hを調製した。
ハ. バリゥムを添カ卩したニッケルアルミネートを含有する触媒の調製 擬ベーマイト粉末 2, 0 0 0 gに硝酸バリゥム (和光純薬工業社製) 3 5 gを溶 解した水溶液及び既述の成型助剤を添加し、 水分調整した後同様に成型加工した 。 その後乾燥し更に 6 0 0 °Cで 5時間焼成して担体アルミナを得た。 この担体は バリウムを含有しており、 その含有量は 1 . 2重量%であった。 このバリウムを 含有する担体 1, 0 0 0 gに触媒 Bと同様に硝酸二ッケル 6水和物 5 7 5 gを溶 解した水溶液 6 0 0 c cを含浸、 乾燥、 焼成を行い N iとして 1 0重量。 /0、 パリ ゥムとして 1 . 0重量%含有する触媒 Iを調製した。 同様にしてバリウムの含有 量を変化させ、 N iが 1 0重量0 /0及ぴバリウムが 2、 3、 4、 5、 1 0、 1 5重 量0 /0の触媒 J、 K、 L、 Μ、 Ν、 Οを調製した。
なおバリウム含有量が 5 %以上の触媒 Μ、 Ν、 Οの場合、 硝酸バリウムの溶解 度が低いため、 ニーダ一で加熱混合しながら複数回に分けて硝酸バリゥム水溶液 を添力!]した。
二. 白金族元素を担持した触媒の調製
N iを 1 0重量%含有する触媒 Aをビーカーに入れ、 このビーカーを加熱しか つ回転させながら、 硝酸ロジウム水溶液 (田中貴金属社製) をこのビーカー内に 噴霧することにより (Spray法により) 触媒 Aに含浸させ、 この触媒を乾燥した 後、 8 0 0 °Cで焼成して触媒 Rを得た。 この触媒 Rは 0 . 5重量%の R hを含有 していた。
またランタンを 3重量%含有し、 1^ :1を1 0重量%含有する触媒 Dに同様にし て硝酸ロジウム水溶液を含浸し、 この触媒を乾燥した後、 800°Cで焼成して 0 . 5重量%の1 11を含有する触媒 Sを得た。
同様にバリウムを 3重量%含有する触媒 Kに硝酸口ジゥム水溶液を同様にして 含浸しこの触媒を乾燥した後、 800°Cで焼成して 0. 5重量%の Rhを含有す る触媒 Tを得た。
同様にして触媒 Kに硝酸ルテニウム水溶液 (田中貴金属社製) を含浸させ、 そ の触媒を乾燥した後、 窒素気流中 800°〇で焼成し0.5重量%の1 11を含有する 触媒 Uを得た。
同様にして触媒 Kにジニトロジアンミン白金硝酸溶液 (田中貴金属社製) を含 浸させ、 その触媒を乾燥、 空気中 800°Cで焼成し 0.5重量%の P tを含有する 触媒 Vを得た。
触媒 R、 S、 T、 U、 Vについて EPMA (Electron Probe Micro Analysis) 分 析を行った結果、 Rh、 Ru、 P tはその 90%以上が担体表面から 0.4mm以 内に存在した状態で当該表面を被覆するように担持されていた。
擬ベーマイト粉末 2, 000 gに、 硝酸セリウム 6水和物 (和光純薬工業社製 ) 1 6 7 gを溶解した水溶液及び既述の成型助剤を添加し、 水分調整した後触媒 Bと同様に球状に成型加工した。 その後乾燥し更に空気中 600°Cで 5時間焼成 して担体アルミナを得た。 この Ceを含有する成型担体 1, 000 8に、 触媒3 と同様に硝酸ニッケル 6水和物 5 9 3 gを溶解した水溶液 60 0 c cを含浸させ た。 次いでこの担体を乾燥させた後、 焼成を行い、 :^ 1として1 0重量%、 Ce として 3. 0重量%添加されたニッケルアルミネートを含有する触媒 Pを調製し た。 この触媒 Pに対し触媒 Rと同様にして硝酸ロジウム水溶液を含浸し、 乾燥と 焼成を行い 0. 5重量%の R hを担持した触媒 Wを得た。
擬ベーマイト粉末 2, 000 gに、 硝酸バリウム (和光純薬工業社製) 6 8 g を溶解した水溶液と、 硝酸ランタン 6水和物 (和光純薬工業社製) 56 gを溶解 した水溶液と、 既述の成型助剤とを添加し、 水分調整しながら二一ダ一で混練り した後、 触媒 Bと同様に球状に成型加工とその後の焼成を行った。 このバリウム とランタンを含有する担体 1, 000 gに触媒 Bと同様に、 硝酸ニッケル 6水和 物 5 90 gを溶解した水溶液 600 c cを含浸させた。 次いでこの担体を同様に 乾燥させた後、 焼成を行い、 N iとして 1 0重量%、 バリウムとして 2. 0重量 %、 ランタンとして 1. 0重量0 /0添加されたニッケルアルミネートを含有する触 媒 Qを調製した。 この触媒 Qに触媒 Rと同様にして硝酸口ジゥム水溶液を含浸し 、 乾燥と焼成を行い 0. 5重量%の Rhを担持した触媒 Xを得た。
バリゥムゃランタンを添加した白金族元素を担持する前の各触媒の色は、 スピ ネル型二ッケルアルミネート特有の色をしており X線回折測定の結果、 N i A1 2O4とその他に N i All οθ 16の回折線が確認された。
1^ 1を1 0重量%、 バリウムを 3重量%含有する触媒 Kに対して、 触媒 Rと同 様にして硝酸口ジゥム水溶液とジニト口ジアンミン白金硝酸溶液を所定濃度に混 合した液をスプレーし、 この触媒を乾燥した後に 800°Cで焼成して 0.4重量0 /0 の Rhと 0. 1重量%の P tとを含有する触媒 Yを得た。
各触媒の組成を表 1〜表 2に示す
【表 1】 白金族元素-担持前触媒の組成
触媒 No. La (wt%) Ba (wt ) Ce(wt%) Ni (wt%)
A 0 0 0 10
. B 1 0 0 10
C 2 0 0 10
D 3 0 0 10
E 4 0 0 10
F 5 0 0 10
G 10 0 0 10
H 15 0 0 10
I 0 1 0 10
J 0 2 0 10
κ 0 3 0 10
し 0 4 0 10
Μ 0 5 . 0 10
Ν 0 10 0 10
0 0 15 0 10
Ρ 0 0 3 10
Q 1 2 0 10 【表 2】
Figure imgf000023_0001
(触媒の表面積の比較)
ランタン又はパリゥムを添加しなかった触媒 Aの BET比表面積は 6. 2 (m2/g )であった。 またランタン添加触媒の BET比表面積が最も大きいのは 63 (m2/g )、 パリゥム添加触媒の BET比表面積が最も大きいのは 59 (m2 /g)であった。 各触媒の BET比表面積を Sとし、 ランタンを添カ卩した触媒については、 前記 6 3 (m2/g) を Soとしたときの添加量と S/Soの関係を、 またバリウムを添カロ した触媒については前記 59 (m2/g) を Soとしたときの添加量と S/S。の関 係を図 3に示した。 図 3に示す如くニッケルアルミネートを含んだ担体にランタ ンとバリゥムを添加すると 1, 100°C焼成処理後でも高い表面積を維持するこ とが出来る。 即ち、 ランタンとバリウムとを添加することにより、 触媒調製工程 における高温焼成時のシンタリングを抑えられることが理解される。 なお C eを 添加した触媒 Pの B E T比表面積は 1 1 (m2 /g)であつた。
(接触部分酸化 (CPO) 反応試験)
ィ. 試験の前提条件
内径 14 mm Φのハステロィ製反応管に触媒を 1.4 c c充填し接触部分酸ィ匕 反応を行った。 触媒層内温度測定のために外径 3πιπιΦ、 內径 2πιιηΦの鞘管を 挿入して温度を測定した。 なお触媒の層長はほぼ 1.0 cmであった。 反応管は 所定温度で均一に加熱された砂流動浴中に設置した。
原料炭化水素は下記の仕様の混合ガスを使用した。
CH4 : 88. 6 V o 1 % C 2 H 6 : 7.2 V o 1 %
C 3 H 8 : 3.0 V o 1 % i-C4Hio : 1.2 V o 1%
上記組成の炭化水素と水素およぴスチームの混合ガスに酸素を混合した原料ガ スを反応器に供給した。 なお原料ガスは自着火を防止するため外径 6 πιιηΦ、 内 径 4 πιηιΦの S US製配管内での高線速度下で混合および予熱してから反応器に 供給した。 反応器出口ガスは冷却 ·気液分離した後にガス流量測定及びガスクロ マトグラフィ一による組成分析により反応率及び選択率を求めた。 各触媒とも反 応は 10時間行った。
口. 比較例
[比較例 1 ]
触媒 Aを反応管に充填し予備還元処理をせずに窒素気流中 0. 3 MP aにて砂 流動浴の温度を 270°Cに昇温させた。 昇温後に酸素:炭化水素中の炭素モル比 = 0.6 : 1、 スチーム :炭化水素中の炭素モノレ比 =0.6 : 1、 水素:炭化水素モ ル比 =0.02 : 1の混合ガスを総ガス流量換算で GHSV (空間速度) =170, 00 Ohr— 1にて CPO反応を開始した。 この時の各流量は、 次の通りである。
原料炭化水素ガス : 97. 4 (NL/h) 酸素: 68. 3 (NL/h)
H2O: 55 g/h H2 : 1. 9 (NL/h)
試験開始 1時間後の触媒層温度分布を測定したところ発熱は全く観測されなか つた。 また出口ガスの組成から原料ガス中の C 1 ~ C 4炭化水素だけでなく酸素 および水素も全く反応していないことが確認された。
水素対炭化水素モル比 (水素/炭化水素) を 0.08まで増量したが C P O反 応は開始しなかった。 更に砂流動浴温度を 300°Cまで上げて同じように水素対 炭化水素モル比を 0.02カ ら0.08まで増量していったが C PO反応は起きな かった。
[比較例 2]
比較例 1において触媒 Aを充填後に温度 300 °C、 圧力 0. 3MP a GHSV= 10, 000 h r 1にて水素:窒素モル比 = 1 : 9の混合ガスを流通しながら 2 4時間予備還元処理を行った。 還元処理後に比較例 1と同様に 270°Cで C P O 反応試験を行った。
反応開始 1時間後に触媒層内温度を測定したところ約 2〜 3 °Cの発熱が認めら れた。 反応器出口組成を分析した結果、 炭化水素は全く反応せず原料中の若干の 水素が酸素と反応しているだけであった。 また反応器の出口のガス中からは C O および C O 2は検出されなかった。 また比較例 1と同様に砂流動浴温度を 300 °Cに変更して水素量を増加していったが CP O反応の開始は観察されなかった。
[比較例 3]
触媒 Dを充填した他は比較例 1と同様にして 270 °Cで C P O反応試験を行つ た。 水素対炭化水素モル比を 0.02カゝら 0.08まで増量して原料ガスを供給し たが、 殆ど発熱は観測されず CPO反応は認められなかった。 砂流動浴温度を 3 00 °Cに変更して水素対炭化水素モル比が 0.02で再度試験を行つた 1時間 後に触媒層出口部で約 1 o°c程度の発熱が認められたが、 反応器出口からのガス 中には COおよび CO 2は検出されなかった。 原料ガス中に含まれる水素 (0. 8 V o 1。/。濃度) の一部が酸素との燃焼に消費されただけで C PO反応は起きて いなかった。 更に水素対炭化水素モル比を 0.08まで増量して試験したが CP O反応の開始は認められなかった。
[比較例 4]
触媒 Rを比較例 1と同様に反応器に充填し、 270°Cにて CP〇反応試験を行 つた。 水素対炭化水素モル比を 0.02から 0.08まで増量したところ、 水素の 燃焼による発熱が見られたが、 CPO反応は開始しなかった。 更に砂流動浴温度 を 300 °Cに昇温したところ水素対炭化水素モル比 = 0.06で C P O反応が開始 した。 反応開始確認後に、 水素対炭化水素モル =0.02に調整し、 270°Cで C PO反応試験を行った。 2時間後の触媒層内最高温度は 1, 016°Cであった。 出口ガス分析の結果、 酸素転化率は 100%であったが、 未反応の C2H6、 C 3
H8、 i- C4Hioが検出された。 反応後の触媒の炭素量を測定したところ 0. 3 重量 °/0であり、 炭素析出が認められた。
[比較例 5]
触媒 Wを比較例 1と同様に反応器に充填し 270°Cにて原料ガスを供給した。 水素対炭化水素モル比を 0.02カゝら 0.08まで増量させたが、 CPO反応は開 始しなかった。 更に砂流動浴温度を 300 °Cに昇温したところ、 水素対炭化水素 モル比が 0.04で C P O反応が開始した。 反応開始を確認後水素対炭化水素モ ル比 =0. 02に戻し 27。でにてじ? 反応を開始した。
2時間後の触媒層内最高温度は 1, 01 1°Cであった。 出口ガス分析の結果、 酸素は 1 00%反応していたが未反応の C 2以上炭化水素が検出された。 1 0時 間反応後の触媒を分析したところ炭素含有率が 0. 5重量%であった。
ハ. 実施例
[実施例 1 ]
触媒 Sを比較例 1と同様に反応器に充填し、 270°C、 0. 3 MP aの条件下 で C P O反応試験を行つた。 標準条件である水素対炭化水素モル比 = 0.02の条 件で C P O反応が開始した。 10時間後の触媒層内最高温度は 1, 097°Cであ り、 酸素および C 2以上の炭化水素転ィヒ率は全て 100%であった。 反応後の触 媒の炭素量を測定したところ 0.02重量%であり、 炭素質の生成は認められな 力つた。
[実施例 2 ]
触媒 Tを実施例 1と同様に反応器に充填し、 270°C、 0. 3MPaの条件下 で C P O反応試験を行った。 水素対炭化水素モル比 = 0.02の標準条件で C P O 反応が開始した。 酸素および C 2以上炭化水素は 100%反応で消費されており 、 出口ガス中に檢出されなかった。 反応開始 10時間後の触媒層最高温度は 1, 053°Cであり、 反応中の出口ガス組成に変化は無かった。 反応後の触媒中の炭 素量は 0.01重量%であった。
[実施例 3]
触媒 Uを実施例 1と同様に反応器に充填し、 270°C、 0. 3 MP aの条件下 で C P O反応試験を行った。 水素対炭化水素モル比 = 0.02の標準条件で C P O 反応は開始した。 出口ガス中に未反応酸素および C 2以上炭化水素は検出されず 、 いずれも 100%転化率で反応中の劣化は認められなかった。 反応開始 1 0時 間後の触媒層内最高温度は 1, 057°Cであった。 反応後の触媒の炭素量は 0.0 2重量%であった。 [実施例 4]
触媒 Vを実施例 1と同様に反応器に充填し、 270 °C、 0.3MP aの条件下で CPO反応試験を行った。 水素対炭化水素モル比 =0.02の標準条件で CP O反 応が開始した。 出口ガス中に未反応酸素おょぴ C 2以上炭化水素は検出されず 1 00 %転化率が得られた。 10時間後の触媒層內最高温度は 1 , 096 °Cであり 、 反応中の劣化は認められなかった。 反応後の触媒の炭素量は 0.03重量。 /0で あった。
[実施例 5]
触媒 Xを実施例 1と同様に反応器に充填し、 270°C、 0. 3MP aの条件下 で C P O反応試験を行った。 水素対炭化水素モル比 =0.02の標準条件で C P O 反応が開始した。 出口ガス中に未反応酸素及び C 2以上炭化水素は検出されず 1 00%転化率が得られた。 10時間後の触媒層内最高温度は 1075°Cで反応中 の劣化は認められなかった。 反応後の触媒の炭素量は 0.02重量%であった。
I:実施例 6]
触媒 Yを実施例 1と同様に反応器に充填し、 270°C、 0. 3MP aの条件下で CPO反応試験を行った。 水素対炭化水素モル比 =0.02の標準条件で CPO反 応が開始した。 出口ガス中に未反応酸素及び C2以上炭化水素は検出されず 10 0 %転ィヒ率が得られた。 10時間後の触媒層内最高温度は 1063 °Cであり、 反 応中の劣化は認められなかった。 反応後の触媒の炭素量は 0.02重量%であつ た。
以上の実施例 1〜6のいずれにおいても、 触媒層内最高温度の変化は観察され なかった。 触媒層内最高温度部位は、 触媒層長のほぼ中間に位置しており、 試験 中に移動する様子は観察されなかった。 また試験後において触媒を観察したとこ ろ、 炭素質の析出は見られなかった。. 更に出口のガス組成は触媒層出口温度にお ける平衡組成であった。
二. 試験結果及び考察
酸素の転化率及び炭化水素の転化率などの結果を表 3〜表 6に示す。
【表 3】 CPO反応試験結果
反応圧力: 0.3MPa ガス入リ口温度: 270°C
Figure imgf000028_0001
Figure imgf000028_0002
【表 4】
CPO反応試験結果
反応圧力: 0.3MPa ガス入リロ温度: 270°C GHSV=1 70,000hr
実施例 1 (触媒 S) 実施例 2 (触媒 τ) 酸素/炭素モル比 0.6 0.6
スチーム/炭素モル比 0,6 → 0.6 → 水素/炭化水素モル比 0.02 → 0.02 → 反応時間 (hr) 2 10 2 10
02転化率 (¾) 100 100 100 100
CH4転化率(%) 99.8 99.8 99.8 99.8
C2H6転化率 100 100 100 100
C3H8転化率 100 100 100 100 i-C4H10転化率 100 100 100 100 触媒層内最高温度 (°C) 1096 1097 1055 1053 8094
27,
【表 5】
CPO反応試験結果
反応圧力: 0.3MPa ガス入リロ温度: 270°C GHSV=170,000hr一1
Figure imgf000029_0001
【表 6】
GPO反応試験結果
反応圧力: 0.3MPa ガス入リ口温度: 270。C GHSV=170,000hr"1
' 実施例 5 (触媒 X) 実施例 6 (触媒 Y) 酸素/炭素モル比 0.6 0.6
スチーム/炭素モル比 0.6 0.6 → 水素/炭化水素モル比 0.02 0.02
反応時間 (hr〉 2 10 2 10
02転化率(%) 100 100 100 100 転化率(%) 99.8 99.8 99.8 99.8
C2H6転化率 100 100 100 100
C3H8転化率 100 100 100 100 ト G4H10転化率 100 100 100 100 触媒層内最高温度 (¾)' 1078 1075 1063 1063 表 3は、 C P O反応が開始した比較例 4、 5の結果である。 表 4は実施例 1、 2 の結果であり、 表 5は実施例 3、 4の結果であり、 表 6は実施例 5、 6の結果で ある。 各表の実施例及び比較例において、 左欄は試験開始 2時間後の結果であり 、 右欄は試験開始 1 0時間後の結果である。
白金族元素を添加しない触媒を用いた比較例 1〜 3では、 C P O反応は起こら なかったが、 白金族元素を用いた比較例 4、 5では、 C P O反応が起こっている 。 しかしながら炭化水素の転化率が低く、 特に反応性が高い C 2以上炭化水素が 未反応のまま反応器出口ガス中に検出され C P O反応活性が低レ、ことを示してい る。 これに対してパリゥムあるいはランタンと白金族元素とを含む触媒を用いた 実施例 1〜 6では、 酸素及ぴ炭化水素の転化率が 1 0 0 %あるいは平衡組成にな つている。 パリゥムあるいはランタンを添加することにより高温焼成後において もニッケルアルミネ一トを含む担体の表面積を大きく維持できるだけでなく活性 種である白金族元素の高分散化が出来るため C P O反応に対して高い活性 ·選択 性を維持できる。 また高温 ·高スチーム分圧下の反応中における炭素質の生成を 抑制する効果があることがわかる。
更に各実施例 1〜 6において、 触媒層内の最高温度は触媒層長のほぼ中間に位 置しており、 試験期間中に移動あるいは最高温度が上昇する様子が観察されなか つた。 このことはパリゥムあるいはランタンを添カ卩した本発明の触媒の活性はき わめて安定でありホットスポットが発生せず優れた C P O触媒であることを示し ている。
また実施例 1及び 2について、 反応器の出口から出てきたガスの組成を調べた 結果を表 7に示す。
【表 7】 P T/JP2006/318094
29,
CPO反応試験結果
反応圧力:0.3MPa ガス入リロ温度: 270°C
GHSV=170(000hr"1
Figure imgf000031_0001
出口ガスの組成はほぼ触媒層の出口温度 (940°Cから 980°C) に相当する 平衡組成になっており、 CPO反応が十分に行われたことを示している。

Claims

請求の範囲
1 . メタン及び炭素数 2以上の軽質炭化水素を含む原料炭化水素に少なく とも 酸素及びスチームを添加して原料炭化水素を接触部分酸化し、 一酸化炭素と水素 とを含む合成ガスを製造するときに用いられる炭化水素の接触部分酸化用の触媒 において、
アルミナまたはアルミナ前駆体に、 ニッケルとバリゥムとを添カ卩して焼成する ことにより得られた担体と、
この担体に担持された白金族元素と、 を含むことを特徴とする炭化水素の接 触部分酸化用の触媒。
2 . 前記担体は、 アルミナまたはアルミナ前駆体に、 ニッケルとバリウムとラ ンタンとを添加して焼成することにより得られたことを特徴とする請求項 1記載 の炭化水素の接触部分酸化用の触媒。
3 . メタン及ぴ炭素数 2以上の軽質炭化水素を含む原料炭化水素に少なく とも 酸素及びスチームを添加して原料炭化水素を接触部分酸化し、 一酸化炭素と水素 とを含む合成ガスを製造するときに用いられる炭化水素の接触部分酸ィヒ用の触媒 において、
アルミナまたはアルミナ前駆体に、 ニッケルとランタンとを添加して焼成する ことにより得られた担体と、
この担体に担持された白金族元素と、 を含むことを特徴とする炭化水素の接 触部分酸化用の触媒。
4 . 担体を得るときの焼成温度は 6 0 0 °C以上とすることにより、 二ッケルァ ルミネートを含む担体を得ることを特徴とする請求項 1または 3に記載の炭化水 素の接触部分酸化用の触媒。
5 . 担体中における二ッケルの含有割合が 1〜 3 5重量%であることを特徴と する請求項 1または 3に記載の炭化水素の接触部分酸ィ匕用の触媒。
6 . 担体中におけるバリウム及び/またはランタンの合計含有割合が 0 . 1〜 2 0重量%であることを特徴とする請求項 1または 3に記載の炭化水素の接触部 分酸化用の触媒。
7 . 白金族元素は、 ロジウム、 ルテニウム及ぴ白金の中から選択された元素で あることを特徴とする請求項 1または 3に記載の炭化水素の接触部分酸ィヒ用の触 媒。
8. 触媒中における白金族元素の含有割合が 0· 05〜5. 0重量%であるこ とを特徴とする請求項 1または 3に記載の炭化水素の接触部分酸化用の触媒。
9. 白金族元素は、 担体の表面から 1 mm以内の深さ領域に 60 %以上存在す るように担持されていることを特徴とする請求項 1または 3に記載の炭化水素の 接触部分酸化用の触媒。
10. メタン及ぴ炭素数 2以上の軽質炭化水素を含む原料炭化水素に酸素及び スチームを添加してなる原料ガスであって、 原料炭化水素に水素が含まれてレヽる ことにより及び Zまたは水素を添加することにより水素が含まれる原料ガスを、 反応器内に供給する工程と、
前記反応器内に設けられた請求項 1ないし 9のいずれか一つに記載の触媒と前 記原料ガスとを加熱状態で接触させて、 原料炭化水素を接触部分酸化し、 一酸化 炭素と水素とを含む合成ガスを製造する工程と、 を含むことを特徴とする合成ガ スの製造方法。
1 1. 原料ガス中における酸素のモル数ノ炭化水素中の炭素のモル数が 0. 2 ~0. 8であり、 スチームのモル数/炭化水素中の炭素のモル数が 0. 2~0. 8であることを特徴とする請求項 1 0記載の合成ガスの製造方法。
1 2. 原料ガス中における水素のモル数ノ炭化水素のモル数が 0. 00 1〜 0 . 1であることを特徴とする請求項 1 0記載の合成ガスの製造方法。
1 3. 原料ガス中には、 二酸ィヒ炭素のモル数 Z炭化水素中の炭素のモノレ数が 0 . 0 1-0. 6で二酸化炭素ガスが含まれることを特徴とする請求項 1 0記載の 合成ガスの製造方法。
14. 反応器出口からのガスから回収した二酸化炭素ガスをリサイクノレするこ とを特徴とする請求項 10記載の合成ガスの製造方法。
1 5. 触媒に対して前処理としての還元処理を行わずに、 原料ガスを反応器内 に供給し、 接触部分酸化反応を開始することを特徴とする請求項 1 0記載の合成 ガスの製造方法。
1 6. 原料ガスを 200°C〜500°Cに予備加熱した後に、 圧力が常圧〜 8 M P a、 空塔速度が 5, O O O h r -1〜 500, O O O h r 1の条件で反応器内に 供給し、 断熱反応条件下で触媒と接触させることを特徴とする請求項 10記載の 合成ガスの製造方法。
PCT/JP2006/318094 2005-09-08 2006-09-06 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法 WO2007029862A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/991,116 US20080224097A1 (en) 2005-09-08 2006-09-06 Catalyst for Catalytic Partial Oxidation of Hydrocarbon, and Method for Producing Synthetic Gas
EP06797886A EP1930076A1 (en) 2005-09-08 2006-09-06 Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas
BRPI0615450-6A BRPI0615450A2 (pt) 2005-09-08 2006-09-06 catalisador para oxidação catalìtica parcial de hidrocarboneto para utilização na produção de um gás sintético que contém monóxido de carbono e hidrogênio, e método para produção de gás sintético
AU2006288168A AU2006288168A1 (en) 2005-09-08 2006-09-06 Catalyst for catalytic partial oxidation of hydrocarbon and process for producing synthesis gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-260633 2005-09-08
JP2005260633A JP4414951B2 (ja) 2005-09-08 2005-09-08 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法

Publications (1)

Publication Number Publication Date
WO2007029862A1 true WO2007029862A1 (ja) 2007-03-15

Family

ID=37835972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318094 WO2007029862A1 (ja) 2005-09-08 2006-09-06 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法

Country Status (7)

Country Link
US (1) US20080224097A1 (ja)
EP (1) EP1930076A1 (ja)
JP (1) JP4414951B2 (ja)
AU (1) AU2006288168A1 (ja)
BR (1) BRPI0615450A2 (ja)
WO (1) WO2007029862A1 (ja)
ZA (1) ZA200802963B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070238610A1 (en) * 2006-04-05 2007-10-11 Laiyuan Chen Fuel reformer catalyst
EP2301888A4 (en) * 2008-06-16 2011-12-07 Osaka Gas Co Ltd METHOD OF USING RUTHENIUM CATALYST REACTOR
DE102008031092A1 (de) * 2008-07-01 2010-01-07 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung von Wasserstoff
JP5292194B2 (ja) 2008-07-04 2013-09-18 日揮株式会社 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
WO2010105786A1 (en) * 2009-03-16 2010-09-23 Saudi Basic Industries Corporation Process for producing a mixture of aliphatic and aromatic hydrocarbons
JP5593106B2 (ja) * 2010-03-30 2014-09-17 Jx日鉱日石エネルギー株式会社 水素製造方法、水素製造装置及び燃料電池システム
EA022583B1 (ru) 2010-11-02 2016-01-29 Сауди Бейсик Индастриз Корпорейшн Способ получения низших олефинов с использованием катализатора на основе zsm-5
KR20120064030A (ko) * 2010-12-08 2012-06-18 에스케이이노베이션 주식회사 이산화탄소의 배출이 저감된 가스화 방법
JP5788348B2 (ja) * 2011-03-22 2015-09-30 Jx日鉱日石エネルギー株式会社 水素製造用改質触媒、該触媒を用いた水素製造装置及び燃料電池システム
CN104080530B (zh) * 2012-02-10 2018-08-07 巴斯夫欧洲公司 用于重整烃的含六铝酸盐的催化剂和重整方法
EP2979756A4 (en) * 2013-03-28 2016-12-28 Jx Nippon Oil & Energy Corp DEHYDROGENATION CATALYST FOR NAPHTHENIC HYDROCARBONS, PROCESS FOR PRODUCING DEHYDROGENATION CATALYST FOR NAPHTHENIC HYDROCARBONS, HYDROGEN PRODUCTION SYSTEM, AND METHOD FOR PRODUCING HYDROGEN
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
FR3013609B1 (fr) * 2013-11-27 2017-08-11 Ifp Energies Now Procede de conversion de composes organiques carbonyles et/ou alcools en presence d'un catalyseur aluminate de cuivre
US10144000B2 (en) * 2015-06-17 2018-12-04 Southern Research Institute Sulfur resistant nickel based catalysts, methods of forming and using such catalysts
KR102154420B1 (ko) 2016-04-01 2020-09-10 프랙스에어 테크놀로지, 인코포레이티드 촉매-함유 산소 수송막
US10010876B2 (en) * 2016-11-23 2018-07-03 Praxair Technology, Inc. Catalyst for high temperature steam reforming
EP3797085A1 (en) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm syngas panel with gas heated reformer
EP3892373A4 (en) 2018-12-03 2022-08-31 Furukawa Electric Co., Ltd. CATALYST STRUCTURE AND METHOD OF PRODUCTION THEREOF AND METHOD OF PRODUCTION OF HYDROCARBON USING A CATALYST STRUCTURE

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132649A (ja) * 1983-12-21 1985-07-15 Satoyuki Inui 還元触媒およびその製造方法
JPS60190240A (ja) 1984-03-09 1985-09-27 Jgc Corp 触媒調製方法
JPS63190644A (ja) * 1986-09-10 1988-08-08 Hitachi Ltd 耐熱性燃焼触媒及びそれを用いた触媒燃焼法
JPS63287555A (ja) * 1987-05-19 1988-11-24 Nissan Motor Co Ltd 排気ガス浄化用触媒
JPH03186347A (ja) * 1987-03-06 1991-08-14 Hitachi Ltd 耐熱性燃焼触媒及びそれを用いた触媒燃焼法
JPH0857323A (ja) * 1994-08-15 1996-03-05 Sumitomo Metal Mining Co Ltd 揮発性有機ハロゲン化合物分解用触媒およびその製造方法
JP2002097479A (ja) 2000-09-18 2002-04-02 Haldor Topsoe As 部分酸化により水素および一酸化炭素を含有する合成ガスの製造方法
JP2002104808A (ja) * 2000-09-27 2002-04-10 Hitachi Ltd 燃料改質方法
WO2002066403A1 (en) 2001-02-16 2002-08-29 Conoco Inc. Supported rhodium-spinel catalysts and process for producing synthesis gas
JP2002535119A (ja) * 1999-01-21 2002-10-22 インペリアル・ケミカル・インダストリーズ・ピーエルシー ニッケル、ルテニウム及びランタンを担持する触媒担体
JP2004082033A (ja) * 2002-08-28 2004-03-18 Nippon Oil Corp 水蒸気改質触媒、水蒸気改質方法および燃料電池システム
JP2004298971A (ja) 2003-03-28 2004-10-28 Hiroaki Kaneko 腕の疲労軽減装置
JP2005169236A (ja) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd 燃料改質触媒
JP2006061760A (ja) * 2004-08-24 2006-03-09 Toda Kogyo Corp 炭化水素分解用触媒及び該炭化水素分解用触媒を用いた水素の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0266875B1 (en) * 1986-09-10 1992-04-29 Hitachi, Ltd. Method of catalytic combustion using heat-resistant catalyst
US6992114B2 (en) * 2003-11-25 2006-01-31 Chevron U.S.A. Inc. Control of CO2 emissions from a Fischer-Tropsch facility by use of multiple reactors

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60132649A (ja) * 1983-12-21 1985-07-15 Satoyuki Inui 還元触媒およびその製造方法
JPS60190240A (ja) 1984-03-09 1985-09-27 Jgc Corp 触媒調製方法
JPS63190644A (ja) * 1986-09-10 1988-08-08 Hitachi Ltd 耐熱性燃焼触媒及びそれを用いた触媒燃焼法
JPH03186347A (ja) * 1987-03-06 1991-08-14 Hitachi Ltd 耐熱性燃焼触媒及びそれを用いた触媒燃焼法
JPS63287555A (ja) * 1987-05-19 1988-11-24 Nissan Motor Co Ltd 排気ガス浄化用触媒
JPH0857323A (ja) * 1994-08-15 1996-03-05 Sumitomo Metal Mining Co Ltd 揮発性有機ハロゲン化合物分解用触媒およびその製造方法
JP2002535119A (ja) * 1999-01-21 2002-10-22 インペリアル・ケミカル・インダストリーズ・ピーエルシー ニッケル、ルテニウム及びランタンを担持する触媒担体
JP2002097479A (ja) 2000-09-18 2002-04-02 Haldor Topsoe As 部分酸化により水素および一酸化炭素を含有する合成ガスの製造方法
JP2002104808A (ja) * 2000-09-27 2002-04-10 Hitachi Ltd 燃料改質方法
WO2002066403A1 (en) 2001-02-16 2002-08-29 Conoco Inc. Supported rhodium-spinel catalysts and process for producing synthesis gas
JP2004082033A (ja) * 2002-08-28 2004-03-18 Nippon Oil Corp 水蒸気改質触媒、水蒸気改質方法および燃料電池システム
JP2004298971A (ja) 2003-03-28 2004-10-28 Hiroaki Kaneko 腕の疲労軽減装置
JP2005169236A (ja) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd 燃料改質触媒
JP2006061760A (ja) * 2004-08-24 2006-03-09 Toda Kogyo Corp 炭化水素分解用触媒及び該炭化水素分解用触媒を用いた水素の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DISSANAYAKE ET AL., JOURNAL OF CATALYSIS, vol. 132, 1991, pages 117 - 127
KEIICHI TOMISHIGE; KIMIO KUNIMORI, PETROTECH, vol. 26, 2003, pages 433

Also Published As

Publication number Publication date
BRPI0615450A2 (pt) 2011-05-17
US20080224097A1 (en) 2008-09-18
AU2006288168A1 (en) 2007-03-15
JP4414951B2 (ja) 2010-02-17
ZA200802963B (en) 2009-02-25
EP1930076A1 (en) 2008-06-11
JP2007069151A (ja) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4414951B2 (ja) 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
JP6247344B2 (ja) 水蒸気改質プロセスに使用される触媒
Palma et al. Enhancing Pt-Ni/CeO2 performances for ethanol reforming by catalyst supporting on high surface silica
JP4159874B2 (ja) 炭化水素の改質触媒及びそれを用いた炭化水素の改質方法
US20030096880A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
US11724936B2 (en) Catalyst for low temperature ethanol steam reforming and related process
JP2005046742A (ja) Fischer−Tropsch合成用触媒の調製方法
TWI294413B (en) Method for converting co and hydrogen into methane and water
KR102092736B1 (ko) 탄소 침적을 감소시킬 수 있는, 금속이온이 치환된 페로브스카이트 금속산화물 촉매의 제조 방법 및 이를 이용한 메탄 개질 반응 방법
Jun et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition
JP2005238025A (ja) 燃料改質触媒、およびこれを用いた燃料改質システム
JP4377699B2 (ja) 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
PL240039B1 (pl) S posób katalitycznej konwersji tlenku lub dwutlenku węgla do metanu oraz złoże katalityczne do realizacji tego sposobu
JP4608659B2 (ja) 直接熱供給型炭化水素改質触媒の製造方法
KR101059413B1 (ko) 피셔-트롭쉬 액화공정용 합성가스 제조를 위한 자열개질 촉매층용 금속구조체, 금속구조체의 제조방법 및 금속구조체촉매
JP4799312B2 (ja) 合成ガス製造触媒
JPH10194703A (ja) 合成ガスの製造用触媒及び合成ガスの製造方法
JP2007516825A (ja) 改質触媒
KR101440193B1 (ko) 천연가스의 혼합개질용 촉매, 이의 제조방법 및 상기 촉매를 이용한 천연가스의 혼합개질방법
JP4377700B2 (ja) 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
US20040147619A1 (en) Chlorine-containing synthesis gas catalyst
OEMAR Catalytic Oxidative CO2 Reforming of Methane Over Bimetallic Pd-Ni Catalyst
CN116322981A (zh) 用于产生氢气和/或合成气的催化剂、其获得方法以及在蒸汽重整过程中的用途
Abu-dahrieh et al. Comparison of Gold-Based and Copper-Based Catalysts for the Low Temperature Water Gas Shift Reaction and Methanol Synthesis
JP2004000848A (ja) 水素ガス中に含まれる一酸化炭素を炭酸ガスとして除去するための触媒及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006797886

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: DZP2008000190

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 2006288168

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006288168

Country of ref document: AU

Date of ref document: 20060906

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11991116

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0615450

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080304