CN115433008B - 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法 - Google Patents

一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN115433008B
CN115433008B CN202110626552.3A CN202110626552A CN115433008B CN 115433008 B CN115433008 B CN 115433008B CN 202110626552 A CN202110626552 A CN 202110626552A CN 115433008 B CN115433008 B CN 115433008B
Authority
CN
China
Prior art keywords
temperature
piezoelectric ceramic
bismuth calcium
calcium niobate
niobate piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110626552.3A
Other languages
English (en)
Other versions
CN115433008A (zh
Inventor
董显林
李宜冠
周志勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN202110626552.3A priority Critical patent/CN115433008B/zh
Publication of CN115433008A publication Critical patent/CN115433008A/zh
Application granted granted Critical
Publication of CN115433008B publication Critical patent/CN115433008B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法,所述铌酸铋钙压电陶瓷材料仅调整其化学组成中的Ca、Bi摩尔比关系,其化学组成为:Ca1‑ xBi2+xNb2O9;其中,0<x<0.09,x为摩尔百分比。

Description

一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压 电陶瓷及其制备方法
技术领域
本发明属于压电陶瓷材料的制备领域,涉及一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法。
背景技术
压电材料是一种可以实现电能和机械能相互转换的信息功能材料,广泛应用于航天航空、超声探测、水声探测等领域。压电材料分为压电单晶、压电陶瓷、压电高分子以及压电复合材料等,但是压电陶瓷因其优异的压电性能,丰富的组分可调性及简单的制备工艺,占据了大部分的市场份额,在很多器件中都有着无法替代的作用,拥有着非常广阔的前景。压电陶瓷材料是高温振动传感器的核心元件。随着我国航空航天事业的迅猛发展,对在高温恶劣环境中工作的高精度驱动器、高温压电振动传感器等压电器件提出了更高的要求,这就要求压电陶瓷材料兼具优异压电性能和高使用温度并且能够稳定、可靠的工作。并且,近年来美国对中国关键材料及器件的限制,使得研究用于600℃以上高温振动传感器用的压电陶瓷材料迫在眉睫。其中,铌酸铋钙压电陶瓷是铋层状压电陶瓷材料中已知的具有最高居里温度(~943℃)的压电材料,是600℃以上高温振动传感器的优选材料。但由于其压电性能差(d33为5~6pC/N),难以满足器件的灵敏度需求;并且电阻率随温度升高急剧下降(<105Ω·cm@600℃),漏电流增大,直接导致相关压电器件失效,严重制约了铌酸铋钙压电陶瓷在高温环境下的实际应用,也是我国600℃高温压电振动传感器的研制尚未取得突破的瓶颈之一。
目前,本领域通常采用离子掺杂优化组成设计以及织构化工艺调控微结构等手段来提高铌酸铋钙压电陶瓷材料的压电性能以及高温电阻率。如通过(Li0.5Ce0.25Nd0.25)复合离子A位掺杂取代可将铌酸铋钙压电陶瓷的压电系数提高至13.1pC/N,高温电阻率提高至105~106Ω·cm@600℃(Ceram.Int.,44,2018:3069-3076),(K1/2Ce1/2)、(W2/3Cr1/3)复合离子A、B位共同掺杂可将铌酸铋钙压电陶瓷的压电系数提高至18.4pC/N,高温电阻率提高至1.16×105Ω·cm@600℃(J.Mater.Sci-Mater.El.,30,2019:11727-11734),通过离子掺杂虽然可以提高压电性能及高温电阻率,但掺杂离子含量少,原料配比复杂,不适合生产化进程,并且压电陶瓷材料的性能往往是相互制约、相互影响的,离子掺杂取代的同时也会降低材料的居里温度(评价材料使用温度的重要参数);通过织构使铌酸铋钙压电陶瓷晶粒定向排布,可将压电系数提高至23pC/N,电阻率提高至>105Ω·cm@600℃,由于铋层状压电陶瓷的特殊结构,通过织构法难以制备兼具高压电系数和高电阻率的铌酸铋钙压电陶瓷,并且织构化工艺较为复杂、重复性较差。因此,如何在保持其高居里温度的同时,通过简单、易操作的方法获得兼具高压电性能及高电阻率的压电陶瓷材料是高温压电陶瓷领域的研究重点和关键难题。
发明内容
本发明针对铌酸铋钙压电陶瓷材料压电性能差、高温电阻率低的问题,提供了一种自组分调控的方法,在保持铌酸铋钙压电陶瓷高居里温度的情况下,同时提高其压电性能和高温电阻率,并提供了一种具有高居里温度、高压电性能、高电阻率的铌酸铋钙组成设计,以满足高温压电振动传感器用压电陶瓷材料的要求,推动其在高温领域的应用。
本发明根据铌酸铋钙的特殊化学组成及其结构,在不引入其它离子的前提下,通过自组分调控(调控铌酸铋钙中特定元素的化学计量比),设计铌酸铋钙压电陶瓷化学组成:Ca1-xBi2+xNb2O9(其中,0<x<0.09,x为摩尔百分比),在不降低其居里温度的情况下,同时提高了压电性能和高温电阻率。
较佳地,所述铌酸铋钙压电陶瓷在室温下的压电系数为10~15pC/N,居里温度>940℃,600℃下的高温电阻率比CaBiNb2O9提高1~2个数量级,600℃、1MHz下的介电损耗为0.01~0.07。
较佳地,0<x≤0.08,优选0.02≤x≤0.06,更优选0.03≤x≤0.05。
本发明的目的是获得最优的调控比,实验已证明在x=0.04时为最优调控,通过如下缺陷方程
Figure BDA0003101430460000021
使得陶瓷内空位减少到最低,电阻率达到最高,而当x继续增加后,会发生如下反应/>
Figure BDA0003101430460000022
使得陶瓷内部电子增多,导致电阻率下降,从x>0.04后的电阻率变化也可以看出该变化趋势,当x>0.08时再扩大范围其性能会比纯CBN陶瓷好,但其电阻率将小于5×105(@600℃);如图4,随着x增大,其晶胞参数a先减小后增大,在x=0.04时最小,a轴畸变最大(该结果通过xrd数据进行精修得出的结果,一种通过计算拟合获得晶胞参数及晶体结构的方法),由于CBN自发极化主要来自a方向,因而晶胞参数a畸变最大的组成时压电性能最大,x>0.04后,晶胞参数a再次增大,压电系数随之降低。
x=0.04组分具有最优的性能,不仅具有上述的优异性能(压电系数提高了近两倍,电阻率提高了一个数量级以上,居里温度基本保持不变),还具有良好的高温稳定性,在25~900℃范围内其压电系数变化率仅为10%。
第二方面,本发明提供了上述铌酸铋钙压电陶瓷的制备方法,包括:配料、混料、合成、细磨、造粒、成型、排塑、烧结、电极制备、极化,得到所述铌酸铋钙压电陶瓷。
较佳地,以CaCO3、Bi2O3、Nb2O5粉体按照Ca1-xBi2+xNb2O9的化学计量比配制原料粉体;其中0<x≤0.08。
较佳地,所述混料和细磨的方式为湿法球磨混合2~6小时;其中,原料粉体:球磨介质:酒精的质量比=1:1.2~1.8:0.5~0.9。
较佳地,所述合成采用固相法,以1~3℃/min的升温速率升至700~950℃,保温合成2~4小时,然后随炉温冷却至室温,获得陶瓷粉体。
较佳地,所述造粒为:向陶瓷粉体中加入陶瓷粉体质量5%~10%的粘结剂进行造粒,优选地,所述粘结剂为聚乙烯醇、羧甲基纤维素、羟丙基甲基纤维素中的至少一种;更优选地,所述粘结剂为4~8wt.%聚乙烯醇。
较佳地,所述排塑为:以不高于2℃/min的升温速率升温至600~800℃,保温3小时以下。
较佳地,所述烧结为普通固相法烧结,将陶瓷坯体以1~3℃/min升温速率升至1100~1300℃进行烧结1~3小时。
较佳地,所述电极制备的烧结温度为800~900℃,升温速率为1~3℃/min;保温时间为60分钟以下。
较佳地,所述极化条件为在180~200℃条件下施加18~22kV/mm极化10~30分钟。
附图说明
图1示出本发明对比例1和实施例1-4所制备的铌酸铋钙压电陶瓷的XRD图及局部放大图。
图2示出本发明对比例1和实施例1-4所制备的铌酸铋钙压电陶瓷不同温度下的电阻率变化关系图及600℃下不同组分的电阻率。
图3示出本发明实施例1-4所制备的铌酸铋钙压电陶瓷不同温度退火后的压电系数及室温下不同组分的压电系数。
图4示出了本发明对比例1和实施例1-4所制备的铌酸铋钙压电陶瓷xrd精修所得的晶胞参数变化。
具体实施方式
以下结合附图和实施例,对本发明的具体实施方式作进一步详细描述。应理解,以下附图和实施例用于说明本发明,而非限制本发明。
以下示例性地说明本发明所述自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷的制备方法。
配料。以CaCO3、Bi2O3、Nb2O5粉体为原料,按照自组分调控设计的铌酸铋钙化学组成(Ca1-xBi2+xNb2O9,其中,0<x<0.09,优选0<x≤0.08,更优选0.02≤x≤0.06,进一步优选0.03≤x≤0.05,最优选x=0.04)进行配料并混料烘干。
混料。可采用湿法球磨的方式进行混料。其中,原料:球磨介质:酒精的质量比=1:1.2~1.8:0.5~0.9,行星球磨混合2~6小时,球磨介质可为玛瑙球。
合成。所述的合成为固相法合成,合成条件包括:1~3℃/min的升温速率升至700~950℃,保温合成2~4小时,获得陶瓷粉体。
细磨。可采用湿法球磨的方式进行细磨。其中,原料:球磨介质:酒精的质量比=1:1.2~1.8:0.5~0.9,行星球磨混合2~6小时,球磨介质可为玛瑙球。
造粒。向陶瓷粉体中加入陶瓷粉体质量5%~10%的粘结剂进行造粒。粘结剂可为4~8wt.%聚乙烯醇。
成型。以1~3MPa的单轴压力将陶瓷粉体压制成直径12~14mm、厚度1~2mm的陶瓷配体。
排塑。所述排塑条件为以不高于2℃/min的升温速率升温至600~800℃,保温3小时以下。排出造粒过程中加入的聚乙烯醇粘结剂并使陶瓷配体具有一定强度。烧结。所述烧结的方式可为普通固相法烧结,陶瓷坯体以1~3℃/min升温速率升至1100~1300℃,保温烧结1~3小时。
电极制备、极化。将上述烧结后得到的陶瓷片双面磨平,通过丝网印刷进行双面电极制备,可以1~3℃/min的升温速率升至800~900℃,保温时间为60分钟以下。然后施行电极进行极化,极化条件为180~200℃,18~22kV/mm,极化10~30分钟,即得所述的铌酸铋钙压电陶瓷。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
对比例1
1)采用传统的固相烧结法制备铌酸铋钙Ca1-xBi2+xNb2O9压电陶瓷,其中x=0,即Ca:Bi=1:2。首先以CaCO3、Bi2O3、Nb2O5为原料按目标化学组成进行配料并混合,采用湿法球磨将其混合均匀并烘干,按照原料:玛瑙球:酒精=1:1.5:0.65~0.7比例混合,行星球磨4小时。
2)80℃烘干后,过40目筛,在3MPa压力下成型。然后放置在氧化铝坩埚中利用固相法合成,以2℃/min升温至850℃保温2小时,随炉温冷却至室温。将合成生料进行机械粉碎,过40目筛后,采用混料相同的工艺进行细磨。
3)然后加入合成粉体质量6%的粘结剂(聚乙烯醇PVA)进行造粒,5MPa压力下成型,陈化24小时,过40目筛,在1.5MPa压力下压制成直径为13mm、厚度1~2mm的生坯。
4)将生坯以2℃/min升温至750℃保温2小时进行排塑。排塑后,以2℃/min升温至1100~1200℃保温2小时进行烧结,随炉冷却至室温,得到铌酸铋钙压电陶瓷。
5)将获得的陶瓷片双面磨平至0.5mm,通过丝网印刷进行双面铂电极制备,以2℃/min的升温速率升至850℃,保温30分钟烧结。然后施行电极进行极化,极化条件为200℃,9~10kV/mm,极化30分钟,即得所述的铌酸铋钙压电陶瓷。
实施例1
实施例1与对比例1基本相同,区别仅在于:x=0.02,即Ca:Bi=0.98:2.02。
实施例2
实施例2与对比例1基本相同,区别仅在于:x=0.04,即Ca:Bi=0.96:2.04。
实施例3
实施例3与对比例1基本相同,区别仅在于:x=0.06,即Ca:Bi=0.94:2.06。
实施例4
实施例4与对比例1基本相同,区别仅在于:x=0.08,即Ca:Bi=0.92:2.08。
表1为本发明对比例1及实施例1-4中铌酸铋钙压电陶瓷的各项性能测试,其结果如表1所示。
XRD图采用日本Rigaku公司的D/max-2550V型X射线衍射仪测试所得,高温电阻率均采用佰力博公司生产的RMS-1000高温电阻测试***测试所得,压电系数采用中科院声学所生产的ZJ-3A型准静态d33测试仪测试所得,居里温度Tc按照GB/T 3389.3中的有关要求进行测试所得,高温介电损耗采用西安交通大学研制的高温介电测试***测试所得。
表1结果可以看出,自组分调控后的铌酸铋钙压电陶瓷居里温度没有显著变化,均大于940℃,对于材料的最大使用温度无显著影响;在600℃下,自组分调控后的铌酸铋钙压电陶瓷介电损耗显著降低。
图1为本发明对比例1和实施例1-4所制备的铌酸铋钙压电陶瓷的XRD图及局部放大图。可以看出,通过自组分调控改变Ca/Bi比对铌酸铋钙压电陶瓷的相组成没有影响。局部放大图可以看出,随着x增大(即Ca/Bi比减小),逐渐合并,相结构由正交相向伪四方相过渡,表明自组分调控使得Bi3+进入钙钛矿层中的A位置,使其结构发生畸变。
图2为本发明对比例1和实施例1-4所制备的铌酸铋钙压电陶瓷不同温度下的电阻率变化关系图及600℃下不同组分的电阻率。可以看出,通过自组分调控后的铌酸铋钙压电陶瓷在150-700℃温度范围内,电阻率相较未调控组分提高了1-2个数量级,表明Bi3+取代Ca2+的缺陷调控:
Figure BDA0003101430460000061
减少了/>
Figure BDA0003101430460000062
及h-的生产,降低了载流子浓度,提高电阻率。并且在x=0.04组分下,获得了最优电阻率值,在600℃温度下,电阻率高达1.9×106Ω·cm。
图3为本发明实施例1-4所制备的铌酸铋钙压电陶瓷不同温度退火后的压电系数及室温下不同组分的压电系数。通过自组分调控后的铌酸铋钙压电陶瓷在25-900℃温度范围内,具有良好的压电稳定性,其中x=0.04组分,压电系数变化率仅有10%,并且具有较高的压电系数15.1pC/N,压电系数提高了近两倍。
表1为不同自组分调控铌酸铋钙陶瓷的性能参数对比:
Figure BDA0003101430460000063
Figure BDA0003101430460000071

Claims (12)

1.一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷,其特征在于,所述铌酸铋钙压电陶瓷材料仅调整其化学组成中的Ca、Bi摩尔比关系,其化学组成为:Ca1- xBi2+xNb2O9;其中,0.02≤x≤0.06,x为摩尔百分比;所述铌酸铋钙压电陶瓷在室温下的压电系数为10~15pC/N,居里温度>940℃,600℃下的高温电阻率比CaBi2Nb2O9提高1~2个数量级,600℃、1MHz下的介电损耗为0.01~0.07。
2.根据权利要求1所述的铌酸铋钙压电陶瓷,其特征在于,0.03≤x≤0.05。
3.一种如权利要求1所述的铌酸铋钙压电陶瓷的制备方法,其特征在于,包括:配料、混料、合成、细磨、造粒、成型、排塑、烧结、电极制备、极化,得到所述铌酸铋钙压电陶瓷。
4.根据权利要求3所述的制备方法,其特征在于,所述混料和细磨的方式为湿法球磨混合2~6小时;其中,原料粉体:球磨介质:酒精的质量比=1:1.2~1.8:0.5~0.9。
5.根据权利要求3所述的制备方法,其特征在于,所述合成采用固相法,以1~3℃/分钟的升温速率升至700~950℃,保温合成2~4小时,然后随炉温冷却至室温,获得陶瓷粉体。
6.根据权利要求3所述的制备方法,其特征在于,所述造粒为:向陶瓷粉体中加入陶瓷粉体质量5%~10%的粘结剂进行造粒。
7.根据权利要求6所述的制备方法,其特征在于,所述粘结剂为聚乙烯醇、羧甲基纤维素、羟丙基甲基纤维素中的至少一种。
8.根据权利要求7所述的制备方法,其特征在于,所述粘结剂为4~8wt.%的聚乙烯醇。
9.根据权利要求3所述的制备方法,其特征在于,所述排塑为:以不高于2℃/分钟的升温速率升温至600~800℃,保温3小时以下。
10.根据权利要求3所述的制备方法,其特征在于,所述烧结为普通固相法烧结,将陶瓷坯体以1~3℃/分钟的升温速率升至1100~1300℃进行烧结1~3小时。
11.根据权利要求3所述的制备方法,其特征在于,所述电极制备的烧结温度为800~900℃,升温速率为1~3℃/分钟;保温时间为60分钟以下。
12.根据权利要求3所述的制备方法,其特征在于,所述极化条件为在180~200℃条件下施加18~22kV/mm极化10~30分钟。
CN202110626552.3A 2021-06-04 2021-06-04 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法 Active CN115433008B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110626552.3A CN115433008B (zh) 2021-06-04 2021-06-04 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110626552.3A CN115433008B (zh) 2021-06-04 2021-06-04 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115433008A CN115433008A (zh) 2022-12-06
CN115433008B true CN115433008B (zh) 2023-07-11

Family

ID=84240508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110626552.3A Active CN115433008B (zh) 2021-06-04 2021-06-04 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115433008B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173369A (ja) * 2000-07-28 2002-06-21 Tdk Corp 圧電セラミックス
CN100357221C (zh) * 2005-02-01 2007-12-26 四川大学 钛酸铋钠银钡系无铅压电陶瓷
CN106554203B (zh) * 2016-11-14 2020-08-18 山东大学 一种铋层状结构铌酸铋钙高温压电陶瓷材料及其制备方法
CN109704761B (zh) * 2019-01-25 2022-03-01 杭州电子科技大学 一种Nb位Cr/Mo共掺杂铌酸铋钙高温压电陶瓷材料及其制备方法
CN109970443B (zh) * 2019-04-25 2020-05-05 广州光鼎科技集团有限公司 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115433008A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
Bhattacharya et al. Susceptor-assisted enhanced microwave processing of ceramics-a review
Xu et al. Large piezoelectric properties induced by doping ionic pairs in BaTiO3 ceramics
US10727493B2 (en) Oriented apatite-type doped rare earth silicate and/or germanate ion conductor and method for manufacturing same
JP2007031219A (ja) チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
CN114394827B (zh) 一种低介电常数硅酸盐微波介质陶瓷及其制备方法
CN109704762B (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
Chen et al. Ferroelectric and dielectric properties of Sr2− x (Na, K) xBi4Ti5O18 lead-free piezoelectric ceramics
CN111004030B (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN106673643A (zh) 一种(Bi0.5Na0.5)1‑xSrxTiO3体系无铅弛豫铁电体的制备方法
Ma et al. The energy storage properties of fine-grained Ba0. 8Sr0. 2Zr0. 1Ti0. 9O3 ceramics enhanced by MgO and ZnO-B2O3-SiO2 coatings
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN109970443B (zh) 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
CN115433008B (zh) 一种自组分调控具有高压电性能及高温电阻率的铌酸铋钙压电陶瓷及其制备方法
CN116813331A (zh) 钛酸锶陶瓷及其制备方法和应用
CN114276128B (zh) 一种降低铁酸铋-钛酸钡压电陶瓷漏电流以及提高其高温电阻率的方法
CN111170736A (zh) 一种铅基钙钛矿结构高温压电陶瓷及其制备方法
CN102633500B (zh) 一种介电可调的低温共烧陶瓷材料及其制备方法
CN112341185B (zh) 一种超高品质因素的铝酸盐系微波介电材料及其制备方法
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN112851336A (zh) 一种钛酸铋钠铋层状压电陶瓷的制备方法
CN112457008A (zh) 一种大应变压电陶瓷材料及其制备方法
Wang et al. Structure and electrical properties of La2O3-doped (K, Na, Li)(Nb, Ta) O3-(Bi, Na) TiO3 ceramics
JP2010222185A (ja) 異方形状粉末及び結晶配向セラミックスの製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant