WO2006126613A1 - 燃料電池用セパレータ及びその製造方法 - Google Patents

燃料電池用セパレータ及びその製造方法 Download PDF

Info

Publication number
WO2006126613A1
WO2006126613A1 PCT/JP2006/310399 JP2006310399W WO2006126613A1 WO 2006126613 A1 WO2006126613 A1 WO 2006126613A1 JP 2006310399 W JP2006310399 W JP 2006310399W WO 2006126613 A1 WO2006126613 A1 WO 2006126613A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
fuel cell
separator
polymer electrolyte
Prior art date
Application number
PCT/JP2006/310399
Other languages
English (en)
French (fr)
Inventor
Mineo Washima
Masahiro Seido
Takaaki Sasaoka
Katsumi Nomura
Original Assignee
Hitachi Cable, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable, Ltd. filed Critical Hitachi Cable, Ltd.
Priority to JP2007517876A priority Critical patent/JP4702365B2/ja
Publication of WO2006126613A1 publication Critical patent/WO2006126613A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell separator used in a solid polymer electrolyte fuel cell and a method for producing the same, and in particular, the amount of noble metal used while maintaining conductivity with a membrane / electrode assembly (MEA).
  • MEA membrane / electrode assembly
  • the present invention relates to a separator for a fuel cell and a method for producing the same, which are excellent in corrosion resistance and durability against substances having strong corrosive properties such as fluorine ions or hydrofluoric acid (hydrofluoric acid).
  • Fuel cells are highly efficient because they can directly convert chemical changes into electrical energy, and they do not burn fuels containing nitrogen, sulfur, etc., so that air pollutants (NO, SO, etc.) It has the feature of low emissions and environmental friendliness.
  • These fuel cells include solid polymer electrolyte type (PEFC), phosphoric acid type (PAFC), molten carbonate type (MCFC), and solid oxide type (SOFC).
  • solid polymer electrolyte fuel cells are expected to spread in the future as power sources for automobiles, general households, etc., as power sources for mopile equipment, and as uninterruptible power sources.
  • FIG. 8 is a schematic cross-sectional view of a unit cell configuration of a solid polymer electrolyte fuel cell provided with a separator made of graphite (hereinafter referred to as a graphite separator) as a prior art.
  • This solid polymer electrolyte fuel cell (hereinafter referred to as fuel cell) 100 is a MEA (Membrane Electrode Assembly, membrane electrode) composed of a solid polymer electrolyte membrane 101, a fuel electrode 102, and an oxidizer electrode 103.
  • MEA Membrane Electrode Assembly, membrane electrode
  • the fuel electrode 102 is formed on one surface of the solid polymer electrolyte membrane 101 so as to include an anode catalyst layer and a gas diffusion (dispersion) layer disposed outside the anode catalyst layer.
  • Oxidant electrode 1 03 is formed on the other surface of the solid polymer electrolyte membrane 101 with a structure including a force sword catalyst layer and a gas diffusion (dispersion) layer disposed outside the force sword catalyst layer.
  • the graphite separators 106 and 108 are members for electrically connecting the fuel electrode 102 and the oxidant electrode 103 and preventing the fuel and the oxidant from being mixed.
  • Such a fuel cell 100 generates electricity by an electrochemical reaction in an environment of about 80 ° C using hydrogen in fuel gas and oxygen in oxidant gas.
  • Hydrogen ions H + move in the solid polymer electrolyte membrane 101 to the counter electrode side, reach the catalyst layer of the oxidant electrode 103, react with oxygen in the oxidant gas in the oxidant gas channel 107, and react with water. It becomes.
  • a predetermined number of fuel cells 100 as shown in FIG. 8 are connected in series so as to obtain a desired output voltage.
  • the number of separators may be several tens to one hundred or more.
  • black lead-based materials have been mainly used as separator materials for fuel cells from the viewpoint of corrosion resistance and conductivity.
  • the graphite separator produced by cutting has a problem that the cost of the fuel cell system becomes very high as the number of sheets used increases as described above due to the high manufacturing cost.
  • the graphite separator by the resin molding method also has a problem in that it is difficult to reduce the thickness of the graphite separator, and it is difficult to reduce the size of the fuel cell system.
  • a corrosion-resistant metal such as stainless steel (SUS) as the separator material.
  • SUS stainless steel
  • the constituent elements of the stainless steel are eluted, the separator is damaged, and the fuel cell characteristics are deteriorated. It is known that it will let you.
  • a separator is known in which stainless steel is used as a base material and Au (gold) is formed on its surface with a plating layer having a thickness of 0.01 to 0.06 m to reduce contact resistance. (For example, see Patent Document 1).
  • an acid-resistant film made of Ta (tantalum), Zr (zirconium), Nb (niobium), Ti (titanium), etc. is formed on the surface of stainless steel, and Au, Pt is formed on the acid-resistant film.
  • Metal separators with improved corrosion resistance and conductivity are known by applying a coating thickness of 0.1 ⁇ m or less for conductive films such as (platinum) and Pd (palladium), and 0.03 ⁇ m as an example. (For example, see Patent Document 2).
  • the thin noble metal coating as described above is porous and does not completely cover the surface of stainless steel. For this reason, there is no dissatisfaction with conductivity, but it is unsatisfactory in terms of corrosion resistance (corrosion resistance), and the component elements of stainless steel may elute over a long period of use, which degrades fuel cell characteristics. Become. On the other hand, if the noble metal film is made thick enough that it does not become a problem in terms of corrosion resistance, the cost will increase even if the problem of corrosion resistance is solved, and it is not practical.
  • Patent Document 3 This metal separator is made of Au, Ru (ruthenium), Rh (rhodium), Pd, Os (osmium), Ir (iridium), and Pt on the surface of a metal plate such as SUS, A1 (aluminum), and Ti. At least one or more kinds of noble metals selected from the group or an acid oxide portion of the noble metal is disposed at 3 to 50 nm so as to have high conductivity and corrosion resistance.
  • Patent Document 4 discloses the following metal separator.
  • This metal separator is in contact with a gas diffusion layer using a precious metal such as Au, Pt, Ru, and Pd as a conductive contact layer on a Ti clad material with a Ti-based corrosion-resistant metal clad on the surface of a corrosion-resistant metal material such as stainless steel.
  • the portion is coated with a film thickness of less than 0.0005-0.01 m, and excellent conductivity and corrosion resistance can be obtained.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-228914 ([0006], [0010], FIG. 4)
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-93538 ([0015] to [0018])
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-297777 ([0012] to [0017])
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-158437 ([0037 G [0041], [0047], FIGS. 1 to 4
  • a conventional metal separator for a fuel cell also has a certain degree of corrosion resistance against sulfuric acid acidity of about pH 2 to 3 at about 80 ° C, for example.
  • a strong and corrosive substance such as fluorine or hydrofluoric acid is generated due to deterioration or decomposition of the electrolyte membrane, which is used for the metal separator.
  • a new problem that has not been considered in the past, which corrodes metal materials such as piping materials, has become a major problem.
  • the metal separators of Patent Document 3 to Patent Document 4 also show a decrease in long-term reliability. There is concern.
  • the object of the present invention is to reduce the amount of precious metal used at a high material cost while maintaining conductivity with MEA and to have a strong corrosive property such as fluorine ion or hydrofluoric acid.
  • An object of the present invention is to provide a metal separator for a fuel cell capable of obtaining corrosion resistance and durability against quality and a method for producing the same.
  • the present invention provides a separator for a fuel cell used in a solid polymer fuel cell constituted by using a fluorinated solid polymer electrolyte membrane, and at least the fluorinated solid polymer.
  • the surface layer on the electrolyte membrane side is made of a metal plate made of a first metal made of T or Ti alloy, and a second metal formed on the surface of the first metal on the fluorine-based solid polymer electrolyte membrane side.
  • the present invention provides a metal plate having a predetermined thickness at least on the surface of the fluorine-based solid polymer electrolyte membrane side of the first metal made of T or Ti alloy.
  • the method for producing a fuel cell separator is provided. The invention's effect
  • the amount of noble metal used can be reduced while maintaining electrical conductivity with MEA, and the substance has strong corrosive properties such as fluorine ions or hydrofluoric acid. It is possible to obtain a fuel cell separator that is excellent in corrosion resistance and durability.
  • FIG. 1 is a schematic cross-sectional view showing an example of a unit cell of a polymer electrolyte fuel cell according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing details of the metal separator of FIG.
  • FIG. 3 is a diagram showing an example of a result of surface analysis of a Ti clad material in which a pure Ti layer is coated with a Pd layer according to the present invention by a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX). is there.
  • SEM-EDX scanning electron microscope-energy dispersive X-ray analyzer
  • FIG. 4 is a photograph showing the results of a fluorine resistance environmental test for a metal separator material in an embodiment of the present invention.
  • FIG. 5 is a diagram showing evaluation results of contact resistance characteristics based on the difference in the configuration of the metal separator material.
  • FIG. 6 is a diagram showing the evaluation results of contact resistance characteristics based on the difference in heat treatment conditions in the manufacturing process of the metal separator material.
  • FIG. 7 is an external view photograph of the produced metal separator.
  • FIG. 8 is a schematic cross-sectional view showing a unit cell configuration of a solid polymer electrolyte fuel cell using a graphite separator.
  • FIG. 1 is a schematic cross-sectional view of an example of a unit cell of a polymer electrolyte fuel cell according to an embodiment of the present invention.
  • the MEA 13 is composed of a fluorine-based solid polymer electrolyte membrane 10 that is an electrolyte, a fuel electrode 11 provided on one surface of the fluorine-based solid polymer electrolyte membrane 10, and the other of the fluorine-based solid polymer electrolyte membrane 10. It is formed from an oxidant electrode 12 provided on the surface.
  • the fuel electrode 11 and the oxidant electrode 12 are each formed with a catalyst layer and a gas diffusion (dispersion) layer outside thereof.
  • the fuel cell 1 includes a MEA 13 and a metal separator 15 as a fuel cell separator having a plurality of fuel gas passages 14 having a cross-sectional shape of a concave groove with respect to one surface (fuel electrode 11) of the MEA 13.
  • a metal separator 17 as a separator for a fuel cell having a plurality of oxidant gas passages 16 having a cross-sectional shape of a concave groove, and a member interposed between the metal separators 15 and 17 and sealing the periphery of the MEA 13 Gaskets 18 and 19 are provided as (seal members).
  • the fuel cell 1 is assembled by pressurizing and fixing a pair of metal separators 15 and 17 with an appropriate pressure while being sealed with gaskets 18 and 19.
  • the fluorine-based solid polymer electrolyte membrane 10 may be made of a perfluorosulfonic acid ion exchange material, a perfluorocarboxylic acid ion exchange material, or the like. Registered trademark) and Flemion (registered trademark) of Asahi Glass Co., Ltd. can be used!
  • the contact resistance between the MEA and the metal separator should be at least about 150 m ⁇ 'cm 2 or less as desired. More desirably, it is ⁇ ⁇ 'cm 2 or less, and more desirably 70 ⁇ ⁇ ' cm 2 or less.
  • FIG. 2 shows a schematic diagram of a detailed configuration of the metal separator 15.
  • the metal separator 15 includes a base material 20 made of a corrosion-resistant metal such as stainless steel, a pure Ti layer 21 as a first metal layer formed on both surfaces of the base material 20, and at least one side of the base material 20.
  • This composite metal layer 22 is formed by forming a Ti—Pd alloy at the junction between the pure Ti layer 21 and the Pd layer 23.
  • “Corrosion-resistant metal” means a metal (for example, stainless steel, aluminum alloy, magnesium alloy, Ti, etc.) in which an acid oxide forms a passive film in the atmosphere. ⁇ O shall mean 1 to 3 types of IS.
  • the thickness of the Pd layer 23 is preferably formed so that the average thickness is 2 to: LOnm before alloying with the pure Ti layer 21. More preferably, it is formed to 3 to 9 nm. More preferably, it is formed to 4 to 8 nm.
  • the reason why the upper limit is set to lOnm is that the noble money with high material cost This is to reduce the amount of genus used.
  • the reason why the lower limit is set to 2 nm is that if the thickness of the Pd layer 23 is less than 2 nm, the probability that the Pd layer 23 will be covered with Ti oxide by the heat treatment described later increases, and it becomes difficult to ensure conductivity ( This is because the contact resistance against MEA increases. It is generally said that the thickness of the Ti oxide film is about 2nm.
  • the average yarn composition ratio of the surface layer portion (for example, thickness of about 1 ⁇ m) in which the Pd layer 23 is formed by the composite metal layer 22 is Pd of 0.005 or more in terms of atomic ratio with respect to Ti.
  • 0 (oxygen) is 0.1 to 1 in terms of atomic ratio to Ti
  • Pd is 0.02 to 0.08 in terms of atomic ratio to O.
  • the atomic ratios are 0.01 ⁇ Pd / Ti ⁇ 0.03, 0.2 ⁇ O / Ti ⁇ 0.9, and 0.02 ⁇ Pd / O ⁇ 0.06, respectively.
  • the atomic ratio should be 0.0015 ⁇ Pd / Ti ⁇ 0.03, 0.2 ⁇ O / Ti ⁇ 0.85, 0.02 ⁇ Pd / O ⁇ 0.05.
  • the average composition ratio of the above-mentioned surface layer portion is obtained by, for example, surface analysis using an energy dispersive X-ray analyzer (for example, acceleration voltage: 15 kV, area: about 60 X about 80 Quantitative analysis can be performed by m 2 ).
  • a pure Ti layer 21 as a first metal layer is clad-bonded to a thickness of 20 m on both sides of a plate-like stainless steel material (for example, SUS316L) having a thickness of 0.16 mm.
  • a plate-like stainless steel material for example, SUS316L
  • a Pd layer 23 as a second metal layer is formed on the pure Ti layer 21 on the MEA 13 side surface, for example, to an average thickness of 5 nm by sputtering or EB vapor deposition (electron beam vapor deposition).
  • sputtering or EB vapor deposition electron beam vapor deposition
  • a Ti-Pd alloy is formed between the pure Ti layer 21 and the Pd layer 23 by performing a heat treatment under a predetermined condition and generating a diffusion phenomenon at the interface between the pure Ti layer 21 and the Pd layer 23.
  • Produce and composite gold Form a genus layer 22.
  • a pure Ti layer part not covered by the Pd layer and oxygen in the atmosphere combine to form a Ti oxide film.
  • a Ti layer is formed on the substrate 20 side, a Pd layer 23 is formed on the fluorine-based solid polymer electrolyte membrane 10 side (MEA 13 side), and a Ti—Pd alloy is formed in the middle. .
  • the Pd layer 23 may be formed on both surfaces of the pure Ti layer 21, it is desirable to form the Pd layer 23 only on the surface of the fluorine-based solid polymer electrolyte membrane 10 side (MEA 13 side) in terms of cost and the like.
  • the average thickness of the Pd layer 23 is obtained by measuring the average film formation rate of Pd in advance (for example, measuring the film thickness formed in a film shape (not in an island shape) and dividing the film formation time by the film formation time.
  • the heat treatment is performed in the air or in an aerobic atmosphere at a temperature in the range of higher than 250 ° C and lower than or equal to 400 ° C.
  • the heat treatment temperature is preferably in the range of 280 ° C or more and 390 ° C or less, more preferably around 350 ° C (about 300 ° C to 370 ° C).
  • the reason why heat treatment at a temperature higher than 250 ° C is appropriate is the reason for Ti platinum group alloying (effective diffusion).
  • the reason why heat treatment at 400 ° C or lower is appropriate is to suppress the excessive formation of Ti oxide film that leads to increased contact resistance to MEA. Conceivable.
  • the heat treatment time is preferably adjusted so that the average composition specific force of the surface layer portion (for example, about a thickness) in which the Pd layer 23 is formed by the composite metal layer 22 falls within the above-mentioned range.
  • the alloying method is preferably performed by heat treatment using a normal electric furnace or the like from the viewpoint of simplicity and cost, but other methods can also be applied.
  • a metal separator material is formed.
  • the metal separator is manufactured by applying a forming process (cutting or pressing) to the metal separator material.
  • the second step and the third step may be performed before or after the metal separator is molded.
  • a nano-level film formation technology such as sputtering is used to form a platinum group element such as Ti and Pd with high precision, and further subjected to diffusion heat treatment, so that There is no chemical bond with oxygen on the surface, and there are atoms of platinum group elements in the vicinity of Ti atoms, so it is thought that electrons are supplied and become electrochemically noble.
  • the Ti-Pd alloy is not limited to the structure formed at the junction between the pure Ti layer 21 and the Pd layer 23, and the entire composite metal layer 22 may depend on diffusion conditions. Ti—Pd alloy may also be used.
  • the alloy state is not particularly limited, and there may be a difference in Pd concentration depending on the location, but the part in contact with the gas diffusion (dispersion) layer of the fuel electrode 11 and the oxidant electrode 12 may be used. It is desirable to ensure that the Pd concentration does not decrease.
  • the first metal layer may be a pure Ti alloy of Ti (for example, JIS 11 types). A Ti alloy with a corrosion resistance equivalent to or higher than that of pure Ti is used.
  • the second metal layer can use Pt (platinum), Ru (ruthenium), Rh (rhodium), Ir (iridium), or two or more kinds in place of Pd. These may be combined with oxygen. Among these, it is preferable to use one or more of Pd, Pt, and Ru, or those obtained by combining oxygen with these. In these cases as well, Pt, Ru, Rh, etc. have an average yarn composition ratio of the surface layer portion (for example, about 1 ⁇ m thick) in which the second metal layer is formed of a composite metal layer with Ti.
  • the atomic ratio to Ti is 0.005 to 0.03, the atomic ratio to Ti is 0 (oxygen) 0.1 to 1, and the second metal is 0 to O. .02 or more and 0.08 or less are preferable. More preferably, the atomic ratios of 0.01 ⁇ second metal / Ti ⁇ 0.03, 0.2 ⁇ O / Ti ⁇ 0.9, 0.02 ⁇ second metal /0 ⁇ 0.06 To be. More preferably, the atomic ratios are 0.015 ⁇ second gold J3 ⁇ 4 / Ti ⁇ 0.03, 0.2 ⁇ O / Ti ⁇ 0.85, 0.002 ⁇ second metal /O ⁇ 0.05. Try to be.
  • a plate-shaped stainless steel (SUS316L) with a thickness of 1 mm is prepared as the base material, and the first metal (Ti: JIS type 1) layer is placed on both sides of the base material so that the thickness ratio is 10% each.
  • the clad was rolled and joined to form a plate with a total thickness of 0.2 mm (metal plate 1).
  • a plate-shaped aluminum alloy material (A1—Mg alloy: JIS 508 3) having a thickness of 1 mm is prepared as the base material, and the thickness ratio of the constituent materials is 20% of the first metal layer, and the bonding metal layer
  • the joining metal (A1: JIS 1050) layer and the first metal (Ti: JIS type 1) layer were clad-rolled and joined so as to be 5% and the base material 7 5%.
  • the bonding metal layer was formed so as to be interposed between the base material and the first metal layer.
  • bonding heat treatment for example, 500 ° C. ⁇ 10 min
  • finish rolling were performed to form a plate having a total thickness of 0.3 mm (metal plate 2).
  • Ti plate material Ti: JIS Class 1 having an overall thickness of 0.2 mm was prepared (Metal plate 3).
  • the second metal layer was formed using an RF sputtering apparatus (ULVAC, Inc., model: SH-350).
  • the atmosphere during formation was Ar, the pressure was IPa, and the RF output was appropriately adjusted according to the type of metal.
  • the thickness of the second metal layer was controlled by measuring the average film formation speed in advance for each metal species and adjusting the film formation time.
  • Figure 3 shows the surface of the composite metal layer 22 according to the present invention. : 15 kV, area: approx. 60 X approx. 80 ⁇ m 2 )
  • An example of surface analysis results is shown.
  • SEM is Hitachi, Ltd. S-4300
  • EDX is Horiba, Ltd. EMAX-300.
  • the sample shown in the figure is a sample immediately after forming a Pd layer of 5 nm (average film thickness) on the metal plate 1. From this analysis result, the nano thin film by Pd layer 23 is very thin, or clustered (dispersed in islands) in clusters on the surface. Therefore, it can be seen that the signal strength of the underlying pure Ti layer 21 is clearly observed.
  • FIG. 4 shows the results of the hydrofluoric acid resistance test A for the metal separator in this embodiment.
  • This hydrofluoric acid environment test A was maintained at a temperature of 80 ° C. in a 0.5 mass% hydrofluoric acid aqueous solution vapor atmosphere for 24 hours. Thereafter, the surface condition after the test was observed.
  • Samples used in the test were prepared as follows.
  • a Pd layer 23 is formed to 5 nm (average film thickness) on the metal plate 1, and is 250 ° C X lh (250 ° C is the set temperature of the apparatus, and the actual temperature near the sample is about 260 ° C in the atmosphere. ° C) heat treatment.
  • the heat treatment was performed using a commercially available oven (Yamato Scientific Co., Ltd., model: DV600).
  • the metal plate 1 was formed without forming the Pd layer 23.
  • the left side is the case where the outermost layer is pure Ti layer 21 only (comparative example), and the right side is the case where Pd layer 23 is applied and a predetermined heat treatment is performed to form composite metal layer 22 (implementation) Example).
  • the metal separator without the Pd layer has a clearly altered surface, whereas the metal separator with the Pd layer 23 and subjected to the prescribed heat treatment to form the composite metal layer 22 shows almost no alteration and is good. It shows that it shows excellent corrosion resistance and durability.
  • the contact resistance with the gas diffusion (dispersion) layer of MEA before and after the implementation of hydrofluoric acid environment test A was measured by various changes in the composition (material) of the metal separator material, and the characteristics were evaluated. It was.
  • the contact resistance measurement was performed as follows. Carbon PENO (Toray Industries, Inc., product number: TGP-H-060) was used as the gas diffusion (dispersion) layer of MEA.
  • the prepared metal separator material (2 X 2cm 2 ) is sandwiched between the Cu (copper) blocks plated with Au via the carbon paper, and the load (20kg / cm 2 ) is applied with a hydraulic press.
  • the contact resistance between the metal separator material and the carbon paper was measured by a 4-terminal measurement method (Adex Co., Ltd., model number: AX-125A).
  • Samples used for this evaluation test were prepared as follows. Pd with an average thickness of 5 nm as the second metal layer on the surface of the Ti clad material (the metal plate 1) having the pure 1 layer 21 on both surfaces of the base material 20 (SUS316L) (Example 1) , Pt (Example 2), Ru (Example 3), Au (Comparative Example 1) thin films were formed by sputtering, respectively, and 250 ° C X lh (250 ° C is the set temperature of the device) in the atmosphere. The actual temperature near the sample was about 260 ° C).
  • Example 1 ′ a sample (Example 1 ′) in which a Pd thin film having an average thickness of 5 nm was formed as a second metal layer on the surface of the metal plate 2 by the sputtering method and subjected to the same heat treatment as in Example 1, and A Pd thin film having an average thickness of 5 nm was similarly formed on the surface of the metal plate 3 by sputtering, and a sample (Example 1 ") that was subjected to the same heat treatment as Example 1 was prepared.
  • the layers were formed using an RF sputtering apparatus (Al Knock Co., Ltd., model: SH-350, atmosphere: Ar, pressure: lPa), and heat treatment was performed using a commercially available oven (Yamato Scientific Co., Ltd., model: DV600). ).
  • Comparative Example 2 Ti-SUS-Ti only, metal plate 1 and Comparative Example 3 (on the Ti of metal plate 1, for example, a method disclosed in Japanese Patent Application Laid-Open No. 2000-138067) Then, a conductive carbon coating (approx. 20 ⁇ m thick) was also prepared.
  • FIG. 5 shows the evaluation results of the contact resistance characteristics based on the difference in the configuration of the metal separator material.
  • the left side shows the characteristics before conducting the hydrofluoric acid resistance test A
  • the right side shows the characteristics after the hydrofluoric acid resistance test A.
  • the contact resistance before and after the hydrofluoric acid environment test B was measured by variously changing the heat treatment conditions in the metal separator manufacturing process, and the relationship between the heat treatment conditions and the contact resistance characteristics was investigated.
  • Samples for this evaluation test were prepared as follows. Both sides of base material 20 (SUS316L) A Pd thin film with an average thickness of lOnm is formed by sputtering on the surface of a Ti clad material (the metal plate 1) formed by applying a pure Ti layer 21 to the surface, and the atmosphere is kept in the atmosphere or argon (Ar) for 1 hour. Heat treatment was performed at the temperature shown in FIG. As a comparison, a sample was also prepared that was heat-treated at the temperature shown in Table 2 for 1 hour in the air using the metal plate 1 on which no Pd thin film was formed.
  • normal electric furnace (Denken Co., Ltd., model: KDF S80) is used for heat treatment in the atmosphere
  • heat treatment in Ar is normal electric furnace (ULVAC RIKO, Inc., model: VF-616 Y).
  • UVAC RIKO, Inc. model: VF-616 Y
  • the contact resistance with the carbon paper was measured by the same method as described above.
  • Table 1 shows the measurement results of contact resistance and the hydrofluoric acid environment test B ratio before and after B (contact resistance after B test, contact resistance before ⁇ test) of the sample with Pd thin film formed on the surface of pure Ti layer.
  • Table 2 shows the measurement results of the hydrofluoric acid resistance test before and after the hydrofluoric acid resistance test B on a sample with no Pd thin film formed on the surface of a pure layer. .
  • FIG. 6 is a graph showing the contact resistance measurement results shown in Table 1 and Table 2, and shows the evaluation results of the contact resistance characteristics based on the difference in heat treatment conditions in the manufacturing process of the metal separator material. .
  • the mouth, ⁇ , and ⁇ indicate the characteristics before the HF acid resistance test B
  • the country and ⁇ indicate the characteristics after the Fluorine resistance test B.
  • the samples (Examples 4 to 6) heat-treated near 350 ° C (280 to 390 ° C) in the atmosphere hardly increased.
  • the sample heat-treated at 500 ° C in the atmosphere (Comparative Example 5) has a large contact resistance at the time of heat treatment, although the ratio before and after the hydrofluoric acid resistance test B (contact resistance increase rate) was small. I helped. In other words, those treated at 500 ° C in the atmosphere are considered unsuitable for practical use due to their high practical contact resistance.
  • the sample (Comparative Example 7) that was heat-treated at 200 to 400 ° C in the air without forming a Pd thin film on the surface of the pure Ti layer had a contact resistance at the time when the heat treatment was performed. It was observed that the surface was dissolved by the hydrofluoric acid environment test B, which was higher than ⁇ 6. This indicates that the corrosion resistance to hydrofluoric acid environment is insufficient. In other words, it strongly suggests the significance of forming the composite metal layer 22 according to the present invention.
  • the surface of the composite metal layer 22 according to the present invention is subjected to a scanning electron microscope energy dispersive X-ray analyzer (SEM—EDX: Scanning Electron Microscopy—Energy Dispersive X-ray spectrometer). ⁇ accelerating electrostatic J earth: L5kV, the area was carried out a surface analysis by about 60 X to about 80 m 2). The results are shown in Table 3. SEM is Hitachi, Ltd. S-4300, and EDX is Horiba, Ltd. EMAX-300. [0067] [Table 3] Table 3 Average composition ratio of the surface part of the composite metal layer 22 in the sample heat-treated in air
  • Ti-Pd alloy Ti-Platinum group alloy
  • Ti-Platinum group alloy has the effect of ensuring the conduction path (contributing to the reduction of contact resistance) and regenerating the Ti oxyhydride film corroded (dissolved) by hydrofluoric acid.
  • a metal separator member was prepared by the same procedure as in Example 5 (metal plate 1 + Pd coat (10 nm) + heat treatment in air (350 ° C. Xlh)), and then press working to produce a metal separator.
  • Figure 7 shows a photograph of the appearance of the fabricated metal separator.
  • the length of the fuel gas (or oxidant gas) flow path (left and right grooves and recesses in Fig. 7) is 48 mm, and the flow path pitch is 3 mm (in the vertical direction in Fig. 7, the recesses and protrusions are (Alternately formed) and the depth of the channel (depth direction in Fig. 7, difference in height between the concave and convex portions) was 0.5 mm.
  • Nafion 112 (registered trademark) manufactured by DuPont Co., Ltd. was used as the fluorine-based solid polymer electrolyte membrane, and the size of the power generation electrode part was 50 ⁇ 50 mm 2 .
  • a fuel cell having a structure as shown in Fig. 1 (Fig. 2) was fabricated by sandwiching a gasket having a fuel gas (or oxidizing agent gas) flow path and a sealing member.
  • the power generation conditions were such that the load current density was 0.5 A / cm 2 , and the gas was used so that the utilization rates of fuel gas and oxygen in the air (oxidant gas) were 70% and 40%, respectively. Supplied.
  • a continuous energization test (1500h) was performed, two types of fuel cells (metal separator according to the present invention) It was confirmed that the reduction in electromotive force per operating time was suppressed to 5 mV / kh or less, and the same power generation characteristics were obtained for both fuel cells using a battery and a conventional fuel cell using a graphite separator.
  • the Pd-coated one is heat-treated under a predetermined condition, so that the tolerable fluorine ion concentration is improved and the hydrofluoric acid resistance is further improved.

Abstract

 MEAとの導電性を維持しながら、素材コストの高い貴金属の使用量を低減し、かつ、フッ素イオンまたはフッ酸などの強い腐食性を有する物質に対する耐食性および耐久性を得ることができる燃料電池用セパレータ及びその製造方法を提供する。  フッ素系固体高分子電解質膜を用いた固体高分子型燃料電池に用いられる本発明の金属セパレータ15,17は、複数の燃料ガス流路14を有するように加工されたステンレスによる基材20を有し、この基材20の表面には純Ti層21が形成され、この純Ti層21のフッ素系固体高分子電解質膜側の表面にはPd層23が形成され、熱処理により少なくとも純Ti層21の表面との接合部が合金化されて純Ti層21とPd層23により複合金属層22が形成されている。

Description

明 細 書
燃料電池用セパレータ及びその製造方法
技術分野
[0001] 本発明は、固体高分子電解質型燃料電池に用いられる燃料電池用セパレータ及 びその製造方法に関し、特に、膜'電極接合体 (MEA)との導電性を維持しながら、 貴金属の使用量を低減できるとともに、フッ素イオンまたはフッ化水素酸 (フッ酸)など の強い腐食性を有する物質に対する耐食性および耐久性に優れた燃料電池用セパ レータ及びその製造方法に関する。
背景技術
[0002] 燃料電池は、化学変化を直接に電気エネルギーに変えることができることから高効 率であり、また、窒素や硫黄などを含む燃料を燃焼しないので、大気汚染物質 (NO 、 SO等)の排出量が少なく地球環境に優しいという特長を有する。この燃料電池に は、固体高分子電解質型 (PEFC)、リン酸型 (PAFC)、溶融炭酸塩型 (MCFC)、 固体酸化物型 (SOFC)等がある。特に、固体高分子電解質型燃料電池は、自動車 や一般家庭等の電力用、モパイル機器電源や無停電電源として、将来普及すること が期待されている。
[0003] 図 8は、従来技術として、黒鉛からなるセパレータ(以下、黒鉛セパレータという)を 備えた固体高分子電解質型燃料電池の単位セル構成の断面模式図を示す。この固 体高分子電解質型燃料電池セル (以下、燃料電池セルという) 100は、固体高分子 電解質膜 101、燃料極 102、および酸化剤極 103より構成される MEA (Membrane E lectrode Assembly,膜'電極接合体) 104と、 MEA104の片面(燃料極)に面して燃 料ガス流路 105が形成されている黒鉛セパレータ 106と、 MEA104の他方の面(酸 ィ匕剤極)に面して酸化剤ガス流路 107が形成されている黒鉛セパレータ 108と、 ME A104の周囲をシールするように黒鉛セパレータ 106, 108の間に挟まれて設けられ たガスケット 109A, 109Bとを備える。
[0004] なお、燃料極 102は、固体高分子電解質膜 101の片面に、アノードの触媒層およ びその外側に配置されたガス拡散 (分散)層を備える構成で形成される。酸化剤極 1 03は、固体高分子電解質膜 101の他方の面に、力ソードの触媒層およびその外側 に配置されたガス拡散 (分散)層を備える構成で形成される。また、黒鉛セパレータ 1 06, 108は、燃料極 102と酸化剤極 103との間を電気的に接続するとともに、燃料と 酸化剤が混ざらな 、ようにするための部材である。
[0005] このような燃料電池セル 100は、約 80°Cの環境で、燃料ガス中の水素と酸化剤ガ ス中の酸素を利用して電気化学反応により発電する。
[0006] 燃料ガス流路 105を流れる燃料ガス中の水素が、燃料極 102の触媒層に接触する ことにより下記の反応が生ずる。
2H→4H" + 4e"
2
[0007] 水素イオン H+は、固体高分子電解質膜 101中を対極側へ移動し、酸化剤極 103 の触媒層に達し、酸化剤ガス流路 107の酸化剤ガス中の酸素と反応して水となる。
4H+ + 4e" + 0→2H O
2 2
[0008] 上記の電極反応により起電力が生じ、この起電力は黒鉛セパレータ 106, 108を介 して外部に取り出される。
[0009] 燃料電池においては、所望の出力電圧が得られるように、図 8に示したような燃料 電池セル 100の所定数を直列接続して使用される。このため、セパレータの枚数は、 数十枚から百枚以上になる場合もある。
[0010] 従来、燃料電池セルのセパレータ材料には、耐食性と導電性の観点から、主に黒 鉛系の材料が用いられてきた。しかし、切削加工による黒鉛セパレータは、製作コスト が高ぐ上述したように使用枚数が多くなると、燃料電池システムのコストが非常に高 くなるという問題がある。また、榭脂モールド成形法による黒鉛セパレータにおいても 、機械的強度の観点力 黒鉛セパレータの薄肉化が困難であり、燃料電池システム の小型化が困難になるという問題がある。
[0011] そこで、セパレータ材料には、ステンレス鋼(SUS)のような耐食性のある金属を用 いることが提案されている。しかし、固体高分子電解質型燃料電池のセパレータ材料 にステンレス鋼を用いた場合、表面処理を施さないでそのまま使用すると、ステンレス 鋼の成分元素が溶出し、セパレータが破損する、ならびに燃料電池特性を劣化させ てしまうことが知られて 、る。 [0012] この対策として、例えば、ステンレス鋼をベース材にし、その表面に Au (金)を 0. 01 〜0. 06 mの厚みにメツキ層を形成し、接触抵抗を小さくしたセパレータが知られて いる(例えば、特許文献 1参照)。同様に、ステンレス鋼をベース材にし、その表面に Ta (タンタル)、 Zr (ジルコニウム)、 Nb (ニオブ)、 Ti (チタン)等による耐酸性被膜を 形成し、この耐酸性被膜上に Au, Pt (白金), Pd (パラジウム)等の導電性被膜を 0. 1 μ m以下、実施例として 0. 03 μ mの厚みにメツキを施し、耐食性および導電性を 改善した金属セパレータが知られている (例えば、特許文献 2参照)。
[0013] しかし、上記したような薄い貴金属被膜はポーラスであり、ステンレス鋼の表面を完 全に被覆するものではない。このため、導電性に不満はないが、耐食性 (耐蝕性)の 点では不満足であり、長時間の使用に対してステンレス鋼の成分元素が溶出してし まい、燃料電池特性を劣化させることになる。一方、耐蝕性の点で問題とならない程 度に貴金属被膜を厚くすると、耐蝕性の課題が解決されてもコストが高くなり、実用的 ではない。
[0014] この問題を解決するものとして、例えば、特許文献 3に示されるものがある。この金 属セパレータは、 SUS、 A1 (アルミニウム)、 Ti等の金属板の表面に、 Au、 Ru (ルテ ユウム)、 Rh (ロジウム)、 Pd、 Os (オスミウム)、 Ir (イリジウム)および Ptからなる群より 選ばれる少なくとも 1種以上の貴金属もしくは前記貴金属の酸ィ匕物部分を 3〜50nm 配置して、高 、導電性と耐食性を備えるようにして 、る。
[0015] また、例えば特許文献 4には、次のような金属セパレータが開示されている。この金 属セパレータは、ステンレス等の耐食金属材料の表面に Ti系耐食金属をクラッドした Tiクラッド材に、 Au、 Pt、 Ru、 Pd等の貴金属を導電性接点層としてガス拡散層と接 触する部分に 0. 0005-0. 01 m未満の膜厚で被覆したものであり、優れた導電 性および耐食性を得ることができる。
特許文献 1 :特開平 10— 228914号公報([0006]、 [0010]、図 4)
特許文献 2 :特開 2001— 93538号公報([0015]〜[0018])
特許文献 3:特開 2001— 297777号公報( [0012]〜 [0017] )
特許文献 4:特開 2004— 158437号公報([0037ト [0041]、 [0047]、図 1〜図 4
) 発明の開示
発明が解決しょうとする課題
[0016] 従来の燃料電池用の金属セパレータにおいても、例えば、約 80°Cで pH2〜3程度 の硫酸酸性に対する耐食性は、ある程度確保される。しカゝしながら、フッ素系固体高 分子電解質膜を用いた燃料電池において、特に、電源のオン Zオフを繰り返すなど の厳しい運転条件 (長期間の使用を考慮すれば、必然的に電源のオン Zオフは多 数繰り返されると考えられる)のもとでは、電解質膜の劣化や分解に基づくフッ素ィォ ンまたはフッ酸などの強!、腐食性を有する物質が発生し、これが金属セパレータをは じめ、配管材など金属材料を腐食させるという従来考慮されていな力つた新たな課題 が大きな問題になってきている。そして、その新たな課題 (フッ素イオンまたはフッ酸 などの強い腐食性を有する物質の発生)に対しては、特許文献 3乃至特許文献 4の 金属セパレータにおいても、長期信頼性の低下となって現れることが懸念される。
[0017] 従って、本発明の目的は、 MEAとの導電性を維持しながら、素材コストの高い貴金 属の使用量を低減し、かつ、フッ素イオンまたはフッ酸などの強い腐食性を有する物 質に対する耐食性および耐久性を得ることができる燃料電池用の金属セパレータ及 びその製造方法を提供することにある。
課題を解決するための手段
[0018] 本発明は、上記目的を達成するため、フッ素系固体高分子電解質膜を用いて構成 された固体高分子型燃料電池に用いられる燃料電池用セパレータにおいて、少なく とも前記フッ素系固体高分子電解質膜側の表層が Tほたは Ti合金による第 1の金属 からなる金属板と、前記第 1の金属の前記フッ素系固体高分子電解質膜側の表面上 に形成された第 2の金属の層とを備え、前記第 2の金属の層は少なくとも前記第 1の 金属の表面との接合部が合金化されていることを特徴とする燃料電池用セパレータ を提供する。
[0019] また、本発明は、上記目的を達成するため、少なくとも前記フッ素系固体高分子電 解質膜側の表層が Tほたは Ti合金による第 1の金属からなる金属板を所定の厚みに 形成する第 1の工程と、前記第 1の金属の前記フッ素系固体高分子電解質膜側の表 面上に第 2の金属の層を形成する第 2の工程と、少なくとも前記第 1の金属と前記第 2 の金属の層の接合部を合金化する第 3の工程と、を備えることを特徴とする燃料電池 用セパレータの製造方法を提供する。 発明の効果
[0020] 本発明の燃料電池用セパレータ及びその製造方法によれば、 MEAとの導電性を 維持しながら、貴金属の使用量を低減できるとともに、フッ素イオンまたはフッ酸など の強い腐食性を有する物質に対する耐食性および耐久性に優れた燃料電池用セパ レータを得ることができる。
図面の簡単な説明
[0021] [図 1]本発明の実施の形態に係る固体高分子型燃料電池の単位セルの例を示す断 面模式図である。
[図 2]図 1の金属セパレータの詳細を示す断面模式図である。
[図 3]本発明による Pd層を純 Ti層にコートした Tiクラッド材を走査型電子顕微鏡ーェ ネルギー分散型 X線分析装置(SEM— EDX)により面分析した結果の 1例を示す図 である。
[図 4]本発明の実施の形態における金属セパレータ材の耐フッ素環境試験の結果を 示す写真である。
[図 5]金属セパレータ材の構成の相違に基づく接触抵抗特性の評価結果を示す図で ある。
[図 6]金属セパレータ材の製造工程における熱処理条件の相違に基づく接触抵抗特 性の評価結果を示す図である。
[図 7]作製した金属セパレータの外観写真である。
[図 8]黒鉛セパレータを用いた固体高分子電解質型燃料電池の単位セル構成を示 す断面模式図である。
符号の説明
[0022] 1 燃料電池セル
10 フッ素系固体高分子電解質膜
11 燃料極
12 酸化剤極 13 MEA
14 燃料ガス流路
15, 17 金属セパレータ
16 酸化剤ガス流路
18, 19 ガスケット
20 基材
21 純 Ti層
22 複合金属層
23 Pd層
100 燃料電池セル(固体高分子電解質型燃料電池セル)
101 固体高分子電解質膜
102 燃料極
103 酸化剤極
104 ME A
105 燃料ガス流路
106, 108 黒鉛セパレータ
107 酸化剤ガス流路
109A, 109B ガスケット
発明を実施するための最良の形態
(固体高分子型燃料電池用セルの構成)
図 1は、本発明の実施の形態に係る固体高分子型燃料電池の単位セルの例の断 面模式図を示す。 MEA13は、電解質であるフッ素系固体高分子電解質膜 10と、フ ッ素系固体高分子電解質膜 10の一方の面に設けられた燃料極 11と、フッ素系固体 高分子電解質膜 10の他方の面に設けられた酸化剤極 12から形成される。なお、燃 料極 11および酸化剤極 12は、それぞれ、触媒層およびその外側にガス拡散 (分散) 層を備える構成で形成される。燃料電池セル 1は、 MEA13と、 MEA13の一方の面 (燃料極 11)に対して凹溝の断面形状となる複数の燃料ガス流路 14を有する燃料電 池用セパレータとしての金属セパレータ 15と、 MEA13の他方の面(酸化剤極 12)に 対して凹溝の断面形状となる複数の酸化剤ガス流路 16を有する燃料電池用セパレ ータとしての金属セパレータ 17と、金属セパレータ 15, 17間に介在し、 MEA13の 周囲を封止する部材 (シール部材)としてのガスケット 18, 19とを備える。
[0024] この燃料電池セル 1は、ガスケット 18, 19でシールした状態で、一対の金属セパレ ータ 15, 17を適度な圧力で加圧して固定することにより組み立てられている。
[0025] フッ素系固体高分子電解質膜 10は、パーフルォロスルフォン酸系イオン交換材料 やパーフルォロカルボン酸系イオン交換材料等を用いることができ、例えば、デュポ ン株式会社のナフイオン (登録商標)や旭硝子株式会社のフレミオン (登録商標)を 用!/、ることができる。
[0026] なお、本実施の形態の燃料電池用セルによる燃料電池の動作原理は、図 8に示し た燃料電池と同様であるので、ここでは説明を省略する。
[0027] また、燃料電池セルの内部損失低減の観点から、 MEAと金属セパレータの間の接 触抵抗は低い方が望ましぐ少なくとも 150m Ω 'cm2程度以下であることが要求され る。より望ましくは ΙΟΟπι Ω 'cm2以下であり、さらに望ましくは 70πι Ω 'cm2以下である
[0028] (金属セパレータの構成)
図 2は、金属セパレータ 15の詳細構成の模式図を示す。ここでは、金属セパレー タ 15のみを示している力 金属セパレータ 17も同じ構造である。この金属セパレータ 15は、耐食性の金属、例えばステンレス鋼による基材 20と、この基材 20の両面に形 成された第 1の金属の層としての純 Ti層 21、および基材 20の少なくとも片面の純 Ti 層 21上に形成した第 2の金属層としての Pd層 23を含む複合金属層 22とを有する。 この複合金属層 22は、純 Ti層 21と Pd層 23の接合部に Ti - Pd合金が形成されて ヽ る。なお、「耐食性の金属」とは大気中で酸ィ匕物が不動態皮膜を形成するような金属 (例えば、ステンレス鋼、アルミニウム合金、マグネシウム合金、 Tiなど)を意味し、「純 Ti」と ίお ISの 1種〜 3種を意味するものとする。
[0029] ここで、 Pd層 23の厚みは、純 Ti層 21との合金化前の状態で平均厚さが 2〜: LOnm となるように形成することが好ましい。より好ましくは、 3〜9nmに形成する。さらに好ま しくは、 4〜8nmに形成する。上限を lOnmと設定した理由は、素材コストの高い貴金 属の使用量を抑制するためである。また、下限を 2nmと設定した理由は、 Pd層 23の 厚みが 2nmを下回ると、後述する熱処理により Pd層 23が Ti酸化物で覆われる確率 が高くなり、導電性の確保が困難になる (MEAに対する接触抵抗が増大する)ため である。なお、 Ti酸化物皮膜の厚みは約 2nm程度と、一般的に言われている。
[0030] また、複合金属層 22で Pd層 23を形成した表層部分 (例えば、 1 μ m程度の厚み) の平均糸且成比は、 Tiに対する原子比で Pdが 0. 005以上 0. 03以下、 Tiに対する原 子比で 0 (酸素)が 0. 1以上 1以下、かつ、 Oに対する原子比で Pdが 0. 02以上 0. 0 8以下となるようにすることが好ましい。より好ましくは、それぞれ原子比で 0. 01≤Pd /Ti≤0. 03、 0. 2≤O/Ti≤0. 9、 0. 02≤Pd/O≤0. 06となるようにする。さらに好 ましくは、それぞれ原子比で 0. 015≤Pd/Ti≤0. 03、 0. 2≤O/Ti≤0. 85、 0. 02 ≤Pd/O≤0. 05となるようにする。なお、上述の表層部分 (例えば、 程度の厚 み)の平均組成比は、例えば、エネルギー分散型 X線分析装置を用いた面分析 (例 えば、加速電圧: 15kV、面積:約 60 X約 80 m2)によって定量分析することができ る。
[0031] (金属セパレータの製造方法)
く第 1の工程 >
次に、金属セパレータ 15の製造方法について例を挙げて説明する。
まず、厚さ 0. 16mmの板状のステンレス鋼材(例えば、 SUS316L)の両面に第 1の 金属の層としての純 Ti層 21を 20 mの厚さにクラッド接合する。
[0032] <第 2の工程 >
次に、スパッタ法ゃ EB蒸着(電子ビーム蒸着)法等により、 MEA13側の面の純 Ti 層 21上に、例えば平均厚さ 5nmの厚みに第 2の金属の層としての Pd層 23を形成す る。このとき、逆スパッタリングやイオンボンバード等の手法により、 Pd層 23を形成す る直前に、純 T遷 21の表面の清浄化 (例えば、表面の残留油分や自然酸化皮膜の 除去)を行うことは好ましい。
[0033] <第 3の工程 >
ついで、所定の条件のもとで熱処理を施し、純 Ti層 21と Pd層 23の界面で拡散現 象を発生させることで、純 Ti層 21と Pd層 23との間に Ti— Pd合金を生成し、複合金 属層 22を形成する。同時に、 Pd層に覆われていない純 Ti層部分と雰囲気中の酸素 が化合することにより、 Ti酸化物皮膜が形成される。
[0034] この状態では、基材 20側に Ti層が形成され、フッ素系固体高分子電解質膜 10側( MEA13側)に Pd層 23が形成され、中間に Ti—Pd合金が形成されている。純 Ti層 2 1上の両面に Pd層 23を形成してもよいが、コスト等の観点力もフッ素系固体高分子 電解質膜 10側(MEA13側)の面のみに形成することが望ましい。なお、 Pd層 23の 平均厚さは、 Pdの平均成膜速度を予め測量し (例えば、膜状に形成させた(島状で ない)膜厚を計測し、該膜の成膜時間で除すことにより平均成膜速度を求めることが できる)、成膜時間を調整することにより制御できる (平均厚さ =平均成膜速度 X成膜 時間)。
[0035] 上記熱処理は、大気中或いは有酸素雰囲気中にて、 250°Cより高く 400°C以下の 範囲内の温度にて行う。熱処理温度は、 280°C以上 390°C以下の範囲内であること が好ましぐ 350°C付近(300°C〜370°C程度)であることがより好ましい。上記熱処 理温度が好適であることのメカニズムは完全には解明できていないが、 250°Cより高 い温度の熱処理が適当である理由は、 Ti 白金族合金化 (実効的な拡散)に必要な 熱エネルギーを付与するためであり、 400°C以下の熱処理が適当である理由は、 M EAに対する接触抵抗の増大につながる Ti酸ィ匕物皮膜の過剰な形成を抑制するた めであると考えられる。熱処理時間は、複合金属層 22で Pd層 23を形成した表層部 分 (例えば、 程度の厚み)の平均組成比力 前述の範囲内に収まるように調整 することが好ましい。
[0036] また、合金化の方法は、簡便性やコスト等の観点力 通常の電気炉等を用いた熱 処理により行うことが好ましいが、その他の方法を適用することもできる。
[0037] 上記の工程 (第 1の工程〜第 3の工程)を経て、金属セパレータ材が形成される。金 属セパレータは、該金属セパレータ材に成形加工 (切断加工やプレス加工等)を施 すこと〖こより製造される。上記工程のうち、第 2の工程や第 3の工程は、金属セパレー タの成形前に行っても成形後に行っても良い。
[0038] 上記のように、純 Ti層 21にナノレベルで Pd層 23をコートしたのちに合金化処理す ることにより、高価な Pdの使用量を減らせる等の点で大きなメリットが得られる。本実 施の形態においては、スパッタ法等によるナノレベルの膜形成技術を利用し、高精度 に Tiと Pd等の白金族元素の接合を形成し、さらに拡散熱処理を施したことにより、セ パレータの最表面で酸素との化学結合の無 、Ti原子の近傍に白金族元素の原子が あることで、電子が供給され、電気化学的に貴になると考えられる。
[0039] なお、 Ti— Pd合金は、純 Ti層 21と Pd層 23との間の接合部に形成された構造に限 定されるものではなぐ拡散条件によっては、複合金属層 22の全体が Ti— Pd合金で あってもよい。また、合金状態としては、特に限定されるものではなぐ場所によって P dの濃度差があってもよ ヽが、燃料極 11及び酸化剤極 12のガス拡散 (分散)層と接 触する部分の Pd濃度が低くならな 、ようにすることが望ま 、。
[0040] また、第 1の金属の層は、純 Tiのほ力 Ti合金(例えば、 JISの 11種)であってもよ い。 Ti合金は純 Tiと同程度あるいはそれ以上の耐食性を有するものを用いる。また、 第 2の金属の層は、 Pdに代えて、 Pt (白金)、 Ru (ルテニウム)、 Rh (ロジウム)、 Ir (ィ リジゥム)のいずれ力、あるいは 2種類以上を用いることができ、更に、これらに酸素を 化合させてもよい。中でも、 Pd、 Pt、 Ruのうちの 1種又は 2種類以上、あるいはこれら に酸素をィ匕合させたものを用いることが好ましい。これらの場合も、 Pt、 Ru、 Rh等は 、 Tiとの複合金属層で第 2の金属の層を形成した表層部分 (例えば、 1 μ m程度の厚 み)の平均糸且成比は、 Tiに対する原子比で第 2の金属が 0. 005以上 0. 03以下、 Ti に対する原子比で 0 (酸素)が 0. 1以上 1以下、かつ、 Oに対する原子比で第 2の金 属が 0. 02以上 0. 08以下となるようにすることが好ましい。より好ましくは、それぞれ 原子比で 0. 01≤第 2の金属/ Ti≤0. 03、 0. 2≤O/Ti≤0. 9、 0. 02≤第 2の金属 /0≤0. 06となるようにする。さらに好ましくは、それぞれ原子比で 0. 015≤第 2の金 J¾/Ti≤0. 03、 0. 2≤O/Ti≤0. 85、 0. 02≤第 2の金属 /O≤0. 05となるようにす る。
[0041] (実施の形態の効果)
この実施の形態によれば、下記の効果を奏する。
(1)フッ酸雰囲気環境にあっても接触抵抗の変化が見られず、十分な耐食性を得る ことができる。
(2) MEAのガス拡散 (分散)層との電気的な接触条件を良くすることができ、集電材 としての機能も大幅に高めることができる。
[0042] なお、本発明は、上記実施の形態に限定されず、その要旨を変更しない範囲内で 種々な変形が可能である。
実施例
[0043] (セパレータ用金属板 1〜3の作製)
まず、基材として厚み lmmの板状のステンレス鋼材(SUS316L)を用意し、基材 の両面に厚み比率が各 10%となるように、第 1の金属 (Ti:JIS 1種)の層をクラッド 圧延して接合して、全体厚み 0. 2mmの板材に加工した (金属板 1)。
[0044] また、基材として厚み lmmの板状のアルミニウム合金材 (A1— Mg合金: JIS 508 3)を用意し、構成材の厚み比率が第 1の金属の層 20%、接合金属の層 5%、基材 7 5%となるように、接合金属 (A1:JIS 1050)の層と第 1の金属 (Ti:JIS 1種)の層を クラッド圧延して接合した。このとき、接合金属の層は、基材と第 1の金属の層の間に 介在するように形成した。その後、接合熱処理 (例えば、 500°C X lOmin)、仕上圧 延を施して、全体厚み 0. 3mmの板材に加工した (金属板 2)。
[0045] また、全体厚み 0. 2mmの Ti板材 (Ti: JIS 1種)を用意した (金属板 3)。
[0046] (第 2の金属の層の形成)
第 2の金属の層の形成は、 RFスパッタ装置 (株式会社アルバック、型式: SH— 350 )を用いて行った。形成時の雰囲気は Arで、圧力は IPaとし、 RF出力は金属の種類 により適宜調整した。第 2の金属の層の厚み制御は、金属種ごとに、予め平均成膜速 度を測量した上で、成膜時間を調整して行った。
[0047] (分析結果)
図 3は、本発明に係る複合金属層 22の表面を走査型電子顕微鏡 エネルギー分 散型 X線分析装 Τ^ (:ίΕΜ— EDX: ¾canning Electron Microscopy― Energy Dispers ive X-ray spectrometer,カロ速電圧: 15kV、面積:約 60 X約 80 μ m2)により面分析 した結果の 1例を示す。 SEMは株式会社日立製作所 S— 4300で、 EDXは株式会 社堀場製作所 EMAX— 300である。なお、図に示した試料は、前記金属板 1上に、 Pd層を 5nm (平均膜厚)形成した直後の試料である。この分析結果より、 Pd層 23に よるナノ薄膜は非常に薄いか、もしくは表面でクラスター状に凝集(島状に分散)して いるために、下地の純 Ti層 21の信号力 はっきり観察されていることがわかる。
[0048] (金属セパレータ材における耐フッ酸環境試験)
図 4は、本実施の形態における金属セパレータの耐フッ酸環境試験 Aの結果を示 す。この耐フッ酸環境試験 Aは、温度 80°C、 0. 5質量%フッ酸水溶液蒸気雰囲気に おいて、 24時間保持した。その後、試験後の表面状態を観察した。
[0049] 該試験に用いた試料は、次のように用意した。実施例として、前記金属板 1上に、 P d層 23を 5nm (平均膜厚)形成し、大気中で 250°C X lh (250°Cは装置の設定温度 、試料近傍の実態温度は約 260°C)の熱処理を施した。熱処理は、市販のオーブン ( ャマト科学株式会社、型式: DV600)を用いて行った。一方、比較例としては、 Pd層 23を形成しな ヽ前記金属板 1とした。
[0050] 図中、左側は最外層が純 Ti層 21のみの場合 (比較例)であり、右側は、 Pd層 23を 施し、所定の熱処理を施して複合金属層 22を形成した場合 (実施例)である。 Pd層 無しの金属セパレータは、表面が明らかに変質しているのに対し、 Pd層 23を施し、 所定の熱処理を施して複合金属層 22を形成した金属セパレータは殆ど変質が認め られず、良好な耐食性 ·耐久性を示して 、ることが判る。
[0051] (金属セパレータ材の構成と接触抵抗特性)
次に、金属セパレータ材の構成 (材料)を種々変化させて、耐フッ酸環境試験 Aの 実施前後における MEAのガス拡散 (分散)層との接触抵抗を測定し、その特性の評 価を行った。接触抵抗測定は、次のように行った。なお、 MEAのガス拡散 (分散)層 としてカーボンぺーノ (東レ株式会社、品番: TGP—H— 060)を用いた。 Auめっき を施した Cu (銅)ブロックの間に、用意した金属セパレータ材(2 X 2cm2)を、カーボ ンぺーパを介して挟み、油圧プレス機で加重 (20kg/cm2)をかけながら、金属セパレ 一タ材とカーボンぺーパの間の接触抵抗を 4端子測定方式 (アデックス株式会社、型 番: AX— 125A)で測定した。
[0052] この評価試験に供する試料は、次のように用意した。基材 20 (SUS316L)の両面 に純 1層 21を施してなる Tiクラッド材 (前記金属板 1)の表面に、第 2の金属の層とし て、平均厚さ 5nmの Pd (実施例 1)、 Pt (実施例 2)、 Ru (実施例 3)、 Au (比較例 1)の 薄膜をそれぞれスパッタ法で形成し、大気中で 250°C X lh (250°Cは装置の設定温 度、試料近傍の実態温度は約 260°C)の熱処理を施した。また、前記金属板 2の表 面に、第 2の金属の層として平均厚さ 5nmの Pd薄膜をスパッタ法で形成し、実施例 1 と同じ熱処理を施した試料 (実施例 1 ' )、および前記金属板 3の表面に、同じく平均 厚さ 5nmの Pd薄膜をスパッタ法で形成し、実施例 1と同じ熱処理を施した試料 (実施 例 1")を用意した。なお、第 2の金属の層の形成は、 RFスパッタ装置 (株式会社アル ノ ック、型式: SH— 350、雰囲気: Ar、圧力: lPa)を用いて行った。熱処理は市販の オーブン (ャマト科学株式会社、型式: DV600)を用いて行った。
[0053] 上記にカ卩え、比較例 2 (Ti-SUS-Tiのみ、金属板 1)と比較例 3 (金属板 1の Ti上に 、例えば特開 2000— 138067号公報に開示された方法により、導電性炭素を塗布( 約 20 μ m厚み)したもの)も用意した。
[0054] 図 5は、金属セパレータ材の構成の相違に基づく接触抵抗特性の評価結果を示す 。図中、左側は耐フッ酸環境試験 A実施前の特性を示し、右側は耐フッ酸環境試験 A実施後の特性を示して 、る。
[0055] 図 5から明らかなように、 Pd等のコートを施さな力つた Tiクラッド材 (比較例 2、比較 例 3)は、 4桁以上の接触抵抗の増加が見られるのに対し、 Tiの表面に Pd層 23を形 成し、所定の熱処理を施した試料 (実施例 1, 1 ' , 1")は、接触抵抗の変化が殆ど見 られなカゝつた (耐フッ酸環境試験 A前後での接触抵抗の増大が少なカゝつた)。また、 P dと同じ白金族である Pt (実施例 2)、 Ru (実施例 3)も接触抵抗が 10倍程度に増大す るものの、燃料電池用表面処理としては十分な耐食性が得られている。一方、 Auコ ート (比較例 1)の場合、 Auはそれ自身が貴金属であることにより、比較例 2や比較例 3と比較すると防食効果が現れているが、本発明に係る実施の形態と比較すると、耐 フッ酸環境試験 A前後での接触抵抗の増大が非常に大き 、 (約 40倍)。言 、換える と、本発明に係る実施の形態は、明らかに良好であることが判る。
[0056] (熱処理条件と接触抵抗特性)
次に、金属セパレータの製造工程における熱処理条件を種々変化させて、耐フッ 酸環境試験 Bの実施前後における接触抵抗を測定し、熱処理条件と接触抵抗特性 の関係を調査した。
[0057] この評価試験に供する試料は、次のように用意した。基材 20 (SUS316L)の両面 に純 Ti層 21を施してなる Tiクラッド材 (前記金属板 1)の表面に、スパッタ法で平均厚 さ lOnmの Pd薄膜を形成し、大気中又はアルゴン (Ar)中で 1時間、表 1に示す温度 にて熱処理を施した。また、比較として、 Pd薄膜を形成しない前記金属板 1を用い、 大気中で 1時間、表 2に示す温度にて熱処理を施した試料も用意した。なお、大気中 の熱処理は通常の電気炉 (株式会社デンケン、型式: KDF S80)を用 、て行 、、 Ar中の熱処理は通常の電気炉(アルバック理工株式会社、型式: VF— 616 Y)を用 いて、高純度アルゴンガスを炉内に流しながら行った。これら 2台の電気炉は、装置 の設定温度と試料近傍の実態温度がほぼ同じであった。
[0058] 耐フッ酸環境試験 Bは、各試料に対し、 1cm X 1cmの露出部を除き、耐熱テープ で保護して試験片を作製し、これを 80°C、 pH = 3程度の弱酸性フッ素イオン水溶液 中で 24時間保持することにより行った (フッ素濃度 200ppm)。耐フッ酸環境試験 Bの 前後にて、前述と同様の方法により、カーボンぺーパとの接触抵抗を測定した。純 Ti 層表面に Pd薄膜を形成した試料における接触抵抗の測定結果および接触抵抗の 耐フッ酸環境試験 B前後比 (B試験後接触抵抗 ,Β試験前接触抵抗)を表 1に併記し た。また、純 1層表面に Pd薄膜を形成しなカゝつた試料における耐フッ酸環境試験 Β 前の接触抵抗の測定結果、および耐フッ酸環境試験 B後の観察結果を表 2に併記し た。
[0059] [表 1]
表 1 純 T i層表面に P d薄膜を形成した試料における熱処理条件と接触抵抗 の測定結果
Figure imgf000017_0001
(※!) 加熱処理無し
耐フッ酸環境試験 B前の接触抵抗 (πιΩ · cm2)
(※3) 耐フッ酸環境試験 B後の接触抵抗 (πιΩ * cm2)
[0060] [表 2] 表 2 純 T i層表面に P d薄膜を形成しなかった試料における熱処理条件と接 触抵抗の測定結果
Figure imgf000017_0002
(※ 耐フッ酸環境試験 B前の接触抵抗 (ιηΩ · cm2)
[0061] 図 6は、表 1および表 2に示す接触抵抗の測定結果をグラフ化して示したものであり 、金属セパレータ材の製造工程における熱処理条件の相違に基づく接触抵抗特性 の評価結果を示す。図中、口、△および〇は耐フッ酸環境試験 B実施前の特性を示 し、國および▲は耐フッ素環境試験 B実施後の特性を示している。 [0062] 表 1、表 2および図 6から明らかなように、純 Ti層表面に Pd薄膜を形成した試料に おいて、熱処理しないもの及び大気中 200°Cで熱処理した試料 (比較例 4)は、接触 抵抗の大幅な(2桁程度の)増加が見られた。一方、大気中 350°C付近(280〜390 °C)で熱処理した試料 (実施例 4〜6)はほとんど増加しな力つた。また、大気中 500 °Cで熱処理した試料 (比較例 5)は、耐フッ酸環境試験 Bの前後比 (接触抵抗増加率 )が小さ力つたものの、熱処理を施した時点での接触抵抗が大き力つた。言い換える と、大気中 500°Cで処理したものは、実用上の接触抵抗が高ぐ実際の使用には適 さないと考えられる。
[0063] 一方、比較例 6に示したように、アルゴン (Ar)中で熱処理した試料は、 、ずれも接 触抵抗の明らかな増加が見られ (B試験前後比が大きく)、かつ耐フッ酸環境試験 B 後の接触抵抗が非常に高かった(1 X 103m Q 'cm2以上)。すなわち、本発明の対象 とする燃料電池用の金属セパレータには適さないと考えられる。言い換えると、本発 明にお 、て、大気中或いは有酸素雰囲気中で熱処理することの意義を強く示唆して いる。
[0064] また、純 Ti層表面に Pd薄膜を形成せずに、大気中 200〜400°Cで熱処理した試 料 (比較例 7)は、熱処理を施した時点での接触抵抗が実施例 4〜6と比して高ぐ耐 フッ酸環境試験 Bにより表面が溶解している様子が観察された。これは、フッ酸環境 に対する耐食性が不十分であることを示している。言い換えると、本発明に係る複合 金属層 22を形成することの意義を強く示唆して 、る。
[0065] さらに、大気中 500〜600°Cで熱処理した試料 (比較例 8)は、熱処理を施した時点 で、非常に高力つた(1 Χ 103πιΩ 'cm2以上)。よって、実際の使用には適さないと考 えられる。
[0066] (平均組成比の分析結果)
上記の大気中で熱処理を施した試料について、本発明に係る複合金属層 22の表 面を走査型電子顕微鏡 エネルギー分散型 X線分析装置(SEM— EDX: Scanning Electron Microscopy― Energy Dispersive X- ray spectrometer ^加速電 J土: l5kV、 面積:約 60 X約 80 m2)により面分析を行った。結果を表 3に示す。 SEMは株式会 社日立製作所 S— 4300で、 EDXは株式会社堀場製作所 EMAX— 300である。 [0067] [表 3] 表 3 大気中で熱処理を施した試料における複合金属層 2 2の表層部分の平均 組成比
Figure imgf000019_0001
(;※ 5) 加熱処理無し
[0068] 以上の種々の実験(大気中熱処理とアルゴン中熱処理、ならびに純 Ti層表面の Pd 薄膜の有無)の比較から、本発明のメカニズムとして次のようなモデルが考えられる。 本発明にお 、て、 Pd (白金族元素)薄膜層が非常に薄 、 (または島状に分散して 、 る)ことから、熱処理により合金化する領域は、下地の Ti層表面を完全に被覆してい ないと考えられる。ここで、熱処理雰囲気中に酸素が存在する場合、 Pdと合金化しな い表面領域は酸化されて Ti酸化物皮膜を形成すると考えられる。そして、この Ti酸 化物皮膜がフッ酸耐性の向上に大きく寄与すると考えられる。一方、 Ti一 Pd合金 (Ti 一白金族合金)は、導電経路を確保する (接触抵抗の低減に寄与する)とともに、フッ 酸により腐食 (溶解)した前記 Ti酸ィヒ物皮膜を再生させる効果があると考えられる (前 記図 5の結果参照)。
[0069] 一方、表 1 (図 6)および表 3の結果力 判るように、熱処理温度が低い比較例 4の場 合、接触抵抗の耐フッ酸環境試験 B前後比が大きぐ該試験後に複合金属層 22の 表層部分力も Pdが検出されな力つた。これは、複合金属層での合金化が不十分であ り、該フッ酸環境試験で Pd薄膜層が消失したためと考えられる。言い換えると、第 1の 金属(例えば、純 Ti)と第 2の金属(白金族元素、例えば Pd)の層は、その接合部で 合金化されることが重要であることを強く示唆している。図 5の結果と合わせると、有 効な合金化のためには、 250°Cよりも高い温度で熱処理することが必要と考えられる
[0070] また、大気中で熱処理温度が高過ぎる場合にぉ 、ては (例えば、比較例 5)、耐フッ 酸環境試験 Bの前後比 (接触抵抗増加率)が小さかったものの、熱処理を施した時点 での接触抵抗が大きかった。この理由は、大気中熱処理により強固な (あるいは厚い )Ti酸ィ匕物皮膜が形成されたこと、および Pdとの合金化により該 Ti酸ィ匕物皮膜が安 定ィ匕したこと等の、複合的な影響と考えられる。
[0071] (連続通電試験および起動停止試験)
前記実施例 5と同じ手順 (金属板 1 + Pdコート(10nm) +大気中熱処理(350°C X lh) )で金属セパレータ用部材を用意した後、プレス加工を施して金属セパレータを 作製した。図 7に、作製した金属セパレータの外観写真を示す。
[0072] 燃料ガス (または酸化剤ガス)の流路(図 7の左右方向の溝、凹部)の長さを 48mm 、流路のピッチを 3mm (図 7の上下方向で、凹部と凸部を交互に形成)、流路の深さ( 図 7の奥行方向、凹部と凸部の高低差)を 0. 5mmとした。フッ素系固体高分子電解 質膜としてデュポン株式会社製のナフイオン 112 (登録商標)を用い、発電電極部の 大きさは 50 X 50mm2とした。電極触媒は 0. 6mg/cm2となるように Pt担持触媒(田 中貴金属工業株式会社、品番: TEC10V50E)を用い、ガス拡散 (分散)層にはカー ボンぺーパ (東レ株式会社、品番: TGP— H— 060)を用いた。燃料ガス (または酸ィ匕 剤ガス)の流路形成とシール部材を兼ね備えたガスケットを挟み込んで、図 1 (図 2) に示したような構造の燃料電池を試作した。
[0073] また、比較として、上記の金属セパレータを高純度緻密黒鉛材による黒鉛セパレー タに置き換えた燃料電池も試作した。
[0074] 発電条件は、負荷電流密度を 0. 5A/cm2とし、燃料ガスおよび空気中の酸素(酸 ィ匕剤ガス)の利用率が、それぞれ 70%および 40%となるようにガスを供給した。連続 通電試験(1500h)を行ったところ、 2種類の燃料電池 (本発明に係る金属セパレー タを使用した燃料電池と従来の黒鉛セパレータを使用した燃料電池)とも、運転時間 当たりの起電力の低下が 5mV/kh以下に抑えられ、同等の発電特性が得られること を確認した。
[0075] 次に、外部負荷の ON/OFFが 3分ごとに切り替わる(6分/サイクル)起動停止試験 を 1000h ( 10000サイクル)行った。このとき、燃料ガスおよび酸化剤ガスは、上記連 続通電試験と同じ条件で一定に流し続けた。また、外部負荷が ONの時の電流密度 は、 0. 5A/cm2とした。試験の結果、 2種類の燃料電池は同等の発電特性を示した 。これより、本発明によれば、黒鉛素材と同等の耐久性および耐食性を有した金属セ パレータを得ることができることが分かる。
[0076] 以上のことより、 Pdコートしたものを所定条件にて熱処理することで、耐えられるフッ 素イオン濃度が向上し、フッ酸耐性が更に向上することが分力る。

Claims

請求の範囲
[1] フッ素系固体高分子電解質膜を用いて構成された固体高分子型燃料電池に用い られる燃料電池用セパレータにおいて、
少なくとも前記フッ素系固体高分子電解質膜側の表層が Tほたは Ti合金による第 1の金属からなる金属板と、前記第 1の金属の前記フッ素系固体高分子電解質膜側 の表面上に形成された第 2の金属の層とを備え、前記第 2の金属の層は少なくとも前 記第 1の金属の表面との接合部が合金化されていることを特徴とする燃料電池用セ ノ レータ。
[2] 前記金属板は、耐食性の金属による基材と、前記基材の外側に形成される前記第
1の金属の層からなることを特徴とする請求項 1に記載の燃料電池用セパレータ。
[3] 前記第 2の金属の層は、 Pd、 Pt、 Ru、 Rh、 Irの 1種又は 2種以上の金属、あるいは これらに酸素が化合した金属力 なることを特徴とする請求項 1又は請求項 2に記載 の燃料電池用セパレータ。
[4] 燃料電池用セパレータの表層部分の平均組成比は、エネルギー分散型 X線分析 装置を用いた面分析にぉ 、て、
Tiに対する原子比で、前記第 2の金属が 0. 005以上 0. 03以下、
Tiに対する原子比で、前記酸素が 0. 1以上 1以下、
且つ前記酸素に対する原子比で、前記第 2の金属が 0. 02以上 0. 08以下であるこ とを特徴とする請求項 3記載の燃料電池用セパレータ。
[5] 前記基材は、ステンレス鋼またはアルミニウム合金であることを特徴とする請求項 2 乃至請求項 4のいずれか 1項に記載の燃料電池用セパレータ。
[6] 少なくとも前記フッ素系固体高分子電解質膜側の表層が Tほたは Ti合金による第
1の金属力 なる金属板を所定の厚みに形成する第 1の工程と、
前記第 1の金属の前記フッ素系固体高分子電解質膜側の表面上に第 2の金属の 層を形成する第 2の工程と、
少なくとも前記第 1の金属と前記第 2の金属の層の接合部を合金化する第 3の工程 と、を備えることを特徴とする燃料電池用セパレータの製造方法。
[7] 前記第 1の工程は、耐食性の金属からなる基材の外側に前記第 1の金属を所定の 厚みに設ける工程であることを特徴とする請求項 6に記載の燃料電池用セパレータ の製造方法。
[8] 前記第 2の金属の層は、 Pd、 Pt、 Ru、 Rh、 Irの 1種又は 2種以上の金属、あるいは これらに酸素が化合した金属力 なることを特徴とする請求項 6又は請求項 7に記載 の燃料電池用セパレータの製造方法。
[9] 前記第 2の工程は、前記第 2の金属の層をスパッタ法または EB蒸着法により形成 することを特徴とする請求項 8に記載の燃料電池用セパレータの製造方法。
[10] 前記第 2の工程は、前記第 2の金属の層の平均厚さを 2〜: LOnmとなるように形成 することを特徴とする請求項 8記載の燃料電池用セパレータの製造方法。
[11] 前記第 3の工程は、大気中或いは有酸素雰囲気中にて、 250°C〜400°Cの範囲 内の温度にて熱処理を行うものであることを特徴とする請求項 8に記載の燃料電池用 セパレータの製造方法。
PCT/JP2006/310399 2005-05-25 2006-05-24 燃料電池用セパレータ及びその製造方法 WO2006126613A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517876A JP4702365B2 (ja) 2005-05-25 2006-05-24 燃料電池用セパレータ及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005152730 2005-05-25
JP2005-152730 2005-05-25

Publications (1)

Publication Number Publication Date
WO2006126613A1 true WO2006126613A1 (ja) 2006-11-30

Family

ID=37452037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310399 WO2006126613A1 (ja) 2005-05-25 2006-05-24 燃料電池用セパレータ及びその製造方法

Country Status (4)

Country Link
US (1) US20080057371A1 (ja)
JP (1) JP4702365B2 (ja)
CN (1) CN100472864C (ja)
WO (1) WO2006126613A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123528A (ja) * 2007-11-15 2009-06-04 Kobe Steel Ltd 燃料電池セパレータ用チタン基材およびこれを用いた燃料電池セパレータの製造方法
JP2009533830A (ja) * 2006-04-14 2009-09-17 アプライド マテリアルズ インコーポレイテッド 信頼性のある燃料電池電極の設計
JP2009238438A (ja) * 2008-03-26 2009-10-15 Kobe Steel Ltd 燃料電池用セパレータ及びその製造方法
JP2009289511A (ja) * 2008-05-28 2009-12-10 Kobe Steel Ltd 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法
JP2009289707A (ja) * 2008-06-02 2009-12-10 Nissan Motor Co Ltd 燃料電池用セパレータ
JP2012226889A (ja) * 2011-04-18 2012-11-15 Hitachi Ltd 燃料電池用セパレータ及びこれを用いた燃料電池

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060257555A1 (en) * 2005-05-12 2006-11-16 Brady Brian K Sub-layer for adhesion promotion of fuel cell bipolar plate coatings
US8133591B2 (en) * 2006-06-27 2012-03-13 GM Global Technology Operations LLC Adhesion of polymeric coatings to bipolar plate surfaces using silane coupling agents
JP2009295346A (ja) * 2008-06-03 2009-12-17 Hitachi Cable Ltd 電気接点層付金属材及びその製造方法
RU2472257C1 (ru) * 2008-11-25 2013-01-10 Ниссан Мотор Ко., Лтд. Электропроводный узел и топливный элемент с полимерным электролитом с его использованием
CN107429330A (zh) * 2015-03-18 2017-12-01 新日铁住金株式会社 钛合金、分隔件、及固体高分子型燃料电池
DE102016202372A1 (de) 2016-02-17 2017-08-17 Friedrich-Alexander-Universität Erlangen-Nürnberg Schicht und Schichtsystem, sowie Bipolarplatte, Brennstoffzelle und Elektrolyseur
CN108336371A (zh) * 2018-02-05 2018-07-27 大连融科储能技术发展有限公司 一种全钒液流电池用双极板
JP7172056B2 (ja) * 2018-02-28 2022-11-16 トヨタ自動車株式会社 ステンレス鋼基材、燃料電池用セパレータ及び燃料電池
JP7375721B2 (ja) * 2020-10-09 2023-11-08 トヨタ自動車株式会社 セパレータ及びセパレータの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254180A (ja) * 2001-02-28 2002-09-10 Daido Steel Co Ltd 高耐食性材料及びその製造方法
JP2002260681A (ja) * 2001-02-28 2002-09-13 Daido Steel Co Ltd 固体高分子型燃料電池用金属セパレータ及びその製造方法
JP2003187817A (ja) * 2001-12-17 2003-07-04 Riken Corp 燃料電池用セパレータ
JP2004134276A (ja) * 2002-10-11 2004-04-30 Daido Steel Co Ltd 固体高分子形燃料電池用素材及びその製造方法
JP2004158437A (ja) * 2002-10-18 2004-06-03 Hitachi Cable Ltd 燃料電池用セパレータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4707786B2 (ja) * 1998-05-07 2011-06-22 トヨタ自動車株式会社 燃料電池用ガスセパレータの製造方法
CA2373344C (en) * 2001-02-28 2012-03-20 Daido Tokushuko Kabushiki Kaisha Corrosion-resistant metallic member, metallic separator for fuel cell comprising the same, and process for production thereof
US20040081879A1 (en) * 2002-10-18 2004-04-29 Mineo Washima Fuel cell bipolarplate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254180A (ja) * 2001-02-28 2002-09-10 Daido Steel Co Ltd 高耐食性材料及びその製造方法
JP2002260681A (ja) * 2001-02-28 2002-09-13 Daido Steel Co Ltd 固体高分子型燃料電池用金属セパレータ及びその製造方法
JP2003187817A (ja) * 2001-12-17 2003-07-04 Riken Corp 燃料電池用セパレータ
JP2004134276A (ja) * 2002-10-11 2004-04-30 Daido Steel Co Ltd 固体高分子形燃料電池用素材及びその製造方法
JP2004158437A (ja) * 2002-10-18 2004-06-03 Hitachi Cable Ltd 燃料電池用セパレータ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009533830A (ja) * 2006-04-14 2009-09-17 アプライド マテリアルズ インコーポレイテッド 信頼性のある燃料電池電極の設計
JP2009123528A (ja) * 2007-11-15 2009-06-04 Kobe Steel Ltd 燃料電池セパレータ用チタン基材およびこれを用いた燃料電池セパレータの製造方法
JP2009238438A (ja) * 2008-03-26 2009-10-15 Kobe Steel Ltd 燃料電池用セパレータ及びその製造方法
JP2009289511A (ja) * 2008-05-28 2009-12-10 Kobe Steel Ltd 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法
JP2009289707A (ja) * 2008-06-02 2009-12-10 Nissan Motor Co Ltd 燃料電池用セパレータ
JP2012226889A (ja) * 2011-04-18 2012-11-15 Hitachi Ltd 燃料電池用セパレータ及びこれを用いた燃料電池

Also Published As

Publication number Publication date
JP4702365B2 (ja) 2011-06-15
JPWO2006126613A1 (ja) 2008-12-25
CN100472864C (zh) 2009-03-25
US20080057371A1 (en) 2008-03-06
CN101069315A (zh) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4702365B2 (ja) 燃料電池用セパレータ及びその製造方法
CN105895927B (zh) 用于pemfc的包括自由基捕获剂的耐腐蚀金属双极板
US6875537B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
US7674546B2 (en) Metallic separator for fuel cell and method for anti-corrosion treatment of the same
CA2747858C (en) Fuel cell separator material, fuel cell separator using same, fuel cell stack, and method for producing fuel cell separator material
US9793554B2 (en) Fuel cell separator and fuel cell
JP5192908B2 (ja) 燃料電池セパレータ用チタン基材、および、燃料電池セパレータ、ならびに燃料電池セパレータの製造方法
JP4367062B2 (ja) 燃料電池用セパレータ
US20040081879A1 (en) Fuel cell bipolarplate
JP4901864B2 (ja) 純チタンまたはチタン合金製固体高分子型燃料電池用セパレータおよびその製造方法
US8101319B2 (en) Approach to make a high performance membrane electrode assembly (MEA) for a PEM fuel cell
US20110159173A1 (en) Conductive coating for solid oxide fuel cells
US20090176139A1 (en) Passivated metallic bipolar plates and a method for producing the same
JP4639434B2 (ja) バイポーラプレートおよび固体高分子型燃料電池
Liu et al. Degradation effects at the porous transport layer/catalyst layer interface in polymer electrolyte membrane water electrolyzer
JP2009295343A (ja) 金属セパレータ用板材及びその製造方法、並びに燃料電池用金属セパレータ
WO2009118991A1 (en) Fuel cell separator
JP6947009B2 (ja) 燃料電池用セパレータ及び燃料電池
WO2005101555A1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
JP2007128908A (ja) 固体高分子電解質型燃料電池のセルユニット
EP3181728B1 (en) Metal material and current-carrying component using said metal material
JP2009224151A (ja) 燃料電池セパレータ
JP5006028B2 (ja) 燃料電池用セパレータ
EP2712012A2 (en) A method of manufacturing a fuel cell stack having an electrically conductive interconnect.
JP2005302610A (ja) 燃料電池及び燃料電池用金属製拡散層の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517876

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680001283.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11791317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746828

Country of ref document: EP

Kind code of ref document: A1