JP4377700B2 - 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法 - Google Patents

合成ガス製造用触媒およびこれを用いた合成ガスの製造方法 Download PDF

Info

Publication number
JP4377700B2
JP4377700B2 JP2004000426A JP2004000426A JP4377700B2 JP 4377700 B2 JP4377700 B2 JP 4377700B2 JP 2004000426 A JP2004000426 A JP 2004000426A JP 2004000426 A JP2004000426 A JP 2004000426A JP 4377700 B2 JP4377700 B2 JP 4377700B2
Authority
JP
Japan
Prior art keywords
component
catalyst
synthesis gas
carrier
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004000426A
Other languages
English (en)
Other versions
JP2005193111A (ja
Inventor
圭一 冨重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Original Assignee
Chiyoda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp filed Critical Chiyoda Corp
Priority to JP2004000426A priority Critical patent/JP4377700B2/ja
Publication of JP2005193111A publication Critical patent/JP2005193111A/ja
Application granted granted Critical
Publication of JP4377700B2 publication Critical patent/JP4377700B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、例えば天然ガス等の炭素数1〜5の炭化水素ガスと、酸素を含むガスを触媒の存在下、接触改質して、合成ガスを製造する際に用いられる合成ガス製造用触媒およびこれを用いた合成ガスの製造方法に関する。
将来の石油代替エネルギー源として、近年天然ガスが注目されている。天然ガスは他の化石燃料と比較して燃焼特性がクリーンであるため、1次エネルギー、2次エネルギー原料として利用が促進されれば、環境保護の面でも極めて有益であるといえる。
このような観点から現在、天然ガスを化学的に転換し、メタノール、DME、合成石油などを製造する技術の開発が活発に行われている。これらの技術の主流は合成原料となる合成ガスを経由する間接転換法であり、当該合成ガスの製造技術はプロセス全体の経済性に大きなウエイトを占めている。
合成ガスの製造技術としては、例えば、水蒸気改質法、ATR(Auto Thermal Reforming)、接触部分酸化法(CPOX: Catalytic Partial Oxidation)などが知られている。
水蒸気改質法では、反応そのものが吸熱反応となるために、装置仕様として、加熱炉中に反応管を設置し、改質反応に必要な熱を外部から供給する必要がある。そのため、反応装置そのものが大きくなり、大規模な製造には適さないと言える。
また、ATRは、原料中の炭化水素の一部をバーナー燃焼させ、引き続き、高温の燃焼ガスを触媒層で改質する方法である。この方法では、バーナーの寿命を維持するために、過剰のスチームを供給しなければならない等、経済的に最適な条件で運転することが困難である。
接触部分酸化法は、触媒層中で、原料の炭化水素の一部を触媒燃焼させ、生成された高温の燃焼ガスを、さらに、触媒層中で改質する方法であり、研究開発段階の技術であると言える。機構がシンプルで高い熱効率と生産効率が期待できるが、触媒層入口付近に発熱が集中しやすく(いわゆるホットスポットの生成)、高熱による触媒劣化や、反応器の損失に十分対処する必要がある。
従来技術として、特開平6−92603号公報、同7−10503号公報、同7−89701号公報、同196301号公報、特表平10−503462号公報(いずれも、シェル・インターナショナル・リサーチ・マーチャッピイ・ベイ・ウイ)には、Pt,Rh,Ru,Ir,Pdなどの金属元素をアルミナ等の耐火性担体に担持させた触媒を用いた接触部分酸化方法が開示されている。しかしながら、このような開示の技術においても、反応ガス温度が1000〜1200℃に達しており、高熱による触媒の劣化が懸念される。
また、特開平10−245201号公報(ハルドール・トプサー・アクチエゼルアウカベット)には、接触部分酸化におけるホットスポットの温度を抑えるために触媒層を多段に分離し、触媒層間に酸素を分割導入する方法が開示されている。また、特開2000−84410号公報(出光興産)には、接触部分酸化におけるホットスポット生成を回避するために酸素を触媒層内に分割導入する方法が開示されている。しかしながら、これら2つの提案においても、局所的に見れば酸素放出部分での温度上昇は避けられないと考えられ、ホットスポット生成を回避する方策としては、十分でないと言える。
触媒層入口付近でホットスポットが生成する要因は、通常の金属触媒は酸素との接触により酸化物となり、触媒そのものが吸熱反応であるリフォーミング反応の活性を失い、発熱反応である燃焼活性だけが発現するためであると考えられる。このような実状のもと、本件特許出願における発明者である冨重は、すでに、PtとNiをアルミナ担体に担持させた触媒の提案を行なっており、この触媒を用いることによって触媒層入口付近においても燃焼反応とリフォーミング反応の両方を発現させることに成功している(Catalyst Letters Vol. 84 No.1-2(2002))。
特開平6−92603号公報 特開平7−10503号公報 特開平7−89701号公報 特開平7−196301号公報 特表平10−503462号公報 特開平10−245201号公報 特開2000−84410号公報 Catalyst Letters Vol. 84 Nos.1-2(2002))
しかしながら、合成ガス製造における触媒性能の改善要求には限りがなく、さらなる触媒性能の向上が求められている。すなわち、ホットスポットの生成をさらに抑制することができ、経時的な触媒性能の劣化を防止させることができ、原料である炭化水素の転化率に優れる新規の合成ガス製造用触媒の提案が望まれている。
このような課題を解決するために、本発明は、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含むガスを、COとH2とを主成分とする合成ガスに転化する際に使用される合成ガス製造用触媒であって、該合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、前記担体は、耐熱性材料で成形された比表面積が10m2/g以下の成形体であり、前記第1の成分は、コバルトあるいはコバルトを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、前記第2の成分は、白金、ロジウム、ルテニウム、およびイリジウムのグループから選ばれる少なくとも1種以上の金属あるいはその化合物からなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体となるように構成される。
また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、アルミナ、カルシウムアルミナ、マグネシウムアルミナ、マグネシアのグループから選ばれる少なくとも1つの耐熱性材料から構成される。
また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、α−アルミナから構成される。
また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、その球相当直径が0.5〜20mmであるように構成される。
また、本発明の合成ガス製造用触媒の好ましい態様として、前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合が、0.005〜0.5となるように構成される。
また、本発明の合成ガス製造用触媒の好ましい態様として、前記担体は、その比表面積が0.2〜10m2/gとなるように構成される。
また、本発明は、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含む原料ガスを、合成ガス製造用触媒に接触させることにより、COとH2とを主成分とする合成ガスを製造する方法であって、該方法に使用される合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、前記担体は、耐熱性材料で成形された比表面積が10m2/g以下の成形体であり、前記第1の成分は、コバルトあるいはコバルトを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、前記第2の成分は、白金、ロジウム、ルテニウム、およびイリジウムのグループから選ばれる少なくとも1種以上の金属あるいはその化合物からなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体となるように構成される。
また、本発明の合成ガスを製造する方法の好ましい態様として、原料である炭化水素ガス中の炭素モル数をCで表わしたとき、原料ガス中のO2/C(モル比)が0.4〜1.0の範囲内にあり、CO2/C(モル比)が0〜1.0の範囲内にあり、H2O/C(モル比)が0〜0.5の範囲内にあるように設定され、反応温度が生成ガス温度として700〜1200℃の範囲内に設定され、反応圧力が0.1MPa〜10MPaの範囲内に設定され、触媒重量W(g)と導入ガス全流量F(mol/hr)との比であるW/Fが0.15〜6(g・hr/mol)の範囲内に設定されてなるように構成される。
また、本発明の合成ガスを製造する方法の好ましい態様として、前記担体は、その比表面積が0.2〜10m2/gとなるように構成される。
従来技術に比べてさらにホットスポットの生成を抑制することができ、経時的な触媒性能の劣化や反応器の高温による劣化、破損の問題を解決することができる。原料である炭化水素の転化率にも極めて優れる。
以下、本発明の合成ガス製造用触媒およびこれを用いた合成ガスの製造方法を実施するための最良の形態について詳細に説明する。
まず、最初に合成ガス製造用触媒について説明する。
本発明の合成ガス製造用触媒は、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含むガス(反応容器に導入されるガス)を、COとH2とを主成分とする合成ガスに転化する際に使用される。
本発明における合成ガス製造用触媒は、基材となる担体(キャリヤー)と、この担体に担持された第1の成分と、第2の成分を含んで構成される。
担体は、耐熱性材料から構成される成形体であり、その比表面積は10m2/g以下、特に、0.2〜10m2/g、好ましくは、0.5〜10m2/g、さらに好ましくは、2〜10m2/gとされる。この比表面積の値が10m2/gを超えると、触媒層の入口付近での温度が高くなってしまう(ホットスポットの生成)という不都合が生じるとともに、原料である炭化水素の転化率の向上が図れないという不都合が生じる傾向にある。なお、比表面積は「BET」法により測定されたものである。
ここで、担体が「成形体である」とは、造粒工程を経て成形された粒状物であることを意味し、より具体的には、例えば、原料粉末をモールドにより略球形に圧力成形した後に、焼成して形成された粒状物であることをいう。あるいは、リング、サドル、マルチホール等のいわゆる工業触媒形状であっても良く、破砕物のような不定形形状であっても良い。
本発明における担体は、上記の比表面積の値を満たし、かつ耐熱性材料から構成された成形体である必要がある。好適には、アルミナ、カルシウムアルミナ(スピネル構造を備える)、マグネシウムアルミナ(スピネル構造を備える)、マグネシアのグループから選ばれる少なくとも1つの耐熱性材料が挙げられる。中でも特に、α−アルミナを用いるのが好ましい。α−アルミナが、担持される第1の成分と、第2の成分との関係で最も優れた効果を発現するからである。
α−アルミナは、例えば、ビーズ状のアルミナ成形体を、例えば、1100〜1300℃で焼成処理することにより得ることができる。すなわち、このような熱処理により、最初、γ−アルミナの状態にあるビーズは、α−アルミナへと結晶変化し、1次粒子径が大きくなり、比表面積は格段と小さくなる。
本発明における担体は、その球相当直径が0.5〜20mm、好ましくは、5〜20mmとされる。この値が、20mmを超えると、原料転化率が低下するという不都合が生じる傾向にある。また、この値が0.5mm未満であると、反応器の圧力損失が大きくなるという不都合が生じる傾向にある。球相当直径(平均値)は、担体の体積を求め、それを球の体積と見なして、球の直径に換算すればよい。
このような本発明における担体には、第1の成分と、第2の成分とが担持される。
第1の成分は、コバルト(Co)金属あるいはその化合物からなり、その金属担持量は、5×10-5〜1.5×10-3モル/g−担体、好ましくは、1×10-4〜5×10-4モル/g−担体とされる。担体1g当たりの第1成分の担持量が、5×10-5モル未満となると、所望の転化率、選択率が得られず、また、担体1g当たりの第1成分の担持量が1.5×10-3モルを超えると、触媒コストの上昇にもかかわらず転化率が頭打ちになるという不都合が生じる。
第2の成分は、白金、ロジウム、ルテニウム、およびイリジウムのグループから選ばれる少なくとも1種以上の金属あるいはその化合物からなり、その金属担持量は、1×10-6〜1×10-4モル/g−担体、好ましくは、5×10-6〜5×10-5モル/g−担体とされる。第2の成分の中で特に好ましいのは、白金またはロジウムである。担体1g当たりの第2成分の担持量が、1×10-6未満となると、触媒層入口付近の温度が上昇するいわゆるホットスポット生成が起こり易い上、所望の転化率が得られず、また、担体1g当たりの第2成分の担持量が1.5×10-3モルを超えるとと、触媒コストの上昇に反して転化率が頭打ちになってしまい経済性に欠けるという不都合が生じる。
また、前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合は、0.005〜0.5、好ましくは0.1〜0.4とされる。この割合が、0.5を超えると、触媒コストの上昇に反して転化率が頭打ちになってしまい経済性に欠けるという不都合が生じる。また、この割合が0.005未満となると触媒層入口付近の温度が上昇するいわゆるホットスポット生成が起こり易い上、所望の転化率が得られなくなるという不都合が生じる傾向にある。
上述してきた第1の成分および第2の成分の担体への担持は、担体上への担持を同時に行なう、いわゆる共含浸法による担持であってもよいし、また、第1の成分を担持した後に続いて第2の成分を担持させるいわゆる逐次含浸法による担持であってもよい。共含浸法や逐次含浸法の具体的手法については後述する実施例を参照されたい。
次いで、本発明の合成ガス製造用触媒を用いた合成ガスの製造方法について説明する。
本発明の合成ガスの製造方法は、上述してきた合成ガス製造用触媒を用いることを前提とし、炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含む原料ガスを、合成ガス製造用触媒に接触させながら、COとH2とを主成分とする合成ガスを製造する方法である。
原料ガス中の炭素数1〜5の炭化水素としては、メタン、エタン、プロパン、ブタン等が一例として挙げられる。さらにメタンを主成分とし、他にエタン、プロパン、ブタン等を含む天然ガスも用いることができる。この天然ガスには、二酸化炭素や窒素等が含有されていてもよい。
炭化水素をメタンとした場合、COとH2とを主成分とする合成ガスの製造は下記反応式(1)〜(3)で示される。これらの反応はすべて触媒上で行われる。
CH4+2O2 → CO2+2H2O 式(1)
CH4+H2O → CO+3H2O 式(2)
CH4+CO2 → 2CO+2H2 式(3)
反応器としては、通常、反応管の内部に触媒が充填された固定床反応器が用いられるが、これに限定されることなく、例えば流動床反応器としてもよい。
本発明において、原料である炭化水素ガス中の炭素モル数をCで表わしたとき、原料ガス中のO2/C(モル比)は0.4〜1.0(好ましくは、0.4〜0.7)の範囲内とされ、CO2/C(モル比)は0〜1.0(好ましくは、0.05〜0.7)の範囲内とされ、H2O/C(モル比)は0〜0.5(好ましくは、0.1〜0.4)の範囲内とされる。
また、反応温度は、生成ガス温度として700〜1200℃(好ましくは、800〜1100℃)の範囲内に設定される。
反応圧力は0.1MPa〜10MPa(好ましくは、0.5〜5MPa)の範囲内に設定される。また、触媒重量W(g)と導入ガス全流量F(mol/hr)との比であるW/Fは、0.15〜6(g・hr/mol)の範囲内に設定される。
以下、具体的実施例を示し、本発明をさらに詳細に説明する。
以下の要領で合成ガス製造用触媒を製造した。
(担体の製造)
まず、最初に下記の要領で、担体表面積の調製およびその確認を行なった。
すなわち、アルミナビーズ(触媒学会参照触媒 JRC-ALO-1 直径2〜3mm)を500℃、700℃、900℃、1200℃および1300℃でそれぞれ焼成処理した。得られた担体のBET比表面積の測定結果は、以下のとおりであった。
担体1:焼成せず未処理のアルミナビーズ…BET比表面積=143m2/g
担体2:500℃で焼成処理したアルミナビーズ…BET比表面積=117m2/g
担体3:700℃で焼成処理したアルミナビーズ…BET比表面積=102m2/g
担体4:900℃で焼成処理したアルミナビーズ…BET比表面積=105m2/g
担体5:1200℃で焼成処理したアルミナビーズ…BET比表面積=6m2/g
1200℃以上で焼成処理することにより、担体の比表面積を大幅に低減させることができる。
上記担体の中から実施例および比較例となる担体を選定し、下記の要領で種々の触媒を作製した後、下記の反応性評価試験方法に従って合成ガスの製造実験を行なった。
(反応性評価試験方法)
内径6mm、外径8mm、長さ300mmのクオーツ製反応管に、後述の要領で調整した触媒約0.14gを充填し、のぞき窓付きの環状電気炉内に、のぞき窓から触媒層が観察できるように設置した。
触媒層の出口側にサーモカップルを設置し、触媒層出口ガス温度が850℃になるように電気炉の出力を制御した。触媒充填後、前処理として水素を流通させて850℃、30分間、触媒の還元処理を行なった。次いで行う合成ガス製造における原料ガス組成は、CH4:CO2:H2O:O2=100:12:29:48(Vol比)とし、W/F(W:触媒重量(g)、F:導入ガス流量(mol/hr))は、0.6g・hr/mol、および0.3g・hr/molの2種類とした。
触媒層の温度はIRサーモグラフィーを用いてのぞき窓から測定した。また、すべての試験において圧力は0.1MPaであった。
(実施例1)
3g秤量した上記の担体5(BET比表面積=6m2/g)に、Co(NO32およびH2PtCl6をそれぞれ含有する水溶液5ml(Co濃度=0.09モル/l;Pt濃度=0.018モル/l)を含浸させ、120℃の温度で12時間乾燥させた。しかる後、この乾燥物を空気雰囲気中500℃温度で3時間焼成した。このようにして3.0×10-5モル/g−担体のPt、および1.5×10-4モル/g−担体のCoが担持された実施例1の触媒サンプルを調製した。
この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、0.6g・hr/molとした。
(比較例1)
3g秤量した上記の担体5(BET比表面積=6m2/g)に、Co(NO32を含有する水溶液5ml(Co濃度=0.27モル/l)を含浸させ、120℃の温度で12時間乾燥させた。しかる後、この乾燥物を空気雰囲気中500℃温度で3時間焼成した。このようにして1.5×10-4モル/g−担体のCoが担持された比較例1の触媒サンプルを調製した。
この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、0.6g・hr/molとした。
(比較例2)
3g秤量した上記の担体5(BET比表面積=6m2/g)に、H2PtCl6を含有する水溶液5ml(Pt濃度=0.018モル/l)を含浸させ、120℃の温度で12時間乾燥させた。しかる後、この乾燥物を空気雰囲気中500℃温度で3時間焼成した。このようにして3.0×10-5モル/g−担体のPtが担持された比較例2の触媒サンプルを調製した。
この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、0.6g・hr/molとした。
(比較例3)
上記実施例1において用いた担体5(BET比表面積=6m2/g)を担体4(BET比表面積=105m2/g)に代えた。それ以外は、上記実施例1と略同様の要領で、3.0×10-5モル/g−担体のPt、および1.5×10-4モル/g−担体のCoが担持された比較例3の触媒サンプルを調製した。
この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、実施例1と同様の0.6g・hr/molとした。
(実施例2)
上記実施例1において、Pt担持量を4.5×10-6モル/g−担体に減らした。それ以外は、上記実施例1と同様の要領で、実施例2の触媒サンプルを調製した。
この触媒を用いて、上記反応性評価試験方法に従って合成ガス製造試験を行なった。W/Fは、実施例1と同様の0.6g・hr/molとした。
(実施例3)
上記実施例1における触媒を用い、W/Fの条件のみを代えた。すなわちW/F=0.3g・hr/molとした以外は、上記実施例1と同じ条件で、合成ガス製造試験を行なった。
(比較例4)
上記比較例3における触媒を用い、W/Fの条件のみを代えた。すなわちW/F=0.3g・hr/molとした以外は、上記比較例3と同じ条件で、合成ガス製造試験を行なった。
反応性評価試験の結果である、メタン転化率、H2/CO(モル比)、および触媒層最高温度(℃)を、それぞれ求め、下記表1に示した。
Figure 0004377700
実施例1、比較例1の実験結果より、CoにPtを加えることで、触媒層の最高温度を低く抑えることができる。
実施例1、実施例3、比較例3、比較例4の結果より、担体の比表面積が10m2/gより大きくなると反応性が低下することがわかる。
実施例2の結果より、触媒金属のうち貴金属成分の担持量が少なくても依然高い活性を示すことがわかる。なお、実施例3、比較例4の触媒層の最高温度が他の実施例と比べて高いのは、触媒当たりの原料ガス通気量が多いためである。
天然ガスのような炭素数1〜5の炭化水素ガスを原料とし、COとH2とを主成分とする合成ガスを製造する合成ガス製造プロセスに利用できる。

Claims (4)

  1. 炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含むガスを、COとH2とを主成分とする合成ガスに転化する際に使用される合成ガス製造用触媒であって、
    該合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、
    前記担体は、α−アルミナから構成された比表面積が0.2〜10m 2 /gの成形体であり、
    前記第1の成分は、コバルトあるいはコバルトを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、
    前記第2の成分は、白金からなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体であり、
    前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合が、0.005〜0.5であることを特徴とする合成ガス製造用触媒。
  2. 前記担体は、その球相当直径が0.5〜20mmである請求項1に記載の合成ガス製造用触媒。
  3. 炭素数1〜5の炭化水素と、酸素と、二酸化炭素および/またはスチームとを含む原料ガスを、合成ガス製造用触媒に接触させることにより、COとH2とを主成分とする合成ガスを製造する方法であって、
    該方法に使用される合成ガス製造用触媒は、基材となる担体と、この担体に担持された第1の成分と、第2の成分を含み、
    前記担体は、α−アルミナから構成された比表面積が0.2〜10m 2 /gの成形体であり、
    前記第1の成分は、コバルトあるいはコバルトを主成分とする化合物からなり、その金属担持量が、5×10-5〜1.5×10-3モル/g−担体であり、
    前記第2の成分は、白金からなり、その金属担持量が、1×10-6〜1×10-4モル/g−担体であり、
    前記第1の成分の金属総モル数に対する前記第2の成分の金属総モル数の割合が、0.005〜0.5であり、
    原料である炭化水素ガス中の炭素モル数をCで表わしたとき、原料ガス中のO 2 /C(モル比)が0.4〜1.0の範囲内にあり、CO 2 /C(モル比)が0〜1.0の範囲内にあり、H 2 O/C(モル比)が0〜0.5の範囲内にあるように設定され、
    反応温度が生成ガス温度として700〜1200℃の範囲内に設定され、
    反応圧力が0.1MPa〜10MPaの範囲内に設定され、
    触媒重量W(g)と導入ガス全流量F(mol/hr)との比であるW/Fが0.15〜6(g・hr/mol)の範囲内に設定されてなることを特徴とする合成ガスの製造方法。
  4. 前記担体は、その球相当直径が0.5〜20mmである請求項3に記載の合成ガスの製造方法。
JP2004000426A 2004-01-05 2004-01-05 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法 Expired - Fee Related JP4377700B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004000426A JP4377700B2 (ja) 2004-01-05 2004-01-05 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004000426A JP4377700B2 (ja) 2004-01-05 2004-01-05 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法

Publications (2)

Publication Number Publication Date
JP2005193111A JP2005193111A (ja) 2005-07-21
JP4377700B2 true JP4377700B2 (ja) 2009-12-02

Family

ID=34816262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004000426A Expired - Fee Related JP4377700B2 (ja) 2004-01-05 2004-01-05 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法

Country Status (1)

Country Link
JP (1) JP4377700B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799312B2 (ja) * 2006-06-07 2011-10-26 千代田化工建設株式会社 合成ガス製造触媒
JP5032101B2 (ja) * 2006-11-29 2012-09-26 新日本製鐵株式会社 炭素質原料の熱分解タールを改質してガス化するタールガス化用触媒、タールガス化方法、タールガス化ガスの利用方法、及びタールガス化用触媒の再生方法
JP7304615B2 (ja) * 2019-05-10 2023-07-07 公立大学法人大阪 固体触媒およびその製造方法、油状物の製造方法

Also Published As

Publication number Publication date
JP2005193111A (ja) 2005-07-21

Similar Documents

Publication Publication Date Title
US7056488B2 (en) Controlled-pore catalyst structures and process for producing synthesis gas
JP4414951B2 (ja) 炭化水素の接触部分酸化用の触媒及び合成ガスの製造方法
KR100905638B1 (ko) 합성가스 제조 반응기 및 합성가스 제조방법
CN113423502A (zh) 用于nh3合成和裂化的金属修饰的钡钙铝氧化物催化剂及其形成方法
TWI294413B (en) Method for converting co and hydrogen into methane and water
WO2003039740A1 (en) Combustion deposited metal-metal oxide catalysts and process for producing synthesis gas
JP2023528732A (ja) 空気から二酸化炭素を回収して二酸化炭素を燃料及び化学物質へと直接変換するための方法
KR102678026B1 (ko) 탄화수소 가스를 개질하기 위한 방법 및 시스템
US7105107B2 (en) Use of nonmicroporous support for syngas catalyst
JP4377699B2 (ja) 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
JP2001080907A (ja) 酸素含有ガスの予備改質方法
US7008560B2 (en) Silicon carbide-supported catalysts for partial oxidation of natural gas to synthesis gas
EP2694434A1 (en) Multi-tubular steam reformer and process for catalytic steam reforming of a hydrocarbonaceous feedstock
JP4377700B2 (ja) 合成ガス製造用触媒およびこれを用いた合成ガスの製造方法
RU2208475C2 (ru) Каталитический реактор для получения синтез-газа
KR100732538B1 (ko) 촉매를 활용하여 탄화수소로부터 수소를 직접 제조하는방법
US20050119355A1 (en) Method for obtaining synthesis gas by partial catalytic oxidation
WO2018158883A1 (ja) メタンの二酸化炭素改質用カプセル化触媒、及びそれを用いた合成ガスの製造方法
JP5135605B2 (ja) 定置型水素製造用改質装置
US20040147619A1 (en) Chlorine-containing synthesis gas catalyst
JP4799312B2 (ja) 合成ガス製造触媒
JP4681265B2 (ja) 合成ガスの製造方法および合成ガス製造用リアクター。
KR101796071B1 (ko) 귀금속 촉매와 복합 금속 산화물 촉매를 이용한 다단의 선택적 산화 촉매 반응기
AU2002367767B2 (en) Controlled-pore catalyst structures and process for producing synthesis gas
JPS632938B2 (ja)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees