CN114149273A - Preparation method of alumina ceramic powder for electronic ceramics - Google Patents

Preparation method of alumina ceramic powder for electronic ceramics Download PDF

Info

Publication number
CN114149273A
CN114149273A CN202111621235.9A CN202111621235A CN114149273A CN 114149273 A CN114149273 A CN 114149273A CN 202111621235 A CN202111621235 A CN 202111621235A CN 114149273 A CN114149273 A CN 114149273A
Authority
CN
China
Prior art keywords
ceramic powder
solution
alumina ceramic
electronic ceramics
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111621235.9A
Other languages
Chinese (zh)
Other versions
CN114149273B (en
Inventor
张晓云
方豪杰
贺亦文
刘建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Jialixin Ceramic Technology Co ltd
Original Assignee
Hunan Jialixin Ceramic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Jialixin Ceramic Technology Co ltd filed Critical Hunan Jialixin Ceramic Technology Co ltd
Priority to CN202111621235.9A priority Critical patent/CN114149273B/en
Publication of CN114149273A publication Critical patent/CN114149273A/en
Application granted granted Critical
Publication of CN114149273B publication Critical patent/CN114149273B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58007Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
    • C04B35/58014Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on titanium nitrides, e.g. TiAlON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62813Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

The invention relates to the field of electronic ceramic materials, in particular to a preparation method of alumina ceramic powder for electronic ceramics, which comprises the steps of nitriding a precursor and then treating the precursor by using a low-temperature plasma technology; and adding the gel, soaking for 5-20s, taking out, drying at 80-90 ℃ for 5-10h, heating to 950-1200 ℃, calcining for 3-10h, cooling to 700-750 ℃, annealing for 2-2.5h, and naturally recovering to room temperature for grinding.

Description

Preparation method of alumina ceramic powder for electronic ceramics
Technical Field
The invention relates to the field of electronic ceramic materials, in particular to a preparation method of alumina ceramic powder for electronic ceramics.
Background
The electronic ceramic powder is the main raw material for manufacturing ceramic components, and the core requirements of the electronic ceramic powder are purity, particle size, shape and the like. The electronic ceramic powder is essentially different from common electric power ceramic in chemical components, microstructures and electromechanical properties. These differences are due to a series of special technical requirements of the electronics industry for electronic ceramics, the most important of which is to have high mechanical strength, high temperature and humidity resistance, radiation resistance, wide variation of dielectric constant, small dielectric loss tangent, high dielectric strength and insulation resistance, and excellent aging performance.
The alumina ceramic is prepared from alumina (Al)2O3) The ceramic material used as the main body has better conductivity, mechanical strength and high temperature resistance, and is widely used as a ceramic with wide application, because of excellent thermal conductivity and conductivity, the ceramic material is also widely used as an electronic ceramic raw material in the electronic industry, and the shrinkage rate of the alumina ceramic powder in the high-end electronic industry field is higher during high-temperature sintering at present, so that the subsequent use is influenced.
Disclosure of Invention
The purpose of the invention is as follows: aiming at the defects or improvement requirements of the prior art, the invention provides a preparation method of alumina ceramic powder for electronic ceramics.
The technical scheme adopted by the invention is as follows:
a preparation method of alumina ceramic powder for electronic ceramics comprises the following steps:
s1: adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, and uniformly stirring to obtain a solution C;
s2: dropwise adding the solution A into the solution B, stirring for 30-60min, dropwise adding the solution C into the reaction system, stirring for 30-60min, heating to 30-50 ℃, standing for 10-20h, heating to 70-80 ℃, drying for 10-20h, and grinding to obtain a precursor;
s3: placing the precursor in nitriding equipment, heating to 1100-1500 ℃, preserving heat for 6-10h, recovering the room temperature to obtain a product after nitriding and sintering, and treating the product by using a low-temperature plasma technology;
s4: adding aluminum nitrate, urea and silicon carbide nanowires into deionized water, stirring for 2-5h at 90-95 ℃ to obtain gel, adding the product, soaking for 5-20s, taking out, drying for 5-10h at 80-90 ℃, heating to 950-1200 ℃, calcining for 3-10h, cooling to 700-750 ℃, annealing for 2-2.5h, and naturally recovering to room temperature for grinding to obtain the aluminum oxide ceramic powder.
Further, the mass ratio of the butyl titanate to the carbon black is 14-18: 1.
further, the mass ratio of butyl titanate to carbon black is 15: 1.
when the mass ratio of the butyl titanate to the carbon black is less than 14, the phase of the product after nitriding is relatively complicated, and when the mass ratio of the butyl titanate to the carbon black is 14-18, the phase of the product is mainly a TiN phase which also contains relatively small amounts of Ti and TiO2The mass ratio of the butyl titanate to the carbon black is 15: 1, pure-phase TiN is obtained after nitridation, and when the mass ratio of the butyl titanate to the carbon black is more than 18, a mixed phase appears in the product, so that the mass ratio of the butyl titanate to the carbon black is preferably 14-18: 1, more preferably 15: 1.
furthermore, the purity of the nitrogen gas introduced into the nitriding equipment in S3 is more than or equal to 99.9%, and the flow rate is 300-500 mL/min.
Further, the temperature rise speed of the nitriding equipment in S3 is 10-15 ℃/min.
Further, when the low-temperature plasma technology is used for processing in S3, firstly, nitrogen with the purity of more than or equal to 99.9% is introduced, the power supply of the equipment is turned on after air in the equipment is removed, the power of the equipment is controlled to be 800-1000W, and the processing time is 5-10S.
Further, the mass ratio of the aluminum nitrate to the urea to the silicon carbide nanowires in the S4 is 1.4-1.6: 1: 0.3-0.5.
Further, the dipping temperature in S4 is 25-40 ℃.
Further, in S4, the temperature rising speed is 15-25 ℃/min, and the temperature reducing speed is 5-10 ℃/min.
The invention has the beneficial effects that:
the invention provides a preparation method of alumina ceramic powder for electronic ceramics, which adopts titanium nitride as a core and alumina as a body structure, and utilizes silicon carbide nano-wires to toughen and modify the powder so as to enhance the structural strength between the core and the body, wherein the titanium nitride has high melting point, high strength, high hardness, high-temperature chemical stability, excellent electric conduction and heat conduction performance, good thermal shock resistance and can well improve the problem of alumina shrinkage in the sintering process, the mechanical property of the titanium nitride is improved to a certain extent, the titanium nitride core can be activated by low-temperature plasma technology treatment in preparation, so that the titanium nitride core is fully adhered with gel and the silicon carbide nano-wires in impregnation so as to improve the bonding strength, the alumina ceramic powder prepared by the invention has low shrinkage in the sintering process and can well keep the appearance integrity, as can be known from the above table 2, the alumina ceramic powder prepared by the invention has good mechanical property, the fracture toughness is more than or equal to 8.1, and the use requirement of the electronic ceramic can be completely met.
Drawings
FIG. 1 is a TEM image of the alumina ceramic powder prepared in example 1 of the present invention.
Detailed Description
The examples, in which specific conditions are not specified, were conducted under conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products available commercially.
Example 1:
a preparation method of alumina ceramic powder for electronic ceramics comprises the following steps:
adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, uniformly stirring to obtain a solution C, wherein the mass ratio of the butyl titanate to the carbon black is 15: 1, dropwise adding the solution A into the solution B, stirring for 60min, dropwise adding the solution C into the reaction system, stirring for 60min, heating to 40 ℃, standing for 15h, heating to 70 ℃, drying for 15h, grinding to obtain a precursor, placing the precursor into nitriding equipment, introducing nitrogen with the purity of more than or equal to 99.9 percent and the flow rate of 500mL/min, heating to 1450 ℃ at the speed of 10 ℃/min, keeping the temperature for 8h, recovering the room temperature to obtain a product after nitriding and sintering, treating the product by using a low-temperature plasma technology, introducing nitrogen with the purity of more than or equal to 99.9 percent during treatment, removing air in the equipment, then turning on a power supply of the equipment, controlling the power of the equipment to be 1000W, treating for 10s, and mixing the solution C with the mass ratio of 1.4: 1: adding 0.5 of aluminum nitrate, urea and silicon carbide nanowires into deionized water, stirring for 5h at 95 ℃ to obtain gel, adding the product, soaking for 10s at 30 ℃, taking out, drying for 10h at 90 ℃, heating to 1100 ℃ at a speed of 15 ℃/min, calcining for 5h, cooling to 720 ℃ at a speed of 5 ℃/min, annealing for 2.5h, and naturally recovering to room temperature for grinding to obtain the aluminum oxide ceramic powder.
Example 2:
a preparation method of alumina ceramic powder for electronic ceramics comprises the following steps:
adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, uniformly stirring to obtain a solution C, wherein the mass ratio of the butyl titanate to the carbon black is 15: 1, dropwise adding the solution A into the solution B, stirring for 50min, dropwise adding the solution C into the reaction system, stirring for 50min, heating to 30 ℃, standing for 20h, heating to 80 ℃, drying for 15h, grinding to obtain a precursor, placing the precursor into nitriding equipment, introducing nitrogen with the purity of more than or equal to 99.9 percent and the flow rate of 500mL/min, heating to 1500 ℃ at the speed of 15 ℃/min, keeping the temperature for 10h, recovering the room temperature to obtain a product after nitriding firing, treating the product by using a low-temperature plasma technology, introducing nitrogen with the purity of more than or equal to 99.9 percent during treatment, removing air in the equipment, then turning on a power supply of the equipment, controlling the power of the equipment to be 1000W, treating for 8s, and mixing the solution C and the solution C in a mass ratio of 1.6: 1: adding 0.5 of aluminum nitrate, urea and silicon carbide nanowires into deionized water, stirring for 3h at 95 ℃ to obtain gel, adding the product, soaking for 20s at 40 ℃, taking out, drying for 10h at 90 ℃, heating to 1200 ℃ at a speed of 25 ℃/min, calcining for 8h, cooling to 720 ℃ at a speed of 10 ℃/min, annealing for 2.5h, and naturally recovering to room temperature for grinding to obtain the aluminum oxide ceramic powder.
Example 3:
a preparation method of alumina ceramic powder for electronic ceramics comprises the following steps:
adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, uniformly stirring to obtain a solution C, wherein the mass ratio of the butyl titanate to the carbon black is 15: 1, dropwise adding the solution A into the solution B, stirring for 30min, dropwise adding the solution C into the reaction system, stirring for 60min, heating to 30 ℃, standing for 20h, heating to 70 ℃, drying for 20h, grinding to obtain a precursor, placing the precursor into nitriding equipment, introducing nitrogen with the purity of more than or equal to 99.9 percent and the flow rate of 300mL/min, heating to 1500 ℃ at the speed of 15 ℃/min, keeping the temperature for 10h, recovering the room temperature to obtain a product after nitriding firing, treating the product by using a low-temperature plasma technology, introducing nitrogen with the purity of more than or equal to 99.9 percent during treatment, removing air in the equipment, then turning on an equipment power supply, controlling the equipment power to be 800W, treating for 10s, and mixing the solutions in a mass ratio of 1.4: 1: adding 0.5 of aluminum nitrate, urea and silicon carbide nanowires into deionized water, stirring for 5h at 90 ℃ to obtain gel, adding the product, soaking for 20s at 25 ℃, taking out, drying for 10h at 80 ℃, heating to 1200 ℃ at a speed of 15 ℃/min, calcining for 3h, cooling to 700 ℃ at a speed of 10 ℃/min, annealing for 2.5h, and naturally recovering to room temperature for grinding to obtain the aluminum oxide ceramic powder.
Example 4:
a preparation method of alumina ceramic powder for electronic ceramics comprises the following steps:
adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, uniformly stirring to obtain a solution C, wherein the mass ratio of the butyl titanate to the carbon black is 15: 1, dropwise adding the solution A into the solution B, stirring for 60min, dropwise adding the solution C into the reaction system, stirring for 30min, heating to 50 ℃, standing for 10h, heating to 80 ℃, drying for 10h, grinding to obtain a precursor, placing the precursor into nitriding equipment, introducing nitrogen with the purity of more than or equal to 99.9 percent and the flow rate of 500mL/min, heating to 1500 ℃ at the speed of 10 ℃/min, keeping the temperature for 6h, recovering the room temperature to obtain a product after nitriding firing, treating the product by using a low-temperature plasma technology, introducing nitrogen with the purity of more than or equal to 99.9 percent during treatment, removing air in the equipment, then turning on an equipment power supply, controlling the equipment power to be 1000W, treating for 5s, and mixing the components in a mass ratio of 1.6: 1: adding 0.3 of aluminum nitrate, urea and silicon carbide nanowires into deionized water, stirring for 2h at 95 ℃ to obtain gel, adding the product, soaking for 5s at 40 ℃, taking out, drying for 5h at 90 ℃, heating to 1150 ℃ at a speed of 25 ℃/min, calcining for 10h, cooling to 750 ℃ at a speed of 5 ℃/min, annealing for 2h, naturally recovering to room temperature, and grinding to obtain the aluminum oxide ceramic powder.
Example 5:
a preparation method of alumina ceramic powder for electronic ceramics comprises the following steps:
adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, uniformly stirring to obtain a solution C, wherein the mass ratio of the butyl titanate to the carbon black is 15: 1, dropwise adding the solution A into the solution B, stirring for 60min, dropwise adding the solution C into the reaction system, stirring for 60min, heating to 50 ℃, standing for 20h, heating to 80 ℃, drying for 20h, grinding to obtain a precursor, placing the precursor into nitriding equipment, introducing nitrogen with the purity of more than or equal to 99.9 percent and the flow rate of 500mL/min, heating to 1500 ℃ at the speed of 15 ℃/min, keeping the temperature for 10h, recovering the room temperature to obtain a product after nitriding firing, treating the product by using a low-temperature plasma technology, introducing nitrogen with the purity of more than or equal to 99.9 percent during treatment, removing air in the equipment, then turning on a power supply of the equipment, controlling the power of the equipment to be 1000W, treating for 10s, and mixing the solution C with the reaction system in a mass ratio of 1.6: 1: adding 0.5 of aluminum nitrate, urea and silicon carbide nanowires into deionized water, stirring for 5h at 95 ℃ to obtain gel, adding the product, soaking for 20s at 40 ℃, taking out, drying for 10h at 90 ℃, heating to 1200 ℃ at a speed of 25 ℃/min, calcining for 10h, cooling to 750 ℃ at a speed of 10 ℃/min, annealing for 2.5h, and naturally recovering to room temperature for grinding to obtain the aluminum oxide ceramic powder.
Example 6
A preparation method of alumina ceramic powder for electronic ceramics comprises the following steps:
adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, uniformly stirring to obtain a solution C, wherein the mass ratio of the butyl titanate to the carbon black is 15: 1, dropwise adding the solution A into the solution B, stirring for 50min, dropwise adding the solution C into the reaction system, stirring for 50min, heating to 50 ℃, standing for 15h, heating to 80 ℃, drying for 10h, grinding to obtain a precursor, placing the precursor into nitriding equipment, introducing nitrogen with the purity of more than or equal to 99.9 percent and the flow rate of 400mL/min, heating to 1400 ℃ at the speed of 12 ℃/min, preserving heat for 10h, recovering the room temperature to obtain a product after nitriding firing, treating the product by using a low-temperature plasma technology, introducing nitrogen with the purity of more than or equal to 99.9 percent during treatment, removing air in the equipment, then turning on an equipment power supply, controlling the equipment power to be 1000W, treating for 5s, and mixing the solutions in a mass ratio of 1.4: 1: 0.4 of aluminum nitrate, urea and silicon carbide nanowires are added into deionized water, the mixture is stirred for 5 hours at the temperature of 95 ℃ to obtain gel, the gel is added, the gel is soaked for 20 seconds at the temperature of 40 ℃ and then taken out, the gel is dried for 10 hours at the temperature of 85 ℃, then the temperature is increased to 1200 ℃ at the speed of 25 ℃/min and calcined for 8 hours, the temperature is reduced to 700 ℃ at the speed of 10 ℃/min, annealing is carried out for 2 hours, and then the room temperature is naturally recovered and ground, so that the aluminum oxide ceramic powder can be obtained.
Comparative example 1
Comparative example 1 is essentially the same as example 1 except that the product was not subjected to low temperature plasma techniques.
Comparative example 2
Comparative example 2 is substantially the same as example 1 except that the silicon carbide nanowires were not added.
Comparative example 3
Comparative example 3 is substantially the same as example 1 except that no annealing treatment was performed.
And (3) performance testing:
10g of each of the alumina ceramic powders prepared in examples 1 to 6 and comparative examples 1 to 3 and a commercial nano alumina powder (manufacturer: Xuancheng crystal new material) were dried at 105 ℃ for 4 hours, pressed at 100MPa into green sheets having a diameter of 98mm × 21mm × 0.63mm, and then sintered at 1580 ℃ for 2 hours, and the shrinkage after sintering was measured, and the results are shown in the following table 1:
table 1:
Figure BDA0003438096490000071
Figure BDA0003438096490000081
the three-point bending method is adopted to measure the flexural strength of the blank sheet, the loading rate is 0.5mm/min, the unilateral incision method is adopted to measure the fracture toughness of the blank sheet, and the results are shown in the following table 2:
table 2:
Figure BDA0003438096490000082
Figure BDA0003438096490000091
as can be seen from the above Table 1, the alumina ceramic powder prepared by the invention has low shrinkage rate in the sintering process, and can well maintain the morphological integrity, and as can be seen from the above Table 2, the alumina ceramic powder prepared by the invention has good mechanical properties, the breaking strength is more than or equal to 515MPa, and the fracture toughness is more than or equal to 8.1.
The above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (9)

1. A preparation method of alumina ceramic powder for electronic ceramics is characterized by comprising the following steps:
s1: adding butyl titanate into absolute ethyl alcohol, uniformly stirring to obtain a solution A, mixing glacial acetic acid, the absolute ethyl alcohol and water, uniformly stirring to obtain a solution B, adding urea, hexamethylenetetramine and carbon black into the absolute ethyl alcohol, and uniformly stirring to obtain a solution C;
s2: dropwise adding the solution A into the solution B, stirring for 30-60min, dropwise adding the solution C into the reaction system, stirring for 30-60min, heating to 30-50 ℃, standing for 10-20h, heating to 70-80 ℃, drying for 10-20h, and grinding to obtain a precursor;
s3: placing the precursor in nitriding equipment, heating to 1100-1500 ℃, preserving heat for 6-10h, recovering the room temperature to obtain a product after nitriding and sintering, and treating the product by using a low-temperature plasma technology;
s4: adding aluminum nitrate, urea and silicon carbide nanowires into deionized water, stirring for 2-5h at 90-95 ℃ to obtain gel, adding the product, soaking for 5-20s, taking out, drying for 5-10h at 80-90 ℃, heating to 950-1200 ℃, calcining for 3-10h, cooling to 700-750 ℃, annealing for 2-2.5h, and naturally recovering to room temperature for grinding to obtain the aluminum oxide ceramic powder.
2. The method for preparing the alumina ceramic powder for electronic ceramics according to claim 1, wherein the mass ratio of the butyl titanate to the carbon black is 14-18: 1.
3. the method for preparing the alumina ceramic powder for electronic ceramics according to claim 2, wherein the mass ratio of the butyl titanate to the carbon black is 15: 1.
4. the method for preparing alumina ceramic powder for electronic ceramics as claimed in claim 1, wherein the purity of nitrogen gas introduced into the nitriding equipment in S3 is not less than 99.9%, and the flow rate is 300-500 mL/min.
5. The method for preparing alumina ceramic powder for electronic ceramics according to claim 1, wherein the temperature rise rate of the nitriding device in S3 is 10 to 15 ℃/min.
6. The method for preparing alumina ceramic powder for electronic ceramics as claimed in claim 1, wherein the low temperature plasma technique in S3 is performed by introducing nitrogen with purity not less than 99.9%, removing air in the equipment and then turning on the power supply of the equipment, controlling the power of the equipment to be 800-.
7. The method for preparing the alumina ceramic powder for electronic ceramics according to claim 1, wherein the mass ratio of the aluminum nitrate, the urea and the silicon carbide nanowires in S4 is 1.4-1.6: 1: 0.3-0.5.
8. The method for preparing alumina ceramic powder for electronic ceramics according to claim 1, wherein the impregnation temperature in S4 is 25 to 40 ℃.
9. The method for preparing alumina ceramic powder for electronic ceramics according to claim 1, wherein the temperature rise rate in S4 is 15 to 25 ℃/min, and the temperature drop rate is 5 to 10 ℃/min.
CN202111621235.9A 2021-12-28 2021-12-28 Preparation method of alumina ceramic powder for electronic ceramics Active CN114149273B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111621235.9A CN114149273B (en) 2021-12-28 2021-12-28 Preparation method of alumina ceramic powder for electronic ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111621235.9A CN114149273B (en) 2021-12-28 2021-12-28 Preparation method of alumina ceramic powder for electronic ceramics

Publications (2)

Publication Number Publication Date
CN114149273A true CN114149273A (en) 2022-03-08
CN114149273B CN114149273B (en) 2022-10-21

Family

ID=80452297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111621235.9A Active CN114149273B (en) 2021-12-28 2021-12-28 Preparation method of alumina ceramic powder for electronic ceramics

Country Status (1)

Country Link
CN (1) CN114149273B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213591A (en) * 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
CN1349950A (en) * 2001-11-30 2002-05-22 中国科学院上海硅酸盐研究所 Prepn of conductive composite nanometer titanium nitride-alumina material
CN1417163A (en) * 2002-11-28 2003-05-14 中国科学院上海硅酸盐研究所 Prepn of nano titanium nitride-silicon nitride composite material
WO2006120803A1 (en) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
CN101172852A (en) * 2007-10-30 2008-05-07 景德镇陶瓷学院 Method for producing aluminium titanates film by using colloidal sols-gel rubber technique
SE0702194L (en) * 2007-09-26 2009-03-27 Sandvik Intellectual Property Coated cutting tool
CN104446396A (en) * 2014-12-11 2015-03-25 中国石油大学(华东) Preparation method of micro-nano composite aluminum oxide-titanium nitride-zirconium oxide-nickel-molybdenum ceramic material
CN104803695A (en) * 2015-04-13 2015-07-29 安徽省含山瓷业股份有限公司 High-strength carbon fiber enhanced boron nitride ceramic matrix composite and preparation method thereof
CN105367112A (en) * 2015-11-19 2016-03-02 宁波科森净化器制造有限公司 Vehicle exhaust purifier and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213591A (en) * 1992-07-28 1993-05-25 Ahmet Celikkaya Abrasive grain, method of making same and abrasive products
CN1349950A (en) * 2001-11-30 2002-05-22 中国科学院上海硅酸盐研究所 Prepn of conductive composite nanometer titanium nitride-alumina material
CN1417163A (en) * 2002-11-28 2003-05-14 中国科学院上海硅酸盐研究所 Prepn of nano titanium nitride-silicon nitride composite material
WO2006120803A1 (en) * 2005-05-10 2006-11-16 Sumitomo Precision Products Co., Ltd Highly thermally conductive composite material
SE0702194L (en) * 2007-09-26 2009-03-27 Sandvik Intellectual Property Coated cutting tool
CN101172852A (en) * 2007-10-30 2008-05-07 景德镇陶瓷学院 Method for producing aluminium titanates film by using colloidal sols-gel rubber technique
CN104446396A (en) * 2014-12-11 2015-03-25 中国石油大学(华东) Preparation method of micro-nano composite aluminum oxide-titanium nitride-zirconium oxide-nickel-molybdenum ceramic material
CN104803695A (en) * 2015-04-13 2015-07-29 安徽省含山瓷业股份有限公司 High-strength carbon fiber enhanced boron nitride ceramic matrix composite and preparation method thereof
CN105367112A (en) * 2015-11-19 2016-03-02 宁波科森净化器制造有限公司 Vehicle exhaust purifier and preparation method thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHOI, SW等: "Plasma enhanced atomic layer deposition of Al2O3 and TiN", 《JOURNAL OF THE KOREAN PHYSICAL SOCIETY》 *
张丽红等: "优质超滤ZrO_2复合膜制备研究", 《化学工程师》 *
方豪杰等: "烧结助剂对非等温烧结法制备氧化铝陶瓷微观结构和性能的影响", 《粉末冶金材料科学与工程》 *
贡锡娜: "反应球磨法制备Ti(C,N)/Al2O3复合粉末及其烧结性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Also Published As

Publication number Publication date
CN114149273B (en) 2022-10-21

Similar Documents

Publication Publication Date Title
CN106966732B (en) Fine powder silicon carbide ceramic and preparation method thereof
CN112390628B (en) Preparation method of aluminum oxide target material
CN111470864B (en) Silicon-based temperature-stable microwave dielectric ceramic material and preparation method thereof
CN110105057A (en) Ceramic arm and preparation method thereof, vacuum suction machinery hand and wafer conveying device
CN111039663A (en) Sintering method of alumina ceramic
CN114149273B (en) Preparation method of alumina ceramic powder for electronic ceramics
CN107164803A (en) A kind of method that simple control phase transformation prepares beta silicon nitride whisker
CN110627507A (en) Low-temperature silicon carbide ceramic and preparation method and application thereof
CN111807838B (en) Na (Na) 0.25 K 0.25 Bi 2.5 Nb 2 O 9 Ceramic preparation method and product thereof
CN113800918B (en) Trace in-situ carbon-induced Si3N4 heat-conducting ceramic material and preparation method thereof
CN114702306B (en) Preparation method of 95 alumina ceramic substrate and product thereof
CN107793138B (en) Alumina ceramic
CN114149261B (en) Lead hafnate antiferroelectric ceramic material and preparation method thereof
CN113788674B (en) Conductive ceramic and preparation method thereof
CN113563076A (en) Relaxation ferroelectric ceramic with high field strain temperature stability and preparation method thereof
CN113213927A (en) High-energy-storage silver niobate-based ceramic with mismatch of stoichiometry and preparation method thereof
CN108203297B (en) Conductive titanium oxide ceramic sputtering target material and preparation method thereof
US20040092380A1 (en) Aluminum oxide ceramic components and methods
CN115417663B (en) Preparation method of LTCC electronic ceramic
CN112062559B (en) Antiferroelectric ceramic material and low-temperature sintering method thereof
CN116217255B (en) High-precision ceramic material for 5G signal base station and preparation method thereof
JP3007732B2 (en) Silicon nitride-mixed oxide sintered body and method for producing the same
CN117024129B (en) Preparation method of chromium-doped lanthanum disilicate ceramic
CN110963800A (en) Aluminum nitride ceramic substrate and preparation method thereof
JP2960591B2 (en) Silicon carbide-silicon nitride-mixed oxide-based sintered body and method for producing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant