WO2006120803A1 - Highly thermally conductive composite material - Google Patents

Highly thermally conductive composite material Download PDF

Info

Publication number
WO2006120803A1
WO2006120803A1 PCT/JP2006/305738 JP2006305738W WO2006120803A1 WO 2006120803 A1 WO2006120803 A1 WO 2006120803A1 JP 2006305738 W JP2006305738 W JP 2006305738W WO 2006120803 A1 WO2006120803 A1 WO 2006120803A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
high thermal
fibrous carbon
conductive composite
thermal conductive
Prior art date
Application number
PCT/JP2006/305738
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuaki Katagiri
Atsushi Kakitsuji
Toyohiro Sato
Terumitsu Imanishi
Akiyuki Shimizu
Katsuhiko Sasaki
Original Assignee
Sumitomo Precision Products Co., Ltd
Osaka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co., Ltd, Osaka Prefectural Government filed Critical Sumitomo Precision Products Co., Ltd
Priority to JP2007526827A priority Critical patent/JP5288441B2/en
Publication of WO2006120803A1 publication Critical patent/WO2006120803A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/02Pretreatment of the fibres or filaments
    • C22C47/025Aligning or orienting the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/005Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides

Definitions

  • the present invention provides a fibrous form such as carbon nanotubes (CNT) and vapor-grown carbon fibers (VGCF) contained in a sintered body made of the powder.
  • CNT carbon nanotubes
  • VGCF vapor-grown carbon fibers
  • the present invention relates to a high thermal conductive composite material provided with excellent electrical conductivity, thermal conductivity, and strength characteristics by a carbon material, and a method for producing the same.
  • metal compounds (boride: TiB, WB, MoB, CrB, A1B2, MgB, carbide: WC, nitride: TiN, etc.) and car
  • Patent Document 2 There has been proposed a resin molded article that has both moldability and conductivity by blending an appropriate amount of bon nanotubes.
  • Patent Document 1 JP-A-2002-363716
  • Patent Document 2 JP 2003-34751 A
  • Patent Document 3 JP 2000-223004
  • the carbon nanotubes to be dispersed in the above-mentioned resin or aluminum alloy are used as short as possible in consideration of the manufacturability of the resulting composite material and obtaining the required formability. Therefore, the dispersibility is improved, and it is not intended to effectively utilize the excellent electrical and thermal conductivity characteristics of the carbon nanotube itself.
  • the present invention is a composite that has corrosion resistance, heat resistance, and has the characteristics of a metal material having versatility, ductility, etc. purely and imparts or improves electrical conductivity and thermal conductivity.
  • the metallic powder base material itself or ceramics to be further added, and the characteristics of the ceramic powder base material itself, as well as the excellent electrical conductivity inherent to the fibrous carbon material itself For the purpose of providing a high thermal conductive composite material that effectively utilizes thermal conductivity and strength properties and its manufacturing method!
  • the composite material similarly has high thermal conductivity and can be plastically deformed such as rolling.
  • the thermal conductivity is low and at the interface due to plastic deformation such as rolling. Delamination occurs and the function as a composite material is lost.
  • the high thermal conductive composite material of the present invention has been completed based on these findings, and is based on a metal powder, a mixed powder of metal and ceramic, or a discharge plasma sintered body having a ceramic powder force.
  • a fibrous carbon material such as an ultra-thin tubular structure composed of single-layer or multi-layer darafen is distributed and integrated in the base material.
  • Graphene is a marker composed of six carbon atoms arranged regularly in two dimensions. It is a net with a net structure and is also called a carbon hexagonal mesh surface, and this graphite layered with regularity is called a graphite.
  • the single-layer or multi-layered and ultrathin tube-like structure composed of darafen is a fibrous carbon material used in the present invention, and includes both single-bonn nanotubes and vapor-grown carbon fibers.
  • the carbon nanotube is a seamless tube in which graphene is rounded into a cylindrical shape, and there are a single-walled tube and a multi-walled tube that is concentrically stacked.
  • Single-walled ones are called single-walled nanotubes
  • multiple-walled ones are called multi-walled nanotubes.
  • Vapor-grown carbon fiber also has a single-layer or multiple-layer dalafen tube whose carbon is rounded into a cylindrical shape, that is, a carbon nanotube in the core, and the core is multi-layered and polygonal.
  • Graphite is stacked in the radial direction of the graphene tube so as to surround it, and it is also called super multi-walled carbon nanotube due to its structure.
  • the single-layer or multi-layer carbon tube present at the center of the vapor-grown carbon fiber is a carbon nanotube.
  • the method for producing the fibrous carbon material is not particularly limited! Although any of an arc discharge method, a laser evaporation method, a thermal decomposition method, a chemical vapor deposition method and the like may be used, the vapor grown carbon fiber is manufactured by a chemical vapor deposition method.
  • VGCF which stands for vapor growth carbon fiber, is an abbreviation for Vapor Growth Carbon Fiber.
  • the fibrous carbon material can be dispersed and contained in the base material, or it can be formed into a sheet and alternately laminated with the powder layer to constitute a laminate.
  • the fibrous carbon material can also be oriented in the substrate.
  • orientation There are two types of orientation, one is a three-dimensional orientation in which the fibrous carbon material is oriented in a specific position, and the other is oriented in a direction parallel to a specific plane.
  • Random two-dimensional orientation Non-orientation is a three-dimensional random form in which the fibrous carbon material is oriented in a random direction in three dimensions.
  • a sheet made of a fibrous carbon material can be easily oriented in the direction parallel to the surface, and can be easily oriented in the same direction. By the orientation of the fibrous carbon material, the thermal conductivity in the orientation direction can be improved in the carbon material-containing metal material.
  • the spark plasma sintered body can be subjected to plastic casing.
  • Plastic working eg rolling
  • the carbon nanotubes at the powder boundaries and grain boundaries are oriented by the repetitive stress caused by, and the self-organization is also promoted by dislocation accumulation.
  • the thermal conductivity may decrease due to plastic working.
  • one is a step of kneading and dispersing metal powder, mixed powder of metal and ceramic, or ceramic powder and fibrous carbon material. And a step of performing discharge plasma sintering of the kneaded dispersion material.
  • the other is a metal powder layer, a mixed powder layer of metal powder and ceramic powder, or a ceramic powder layer, and a fibrous shape.
  • the method includes a step of alternately laminating sheets made of a carbon material, and a step of spark plasma sintering the obtained laminate.
  • a high thermal conductive composite material in which a fibrous carbon material is dispersed and contained in a discharge plasma sintered body of a metal powder, a mixed powder of metal and ceramics, or a ceramic powder. Is manufactured.
  • the latter production method has a laminated structure in which sheets of fibrous carbon material are arranged at predetermined intervals in a discharge plasma sintered body of metal powder, mixed powder of metal and ceramics, or ceramic powder. High thermal conductivity composite materials are produced.
  • the fibrous carbon material dispersed in the spark plasma sintered body can be oriented in a specific direction.
  • the fibrous carbon material constituting the sheet can be oriented in a direction parallel to the sheet surface.
  • the fibrous carbon material may be oriented in the same direction within the plane as when it is random. As described above, the orientation of the fibrous carbon material improves the thermal conductivity in the orientation direction of the carbon material-containing metal material.
  • this orientation operation can be performed by orienting the fibrous carbon material in the kneaded dispersion material before sintering in a specific direction.
  • this orientation operation can be performed at the stage of producing a sheet of fibrous carbon material.
  • a method for orienting the fibrous carbon material in a predetermined direction a method of preparing a dispersion of the fibrous carbon material and solidifying the dispersion in a magnetic field or an electric field is simple and preferable for orientation.
  • An oriented sheet can also be produced by pushing down the fibrous carbon material in one direction over a planar fiber assembly in which the extremely short V and fibrous carbon material are gathered two-dimensionally in the radial direction.
  • the metal powder used in the present invention is versatile and versatile in which one or more of aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy, and stainless steel are preferred. This makes it possible to produce industrial products having various properties and excellent characteristics.
  • the metal powder has an average particle size of 200 ⁇ m or less, and the ceramic powder has an average particle size of 10 m or less.
  • Ceramic powders include oxides such as alumina and zirconium, nitrides such as aluminum nitride, titanium nitride and silicon nitride, carbides such as silicon carbide, titanium carbide, tantalum carbide and tungsten carbide, and borides.
  • borides such as titanium, zirconium boride and chromium boride are preferred.
  • This ceramic powder can constitute a base material alone.
  • mixing with metal powder improves grain boundary sliding during rolling, making it possible to produce industrial products with various characteristics with excellent versatility and versatility.
  • the content of the fibrous carbon material is preferably 20 wt% or less by weight. This makes it possible to easily obtain the desired characteristics with excellent sinterability and ductility. However, when the carbon material-containing metal material is a laminated structure of a powder layer and a sheet-like carbon material, the content of 50 wt% or less is allowed unless plastic processing is required.
  • the weight ratio is 2 Owt% or less. Become.
  • Examples of plastic working include rolling, press forming, and the like, and the rolling may be any of cold rolling, warm rolling, and hot rolling. Annealing can be performed after the plastic cage. Select the most appropriate rolling method according to the ceramic species mixed with metal species, the type and amount of fibrous carbon material, etc., and further reduce the residual stress of the resulting metal material by annealing to further improve the rolling effect Thus, it becomes possible to easily obtain the desired characteristics.
  • the fibrous carbon material before blending into the substrate can be preliminarily subjected to a discharge plasma treatment, thereby significantly improving the uniform dispersibility of the fibrous carbon material in the metal substrate. It is out.
  • fibrous carbon materials are short, and the length of carbon nanotubes is several hundred ⁇ m.
  • the growth carbon fiber is at most 2 to 3 cm.
  • the fibers are usually connected to each other to form a long chain, and these fibers are entangled or further formed into a lump-like lump, or only the fibrous carbon material is subjected to a discharge plasma treatment.
  • the carbon nanotubes and the vapor-grown carbon fibers have been developed to be relatively long and straight, and the shape is not particularly limited.
  • the kneading and dispersing step it is important to unravel the lumps of fibrous carbon material that are intertwined like cocoons and mix them uniformly with the powder.
  • the dispersion may be wet-dispersed using a dispersant.
  • kneading and dispersing can be carried out efficiently to ensure uniform dispersion of the fibrous carbon material into the metal substrate.
  • a dispersion medium to rotate and knead and disperse the container containing the powder and fibrous carbon material, kneading and dispersing can be efficiently performed according to the metal species, the ceramic species to be mixed, and the amount of fibrous carbon material. Can be implemented.
  • the container containing the powder and the fibrous carbon material is rotated and kneaded and dispersed without using a dispersion medium, so that the kneading and dispersing are performed according to the metal species, the ceramic species to be mixed, and the amount of the fibrous carbon material. Can be implemented efficiently.
  • the two-stage process of performing low-temperature plasma discharge under low pressure and then performing low-temperature discharge plasma sintering under high pressure is a long-chain fibrous carbon material. It is effective to obtain a good sintered body while ensuring the dispersibility of the material.
  • the high thermal conductive composite material of the present invention uses a sintered body of a metal powder or a ceramic powder of pure aluminum, aluminum alloy, titanium or the like excellent in corrosion resistance and heat dissipation as a base.
  • the carbon nanotube itself has excellent electrical conductivity and heat by combining and integrating the fibrous carbon material. Combined with conduction characteristics and strength, the required properties can be enhanced, synergistic effects, or new functions can be exhibited.
  • the highly heat-conductive composite material of the present invention is obtained by obtaining a required shape material such as a metal powder sintered body plate, bar material, or block material containing a fibrous carbon material, and then pressing it into a required shape by press molding. Can be crafted. In addition, it is possible to obtain a form according to the intended use such as a thin wire rod by rolling.
  • the high thermal conductive composite material of the present invention can disperse, for example, ceramic powders such as alumina and zirconium oxide which are excellent in corrosion resistance and heat resistance when obtaining the above-mentioned sintered body.
  • the characteristics of the substrate and ceramics can be combined or synergized, such as corrosion, electrodes and heating elements in high temperature environments, wiring materials, heat exchangers with improved thermal conductivity, heat sink materials, brake components, or fuel. It can be applied as a battery electrode separator. Further, by dispersing fine particles such as silicon carbide and silicon nitride when obtaining the above-mentioned sintered body, the grain boundary sliding during plastic deformation is improved, and superplasticity can be exhibited.
  • pure aluminum, a known aluminum alloy, titanium, a titanium alloy, copper, a copper alloy, stainless steel, or the like can be used as the metal powder to be used.
  • a known functional metal capable of sintering and plastic deformation and exhibiting necessary functions such as corrosion resistance, thermal conductivity and heat resistance may be employed.
  • the particle size of the metal powder is approximately 100 m or less, more preferably 50 m or less, having a sinterability capable of forming a necessary sintered body and a pulverizing ability when kneading and dispersing with a fibrous carbon material. It is also possible to use large and small particle sizes that are preferred for particles with different particle sizes, and it is possible to adopt a configuration in which there are multiple powder types and different particle sizes. preferable. In addition to the spheres, the powders can be appropriately used in the form of fibers, indeterminate shapes, cocoons, and various forms. Aluminum and the like are preferably 50 m to 150 m.
  • ceramic powders used include oxides such as alumina and zirconium oxide, nitrides such as aluminum nitride, titanium nitride, and silicon nitride, silicon carbide, titanium carbide, tantalum carbide,
  • Use ceramics with various known mechanical functions such as carbides such as tungsten carbide, boride such as titanium boride, zirconium boride, and chromium boride, and a function that improves the intergranular sliding during plastic deformation. be able to.
  • a well-known functional ceramic that exhibits necessary functions such as corrosion resistance and heat resistance may be employed.
  • the particle size of the ceramic powder considering the sinterability capable of forming a necessary sintered body, considering the crushing ability when kneading and dispersing with carbon nanotubes, and the grain boundary during plastic deformation Decided considering the sliding ability, but about 10 m or less is preferable. It is also possible to adopt a configuration in which there are a plurality of powder types and different particle sizes. In the case of a single powder, it is preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less. In addition to spheres, the powders can be used in a fibrous, indeterminate or various form as appropriate.
  • the content of the high thermal conductive composite material is not particularly limited as long as a sintered body having a required shape and strength can be formed.
  • the seed and particle size of the metal powder it is possible to contain, for example, 20 wt% or less by weight.
  • the content of fibrous carbon material is reduced to 3 wt% or less, and if necessary, to about 0.05 wt%. It is necessary to devise a dispersion method.
  • the ceramic content is 20 wt% or less by weight.
  • a method of producing a metal material containing a carbon material in which a fibrous carbon material is dispersed in a metal powder, a mixed powder of metal and ceramics, or a discharge plasma sintered body of a ceramic powder is provided.
  • a step of wet-dispersing the powder and the carbon nanotube using a dispersant that is, a step of preparing and solidifying a dispersion.
  • the long-chain fibrous carbon material described above is dispersed in ceramic powder, metal powder, or a mixed powder of ceramic and metal, and then loosened and crushed. is important.
  • various mills, crushers, and shaker devices for performing known crushing, crushing, and crushing can be used as appropriate, and the mechanisms are also rotary impact type, rotary shear type, rotary impact shear type, medium stirring type
  • Well-known mechanisms such as a stirring type, a stirring type without a stirring blade, and an airflow grinding type can be used as appropriate.
  • the ball mill has a misalignment structure as long as it is crushed and crushed using a medium such as a ball such as a known horizontal type, planetary type, or stirring type mill. Even available. Further, the material and particle size of the media can be appropriately selected. In the case where only the carbon nanotubes are preliminarily subjected to the discharge plasma treatment, it is necessary to set conditions for improving the crushing ability especially by selecting the powder particle size and the ball particle size.
  • the planetary mill is configured such that the rotation and revolution of the storage container are performed at the same time, and usually pulverized and crushed using a medium such as a ball.
  • a medium is used.
  • the wet-dispersing step is performed by adding a known nonionic dispersant or cationic anionic dispersant to the above-mentioned various mills and crashers including an ultrasonic dispersing device and a ball mill.
  • a known nonionic dispersant or cationic anionic dispersant to the above-mentioned various mills and crashers including an ultrasonic dispersing device and a ball mill.
  • the dispersion can be performed using a shaker device, and the dry dispersion time can be shortened and high efficiency can be achieved.
  • a known heat source or a spin method can be appropriately employed as a method of drying the slurry after the wet dispersion.
  • the kneading and dispersing step and the wet-dispersing step include a dry kneading dispersion followed by a wet dispersion, a wet dispersion followed by a dry kneading dispersion, or a dry, wet, dry
  • Various kneading and dispersing process patterns such as combining with can be employed.
  • the carbon nanotubes and ceramics can be kneaded and dispersed first, and then the metal powder can be kneaded and dispersed, or the kneading and dispersing can be repeated for each particle size of the powder.
  • a fibrous carbon material and ceramics are first wet-kneaded and dispersed, and then dried into a metal powder.
  • Various kneading and dispersing process patterns such as dry kneading and dispersing can be adopted.
  • the step of orienting the fibrous carbon material in the kneading dispersion material uses, for example, the above-described wet dispersion step. Specifically, a dispersion liquid of a mixed dispersion material in which a fibrous carbon material is mixed and dispersed in a metal powder, a mixed powder of metal and ceramics, or a ceramic powder is prepared. Gelatin etc. are blended in the dispersion as a binder for solidification. This dispersion is placed in a strong magnetic field of 3000 gauss in a solution state (heated state) and solidified by cooling. A strong magnetic field of 3000 gauss can be formed by neodymium iron boron magnets.
  • a mixed powder solid in which the fibrous carbon material is dispersed in the metal powder, the mixed powder of metal and ceramics, or in the ceramic powder, and the fibrous carbon material is oriented in a specific direction. It is formed.
  • an electric field can be used.
  • a method of applying a magnetic field or an electric field using a dispersion liquid can be similarly used.
  • physical methods such as placing the dispersion in an injection machine such as a syringe and pushing out several rows in one direction, flowing the dispersion on a standing plate, and immersing the plate in the dispersion
  • a sheet in which the fibrous carbon material is oriented in a specific direction can be formed by any method.
  • a dry kneaded dispersion powder or solid is loaded between a carbon die and a punch, and is added by upper and lower punches.
  • Compressive force Joule heat is generated in the die, punch, and material to be processed by applying a direct current pulse current, and the kneaded dispersion material is sintered.
  • a pulse current powder, powder, and fiber are sintered. Sintering proceeds smoothly by actions such as the generation of discharge plasma between the carbonaceous materials, the disappearance of powder and impurities on the surface of the fibrous carbon materials, and the like.
  • the discharge plasma treatment conditions to be applied only to the fibrous carbon material are not particularly limited.
  • the temperature is 200 to 1400 ° C
  • the time is about 1 to 2 hours
  • the pressure is 0 to: the range of LOMPa. can do.
  • the knead-dispersed material obtained by the dry method or the wet method or both is further subjected to a discharge plasma treatment. This step is performed before the spark plasma sintering step, and the kneading and dispersing material is further crushed, and effects such as carbon nanotube stretching, surface activation, and powder diffusion occur. As the discharge plasma sintering proceeds smoothly, the thermal conductivity and conductivity imparted to the sintered body are improved.
  • the discharge plasma treatment conditions for the kneaded dispersion are not particularly limited, but considering the sintering temperature of the material to be treated, for example, the temperature is 200 to 1400 ° C, and the time is 1 to 15 minutes.
  • the degree and pressure are 0 to:
  • the range of LOMPa can be selected as appropriate.
  • the discharge plasma sintering is preferably performed at a temperature lower than the normal sintering temperature of the ceramic powder or metal powder to be used.
  • a low temperature plasma discharge is performed under a low pressure, and then a low temperature discharge plasma sintering is performed under a high pressure. It is also preferable to do. It is also possible to use precipitation hardening after sintering and phase transformation by various heat treatments. Note that the pressure and temperature levels are relative between the two processes, and it is sufficient if a difference in height can be set between the two processes!
  • the step of plastically deforming the obtained discharge plasma sintered body which is one of the characteristics of the present invention, includes any known rolling method, any rolling method of cold rolling, warm rolling, and hot rolling. It may be.
  • the optimum rolling method is selected according to the metal type of the sintered metal, the type of ceramic to be mixed, and the amount of fibrous carbon material. Further, when performing multiple passes of rolling, for example, cold rolling and warm rolling can be combined.
  • Cold rolling is a process in which the obtained block-like, plate-like, and linear-shaped sintered bodies are rolled as they are, and a plate material or a thin plate having a required thickness by repeating one pass to a plurality of passes at a required reduction ratio.
  • the rolling reduction ratio, total rolling reduction ratio, rolling roll diameter, etc. are appropriately selected so that cracks do not occur in the rolled material depending on the metal species, the ceramic species to be mixed and the amount of fibrous carbon material! .
  • Warm or hot press forming or rolling can be appropriately selected according to the required form and material, for example, cold rolling is not easy depending on the properties of the sintered metal! ! Can be used for the purpose of improving rolling efficiency.
  • the heating temperature of the material is appropriately selected in consideration of the rolling reduction ratio, total rolling reduction ratio, number of passes, and rolling roll diameter.
  • the annealing process after press molding and rolling is performed as necessary.
  • an optimal rolling method and combination according to the metal species, the ceramic species to be mixed, and the amount of carbon nanotubes, The rolling conditions are selected, but the selected rolling method, combination, rolling conditions, etc., for the purpose of further improving the rolling effect by reducing the residual stress of the rolled metal material and easily obtaining the required characteristics, etc.
  • the annealing time, temperature conditions, number of times, etc. are selected accordingly.
  • the metal material of the present invention that has been plastically deformed or plastically deformed and annealed is easy to machine, can be processed into various shapes according to the intended use and form, and further processed metal material. It is also possible to join different materials with a brazing material or the like.
  • seat of a fibrous carbon material is produced first.
  • a sheet is made from a cocoon by unraveling a lump of fibers that have been strengthened in a cocoon shape, making a dispersion thereof, and solidifying it thinly.
  • the fibers can be oriented by applying a magnetic field or an electric field to the dispersion.
  • the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 575 ° C for 60 minutes. At that time, the rate of temperature increase was 100 ° C / min, and a pressure of 50 MPa was continuously applied.
  • the thermal conductivity of the obtained composite material As a result of measuring the thermal conductivity of the obtained composite material, it was about 200 WZmK (198 W / mK). Note that the thermal conductivity of the solidified body obtained by subjecting only the aluminum alloy powder to spark plasma sintering under the above conditions was 157 WZmK, and the thermal conductivity of the composite material according to the present invention increased by about 21%. I understand.
  • Example 1 Average particle size 30
  • the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to a discharge plasma treatment at 800 ° C for 5 minutes. Thereafter, the kneaded dispersion was sintered in a discharge plasma sintering apparatus at 600 ° C. for 5 minutes. At that time, the rate of temperature rise was set to 100 ° CZmin, and a pressure of 50 MPa was continuously applied.
  • Example 1 3 In kneading and pulverization of aluminum powder having an average particle diameter of 30 ⁇ m and 0.25 wt% long-chain carbon nanotubes, only the carbon nanotubes were previously contained in the die of the discharge plasma sintering apparatus.
  • the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma treatment at 400 ° C for 5 minutes. Thereafter, the kneaded dispersion was sintered in a discharge plasma sintering apparatus at 600 ° C. for 5 minutes.
  • FIG. 5 shows an electron micrograph of the forced fracture surface of the obtained composite material.
  • Fig. 5B shows an electron micrograph of a net-like carbon nanotube when the scale of Fig. 5A with an order of 100 m is expanded to the order of 5.0 m.
  • FIGS. 6A and 6B show electron micrographs of the aluminum particles before kneading and crushing.
  • FIG. 7A shows an electron micrograph of the aluminum particles after kneading and pulverizing with a planetary high-speed mill
  • FIG. 7B shows an enlarged electron micrograph of the concave portion shown in FIG. 7A on the order of 10 m.
  • enlarged electron micrographs of the 1 ⁇ m order and 500 nm order of the recesses shown in FIG. 7A are shown in FIGS. 8A and 8B.
  • 9A, 9B, and 10 show enlarged electron micrographs of the smoothed portion shown in FIG. 7A on the order of 10 m, 1 m, and 500 nm.
  • the obtained spark plasma sintered body was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled in two passes until the thickness reached 1 mm.
  • Fig. 1A shows a state photograph after rolling of an aluminum sintered body containing 0.05 wt% of carbon nanotubes
  • Fig. 1B shows an enlarged electron micrograph of a 2 m order structure of the rolled structure. It is clear that good rolling was achieved with the metal materials of the examples.
  • the production method is the same as in Example 2-1, except that the sintered material was rolled under different rolling conditions (rolling direction), and the carbon nanotube content was 0.05 wt%, 0.5 wt%, 0.25 wt%.
  • Four types of rolled metal materials of samples R2, R3, R4, and R5 with%, 0.25 wt%, and 0.25 wt% were prepared.
  • the test pieces shown in Fig. 2 were cut out from the four types of samples R2, R3, R4, and R5 with different production conditions by aligning the test piece axes in the rolling direction and width direction, and subscripting symbols T and L, respectively. .
  • Example 2-3 The four types of rolled metal materials R2, R3, R4, and R5 manufactured in Example 2-2 were annealed at a temperature of 400 ° C. for 1 hour.
  • the maximum stress due to annealing was compared with the stress-strain relationship for the specimens without annealing in Fig. 3 in the rolling direction and width direction as shown in Fig. 4. It can be seen that it has decreased and the overall growth has increased. This is thought to be because the residual stress / strain produced during rolling was recovered by annealing.
  • sample R2 having a low carbon nanotube content is significantly increased by annealing.
  • sample R3 with a high content does not show a large difference before and after annealing. In other words, it is considered that the smaller the content, the larger the rate of increase in total elongation due to annealing.
  • Pure titanium powder with an average particle size of 10 to 20 m and 0.1 to 0.25 wt% long-chain carbon nanotubes (CNTs) are used in a planetary mill using a titanium container and dispersed media is used. Without mixing, kneading dispersion was performed by combining various time units of 2 hours or less and the rotation speed of the container in a dry state.
  • CNTs carbon nanotubes
  • the obtained kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 900 ° C for 10 minutes. At that time, the rate of temperature increase was 100 ° C / min, and a pressure of 60 MPa was continuously applied.
  • FIG. 11 shows an electron micrograph of the forced fracture surface of the obtained composite material (CNT: 0.25 wt% added).
  • FIG. 11B shows an electron micrograph of the net-like carbon nanotubes when FIG. 11A with a scale of 10 / z m order is enlarged to 1.0 m order.
  • thermal conductivity of the obtained composite material As a result of measuring the thermal conductivity of the obtained composite material, it was 18.4 WZmK.
  • the thermal conductivity of the solidified body obtained by spark plasma sintering of pure titanium powder only under the above conditions was 13.8 WZmK, and the thermal conductivity of the composite material according to the present invention increased by about 30%. I understand.
  • the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 900 ° C for 10 minutes. At that time, the rate of temperature increase was 100 ° C / min, and a pressure of 60 MPa was continuously applied. As a result of measuring the thermal conductivity of the obtained composite material, it was 17.2 WZmK when only the carbon nanotube was previously subjected to the discharge plasma treatment.
  • FIGS. 12A and 12B show electron micrographs of titanium particles before kneading and crushing and titanium particles after kneading and crushing with a planetary high-speed mill.
  • Fig. 13A and Fig. 13B show magnified electron micrographs of the 1 m order and 500 nm order of the titanium particle surface shown in Fig. 12B after kneading and crushing with a planetary high-speed mill. From the electron micrographs in Figs. 12 to 13, the carbon nanotubes are evenly and standing on the surface of the titanium particles by kneading and crushing with a planetary high-speed mill. It is clear that they are physically and vertically attached.
  • a spark plasma titanium sintered body having a carbon nanotube content of 0.05 wt%, 0.25 wt%, and 0.5 wt% obtained in Example 3-2 is a short cylinder having a height of 10 mm and an outer diameter of 60 mm. Met. This was cold-rolled for 4 passes until the thickness reached 8 mm. When the sintered state of the titanium sintered body and the structure after rolling were observed with an electron microscope in the order of 1 to 5 ⁇ m, it was confirmed that the metal material of the example achieved good rolling.
  • An oxygen-free copper powder (Mitsui Metal atomized powder) with an average particle size of 20-30 m and 0.5 wt% long-chain carbon nanotubes in a planetary mill using a stainless steel container, using dispersion media Without mixing, kneading dispersion was performed by combining various time units of 2 hours or less and the rotation speed of the container in a dry state.
  • the kneaded dispersion material was loaded into a die of a discharge plasma sintering apparatus, and subjected to a discharge plasma treatment at 575 ° C for 5 minutes. After that, the kneading dispersion material is 800 in a spark plasma sintering apparatus. C, spark plasma sintering for 15 minutes. At that time, the temperature rising rate was 100 ° CZmin, and a pressure of 60 MPa was continuously applied.
  • FIG. 14 shows an electron micrograph of the forced fracture surface of the obtained composite material.
  • Fig. 14B shows an electron micrograph of a net-like carbon nanotube when the scale of Fig. 14A is enlarged to the order of 1.0 ⁇ m.
  • FIGS. Fig. 16A and Fig. 16B show the enlarged electron micrographs of the 1 m order and 500 nm order of the copper particle surface shown in Fig. 15B after kneading and crushing with a planetary high-speed mill. From the electron micrographs in Figs. 15 to 16, carbon nanotubes are evenly and three-dimensionally and vertically attached to the copper particle surface by kneading and crushing with a planetary high-speed mill. It is clear that he is wearing.
  • the discharge plasma copper sintered body having a carbon nanotube content of 0.5 wt% obtained in Example 41 was a short cylinder having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 3 passes until the thickness reached 8 mm. When the state of the copper sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 m, it was confirmed that the metal material of the example achieved good rolling.
  • the kneaded and dispersed material was loaded into a die of a discharge plasma sintering apparatus and subjected to a discharge plasma treatment at 575 ° C for 5 minutes. Thereafter, the kneading dispersion material is 900 in a spark plasma sintering apparatus. C, spark plasma sintering for 10 minutes. At that time, the rate of temperature rise was 100 ° CZmin, and a pressure of 60 MPa was continuously applied.
  • the composite material according to the present invention has a thermal conductivity of only about stainless steel powder obtained by spark plasma sintering under the above conditions. Increased by 18%.
  • the electrical resistivity of the solidified body obtained by spark plasma sintering of only the stainless steel powder under the above conditions was compared with that of the present invention.
  • the electrical resistivity of the composite material was approximately 60% (conductivity increased approximately 1.65 times).
  • Example 6-1 The discharge plasma SUS sintered body having a carbon nanotube content of 0.5 wt% obtained in Example 5-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 5 passes until the thickness reached 8 mm. The state of the SUS sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 ⁇ m. As a result, it was confirmed that the metal material of the example achieved good rolling. [0106] Example 6-1
  • a mixture of pure aluminum powder with an average particle size of 100 ⁇ m and alumina powder with an average particle size of 0.6 ⁇ m (95 wt%, aluminum powder: alumina powder 95; 5) Carbon nanotubes (5 wt%) were dispersed in a planetary mill using an alumina container.
  • the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus, and plasma solidified at 500 to 600 ° C for 7 minutes. At that time, the rate of temperature increase was 100 ° CZmin and 230 ° CZmin, and a pressure of 14-40 MPa was continuously applied. When the thermal conductivity of the obtained composite material was measured, it was 300 to 450 WZmK.
  • the spark plasma metal composite sintered body having a carbon nanotube content of 0.5 wt% obtained by the same method as in Example 6-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 5 passes until the thickness reached 8 mm. The state of the sintered body after rolling and the structure after rolling were observed with an electron microscope on the order of 1 to 5 ⁇ m. As a result, it was confirmed that the metal material of the example achieved good rolling.
  • a mixed powder of oxygen-free copper powder (Mitsui Metal atomized powder) with an average particle diameter of 50 ⁇ m and alumina powder with an average particle diameter of 0.6 ⁇ , and 10 wt% long-chain carbon nanotubes It was dispersed with a planetary mill using a vessel made of stainless steel. First, carbon nanotubes are combined, and a mixed powder of oxygen-free copper powder and alumina powder that has been sufficiently dispersed in advance is blended, and these powders are in a dry state without using a dispersion medium. Then, kneading and dispersion were performed by combining various time units of 2 hours or less and the rotation speed of the container.
  • the kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 700 to 900 ° C for 5 minutes. At that time, the temperature rising rate is 250 ° CZmin, and lOMPa pressure is applied. Continued to add. As a result of measuring the thermal conductivity of the two types of composite materials obtained, both were 500-8 OOWZmK.
  • the discharge plasma metal composite sintered body having a carbon nanotube content of 0.5 wt% obtained by the same method as in Example 7-1 was a short cylinder having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 8 passes until the thickness reached 8 mm. The state of the sintered body after rolling and the structure after rolling were observed with an electron microscope on the order of 1 to 5 ⁇ m. As a result, it was confirmed that the metal material of the example achieved good rolling.
  • the content of the fibrous carbon material was varied in the range of 2.5 wt% or more and 30 wt% or less by adjusting the adhesion amount of the aluminum powder adhered to both surfaces of the circular sheet. That is, by increasing the adhesion amount of the aluminum powder, the content of the fibrous carbon material is reduced, and the number of laminated circular sheets in the cylindrical laminate is also reduced. On the other hand, by reducing the adhesion amount of the aluminum powder, the content of the fibrous carbon material is increased, and the number of laminated circular sheets in the cylindrical laminate is increased. As a result, the number of stacked circular sheets in the columnar laminate changed in the range of about 100 to 250 sheets. When stacking circular sheets, care was taken that the fiber orientation direction was the same.
  • the manufactured composite material had a diameter of 10 mm and a height of about 11 to 12 mm due to shrinkage during the pressure sintering process.
  • the fibers in the carbon fiber layer are parallel to the layer surface (perpendicular to the center line of the composite material) and oriented in the same direction.
  • a disk-shaped specimen was taken in the direction perpendicular to the composite material force.
  • the test piece has a diameter of 10 mm and a thickness of 2 to 3 mm.
  • the center line of the test piece is perpendicular to the center line of the composite material and coincides with the fiber orientation direction in the fiber layer. That is, in each test piece, the fiber layer force parallel to the center line is laminated at a predetermined interval in a direction perpendicular to the center line, and the fiber orientation direction in each fiber layer coincides with the center line direction of the test piece. It is.
  • A1-Si alloy powder containing lwt% of silicon powder in aluminum powder was used as the metal powder.
  • the composite material manufactured in this example has vapor-grown carbon fibers oriented in one direction as a fibrous carbon material, surpassing the thermal conductivity of aluminum at a practical level at all fiber contents, The thermal conductivity tends to increase as the fiber content increases, with a maximum of 600 WZm A result exceeding K is obtained.
  • Example 8 in order to measure the thermal conductivity in the fiber orientation direction, a composite material having a multilayer structure in which a large number of fiber sheets were laminated was manufactured. In many cases, a small number of sheets such as one or several sheets are laminated. Thin composite materials with a small number of laminated fiber sheets are more versatile. Use value is also great. The same applies to the following embodiments.
  • Example 8 a composite material with a fibrous carbon material content of 2.5 wt% was manufactured as a cylindrical rolling test composite material with a diameter of 60 mm and a height of 10 mm. did.
  • the manufacturing method is the same as in Example 8.
  • carbon fiber layers perpendicular to the center line are laminated in layers at predetermined intervals in the center line direction in the cylindrical aluminum powder sintered body.
  • the fibers in the carbon fiber layer are oriented in the same direction.
  • the produced cylindrical composite material having a height of 60 mm was rolled in the fiber orientation direction in the carbon fiber layer until the thickness became 1 mm.
  • a 25 mm square sample was taken from a lmm thick plate after rolling, with two parallel sides parallel to the rolling direction (fiber orientation direction) and the other two parallel sides perpendicular to the rolling direction (fiber orientation direction).
  • the thermal conductivity of the sample was measured in two directions, the direction perpendicular to the rolling direction (fiber orientation direction) and the rolling direction (fiber orientation direction).
  • the thermal conductivity in the rolling direction was 237 WZmK, and the thermal conductivity in the direction perpendicular to the rolling direction (fiber orientation direction) was 212 WZmK.
  • the thermal conductivity in the fiber orientation direction before rolling is about 330 WZmK, which exceeds 300 WZmK.
  • the thermal conductivity after rolling surpasses the thermal conductivity of aluminum at the practical level and is in a direction perpendicular to the fiber orientation direction. Even the thermal conductivity surpasses that of aluminum at this practical level.
  • Lumps of vapor-grown carbon fibers with a length of 2 to 3 mm that were entangled were loosened with a shaker mill and separated.
  • Aluminum powder was mixed in the shaker mill, and both were kneaded. Both The mixing ratio was adjusted so that the content of the vapor-grown carbon fiber varied in the range of 2.5 to 15 wt%.
  • Example 8 In the same manner as in Example 8, the obtained powdered kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. In this state, the knead-dispersed material in the die was subjected to spark plasma sintering under conditions of 575 ° C ⁇ 60 minutes. At that time, the temperature rising rate was 100 ° CZmin, and the pressure of 50 MPa was continuously applied. As a result, a composite material of aluminum and fibrous carbon material in which the fibrous carbon material was uniformly dispersed in a cylindrical aluminum powder sintered body having a diameter of 10 mm and a height of l to 12 mm was produced.
  • Vapor-grown carbon fibers in the kneaded and dispersed material fall sideways by compression in the height direction of the kneaded and dispersed material in the die of the spark plasma sintering apparatus. There are various ways to fall. For this reason, in the manufactured composite material, the vapor-grown carbon fiber is not oriented, but tends to be oriented along a plane perpendicular to the center line. In other words, the vapor-grown carbon fiber in the composite material does not have a high degree of orientation but exhibits a two-dimensional orientation along a plane perpendicular to the center line.
  • the specimen has a diameter of 10 mm and a thickness of 2 to 3 mm.
  • the center line of the specimen is perpendicular to the center line of the composite material.
  • the thermal conductivity in the center line direction of the test piece was measured. The results are indicated by X in Figure 17.
  • ⁇ in FIG. 17 represents an average value of the thermal conductivity of a plurality of composite materials produced for each content of the fibrous carbon material.
  • Examples 8 to 10 are production examples of fiber-oriented composite materials using vapor-grown carbon fibers as fibrous carbon materials.
  • Examples 1 to 7 use carbon nanotubes as fibrous carbon materials, and all are production examples of fiber non-oriented composite materials. is there. Therefore, in this example, an example of manufacturing a fiber-oriented composite material using carbon nanotubes as a fibrous carbon material is shown.
  • a carbon nanotube assembly sheet with a thickness of several nanometers / zm is prepared by two-dimensionally closely gathering linear carbon nanotubes with a length of several ⁇ m in the radial direction. did. A number of carbon nanotubes in the carbon nanotube aggregate sheet were pushed down in one direction by a roller to produce a thin fiber sheet in which the carbon nanotubes were oriented in one specific direction parallel to the surface.
  • a large number of circular fiber sheets having a diameter of 10 mm were punched from this fiber sheet. While attaching aluminum powder with an average particle size of 30 m as metal powder to both sides of these circular fiber sheets, circular sheets are laminated in the thickness direction to produce a cylindrical laminate with a diameter of 10 mm x height of 20 mm. did. At this time, the content of carbon nanotubes was adjusted to 1.5 wt% by adjusting the amount of aluminum powder adhered to both surfaces of the circular sheet. When stacking circular sheets, care was taken that the fiber orientation direction was the same.
  • the produced cylindrical laminate was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. This compressed the cylindrical stack in the die to a height of approximately 15 mm.
  • the cylindrical laminate in the die was spark plasma sintered at 575 ° C. for 60 minutes. At that time, the temperature rising rate was 100 ° CZmin, and the pressure of 50 MPa was continuously applied.
  • the produced composite material had a diameter of 10 mm and a height of about 11 to 12 mm due to shrinkage during the pressure sintering process.
  • the fibers in the carbon fiber layer are carbon nanotubes, and they are oriented in the same direction and parallel to the layer surface (perpendicular to the center line of the composite material).
  • a disk-shaped test piece was taken in the direction perpendicular to the composite material force.
  • the test piece has a diameter of 10 mm and a thickness of 2 to 3 mm.
  • the center line of the test piece is perpendicular to the center line of the composite material and coincides with the fiber orientation direction in the fiber layer. That is, in each test piece, the fiber layer force parallel to the center line is laminated at a predetermined interval in a direction perpendicular to the center line, and the fiber orientation direction in each fiber layer is the center line of the test piece. It is consistent with the direction.
  • the thermal conductivity of the test piece was measured in the center line direction, that is, the fiber orientation direction. The results are indicated by ⁇ in FIG.
  • This carbon nanotube-oriented composite material showed a thermal conductivity of 274 WZmK when the carbon nanotube content was 1.5 wt%.
  • the performance is comparable.
  • high-quality linear carbon nanotubes are very expensive at present, and considering the cost performance, the use of vapor-grown carbon fibers is not comprehensive. Meaningful.
  • a non-oriented type composite material was manufactured using a linear high quality carbon nanotube having a length of several meters as the fibrous carbon material. Specifically, aluminum powder having an average particle diameter of 30 ⁇ m and linear carbon nanotubes having a length of several ⁇ m were kneaded by a shaker mill. The carbon nanotube content was 0.5 wt%.
  • the obtained powdery kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction.
  • the kneaded dispersion material in the die was subjected to spark plasma sintering under the condition of 575 ° C. ⁇ 60 minutes.
  • the rate of temperature increase was 100 ° C / min, and a pressure of 50 MPa was continuously applied. This produced a disc-shaped composite material with a diameter of 10 mm and a height of 2-3.
  • the carbon nanotubes are uniformly dispersed in the disc-shaped aluminum powder sintered body. Since carbon nanotubes are very short, orientation does not substantially occur even when subjected to compression in the center line direction. For this reason, a thin disc-shaped composite material (diameter 10 mm x thickness 2 to 3 mm) with a size for measuring thermal conductivity was directly manufactured. The thermal conductivity in the direction of the center line was 240 WZmK as shown by ⁇ in FIG. 17 (the black circle in the center). Considering that the carbon nanotube content is 0.5 wt%, this performance is good.
  • the substrate is a metal powder sintered body or a mixed powder sintered body of metal and ceramics.
  • a composite material of a ceramic base material and a vapor growth fiber was manufactured.
  • the obtained powdery kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus in the same manner as in Example 8 and Example 10, and pressurized in the height direction.
  • the kneaded dispersion material in the die was subjected to spark plasma sintering under the condition of 1400 ° C. ⁇ 3 minutes.
  • the temperature rising rate was 100 ° CZmin, and the pressure of 30 MPa was continuously applied.
  • a composite material of alumina and fibrous carbon material in which vapor-grown carbon fibers were uniformly dispersed in a cylindrical alumina powder sintered body having a diameter of 10 mm and a height of l to 12 mm was produced.
  • the vapor-grown carbon fibers in the kneaded and dispersed material fall sideways due to the compression in the height direction of the kneaded and dispersed material in the die of the discharge plasma sintering apparatus. There are various ways to fall. For this reason, in the manufactured composite material, the vapor-grown carbon fiber is not oriented, but tends to be oriented along a plane perpendicular to the center line. In other words, the vapor-grown carbon fiber in the composite material does not have a high degree of orientation but exhibits a two-dimensional orientation along a plane perpendicular to the center line.
  • Example 8 and Example 10 Thereafter, in the same manner as in Example 8 and Example 10, a disk-shaped test piece was collected from the composite material in the orthogonal direction.
  • the specimen has a diameter of 10 mm and a thickness of 2-3 mm, and the specimen centerline is perpendicular to the composite centerline.
  • the measured thermal conductivity in the direction of the center line of the test piece was 243 WZmK. Since the thermal conductivity of the sintered alumina powder itself is about 25 W ZmK, the composite with the fibrous carbon material increased the thermal conductivity by about 10 times. The performance is not inferior even in comparison.
  • a composite material using carbon fiber as a fibrous carbon material was manufactured.
  • the manufacturing method was the same as in Example 10. In other words, a lump of entangled carbon fiber was loosened with a shaker mill and separated. Aluminum powder was mixed in the shaker mill, and both were kneaded. The carbon fiber content was 15 wt%.
  • the obtained powdery kneading dispersion was treated with a discharge plasma sintering apparatus in the same manner as in Examples 8 and 10.
  • a discharge plasma sintering apparatus in the same manner as in Examples 8 and 10.
  • the kneaded dispersion material in the die was subjected to spark plasma sintering under conditions of 575 ° C. X 60 minutes.
  • the rate of temperature increase was 100 ° CZmin, and the pressure of 5 OMPa was continuously applied.
  • a composite material of aluminum and fibrous carbon material was produced in which carbon fibers were uniformly dispersed in a cylindrical aluminum powder sintered body having a diameter of 10 mm and a height of ll to 12 mm.
  • the carbon fiber in the kneaded dispersion falls down sideways due to the compression in the height direction of the kneaded dispersion in the die of the spark plasma sintering apparatus. For this reason, the carbon fiber in the manufactured composite material does not have a high degree of orientation, but exhibits a two-dimensional orientation along a plane perpendicular to the center line.
  • the thermal conductivity was 208WZmK.
  • the thermal conductivity is about 350 WZmK.
  • the fibrous carbon material used in the present invention is far superior to carbon fiber as a contained material in the composite material.
  • the high thermal conductive composite material of the present invention can produce a heat exchanger, a heat sink, a fuel cell separator, etc. excellent in high thermal conductivity using metal powder such as aluminum alloy and stainless steel, Furthermore, electrode materials, heating elements, wiring materials, heat exchangers, fuel cells, etc. with excellent corrosion resistance and high temperature resistance characteristics can be manufactured using metal powder and ceramic powder.
  • FIG. 1A is a state photograph after rolling of an aluminum sintered body containing carbon nanotubes in a dispersed manner
  • FIG. 1B is an enlarged electron micrograph of a 2 m order yarn and weave after rolling. .
  • FIG. 2 (a) to (d) show the test piece cutouts of four types of rolled metal materials R2, R3, R4, and R5.
  • FIG. 1 (a) to (d) show the test piece cutouts of four types of rolled metal materials R2, R3, R4, and R5.
  • FIG. 3 (a) to (d) are graphs showing the stress-strain relationship for each of the four types of rolled metal materials R2, R3, R4, and R5 (without annealing).
  • FIG. 4 (a) to (d) are graphs showing the stress-strain relationship for each of the four types of rolled metal materials R2, R3, R4, and R5 (with annealing).
  • FIG. 5A is an electron micrograph of a forced fracture surface of a carbon nanotube-dispersed composite material using aluminum as a matrix according to the present invention
  • FIG. 5B is an enlarged electron micrograph of the forced fracture surface.
  • FIG. 6 is an electron micrograph of aluminum particles before kneading and pulverization.
  • FIG. 6A shows a scaler on the order of 20 ⁇ m
  • FIG. 6B shows an order on the order of 10 m.
  • Fig. 7 is an electron micrograph of aluminum particles after kneading and pulverization.
  • Fig. 7A is an enlarged electron with a scale of the order of 30 ⁇ m
  • Fig. 7B is an enlarged electron with an order of 10 ⁇ m of the recess shown in Fig. 7A.
  • FIG. 7A is an electron micrograph of aluminum particles after kneading and pulverization.
  • Fig. 7A is an enlarged electron with a scale of the order of 30 ⁇ m
  • Fig. 7B is an enlarged electron with an order of 10 ⁇ m of the recess shown in Fig. 7A.
  • FIG. 8A is an enlarged electron micrograph of 1 m order of the recess shown in FIG. 7A
  • FIG. 8B is an enlarged electron micrograph of the order of 500 nm.
  • FIG. 9A is an enlarged electron micrograph of the smooth portion shown in FIG. 7A on the order of 10 m
  • FIG. 9B is an enlarged electron micrograph of the order of 1 ⁇ m.
  • FIG. 10 is an enlarged electron micrograph of the smooth part shown in FIG. 7A on the order of 500 nm.
  • FIG. 11A is an electron micrograph of a forced fracture surface of a carbon nanotube dispersed composite material using titanium as a matrix according to the present invention
  • FIG. 11B is an enlarged electron micrograph of the forced fracture surface.
  • FIG. 12A is an electron micrograph of titanium particles before kneading and crushing
  • FIG. 12B is an electron micrograph of titanium particles after kneading and crushing.
  • FIG. 13A is an enlarged electron micrograph of the order of 1 m of the titanium particle surface shown in FIG. 12B
  • FIG. 13B is an enlarged electron micrograph of the order of 500 nm.
  • FIG. 14A is an electron micrograph of a forced fracture surface of a carbon nanotube dispersed composite material using copper as a matrix according to the present invention
  • FIG. 14B is an enlarged electron micrograph of the forced fracture surface.
  • FIG. 15 is an electron micrograph of copper particles before kneading and pulverization
  • FIG. 15A shows a scale of 10 ⁇ m order
  • FIG. 15B shows a order of 50 ⁇ m.
  • FIG. 16A is an enlarged electron micrograph of the L m order on the copper particle surface after kneading and pulverization
  • FIG. 16B is an enlarged electron micrograph of the order of 500 nm.
  • Fig. 17 is a graph showing the relationship between the carbon material content and the thermal conductivity in a composite material of aluminum and carbon material.

Abstract

This invention provides a composite material that can effectively utilize the properties of a metal powder base material per se or further added ceramic, and ceramic base material per se, and excellent electric conductivity and thermal conductivity and strength properties possessed by a fibrous carbon material formed of graphene. To this end, a fibrous carbon material formed of graphene such as carbon nanotubes or vapor phase grown carbon fibers is incorporated, followed by discharge plasma sintering for integration to produce a metal sinter or a mixed sinter composed of a metal and ceramic or a ceramic sinter. The incorporation of the fibrous carbon material formed of graphene can improve various properties such as thermal conductivity and electric conductivity possessed by the metal material. Although the rollability of the sinter is lower than a fibrous carbon material-free material, the sinter can be rolled. When the selection of various conditions, for example, rolling conditions such as rolling direction and rolling reduction and number of times of rolling, and annealing after rolling is taken into consideration, Young’s modulus and elongation, residual stress or other ductile properties and various other properties can be regulated without causing a change in tensile strength after rolling.

Description

明 細 書  Specification
高熱伝導複合材料とその製造方法  High thermal conductive composite material and its manufacturing method
技術分野  Technical field
[0001] 本発明は、金属材料やセラミックス材料が本来有する特徴に加えて、当該粉体から なる焼結体内に含有させるカーボンナノチューブ (CNT)や気相成長炭素繊維 (VG CF)などの繊維状炭素材料によって、優れた電気伝導性、熱伝導性及び強度特性 を付与した高熱伝導複合材料とその製造方法に関する。  [0001] In addition to the characteristics inherent to metal materials and ceramic materials, the present invention provides a fibrous form such as carbon nanotubes (CNT) and vapor-grown carbon fibers (VGCF) contained in a sintered body made of the powder. The present invention relates to a high thermal conductive composite material provided with excellent electrical conductivity, thermal conductivity, and strength characteristics by a carbon material, and a method for producing the same.
背景技術  Background art
[0002] 今日、カーボンナノチューブを用いて種々の機能を持たせた複合材料が提案され ている。例えば、アルミニウム合金材の熱伝導率、引っ張り強度を改善する目的で、 アルミニウム合金材の含有成分である、 Si, Mg, Mnの少なくとも一種を、カーボンナ ノ繊維と化合させ、カーボンナノ繊維をアルミニウム母材に含有させたアルミニウム合 金材が提案されている。これは、カーボンナノ繊維を 0. l〜5vol%溶融アルミニウム 合金材内に混入し、混練した後ビレットとし、該ビレットを押出成形して得られたアルミ -ゥム合金材の押出型材として提供 (特許文献 1)されて 、る。  [0002] Today, composite materials having various functions using carbon nanotubes have been proposed. For example, for the purpose of improving the thermal conductivity and tensile strength of an aluminum alloy material, at least one of Si, Mg, and Mn, which are components contained in the aluminum alloy material, is combined with carbon nanofibers, and the carbon nanofibers are combined with an aluminum matrix. Aluminum alloy materials have been proposed. This is a carbon nanofiber mixed in 0.1 to 5 vol% molten aluminum alloy material, kneaded and then billet, provided as an extrusion mold material of aluminum-um alloy material obtained by extruding the billet ( Patent literature 1).
[0003] さらに、燃料電池のセパレータ等に適用できる成形性に優れた高導電性材料を目 的として、 PPSや LCP等の流動性に優れた熱可塑性榭脂に金属化合物(ホウ化物: TiB 、 WB、 MoB、 CrB、 A1B2、 MgB、炭化物: WC、窒化物: TiN等)およびカー [0003] Furthermore, for the purpose of high-conductivity materials with excellent moldability that can be applied to fuel cell separators, etc., metal compounds (boride: TiB, WB, MoB, CrB, A1B2, MgB, carbide: WC, nitride: TiN, etc.) and car
2 2
ボンナノチューブを適量配合することにより、成形性と導電性を両立させた榭脂成形 体が提案 (特許文献 2)されて ヽる。  There has been proposed a resin molded article that has both moldability and conductivity by blending an appropriate amount of bon nanotubes (Patent Document 2).
[0004] カーボンナノチューブを含むフィールドェミッタとして、インジウム、ビスマスまたは鈴 のようなナノチューブ濡れ性元素の金属合金、 Ag, Auまたは Snの場合のように比較 的柔らかくかつ延性がある金属粉体等の導電性材料粉体とカーボンナノチューブを プレス成形して切断や研摩後、表面に突き出しナノチューブを形成し、該表面をエツ チングしてナノチューブ先端を形成、その後金属表面を再溶解し、突き出しナノチュ ーブを整列させる工程で製造する方法が提案 (特許文献 3)されて ヽる。 [0004] As field emitters including carbon nanotubes, metal alloys of nanotube wettable elements such as indium, bismuth, or bell, metal powders that are relatively soft and ductile as in the case of Ag, Au, or Sn, etc. Press-molded conductive material powder and carbon nanotubes, and after cutting and polishing, protruding nanotubes are formed on the surface, and the surface is etched to form nanotube tips, and then the metal surface is re-dissolved, protruding nanotubes There has been proposed a method of manufacturing in the process of aligning (Patent Document 3).
[0005] 特許文献 1 :特開 2002— 363716 特許文献 2:特開 2003 - 34751 [0005] Patent Document 1: JP-A-2002-363716 Patent Document 2: JP 2003-34751 A
特許文献 3:特開 2000 - 223004  Patent Document 3: JP 2000-223004
[0006] 上述の榭脂中やアルミニウム合金中に分散させようとするカーボンナノチューブは、 得られる複合材料の製造性や所要の成形性を得ることを考慮して、できるだけ長さの 短いものが利用されて、分散性を向上させており、カーボンナノチューブ自体が有す るすぐれた電気伝導と熱伝導特性を有効に活用しょうとするものでない。  [0006] The carbon nanotubes to be dispersed in the above-mentioned resin or aluminum alloy are used as short as possible in consideration of the manufacturability of the resulting composite material and obtaining the required formability. Therefore, the dispersibility is improved, and it is not intended to effectively utilize the excellent electrical and thermal conductivity characteristics of the carbon nanotube itself.
[0007] また、上述のカーボンナノチューブ自体を活用しょうとする発明では、例えばフィー ルドエミッタのように具体的かつ特定の用途に特ィ匕することができる力 S、他の用途に は容易に適用できず、一方、ある機能を目的に多価金属元素の酸ィ匕物を選定して特 定の柱状体からなるセラミックス複合ナノ構造体を製造する方法では、目的設定とそ の元素の選定と製造方法の確率に多大の工程、試行錯誤を要することが避けられな い。  [0007] In addition, in the invention that attempts to utilize the above-mentioned carbon nanotubes themselves, for example, a force S that can be used for a specific and specific application, such as a field emitter, can be easily applied to other applications. On the other hand, in the method of producing a ceramic composite nanostructure consisting of a specific columnar body by selecting an oxide of a polyvalent metal element for a certain function, the purpose setting and selection and production of the element are performed. It is inevitable that the probability of the method requires a lot of steps and trial and error.
[0008] カーボンナノチューブ以外の繊維状炭素材料として以前より気相法炭素繊維が知 られており、カーボンナノチューブより太 、この気相法炭素繊維も様々な基材と組み 合わされて複合材料とされているが、同様の問題がある。  [0008] As a fibrous carbon material other than carbon nanotubes, vapor-grown carbon fibers have been known for some time, thicker than carbon nanotubes, and these vapor-grown carbon fibers are also combined with various substrates to form composite materials. There are similar problems.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、耐腐食性、耐熱性を有し、汎用性や延性等を有する金属材料等の特徴 を純粋に生かし、これに電気伝導性と熱伝導性を付与あるいは向上させた複合材料 の提供を目的とし、金属粉体基材自体あるいはさらに添加するセラミックス、更にはセ ラミックス粉体基材自体の有する特性とともに、繊維状炭素材料自体が本来的に有 する優れた電気伝導、熱伝導特性及び強度特性を有効に活用した高熱伝導複合材 料とその製造方法の提供を目的として!/、る。 [0009] The present invention is a composite that has corrosion resistance, heat resistance, and has the characteristics of a metal material having versatility, ductility, etc. purely and imparts or improves electrical conductivity and thermal conductivity. For the purpose of providing materials, the metallic powder base material itself or ceramics to be further added, and the characteristics of the ceramic powder base material itself, as well as the excellent electrical conductivity inherent to the fibrous carbon material itself, For the purpose of providing a high thermal conductive composite material that effectively utilizes thermal conductivity and strength properties and its manufacturing method!
課題を解決するための手段  Means for solving the problem
[0010] 本発明者らは、独立行政法人科学技術振興機構の開発委託に基づき、カーボン ナノチューブ等の繊維状炭素材料を基材中に配合した複合材料にぉ 、て、繊維状 炭素材料の電気伝導特性、熱伝導特性並びに強度特性を有効利用できる構成につ いて種々検討した結果、以下の事実を知見した。 [0011] 1)長鎖状のカーボンナノチューブ (カーボンナノチューブのみを予め放電プラズマ処 理したものを含む)を焼成可能なセラミックスやアルミニウム粉末等の金属粉体とボー ルミル等で混練分散し、これを放電プラズマ焼結にて一体ィヒすることで、焼結体内に 網状にカーボンナノチューブを巡らせることができる。 [0010] The inventors of the present invention have entrusted the development of the Japan Science and Technology Agency to a composite material in which a fibrous carbon material such as a carbon nanotube is blended in a base material, and the electrical properties of the fibrous carbon material. As a result of various studies on configurations that can effectively use the conduction characteristics, heat conduction characteristics, and strength characteristics, the following facts were found. [0011] 1) Long-chain carbon nanotubes (including those in which only carbon nanotubes are previously subjected to discharge plasma treatment) are kneaded and dispersed with a metal powder such as ceramic or aluminum powder that can be fired using a ball mill or the like. By integrating them with spark plasma sintering, the carbon nanotubes can be circulated in the sintered body.
[0012] 2)アルミニウム基炭素繊維複合材料においては、界面にアルミニウム炭化物が生成 され、この反応により炭素繊維がダメージを受けること、そして、この炭化物が脆く複 合材料としての優れた特性を得ることができな 、と言われて 、るが、放電プラズマ焼 結を用いることにより、炭化物を生成することなぐ優れた特性のアルミニウム基炭素 繊維複合材料が得られる。  [0012] 2) In the aluminum-based carbon fiber composite material, aluminum carbide is generated at the interface, the carbon fiber is damaged by this reaction, and the carbide is brittle and obtains excellent characteristics as a composite material. However, by using discharge plasma sintering, it is possible to obtain an aluminum-based carbon fiber composite material having excellent characteristics without generating carbides.
[0013] 3)具体的には、優れた熱伝導性と、問題のない塑性変形性が得られ、特に、塑性変 形性については圧延やプレス成形をできないほどではなぐその塑性変形により様 々な形状に加工することができ、更には、例えば圧延方向や圧化率、圧延回数など の圧延条件並びに圧延後の焼鈍等を種々選定、考慮することで、圧延後の引張り強 さは変化することなぐヤング率や伸び、残留応力などの延性や種々特性を制御する ことができ、また熱伝導性や電気伝導性などの特性を金属材料に新たにあるいは向 上させて付与でき、それらの結果として多様な用途への適用が可能となる。  [0013] 3) Specifically, excellent thermal conductivity and problem-free plastic deformability can be obtained, and in particular, the plastic deformability varies depending on the plastic deformation that cannot be performed by rolling or press forming. In addition, various tensile conditions such as rolling direction, compaction ratio, number of rolling, and annealing after rolling can be selected and taken into account to change the tensile strength after rolling. It is possible to control ductility and various properties such as Young's modulus, elongation, and residual stress, and to impart new or improved properties such as thermal conductivity and electrical conductivity to the metal material. Can be applied to various uses.
[0014] 4)繊維状炭素材料として、カーボンナノチューブに代えて気相成長炭素繊維を使用 した場合、その複合材料は同様に熱伝導性が高ぐまた圧延などの塑性変形が可能 である。ちなみに、カーボンナノチューブや気相成長炭素繊維と比べて太く且つ結 晶構造に規則性がないカーボンファイバーを使用した複合材料の場合は、熱伝導性 が低い上に、圧延等の塑性変形により界面で剥離が生じ、複合材料としての機能が 失われる。  [0014] 4) When vapor-grown carbon fibers are used as the fibrous carbon material instead of carbon nanotubes, the composite material similarly has high thermal conductivity and can be plastically deformed such as rolling. Incidentally, in the case of composite materials using carbon fibers that are thicker than carbon nanotubes and vapor-grown carbon fibers and have no regular crystal structure, the thermal conductivity is low and at the interface due to plastic deformation such as rolling. Delamination occurs and the function as a composite material is lost.
[0015] 本発明の高熱伝導複合材料は、これらの知見を基礎として完成されたものであり、 金属粉体、又は金属とセラミックスと混合粉体、若しくはセラミックス粉体力 なる放電 プラズマ焼結体を基材としており、単層又は多層のダラフェンにより構成された極細 のチューブ状構成物カゝらなる繊維状炭素材料が前記基材中に分布して一体化され ものである。  [0015] The high thermal conductive composite material of the present invention has been completed based on these findings, and is based on a metal powder, a mixed powder of metal and ceramic, or a discharge plasma sintered body having a ceramic powder force. A fibrous carbon material such as an ultra-thin tubular structure composed of single-layer or multi-layer darafen is distributed and integrated in the base material.
[0016] グラフェンとは、 6個の炭素原子が二次元的に規則的に配列して構成されたハ-カ ム構造のネットであって、炭素六角網面とも呼ばれ、このグラフヱンが規則性をもって 積層したものはグラフアイトと呼ばれる。このダラフェンにより構成された単層又は多層 で且つ極細のチューブ状構成物が、本発明で用いられる繊維状炭素材料であり、力 一ボンナノチューブも気相成長炭素繊維も含んで!/ヽる。 [0016] Graphene is a marker composed of six carbon atoms arranged regularly in two dimensions. It is a net with a net structure and is also called a carbon hexagonal mesh surface, and this graphite layered with regularity is called a graphite. The single-layer or multi-layered and ultrathin tube-like structure composed of darafen is a fibrous carbon material used in the present invention, and includes both single-bonn nanotubes and vapor-grown carbon fibers.
[0017] すなわち、カーボンナノチューブは、グラフェンが円筒形状に丸まったシームレスの チューブであり、単層のものと同心円状に積層した複数層のものがある。単層のもの は単層ナノチューブと呼ばれ、複数層のものは多層ナノチューブと呼ばれている。ま た、気相成長炭素繊維は、グラフヱンが円筒形状に丸まった単層又は複数層のダラ フェンチューブ、すなわちカーボンナノチューブを芯部に有しており、その芯部を多 重に且つ多角形状に取り囲むようにグラフアイトがグラフェンチューブの径方向に積 層されたものであり、その構造から超多層カーボンナノチューブとも呼ばれる。換言 すれば、気相成長炭素繊維の中心部に存在する単層又は多層のカーボンチューブ がカーボンナノチューブである。  [0017] That is, the carbon nanotube is a seamless tube in which graphene is rounded into a cylindrical shape, and there are a single-walled tube and a multi-walled tube that is concentrically stacked. Single-walled ones are called single-walled nanotubes, and multiple-walled ones are called multi-walled nanotubes. Vapor-grown carbon fiber also has a single-layer or multiple-layer dalafen tube whose carbon is rounded into a cylindrical shape, that is, a carbon nanotube in the core, and the core is multi-layered and polygonal. Graphite is stacked in the radial direction of the graphene tube so as to surround it, and it is also called super multi-walled carbon nanotube due to its structure. In other words, the single-layer or multi-layer carbon tube present at the center of the vapor-grown carbon fiber is a carbon nanotube.
[0018] 繊維状炭素材料の製造方法は特に問わな!/、。アーク放電法、レーザー蒸発法、熱 分解法、化学気相成長法等のいずれでもよいが、気相成長炭素繊維は化学気相成 長法により製造される。気相成長炭素繊維を表す VGCFは Vapor Growth Carbon Fi berの略である。  [0018] The method for producing the fibrous carbon material is not particularly limited! Although any of an arc discharge method, a laser evaporation method, a thermal decomposition method, a chemical vapor deposition method and the like may be used, the vapor grown carbon fiber is manufactured by a chemical vapor deposition method. VGCF, which stands for vapor growth carbon fiber, is an abbreviation for Vapor Growth Carbon Fiber.
[0019] 繊維状炭素材料は、基材中に分散して含有させることもできるし、シート状にして粉 体層と交互に重ね合わせて積層体を構成することもできる。  [0019] The fibrous carbon material can be dispersed and contained in the base material, or it can be formed into a sheet and alternately laminated with the powder layer to constitute a laminate.
[0020] 繊維状炭素材料は又、基材中で配向させることができる。配向の形態としては 2種 類あり、一つは繊維状炭素材料が特定の位置方向に配向する 3次元配向であり、今 一つは特定の平面に平行な方向に配向し、その平面内ではランダムな 2次元配向で ある。無配向は繊維状炭素材料が 3次元でランダムな方向を向く 3次元ランダムの形 態である。繊維状炭素材料により構成されたシートは、その表面に平行な方向への 配向が容易であり、同一方向への配向も容易である。繊維状炭素材料の配向により 、炭素材料含有金属材料においては配向方向における熱伝導性を向上させることが できる。  [0020] The fibrous carbon material can also be oriented in the substrate. There are two types of orientation, one is a three-dimensional orientation in which the fibrous carbon material is oriented in a specific position, and the other is oriented in a direction parallel to a specific plane. Random two-dimensional orientation. Non-orientation is a three-dimensional random form in which the fibrous carbon material is oriented in a random direction in three dimensions. A sheet made of a fibrous carbon material can be easily oriented in the direction parallel to the surface, and can be easily oriented in the same direction. By the orientation of the fibrous carbon material, the thermal conductivity in the orientation direction can be improved in the carbon material-containing metal material.
[0021] 放電プラズマ焼結体は塑性カ卩ェを施すことが可能である。塑性加工、例えば圧延 による繰り返し応力により、粉末境界や結晶粒界にあるカーボンナノチューブが配向 し、さらに転位集積によっても、自己組織ィ匕が進む。ただし、塑性加工により、熱伝導 '性は低下することがある。 [0021] The spark plasma sintered body can be subjected to plastic casing. Plastic working, eg rolling The carbon nanotubes at the powder boundaries and grain boundaries are oriented by the repetitive stress caused by, and the self-organization is also promoted by dislocation accumulation. However, the thermal conductivity may decrease due to plastic working.
[0022] また、本発明の高熱伝導複合材料の製造方法は、一つは、金属粉体、又は金属と セラミックスの混合粉体、若しくはセラミックス粉体と繊維状炭素材料とを混練分散す る工程と、混練分散材を放電プラズマ焼結する工程とを含むものであり、今一つは、 金属粉体層、又は金属粉体とセラミックス粉体の混合粉体層、若しくはセラミックス粉 体層と、繊維状炭素材料により構成されたシートとを交互に積層する工程と、得られ た積層体を放電プラズマ焼結する工程とを含むものである。  [0022] Further, in the method for producing a high thermal conductive composite material of the present invention, one is a step of kneading and dispersing metal powder, mixed powder of metal and ceramic, or ceramic powder and fibrous carbon material. And a step of performing discharge plasma sintering of the kneaded dispersion material. The other is a metal powder layer, a mixed powder layer of metal powder and ceramic powder, or a ceramic powder layer, and a fibrous shape. The method includes a step of alternately laminating sheets made of a carbon material, and a step of spark plasma sintering the obtained laminate.
[0023] 前者の製造方法では、金属粉体又は金属とセラミックスの混合粉体若しくはセラミツ タス粉体の放電プラズマ焼結体中に、繊維状炭素材料が分散して含有された高熱伝 導複合材料が製造される。一方、後者の製造方法では、金属粉体又は金属とセラミ ッタスの混合粉体若しくはセラミックス粉体の放電プラズマ焼結体中に、繊維状炭素 材料からなるシートが所定間隔で配列された積層構造の高熱伝導複合材料が製造 される。  [0023] In the former manufacturing method, a high thermal conductive composite material in which a fibrous carbon material is dispersed and contained in a discharge plasma sintered body of a metal powder, a mixed powder of metal and ceramics, or a ceramic powder. Is manufactured. On the other hand, the latter production method has a laminated structure in which sheets of fibrous carbon material are arranged at predetermined intervals in a discharge plasma sintered body of metal powder, mixed powder of metal and ceramics, or ceramic powder. High thermal conductivity composite materials are produced.
[0024] 前者の製造方法にお!、ては、放電プラズマ焼結体中に分散する繊維状炭素材料 を特定方向に配向させることができる。また、後者の製造方法においては、シートを 構成する繊維状炭素材料をシート表面に平行な方向に配向させることができる。この 場合、その平面内で繊維状炭素材料がランダムな場合と同一方向に配向する場合 がある。繊維状炭素材料の配向により、炭素材料含有金属材料の配向方向における 熱伝導性が向上することは前述したとおりである。  [0024] In the former manufacturing method, the fibrous carbon material dispersed in the spark plasma sintered body can be oriented in a specific direction. In the latter manufacturing method, the fibrous carbon material constituting the sheet can be oriented in a direction parallel to the sheet surface. In this case, the fibrous carbon material may be oriented in the same direction within the plane as when it is random. As described above, the orientation of the fibrous carbon material improves the thermal conductivity in the orientation direction of the carbon material-containing metal material.
[0025] この配向操作は、前者の製造方法では、焼結前の混練分散材中の繊維状炭素材 料を特定方向に配向させることにより可能である。後者の製造方法では、繊維状炭 素材料のシートを製造する段階でこの配向操作を行うことができる。繊維状炭素材料 を所定方向へ配向させる方法としては、繊維状炭素材料の分散液を作製し、当該分 散液を磁場中又は電場中で固化させる方法が簡易で配向性もよぐ好ましい。極短 V、繊維状炭素材料が径方向に二次元的に集合した平面状の繊維集合体にぉ 、て、 繊維状炭素材料を一方向へ押し倒すことにより、配向シートを作製することもできる。 [0026] 本発明で使用される金属粉体としては、アルミニウム、アルミニウム合金、チタン、チ タン合金、銅、銅合金、ステンレス鋼のうち 1種または 2種以上が好ましぐ汎用性や 多用途性に優れて種々特性の工業製品の製造が可能になる。 [0025] In the former manufacturing method, this orientation operation can be performed by orienting the fibrous carbon material in the kneaded dispersion material before sintering in a specific direction. In the latter production method, this orientation operation can be performed at the stage of producing a sheet of fibrous carbon material. As a method for orienting the fibrous carbon material in a predetermined direction, a method of preparing a dispersion of the fibrous carbon material and solidifying the dispersion in a magnetic field or an electric field is simple and preferable for orientation. An oriented sheet can also be produced by pushing down the fibrous carbon material in one direction over a planar fiber assembly in which the extremely short V and fibrous carbon material are gathered two-dimensionally in the radial direction. [0026] The metal powder used in the present invention is versatile and versatile in which one or more of aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy, and stainless steel are preferred. This makes it possible to produce industrial products having various properties and excellent characteristics.
[0027] 金属粉体の平均粒径は 200 μ m以下、セラミックス粉体の平均粒径が 10 m以下 がそれぞれ好ましぐ焼結性や延性に優れて目的の特性を容易に得ることを可能に する。  [0027] The metal powder has an average particle size of 200 μm or less, and the ceramic powder has an average particle size of 10 m or less. To
[0028] セラミックス粉体としては、アルミナ、ジルコユアなどの酸化物、窒化アルミニウム、窒 化チタン、窒化けい素などの窒化物、炭化けい素、炭化チタン、炭化タンタル、炭化 タングステンなどの炭化物、ホウ化チタン、ホウ化ジルコユア、ホウ化クロムなどのホウ 化物のうち 1種または 2種以上が好ましい。このセラミックス粉体は単独で基材を構成 することができる。また、金属粉体への混合により圧延時の粒界滑りがよくなり、汎用 性や多用途性に優れて種々特性の工業製品の製造が可能になる。  [0028] Ceramic powders include oxides such as alumina and zirconium, nitrides such as aluminum nitride, titanium nitride and silicon nitride, carbides such as silicon carbide, titanium carbide, tantalum carbide and tungsten carbide, and borides. One or more of borides such as titanium, zirconium boride and chromium boride are preferred. This ceramic powder can constitute a base material alone. In addition, mixing with metal powder improves grain boundary sliding during rolling, making it possible to produce industrial products with various characteristics with excellent versatility and versatility.
[0029] 繊維状炭素材料の含有量は重量比で 20wt%以下が好ましぐこれにより焼結性や 延性に優れて目的の特性を容易に得ることが可能になる。ただし、炭素材料配合金 属材料が粉末層とシート状炭素材料の積層構造の場合は、塑性加工を行う必要が なければ 50wt%以下の含有も許容される。  [0029] The content of the fibrous carbon material is preferably 20 wt% or less by weight. This makes it possible to easily obtain the desired characteristics with excellent sinterability and ductility. However, when the carbon material-containing metal material is a laminated structure of a powder layer and a sheet-like carbon material, the content of 50 wt% or less is allowed unless plastic processing is required.
[0030] 金属とセラミックスの混合粉体におけるセラミックスの含有量にっ 、ては重量比で 2 Owt%以下が好ましぐ焼結性や延性に優れて目的の特性を容易に得ることが可能 になる。  [0030] According to the ceramic content in the mixed powder of metal and ceramic, it is preferable that the weight ratio is 2 Owt% or less. Become.
[0031] 塑性加工としては圧延、プレス成形等を挙げることができ、圧延は冷間圧延、温間 圧延、熱間圧延のいずれかでもよい。塑性カ卩ェの後には焼鈍を行うことができる。金 属種ゃ混合するセラミックス種、繊維状炭素材料の種類及び量等に応じて最適な圧 延方法を選定し、さらに得られる金属材料の残量応力を焼鈍により減少させて圧延 効果を一層向上させて目的の特性を容易に得ることが可能になる。  [0031] Examples of plastic working include rolling, press forming, and the like, and the rolling may be any of cold rolling, warm rolling, and hot rolling. Annealing can be performed after the plastic cage. Select the most appropriate rolling method according to the ceramic species mixed with metal species, the type and amount of fibrous carbon material, etc., and further reduce the residual stress of the resulting metal material by annealing to further improve the rolling effect Thus, it becomes possible to easily obtain the desired characteristics.
[0032] 基材中へ配合する前の繊維状炭素材料には、予め放電プラズマ処理を施すことが でき、これにより繊維状炭素材料の金属基体内への均一な分散性を著しく向上させ ることがでさる。  [0032] The fibrous carbon material before blending into the substrate can be preliminarily subjected to a discharge plasma treatment, thereby significantly improving the uniform dispersibility of the fibrous carbon material in the metal substrate. It is out.
[0033] 繊維状炭素材料は短ぐ現状ではカーボンナノチューブの長さは数 100 μ m、気相 成長炭素繊維でも高々 2〜3cmである。これら繊維状炭素材料は、通常、繊維同士 が連なり長鎖状を呈しており、これらが絡まったりさらには繭のような塊を形成してい るもの、あるいは繊維状炭素材料のみを放電プラズマ処理して得られる繭や網のよう な形態を有するものであるが、これらのカーボンナノチューブや気相成長炭素繊維も 比較的長い真直なものが開発されており、特にその形状を限定するものではない。 [0033] At present, fibrous carbon materials are short, and the length of carbon nanotubes is several hundred μm. The growth carbon fiber is at most 2 to 3 cm. In these fibrous carbon materials, the fibers are usually connected to each other to form a long chain, and these fibers are entangled or further formed into a lump-like lump, or only the fibrous carbon material is subjected to a discharge plasma treatment. The carbon nanotubes and the vapor-grown carbon fibers have been developed to be relatively long and straight, and the shape is not particularly limited.
[0034] 混練分散工程においては、繭のように絡まり合った状態の繊維状炭素材料の塊を 解きほぐして粉末と均一に混合することが重要であり、例えば分散剤を用いて湿式分 散させて、混練分散を効率よく実施して繊維状炭素材料の金属基体内への均一な 分散を確保することができる。また、分散メディアを用いて粉体と繊維状炭素材料とを 収納した容器を回転させて混練分散することで、金属種や混合するセラミックス種や 繊維状炭素材料量に応じて混練分散を効率よく実施することができる。更に、粉体と 繊維状炭素材料とを収納した容器を分散メディアを用いることなく回転させて混練分 散することで、金属種や混合するセラミックス種や繊維状炭素材料量に応じて混練分 散を効率よく実施することができる。  [0034] In the kneading and dispersing step, it is important to unravel the lumps of fibrous carbon material that are intertwined like cocoons and mix them uniformly with the powder. For example, the dispersion may be wet-dispersed using a dispersant. Thus, kneading and dispersing can be carried out efficiently to ensure uniform dispersion of the fibrous carbon material into the metal substrate. In addition, by using a dispersion medium to rotate and knead and disperse the container containing the powder and fibrous carbon material, kneading and dispersing can be efficiently performed according to the metal species, the ceramic species to be mixed, and the amount of fibrous carbon material. Can be implemented. Furthermore, the container containing the powder and the fibrous carbon material is rotated and kneaded and dispersed without using a dispersion medium, so that the kneading and dispersing are performed according to the metal species, the ceramic species to be mixed, and the amount of the fibrous carbon material. Can be implemented efficiently.
[0035] 放電プラズマ焼結工程にぉ 、ては、低圧下で低温のプラズマ放電を行 、、その後 高圧下で低温の放電プラズマ焼結を行う 2段工程が、長鎖状の繊維状炭素材料の 分散性を確保しながら、良好な焼結体を得るのに有効である。  [0035] In the discharge plasma sintering process, the two-stage process of performing low-temperature plasma discharge under low pressure and then performing low-temperature discharge plasma sintering under high pressure is a long-chain fibrous carbon material. It is effective to obtain a good sintered body while ensuring the dispersibility of the material.
発明の効果  The invention's effect
[0036] 本発明の高熱伝導複合材料は、耐食性や放熱性にすぐれた純アルミニウム、アル ミニゥム合金、チタンなどの金属粉末の焼結体やセラミックス粉体の焼結体を基体と することで、前記材料自体が本来的に有する腐食性や高温環境下でのすぐれた耐 久性を生かし、これに繊維状炭素材料を配合一体化したことにより、カーボンナノチ ユーブ自体が有する優れた電気伝導と熱伝導特性並びに強度とを併せて、所要特 性の増強、相乗効果、あるいは新たな機能を発揮させることができる。  [0036] The high thermal conductive composite material of the present invention uses a sintered body of a metal powder or a ceramic powder of pure aluminum, aluminum alloy, titanium or the like excellent in corrosion resistance and heat dissipation as a base. By utilizing the corrosive nature inherent in the material itself and the excellent durability in high-temperature environments, the carbon nanotube itself has excellent electrical conductivity and heat by combining and integrating the fibrous carbon material. Combined with conduction characteristics and strength, the required properties can be enhanced, synergistic effects, or new functions can be exhibited.
[0037] 本発明の高熱伝導複合材料は、繊維状炭素材料を配合した金属粉末焼結体の板 材、棒材ゃブロック材等の所要形状材料を得た後、プレス成形により所要形状にカロ 工することができる。また、圧延により薄板ゃ線材などの目的用途に応じた形態を得 ることがでさる。 [0038] 本発明の高熱伝導複合材料は、上述の焼結体を得る際に例えば耐腐食性、耐熱 性に優れるアルミナ、ジルコユア等のセラミックス粉体を分散させることが可能であり、 選定する金属基体とセラミックスの特性を組合せたり相乗させることができ、例えば、 腐食、高温環境下での電極や発熱体、配線材料、熱伝導度を向上させた熱交換器 やヒートシンンク材料、ブレーキ部品、あるいは燃料電池の電極ゃセパレータ等とし て応用することができる。また、上述の焼結体を得る際に炭化けい素、窒化けい素な どの微粒子を分散させることで、塑性変形時の粒界滑りが良くなり、超塑性を発現さ せることが可能となる。 [0037] The highly heat-conductive composite material of the present invention is obtained by obtaining a required shape material such as a metal powder sintered body plate, bar material, or block material containing a fibrous carbon material, and then pressing it into a required shape by press molding. Can be crafted. In addition, it is possible to obtain a form according to the intended use such as a thin wire rod by rolling. [0038] The high thermal conductive composite material of the present invention can disperse, for example, ceramic powders such as alumina and zirconium oxide which are excellent in corrosion resistance and heat resistance when obtaining the above-mentioned sintered body. The characteristics of the substrate and ceramics can be combined or synergized, such as corrosion, electrodes and heating elements in high temperature environments, wiring materials, heat exchangers with improved thermal conductivity, heat sink materials, brake components, or fuel. It can be applied as a battery electrode separator. Further, by dispersing fine particles such as silicon carbide and silicon nitride when obtaining the above-mentioned sintered body, the grain boundary sliding during plastic deformation is improved, and superplasticity can be exhibited.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0039] 本発明において、使用する金属粉体には、純アルミニウム、公知のアルミニウム合 金、チタン、チタン合金、銅、銅合金、ステンレス鋼等を採用することができる。焼結と 塑性変形が可能な例えば耐腐食性、熱伝導性、耐熱性等の必要とする機能を発揮 する公知の機能性金属を採用するとよい。  [0039] In the present invention, pure aluminum, a known aluminum alloy, titanium, a titanium alloy, copper, a copper alloy, stainless steel, or the like can be used as the metal powder to be used. For example, a known functional metal capable of sintering and plastic deformation and exhibiting necessary functions such as corrosion resistance, thermal conductivity and heat resistance may be employed.
[0040] 金属粉体の粒子径としては、必要な焼結体を形成できる焼結性、並びに繊維状炭 素材料との混練分散時の解砕能力を有するおよそ 100 m以下、さらに 50 m以下 の粒子径のものが好ましぐ大小数種の粒径とすることもでき、粉体種が複数でそれ ぞれ粒径が異なる構成も採用でき、単独粉体の場合は 10 /z m以下が好ましい。また 、粉体には球体以外に繊維状、不定形、榭木状や種々形態のものも適宜利用するこ とができる。なお、アルミニウムなどは 50 m〜150 mが好ましい。  [0040] The particle size of the metal powder is approximately 100 m or less, more preferably 50 m or less, having a sinterability capable of forming a necessary sintered body and a pulverizing ability when kneading and dispersing with a fibrous carbon material. It is also possible to use large and small particle sizes that are preferred for particles with different particle sizes, and it is possible to adopt a configuration in which there are multiple powder types and different particle sizes. preferable. In addition to the spheres, the powders can be appropriately used in the form of fibers, indeterminate shapes, cocoons, and various forms. Aluminum and the like are preferably 50 m to 150 m.
[0041] 本発明において、使用するセラミックス粉体には、アルミナ、ジルコユアなどの酸ィ匕 物、窒化アルミニウム、窒化チタン、窒化けい素などの窒化物、炭化けい素、炭化チ タン、炭化タンタル、炭化タングステンなどの炭化物、ホウ化チタン、ホウ化ジルコ- ァ、ホウ化クロムなどのホウ化物等の公知の各種機械的機能や塑性変形時の粒界滑 りを向上させる機能を有するセラミックスを採用することができる。例えば耐腐食性、 耐熱性等の必要とする機能を発揮する公知の機能性セラミックスを採用するとよい。  [0041] In the present invention, ceramic powders used include oxides such as alumina and zirconium oxide, nitrides such as aluminum nitride, titanium nitride, and silicon nitride, silicon carbide, titanium carbide, tantalum carbide, Use ceramics with various known mechanical functions such as carbides such as tungsten carbide, boride such as titanium boride, zirconium boride, and chromium boride, and a function that improves the intergranular sliding during plastic deformation. be able to. For example, a well-known functional ceramic that exhibits necessary functions such as corrosion resistance and heat resistance may be employed.
[0042] セラミックス粉体の粒子径としては、必要な焼結体を形成できる焼結性を考慮したり 、カーボンナノチューブとの混練分散時の解砕能力を考慮したり、塑性変形時の粒 界滑り能力を考慮して決定するが、およそ 10 m以下が好ましぐ例えば大小数種 の粒径とすることもでき、粉体種が複数でそれぞれ粒径が異なる構成も採用でき、単 独粉体の場合は 5 μ m以下、さらに 1 μ m以下が好ましい。また、粉体には球体以外 に繊維状、不定形や種々形態のものも適宜利用することができる。 [0042] As the particle size of the ceramic powder, considering the sinterability capable of forming a necessary sintered body, considering the crushing ability when kneading and dispersing with carbon nanotubes, and the grain boundary during plastic deformation Decided considering the sliding ability, but about 10 m or less is preferable. It is also possible to adopt a configuration in which there are a plurality of powder types and different particle sizes. In the case of a single powder, it is preferably 5 μm or less, more preferably 1 μm or less. In addition to spheres, the powders can be used in a fibrous, indeterminate or various form as appropriate.
[0043] 高熱伝導複合材料お!/ヽて、繊維状炭素材料の含有量は、所要形状や強度を有す る焼結体が形成できれば特に限定されるものでな 、が、セラミックス粉体又は金属粉 体の種や粒径を適宜選定することで、例えば重量比で 20wt%以下を含有させること が可能である。特に、金属材料の均質性を目的とする場合は、例えば繊維状炭素材 料の含有量を 3wt%以下、必要に応じて 0. 05wt%程度まで少なくし、粒度の選定 等の混練条件と混練分散方法を工夫する必要がある。  [0043] The content of the high thermal conductive composite material is not particularly limited as long as a sintered body having a required shape and strength can be formed. By appropriately selecting the seed and particle size of the metal powder, it is possible to contain, for example, 20 wt% or less by weight. In particular, for the purpose of homogeneity of metal materials, for example, the content of fibrous carbon material is reduced to 3 wt% or less, and if necessary, to about 0.05 wt%. It is necessary to devise a dispersion method.
[0044] また、高熱伝導複合材料にお!、て、セラミックスは、重量比で 20wt%以下の含有 であることが好ましい。  [0044] Further, in the high thermal conductive composite material, it is preferable that the ceramic content is 20 wt% or less by weight.
[0045] 本発明にお ヽて、金属粉体又は金属とセラミックスの混合粉体若しくはセラミックス 粉体の放電プラズマ焼結体中に繊維状炭素材料が分散した炭素材料含有金属材 料を製造する方法は、  [0045] According to the present invention, a method of producing a metal material containing a carbon material in which a fibrous carbon material is dispersed in a metal powder, a mixed powder of metal and ceramics, or a discharge plasma sintered body of a ceramic powder. Is
(P)長鎖状の繊維状炭素材料を放電プラズマ処理する工程、  (P) a step of performing discharge plasma treatment on the long-chain fibrous carbon material,
(1)セラミックス粉体又は金属粉体あるいはセラミックスと金属との混合粉体と、長鎖 状の繊維状炭素材料とを、収納した容器を回転させてメディアを用いることなく重力 を印加して混練分散する工程、  (1) Kneading ceramic powder or metal powder or mixed powder of ceramic and metal and long-chain fibrous carbon material by applying gravity without using media by rotating the container Dispersing step,
(2)分散剤を用いて前記粉体とカーボンナノチューブとを湿式分散させる工程、すな わち分散液を作成し固化させる工程。  (2) A step of wet-dispersing the powder and the carbon nanotube using a dispersant, that is, a step of preparing and solidifying a dispersion.
(3)混練分散材を放電プラズマ処理する工程、  (3) a step of subjecting the kneaded dispersion to a discharge plasma treatment,
(4)乾燥した混練分散材を放電プラズマ焼結する工程  (4) Step of spark plasma sintering of the dried kneaded dispersion
を含むものであり、 (1) + (4)、(P) + (1) + (4)、(1) + (2) + (4)、(P) + (1) + (2) + (4)、(1) + (3) + (4)、(P) + (1) + (3) + (4)、(1) + (2) + (3) + (4)、 (P) (1) + (2) + (3) + (4)の各工程が可能である。なお、(1) (2)の工程は、いずれが先で もこれを複数工程適宜組み合せてもよ 、。  (1) + (4), (P) + (1) + (4), (1) + (2) + (4), (P) + (1) + (2) + (4), (1) + (3) + (4), (P) + (1) + (3) + (4), (1) + (2) + (3) + (4), (P ) (1) + (2) + (3) + (4) steps are possible. It should be noted that the steps (1) and (2) may be combined as appropriate in a plurality of steps.
[0046] 混練分散する工程は、前述の長鎖状の繊維状炭素材料をセラミックス粉体又は金 属粉体あるいはセラミックスと金属との混合粉体にぉ 、て、これをほぐし解砕すること が重要である。混練分散するには、公知の粉砕、破砕、解砕を行うための各種のミル 、クラッシャー、シエイカー装置が適宜採用でき、その機構も回転衝撃式、回転剪断 式、回転衝撃剪断式、媒体撹拌式、撹拌式、撹拌羽根のない撹拌式、気流粉砕式 など公知の機構を適宜利用できる。 [0046] In the kneading and dispersing step, the long-chain fibrous carbon material described above is dispersed in ceramic powder, metal powder, or a mixed powder of ceramic and metal, and then loosened and crushed. is important. For kneading and dispersing, various mills, crushers, and shaker devices for performing known crushing, crushing, and crushing can be used as appropriate, and the mechanisms are also rotary impact type, rotary shear type, rotary impact shear type, medium stirring type Well-known mechanisms such as a stirring type, a stirring type without a stirring blade, and an airflow grinding type can be used as appropriate.
[0047] 特にボールミルは、公知の横型や遊星型、撹拌型等のミルの如ぐボール等のメデ ィァを使用して粉砕、解砕を行う構成であれば!/、ずれの構造であっても利用できる。 また、メディアもその材質、粒径を適宜選定することができる。予めカーボンナノチュ ーブのみを放電プラズマ処理した場合は、特に粉体粒径やボール粒径を選定して 解砕能を向上させる条件設定を行う必要がある。  [0047] In particular, the ball mill has a misalignment structure as long as it is crushed and crushed using a medium such as a ball such as a known horizontal type, planetary type, or stirring type mill. Even available. Further, the material and particle size of the media can be appropriately selected. In the case where only the carbon nanotubes are preliminarily subjected to the discharge plasma treatment, it is necessary to set conditions for improving the crushing ability especially by selecting the powder particle size and the ball particle size.
[0048] 特に遊星ミルは、収納容器の自転と公転が同時に行われ、通常はボール等のメデ ィァを使用して粉砕、解砕を行う構成であるが、この発明ではメディアを使用すること なぐ容器容量とそれに収納する量、繊維状炭素材料やセラミックス、金属などの粒 度とその量並びに容器の回転数(印加する重力)を適宜選定することで、セラミックス や金属粒子への繊維状炭素材料の分散、付着が効率的にかつ確実に実行できる。 すなわち、印加する重力は、容器容量への収納量繊維状炭素材料やセラミックス、 金属の粒度とその量並びに容器の回転数に応じ処理時間とともに適宜選定される。  [0048] In particular, the planetary mill is configured such that the rotation and revolution of the storage container are performed at the same time, and usually pulverized and crushed using a medium such as a ball. In the present invention, a medium is used. By appropriately selecting the container capacity and the amount to be stored in it, the particle size and amount of fibrous carbon material, ceramics, metal, etc. and the rotation speed of the container (applied gravity), the fibrous carbon to ceramics and metal particles can be selected. Material dispersion and adhesion can be carried out efficiently and reliably. That is, the gravitational force to be applied is appropriately selected along with the processing time according to the storage amount in the container capacity, the fibrous carbon material, ceramics, metal particle size and amount, and the rotation speed of the container.
[0049] 本発明にお ヽて、湿式分散させる工程は、公知の非イオン系分散剤、陽陰イオン 系分散剤を添加して超音波式分散装置、ボールミルを始め前述の各種ミル、クラッシ ヤー、シエイカー装置を用いて分散させることができ、前記の乾式分散時間の短縮や 高効率ィ匕を図ることができる。また、湿式分散後のスラリーを乾燥させる方法は、公知 の熱源やスピン法を適宜採用できる。  [0049] In the present invention, the wet-dispersing step is performed by adding a known nonionic dispersant or cationic anionic dispersant to the above-mentioned various mills and crashers including an ultrasonic dispersing device and a ball mill. Thus, the dispersion can be performed using a shaker device, and the dry dispersion time can be shortened and high efficiency can be achieved. In addition, as a method of drying the slurry after the wet dispersion, a known heat source or a spin method can be appropriately employed.
[0050] 本発明にお ヽて、混練分散する工程と湿式分散させる工程は、ドライで混練分散 後に湿式分散させる場合の他、湿式分散させてからドライで混練分散したり、ドライ、 ウエット、ドライと組み合せるなど種々の混練分散工程パターンを採用することができ る。また、同じドライで混練分散する際に、例えば先にカーボンナノチューブとセラミツ タスを混練分散し、次にこれらに金属粉を混練分散したり、粉体の粒度毎に混練分 散を繰り返すこともできる。さらに、ウエットとドライの組み合せにおいて、例えば先に 繊維状炭素材料とセラミックスを湿式混練分散し、次に乾燥させた分散材に金属粉 をドライ混練分散させるなどの種々の混練分散工程パターンを採用することができる [0050] In the present invention, the kneading and dispersing step and the wet-dispersing step include a dry kneading dispersion followed by a wet dispersion, a wet dispersion followed by a dry kneading dispersion, or a dry, wet, dry Various kneading and dispersing process patterns such as combining with can be employed. Further, when kneading and dispersing in the same dry, for example, the carbon nanotubes and ceramics can be kneaded and dispersed first, and then the metal powder can be kneaded and dispersed, or the kneading and dispersing can be repeated for each particle size of the powder. . Furthermore, in the combination of wet and dry, for example, a fibrous carbon material and ceramics are first wet-kneaded and dispersed, and then dried into a metal powder. Various kneading and dispersing process patterns such as dry kneading and dispersing can be adopted.
[0051] 本発明において、混練分散材において繊維状炭素材料を配向させる工程は、例え ば上述した湿式分散工程を利用する。具体的には、金属粉体または金属とセラミック スの混合粉体もしくはセラミックス粉体へ繊維状炭素材料を混合分散させた混合分 散材の分散液を作製する。分散液には固化のためのバインダーとしてゼラチンなど を配合する。この分散液を溶液状態 (加熱状態)で例えば 3000ガウスと 、つた強磁 場中に配置し、冷却により固化させる。 3000ガウスといった強磁場は、ネオジゥム鉄 ボロン磁石等により形成可能である。これにより、繊維状炭素材料が金属粉体中また は金属とセラミックスの混合粉体中もしくはセラミックス粉体中に分散し、且つその繊 維状炭素材料が特定方向へ配向した混合粉体固形物が形成される。磁場を使う以 外には、電場を使うことができる。 [0051] In the present invention, the step of orienting the fibrous carbon material in the kneading dispersion material uses, for example, the above-described wet dispersion step. Specifically, a dispersion liquid of a mixed dispersion material in which a fibrous carbon material is mixed and dispersed in a metal powder, a mixed powder of metal and ceramics, or a ceramic powder is prepared. Gelatin etc. are blended in the dispersion as a binder for solidification. This dispersion is placed in a strong magnetic field of 3000 gauss in a solution state (heated state) and solidified by cooling. A strong magnetic field of 3000 gauss can be formed by neodymium iron boron magnets. As a result, a mixed powder solid in which the fibrous carbon material is dispersed in the metal powder, the mixed powder of metal and ceramics, or in the ceramic powder, and the fibrous carbon material is oriented in a specific direction. It is formed. Other than using a magnetic field, an electric field can be used.
[0052] 繊維状炭素材料のシートにおいて、その繊維状炭素材料を配向させる場合も、同 様に分散液を使用し、磁場や電場を印加する方法が利用可能である。また、分散液 を注射器のような射出機に入れておいて一方向に何列も押し出す方法、立て板に分 散液を流す方法、分散液中に板を浸漬しゅつくりと引き上げる方法といった物理的な 方法によっても繊維状炭素材料が特定方向へ配向したシートを形成することができる  [0052] When a fibrous carbon material is oriented in a sheet of fibrous carbon material, a method of applying a magnetic field or an electric field using a dispersion liquid can be similarly used. Also, physical methods such as placing the dispersion in an injection machine such as a syringe and pushing out several rows in one direction, flowing the dispersion on a standing plate, and immersing the plate in the dispersion A sheet in which the fibrous carbon material is oriented in a specific direction can be formed by any method.
[0053] 本発明にお 、て、放電プラズマ焼結 (処理)する工程は、カーボン製のダイとパンチ の間に乾燥した混練分散材の粉体又は固形物を装填し、上下のパンチで加圧しな 力 直流パルス電流を流すことにより、ダイ、パンチ、および被処理材にジュール熱 が発生し、混練分散材を焼結する方法であり、パルス電流を流すことで粉体と粉体、 繊維状炭素材料の間で放電プラズマが発生し、粉体と繊維状炭素材料表面の不純 物などが消失して活性化されるなど等の作用により焼結が円滑に進行する。 In the present invention, in the discharge plasma sintering (treatment) step, a dry kneaded dispersion powder or solid is loaded between a carbon die and a punch, and is added by upper and lower punches. Compressive force Joule heat is generated in the die, punch, and material to be processed by applying a direct current pulse current, and the kneaded dispersion material is sintered. By applying a pulse current, powder, powder, and fiber are sintered. Sintering proceeds smoothly by actions such as the generation of discharge plasma between the carbonaceous materials, the disappearance of powder and impurities on the surface of the fibrous carbon materials, and the like.
[0054] 繊維状炭素材料のみに施す放電プラズマ処理条件は、特に限定されるものでない 力 例えば温度は 200〜1400°C、時間 1〜2時間程度、圧力は 0〜: LOMPaの範囲 力 適宜選定することができる。  [0054] The discharge plasma treatment conditions to be applied only to the fibrous carbon material are not particularly limited. For example, the temperature is 200 to 1400 ° C, the time is about 1 to 2 hours, the pressure is 0 to: the range of LOMPa. can do.
[0055] 乾式又は湿式あるいはその両方で得た混練分散材を、さらに放電プラズマ処理す る工程は、放電プラズマ焼結工程前に行うもので、混練分散材の解砕をより進行させ たり、カーボンナノチューブの延伸作用、表面活性化、粉体物の拡散等の作用効果 が生じ、後の放電プラズマ焼結の円滑な進行ととともに焼結体に付与する熱伝導性、 導電性が向上する。 [0055] The knead-dispersed material obtained by the dry method or the wet method or both is further subjected to a discharge plasma treatment. This step is performed before the spark plasma sintering step, and the kneading and dispersing material is further crushed, and effects such as carbon nanotube stretching, surface activation, and powder diffusion occur. As the discharge plasma sintering proceeds smoothly, the thermal conductivity and conductivity imparted to the sintered body are improved.
[0056] 混練分散材への放電プラズマ処理条件は、特に限定されるものでな 、が、被処理 材料の焼結温度を考慮して、例えば温度は 200〜1400°C、時間 1〜15分程度、圧 力は 0〜: LOMPaの範囲力も適宜選定することができる。  [0056] The discharge plasma treatment conditions for the kneaded dispersion are not particularly limited, but considering the sintering temperature of the material to be treated, for example, the temperature is 200 to 1400 ° C, and the time is 1 to 15 minutes. The degree and pressure are 0 to: The range of LOMPa can be selected as appropriate.
[0057] 本発明にお 、て、放電プラズマ焼結は、用いるセラミックス粉体や金属粉体の通常 の焼結温度より低温で処理することが好ましい。また、特に高い圧力を必要とせず、 焼結時、比較的低圧、低温処理となるように条件設定することが好ましい。  In the present invention, the discharge plasma sintering is preferably performed at a temperature lower than the normal sintering temperature of the ceramic powder or metal powder to be used. In addition, it is preferable to set conditions so that a relatively high pressure and a low temperature treatment are required during sintering without requiring a particularly high pressure.
[0058] また、上記の混練分散材を放電プラズマ焼結する工程にお!ヽて、まず低圧下で低 温のプラズマ放電を行い、その後高圧下で低温の放電プラズマ焼結を行う 2工程と することも好ましい。該焼結後の析出硬化、各種熱処理による相変態を利用すること も可能である。なお、圧力と温度の高低は、前記 2工程間で相対的なものであり、両 工程間で高低の差異を設定できればよ!、。  [0058] Also, in the step of performing discharge plasma sintering of the kneaded dispersion material, first, a low temperature plasma discharge is performed under a low pressure, and then a low temperature discharge plasma sintering is performed under a high pressure. It is also preferable to do. It is also possible to use precipitation hardening after sintering and phase transformation by various heat treatments. Note that the pressure and temperature levels are relative between the two processes, and it is sufficient if a difference in height can be set between the two processes!
[0059] 本発明の一つの特徴である、得られた放電プラズマ焼結体を塑性変形する工程は 、公知のプレス成形のほか、冷間圧延、温間圧延、熱間圧延のいずれの圧延方法で あってもよい。例えば、金属焼結体の金属種や混合するセラミックス種や繊維状炭素 材料量に応じて最適な圧延方法を選定する。また、複数パスの圧延を施す際に、例 えば冷間圧延、温間圧延を組み合せることも可能である。  [0059] The step of plastically deforming the obtained discharge plasma sintered body, which is one of the characteristics of the present invention, includes any known rolling method, any rolling method of cold rolling, warm rolling, and hot rolling. It may be. For example, the optimum rolling method is selected according to the metal type of the sintered metal, the type of ceramic to be mixed, and the amount of fibrous carbon material. Further, when performing multiple passes of rolling, for example, cold rolling and warm rolling can be combined.
[0060] 冷間圧延は、得られたブロック状、板状、線状の焼結体をそのまま圧延するもので、 所要の圧下率で 1パスから複数パスを繰り返して所要の厚みの板材、薄板、線材に カロェすることができる。 1回の圧下率や総圧下率ならびに圧延ロール径などは、金属 種や混合するセラミックス種や繊維状炭素材料量に応じて、圧延材料にクラックなど が生じな!/ヽように適宜選定される。  [0060] Cold rolling is a process in which the obtained block-like, plate-like, and linear-shaped sintered bodies are rolled as they are, and a plate material or a thin plate having a required thickness by repeating one pass to a plurality of passes at a required reduction ratio. , You can Karoe to the wire. The rolling reduction ratio, total rolling reduction ratio, rolling roll diameter, etc. are appropriately selected so that cracks do not occur in the rolled material depending on the metal species, the ceramic species to be mixed and the amount of fibrous carbon material! .
[0061] 温間又は熱間によるプレス成形や圧延は、必要とする形態と材質に応じて適宜選 定でき、例えば金属焼結体の性状に応じて冷間圧延が容易でな!、かある!、は圧延 効率を向上させる目的で採用することが可能で、金属焼結体の金属種や混合するセ ラミックス種や繊維状炭素材料量に応じて、 1回の圧下率や総圧下率ならびにパス回 数、圧延ロール径などを考慮し、材料の加熱温度を適宜選定するものである。 [0061] Warm or hot press forming or rolling can be appropriately selected according to the required form and material, for example, cold rolling is not easy depending on the properties of the sintered metal! ! Can be used for the purpose of improving rolling efficiency. Depending on the type of lamix and the amount of fibrous carbon material, the heating temperature of the material is appropriately selected in consideration of the rolling reduction ratio, total rolling reduction ratio, number of passes, and rolling roll diameter.
[0062] プレス成形や圧延後の焼鈍工程は、必要に応じて施すものであり、例えば前述のと おり、金属種や混合するセラミックス種やカーボンナノチューブ量に応じて最適な圧 延方法や組合せ、圧延条件が選定されるが、さらに圧延金属材料の残量応力を減 少させて圧延効果を一層向上させたり、所要の特性を容易に得る目的など、選定し た圧延方法や組合せ、圧延条件等に応じて、焼鈍の時期、温度条件、回数等が適 宜選定される。  [0062] The annealing process after press molding and rolling is performed as necessary. For example, as described above, an optimal rolling method and combination according to the metal species, the ceramic species to be mixed, and the amount of carbon nanotubes, The rolling conditions are selected, but the selected rolling method, combination, rolling conditions, etc., for the purpose of further improving the rolling effect by reducing the residual stress of the rolled metal material and easily obtaining the required characteristics, etc. The annealing time, temperature conditions, number of times, etc. are selected accordingly.
[0063] 塑性変形あるいは塑性変形と焼鈍処理されたこの発明の金属材料は、さらに機械 加工することが容易であり、目的の用途や形態に応じた種々形状に加工でき、さらに は加工した金属材料同士ゃ異材質とをろう材等で接合加工することも可能である。  [0063] The metal material of the present invention that has been plastically deformed or plastically deformed and annealed is easy to machine, can be processed into various shapes according to the intended use and form, and further processed metal material. It is also possible to join different materials with a brazing material or the like.
[0064] 金属粉体又は金属とセラミックスの混合粉体もしくはセラミックス粉体の放電プラズ マ焼結体中に、繊維状炭素材料力 なるシートが所定間隔で配列された積層構造の 高熱伝導複合材料を製造する場合は、まず、繊維状炭素材料のシートを作製する。 例えば、繭状に力 まった繊維の塊を解きほぐしてその分散液をつくり、薄く固化させ ること〖こよりシートが作製される。分散液に磁場や電場を印加することにより、繊維を 配向させることができるのは前述したとおりである。また、分散液を注射器のような射 出機に入れておいて一方向に何列も押し出す方法、立て板に分散液を流す方法、 分散液中に板を浸漬しゅつくりと引き上げる方法といった物理的な方法によっても繊 維状炭素材料が特定方向へ配向したシートを作製できるのも前述のとおりである。  [0064] A highly heat-conductive composite material having a laminated structure in which sheets of fibrous carbon material are arranged at predetermined intervals in a discharge powder sintered body of metal powder or a mixed powder of metal and ceramics or ceramic powder. When manufacturing, the sheet | seat of a fibrous carbon material is produced first. For example, a sheet is made from a cocoon by unraveling a lump of fibers that have been strengthened in a cocoon shape, making a dispersion thereof, and solidifying it thinly. As described above, the fibers can be oriented by applying a magnetic field or an electric field to the dispersion. Also, physical methods such as placing the dispersion in an injector such as a syringe and pushing out rows in one direction, flowing the dispersion on a standing plate, and dipping the plate into the dispersion As described above, it is possible to produce a sheet in which the fibrous carbon material is oriented in a specific direction by a simple method.
[0065] 繊維状炭素材料のシートが作製されると、そのシートの両面又は片面に金属粉体 又は金属とセラミックスの混合粉体もしくはセラミックス粉体を付着させる。これを重ね て加圧し放電プラズマ焼結することにより、積層構造の高熱伝導複合材料が製造さ れる。繊維状炭素材料が同一方向に配向したシートを使用する場合、その配向方向 を揃えることが重要である。放電プラズマ焼結加工、その後の塑性加工、繊維状炭素 材料に対する事前の放電プラズマ処理につ ヽては、繊維分散構造の高熱伝導複合 材料の製造で説明したとおりである。  [0065] When a sheet of fibrous carbon material is produced, metal powder, a mixed powder of metal and ceramics, or ceramic powder is adhered to both surfaces or one surface of the sheet. By stacking and pressurizing this, and performing discharge plasma sintering, a highly heat-conductive composite material having a laminated structure is manufactured. When using a sheet in which fibrous carbon materials are oriented in the same direction, it is important to align the orientation directions. The spark plasma sintering process, the subsequent plastic processing, and the prior discharge plasma process for the fibrous carbon material are as described in the production of the high thermal conductivity composite material having a fiber dispersion structure.
実施例 [0066] 実施例 1 1 Example [0066] Example 1 1
平均粒子径 30 μ mのアルミニウム合金 (3003)粉体と、 0. 5wt%の長鎖状のカー ボンナノチューブとの混練解砕にお!、て、カーボンナノチューブのみを予め放電プラ ズマ焼結装置のダイ内に装填し、 575°Cで 5分間の放電プラズマ処理したものと同処 理を行わないものを用意し、それぞれアルミナ製の容器を用いた遊星ミルで、分散メ ディアを使用することなくドライ状態で 2時間以下の種々時分単位と容器の回転数を 組み合せた混練分散を行った。  For the kneading and crushing of aluminum alloy (3003) powder with an average particle size of 30 μm and 0.5 wt% long-chain carbon nanotubes! Use a dispersive medium in a planetary mill using an alumina container. In the dry state, kneading and dispersion were performed by combining various time units of 2 hours or less and the rotation speed of the container.
[0067] 混練分散材を放電プラズマ焼結装置のダイ内に装填し、 575°Cで 60分間の放電 プラズマ焼結した。その際、昇温速度は 100°C/minとし、 50MPaの圧力を付加し 続けた。  [0067] The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 575 ° C for 60 minutes. At that time, the rate of temperature increase was 100 ° C / min, and a pressure of 50 MPa was continuously applied.
[0068] 得られた複合材料の熱伝導率を測定した結果、約 200WZmK ( 198W/mK)で あった。なお、アルミニウム合金粉体のみを上記条件の放電プラズマ焼結して得た固 化体の熱伝導率は、 157WZmKであり、この発明による複合材料の熱伝導率は、 約 21%上昇したことが分かる。  [0068] As a result of measuring the thermal conductivity of the obtained composite material, it was about 200 WZmK (198 W / mK). Note that the thermal conductivity of the solidified body obtained by subjecting only the aluminum alloy powder to spark plasma sintering under the above conditions was 157 WZmK, and the thermal conductivity of the composite material according to the present invention increased by about 21%. I understand.
[0069] 実施例 1 2 平均粒子径 30  [0069] Example 1 2 Average particle size 30
/z mのアルミニウム合金(3003)粉体と、 2. 5wt%の長鎖状のカーボンナノチューブ との混練解砕にぉ 、て、カーボンナノチューブのみを予め放電プラズマ焼結装置の ダイ内に装填し、 800°Cで 5分間の放電プラズマ処理したものと同処理を行わな 、も のを用意し、それぞれアルミナ製の容器を用いた遊星ミルで、分散メディアを使用す ることなくドライ状態で 2時間以下の種々時分単位と容器の回転数を組み合せた混 練分散を行った。  / km aluminum alloy (3003) powder and 2.5 wt% long-chain carbon nanotubes were kneaded and disintegrated, and only the carbon nanotubes were previously loaded into the die of the discharge plasma sintering apparatus, Do not perform the same treatment as the discharge plasma treatment for 5 minutes at 800 ° C, and prepare a planetary mill using an alumina container for 2 hours in a dry state without using dispersion media. The following kneading dispersion was carried out by combining various time units and the number of rotations of the container.
[0070] 混練分散材は、放電プラズマ焼結装置のダイ内に装填し、 800°Cで 5分間の放電 プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、 600°Cで 5分 間の放電プラズマ焼結した。その際、昇温速度は 100°CZminとし、 50MPaの圧力 を付加し続けた。  [0070] The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to a discharge plasma treatment at 800 ° C for 5 minutes. Thereafter, the kneaded dispersion was sintered in a discharge plasma sintering apparatus at 600 ° C. for 5 minutes. At that time, the rate of temperature rise was set to 100 ° CZmin, and a pressure of 50 MPa was continuously applied.
[0071] 得られた複合材料の熱伝導率を測定した結果、 221WZmKであった。なお、上記 条件のカーボンナノチューブと混練分散材への各放電プラズマ処理を行うことなぐ 放電プラズマ焼結して得た固化体の熱伝導率は 94. lWZmKであった。 [0072] 実施例 1 3 平均粒子径 30 μ mのアルミニウム粉体と、 0. 25wt%の長鎖状のカーボンナノチューブとの混練解 砕において、カーボンナノチューブのみを予め放電プラズマ焼結装置のダイ内に装 填し、 800°Cで 5分間の放電プラズマ処理し、ステンレス製の容器を用いた遊星ミル で、分散メディアを使用することなくドライ状態で 2時間以下の種々時分単位と容器の 回転数を組み合せた混練分散を行った。 As a result of measuring the thermal conductivity of the obtained composite material, it was 221 WZmK. The thermal conductivity of the solidified body obtained by spark plasma sintering without performing each discharge plasma treatment on the carbon nanotubes and the kneaded dispersion material under the above conditions was 94.lWZmK. Example 1 3 In kneading and pulverization of aluminum powder having an average particle diameter of 30 μm and 0.25 wt% long-chain carbon nanotubes, only the carbon nanotubes were previously contained in the die of the discharge plasma sintering apparatus. , And plasma discharge treatment at 800 ° C for 5 minutes, a planetary mill using a stainless steel vessel, and rotation of the vessel in various hours and minutes for 2 hours or less in a dry state without using dispersion media The kneading dispersion combining the numbers was performed.
[0073] 混練分散材は、放電プラズマ焼結装置のダイ内に装填し、 400°Cで 5分間の放電 プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、 600°Cで 5分 間の放電プラズマ焼結した。  [0073] The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma treatment at 400 ° C for 5 minutes. Thereafter, the kneaded dispersion was sintered in a discharge plasma sintering apparatus at 600 ° C. for 5 minutes.
[0074] 得られた複合材料の強制破断面の電子顕微鏡写真図を図 5に示す。スケールが 1 00 mオーダーの図 5Aを 5. 0 mオーダーに拡大した際の網状のカーボンナノチ ユーブの電子顕微鏡写真図を図 5Bに示す。  [0074] FIG. 5 shows an electron micrograph of the forced fracture surface of the obtained composite material. Fig. 5B shows an electron micrograph of a net-like carbon nanotube when the scale of Fig. 5A with an order of 100 m is expanded to the order of 5.0 m.
[0075] 混練解砕する前のアルミニウム粒子の電子顕微鏡写真図を図 6A、図 6Bに示す。  [0075] FIGS. 6A and 6B show electron micrographs of the aluminum particles before kneading and crushing.
遊星高速ミルで混練解砕した後のアルミニウム粒子の電子顕微鏡写真図を図 7Aに 、図 7Aに示す凹部の 10 mオーダーの拡大電子顕微鏡写真図を図 7Bに示す。さ らに図 7Aに示す凹部の 1 μ mオーダー、 500nmオーダーの拡大電子顕微鏡写真 図を図 8A、図 8Bに示す。また、図 7Aに示す平滑部の 10 mオーダー、 1 mォー ダー、 500nmオーダーの拡大電子顕微鏡写真図を図 9A、図 9B並びに図 10に示 す。  FIG. 7A shows an electron micrograph of the aluminum particles after kneading and pulverizing with a planetary high-speed mill, and FIG. 7B shows an enlarged electron micrograph of the concave portion shown in FIG. 7A on the order of 10 m. Furthermore, enlarged electron micrographs of the 1 μm order and 500 nm order of the recesses shown in FIG. 7A are shown in FIGS. 8A and 8B. 9A, 9B, and 10 show enlarged electron micrographs of the smoothed portion shown in FIG. 7A on the order of 10 m, 1 m, and 500 nm.
[0076] 図 6〜図 10の電子顕微鏡写真図より、遊星高速ミルで混練解砕することでアルミ- ゥム粒子表面へカーボンナノチューブが均等に付着し、特に図 8、図 9で明らかなよう にカーボンナノチューブが立体的に縦横にアルミニウム粒子表面へ付着していること が明らかである。  [0076] From the electron micrographs of Figs. 6 to 10, carbon nanotubes uniformly adhere to the surface of the aluminum particles by kneading and crushing with a planetary high-speed mill, especially as shown in Figs. In addition, it is clear that the carbon nanotubes are three-dimensionally and vertically attached to the surface of the aluminum particles.
[0077] 実施例 2— 1  [0077] Example 2-1
平均粒子径 30 mのアルミニウム粉体と、 0. 05wt%、 0. 25wt%、 0. 5wt%の 各添カ卩量の長鎖状カーボンナノチューブとの混練解砕にぉ 、て、カーボンナノチュ ーブのみを予め放電プラズマ焼結装置のダイ内に装填し、 800°Cで 5分間の放電プ ラズマ処理し、ステンレス製の容器を用いた遊星ミルで、分散メディアを使用すること なくドライ状態で 2時間以下の混練分散を行った。得られた混練分散材は、放電ブラ ズマ焼結装置のダイ内に装填し、 400°Cで 5分間の放電プラズマ処理した後、混練 分散材を放電プラズマ焼結装置内で、 600°Cで 5分間の放電プラズマ焼結した。 When kneading and crushing aluminum powder with an average particle diameter of 30 m and long-chain carbon nanotubes of 0.05 wt%, 0.25 wt%, and 0.5 wt% in each additive amount, carbon nanotubes were used. Only the probe is loaded into the die of the discharge plasma sintering machine in advance, and the discharge plasma treatment is performed at 800 ° C for 5 minutes, and the dispersion media is used in a planetary mill using a stainless steel container. And kneading and dispersing for 2 hours or less in a dry state. The obtained kneaded dispersion is loaded into a die of a discharge plasma sintering apparatus and subjected to a discharge plasma treatment at 400 ° C. for 5 minutes, and then the kneaded dispersion is placed in a discharge plasma sintering apparatus at 600 ° C. Spark plasma sintering was performed for 5 minutes.
[0078] 得られた放電プラズマ焼結体は、高さ 10mm、外径 60mmの短円柱体であった。こ れを厚みが 1mmとなるまで 2パスの冷間圧延を実施した。図 1 Aにカーボンナノチュ ーブを 0. 05wt%含むアルミニウム焼結体の圧延後の状態写真図、図 1Bに圧延後 の組織の 2 mオーダーの拡大電子顕微鏡写真図を示す。実施例の金属材料は良 好な圧延が達成されたことが明らかである。  [0078] The obtained spark plasma sintered body was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled in two passes until the thickness reached 1 mm. Fig. 1A shows a state photograph after rolling of an aluminum sintered body containing 0.05 wt% of carbon nanotubes, and Fig. 1B shows an enlarged electron micrograph of a 2 m order structure of the rolled structure. It is clear that good rolling was achieved with the metal materials of the examples.
[0079] 実施例 2— 2  [0079] Example 2-2
実施例 2— 1と同様の製造方法で製造するが、焼結体の圧延条件 (圧延方向)を変 えて圧延し、カーボンナノチューブの含有量が 0. 05wt%、 0. 5wt%、 0. 25wt%、 0. 25wt%、 0. 25wt%である試料 R2、 R3、 R4、 R5の 4種の圧延金属材料を作製 した。図 2に示すごとぐ試験片は、製作条件の異なる 4種類の試料 R2、 R3、 R4、 R 5から圧延方向、幅方向に試験片軸を合わせ切り出し、それぞれ T、 Lの添え字記号 、 した。  The production method is the same as in Example 2-1, except that the sintered material was rolled under different rolling conditions (rolling direction), and the carbon nanotube content was 0.05 wt%, 0.5 wt%, 0.25 wt%. Four types of rolled metal materials of samples R2, R3, R4, and R5 with%, 0.25 wt%, and 0.25 wt% were prepared. The test pieces shown in Fig. 2 were cut out from the four types of samples R2, R3, R4, and R5 with different production conditions by aligning the test piece axes in the rolling direction and width direction, and subscripting symbols T and L, respectively. .
[0080] 圧延効果を確認するために、試料ごとの応力 ひずみ関係を調べたところ、図 3に 示すごとぐ全ての試料で圧延方向と幅方向の応力 ひずみ関係はほぼ一致してい た。すなわち、圧延により異方性の発達は見られな力つた。また、圧延方向と幅方向 の試験片の応力 ひずみ関係を調べたところ、圧延方向および板幅方向で製作条 件による応力—ひずみ関係の違いがほとんど見られな力つた。これは、圧延により材 料が安定したためと考えられる。  [0080] In order to confirm the rolling effect, the stress-strain relationship for each sample was examined. As shown in Fig. 3, the stress-strain relationship between the rolling direction and the width direction was almost the same. That is, the development of anisotropy by rolling was strong. In addition, when the stress-strain relationship between the test specimens in the rolling direction and the width direction was examined, it was found that there was almost no difference in the stress-strain relationship due to manufacturing conditions in the rolling direction and the plate width direction. This is probably because the material was stabilized by rolling.
[0081] さらに、圧延前の焼結体材料に施した引張り試験と、上記の圧延後の試験から得ら れたヤング率と引張り強さの比較を行ったところ、圧延後の試験片のヤング率はカー ボンナノチューブの含有率が大きくなると減少すること、引張り強さはカーボンナノチ ユーブの含有率の影響を受けないことを確認した。また、圧延によりヤング率および 引張り強さが大きくなり圧延効果が見られることを確認した。これは、圧延により試料 内部にあった欠陥が少なくなつたためと考えられる。  [0081] Further, when the tensile test performed on the sintered body material before rolling and the Young's modulus and tensile strength obtained from the test after rolling were compared, the Young's modulus of the test piece after rolling was compared. It was confirmed that the rate decreased as the carbon nanotube content increased, and that the tensile strength was not affected by the carbon nanotube content. In addition, it was confirmed that the rolling effect was increased by increasing Young's modulus and tensile strength by rolling. This is thought to be due to fewer defects in the sample due to rolling.
[0082] 実施例 2— 3 実施例 2— 2で製造した試料 R2、 R3、 R4、 R5の 4種の圧延金属材料に、温度 400 °C X 1時間の焼鈍を施した。圧延、焼鈍後の試料ごとの応力 ひずみ関係を調べた ところ、図 4に示すごとぐ圧延方向と幅方向の図 3の焼鈍なしの試験片の応力 ひ ずみ関係と比較すると、焼鈍により最大応力が減少し全伸びが増していることが分か る。これは、圧延時の生じた残留応力 ·ひずみが焼鈍しにより回復したためと考えられ る。 [0082] Example 2-3 The four types of rolled metal materials R2, R3, R4, and R5 manufactured in Example 2-2 were annealed at a temperature of 400 ° C. for 1 hour. When the stress-strain relationship for each sample after rolling and annealing was examined, the maximum stress due to annealing was compared with the stress-strain relationship for the specimens without annealing in Fig. 3 in the rolling direction and width direction as shown in Fig. 4. It can be seen that it has decreased and the overall growth has increased. This is thought to be because the residual stress / strain produced during rolling was recovered by annealing.
[0083] カーボンナノチューブを含有しな 、純アルミ焼結材を圧延した後の応力 ひずみ 関係と比較すると、焼鈍により引張り強さが減少し、全伸びが増すことが分かる。焼鈍 によりヤング率に変化が見られ、特に、含有率の多い試料 R3は焼鈍によりヤング率 が増大する。これは、焼鈍によりカーボンナノチューブ界面状況が改善された力、力 一ボンナノチューブの配向方向に変化があつたためと考えられる。  [0083] When compared with the stress-strain relationship after rolling a pure aluminum sintered material that does not contain carbon nanotubes, it can be seen that annealing reduces the tensile strength and increases the total elongation. A change in Young's modulus is observed with annealing, and the Young's modulus increases with annealing, particularly for sample R3, which has a high content. This is thought to be due to the change in the orientation direction of the single-bonn nanotube, which is the force that improved the carbon nanotube interface conditions by annealing.
[0084] カーボンナノチューブの含有率が少ない試料 R2の全伸びは焼鈍しにより大幅に増 加する。し力しながら、含有率の多い試料 R3は焼鈍し前後で大きな差は見られない 。すなわち、含有率が少ないほど焼鈍しにより全伸びが増加する割合が大きいと考え られる。  [0084] The total elongation of the sample R2 having a low carbon nanotube content is significantly increased by annealing. However, sample R3 with a high content does not show a large difference before and after annealing. In other words, it is considered that the smaller the content, the larger the rate of increase in total elongation due to annealing.
[0085] 実施例 2— 4  [0085] Example 2-4
実施例 2— 2での試料 R2、 R3、 R4、 R5の 4種の圧延金属材料の製造に際し、冷 間圧延に換えて温度 380°Cに加熱する温間圧延を行った。全ての試験片の応力ひ ずみ関係を調べたところ、応力ひずみ関係はほぼ一致しており、温間圧延により異 方性の発達は見られな 、ことを確認した。  In producing the four types of rolled metal materials of samples R2, R3, R4, and R5 in Example 2-2, warm rolling was performed by heating to a temperature of 380 ° C. instead of cold rolling. When the stress-strain relationship of all specimens was examined, the stress-strain relationship was almost the same, and it was confirmed that no anisotropic development was observed by warm rolling.
[0086] 冷間圧延でカーボンナノチューブ含有量が等しい R2、 R2A試験片の結果との比 較より、冷間圧延後焼鈍なしの応力ひずみ関係と冷間圧延後焼鈍ありの応力ひずみ 関係の間に、温間圧延による応力ひずみ関係が位置することが分かる。また、ヤング 率は温間圧延によりさほど変化しないこと、引張強さは冷間焼鈍し前と冷間焼鈍し後 の中間の値となることを確認した。  [0086] From the comparison with the results of R2 and R2A specimens with the same carbon nanotube content in cold rolling, the stress strain relationship without annealing after cold rolling and the stress strain relationship with annealing after cold rolling are It can be seen that the stress-strain relationship due to warm rolling is located. It was also confirmed that the Young's modulus did not change much by warm rolling, and that the tensile strength was intermediate between before and after cold annealing.
[0087] 実施例 3— 1  [0087] Example 3-1
平均粒子径 10〜20 mの純チタン粉体と、 0. 1〜0. 25wt%の長鎖状のカーボ ンナノチューブ (CNT)を、チタン製の容器を用いた遊星ミルで、分散メディアを使用 することなくドライ状態で 2時間以下の種々時分単位と容器の回転数を組み合せた 混練分散を行った。 Pure titanium powder with an average particle size of 10 to 20 m and 0.1 to 0.25 wt% long-chain carbon nanotubes (CNTs) are used in a planetary mill using a titanium container and dispersed media is used. Without mixing, kneading dispersion was performed by combining various time units of 2 hours or less and the rotation speed of the container in a dry state.
[0088] 得られた混練分散材を放電プラズマ焼結装置のダイ内に装填し、 900°Cで 10分間 の放電プラズマ焼結した。その際、昇温速度は 100°C/minとし、 60MPaの圧力を 付加し続けた。  [0088] The obtained kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 900 ° C for 10 minutes. At that time, the rate of temperature increase was 100 ° C / min, and a pressure of 60 MPa was continuously applied.
[0089] 得られた複合材料 (CNT: 0. 25wt%添加)の強制破断面の電子顕微鏡写真図を 図 11に示す。スケールが 10 /z mオーダーの図 11Aを 1. 0 mオーダーに拡大した 際の網状のカーボンナノチューブの電子顕微鏡写真図を図 11Bに示す。  [0089] FIG. 11 shows an electron micrograph of the forced fracture surface of the obtained composite material (CNT: 0.25 wt% added). FIG. 11B shows an electron micrograph of the net-like carbon nanotubes when FIG. 11A with a scale of 10 / z m order is enlarged to 1.0 m order.
[0090] 得られた複合材料の熱伝導率を測定した結果、 18. 4WZmKであった。なお、純 チタン粉体のみを上記条件の放電プラズマ焼結して得た固化体の熱伝導率は、 13 . 8WZmKであり、この発明による複合材料の熱伝導率は、約 30%上昇したことが 分かる。  [0090] As a result of measuring the thermal conductivity of the obtained composite material, it was 18.4 WZmK. The thermal conductivity of the solidified body obtained by spark plasma sintering of pure titanium powder only under the above conditions was 13.8 WZmK, and the thermal conductivity of the composite material according to the present invention increased by about 30%. I understand.
[0091] 実施例 3— 2  [0091] Example 3-2
平均粒子径 10〜20 μ m純チタン粉体と、 0. 05〜0. 5wt%の長鎖状のカーボン ナノチューブとの混練解砕にお ヽて、カーボンナノチューブのみを予め放電プラズマ 焼結装置のダイ内に装填し、 575°Cで 5分間の放電プラズマ処理したものと同処理を 行わないものを用意し、それぞれチタン製の容器を用いた遊星ミルで、分散メディア を使用することなくドライ状態で 60分以下の種々分単位と容器の回転数を組み合せ た混練分散を行った。  In the kneading and crushing of pure titanium powder with an average particle size of 10 to 20 μm and 0.05 to 0.5 wt% of long-chain carbon nanotubes, only the carbon nanotubes are preliminarily used in the discharge plasma sintering apparatus. Prepared in a die and charged with plasma for 5 minutes at 575 ° C, and not treated, and each planetary mill using a titanium vessel is in a dry state without using dispersion media Then, kneading dispersion was performed by combining various minute units of 60 minutes or less and the rotation speed of the container.
[0092] 混練分散材を放電プラズマ焼結装置のダイ内に装填し、 900°Cで 10分間の放電 プラズマ焼結した。その際、昇温速度は 100°C/minとし、 60MPaの圧力を付加し 続けた。得られた複合材料の熱伝導率を測定した結果、カーボンナノチューブのみ を予め放電プラズマ処理した場合は 17. 2WZmKであった。  [0092] The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 900 ° C for 10 minutes. At that time, the rate of temperature increase was 100 ° C / min, and a pressure of 60 MPa was continuously applied. As a result of measuring the thermal conductivity of the obtained composite material, it was 17.2 WZmK when only the carbon nanotube was previously subjected to the discharge plasma treatment.
[0093] 混練解砕する前のチタン粒子と、遊星高速ミルで混練解砕した後のチタン粒子の 電子顕微鏡写真図を図 12A、図 12Bに示す。遊星高速ミルで混練解砕した後の図 1 2Bに示すチタン粒子表面の 1 mオーダー、 500nmオーダーの拡大電子顕微鏡 写真図を図 13A、図 13Bに示す。図 12〜図 13の電子顕微鏡写真図より、遊星高速 ミルで混練解砕することでチタン粒子表面へカーボンナノチューブが均等にかつ立 体的に縦横に付着していることが明らかである。 [0093] FIGS. 12A and 12B show electron micrographs of titanium particles before kneading and crushing and titanium particles after kneading and crushing with a planetary high-speed mill. Fig. 13A and Fig. 13B show magnified electron micrographs of the 1 m order and 500 nm order of the titanium particle surface shown in Fig. 12B after kneading and crushing with a planetary high-speed mill. From the electron micrographs in Figs. 12 to 13, the carbon nanotubes are evenly and standing on the surface of the titanium particles by kneading and crushing with a planetary high-speed mill. It is clear that they are physically and vertically attached.
[0094] 実施例 3— 3  [0094] Example 3-3
実施例 3— 2にて得られたカーボンナノチューブの含有量が 0. 05wt%、0. 25wt %、 0. 5wt%の放電プラズマチタン焼結体は、高さ 10mm、外径 60mmの短円柱体 であった。これを厚みが 8mmとなるまで 4パスの冷間圧延を実施した。チタニウム焼 結体の圧延後の状態並びに圧延後の組織を 1〜5 μ mオーダーで電子顕微鏡観察 したところ、実施例の金属材料は良好な圧延が達成されたことを確認した。  A spark plasma titanium sintered body having a carbon nanotube content of 0.05 wt%, 0.25 wt%, and 0.5 wt% obtained in Example 3-2 is a short cylinder having a height of 10 mm and an outer diameter of 60 mm. Met. This was cold-rolled for 4 passes until the thickness reached 8 mm. When the sintered state of the titanium sintered body and the structure after rolling were observed with an electron microscope in the order of 1 to 5 μm, it was confirmed that the metal material of the example achieved good rolling.
[0095] 実施例 4 1  [0095] Example 4 1
平均粒子径 20〜30 mの無酸素銅粉(三井金属アトマイズ粉)と、 0. 5wt%の長 鎖状のカーボンナノチューブとを、ステンレス鋼製の容器を用いた遊星ミルで、分散 メディアを使用することなくドライ状態で 2時間以下の種々時分単位と容器の回転数 を組み合せた混練分散を行った。  An oxygen-free copper powder (Mitsui Metal atomized powder) with an average particle size of 20-30 m and 0.5 wt% long-chain carbon nanotubes in a planetary mill using a stainless steel container, using dispersion media Without mixing, kneading dispersion was performed by combining various time units of 2 hours or less and the rotation speed of the container in a dry state.
[0096] 次 、で、混練分散材を放電プラズマ焼結装置のダイ内に装填し、 575°Cで 5分間 の放電プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、 800 。C、 15分間の放電プラズマ焼結した。その際、昇温速度は 100°CZminとし、 60MP aの圧力を負荷し続けた。  [0096] Next, the kneaded dispersion material was loaded into a die of a discharge plasma sintering apparatus, and subjected to a discharge plasma treatment at 575 ° C for 5 minutes. After that, the kneading dispersion material is 800 in a spark plasma sintering apparatus. C, spark plasma sintering for 15 minutes. At that time, the temperature rising rate was 100 ° CZmin, and a pressure of 60 MPa was continuously applied.
[0097] 得られた複合材料の強制破断面の電子顕微鏡写真図を図 14に示す。スケールが 50 μ mオーダーの図 14Aを 1. 0 μ mオーダーに拡大した際の網状のカーボンナノ チューブの電子顕微鏡写真図を図 14Bに示す。  FIG. 14 shows an electron micrograph of the forced fracture surface of the obtained composite material. Fig. 14B shows an electron micrograph of a net-like carbon nanotube when the scale of Fig. 14A is enlarged to the order of 1.0 µm.
[0098] 得られた複合材料の電気抵抗率を測定した結果、無酸素銅粉体のみを上記条件 の放電プラズマ焼結して得た固化体の電気抵抗率は、約 5 X 10—3 Ω πιであり、この発 明による複合材料の電気抵抗率は、約 56% (導電率は約 1. 7倍に上昇)となった。 なお、導電率の単位に関して、 Siemens/m= ( Ω πι)— 1の関係にある。 [0098] The obtained results of the measurement of the electrical resistivity of the composite material, the electrical resistivity of the solidified body only oxygen-free copper powder obtained by spark plasma sintering of the above conditions is about 5 X 10- 3 Ω The electrical resistivity of the composite material according to this invention was about 56% (conductivity increased by about 1.7 times). Regarding units of conductivity, Siemens / m = (Ω πι ) - in one relationship.
[0099] 混練解砕する前の銅粒子と、遊星高速ミルで混練解砕した後の銅粒子の電子顕微 鏡写真図を図 15Α、図 15Bに示す。遊星高速ミルで混練解砕した後の図 15Bに示 す銅粒子表面の 1 mオーダー、 500nmオーダーの拡大電子顕微鏡写真図を図 1 6A、図 16Bに示す。図 15〜図 16の電子顕微鏡写真図より、遊星高速ミルで混練解 砕することで銅粒子表面へカーボンナノチューブが均等にかつ立体的に縦横に付 着していることが明らかである。 [0099] An electron micrograph of copper particles before kneading and crushing and copper particles after kneading and crushing with a planetary high-speed mill are shown in FIGS. Fig. 16A and Fig. 16B show the enlarged electron micrographs of the 1 m order and 500 nm order of the copper particle surface shown in Fig. 15B after kneading and crushing with a planetary high-speed mill. From the electron micrographs in Figs. 15 to 16, carbon nanotubes are evenly and three-dimensionally and vertically attached to the copper particle surface by kneading and crushing with a planetary high-speed mill. It is clear that he is wearing.
[0100] 実施例 4 2  [0100] Example 4 2
実施例 4 1にて得られたカーボンナノチューブの含有量が 0. 5wt%の放電プラ ズマ銅焼結体は、高さ 10mm、外径 60mmの短円柱体であった。これを厚みが 8m mとなるまで 3パスの冷間圧延を実施した。銅焼結体の圧延後の状態並びに圧延後 の組織を 1〜5 mオーダーで電子顕微鏡観察したところ、実施例の金属材料は良 好な圧延が達成されたことを確認した。  The discharge plasma copper sintered body having a carbon nanotube content of 0.5 wt% obtained in Example 41 was a short cylinder having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 3 passes until the thickness reached 8 mm. When the state of the copper sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 m, it was confirmed that the metal material of the example achieved good rolling.
[0101] 実施例 5— 1  [0101] Example 5— 1
平均粒子径 20〜30 /ζ πιのステンレス鋼粉(SUS316L)と、 0. 5wt%の長鎖状の カーボンナノチューブとを、ステンレス鋼製の容器を用いた遊星ミルで、分散メディア を使用することなくドライ状態で 2時間以下の種々時分単位と容器の回転数を組み合 せた混練分散を行った。  Use a dispersion medium in a planetary mill using stainless steel container with stainless steel powder (SUS316L) with an average particle size of 20-30 / ζ πι and 0.5 wt% long-chain carbon nanotubes. In a dry state, kneading and dispersing were performed by combining various time units of 2 hours or less and the rotation speed of the container.
[0102] 次 、で、混練分散材を放電プラズマ焼結装置のダイ内に装填し、 575°Cで 5分間 の放電プラズマ処理した。その後、混練分散材を放電プラズマ焼結装置内で、 900 。C、 10分間の放電プラズマ焼結した。その際、昇温速度は 100°CZminとし、 60MP aの圧力を付加し続けた。  [0102] Next, the kneaded and dispersed material was loaded into a die of a discharge plasma sintering apparatus and subjected to a discharge plasma treatment at 575 ° C for 5 minutes. Thereafter, the kneading dispersion material is 900 in a spark plasma sintering apparatus. C, spark plasma sintering for 10 minutes. At that time, the rate of temperature rise was 100 ° CZmin, and a pressure of 60 MPa was continuously applied.
[0103] 得られた複合材料の熱伝導率を測定した結果、ステンレス鋼粉のみを上記条件の 放電プラズマ焼結して得た固化体の熱伝導率に対し、この発明による複合材料は、 約 18%上昇した。  [0103] As a result of measuring the thermal conductivity of the obtained composite material, the composite material according to the present invention has a thermal conductivity of only about stainless steel powder obtained by spark plasma sintering under the above conditions. Increased by 18%.
[0104] また、得られた複合材料の電気抵抗率を測定した結果、ステンレス鋼粉体のみを上 記条件の放電プラズマ焼結して得た固化体の電気抵抗率に対し、この発明による複 合材料の電気抵抗率は、約 60% (導電率は約 1. 65倍に上昇)となった。  [0104] Further, as a result of measuring the electrical resistivity of the obtained composite material, the electrical resistivity of the solidified body obtained by spark plasma sintering of only the stainless steel powder under the above conditions was compared with that of the present invention. The electrical resistivity of the composite material was approximately 60% (conductivity increased approximately 1.65 times).
[0105] 実施例 5— 2  [0105] Example 5-2
実施例 5— 1にて得られたカーボンナノチューブの含有量が 0. 5wt%の放電プラ ズマ SUS焼結体は、高さ 10mm、外径 60mmの短円柱体であった。これを厚みが 8 mmとなるまで 5パスの冷間圧延を実施した。 SUS焼結体の圧延後の状態並びに圧 延後の組織を 1〜5 μ mオーダーで電子顕微鏡観察したところ、実施例の金属材料 は良好な圧延が達成されたことを確認した。 [0106] 実施例 6— 1 The discharge plasma SUS sintered body having a carbon nanotube content of 0.5 wt% obtained in Example 5-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 5 passes until the thickness reached 8 mm. The state of the SUS sintered body after rolling and the structure after rolling were observed with an electron microscope in the order of 1 to 5 μm. As a result, it was confirmed that the metal material of the example achieved good rolling. [0106] Example 6-1
平均粒子径 100 μ mの純アルミニウム粉体と平均粒子径 0. 6 μ mのアルミナ粉体 の混合粉体(95wt%、アルミニウム粉体:アルミナ粉体 = 95 ; 5)と、長鎖状のカーボ ンナノチューブ (5wt%)とをアルミナ製の容器を用いた遊星ミルで分散させた。  A mixture of pure aluminum powder with an average particle size of 100 μm and alumina powder with an average particle size of 0.6 μm (95 wt%, aluminum powder: alumina powder = 95; 5) Carbon nanotubes (5 wt%) were dispersed in a planetary mill using an alumina container.
[0107] まず、カーボンナノチューブを配合し、分散剤として非イオン性界面活性剤(トリトン X— 100)を加えてアルミナ粉体との混合分散材を作製し、これを乾燥させた。次に、 純アルミニウム粉体とそれらの乾燥分散材をドライ状態で、分散メディアを使用するこ となくドライ状態で 2時間以下の種々時分単位と容器の回転数を組み合せた混練分 散を行った。  [0107] First, carbon nanotubes were blended, a non-ionic surfactant (Triton X-100) was added as a dispersant to prepare a mixed dispersion with alumina powder, and this was dried. Next, pure aluminum powders and their dry dispersions are kneaded and dispersed in a dry state in combination with various time units of 2 hours or less and the rotation speed of the container in a dry state without using a dispersion medium. It was.
[0108] 混練分散材を放電プラズマ焼結装置のダイ内に装填し、 500〜600°Cで 7分間の プラズマ固化した。その際、昇温速度は 100°CZmin、 230°CZminとし、 14-40 MPaの圧力を付加し続けた。得られた複合材料の熱伝導率を測定したところ、 300 〜450WZmKとなった。  [0108] The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus, and plasma solidified at 500 to 600 ° C for 7 minutes. At that time, the rate of temperature increase was 100 ° CZmin and 230 ° CZmin, and a pressure of 14-40 MPa was continuously applied. When the thermal conductivity of the obtained composite material was measured, it was 300 to 450 WZmK.
[0109] 実施例 6— 2  [0109] Example 6-2
実施例 6— 1と同様方法にて得られたカーボンナノチューブの含有量が 0. 5wt% の放電プラズマ金属複合焼結体は、高さ 10mm、外径 60mmの短円柱体であった。 これを厚みが 8mmとなるまで 5パスの冷間圧延を実施した。この焼結体の圧延後の 状態並びに圧延後の組織を 1〜5 μ mオーダーで電子顕微鏡観察したところ、実施 例の金属材料は良好な圧延が達成されたことを確認した。  The spark plasma metal composite sintered body having a carbon nanotube content of 0.5 wt% obtained by the same method as in Example 6-1 was a short cylindrical body having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 5 passes until the thickness reached 8 mm. The state of the sintered body after rolling and the structure after rolling were observed with an electron microscope on the order of 1 to 5 μm. As a result, it was confirmed that the metal material of the example achieved good rolling.
[0110] 実施例 7—1  [0110] Example 7-1
平均粒子径 50 μ mの無酸素銅粉 (三井金属アトマイズ粉)と平均粒子径 0. 6 μ ηι のアルミナ粉体との混合粉体と、 10wt%の長鎖状のカーボンナノチューブとを、ステ ンレス鋼製の容器を用いた遊星ミルで分散させた。まず、カーボンナノチューブを配 合し、予め十分に分散処理した無酸素銅粉とアルミナ粉体との混合粉体を配合し、 それらの粉末同士をドライ状態で、分散メディアを使用することなくドライ状態で 2時 間以下の種々時分単位と容器の回転数を組み合せた混練分散を行った。  A mixed powder of oxygen-free copper powder (Mitsui Metal atomized powder) with an average particle diameter of 50 μm and alumina powder with an average particle diameter of 0.6 μηι, and 10 wt% long-chain carbon nanotubes It was dispersed with a planetary mill using a vessel made of stainless steel. First, carbon nanotubes are combined, and a mixed powder of oxygen-free copper powder and alumina powder that has been sufficiently dispersed in advance is blended, and these powders are in a dry state without using a dispersion medium. Then, kneading and dispersion were performed by combining various time units of 2 hours or less and the rotation speed of the container.
[0111] 混練分散材を放電プラズマ焼結装置のダイ内に装填し、 700〜900°Cで 5分間の 放電プラズマ焼結した。その際、昇温速度は 250°CZminとし、 lOMPaの圧力を付 加し続けた。得られた 2種の複合材料の熱伝導率を測定した結果、いずれも 500〜8 OOWZmKとなった。 [0111] The kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and subjected to discharge plasma sintering at 700 to 900 ° C for 5 minutes. At that time, the temperature rising rate is 250 ° CZmin, and lOMPa pressure is applied. Continued to add. As a result of measuring the thermal conductivity of the two types of composite materials obtained, both were 500-8 OOWZmK.
[0112] 実施例 7— 2  [0112] Example 7-2
実施例 7— 1と同様方法にて得られたカーボンナノチューブの含有量が 0. 5wt% の放電プラズマ金属複合焼結体は、高さ 10mm、外径 60mmの短円柱体であった。 これを厚みが 8mmとなるまで 8パスの冷間圧延を実施した。この焼結体の圧延後の 状態並びに圧延後の組織を 1〜5 μ mオーダーで電子顕微鏡観察したところ、実施 例の金属材料は良好な圧延が達成されたことを確認した。  The discharge plasma metal composite sintered body having a carbon nanotube content of 0.5 wt% obtained by the same method as in Example 7-1 was a short cylinder having a height of 10 mm and an outer diameter of 60 mm. This was cold-rolled for 8 passes until the thickness reached 8 mm. The state of the sintered body after rolling and the structure after rolling were observed with an electron microscope on the order of 1 to 5 μm. As a result, it was confirmed that the metal material of the example achieved good rolling.
[0113] 以上は繊維状炭素材料としてカーボンナノチューブを使用した複合材料、特に繊 維無配向の複合材料の製造例である。次に、繊維状炭素材料として気相成長炭素 繊維を使用した複合材料の製造例を、繊維配向及び無配向の場合について説明し 、合わせてカーボンナノチューブを使用した繊維配向型複合材料の製造例を説明す る。  [0113] The above is an example of producing a composite material using carbon nanotubes as the fibrous carbon material, particularly a fiber-free composite material. Next, an example of producing a composite material using vapor-grown carbon fiber as a fibrous carbon material will be described for the case of fiber orientation and non-orientation, and an example of producing a fiber oriented composite material using carbon nanotubes together explain.
[0114] 実施例 8  [0114] Example 8
長さが約 2〜3mmの繊維状炭素材料カゝらなり、その繊維の方向を表面に平行で且 つ同一の方向に配向させた厚みが 100 /z mオーダーの配向シートを用意した。その 繊維配向シートから直径が 10mmの円形繊維シートを多数打ち抜いた。それらの円 形繊維シートの両面に、金属粉末として平均粒子径が 30 mのアルミニウム粉体を 付着させながら、円形シートを厚み方向に積層し、直径 10mm X高さ 20mmの円柱 状積層体を作製した。  An oriented sheet having a thickness of about 2 to 3 mm and a thickness of 100 / zm, in which the direction of the fibers is parallel to the surface and oriented in the same direction, was prepared. Many circular fiber sheets having a diameter of 10 mm were punched from the fiber oriented sheet. While attaching aluminum powder with an average particle size of 30 m as metal powder to both sides of these circular fiber sheets, circular sheets are laminated in the thickness direction to produce a cylindrical laminate with a diameter of 10 mm x height of 20 mm. did.
[0115] このとき、円形シートの両面に付着させるアルミニウム粉体の付着量の調整により、 繊維状炭素材料の含有量を 2. 5wt%以上、 30wt%強以下の範囲内で様々に変更 した。すなわち、アルミニウム粉体の付着量を多くすることにより、繊維状炭素材料の 含有量は低下し、円柱状積層体における円形シートの積層枚数も減少する。反対に 、アルミニウム粉体の付着量を少なくすることにより、繊維状炭素材料の含有量は増 大し、円柱状積層体における円形シートの積層枚数は増加する。その結果として、円 柱状積層体における円形シートの積層枚数は約 100〜250枚の範囲内で変化した 。円形シートを重ねる際には繊維の配向方向が同一方向を向くように注意した。 [0116] 作製された種々の円柱状積層体を放電プラズマ焼結装置のダイ内に装填し、高さ 方向に加圧した。これによりダイ内の円柱状積層体は高さ約 15mmまで圧縮された。 この状態で、ダイ内の円柱状積層体を 575°C X 60分間の条件で放電プラズマ焼結 した。その際、昇温速度は 100°CZminとし、 50MPaの圧力を付加し続けた。その 結果、円柱状のアルミニウム粉末焼結体の中に中心線に直角な炭素繊維層が中心 線方向に所定間隔で幾層にも積層された円柱状のアルミニウムと繊維状炭素材料の 複合材料が製造された。 [0115] At this time, the content of the fibrous carbon material was varied in the range of 2.5 wt% or more and 30 wt% or less by adjusting the adhesion amount of the aluminum powder adhered to both surfaces of the circular sheet. That is, by increasing the adhesion amount of the aluminum powder, the content of the fibrous carbon material is reduced, and the number of laminated circular sheets in the cylindrical laminate is also reduced. On the other hand, by reducing the adhesion amount of the aluminum powder, the content of the fibrous carbon material is increased, and the number of laminated circular sheets in the cylindrical laminate is increased. As a result, the number of stacked circular sheets in the columnar laminate changed in the range of about 100 to 250 sheets. When stacking circular sheets, care was taken that the fiber orientation direction was the same. [0116] The various cylindrical laminates thus produced were loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. This compressed the cylindrical stack in the die to a height of approximately 15 mm. In this state, the cylindrical laminate in the die was spark plasma sintered at 575 ° C. for 60 minutes. At that time, the rate of temperature rise was 100 ° CZmin, and a pressure of 50 MPa was continuously applied. As a result, a composite material of columnar aluminum and fibrous carbon material in which carbon fiber layers perpendicular to the center line are laminated at predetermined intervals in the center line direction in a cylindrical aluminum powder sintered body is obtained. manufactured.
[0117] 製造された複合材料の直径は 10mm、高さは加圧焼結過程での収縮により約 11 〜12mmになっていた。炭素繊維層における繊維は、層表面に平行 (複合材料の中 心線に直角)で、且つ同じ方向に配向している。  [0117] The manufactured composite material had a diameter of 10 mm and a height of about 11 to 12 mm due to shrinkage during the pressure sintering process. The fibers in the carbon fiber layer are parallel to the layer surface (perpendicular to the center line of the composite material) and oriented in the same direction.
[0118] 繊維配向方向の熱伝導率を測定するために、複合材料力 直交方向に円盤状の 試験片を採取した。試験片の直径は 10mm、厚みは 2〜3mmであり、試験片の中心 線は複合材料の中心線に直角で、且つ繊維層における繊維配向方向に一致して ヽ る。すなわち、各試験片では、その中心線に平行な繊維層力 中心線に直角な方向 に所定間隔で積層されており、各繊維層における繊維配向方向は試験片の中心線 方向に一致して 、るのである。  [0118] In order to measure the thermal conductivity in the fiber orientation direction, a disk-shaped specimen was taken in the direction perpendicular to the composite material force. The test piece has a diameter of 10 mm and a thickness of 2 to 3 mm. The center line of the test piece is perpendicular to the center line of the composite material and coincides with the fiber orientation direction in the fiber layer. That is, in each test piece, the fiber layer force parallel to the center line is laminated at a predetermined interval in a direction perpendicular to the center line, and the fiber orientation direction in each fiber layer coincides with the center line direction of the test piece. It is.
[0119] 繊維状炭素材料の含有率が 13wt%及び 15wt%の複合材料については、金属粉 末として、アルミニウム粉末中にシリコン粉末を lwt%含有する A1— Si合金粉末を使 用した。  [0119] For the composite material having a fibrous carbon material content of 13 wt% and 15 wt%, A1-Si alloy powder containing lwt% of silicon powder in aluminum powder was used as the metal powder.
[0120] 製造された複合材料力 採取された試験片により中心線方向、すなわち繊維配向 方向の熱伝導率を測定した。結果を図 17中に〇印で示す。黒丸は金属粉末として A 1一 Si合金粉末を使用したものである。純アルミニウムの熱伝導率は 244WZmKで あるが、実際の複合材料使用機器、例えば熱交換器等ではアルミニウム合金が使用 されるのが通例であり、熱伝導率が下がる。このことを考慮すると、実用レベルでのァ ルミ-ゥムの熱伝導率は 200WZmK程度となる。本実施例で製造された複合材料 は、繊維状炭素材料として一方向に配向した気相成長炭素繊維を有しており、全て の繊維含有量で実用レベルでのアルミニウムの熱伝導率を凌 、でおり、繊維含有量 が増大するにしたがって熱伝導率が増加する傾向が認められ、最高では 600WZm Kを超える結果が得られて 、る。 [0120] Manufactured composite material force The thermal conductivity in the direction of the center line, that is, in the fiber orientation direction was measured with the collected specimen. The result is indicated by a circle in FIG. The black circle is the one using A 1-Si alloy powder as the metal powder. Although the thermal conductivity of pure aluminum is 244WZmK, aluminum alloys are usually used in actual composite material equipment, such as heat exchangers, which lowers the thermal conductivity. Considering this, the thermal conductivity of aluminum at a practical level is about 200 WZmK. The composite material manufactured in this example has vapor-grown carbon fibers oriented in one direction as a fibrous carbon material, surpassing the thermal conductivity of aluminum at a practical level at all fiber contents, The thermal conductivity tends to increase as the fiber content increases, with a maximum of 600 WZm A result exceeding K is obtained.
[0121] なお、上記実施例 8では繊維配向方向の熱伝導率を測定するために、多数枚の繊 維シートを積層した多層構造の複合材料を製造したが、実際の製品では繊維シート を 1枚乃至は数枚というように少数積層する場合が多い。繊維シートを少数積層した 薄い複合材料の方が汎用性等が高く。使用価値も大きい。以下の実施例でも同様で ある。  [0121] In Example 8, in order to measure the thermal conductivity in the fiber orientation direction, a composite material having a multilayer structure in which a large number of fiber sheets were laminated was manufactured. In many cases, a small number of sheets such as one or several sheets are laminated. Thin composite materials with a small number of laminated fiber sheets are more versatile. Use value is also great. The same applies to the following embodiments.
[0122] 実施例 9  [0122] Example 9
圧延による影響を調査するため、実施例 8において、繊維状炭素材料の含有量が 2. 5wt%である複合材料について、直径が 60mm X高さ 10mmの円柱状の圧延試 験用複合材料を製造した。製造方法は実施例 8と同じであり、製造された複合材料 では、円柱状のアルミニウム粉末焼結体の中に中心線に直角な炭素繊維層が中心 線方向に所定間隔で幾層にも積層されると共に、炭素繊維層における繊維は同じ方 向に配向している。  In order to investigate the effect of rolling, in Example 8, a composite material with a fibrous carbon material content of 2.5 wt% was manufactured as a cylindrical rolling test composite material with a diameter of 60 mm and a height of 10 mm. did. The manufacturing method is the same as in Example 8. In the manufactured composite material, carbon fiber layers perpendicular to the center line are laminated in layers at predetermined intervals in the center line direction in the cylindrical aluminum powder sintered body. In addition, the fibers in the carbon fiber layer are oriented in the same direction.
[0123] そして製造された高さ 60mmの円柱状複合材料を厚みが lmmになるまで炭素繊 維層における繊維配向方向に圧延した。圧延後の厚さ lmmの板材から、平行な 2辺 が圧延方向(繊維配向方向)に平行で、他の平行な 2辺が圧延方向(繊維配向方向) に直角な 25mm角のサンプルを採取し、そのサンプルの熱伝導率を圧延方向(繊維 配向方向)及び圧延方向(繊維配向方向)に直角な方向の 2方向について測定した  [0123] The produced cylindrical composite material having a height of 60 mm was rolled in the fiber orientation direction in the carbon fiber layer until the thickness became 1 mm. A 25 mm square sample was taken from a lmm thick plate after rolling, with two parallel sides parallel to the rolling direction (fiber orientation direction) and the other two parallel sides perpendicular to the rolling direction (fiber orientation direction). The thermal conductivity of the sample was measured in two directions, the direction perpendicular to the rolling direction (fiber orientation direction) and the rolling direction (fiber orientation direction).
[0124] 圧延方向(繊維配向方向)の熱伝導率は 237WZmKであり、圧延方向(繊維配向 方向)に直角な方向の熱伝導率は 212WZmKであった。圧延前の繊維配向方向の 熱伝導率は図 17からわかるように 300WZmKを超える約 330WZmKである。圧下 率が 1Z60と 、う強度の圧延を受けて 、るにもかかわらず、圧延後の熱伝導率は実 用レベルでのアルミニウムの熱伝導率を凌いでおり、繊維配向方向に直角な方向の 熱伝導率でさえも、この実用レベルでのアルミニウムの熱伝導率を凌 、で 、る。 [0124] The thermal conductivity in the rolling direction (fiber orientation direction) was 237 WZmK, and the thermal conductivity in the direction perpendicular to the rolling direction (fiber orientation direction) was 212 WZmK. As can be seen from Fig. 17, the thermal conductivity in the fiber orientation direction before rolling is about 330 WZmK, which exceeds 300 WZmK. Despite the rolling reduction of 1Z60, the thermal conductivity after rolling surpasses the thermal conductivity of aluminum at the practical level and is in a direction perpendicular to the fiber orientation direction. Even the thermal conductivity surpasses that of aluminum at this practical level.
[0125] 実施例 10  [0125] Example 10
絡まりあった長さが 2〜3mmの気相成長炭素繊維の塊をシエイカーミルでほぐし、 さばいた。そのシエイカーミルにアルミニウム粉末を混合し、両者を混練した。両者の 混合率は、気相成長炭素繊維の含有量が 2. 5〜15wt%の範囲内で様々に変化す るように調整した。 Lumps of vapor-grown carbon fibers with a length of 2 to 3 mm that were entangled were loosened with a shaker mill and separated. Aluminum powder was mixed in the shaker mill, and both were kneaded. Both The mixing ratio was adjusted so that the content of the vapor-grown carbon fiber varied in the range of 2.5 to 15 wt%.
[0126] 得られた粉状の混練分散材を、実施例 8と同様に、放電プラズマ焼結装置のダイ内 に装填し、高さ方向に加圧した。この状態で、ダイ内の混練分散材を 575°C X 60分 間の条件で放電プラズマ焼結した。その際、昇温速度は 100°CZminとし、 50MPa の圧力を付カ卩し続けた。その結果、直径が 10mm、高さが l l〜12mmの円柱状のァ ルミニゥム粉末焼結体の中に繊維状炭素材料が均一に分散したアルミニウムと繊維 状炭素材料の複合材料が製造された。  [0126] In the same manner as in Example 8, the obtained powdered kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. In this state, the knead-dispersed material in the die was subjected to spark plasma sintering under conditions of 575 ° C × 60 minutes. At that time, the temperature rising rate was 100 ° CZmin, and the pressure of 50 MPa was continuously applied. As a result, a composite material of aluminum and fibrous carbon material in which the fibrous carbon material was uniformly dispersed in a cylindrical aluminum powder sintered body having a diameter of 10 mm and a height of l to 12 mm was produced.
[0127] 放電プラズマ焼結装置のダイ内における混練分散材の高さ方向の圧縮により、混 練分散材中の気相成長炭素繊維は横に倒れる。倒れる方向は様々である。このため 、製造された複合材料は、気相成長炭素繊維が無配向とは言え、中心線に対して直 角な平面に沿って配向する傾向を示す。つまり、複合材料中の気相成長炭素繊維 は、配向度は高くないものの、中心線に対して直角な平面に沿った二次元の配向性 を示す。 [0127] Vapor-grown carbon fibers in the kneaded and dispersed material fall sideways by compression in the height direction of the kneaded and dispersed material in the die of the spark plasma sintering apparatus. There are various ways to fall. For this reason, in the manufactured composite material, the vapor-grown carbon fiber is not oriented, but tends to be oriented along a plane perpendicular to the center line. In other words, the vapor-grown carbon fiber in the composite material does not have a high degree of orientation but exhibits a two-dimensional orientation along a plane perpendicular to the center line.
[0128] その後、実施例 8と同様に、複合材料から直交方向に円盤状の試験片を採取した。  [0128] Thereafter, in the same manner as in Example 8, a disc-shaped test piece was collected from the composite material in the orthogonal direction.
試験片の直径は 10mm、厚みは 2〜3mmであり、試験片の中心線は複合材料の中 心線に直角である。試験片の中心線方向における熱伝導率を測定した。結果を図 1 7中に X印で示す。  The specimen has a diameter of 10 mm and a thickness of 2 to 3 mm. The center line of the specimen is perpendicular to the center line of the composite material. The thermal conductivity in the center line direction of the test piece was measured. The results are indicated by X in Figure 17.
[0129] 弱い配向性を示すとは言え、基本的に無配向であるので、〇印で示した繊維配向 材料と比べると、熱伝導率は劣る。しかし、全ての繊維含有量において、実用レベル でのアルミニウムの熱伝導率(200WZmK)を凌 、でおり、最高では 400WZmK近 い熱伝導率を示す。  [0129] Although it is weakly oriented, it is basically non-oriented, and its thermal conductivity is inferior to that of the fiber orientation material indicated by ◯. However, for all fiber contents, it exceeds the thermal conductivity of aluminum (200 WZmK) at the practical level, and the thermal conductivity is close to 400 WZmK at the maximum.
[0130] なお、図 17中の△印は、繊維状炭素材料の含有量毎に複数作製した複合材料の 熱伝導率の平均値を表して 、る。  Note that Δ in FIG. 17 represents an average value of the thermal conductivity of a plurality of composite materials produced for each content of the fibrous carbon material.
[0131] 実施例 11  [0131] Example 11
実施例 8〜10は、繊維状炭素材料として気相成長炭素繊維を使用した繊維配向 型の複合材料の製造例である。一方、実施例 1〜7は、繊維状炭素材料としてカーボ ンナノチューブを使用したものであり、全てが繊維無配向型の複合材料の製造例で ある。そこで、本実施例では、繊維状炭素材料としてカーボンナノチューブを使用し た繊維配向型の複合材料の製造例について示す。 Examples 8 to 10 are production examples of fiber-oriented composite materials using vapor-grown carbon fibers as fibrous carbon materials. On the other hand, Examples 1 to 7 use carbon nanotubes as fibrous carbon materials, and all are production examples of fiber non-oriented composite materials. is there. Therefore, in this example, an example of manufacturing a fiber-oriented composite material using carbon nanotubes as a fibrous carbon material is shown.
[0132] 繊維状炭素材料として、長さが数 μ mの極めて短 ヽ直線状のカーボンナノチュー ブが半径方向に 2次元的に密接集合した厚さが数/ z mのカーボンナノチューブ集合 シートを用意した。そのカーボンナノチューブ集合シートにおける多数本のカーボン ナノチューブをローラにより一方向へ押し倒して、カーボンナノチューブが表面に平 行な特定の一方向へ配向した薄い繊維シートを作製した。  [0132] As a fibrous carbon material, a carbon nanotube assembly sheet with a thickness of several nanometers / zm is prepared by two-dimensionally closely gathering linear carbon nanotubes with a length of several μm in the radial direction. did. A number of carbon nanotubes in the carbon nanotube aggregate sheet were pushed down in one direction by a roller to produce a thin fiber sheet in which the carbon nanotubes were oriented in one specific direction parallel to the surface.
[0133] この繊維シートから直径が 10mmの円形繊維シートを多数打ち抜いた。それらの円 形繊維シートの両面に、金属粉末として平均粒子径が 30 mのアルミニウム粉体を 付着させながら、円形シートを厚み方向に積層し、直径 10mm X高さ 20mmの円柱 状積層体を作製した。このとき、円形シートの両面に付着させるアルミニウム粉体の 付着量の調整により、カーボンナノチューブの含有量を 1. 5wt%に調整した。円形 シートを重ねる際には繊維の配向方向が同一方向を向くように注意した。  [0133] A large number of circular fiber sheets having a diameter of 10 mm were punched from this fiber sheet. While attaching aluminum powder with an average particle size of 30 m as metal powder to both sides of these circular fiber sheets, circular sheets are laminated in the thickness direction to produce a cylindrical laminate with a diameter of 10 mm x height of 20 mm. did. At this time, the content of carbon nanotubes was adjusted to 1.5 wt% by adjusting the amount of aluminum powder adhered to both surfaces of the circular sheet. When stacking circular sheets, care was taken that the fiber orientation direction was the same.
[0134] 作製された円柱状積層体を放電プラズマ焼結装置のダイ内に装填し、高さ方向に 加圧した。これによりダイ内の円柱状積層体は高さ約 15mmまで圧縮された。この状 態で、ダイ内の円柱状積層体を 575°C X 60分間の条件で放電プラズマ焼結した。そ の際、昇温速度は 100°CZminとし、 50MPaの圧力を付カ卩し続けた。その結果、円 柱状のアルミニウム粉末焼結体の中に、中心線に直角な炭素繊維層が中心線方向 に所定間隔で幾層にも積層された円柱状のアルミニウムとカーボンナノチューブの繊 維配向型複合材料が製造された。  [0134] The produced cylindrical laminate was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. This compressed the cylindrical stack in the die to a height of approximately 15 mm. In this state, the cylindrical laminate in the die was spark plasma sintered at 575 ° C. for 60 minutes. At that time, the temperature rising rate was 100 ° CZmin, and the pressure of 50 MPa was continuously applied. As a result, a fiber-oriented type of cylindrical aluminum and carbon nanotubes, in which carbon fiber layers perpendicular to the center line are laminated at predetermined intervals in the center line direction in a cylindrical aluminum powder sintered body A composite material was produced.
[0135] 製造された複合材料の直径は 10mm、高さは加圧焼結過程での収縮により約 11 〜 12mmになっていた。炭素繊維層における繊維はカーボンナノチューブであり、層 表面に平行 (複合材料の中心線に直角)な方向で、且つ同じ方向に配向している。  [0135] The produced composite material had a diameter of 10 mm and a height of about 11 to 12 mm due to shrinkage during the pressure sintering process. The fibers in the carbon fiber layer are carbon nanotubes, and they are oriented in the same direction and parallel to the layer surface (perpendicular to the center line of the composite material).
[0136] 繊維配向方向の熱伝導率を測定するために、複合材料力 直交方向に円盤状の 試験片を採取した。試験片の直径は 10mm、厚みは 2〜3mmであり、試験片の中心 線は複合材料の中心線に直角で、且つ繊維層における繊維配向方向に一致して ヽ る。すなわち、各試験片では、その中心線に平行な繊維層力 中心線に直角な方向 に所定間隔で積層されており、各繊維層における繊維配向方向は試験片の中心線 方向に一致して 、るのである。 [0136] In order to measure the thermal conductivity in the fiber orientation direction, a disk-shaped test piece was taken in the direction perpendicular to the composite material force. The test piece has a diameter of 10 mm and a thickness of 2 to 3 mm. The center line of the test piece is perpendicular to the center line of the composite material and coincides with the fiber orientation direction in the fiber layer. That is, in each test piece, the fiber layer force parallel to the center line is laminated at a predetermined interval in a direction perpendicular to the center line, and the fiber orientation direction in each fiber layer is the center line of the test piece. It is consistent with the direction.
[0137] 試験片の熱伝導率を中心線方向、すなわち繊維配向方向について測定した。結 果を図 17中に◎印で示す。このカーボンナノチューブ配向型の複合材料は、カーボ ンナノチューブの含有量が 1. 5wt%の場合で、 274WZmKの熱伝導率を示した。 繊維状炭素材料が気相成長炭素繊維の場合と比べて遜色な ヽ性能である。ただ、 カーボンナノチューブの場合、高品質な直線状のカーボンナノチューブは、現状で は非常に高価であり、コストパフォーマンスを考慮して、総合的、工業的に評価すると 、気相成長炭素繊維の使用は有意義である。  [0137] The thermal conductivity of the test piece was measured in the center line direction, that is, the fiber orientation direction. The results are indicated by ◎ in FIG. This carbon nanotube-oriented composite material showed a thermal conductivity of 274 WZmK when the carbon nanotube content was 1.5 wt%. Compared with the case where the fibrous carbon material is vapor-grown carbon fiber, the performance is comparable. However, in the case of carbon nanotubes, high-quality linear carbon nanotubes are very expensive at present, and considering the cost performance, the use of vapor-grown carbon fibers is not comprehensive. Meaningful.
[0138] 実施例 12  [0138] Example 12
本実施例では、繊維状炭素材料として長さが数 mの直線状の高品質カーボンナ ノチューブを使用した無配向型の複合材料を製造した。具体的に説明すると、平均 粒子径が 30 μ mのアルミニウム粉末と長さが数 μ mの直線状のカーボンナノチュー ブをシエイカーミルで混練した。カーボンナノチューブの含有量は 0. 5wt%とした。  In this example, a non-oriented type composite material was manufactured using a linear high quality carbon nanotube having a length of several meters as the fibrous carbon material. Specifically, aluminum powder having an average particle diameter of 30 μm and linear carbon nanotubes having a length of several μm were kneaded by a shaker mill. The carbon nanotube content was 0.5 wt%.
[0139] 得られた粉状の混練分散材を、放電プラズマ焼結装置のダイ内に装填し、高さ方 向に加圧した。この状態で、ダイ内の混練分散材を 575°C X 60分間の条件で放電 プラズマ焼結した。その際、昇温速度は 100°C/minとし、 50MPaの圧力を付加し 続けた。これにより、直径が 10mm、高さが 2〜3の円盤状の複合材料を製造した。  [0139] The obtained powdery kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus and pressurized in the height direction. In this state, the kneaded dispersion material in the die was subjected to spark plasma sintering under the condition of 575 ° C. × 60 minutes. At that time, the rate of temperature increase was 100 ° C / min, and a pressure of 50 MPa was continuously applied. This produced a disc-shaped composite material with a diameter of 10 mm and a height of 2-3.
[0140] この複合材料では、円盤状のアルミニウム粉末焼結体の中にカーボンナノチューブ が均一に分散している。カーボンナノチューブは非常に短いため、中心線方向の圧 縮を受けても配向性は実質的に生じない。このため、熱伝導率測定用サイズの薄い 円盤状複合材料 (直径 10mm X厚み 2〜3mm)を直接製造した。中心線方向の熱 伝導率は、図 17中に◎(ただし中は黒丸)に示すとおり 240WZmKであった。カー ボンナノチューブの配合量が 0. 5wt%であることを考慮すると、この性能は良好であ る。  [0140] In this composite material, the carbon nanotubes are uniformly dispersed in the disc-shaped aluminum powder sintered body. Since carbon nanotubes are very short, orientation does not substantially occur even when subjected to compression in the center line direction. For this reason, a thin disc-shaped composite material (diameter 10 mm x thickness 2 to 3 mm) with a size for measuring thermal conductivity was directly manufactured. The thermal conductivity in the direction of the center line was 240 WZmK as shown by ◎ in FIG. 17 (the black circle in the center). Considering that the carbon nanotube content is 0.5 wt%, this performance is good.
[0141] 実施例 13  [0141] Example 13
以上の実施例では、基材は金属粉末焼結体または金属とセラミックスの混合粉末 焼結体である。これらに対し、本実施例では、セラミックス基材と気相成長繊維との複 合材料を製造した。 [0142] 具体的に説明すると、実施例 10と同様に、絡まりあった長さが 2〜3mmの気相成 長炭素繊維の塊をシエイカーミルでほぐし、さばいた。そのシエイカーミルに平均粒径 が 0. 6 mのアルミナ粉末を混合し、両者を混練した。気相成長炭素繊維の含有量 は 5wtQ/0とした。 In the above embodiments, the substrate is a metal powder sintered body or a mixed powder sintered body of metal and ceramics. In contrast, in this example, a composite material of a ceramic base material and a vapor growth fiber was manufactured. [0142] Specifically, in the same manner as in Example 10, a mass of vapor-grown carbon fibers having a entangled length of 2 to 3 mm was loosened with a shaker mill and separated. Alumina powder having an average particle size of 0.6 m was mixed in the shaker mill, and both were kneaded. The content of vapor grown carbon fiber was 5 wt Q / 0 .
[0143] 得られた粉状の混練分散材を、実施例 8及び実施例 10と同様に放電プラズマ焼結 装置のダイ内に装填し、高さ方向に加圧した。この状態で、ダイ内の混練分散材を 1 400°C X 3分間の条件で放電プラズマ焼結した。その際、昇温速度は 100°CZmin とし、 30MPaの圧力を付カ卩し続けた。その結果、直径が 10mm、高さが l l〜12mm の円柱状のアルミナ粉末焼結体の中に気相成長炭素繊維が均一に分散したアルミ ナと繊維状炭素材料の複合材料が製造された。  [0143] The obtained powdery kneaded dispersion was loaded into a die of a discharge plasma sintering apparatus in the same manner as in Example 8 and Example 10, and pressurized in the height direction. In this state, the kneaded dispersion material in the die was subjected to spark plasma sintering under the condition of 1400 ° C. × 3 minutes. At that time, the temperature rising rate was 100 ° CZmin, and the pressure of 30 MPa was continuously applied. As a result, a composite material of alumina and fibrous carbon material in which vapor-grown carbon fibers were uniformly dispersed in a cylindrical alumina powder sintered body having a diameter of 10 mm and a height of l to 12 mm was produced.
[0144] 放電プラズマ焼結装置のダイ内における混練分散材の高さ方向の圧縮により、混 練分散材中の気相成長炭素繊維は横に倒れる。倒れる方向は様々である。このため 、製造された複合材料は、気相成長炭素繊維が無配向とは言え、中心線に対して直 角な平面に沿って配向する傾向を示す。つまり、複合材料中の気相成長炭素繊維 は、配向度は高くないものの、中心線に対して直角な平面に沿った二次元の配向性 を示す。  [0144] The vapor-grown carbon fibers in the kneaded and dispersed material fall sideways due to the compression in the height direction of the kneaded and dispersed material in the die of the discharge plasma sintering apparatus. There are various ways to fall. For this reason, in the manufactured composite material, the vapor-grown carbon fiber is not oriented, but tends to be oriented along a plane perpendicular to the center line. In other words, the vapor-grown carbon fiber in the composite material does not have a high degree of orientation but exhibits a two-dimensional orientation along a plane perpendicular to the center line.
[0145] その後、実施例 8及び実施例 10と同様に、複合材料から直交方向に円盤状の試 験片を採取した。試験片の直径は 10mm、厚みは 2〜3mmであり、試験片の中心線 は複合材料の中心線に直角である。試験片の中心線方向における熱伝導率を測定 したところ、 243WZmKであった。アルミナ粉末焼結体自体の熱伝導率は約 25W ZmKであるから、繊維状炭素材料との複合化により、熱伝導率は約 10倍に上昇し たことになり、基材がアルミニウムの場合と比較しても見劣りしな 、性能を示して 、る。  [0145] Thereafter, in the same manner as in Example 8 and Example 10, a disk-shaped test piece was collected from the composite material in the orthogonal direction. The specimen has a diameter of 10 mm and a thickness of 2-3 mm, and the specimen centerline is perpendicular to the composite centerline. The measured thermal conductivity in the direction of the center line of the test piece was 243 WZmK. Since the thermal conductivity of the sintered alumina powder itself is about 25 W ZmK, the composite with the fibrous carbon material increased the thermal conductivity by about 10 times. The performance is not inferior even in comparison.
[0146] 比較例  [0146] Comparative Example
参考のために、繊維状炭素材料としてカーボンファイバーを使用した複合材料を製 造した。製造方法は実施例 10と同じとした。すなわち、絡まりあったカーボンファイバ 一の塊をシエイカーミルでほぐし、さばいた。そのシエイカーミルにアルミニウム粉末を 混合し、両者を混練した。カーボンファイバーの含有量は 15wt%とした。  For reference, a composite material using carbon fiber as a fibrous carbon material was manufactured. The manufacturing method was the same as in Example 10. In other words, a lump of entangled carbon fiber was loosened with a shaker mill and separated. Aluminum powder was mixed in the shaker mill, and both were kneaded. The carbon fiber content was 15 wt%.
[0147] 得られた粉状の混練分散材を、実施例 8及び 10と同様に、放電プラズマ焼結装置 のダイ内に装填し、高さ方向に加圧した。この状態で、ダイ内の混練分散材を 575°C X 60分間の条件で放電プラズマ焼結した。その際、昇温速度は 100°CZminとし、 5 OMPaの圧力を付カ卩し続けた。その結果、直径が 10mm、高さが ll〜12mmの円柱 状のアルミニウム粉末焼結体の中にカーボンファイバーが均一に分散したアルミ-ゥ ムと繊維状炭素材料の複合材料が製造された。 [0147] The obtained powdery kneading dispersion was treated with a discharge plasma sintering apparatus in the same manner as in Examples 8 and 10. Was loaded into a die and pressurized in the height direction. In this state, the kneaded dispersion material in the die was subjected to spark plasma sintering under conditions of 575 ° C. X 60 minutes. At that time, the rate of temperature increase was 100 ° CZmin, and the pressure of 5 OMPa was continuously applied. As a result, a composite material of aluminum and fibrous carbon material was produced in which carbon fibers were uniformly dispersed in a cylindrical aluminum powder sintered body having a diameter of 10 mm and a height of ll to 12 mm.
[0148] 放電プラズマ焼結装置のダイ内における混練分散材の高さ方向の圧縮により、混 練分散材中のカーボンファイバーは横に倒れる。このため、製造された複合材料中 のカーボンファイバーは、配向度は高くないものの、中心線に対して直角な平面に沿 つた二次元の配向性を示す。  [0148] The carbon fiber in the kneaded dispersion falls down sideways due to the compression in the height direction of the kneaded dispersion in the die of the spark plasma sintering apparatus. For this reason, the carbon fiber in the manufactured composite material does not have a high degree of orientation, but exhibits a two-dimensional orientation along a plane perpendicular to the center line.
[0149] その後、実施例 8及び 10と同様に、複合材料から直交方向に円盤状の試験片を採 取した。試験片の直径は 10mm、厚みは 2〜3mmであり、試験片の中心線は複合材 料の中心線に直角である。試験片の中心線方向における熱伝導率を測定した。結 果を図 17中に參印で示す。  [0149] Thereafter, in the same manner as in Examples 8 and 10, a disk-shaped test piece was taken from the composite material in the orthogonal direction. The diameter of the specimen is 10 mm and the thickness is 2 to 3 mm, and the center line of the specimen is perpendicular to the center line of the composite material. The thermal conductivity in the center line direction of the test piece was measured. The results are shown in FIG.
[0150] カーボンファイバーの含有量が 15wt%と多いので、熱伝導率は 208WZmKであ つた。しかし、実施例 10において気相成長炭素繊維の含有量が 15wt%の場合の熱 伝導率は約 350WZmKである。本発明で使用する繊維状炭素材料は、複合材料 における含有材料としてカーボンファイバーより格段に優秀である。  [0150] Since the carbon fiber content is as high as 15wt%, the thermal conductivity was 208WZmK. However, in Example 10, when the content of the vapor growth carbon fiber is 15 wt%, the thermal conductivity is about 350 WZmK. The fibrous carbon material used in the present invention is far superior to carbon fiber as a contained material in the composite material.
産業上の利用可能性  Industrial applicability
[0151] 本発明の高熱伝導複合材料は、例えばアルミニウム合金、ステンレス鋼等の金属 粉体を用いて高熱伝導度に優れた熱交換器やヒートシンク、燃料電池のセパレータ などを製造することができ、さらに金属粉体とセラミックス粉体を用いて、耐腐食性、 耐高温特性に優れた電極材料、発熱体、配線材料、熱交換器、燃料電池などを製 造することができる。 [0151] The high thermal conductive composite material of the present invention can produce a heat exchanger, a heat sink, a fuel cell separator, etc. excellent in high thermal conductivity using metal powder such as aluminum alloy and stainless steel, Furthermore, electrode materials, heating elements, wiring materials, heat exchangers, fuel cells, etc. with excellent corrosion resistance and high temperature resistance characteristics can be manufactured using metal powder and ceramic powder.
図面の簡単な説明  Brief Description of Drawings
[0152] [図 1]図 1 Aはカーボンナノチューブを分散含有するアルミニウム焼結体の圧延後の 状態写真図、図 1Bは圧延後の糸且織の 2 mオーダーの拡大電子顕微鏡写真図で ある。  [0152] [FIG. 1] FIG. 1A is a state photograph after rolling of an aluminum sintered body containing carbon nanotubes in a dispersed manner, and FIG. 1B is an enlarged electron micrograph of a 2 m order yarn and weave after rolling. .
[図 2] (a)〜(d)は R2、 R3、 R4、 R5の 4種の圧延金属材料の試験片切り出し箇所を 示す状態写真図である。 [Fig. 2] (a) to (d) show the test piece cutouts of four types of rolled metal materials R2, R3, R4, and R5. FIG.
[図 3] (a)〜(d)は R2、 R3、 R4、 R5の 4種の圧延金属材料(焼鈍なし)ごとの応力 ひずみ関係を示すグラフである。  [FIG. 3] (a) to (d) are graphs showing the stress-strain relationship for each of the four types of rolled metal materials R2, R3, R4, and R5 (without annealing).
[図 4] (a)〜(d)は R2、 R3、 R4、 R5の 4種の圧延金属材料 (焼鈍あり)ごとの応力 ひずみ関係を示すグラフである。  [FIG. 4] (a) to (d) are graphs showing the stress-strain relationship for each of the four types of rolled metal materials R2, R3, R4, and R5 (with annealing).
[図 5]図 5Aはこの発明によるアルミニウムをマトリックスとしたカーボンナノチューブ分 散複合材料の強制破面の電子顕微鏡写真図、図 5Bは強制破面の拡大電子顕微鏡 写真図である。  FIG. 5A is an electron micrograph of a forced fracture surface of a carbon nanotube-dispersed composite material using aluminum as a matrix according to the present invention, and FIG. 5B is an enlarged electron micrograph of the forced fracture surface.
[図 6]図 6は混練解砕する前のアルミニウム粒子の電子顕微鏡写真図であり、図 6A はスケーノレが 20 μ mオーダー、図 6Bは 10 mオーダーである。  [FIG. 6] FIG. 6 is an electron micrograph of aluminum particles before kneading and pulverization. FIG. 6A shows a scaler on the order of 20 μm, and FIG. 6B shows an order on the order of 10 m.
[図 7]図 7は混練解砕後のアルミニウム粒子の電子顕微鏡写真図であり、図 7Aはスケ ールが 30 μ mオーダー、図 7Bは図 7Aに示す凹部の 10 μ mオーダーの拡大電子 顕微鏡写真図である。 [Fig. 7] Fig. 7 is an electron micrograph of aluminum particles after kneading and pulverization. Fig. 7A is an enlarged electron with a scale of the order of 30 µm, and Fig. 7B is an enlarged electron with an order of 10 µm of the recess shown in Fig. 7A. FIG.
[図 8]図 8Aは図 7Aに示す凹部の 1 mオーダーの拡大電子顕微鏡写真図、図 8B は 500nmオーダーの拡大電子顕微鏡写真図である。  [FIG. 8] FIG. 8A is an enlarged electron micrograph of 1 m order of the recess shown in FIG. 7A, and FIG. 8B is an enlarged electron micrograph of the order of 500 nm.
[図 9]図 9Aは図 7Aに示す平滑部の 10 mオーダーの拡大電子顕微鏡写真図、図 9Bは 1 μ mオーダーの拡大電子顕微鏡写真図である。  FIG. 9A is an enlarged electron micrograph of the smooth portion shown in FIG. 7A on the order of 10 m, and FIG. 9B is an enlarged electron micrograph of the order of 1 μm.
[図 10]図 10は図 7Aに示す平滑部の 500nmオーダーの拡大電子顕微鏡写真図で ある。  FIG. 10 is an enlarged electron micrograph of the smooth part shown in FIG. 7A on the order of 500 nm.
[図 11]図 11Aはこの発明によるチタンをマトリックスとしたカーボンナノチューブ分散 複合材料の強制破面の電子顕微鏡写真図、図 11Bは強制破面の拡大電子顕微鏡 写真図である。  FIG. 11A is an electron micrograph of a forced fracture surface of a carbon nanotube dispersed composite material using titanium as a matrix according to the present invention, and FIG. 11B is an enlarged electron micrograph of the forced fracture surface.
[図 12]図 12Aは混練解砕する前のチタン粒子の電子顕微鏡写真図であり、図 12B は混練解砕後のチタン粒子の電子顕微鏡写真図である。  FIG. 12A is an electron micrograph of titanium particles before kneading and crushing, and FIG. 12B is an electron micrograph of titanium particles after kneading and crushing.
[図 13]図 13Aは図 12Bに示すチタン粒子表面の 1 mオーダーの拡大電子顕微鏡 写真図、図 13Bは 500nmオーダーの拡大電子顕微鏡写真図である。  [FIG. 13] FIG. 13A is an enlarged electron micrograph of the order of 1 m of the titanium particle surface shown in FIG. 12B, and FIG. 13B is an enlarged electron micrograph of the order of 500 nm.
[図 14]図 14Aはこの発明による銅をマトリックスとしたカーボンナノチューブ分散複合 材料の強制破面の電子顕微鏡写真図、図 14Bは強制破面の拡大電子顕微鏡写真 図である。 [FIG. 14] FIG. 14A is an electron micrograph of a forced fracture surface of a carbon nanotube dispersed composite material using copper as a matrix according to the present invention, and FIG. 14B is an enlarged electron micrograph of the forced fracture surface. FIG.
[図 15]図 15は混練解砕する前の銅粒子の電子顕微鏡写真図であり、図 15Aはスケ 一ノレが 10 μ mオーダー、図 15Bは 50 μ mオーダーである。  [FIG. 15] FIG. 15 is an electron micrograph of copper particles before kneading and pulverization, FIG. 15A shows a scale of 10 μm order, and FIG. 15B shows a order of 50 μm.
[図 16]図 16Aは混練解砕した後の銅粒子表面の: L mオーダーの拡大電子顕微鏡 写真図、図 16Bは 500nmオーダーの拡大電子顕微鏡写真図である。  FIG. 16A is an enlarged electron micrograph of the L m order on the copper particle surface after kneading and pulverization, and FIG. 16B is an enlarged electron micrograph of the order of 500 nm.
圆 17]図 17はアルミニウムと炭素材料の複合材料における炭素材料含有量と熱伝導 率との関係を示すグラフである。 [17] Fig. 17 is a graph showing the relationship between the carbon material content and the thermal conductivity in a composite material of aluminum and carbon material.

Claims

請求の範囲 The scope of the claims
[I] 金属粉体、又は金属とセラミックスの混合粉体、若しくはセラミックス粉体力 なる放 電プラズマ焼結体を基材としており、単層又は多層のダラフェンにより構成された極 細のチューブ状構成体力ゝらなる繊維状炭素材料が前記基材中に分布して一体化さ れて ヽる高熱伝導複合材料。  [I] Extremely fine tube-shaped body strength composed of single-layered or multi-layered dalafen based on a metal powder, a mixed powder of metal and ceramics, or a discharge plasma sintered body with ceramic powder force A highly heat conductive composite material in which the fibrous carbon material is distributed and integrated in the base material.
[2] 前記繊維状炭素材料は、グラフエンシートが円筒形状に丸まった単層又は複数層 のグラフェンチューブにより構成されたカーボンナノチューブである請求項 1に記載 の高熱伝導複合材料。  [2] The high thermal conductive composite material according to [1], wherein the fibrous carbon material is a carbon nanotube composed of a single-walled or multi-layered graphene tube in which a graph ensheet is rounded into a cylindrical shape.
[3] 前記繊維状炭素材料は、グラフエンシートが円筒形状に丸まった単層又は複数層 のグラフヱンチューブを芯部に有しており、その芯部を多重に取り囲むようにグラフェ ンシートがグラフヱンチューブの径方向に積層された気相成長炭素繊維である請求 項 1に記載の高熱伝導複合材料。  [3] The fibrous carbon material has a single-layer or multiple-layer graphene tube whose graph end sheet is rounded into a cylindrical shape at the core, and the graphene sheet is formed so as to surround the core in multiple layers. 2. The high thermal conductive composite material according to claim 1, wherein the composite material is vapor grown carbon fiber laminated in a radial direction of the graphene tube.
[4] 前記繊維状炭素材料は前記基材中に網状に均一分散して!/ヽる請求項 1に記載の 高熱伝導複合材料。  [4] The high thermal conductive composite material according to [1], wherein the fibrous carbon material is uniformly dispersed in a net shape in the substrate.
[5] 前記繊維状炭素材料は前記基材中で複数の層をなして存在して!/ヽる請求項 1に記 載の高熱伝導複合材料。  5. The high thermal conductive composite material according to claim 1, wherein the fibrous carbon material is present in a plurality of layers in the substrate.
[6] 前記繊維状炭素材料は、前記基材中で同一方向に配向している請求項 1に記載 の高熱伝導複合材料。  6. The high thermal conductive composite material according to claim 1, wherein the fibrous carbon material is oriented in the same direction in the base material.
[7] 前記繊維状炭素材料は、前記基材中で特定面に平行な方向に配向している請求 項 1に記載の高熱伝導複合材料。  7. The high thermal conductive composite material according to claim 1, wherein the fibrous carbon material is oriented in a direction parallel to a specific surface in the base material.
[8] 前記基材は前記繊維状炭素材料と共に塑性加工を受けた加工材である請求項 1 に記載の高熱伝導複合材料。 8. The high thermal conductive composite material according to claim 1, wherein the base material is a processed material subjected to plastic processing together with the fibrous carbon material.
[9] 前記金属粉体の平均粒径が 200 μ m以下、前記セラミックス粉体の平均粒径が 10 μ m以下である請求項 1に記載の高熱伝導複合材料。 [9] The high thermal conductive composite material according to [1], wherein the metal powder has an average particle size of 200 μm or less, and the ceramic powder has an average particle size of 10 μm or less.
[10] 金属粉体はアルミニウム、アルミニウム合金、チタン、チタン合金、銅、銅合金、ステ ンレス鋼のうちの 1種または 2種以上である請求項 1に記載の高熱伝導複合材料。 10. The high thermal conductive composite material according to claim 1, wherein the metal powder is one or more of aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy, and stainless steel.
[II] セラミックス粉体は酸ィ匕物、窒化物、炭化物、ホウ化物のうちの 1種または 2種以上 である請求項 1に記載の高熱伝導複合材料。 [II] The high thermal conductive composite material according to claim 1, wherein the ceramic powder is one or more of oxides, nitrides, carbides and borides.
[12] 前記繊維状炭素材料は重量比で 20wt%以下の含有である請求項 1に記載の高 熱伝導複合材料。 12. The high thermal conductive composite material according to claim 1, wherein the fibrous carbon material is contained in a weight ratio of 20 wt% or less.
[13] 前記混合粉体におけるセラミックスは重量比で 20wt%以下の含有である請求項 1 に記載の高熱伝導複合材料。  13. The high thermal conductive composite material according to claim 1, wherein the ceramic in the mixed powder is contained in a weight ratio of 20 wt% or less.
[14] 金属粉体、又は金属とセラミックスの混合粉体、若しくはセラミックス粉体と繊維状炭 素材料とを混練分散する工程と、混練分散材を放電プラズマ焼結する工程とを含む 高熱伝導複合材料の製造方法。 [14] A high thermal conductivity composite comprising a step of kneading and dispersing metal powder, or a mixed powder of metal and ceramics, or ceramic powder and fibrous carbon material, and a step of performing discharge plasma sintering of the kneaded dispersion material Material manufacturing method.
[15] 焼結前の混練分散材中の繊維状炭素材料を特定方向に配向させる配向工程を含 む請求項 14に記載の高熱伝導複合材料の製造方法。 15. The method for producing a high thermal conductive composite material according to claim 14, further comprising an orientation step of orienting the fibrous carbon material in the kneaded dispersion material before sintering in a specific direction.
[16] 金属粉体層、又は金属粉体とセラミックス粉体の混合粉体層、若しくはセラミックス 粉体層と、繊維状炭素材料により構成されたシートとを交互に積層する工程と、得ら れた積層体を放電プラズマ焼結する工程とを含む高熱伝導複合材料の製造方法。 [16] A step of alternately laminating a metal powder layer, or a mixed powder layer of metal powder and ceramic powder, or a ceramic powder layer, and a sheet made of a fibrous carbon material. And a method for producing a highly heat-conductive composite material comprising a step of subjecting the laminated body to spark plasma sintering.
[17] 前記シートは、繊維状炭素材料がシートの表面に平行な方向に配向している請求 項 16に記載の高熱伝導複合材料の製造方法。 17. The method for producing a high thermal conductivity composite material according to claim 16, wherein the fibrous carbon material is oriented in a direction parallel to the surface of the sheet.
[18] 前記シートは、繊維状炭素材料がシートの表面に平行で且つ同一の方向に配向し ている請求項 17に記載の高熱伝導複合材料の製造方法。 18. The method for producing a high thermal conductive composite material according to claim 17, wherein the fibrous carbon material is oriented in the same direction parallel to the surface of the sheet.
[19] 前記繊維状炭素材料は、単層又は多層のグラフェンにより構成された極細のチュ ーブ状構成体力 なり、カーボンナノチューブ及び気相成長炭素繊維を含む請求項[19] The fibrous carbon material is an ultra-thin tube-like structural force composed of single-layer or multilayer graphene, and includes carbon nanotubes and vapor-grown carbon fibers.
14又は 16に記載の高熱伝導複合材料の製造方法。 The method for producing a high thermal conductive composite material according to 14 or 16.
[20] 得られた放電プラズマ焼結体を塑性変形させる工程を含む請求項 14又は 16に記 載の高熱伝導複合材料の製造方法。 [20] The method for producing a high thermal conductive composite material according to claim 14 or 16, comprising a step of plastically deforming the obtained spark plasma sintered body.
[21] 塑性変形が冷間圧延、温間圧延、熱間圧延のいずれかである請求項 20に記載の 高熱伝導複合材料の製造方法。 21. The method for producing a high thermal conductivity composite material according to claim 20, wherein the plastic deformation is any one of cold rolling, warm rolling, and hot rolling.
[22] 塑性変形の後に焼鈍を行う工程を含む請求項 21に記載の高熱伝導複合材料の 製造方法。 22. The method for producing a high thermal conductive composite material according to claim 21, further comprising a step of annealing after plastic deformation.
[23] 混練分散前の繊維状炭素材料に予め放電プラズマ処理を施す請求項 14又は 16 に記載の高熱伝導複合材料の製造方法。  [23] The method for producing a high thermal conductive composite material according to [14] or [16], wherein the fibrous carbon material before kneading and dispersing is preliminarily subjected to discharge plasma treatment.
[24] 放電プラズマ焼結する工程が、低圧下で低温のプラズマ放電を行 ヽ、その後、高 圧下で低温の放電プラズマ焼結を行う 2段階工程である請求項 14又は 16に記載の 高熱伝導複合材料の製造方法。 [24] The discharge plasma sintering process uses a low-temperature plasma discharge under low pressure, and then The method for producing a high thermal conductive composite material according to claim 14 or 16, which is a two-stage process in which low-temperature discharge plasma sintering is performed under pressure.
[25] 金属粉体は純アルミニウム、アルミニウム合金、チタン、チタン合金、銅、銅合金、ス テンレス鋼のうちの 1種または 2種以上である請求項 14又は 16に記載の高熱伝導複 合材料の製造方法。 [25] The high thermal conductive composite material according to claim 14 or 16, wherein the metal powder is one or more of pure aluminum, aluminum alloy, titanium, titanium alloy, copper, copper alloy, and stainless steel. Manufacturing method.
[26] 金属粉体の平均粒径が 200 μ m以下、セラミックス粉体の平均粒径が 10 μ m以下 である請求項 14又は 16に記載の高熱伝導複合材料の製造方法。  26. The method for producing a high thermal conductive composite material according to claim 14 or 16, wherein the metal powder has an average particle size of 200 μm or less and the ceramic powder has an average particle size of 10 μm or less.
[27] セラミックス粉体は酸ィ匕物、窒化物、炭化け 、素、炭化チタン、炭化物、ホウ化物の うちの 1種または 2種以上である請求項 14又は 16に記載の高熱伝導複合材料の製 造方法。  [27] The high thermal conductive composite material according to [14] or [16], wherein the ceramic powder is one or more of oxides, nitrides, carbides, elements, titanium carbides, carbides and borides. Manufacturing method.
PCT/JP2006/305738 2005-05-10 2006-03-22 Highly thermally conductive composite material WO2006120803A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526827A JP5288441B2 (en) 2005-05-10 2006-03-22 High thermal conductive composite material and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-137735 2005-05-10
JP2005137735 2005-05-10

Publications (1)

Publication Number Publication Date
WO2006120803A1 true WO2006120803A1 (en) 2006-11-16

Family

ID=37396321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305738 WO2006120803A1 (en) 2005-05-10 2006-03-22 Highly thermally conductive composite material

Country Status (2)

Country Link
JP (1) JP5288441B2 (en)
WO (1) WO2006120803A1 (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129906A1 (en) 2007-04-17 2008-10-30 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
WO2009005082A1 (en) * 2007-07-05 2009-01-08 Sumitomo Precision Products Co., Ltd. Highly thermally conductive composite material
JP2009163729A (en) * 2007-12-14 2009-07-23 Qinghua Univ Touch panel, its manufacturing method, and display using touch panel
WO2009104665A1 (en) * 2008-02-20 2009-08-27 株式会社大成化研 Manufacturing method for metal materials that comprise carbon nanostructure materials and cnt steel manufactured therefrom
JP2009257753A (en) * 2008-04-18 2009-11-05 Qinghua Univ Solar collector and solar heating system using same
JP2010116632A (en) * 2008-11-11 2010-05-27 Osaka Prefecture Apparatus and method for producing fine carbon fiber twisted yarn
EP2223757A1 (en) * 2007-10-25 2010-09-01 National University Corporation Hokkaido University Composite metal material and process for production thereof
JP2011241501A (en) * 2010-05-18 2011-12-01 Sumitomo Precision Prod Co Ltd Method of manufacturing oriented carbon fiber sheet
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
KR101145709B1 (en) * 2009-10-23 2012-05-24 전북대학교산학협력단 Manufacturing method of nano-structured metal carbides-cnt composite
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
JP2013248731A (en) * 2006-05-19 2013-12-12 Massachusetts Inst Of Technology <Mit> Nanostructure-reinforced composite article and method
JP2014525981A (en) * 2011-08-22 2014-10-02 フューチャー カーボン ゲーエムベーハー Dispersion containing carbon nanotubes and graphene platelets
US20140367618A1 (en) * 2012-05-04 2014-12-18 Elite Optoelectronic Co., Ltd. Flexible transparent conductive film within led flexible transparent display structure
JP2015053397A (en) * 2013-09-06 2015-03-19 住友精密工業株式会社 Highly thermal conductive plate
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
WO2015156038A1 (en) * 2014-04-08 2015-10-15 矢崎総業株式会社 Carbon nanotube composite material and process for producing same
CN105349846A (en) * 2015-11-02 2016-02-24 唐山建华科技发展有限责任公司 Preparation method of graphene/aluminum composite material
CN105463346A (en) * 2015-10-12 2016-04-06 中南大学 Spiral line reinforced metal matrix composite and manufacturing method thereof
US9362022B2 (en) 2010-01-20 2016-06-07 Furukawa Electric Co., Ltd. Composite electric cable and process for producing same
CN105742970A (en) * 2016-04-08 2016-07-06 天津平高智能电气有限公司 Switch cabinet and manufacturing method thereof
WO2017070983A1 (en) * 2015-10-30 2017-05-04 苏州大学张家港工业技术研究院 Method for preparing graphene-reinforced titanium-based nanocomposite material via titanium hydride
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
CN109590459A (en) * 2019-01-11 2019-04-09 中南大学 A kind of interface modification method in situ of graphene/magnesium alloy
CN109695007A (en) * 2019-01-15 2019-04-30 中南大学 A kind of preparation method of metal-carbon composite
CN109967083A (en) * 2019-01-15 2019-07-05 中南大学 A kind of porous catalyst material
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
CN110157933A (en) * 2019-06-25 2019-08-23 西安建筑科技大学 A kind of high-strength wearable No yield point graphene/Ti2The preparation method of AlNb composite material
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP2020008205A (en) * 2018-07-05 2020-01-16 住友精密工業株式会社 Heat exchanger and manufacturing method of heat exchanger
CN111139376A (en) * 2020-01-21 2020-05-12 西安稀有金属材料研究院有限公司 Preparation method of in-situ acicular MAX phase reinforced titanium-based composite material
CN111500888A (en) * 2020-06-10 2020-08-07 柯良节 Graphene composite metal material and preparation method and production equipment thereof
JP2020169102A (en) * 2019-04-01 2020-10-15 ヤマキ電器株式会社 Nano-carbon composite ceramics, and method for producing the same
CN112030044A (en) * 2020-08-21 2020-12-04 武汉轻工大学 Carbon nano tube reinforced aluminum matrix composite material and preparation method thereof
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
CN113151706A (en) * 2021-03-17 2021-07-23 西安理工大学 Low friction coefficient WB2Preparation method of/CuSn 10 composite material
CN114149273A (en) * 2021-12-28 2022-03-08 湖南省嘉利信陶瓷科技有限公司 Preparation method of alumina ceramic powder for electronic ceramics
CN114478022A (en) * 2021-12-31 2022-05-13 南通威斯派尔半导体技术有限公司 High-reliability aluminum nitride copper-clad ceramic substrate and preparation method thereof
JP7142748B1 (en) 2021-06-25 2022-09-27 東邦チタニウム株式会社 Titanium porous body and method for producing titanium porous body
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102193589B1 (en) * 2019-09-02 2020-12-21 허경삼 Method for manufacturing aluminium-graphene composites having enhanced thermal conductivity
CN110666179B (en) * 2019-11-11 2022-11-29 沈阳航空航天大学 Graphene aluminum-based composite powder for laser deposition manufacturing, and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
JP2004003023A (en) * 2003-05-21 2004-01-08 Hitachi Ltd Composite material, method for manufacturing the same, and application of the same
JP2005082832A (en) * 2003-09-05 2005-03-31 Shinshu Univ Method of mixing powder
WO2005040067A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040066A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040065A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711165B2 (en) * 2004-06-21 2011-06-29 日立金属株式会社 High thermal conductivity / low thermal expansion composite and method for producing the same
EP1820870B1 (en) * 2004-11-09 2009-09-02 Shimane Prefectual Government METAL-BASEd CARBON FIBER COMPOSITE MATERIAL AND PRODUCTION METHOD THEREOF
JP2006144030A (en) * 2004-11-16 2006-06-08 Bridgestone Corp High thermal conductivity composite material and manufacturing method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003301048A (en) * 2002-04-10 2003-10-21 Polymatech Co Ltd Thermally conductive molded product
JP2004003023A (en) * 2003-05-21 2004-01-08 Hitachi Ltd Composite material, method for manufacturing the same, and application of the same
JP2005082832A (en) * 2003-09-05 2005-03-31 Shinshu Univ Method of mixing powder
WO2005040067A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040066A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Carbon nanotube-dispersed composite material, method for producing same and article same is applied to
WO2005040065A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
WO2005040068A1 (en) * 2003-10-29 2005-05-06 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906285B2 (en) 2006-05-19 2021-02-02 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US10399316B2 (en) 2006-05-19 2019-09-03 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
US9181639B2 (en) 2006-05-19 2015-11-10 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
JP2013248731A (en) * 2006-05-19 2013-12-12 Massachusetts Inst Of Technology <Mit> Nanostructure-reinforced composite article and method
US11787691B2 (en) 2006-05-19 2023-10-17 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US11458718B2 (en) 2006-05-19 2022-10-04 Massachusetts Institute Of Technology Nanostructure-reinforced composite articles and methods
JP2018065242A (en) * 2006-05-19 2018-04-26 マサチューセッツ インスティテュート オブ テクノロジー An enhanced nanostructure composite and a method for enhancing a nanostructure
US10265683B2 (en) 2006-05-19 2019-04-23 Massachusetts Institute Of Technology Continuous process for the production of nanostructures including nanotubes
US8053069B2 (en) 2007-04-17 2011-11-08 Sumitomo Precision Products Co., Ltd. High heat conduction composite material
EP2145972A4 (en) * 2007-04-17 2012-06-27 Sumitomo Precision Prod Co Highly thermally conductive composite material
EP2145972A1 (en) * 2007-04-17 2010-01-20 Sumitomo Precision Products Co., Ltd. Highly thermally conductive composite material
KR101506976B1 (en) * 2007-04-17 2015-03-30 수미도모 프리시젼 프로덕츠 캄파니 리미티드 Highly thermally conductive composite material
JP2008285745A (en) * 2007-04-17 2008-11-27 Sumitomo Precision Prod Co Ltd High thermal conductive composite material
WO2008129906A1 (en) 2007-04-17 2008-10-30 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
US8163060B2 (en) 2007-07-05 2012-04-24 Sumitomo Precision Products Co., Ltd. Highly heat-conductive composite material
JP2009013475A (en) * 2007-07-05 2009-01-22 Sumitomo Precision Prod Co Ltd Composite material with high thermal conductivity
WO2009005082A1 (en) * 2007-07-05 2009-01-08 Sumitomo Precision Products Co., Ltd. Highly thermally conductive composite material
KR101534478B1 (en) * 2007-07-05 2015-07-07 수미도모 프리시젼 프로덕츠 캄파니 리미티드 Highly thermally conductive composite material
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
EP2223757A4 (en) * 2007-10-25 2013-03-13 Univ Hokkaido Nat Univ Corp Composite metal material and process for production thereof
EP2223757A1 (en) * 2007-10-25 2010-09-01 National University Corporation Hokkaido University Composite metal material and process for production thereof
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
JP2009163729A (en) * 2007-12-14 2009-07-23 Qinghua Univ Touch panel, its manufacturing method, and display using touch panel
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
WO2009104665A1 (en) * 2008-02-20 2009-08-27 株式会社大成化研 Manufacturing method for metal materials that comprise carbon nanostructure materials and cnt steel manufactured therefrom
JP2009257753A (en) * 2008-04-18 2009-11-05 Qinghua Univ Solar collector and solar heating system using same
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
US8237677B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8237680B2 (en) 2008-07-04 2012-08-07 Tsinghua University Touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
JP2010116632A (en) * 2008-11-11 2010-05-27 Osaka Prefecture Apparatus and method for producing fine carbon fiber twisted yarn
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
KR101145709B1 (en) * 2009-10-23 2012-05-24 전북대학교산학협력단 Manufacturing method of nano-structured metal carbides-cnt composite
US9362022B2 (en) 2010-01-20 2016-06-07 Furukawa Electric Co., Ltd. Composite electric cable and process for producing same
JP2011241501A (en) * 2010-05-18 2011-12-01 Sumitomo Precision Prod Co Ltd Method of manufacturing oriented carbon fiber sheet
JP2014525981A (en) * 2011-08-22 2014-10-02 フューチャー カーボン ゲーエムベーハー Dispersion containing carbon nanotubes and graphene platelets
US20140367618A1 (en) * 2012-05-04 2014-12-18 Elite Optoelectronic Co., Ltd. Flexible transparent conductive film within led flexible transparent display structure
US9490042B2 (en) * 2012-05-04 2016-11-08 Elite Optoelectronic Co., Ltd. Flexible transparent conductive film within LED flexible transparent display structure
US10195797B2 (en) 2013-02-28 2019-02-05 N12 Technologies, Inc. Cartridge-based dispensing of nanostructure films
JP2015053397A (en) * 2013-09-06 2015-03-19 住友精密工業株式会社 Highly thermal conductive plate
JP2015199982A (en) * 2014-04-08 2015-11-12 矢崎総業株式会社 Carbon nanotube composite material and production method thereof
US10418144B2 (en) 2014-04-08 2019-09-17 Yazaki Corporation Carbon nanotube composite material and process for producing same
CN106164320A (en) * 2014-04-08 2016-11-23 矢崎总业株式会社 Carbon nano tube compound material and manufacture method thereof
WO2015156038A1 (en) * 2014-04-08 2015-10-15 矢崎総業株式会社 Carbon nanotube composite material and process for producing same
CN105463346A (en) * 2015-10-12 2016-04-06 中南大学 Spiral line reinforced metal matrix composite and manufacturing method thereof
WO2017070983A1 (en) * 2015-10-30 2017-05-04 苏州大学张家港工业技术研究院 Method for preparing graphene-reinforced titanium-based nanocomposite material via titanium hydride
CN105349846B (en) * 2015-11-02 2017-05-03 唐山建华科技发展有限责任公司 Preparation method of graphene/aluminum composite material
CN105349846A (en) * 2015-11-02 2016-02-24 唐山建华科技发展有限责任公司 Preparation method of graphene/aluminum composite material
CN105742970A (en) * 2016-04-08 2016-07-06 天津平高智能电气有限公司 Switch cabinet and manufacturing method thereof
US10350837B2 (en) 2016-05-31 2019-07-16 Massachusetts Institute Of Technology Composite articles comprising non-linear elongated nanostructures and associated methods
US11760848B2 (en) 2017-09-15 2023-09-19 Massachusetts Institute Of Technology Low-defect fabrication of composite materials
US11031657B2 (en) 2017-11-28 2021-06-08 Massachusetts Institute Of Technology Separators comprising elongated nanostructures and associated devices and methods, including devices and methods for energy storage and/or use
JP2020008205A (en) * 2018-07-05 2020-01-16 住友精密工業株式会社 Heat exchanger and manufacturing method of heat exchanger
JP7094805B2 (en) 2018-07-05 2022-07-04 住友精密工業株式会社 How to manufacture heat exchangers and heat exchangers
CN109590459A (en) * 2019-01-11 2019-04-09 中南大学 A kind of interface modification method in situ of graphene/magnesium alloy
CN109967083A (en) * 2019-01-15 2019-07-05 中南大学 A kind of porous catalyst material
CN109695007A (en) * 2019-01-15 2019-04-30 中南大学 A kind of preparation method of metal-carbon composite
JP7340809B2 (en) 2019-04-01 2023-09-08 ヤマキ電器株式会社 Nanocarbon composite ceramics and manufacturing method thereof
JP2020169102A (en) * 2019-04-01 2020-10-15 ヤマキ電器株式会社 Nano-carbon composite ceramics, and method for producing the same
CN110157933B (en) * 2019-06-25 2020-11-06 西安建筑科技大学 Preparation method of high-strength wear-resistant non-oriented graphene/Ti 2AlNb composite material
CN110157933A (en) * 2019-06-25 2019-08-23 西安建筑科技大学 A kind of high-strength wearable No yield point graphene/Ti2The preparation method of AlNb composite material
CN111139376A (en) * 2020-01-21 2020-05-12 西安稀有金属材料研究院有限公司 Preparation method of in-situ acicular MAX phase reinforced titanium-based composite material
CN111500888B (en) * 2020-06-10 2022-01-04 柯良节 Graphene composite metal material and preparation method and production equipment thereof
CN111500888A (en) * 2020-06-10 2020-08-07 柯良节 Graphene composite metal material and preparation method and production equipment thereof
CN112030044A (en) * 2020-08-21 2020-12-04 武汉轻工大学 Carbon nano tube reinforced aluminum matrix composite material and preparation method thereof
CN113151706A (en) * 2021-03-17 2021-07-23 西安理工大学 Low friction coefficient WB2Preparation method of/CuSn 10 composite material
WO2022270223A1 (en) * 2021-06-25 2022-12-29 東邦チタニウム株式会社 Titanium porous body and titanium porous body manufacturing method
JP2023004361A (en) * 2021-06-25 2023-01-17 東邦チタニウム株式会社 Titanium porous body and titanium porous body production method
JP7142748B1 (en) 2021-06-25 2022-09-27 東邦チタニウム株式会社 Titanium porous body and method for producing titanium porous body
CN114149273B (en) * 2021-12-28 2022-10-21 湖南省嘉利信陶瓷科技有限公司 Preparation method of alumina ceramic powder for electronic ceramics
CN114149273A (en) * 2021-12-28 2022-03-08 湖南省嘉利信陶瓷科技有限公司 Preparation method of alumina ceramic powder for electronic ceramics
CN114478022B (en) * 2021-12-31 2023-01-03 南通威斯派尔半导体技术有限公司 High-reliability aluminum nitride copper-clad ceramic substrate and preparation method thereof
CN114478022A (en) * 2021-12-31 2022-05-13 南通威斯派尔半导体技术有限公司 High-reliability aluminum nitride copper-clad ceramic substrate and preparation method thereof

Also Published As

Publication number Publication date
JP5288441B2 (en) 2013-09-11
JPWO2006120803A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
WO2006120803A1 (en) Highly thermally conductive composite material
JP4593473B2 (en) Method for producing carbon nanotube dispersed composite material
JP5116082B2 (en) High thermal conductivity composite material
Zhao et al. Cu matrix composites reinforced with aligned carbon nanotubes: Mechanical, electrical and thermal properties
CN104619637B (en) Solid carbon product comprising CNT with and forming method thereof
JPWO2005040066A1 (en) Carbon nanotube-dispersed composite material, production method thereof, and application thereof
Rashad et al. Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets
JP4441768B2 (en) Metal-graphite composite material having high thermal conductivity and method for producing the same
Shufeng et al. Microstructure and mechanical properties of P/M titanium matrix composites reinforced by in-situ synthesized TiC–TiB
JP5229934B2 (en) High thermal conductivity composite material
JP6982320B2 (en) Graphite / graphene composite material, heat collector, heat transfer body, heat radiator and heat dissipation system
JP2006315893A (en) Method for producing carbon nanotube-dispersed composite material
CA2783939A1 (en) A compound material comprising a metal and nanoparticles
JP4593472B2 (en) Method for producing carbon nanotube-dispersed composite material and application thereof
Pillari et al. On the comparison of graphene and multi-wall carbon nanotubes as reinforcements in aluminum alloy AA2219 processed by ball milling and spark plasma sintering
Fan et al. Liquid‐phase assisted engineering of highly strong SiC composite reinforced by multiwalled carbon nanotubes
EP2478124A1 (en) A compound material comprising a metal and nanoparticles
Liu et al. Microstructure and mechanical properties of bioinspired laminated CoCrFeNiMn high entropy alloy matrix composites reinforced with graphene
CN113088763A (en) Graphene/aluminum alloy composite material and preparation method thereof
WO2011032791A1 (en) A compound material comprising a metal and nanoparticles
Kwon et al. Extrusion of spark plasma sintered aluminum-carbon nanotube composites at various sintering temperatures
Kumar et al. Effect of graphene addition on flexural properties of Al 6061 nanocomposites
Guo et al. Influence of different preparation processes on the mechanical properties of carbon nanotube-reinforced copper matrix composites
Shukla et al. On the Possibility of Occurrence of Anisotropy in Processing of Cu-CNT Composites by Powder Metallurgical Techniques
Chen et al. Recent advances in 2D graphene reinforced metal matrix composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526827

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729705

Country of ref document: EP

Kind code of ref document: A1