WO2006109417A1 - 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム - Google Patents

排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム Download PDF

Info

Publication number
WO2006109417A1
WO2006109417A1 PCT/JP2006/305355 JP2006305355W WO2006109417A1 WO 2006109417 A1 WO2006109417 A1 WO 2006109417A1 JP 2006305355 W JP2006305355 W JP 2006305355W WO 2006109417 A1 WO2006109417 A1 WO 2006109417A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
gas purification
oxidation catalyst
oxidation
Prior art date
Application number
PCT/JP2006/305355
Other languages
English (en)
French (fr)
Inventor
Takashi Hihara
Makoto Nagata
Original Assignee
N.E. Chemcat Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N.E. Chemcat Corporation filed Critical N.E. Chemcat Corporation
Priority to EP06729345.6A priority Critical patent/EP1864713B1/en
Publication of WO2006109417A1 publication Critical patent/WO2006109417A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/103Oxidation catalysts for HC and CO only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/74Noble metals
    • B01J29/7415Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/208Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purification oxidation catalyst and an exhaust gas purification system using the same, and more specifically, can efficiently oxidize unburned hydrocarbons in exhaust gas,
  • the present invention relates to an exhaust gas purification oxidation catalyst that can raise the catalyst temperature with a small amount of fuel spray in a diesel engine, and an exhaust gas purification system using the same.
  • exhaust gas containing various combustion products is discharged when the fuel is burned.
  • Exhaust gas includes soot (suit), sulfur oxides (SOx), unburned hydrocarbons (HC) such as soluble organic components (hereinafter also referred to as SOF), carbon monoxide (CO), particulate matter ( Particulates: PM), nitrogen oxides (NOx) and other components.
  • SOx sulfur oxides
  • HC unburned hydrocarbons
  • SOF soluble organic components
  • CO carbon monoxide
  • Particulates Particulates
  • NOx nitrogen oxides
  • DOC oxidation catalyst
  • an exhaust gas purification system of a diesel engine it is generally used in combination with a plurality of types of catalytic power such as NOx reduction catalyst. These catalysts also need to be heated to a specific temperature or higher in order to maintain an active state and exhibit a high purification function.
  • the diesel engine exhaust gas evaluation mode assumes a low exhaust gas temperature and an urban area. Even if exhaust gas is passed through the catalyst device as it is, it does not reach a temperature at which high catalytic activity can be achieved.
  • the Pt-Pd / Al O-based catalyst is a transient model for urban driving.
  • the oxidation function could not be fully achieved.
  • Patent Document 1 an acid catalyst is further arranged in the subsequent stage to acidify and purify HC and CO in the exhaust gas that has passed through the NOx storage catalyst.
  • the particulate matter removal system for diesel engines, etc. accurately detects the regeneration time of the filter that collects PM, and by injecting the fuel necessary for the combustion of particulate matter, Describes a filter regenerator for removing particulate matter that efficiently removes PM collected by the filter.
  • the strong oxidation catalyst promotes oxidation of NO in the exhaust gas and raises the exhaust gas temperature, and the exhaust gas becomes hot.
  • the temperature distribution of DPF is equalized and locally abnormally high temperatures are generated An exhaust gas cleaning device is described that can prevent melting and breakage of the DPF.
  • the heat of the filter heating means disposed between the filter and the catalyst carrier heats the filter and the catalyst carrier
  • the catalyst carrier is made of a porous heat reflecting material. It also serves as a reflector that reflects the light, and this action also heats the filter. Therefore, even when the vehicle is running at low speed, heat can be used efficiently, the activation temperature of the oxidation catalyst and the oxidation temperature of PM can be maintained, and the filter that has collected PM can be reliably regenerated. It is said. However, this will install new heating means, which will lead to higher costs, and it will be difficult to realize because it will have a limited installation space when mounted on a car. Is
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-224569 ([0003] [0004] [0005])
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2004-19651 ([Claim 1] [0006])
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-148141 ([0012])
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-27922 ([Claim 1] [0040])
  • an object of the present invention is to obtain an acid catalyst having excellent HC combustibility in exhaust gas, and particularly in exhaust gas discharged from a diesel engine.
  • An object of the present invention is to provide an exhaust gas purification oxidation catalyst that can efficiently oxidize unburned hydrocarbons and increase the catalyst temperature, and an exhaust gas purification system using the same.
  • the present inventors have supported noble metal elements as oxidation catalysts, particularly as an oxygen-containing catalyst (DOC) for diesel engine exhaust gas.
  • DOC oxygen-containing catalyst
  • a monolithic support is coated with a catalyst component in which specific zeolite is mixed with activated alumina.
  • the present catalyst By applying the oxidized catalyst (hereinafter also referred to as the present catalyst), it has been found that the fuel consumption can be suppressed, the temperature of the exhaust gas can be increased efficiently, and the decrease in the increased temperature can be suppressed.
  • the present invention has been completed by confirming that it is possible to improve the function of an efficient exhaust gas purification means, particularly a catalyst system in a vehicle-mounted diesel engine.
  • an exhaust gas purifying oxidation catalyst in which a catalyst layer exhibiting catalytic activity for a hydrocarbon oxidation reaction covers a monolithic structure type carrier.
  • the catalyst layer contains platinum and activated alumina on which palladium is supported as a main component, and further contains an 8-type zeolite ion-exchanged with cerium.
  • An oxidation catalyst for purifying exhaust gas is provided.
  • the platinum and palladium contents are 0.1 to 5 g / L, respectively, per volume of the monolithic support.
  • an acid catalyst for exhaust gas purification which is characterized by being 0.05 to 2 gZL.
  • an oxidation catalyst for exhaust gas purification according to the first or second invention, wherein the active alumina includes a La-O-based structure. Be done
  • the activated alumina has a specific surface area of 30 to 300 m 2 / g.
  • An oxidation catalyst for gas purification is provided.
  • the active alumina content is 25 to 285 g / L per volume of the monolithic structure type carrier.
  • the cerium ion-exchanged zeolite has a cerium (Ce) content strength of cerium oxide (CeO).
  • An acid catalyst for exhaust gas purification is provided, which is 0.15 to 3.4 wt% in terms of 2.
  • the cerium ion-exchanged zeolite has a molar ratio of silica (SiO 2) Z alumina (Al 2 O 3) ( SAR
  • an exhaust gas purification acid catalyst is provided.
  • the content of the cerium ion-exchanged j8 zeolite is 4 to 115 g / per volume of the monolithic support.
  • an acid catalyst for exhaust gas purification characterized by L.
  • the cell density of the flow-through type carrier of 100 to 900 cells / inch 2
  • an exhaust gas purification acid catalyst is provided.
  • the exhaust gas purifying oxidation catalyst is disposed in an exhaust gas flow path containing unburned hydrocarbons.
  • An exhaust gas purification system comprising the exhaust gas flowing through the oxidation catalyst to oxidize unburned hydrocarbons, and the temperature of the exhaust gas is raised by oxidation heat generated at that time A gas purification system is provided.
  • an exhaust gas characterized by further disposing a catalyst for adsorbing and purifying nitrogen oxides behind the oxidation catalyst.
  • a hatching system is provided.
  • a filter or catalyst for capturing particulates in the exhaust gas further behind the acid catalyst is provided.
  • an exhaust gas purification system characterized by disposing a soot filter.
  • the temperature of the exhaust gas can be increased efficiently and stably by the oxidation heat accompanying the oxidation of unburned hydrocarbon. Can do.
  • a catalyst such as a NOx purification catalyst or a catalyst filter (CSF) (hereinafter also referred to as a post-stage catalyst) is disposed behind the DOC of the present invention, so that the exhaust gas heated by the DOC can be used.
  • the subsequent catalyst is activated by the received heat, and the exhaust gas can be efficiently purified.
  • the DOC of the present invention can raise the temperature of the exhaust gas efficiently, even when fuel is additionally sprayed, the amount can be reduced, leading to improved fuel efficiency.
  • FIG. 1 is an illustration showing an outline of an exhaust gas purification system using an oxidation catalyst of the present invention.
  • FIG. 2 is a graph for comparing the performance of the oxidation catalyst of the present invention (temperature rise of exhaust gas) with a comparative example.
  • FIG. 3 is a graph showing the THC conversion state in the transient mode for comparing the performance of the acid catalyst of the present invention with that of the comparative example.
  • FIG. 4 is a graph showing the total amount of HC (THC) in the exhaust gas in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the oxidation catalyst for purifying exhaust gas of the present invention comprises platinum having catalytic activity for oxidizing unburned hydrocarbons in exhaust gas, and activated alumina (A) supporting palladium, and ion exchange with cerium.
  • This is an oxidation catalyst for purifying exhaust gas that contains
  • activated alumina as a base material carrying platinum and palladium is the main component of an oxidation catalyst for purifying exhaust gas.
  • Activated alumina loaded with platinum and palladium has CO, unburned hydrocarbon and NO acid activity.
  • an alumina force having a high specific surface area with excellent thermal stability of the crystal structure and high catalytic activity is selected.
  • examples of such alumina include ⁇ -anoremina, ⁇ -anoremina, ⁇ -anoremina, ⁇ -anoremina, and ⁇ -anoremina. Among them, ⁇ -alumina is preferable.
  • these aluminas preferably contain lanthanum (La) in order to prevent platinum sintering.
  • Lanthanum should be added to alumina using water-soluble salts of lanthanum compounds such as nitrates, carbonates, ammonium salts, and acetates, and acids such as LaO.
  • lanthanum is preferably present as an alumina Z lanthanum complex oxide having a La—O structure such as La 2 O 3.
  • amount of addition in terms of acid is less than 99Z1, prevention of sintering cannot be expected.
  • amount of addition in terms of acid exceeds 90Z10 due to too much addition of La.
  • characteristics of alumina are insufficient, which is not preferable.
  • the alumina containing La is 20 to 90 wt%, more preferably 45 to 65 wt%, based on the total amount of alumina contained in the catalyst of the present invention. If it is less than 20 wt%, sintering prevention cannot be expected, and if it exceeds 90 wt%, the viscosity may increase remarkably when slurried. A slurry having a viscosity that is too high is preferable in the case where a manufacturing method is performed in which a catalyst is slurried and coated on the surface of a monolithic support.
  • the other alumina not containing La is not particularly limited, and is preferably a force ⁇ -alumina.
  • the active alumina in the present invention is a specific surface area of 30 ⁇ 300m 2 Zg, is preferably 100 to 250 meters 2 Zg.
  • the specific surface area is a value measured by the BET method. If the specific surface area is less than 30 m 2 / g, the catalyst metal cannot be supported in a highly dispersed state. If the specific surface area exceeds 300 m 2 / g, the sintering tends to occur and the heat resistance is insufficient.
  • Such an alumina may be of a single type, or mixed alumina in which a plurality of aluminas having different specific surface areas and crystal structures are mixed may be used.
  • Activated alumina contains both platinum and palladium as catalytic metals that promote the oxidation of hydrocarbons. Platinum has excellent performance as an oxidation catalyst, but it may be difficult to maintain a high dispersion state of platinum by sintering at high temperatures. To avoid this, platinum can be kept in a highly dispersed state by coexisting palladium and alloying it with platinum.
  • the platinum content is preferably 0.1 to 5 gZL and the palladium content is preferably 0.05 to 2 gZL per volume of the monolithic support in the catalyst layer. Platinum is preferably 0.5 to 4 g ZL, and noradium is preferably 0.1 to LgZL. Of these precious metal elements If the content is small, the activity is insufficient, and if the content is too large, the catalyst cost increases.
  • the amount of alumina blended as a main component must be the largest in the total catalyst weight, and is preferably 50% by weight or more based on the total catalyst weight. That is, the catalyst composition of the present invention contains not only alumina but also zeolite such as j8-type zeolite. When alumina is 100 parts by weight, the amount of zeolite is less than 100 parts by weight, preferably 80 parts by weight. Less than, more preferably less than 50 parts by weight.
  • type 8 zeolite is a co-catalyst component for the above-mentioned noble metal element-supported 'active alumina, and Ce is the combustion of unburned hydrocarbons because of its oxygen storage capacity. It has a function to improve performance.
  • Zeolite which is an aluminosilicate, differs in pore shape, size, surface area, and the like depending on the composition of silica, alumina, etc. constituting the skeleton.
  • Zeolite is a force that has various types such as Y-type zeolite, j8-type zeolite, mordenite, ferriolite, and MFI type. In the present invention, it is necessary to use j8-type zeolite.
  • Zeolite other than type zeolite may be included, but the content of type zeolite must be 10 wt% or more, preferably 20 wt% or more, preferably 30 wt% or more in the total input zeolite.
  • Type zeolite has a feature that it has a large surface area and pores compared to other zeolites.
  • the molar ratio (SAR) of silica (SiO 2) Z alumina (Al 2 O 3) is 18 to 200,
  • L00 is preferable. If the SAR is less than 18, the hydrothermal stability is inferior and the durability is high! / If the degree of deterioration exceeds 200, the amount of ion exchange is small, and the Ce cation, which is the active component of the present invention, cannot be sufficiently introduced. May be preferable! / ,.
  • the j8 type zeolite is commercially available as
  • j8 type zeolite ion-exchanged with cerium based on ammonium ion type j8 zeolite is used.
  • 8-type zeolite is preferably 0.15 to 3.4 wt% in terms of cerium oxide (CeO).
  • cerium When the mass power is less than 0.15 wt%, the HC combustion promoting effect is not sufficiently exerted, and when it exceeds 3.4 wt%, the use of commercially available Ce ion-exchanged zeolite, which is not preferable in terms of cost, is also necessary.
  • the content is preferably within the above range.
  • cerium (Ce) content in the j8-type zeolite is less than 0.15 wt%, the reason why the effect of the present invention cannot be obtained is not clear, but cerium is an acid to noble metal that is an acid-reaction site. This may be due to a shortage of element supply or to suppress reaction inhibition due to adsorption of HC to the noble metal at the reaction site.
  • ⁇ -type zeolite has the function of shortening the hydrocarbon molecular chain length of light oil, which is a fuel, and the function of taking HC into the inside so that it can be released, and Ce has the function of absorbing and releasing oxygen. Therefore, the coexistence of Ce and type zeolite in the catalyst allows the released oxygen and HC to react quickly, and the released state of HC incorporated in the ⁇ type zeolite can be maintained and a high combustion state can be maintained. It is thought that the synergistic effect is demonstrated.
  • a catalyst component containing the above-mentioned specific activated alumina and ⁇ -type zeolite is coated on a monolithic support.
  • the type of monolithic structure type carrier is not particularly limited, and examples thereof include cordierite, silicon carbide, silicon nitride, metal carrier, and the like, and cordierite monolithic structure type carrier is preferable.
  • the monolithic carrier is a flow-through carrier with a low air resistance, such as a ham- ber carrier having a triangular, square, or hexagonal cross section.
  • Such a monolithic structure type carrier has a cell density of 100 to 900 cells / inch 2 , and preferably 200 to 600 cells Zinch 2 . If the cell density exceeds 900 cells Zinch 2 , clogging occurs immediately after adhering PM. If the cell density is less than 100 cells Zinch 2 , the geometric surface area becomes small, and the effective usage rate of the catalyst decreases.
  • This catalyst can be manufactured by a combination of noble metal impregnation, loading, pulverization and coating (coating), and platinum, palladium or its precursor (catalytic metal component) is dispersed and supported.
  • the activated alumina and the ⁇ -type zeolite are mixed with an aqueous medium to form a slurry, and the mixture is coated on the surface of the monolithic structure type carrier, and then heated and calcined.
  • the present catalyst comprises: (1) impregnating a solution containing a platinum compound and a palladium compound with active alumina and then drying to carry platinum and palladium on the activated alumina; and (2) a cerium compound. (3) Activated alumina supporting platinum and palladium and j8 type zeolite exchanged with cerium were mixed, and the resulting catalyst component was mixed with water, It can be obtained by blending a pH adjusting agent, slurrying it, bringing it into contact with the monolithic structure type carrier, coating the catalyst layer on the surface of the monolithic type structure carrier, and drying and firing.
  • active alumina such as ⁇ alumina or mixed alumina containing alumina Z lanthanum oxide is put in a container.
  • the amount of the activated alumina used is 25 to 285 gZL (preferably 50 to 140 gZL) per volume of the monolithic support in the catalyst layer.
  • activated alumina is less than 25 gZL, noble metals cannot be supported in a highly dispersed state.
  • a predetermined amount of an aqueous solution or an aqueous suspension containing a platinum compound or a palladium compound is added to the activated alumina.
  • the platinum compound for example, an aqueous solution or an aqueous suspension containing any one of diammine platinum nitrite ( ⁇ ), hydroxyaluminum platinumamine solution, and chloroplatinic acid can be used.
  • the palladium compound include a solution containing any one of diammine palladium nitrate, palladium nitrate, and sodium chloride palladium.
  • the aqueous solution of the platinum compound and the noradium compound is added while stirring the activated alumina.
  • aqueous solution or aqueous suspension containing the platinum compound it is preferable to add the aqueous solution or aqueous suspension containing the platinum compound to the activated alumina, and subsequently add the aqueous solution containing the palladium compound to the mixture of the activated alumina and the platinum compound.
  • Platinum is used in the catalyst layer in an amount necessary to be 0.1 to 5 gZL (preferably 0.5 to 4 gZL) per volume of the monolithic support, and noradium is monolithic support. Per volume of 0.05 to 2 g / L (preferably 0.1 to Lg / L). Next, this solution is kept at room temperature for a predetermined time, and activated alumina is impregnated with platinum and noradium. [0050] (2) Preparation of cerium ion exchange type 13 zeolite
  • cerium ion exchange j8 type zeolite may be selected from commercial products as appropriate, but when produced from ⁇ type zeolite, the production method of cerium ion exchange
  • the j8-type zeolite ion-exchanged with cerium may be used alone, or ⁇ -type zeolite ion-exchanged with iron, or MFI-type zeolite ion-exchanged with hydrogen may be mixed.
  • Cerium ion exchange The amount of use of the 8-type zeolite is 4 to 115 gZL, preferably 10 to LOOgZL per volume of the monolithic support in the catalyst layer. If the cerium-exchanged zeolite is less than 4 gZL, the exhaust gas temperature, which contributes little to HC combustibility, cannot be raised sufficiently, and if it exceeds 115 gZL, it is not preferable in terms of cost.
  • the activated alumina supporting platinum and palladium obtained by the above method is mixed with ⁇ 8 type zeolite exchanged with cerium, and acetic acid and pure water are introduced into a container to make the slurry uniform.
  • acetic acid and pure water are added in small amounts while stirring a mixture of activated alumina and / 3-type zeolite with a mixer so that the pH is 1.5 to 7.0.
  • An acid other than acetic acid may be used, and after adjusting the pH by adding an alkali, a surfactant or a dispersed resin may be blended and pulverized and mixed with a ball mill or the like.
  • the slurry is brought into contact with a monolithic structure type carrier and coated (coated).
  • a ceramic honeycomb carrier (flow-through carrier), which is a monolithic carrier, is put in the slurry, and after both are sufficiently brought into contact, for example, for 1 to 60 seconds, excess slurry in the cell is removed with an air flow.
  • hot air of, for example, 20 to 100 ° C. is blown onto the carrier on which the slurry is adhered to remove at least 50% of water. After removing the moisture in this way, it is fired in air at a temperature of 200 to 900 ° C. for 10 minutes to 10 hours.
  • the supported catalyst amount is 35 to 400 gZL, preferably
  • the acid catalyst of the present invention coated with a catalyst layer of 60 to 210 gZL can be obtained. If the amount of catalyst supported is less than 35 gZL, the catalytic effect of the present invention cannot be obtained. This is not preferable because the cost increases due to the increase in the number of the particles.
  • the exhaust gas purification system of the present invention is suitable when the above-described exhaust gas purification oxidation catalyst is disposed in an exhaust gas flow path containing unburned hydrocarbon, and allows the exhaust gas to flow through the oxidation catalyst. It is characterized by oxidizing unburned hydrocarbons and raising the temperature of exhaust gas by the oxidation heat generated at that time.
  • the present invention is suitable as an exhaust gas purification system installed in an exhaust gas flow path of a diesel engine.
  • the temperature of the acid catalyst (DOC) is 150 ° C or higher, preferably A temperature of 200 ° C or higher, more preferably 250 ° C or higher, particularly 250 to 450 ° C is suitable. If the temperature is less than 150 ° C, sufficient catalytic activity cannot be achieved. Normally, the catalyst temperature can be raised to 150 ° C or higher by natural heating with exhaust gas, but additional heating means and heat retaining means may be additionally provided.
  • the present invention can be applied when the space velocity of exhaust gas is 5,000-400, OOOZhr. 5, If it is less than OOOZhr, the catalyst capacity will be larger than the amount of exhaust gas emitted from the diesel engine, and it will be difficult to actually install it in a car. In addition, if it exceeds 400, 000 / hr, the contact time with the catalyst is shortened, so that the purification efficiency of HC cannot be increased, and the exhaust gas may not be sufficiently heated.
  • various forms of exhaust gas purification systems can be configured according to the type of internal combustion engine, the content of exhaust gas regulations, and the like.
  • a filter or a catalytic filter for capturing particulates in the exhaust gas is further arranged behind the exhaust gas purification oxidation catalyst; a nitrogen gas is placed behind the exhaust gas purification oxidation catalyst.
  • a mode in which a catalyst for adsorbing and purifying oxides is disposed; a mode in which a plurality of such filters and various catalysts are installed behind the above-mentioned exhaust gas purifying oxidation catalyst is included.
  • the present invention supplies additional fuel (unburned hydrocarbons) into the exhaust gas, distributes it through an oxidation catalyst installed in the exhaust gas flow path, and raises the temperature of the exhaust gas.
  • Fuel hydrocarbons can be supplied by temporarily increasing the amount of fuel sprayed into the combustion chamber of the internal combustion engine, or by exhaust pipe or fuel injection into the catalyst system. It shows remarkable hydrocarbon oxidation and exhaust gas temperature increase effect of the catalyst.
  • the amount of fuel sprayed into the combustion chamber of the internal combustion engine can be easily increased by controlling the fuel injection system, and this is a desirable form because it is not necessary to design and install a new system or device. Needless to say, when it is necessary to supply unburned hydrocarbons to other catalysts installed at the subsequent stage of the catalyst, unburned hydrocarbons should be supplied by appropriate means.
  • a catalyst or filter that is activated at a high temperature that brings about the exhaust gas force S is placed behind the flow of the exhaust gas in which the catalyst (DOC) is arranged, so that the exhaust gas passes through the catalyst and is exhausted.
  • DOC catalyst
  • This is an exhaust gas purification system that improves the gas purification capacity function of the gas. That is, since the catalyst of the present invention is an oxidation catalyst, NO in the exhaust gas is oxidized to produce NO.
  • soot deposited on the downstream catalyst such as DPF and CSF.
  • CSF catalyst for PM purification
  • unburned hydrocarbons supplied to the catalyst placed in the preceding stage are gasoline, kerosene, or A heavy oil in addition to light oil. But you can. Since diesel oil is a diesel engine fuel, it is desirable from the standpoint of supply stability because it is not necessary to secure a separate space for unburned hydrocarbons.
  • the diesel exhaust gas path 1 contains the oxidation catalyst 2 (DOC) and the catalyzed filter 3 (CSF) of the present invention.
  • DOC oxidation catalyst 2
  • CSF catalyzed filter 3
  • exhaust gas flows from the upstream side, passes through DOC and then CSF in sequence, and is released from the muffler (not shown) into the atmosphere.
  • the exhaust gas can pass through the porous walls of each cell of the oxidation catalyst and the catalytic filter, but the fine particles are collected in the CSF.
  • a diesel oil injection valve 4 is provided in the diesel exhaust gas path 1, and the diesel oil is injected here. As a result, the amount of light oil in the combustion chamber may be temporarily increased as described above.
  • the type of CSF is not particularly limited.
  • the CSF is made of a porous ceramic such as cordierite, coated with y-alumina, and further supported with a noble metal element such as platinum, palladium, or rhodium. Can be used.
  • a part of the monolithic catalyst, which is an oxidation catalyst, may have a CSF catalyst function.
  • the monolithic structure type carrier used for CSF has a large number of cells in the exhaust flow direction, and each cell is closed on either the exhaust gas inflow side or the outflow side, and has a checkered pattern structure, for example. What is present is preferred.
  • each cell is constituted by a porous wall, exhaust gas can pass through these porous walls, and particulates in the exhaust gas are collected in such CSF.
  • Light oil-containing exhaust gas is oxidized and burned by the DOC of the present invention, supplied to the CSF as a high-temperature gas, and particulates (PM) deposited on the CSF are burned and removed by gasification, and the CSF itself is regenerated. .
  • This embodiment is an exhaust gas purification system in which a NOx occlusion purification catalyst (hereinafter sometimes referred to as NSR) is applied as a post-stage catalyst.
  • NSR NOx occlusion purification catalyst
  • NSR is an NOx occlusion material that contains an alkaline earth metal compound such as Ba and a noble metal such as Rh and Pt as catalytically active species.
  • alkaline earth metal compound such as Ba
  • a noble metal such as Rh and Pt as catalytically active species.
  • the main parts of its function are as follows.
  • additives, base materials, and the shape of the structural support in the composition of the NOx occlusion purification catalyst are not particularly limited as long as they have a function of purifying NOx in the heated exhaust gas. You can also use those that have a purification function for YOGU HC and SOx.
  • alumina, titanium, magnesia, zircoua or the like may be used alone or in combination as a base material, and as an alkali (earth) metal species, potassium or the like may be added in addition to norium.
  • This embodiment is an exhaust gas purification system that uses a combination of two or more selected from CSF (PDF), NSR, or DOC power as a post-stage catalyst.
  • CSF CSF
  • NSR NSR
  • DOC DOC power
  • this catalyst and a selective reduction catalyst may be used in combination as a NOx purification means.
  • the selective reduction catalyst is a catalyst that introduces a reducing agent such as urea as an ammonia supply source and exhaust gas in an oxidizing atmosphere into the catalyst to reduce NOx.
  • the purification method using this is a selective method. It is said to be a catalytic reduction method (SCR: Selective Catalytic Reduction).
  • SCR Selective Catalytic Reduction
  • Specific combinations with this catalyst include this catalyst + CSF + SCR catalyst + DOC, and this catalyst + SCR catalyst ZDPF + DOC.
  • SCR catalyst ZDPF means DPF coated with SCR catalyst.
  • a supply system such as ammonia water and urea water is installed, and as a NOx reduction catalyst, for example, a support such as alumina, silica alumina, activated carbon, zeolite, Ni, Mn, Co
  • the catalyst include one or more transition metals such as Mo, Ti, Fe, V, and W.
  • the catalyst of the present invention can be formed by laminating with other catalysts having different compositions and functions. Examples of such cases include exhaust gas purification systems where the maximum operating temperature is relatively high, and exhaust gas purification systems that require forced regeneration when the exhaust gas temperature through the catalyst is relatively low. Exhaust gas purification systems that emphasize systems, light oil combustion performance, or prevention of poisoning of this catalyst are listed, satisfying special requirements due to the environment in which the catalyst is used For the purpose.
  • activated metal mixed alumina
  • catalytic metals Pt, Pd
  • cerium ion exchanged type 8 zeolite was mixed to prepare a catalyst component.
  • this catalyst component was coated on a monolithic structure type carrier to obtain an oxidation catalyst for exhaust gas purification of the present invention.
  • alumina 2 ⁇ — Al O
  • the mixture was mixed at a ratio of 4: 200 (weight ratio) to obtain activated alumina (hereinafter referred to as “mixed alumina”).
  • the specific surface area of this mixed alumina was 182 m 2 / g.
  • the impregnation treatment was performed by adding a 28 wt% aqueous solution of diammine palladium nitrate in an amount of 49 wt%. Then, the moisture was dried and removed to obtain a mixed alumina in which the noble metal was dispersed (hereinafter referred to as “Pt—Pd / Al 2 O”).
  • the j8 type zeolite ion-exchanged with cerium was obtained by the following method.
  • cerium ion exchange j8-type zeolite is cerium (Ce) in terms of acid cerium (CeO)
  • ⁇ -type zeolite (c) ion-exchanged with Fe and MFI-type zeolite (d) ion-exchanged with hydrogen were mixed and stirred to obtain [Catalyst component 1].
  • Catalyst component 1 To 100 parts by weight of water, 86 parts of water and 7.6 parts of acetic acid were added and stirred and mixed to prepare a slurry. In this slurry, a commercially available ceramic substrate, two cam carrier A (400 cpsi, wall thickness: 6 mil) was wash-coated, dried, and calcined at 450 ° C. for 0.5 hour to obtain a catalystized carrier. . This is referred to as [this catalyst 1]. The content of Pt metal in [this catalyst 1] was 1.5 gZL, and the content of [catalyst component 1] was 142 gZL.
  • the temperature (° c) of the exhaust gas that flows out from the catalytic force until the end of the light oil spray starting force is measured under the following conditions. did.
  • the exhaust gas temperature was measured as “Bed Temp”, that is, 10 mm upstream from the downstream end face on the center axis of the catalyst.
  • the measured force is shown in Fig. 2 as a graph to read the exhaust gas temperature rise behavior.
  • is on the vertical axis and time is on the horizontal axis. Note that the passage of time in the graph is constant for each catalyst.
  • Catalyst inlet side exhaust gas temperature 300 people 5 ° C
  • Temperature measuring means ⁇ 0.5mm vertical thermocouple
  • the catalyst metal (Pt) was supported on activated alumina (alumina 2), and then the cerium ion-exchanged zeolite was mixed to prepare a catalyst component. Next, this catalyst component was coated on a monolithic structure type carrier to obtain an exhaust gas purification oxidation catalyst for comparison.
  • ⁇ -Al ⁇ As activated alumina, ⁇ -Al ⁇ (above-mentioned “Alumina 2”) with a specific surface area of 157 m 2 / g was used.
  • the alumina 2 was impregnated with a 20% by weight aqueous solution of diammine platinum nitrite (sodium) having an amount of Pt metal element of 2.1% by weight, and then the moisture was dried and removed with Then, activated alumina (hereinafter referred to as “PtZAl 2 O”) in which a precious metal was dispersed was obtained.
  • PtZAl 2 O activated alumina
  • cerium (Ce) in terms of acid cerium (CeO) described in Example 1 is 1.2.
  • ⁇ -type zeolite (b) obtained by ion-exchanging the above-mentioned PtZAl O powder (a) with Ce, Fe
  • Catalyst component 2 To 100 parts by weight, 86 parts of water and 7.6 parts of acetic acid were added and stirred and mixed to prepare a slurry. In this slurry, a commercially available ceramic substrate, two-cam carrier A (40 Ocpsi, wall thickness: 6 mil) was wash-coated, dried and calcined at 450 ° C for 0.5 hour to obtain a catalystized carrier. . This is designated as [Comparative Example Catalyst 1].
  • Example 2 In order to evaluate the acidity performance of the unburned hydrocarbon of the catalyst thus obtained, the exhaust gas from which the catalytic power flows out before and after the start of the light oil spraying under the above conditions, as in Example 1. The temperature (° C) of was measured. Result of measurement force In order to read the exhaust gas temperature rise behavior, a graph is shown in Fig. 2. In Fig. 2, ⁇ is on the vertical axis and time is on the horizontal axis.
  • activated alumina mixed alumina
  • catalytic metals Pt, Pd
  • iron ion exchange j8 zeolite and MFI zeolite ion exchanged with hydrogen to prepare catalyst components.
  • this catalyst component was coated on a monolithic structure type carrier to obtain an oxidation catalyst for purifying exhaust gas for comparison.
  • This catalyst does not contain Ce ion exchange type zeolite.
  • the impregnation treatment was performed by adding a 28% by weight aqueous solution of diammine palladium nitrate in an amount of 0.49% by weight. Obtained.
  • Catalyst component 3 To 100 parts by weight, 86 parts of water and 7.6 parts of acetic acid were added and stirred and mixed to prepare a slurry. In this slurry, a commercially available ceramic substrate, two-cam carrier A (400 cpsi, wall thickness: 6 mil) was wash-coated, dried, and calcined at 450 ° C. for 0.5 hour to obtain a catalyst-supported carrier. . This is referred to as [Comparative Example Catalyst 2].
  • the content of Pt metal in [Comparative Example Catalyst 2] was 1.5 gZL, the content of Pd metal was 0.5 g / L, and the content of [Comparative Example Catalyst 2] was 142 gZL.
  • a catalyst component was prepared in which catalytic metal (Pt, Pd) was supported on activated alumina (mixed alumina) and cerium ion exchanged ⁇ 8 type zeolite was not mixed. Next, this catalyst component was coated on a monolithic structure type carrier to obtain a comparative exhaust gas purifying oxidation catalyst.
  • the amount of Pt metal element in the total amount with the mixed alumina is 20% by weight of an aqueous solution of diammine platinum nitrite ( ⁇ ) in an amount of 1.06% by weight
  • the amount of Pd metal element Pt-Pd / Al is a mixed alumina in which a noble metal is dispersed by adding a 28% by weight aqueous solution of diammine palladium nitrate in an amount of 0.35% by weight, followed by impregnation treatment, followed by drying and removing moisture.
  • O Catalyst component 4] was obtained.
  • Catalyst component 4 To 100 parts by weight, 86 parts of water and 7.6 parts of acetic acid were added and stirred and mixed to prepare a slurry. In this slurry, a commercially available ceramic, two-cam carrier A (40 Ocpsi, wall thickness: 6mil, diameter 143.8mmX length 76.2mm (capacity: 1240ml)) washes coated, dried and calcined at 450 ° C for 0.5 hours to obtain a catalyzed support . This is designated as [Comparative Example Catalyst 3].
  • the content of Pt metal in [Comparative Example Catalyst 3] was 1.5 gZL, the content of Pd metal was 0.5 gZL, and the content of [Comparative Example Catalyst 3] was 142. OgZL.
  • the vertical axis in Fig. 3 represents the conversion rate (Conversion) of the total amount of HC (Total HC: THC! /, U) converted from hydrocarbons in exhaust gas to hydrocarbons with 1 carbon,
  • the horizontal axis represents the passage of time.
  • Figure 4 shows the total HC emissions in terms of THC in EUDC and ECE in one test result in Figure 3.
  • the vertical axis represents the amount of THC emissions
  • the reference data includes THC data in exhaust gas without a catalyst.
  • ECE and EUDC120 refer to the transient evaluation mode in European exhaust gas regulations.
  • the acid activity of the catalyst of Example 1 is significantly improved as compared with Comparative Example 1. Also, regarding the exhaust gas temperature stability, it can be seen that the temperature change in Example 1 is small and stable compared to Comparative Example 2 prepared without compounding ⁇ -type zeolite ion-exchanged with cerium. Because the catalyst of this product does not contain zeolite, it is inferior to the catalyst of Example 1 in purification performance evaluation such as ECE and EUDC, such as transient mode that can confirm HC acid performance at low temperatures. I understand that.
  • the catalyst of the present invention increases the exhaust gas when a large amount of unburned hydrocarbon is sprayed. It has excellent temperature performance and high temperature stability, and it can be seen that it exhibits excellent performance as an exhaust gas purification catalyst.
  • An oxidation catalyst for purifying exhaust gas that can efficiently oxidize unburned hydrocarbons in exhaust gas, and can raise the catalyst temperature with a small amount of fuel spray, especially in diesel engines, and exhaust gas purification using the same Available as a system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

 内燃機関から排出される排気ガス中の未燃炭化水素を効率的に酸化でき、少ない燃料噴霧で触媒温度を上昇しうる排気ガス浄化用酸化触媒、及び排気ガス浄化システムである。炭化水素の酸化反応に対して触媒活性を示す触媒層が、一体構造型担体を被覆してなる排気ガス浄化用酸化触媒であって、前記触媒層は、白金、及びパラジウムが担持された活性アルミナを主成分とし、さらに、セリウムでイオン交換したβ型ゼオライトを含有することを特徴とする排気ガス浄化用酸化触媒;上記の排気ガス浄化用酸化触媒を、未燃炭化水素を含む排気ガス流路に配置してなる排気ガス浄化システムであって、排気ガスを該酸化触媒に流通させて未燃炭化水素を酸化し、その際に発生する酸化熱によって排気ガスの温度を上昇させることを特徴とする排気ガス浄化システムによって提供する。          

Description

排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム 技術分野
[0001] 本発明は、排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄ィ匕システム〖こ 関し、より詳しくは、排気ガス中の未燃炭化水素を効率的に酸ィ匕でき、特にディーゼ ル機関において少ない燃料噴霧で触媒温度を上昇しうる排気ガス浄化用酸化触媒 、及びそれを用いた排気ガス浄ィ匕システムに関するものである。
背景技術
[0002] 内燃機関、例えば軽油などを燃料とするディーゼル機関では、燃料の燃焼時に様 々な燃焼生成物を含んだ排気ガスが排出される。排気ガスには、煤 (スーツ)、硫黄 酸ィ匕物 (SOx)、可溶性有機成分 (以下、 SOFとも言う)等の未燃炭化水素 (HC)、一 酸化炭素 (CO)、粒子状物質 (パティキュレート: PM)、窒素酸化物 (NOx)等の成分 が含まれている。そのため、人体や地球環境にとって有害なこれら成分の除去方法と して、様々な手法が提案されている。
[0003] このうち一酸ィ匕炭素 (CO)や、未燃炭化水素 (HC)、可溶性有機成分 (SOF)の除 去方法としては、排気ガス流路に排気ガスが流通可能な一体構造型担体に触媒成 分を含有させた酸化触媒を配置し、これに排気ガスを流通し、 CO、 HC、 SOFを酸 化する方法がある。ディーゼル機関で用いられる酸ィ匕触媒は、ディーゼル機関排気 ガス用酸化触媒 (以下、 DOCともいう)といわれ、広く検討されている。
[0004] 一般にディーゼル機関で、酸化触媒 (DOC)それ自体が効率的に活性化されるに は適切な温度雰囲気に置かれなければならず、その温度条件が満たされなければ 排気ガスに含まれる HCの酸化機能だけでなぐ CO、 SOFの酸化機能も発揮されな い。
[0005] また、ディーゼル機関の排気ガス浄ィ匕システムにお 、ては、 NOx還元触媒など、複 数種類の触媒力 ¾ocとともに組み合せて用いられるのが一般的である。これらの触 媒も、活性状態を保ち、高い浄化機能を発揮させるためには特定温度以上に加熱さ れる必要がある。 [0006] し力しながら、ディーゼル機関は、熱—運動エネルギーの変換効率が良い反面、デ イーゼル機関の排気ガスの評価モードが、排気ガス温度の低 、市街地を想定したも のであるために、排気ガスをそのまま触媒装置に通過させても高触媒活性を発揮で きる温度には達しな 、事が多 、。
[0007] また、 HCや SOFの酸ィ匕 (以下、燃焼性とも!、う)を目的として種々の触媒が提案さ れている。その主なものには、アルミナを母材として Pt、 Pd等の貴金属を担持させた Pt-Pd/Al O系触媒があげられる。このうち Pt— PdZAl O系触媒は、一般的に
2 3 2 3
HC燃焼性が優れて 、るとされて 、る。
し力しながら、 Pt-Pd/Al O系触媒は、市街地走行を想定したトランジェント モ
2 3
ード (transient mode)のような、排気ガス温度域が広ぐかつ低い温度域を含む測 定モードでは、充分な酸化機能を発揮する事が出来なかった。
[0008] このため DOCに HC吸蔵 ·排出機能を有するゼォライトを配合し、低温時に浄化さ れない HCを一時的に吸蔵することで HCの排出量の低減を図る事も考えられる。し かし、単にゼォライトを用いたのみでは、吸蔵された HCを充分に酸ィ匕することは難し かった。
[0009] また、前段に NOx吸蔵浄化触媒と後段に酸化触媒を組み合わせ、排気ガスの浄 化を行う手段も検討されている (特許文献 1参照)。これは、前段の NOx吸蔵浄化触 媒では NOxの吸蔵、放出を、エンジンの燃焼状態の制御と共にコントロールし、排気 ガス中の NOxを還元浄化するものである力 この際、還元因子として排気ガス中の H C、 COが利用される。
ここで、 HC、 COは NOxの浄化の際に消費される力 完全には消費されず、 NOx 吸蔵浄化触媒を通過し、一部そのまま排出されてしまう。そのため、特許文献 1では、 更に後段に酸ィ匕触媒を配置して、 NOx吸蔵浄ィ匕触媒を通過した排気ガス中の HC、 COを酸ィ匕し浄ィ匕するものである。
[0010] 近年、環境問題に対する意識が高まり、ディーゼルエンジンの排気ガス中の PMを 除去するために、セラミック製のモノリスハ-カム型ウォールフロータイプのパティキュ レート捕捉用フィルターや、セラミックや金属を繊維状にした繊維型フィルターなど( DPF)の利用が検討されている。更に、フィルターに捕捉された PMを燃焼して、 PM 捕集によるフィルターの圧力損失増大を軽減し、効率よく PMが除去できるように DP Fを触媒ィ匕したフィルター(以下、 CSFとも 、う)も開発されて!、る。
この場合でも、再生効率を高めるためには排気ガスの温度を上昇させなければなら ず、所望の温度に達するまで燃料を燃焼室に多量に供給したり、排気ガス中に燃料 を噴霧し続ける方法 (特許文献 2参照)が提案されて ヽる。
特許文献 2では、ディーゼルエンジン用粒子状物質除去システムカゝら PMを捕集す るフィルターの再生時期を正確に検出すると共に、粒子状物質の燃焼に必要な量の 燃料を噴射することによって、フィルターに捕集された PMを効率的に除去する粒子 状物質除去用フィルターの再生装置を記載している。
[0011] また、 DPF、 CSFにおける効率的な煤の燃焼においては、排気ガスを高温に安定 して維持できることが望ましい。ここで、単に排気ガスの温度を上昇させるのであれば 、 DOCとこれら燃料供給手段とを組み合わせる事によっても可能であるが、燃費が 低下してしまう。
DPF、 CSFにおける煤の燃焼温度としては、一般に 550°C以上の高温が要求され 、そのための排気ガスの加熱手段が検討されてきた。例えば、排気ガスの流れ方向 の前段に配置した触媒の酸化活性により排気ガス温度を上昇させ、後段に配置した 機能の異なるフィルターや触媒を活性化する方法 (特許文献 3参照)が提案されて!ヽ る。
ここには、排気ガスが放熱して低温になり易い外周側通路において、強酸化触媒 により排気ガス中の NO等の酸ィ匕を促進して排気ガス温度を上昇させると共に、排気 ガスが高温になり易い中央側通路において、弱酸ィ匕触媒により NO等の酸ィ匕を抑制 して排気ガス温度の上昇を抑制することにより、 DPFの温度分布を均等化して、局所 的に異常な高温が発生するのを防止して、 DPFの溶損や破損を回避できる排気ガ ス浄ィ匕装置が記載されて 、る。
[0012] 前記 DOCは、排気ガス中の NOを酸化することにより NOを生成するので、 NOと
2 2
DPFに堆積した煤との接触により、連続的に酸ィ匕除去できることになり、煤や PMで 汚染された DPFを再生する機能も期待されるわけであるが、特許文献 3に記載され た触媒は製造方法が複雑でコスト面でも難点がある。 [0013] また、排気ガスの加熱方法としては、別途、ヒーターなど外部加熱手段を用いて排 気ガス温度を上げる方法 (特許文献 4参照)も提案されて!ヽる。
ここでは、フィルターと触媒担体との間に配設されたフィルター加熱手段の熱により 、フィルターと触媒担体とが加熱され、また、触媒担体が多孔状熱反射材からなるた め、いわばヒーターの熱を反射するリフレクタとしての役割も果たし、この作用によつ てもフィルターが加熱される。従って、車両の低速走行時であっても熱を効率よく利 用でき、酸化触媒の活性化温度及び PMの酸化温度を維持することができ、確実に PMを捕集したフィルターの再生を行えるものとしている。し力しながら、これは新たに 加熱手段を設置するものであり、コスト上昇につながるのはもちろん、自動車に搭載 する場合には、搭載スペースが限られることから、その実現には困難を伴うものである
[0014] このように、従来の排気ガス浄ィ匕システムでは、高機能な酸化触媒が採用されて ヽ ないために、いずれも排気ガスの浄ィ匕コストの上昇を招く事になるなど、充分な排気 ガス浄ィ匕性能を得るには至って ヽなかった。
特許文献 1:特開 2002— 224569公報([0003] [0004] [0005])
特許文献 2:特開 2004— 19651公報([請求項 1 ] [0006] )
特許文献 3 :特開 2003— 148141公報([0012])
特許文献 4:特開 2003— 27922公報 ( [請求項 1] [0040] )
発明の開示
発明が解決しょうとする課題
[0015] 本発明の目的は、上記従来技術の問題点に鑑み、排気ガス中の HCの燃焼性に 優れた酸ィ匕触媒を得ることにあり、特にディーゼル機関から排出される排気ガス中の 未燃炭化水素を効率的に酸化でき、触媒温度を上昇しうる排気ガス浄化用酸化触 媒、及びそれを用いた排気ガス浄ィ匕システムを提供することにある。
課題を解決するための手段
[0016] 本発明者らは、かかる目的を達成するために鋭意研究を重ねた結果、酸化触媒と して、特にディーゼル機関排気ガス用酸ィ匕触媒 (DOC)として、貴金属系元素を担持 した活性アルミナに特定のゼォライトを混合した触媒成分で一体構造型担体を被覆 した酸化触媒 (以下、本触媒ともいう)を適用することで、燃料消費を抑制して排気ガ スの温度を効率的に上昇させ、かつ上昇した温度の低下を抑制できることを見出し、 これにより高効率な排気ガス浄化手段、特に車載用ディーゼル機関における触媒シ ステムの機能を向上できることを確認して本発明を完成するに至った。
[0017] すなわち、本発明の第 1の発明によれば、炭化水素の酸化反応に対して触媒活性 を示す触媒層が、一体構造型担体を被覆してなる排気ガス浄化用酸化触媒であつ て、前記触媒層は、白金、およびパラジウムが担持された活性アルミナを主成分とし 、さらに、セリウムでイオン交換した )8型ゼオライトを含有することを特徴とする排気ガ ス浄化用酸化触媒が提供される。
[0018] また、本発明の第 2の発明によれば、第 1の発明において、前記白金、およびパラ ジゥムの含有量は、一体構造型担体の容量当り、それぞれ 0. l〜5g/L、及び 0. 0 5〜2gZLであることを特徴とする排気ガス浄ィ匕用酸ィ匕触媒が提供される。
[0019] また、本発明の第 3の発明によれば、第 1又は 2の発明において、前記活性アルミ ナは、 La— O系構造を含むことを特徴とする排気ガス浄化用酸化触媒が提供される
[0020] また、本発明の第 4の発明によれば、第 1〜3のいずれかの発明において、前記活 性アルミナは、比表面積が 30〜300m2/gであることを特徴とする排気ガス浄ィ匕用 酸化触媒が提供される。
[0021] また、本発明の第 5の発明によれば、第 1〜4のいずれかの発明において、活性ァ ルミナの含有量は、一体構造型担体の容量当り、 25〜285g/Lであることを特徴と する排気ガス浄化用酸化触媒が提供される。
[0022] また、本発明の第 6の発明によれば、第 1〜5のいずれかの発明において、前記セ リウムイオン交換 型ゼオライトは、セリウム(Ce)の含有量力 酸ィ匕セリウム(CeO )
2 換算で 0. 15〜3. 4wt%であることを特徴とする排気ガス浄ィ匕用酸ィ匕触媒が提供さ れる。
[0023] また、本発明の第 7の発明によれば、第 1〜6のいずれかの発明において、前記セ リウムイオン交換 型ゼオライトは、シリカ(SiO )Zアルミナ (Al O )のモル比(SAR
2 2 3
)が 18〜200であることを特徴とする排気ガス浄ィ匕用酸ィ匕触媒が提供される。 [0024] また、本発明の第 8の発明によれば、第 1〜7のいずれかの発明において、セリウム イオン交換 j8型ゼオライトの含有量は、一体構造型担体の容量当り、 4〜115g/L であることを特徴とする排気ガス浄ィ匕用酸ィ匕触媒が提供される。
[0025] さらに、本発明の第 9の発明によれば、第 1〜8のいずれかの発明において、前記 一体構造型担体は、セル密度が 100〜900セル/ inch2のフロースルー型担体であ ることを特徴とする排気ガス浄ィ匕用酸ィ匕触媒が提供される。
[0026] 一方、本発明の第 10の発明によれば、第 1〜9のいずれかの発明に係り、排気ガス 浄化用酸化触媒を、未燃炭化水素を含む排気ガス流路に配置してなる排気ガス浄 化システムであって、排気ガスを該酸化触媒に流通させて未燃炭化水素を酸化し、 その際に発生する酸化熱によって排気ガスの温度を上昇させることを特徴とする排 気ガス浄ィ匕システムが提供される。
[0027] また、本発明の第 11の発明によれば、第 10の発明において、前記酸化触媒の後 方に、さらに、窒素酸化物を吸着浄化する触媒を配置することを特徴とする排気ガス 净化システムが提供される。
[0028] さらに、本発明の第 12の発明によれば、第 10又は 11の発明において、前記酸ィ匕 触媒の後方に、さらに、排気ガス中のパティキュレートを捕捉するフィルター、又は触 媒ィ匕フィルターを配置することを特徴とする排気ガス浄ィ匕システムが提供される。 発明の効果
[0029] 本発明の排気ガス浄化用酸化触媒によれば、排気ガス浄化機能に加え、未燃炭 化水素の酸化に伴う酸化熱によって排気ガスの温度を効率的、かつ安定的に上昇さ せることができる。
また、本発明の DOCの後方に、 NOx浄化触媒や、触媒ィ匕フィルター (CSF)等の触 媒 (以下、後段触媒ともいう)を配置することで、 DOCによって昇温された排気ガスか ら受ける熱で後段触媒が活性化され、効率的に排気ガスの浄ィ匕を行う事ができる。 さらに、本発明の DOCは、排気ガスを効率的に昇温できるため、燃料を追加噴霧 する場合であっても、その量は少なくて済むことから燃費の向上にもつながる。
図面の簡単な説明
[0030] [図 1]図 1は、本発明の酸化触媒を用いた排気ガス浄化システムの概要を示す説明 図である。
[図 2]図 2は、本発明の酸化触媒の性能 (排気ガスの昇温状態)を比較例と対比する ためのグラフである。
[図 3]図 3は、本発明の酸ィ匕触媒の性能を比較例と対比するための、トランジェント モードにおける THCの変換状態を示すグラフである。
[図 4]図 4は、図 3における排気ガス中の HCの総量 (THC)を表すグラフである。 発明を実施するための最良の形態
[0031] 以下、本発明の排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システ ムについて、図面を用いて詳細に説明する。本発明は内燃機関の種類によって限定 されるものでは無いが、以下、特に顕著な効果が発揮されるディーゼル機関、特に自 動車用ディーゼル機関を中心に述べる。
[0032] 1.排気ガス浄化用酸化触媒
本発明の排気ガス浄化用酸化触媒は、排気ガス中の未燃炭化水素を酸化する触 媒活性を有する白金、およびパラジウムが担持された活性アルミナ (A)を主成分とし 、さらにセリウムでイオン交換した |8型ゼオライト (B)を含み、この触媒層で一体構造 型担体 (C)が被覆されて!ヽる排気ガス浄化用酸化触媒である。
[0033] (A)白金およびパラジウムを担持した活性アルミナ
本発明にお!ヽて、白金およびパラジウムを担持した母材としての活性アルミナは、 排気ガス浄化用酸化触媒の主成分である。
白金およびパラジウムが担持された活性アルミナは、 CO、未燃炭化水素、 NOの 酸ィ匕活性を有している。活性アルミナとしては、結晶構造の熱的安定性が優れ、触媒 活性が高ぐ高い比表面積を有するアルミナ力 選択される。このようなアルミナとし ては、 γ—ァノレミナ、 βーァノレミナ、 δ ーァノレミナ、 η ーァノレミナ、 Θ ーァノレミナが挙 げられ、中でも γ —アルミナが好ましい。
[0034] また、これらアルミナには、白金のシンタリングを防止するためランタン (La)を含有 することが望ましい。ランタンは、硝酸塩、炭酸塩、アンモニゥム塩、又は酢酸塩など ランタン化合物の水溶性塩や La Oなどの酸ィ匕物を用いてアルミナに添加すること
2 3
ができ、アルミナ中に金属 (La)として、又はランタン酸ィ匕物として存在させることがで きる。また、ランタンは、 La 2 O 3など La— O系構造を有するアルミナ Zランタン複合酸 化物として存在することが好まし 、。
A1と Laの比率は、特に限定されないが、酸化物換算で、 AlZLa= 99Zl〜90Z 10、好ましくは 99Zl〜98Z2とすることができる。 Laが少なく酸ィ匕物換算された添 加量が 99Z1未満では、シンタリング防止を期待できず、一方、 Laの添加量が多す ぎて酸ィ匕物換算された添加量が 90Z10を超えると、アルミナの特性が不十分となり 好ましくない。
なお、 Laを含有するアルミナは、本発明の触媒に含まれる全アルミナ量に対して 2 0〜90wt%であり、 45〜65wt%であることがより好ましい。 20wt%未満ではシンタ リング防止を期待できず、 90wt%を越えるとスラリー化した時に著しく粘度が上昇す ることがある。粘度の高すぎるスラリーは、一体構造型担体表面に触媒をスラリー化し てコーティングする製造方法を取る場合好ましくな 、。
また、ここで、 Laを含有しない他のアルミナとしては、特に限定されるものでは無い 力 γ —アルミナである事が好ましい。
[0035] また、本発明において活性アルミナは、比表面積が 30〜300m2Zgであり、 100〜 250m2Zgであることが好ましい。比表面積は、 BET法で測定した値である。比表面 積が 30m2/g未満では、高分散に触媒金属を担持できず、 300m2/gを超えると、 シンタリングを起こしやすい等、耐熱性の面で不十分なものとなる。なお、このようなァ ルミナは、単一の種類であっても良いが、比表面積、結晶構造が異なる複数のアルミ ナを混合した混合アルミナを用いても良 、。
[0036] 活性アルミナは、炭化水素の酸化を促進する触媒金属として、白金及びパラジウム の両方を含有している。白金は酸化触媒として優れた性能を有するが、それだけで は高温でシンタリングして白金の高分散状態を維持し難い場合がある。それを回避 するため、パラジウムを共存させ、パラジウムを白金と合金化することで白金を高分散 状態に保つことができる。
白金の含有量は、触媒層において、一体構造型担体の容量当り、 0. l〜5gZLで あり、パラジウムの含有量は 0. 05〜2gZLであることが望ましい。白金は 0. 5〜4g ZLであり、ノラジウムは、 0. 1〜: LgZLであることが好ましい。これら貴金属元素の 含有量が少ないと活性が不十分であり、含有量が多すぎると触媒コストが嵩むので 好ましくない。
[0037] なお、主成分として配合されるアルミナの量は、全触媒重量中最も多量でなければ ならず、好ましくは全触媒重量に対して 50重量%以上である事が望ましい。すなわち 、本発明の触媒組成物にはアルミナの他、 j8型ゼオライトなどのゼォライトが配合さ れるが、アルミナを 100重量部とすると、ゼォライトの配合量は 100重量部未満、好ま しくは 80重量部未満、さらに好ましくは 50重量部未満である。
[0038] (B)セリウムイオン交換 /3型ゼオライト
本発明において、セリウムイオン交換 |8型ゼオライトは、上記貴金属元素担持 '活 性アルミナに対する助触媒成分であり、 Ceは、その酸ィ匕物に酸素吸蔵能力があるた め未燃炭化水素の燃焼性を向上させる機能を有する。
[0039] アルミノ珪酸塩であるゼォライトは、骨格を構成するシリカ、アルミナなどの組成によ つて、細孔の形状や大きさ、表面積などが異なっている。ゼォライト〖こは、 Y型ゼオラ イト、 j8型ゼオライト、モルデナイト、フェリオライト、 MFI型など様々な種類が存在す る力 本発明においては、このうち j8型ゼオライトを用いる必要がある。 型ゼォライ ト以外のゼォライトを含んで 、ても良 、が、 型ゼオライトの含有量が全投入ゼォライ ト中 10wt%以上でなければならず、望ましくは 20wt%以上であり、 30wt%以上含 有されて!/、ることがより望ま U、。
[0040] 型ゼオライトは、他のゼォライトと比べて、表面積が大きぐ細孔も大きいという特 徴がある。シリカ(SiO )Zアルミナ(Al O )のモル比(SAR)は 18〜200であり、特
2 2 3
に 18〜: L00であることが好ましい。 SARが 18未満では耐水熱安定性に劣り耐久性 にお!/ヽて劣化度合 ヽが大きく、 200を超えるとイオン交換量が少なく本発明の活性成 分である Ceカチオンを充分導入できな 、場合があり好ましくな!/、。
j8型ゼオライトは、 Naなどのアルカリ金属が含有された |8型ゼオライト、アンモ-ゥ ム型 βゼォライト、若しくは水素型 βゼォライトとして市販されている。本発明におい ては、例えば、アンモニゥムイオン型 j8ゼォライトを基に、セリウムでイオン交換した j8 型ゼオライトなどが用いられる。 |8型ゼオライト中のセリウム (Ce)の含有量は、酸ィ匕セ リウム(CeO )換算で 0. 15〜3. 4wt%であることが望ましい。セリウム(Ce)の含有 量力 0. 15wt%未満では HC燃焼促進効果が充分に発揮されず、 3. 4wt%を超 えるとコスト面で好ましくなぐ市販の Ceでイオン交換されたゼオライトを用いる場合も 、セリウム(Ce)の含有量が上記範囲内にあるものが好ましい。
j8型ゼオライト中のセリウム(Ce)の含有量が 0. 15wt%未満であると、本発明の効 果が得られない理由は定かでないが、セリウムが酸ィ匕反応サイトである貴金属への酸 素供給が不足するためか、あるいは当該反応サイトである貴金属への HCの吸着に よる反応阻害を抑制するためであると思われる。
[0041] 本触媒が、優れた HCの浄化能力を発揮し、排気ガスの昇温作用を発現し、上昇し た温度の低下を抑制する理由は、まだ十分には解明されていないが、ディーゼル燃 料である軽油の炭化水素分子鎖長を短くする機能と、 HCを放出可能に内部に取り 込む機能とを β型ゼオライトが有し、酸素を吸蔵放出すると 、う機能を Ceが有するこ とから、触媒中に Ceと 型ゼオライトとが共存することで、放出された酸素と HCが反 応しゃすぐかつ β型ゼオライトに取り込まれた HCの放出状態を持続して高い燃焼 状態を維持しうるという相乗効果が発揮されるものと考えられる。
[0042] (C)一体構造型担体
本触媒は、一体構造型担体に上記特定の活性アルミナと β型ゼオライトを含んだ 触媒成分が被覆されたものである。
[0043] 一体構造型担体の種類は、特に制限されず、コージユライト、シリコンカーバイド、 窒化珪素、メタル担体等が挙げられ、コージユライト製一体構造型担体が好ましい。 また、一体構造型担体の断面形状が三角形、正方形、あるいは六角形をしたハ-カ ム型担体のような空気抵抗の少な 、フロースルー型担体である事が望ま U、。
[0044] このような一体構造型担体は、セル密度が 100〜900セル/ inch2であり、 200〜6 00セル Zinch2である事が好ましい。セル密度が 900セル Zinch2を超えると、付着 した PMで目詰まりが発生しやすぐ 100セル Zinch2未満では幾何学的表面積が小 さくなるため、触媒の有効使用率が低下してしまう。
[0045] 2.触媒調製
本触媒は、貴金属含浸、担持、粉砕とコーティング (塗工)を組み合せた方法により 製造でき、白金、パラジウム、またはその前駆体 (触媒金属成分)を分散担持させた 前記活性アルミナと、前記 β型ゼオライトとを水系媒体と共に混合してスラリー状にし 、前記混合物を一体構造型担体表面に被覆した後、加熱 '焼成して調製される。
[0046] すなわち、本触媒は、 (1)白金化合物、パラジウム化合物を含む溶液を活性アルミ ナに含浸させてから乾燥させ、白金およびパラジウムを活性アルミナに担持し、(2)ま た、セリウム化合物で β型ゼオライトのカチオンをイオン交換したゼォライトを用意し、 (3)白金およびパラジウムを担持した活性アルミナと、セリウムでイオン交換した j8型 ゼォライトとを混合して、得られた触媒成分に水、 pH調整剤を配合し、スラリー化し、 これを一体構造型担体と接触させ、一体構造型担体の表面に触媒層を被覆し、乾燥 '焼成して得ることができる。
[0047] (1)白金、パラジウム担持'活性アルミナの調製
先ず、 Ί アルミナ、又はアルミナ Zランタン酸ィ匕物を含む混合アルミナなどの活 性アルミナを容器に入れる。活性アルミナの使用量は、触媒層において、一体構造 型担体の容量当り、 25〜285gZL (好ましくは、 50〜140gZL)含まれるようにする 。活性アルミナが 25gZL未満では、貴金属を高分散担持できず、 285gZLを超え ると触媒有効使用率の低下やコスト増が懸念される。
[0048] この活性アルミナに、白金化合物、パラジウム化合物を含む水溶液または水性懸濁 液を所定量カ卩える。白金化合物として、例えば、亜硝酸ジアンミン白金 (Π)、水酸ィ匕 白金酸ァミン溶液、塩化白金酸の ヽずれかを含む水溶液または水性懸濁液が使用 できる。パラジウム化合物としては、例えば、硝酸ジアンミンパラジウム、硝酸パラジゥ ム、塩ィ匕パラジウムのいずれかを含む溶液が挙げられる。白金化合物、ノラジウムィ匕 合物の水溶液は、活性アルミナを撹拌しながら添加する。
白金化合物を含む水溶液または水性懸濁液を活性アルミナに添加した後、引き続 きパラジウム化合物を含む水溶液を活性アルミナと白金化合物との混合物に添加す ることが好ましい。
[0049] 白金は、触媒層において、一体構造型担体の容量当り、 0. l〜5gZL (好ましくは 、 0. 5〜4gZL)となるのに必要な量とし、ノ ラジウムは、一体構造型担体の容量当り 、 0. 05〜2g/L (好ましくは、 0. 1〜: Lg/L)含むようにする。次いで、この溶液を室 温で所定の時間保持して、白金、ノ ラジウムを活性アルミナに含浸させる。 [0050] (2)セリウムイオン交換 13型ゼオライトの調製
セリウムイオン交換 j8型ゼオライトは、市販の物を適宜選択して用いても良いが、 β 型ゼオライトから製造する場合、セリウムイオン交換 |8型ゼオライトの製造方法は、特 に制限されるものではなぐ例えば、 ΝΗイオンでイオン交換されている j8型ゼォライ
4
トを硝酸セリウムなどのセリウム含有ィ匕合物の水溶液を用いてイオン交換することがで きる。
セリウムでイオン交換した j8型ゼオライトは、単独でも良いが、鉄でイオン交換した β型ゼオライト、さらには水素でイオン交換した MFI型ゼオライトを混合しても良い。
[0051] セリウムイオン交換 |8型ゼオライトの使用量は、触媒層において、一体構造型担体 の容量当り、 4〜115gZL、好ましくは 10〜: LOOgZLとなるようにする。セリウム交換 型ゼオライトが 4gZL未満では、 HC燃焼性への貢献が小さぐ排気ガスの温度を 十分に高めることができず、 115gZLを超えるとコスト面で好ましくない。
[0052] (3)触媒成分による被覆
上記の方法で得た白金およびパラジウムを担持した活性アルミナに、セリウムでィ オン交換した ι8型ゼオライトを混合し、さらに酢酸及び純水を容器に導入して、スラリ 一化する。
[0053] 酢酸、純水は、活性アルミナと /3型ゼオライトの混合物をミキサーで撹拌しながら少 量づっ加え、 pHが 1. 5〜7. 0になるようにすることが好ましい。酢酸以外の酸を用い てもよく、アルカリを添加して pH調整した後、界面活性剤や分散榭脂を配合し、ボー ルミルなどにより粉砕混合することもできる。
[0054] 次に、上記スラリーを一体構造型担体と接触させコーティング (塗工)する。スラリー 中に、一体構造型担体であるセラミック製ハニカム担体 (フロースルー型担体)を入れ 、例えば 1〜60秒間両者を十分に接触させた後、セル内の余分なスラリーを空気流 で取り除く。つぎに、スラリーが付着した担体に、例えば 20〜100°Cの熱風を吹き付 け、少なくとも 50%の水分を除く。この様にして水分を除去した後、 200〜900°Cの 温度で、 10分〜 10時間、空気中で焼成する。
[0055] 一体構造型担体への塗工方法についても、種々公知の方法を適用可能である力 ゥォッシュコートを行った後に、乾燥、焼成を行う方法が簡便であり確実な被覆状態 を実現できる。
これにより、一体構造型担体に対し、触媒担持量として 35〜400gZL、好ましくは
60〜210gZLの触媒層で被覆された本発明の酸ィ匕触媒を得ることができる。触媒 担持量が 35gZL未満では、本発明の触媒効果が得られず、 400gZLを超えると、 一体構造型担体に対して厚塗りすることになり、排気ガスの圧損が増加するだけでな ぐコーティング回数の増加によりコストが上昇するので好ましくない。
[0056] 3.排気ガス浄化システム
本発明の排気ガス浄ィ匕システムは、上記の排気ガス浄化用酸化触媒を、未燃炭化 水素を含む排気ガス流路に配置する場合に好適であって、排気ガスを該酸化触媒 に流通させて未燃炭化水素を酸化し、その際に発生する酸化熱によって排気ガスの 温度を上昇させることを特徴とする。
[0057] 本発明は、ディーゼル機関の排気ガス流路に設置される排気ガス浄ィ匕システムとし て好適であり、その場合、酸ィ匕触媒 (DOC)の温度は 150°C以上、好ましくは 200°C 以上、より好ましくは 250°C以上、特に 250〜450°Cの範囲が好適である。 150°C未 満では十分な触媒活性が発揮されない。通常、排気ガスによる自然加熱で触媒温度 を 150°C以上にすることができるが、補助的に別途加熱手段、保温手段を設けても 良い。
[0058] また、本発明は、排気ガスの空間流速が 5, 000-400, OOOZhrにおいて適用で きる。 5, OOOZhr未満では、ディーゼル機関から排出される排気ガスの量に対して 触媒容量が大きくなり、自動車に実際に搭載する事が難しくなる。また、 400, 000/ hrを超えると触媒との接触時間が短くなり、 HCの浄ィ匕効率を高めることができなくな り、排気ガスが十分に昇温されない場合がある。
[0059] 本発明は、内燃機関の種類や排気ガスの規制内容などに応じて様々な態様の排 気ガス浄ィ匕システムを構成することができる。例えば、上記の排気ガス浄化用酸化触 媒の後方に、さらに、排気ガス中のパティキュレートを捕捉するフィルター、又は触媒 化フィルターを配置する態様;上記の排気ガス浄化用酸化触媒の後方に、窒素酸化 物を吸着浄化する触媒を配置する態様;上記の排気ガス浄化用酸化触媒の後方に 、それらフィルターや各種触媒を複数組み合せて設置する態様が包含される。 [0060] 本発明は、排気ガス中に追加燃料 (未燃炭化水素)を供給し、排気ガス流路に設 置された酸化触媒に流通させ、排気ガスを昇温するものであるが、未燃炭化水素の 供給は、内燃機関燃焼室への噴霧燃料を一時的に増力 tlさせる他、ェキゾ一ストパイ プゃ、触媒システム中への燃料噴射等でも行うことができ、いずれの場合も、本触媒 の顕著な炭化水素の酸化、排気ガス昇温効果を示す。
ただし、内燃機関燃焼室への噴霧燃量は、燃料の噴射システムを制御すれば容易 に増加でき、新たにシステムや装置を設計'設置しなくてもよいことから望ましい形態 と言える。なお、本触媒の後段に設置される他の触媒へ未燃炭化水素の供給が必要 な場合は、適宜適切な手段により未燃炭化水素を供給すべきことは言うまでも無い。
[0061] (本触媒 +CSF (DPF) )
この態様は、本触媒 (DOC)が配置された排気ガスの流れ後方に、排気ガス力 Sもた らす高温で活性化する触媒やフィルターを配置することにより、本触媒を通過し、排 気ガスの浄ィ匕能力機能を向上させる排気ガス浄ィ匕用システムである。すなわち、本 発明の触媒は酸化触媒であることから、排気ガス中の NOを酸化して NO
2を生成し、 これを後段に配した DPF、 CSFなどの後段触媒に堆積した煤の燃焼に用いることが できる。
[0062] 後段触媒として、 PM浄化のための触媒 (CSF)を配置する場合、本発明〖こよる効 果が大きい。 CSFは、一般にディーゼル機関力 発生する PMを除去するために広く 検討されているが、前段に配置される本触媒に供給される未燃炭化水素は、軽油の 他、ガソリン、灯油、または A重油でもよい。軽油は、ディーゼル機関の燃料であるた め、別途未燃炭化水素の搭載スペースを確保する必要が無ぐ供給安定性などの点 で望ましい。
[0063] 図 1において、ディーゼル排気ガス経路 1には、本発明の酸化触媒 2 (DOC)、およ び触媒化フィルター 3 (CSF)が収容されて ヽる。矢印のように上流側から排気ガスが 流入して、 DOC、次いで CSFを順次通過してマフラー(図示せず)から大気中に放 出される。このとき、排気ガスは酸化触媒及び触媒化フィルターの各セルの多孔質壁 を通過可能であるが、微粒子は CSFに捕集されるようになっている。なお、図 1の場 合は、ディーゼル排気ガス経路 1に軽油噴射弁 4が設けられ、ここカゝら軽油が噴射さ れ、未燃炭化水素としての軽油含有排気ガスとなるが、上記のとおり燃焼室への軽 油量を一時的に増加するようにしても差し支えない。
[0064] CSFの種類は、特に限定されないが、例えば、コージエライト等の多孔質セラミック からなり、 y アルミナ等をコーティングし、更に、白金、パラジウム、ロジウム等の貴 金属系元素を担持させたものを用いることができる。酸化触媒である一体構造型触 媒の一部に、 CSF触媒機能を併せ持たせても良い。
CSFに用いられる一体構造型担体は、排気流方向に多数のセルを有し、各セルは 排気ガス流入側または流出側のいずれかの端部が閉鎖され、例えば市松模様状の 構造になっているものが好適である。ここで各セルは多孔質壁によって構成され、排 気ガスはこれら多孔質壁を通過可能であり、排気ガス中の微粒子はこのような CSFに 捕集される。軽油含有排気ガスは、本発明の DOCによって酸化され燃焼して、高温 ガスとなって CSFに供給され、 CSFに堆積した微粒子 (PM)を燃焼させガス化して 除去され、 CSF自身は再生される。
[0065] (本触媒 + NSR)
この態様は、後段触媒として、 NOx吸蔵浄化触媒 (以下、 NSRということがある)を 適用した排気ガス浄ィ匕用システムである。
NSRは、 NOx吸蔵材として Baなどアルカリ土類金属化合物と Rh、 Ptなど貴金属を 触媒活性種として配合されるものであり、その機能の主要な部分は概ね以下のとおり である。
自動車に搭載される内燃機関の場合、 NOxは希薄燃焼時 (Lean)に多く排出され 、燃料の濃い状態 (Rich)の時には NOxの排出は減少し、代わりに HC、 COを多く 含んだ排気ガスが排出される。また、自動車エンジンの場合、アクセルの ON、 OFF 、または燃料供給の濃淡に伴い、リーン (Lean)とリッチ (Rich)が繰り返される。リー ンの時、排出された NOxは硝酸バリウムとして NSRに吸蔵される。続いて、リッチな 時、還元成分である HC、 COにより、硝酸バリウムは COと反応して炭酸バリウムにな り、 NOを放出する。放出された NOは触媒活性種により HCと反応し、 N、 H 0とし
2 2 2 2 て浄化される。
ここで、温度が低すぎると前記の反応が促進されず、 NOxの浄ィ匕が充分に行われ ない。特に、 NOxの排出が問題視されているディーゼル機関では、構造的な特徴、 排気ガス規制基準の設定力も排気ガス温度が低くなりがちである。このため、本発明 の触媒の後段に NSRを配置することで、排気ガスの温度が上昇し、排気ガス浄ィ匕シ ステムとして NOxの浄化性能が向上するものである。
また、 NOx吸蔵浄ィ匕触媒の組成中における他の添加物、母材、また構造担体の形 状などは特に限定されないが、昇温された排気ガス中の NOx浄化機能を有するもの であればよぐ HC、 SOxの浄化機能を併せ持つものなども使用できる。例えば、アル ミナ、チタ-ァ、マグネシア、ジルコユアなどを単独または複合して母材とし、アルカリ (土類)金属種としても、ノリウムの他、カリウムなどを配合してもよい。
(本触媒と複数種類の後段触媒との組み合わせ)
この態様は、後段触媒として CSF (PDF)、 NSR、又は DOC力 選ばれる 2種以上 を組み合せて用 、る排気ガス浄ィ匕用システムである。
本触媒と、これに組み合せる複数種類の後段触媒の位置的関係、設置個数は適 宜決定され、その組み合わせとしては、本触媒 + CSF + NSR、本触媒 + NSR + C SF、本虫媒 + NSR+CSF + NSR、本虫媒 + NSR+CSF + NSR+DOCなどが 挙げられる。
また、 NOxの浄化手段として本触媒と、選択的還元触媒と組み合わせて用いても 良い。ここで、選択的還元触媒とは、アンモニア供給源として尿素等の還元剤と、酸 化雰囲気の排気ガスを触媒中に導き、 NOxを還元するもので、これを用いる浄化方 法は、選択的触媒還元法(SCR: Selective Catalytic Reduction)と言われ、特 にディーゼル排気ガスの後処理装置として実用化も検討されて 1、る。本触媒との具 体的組み合わせとしては、本触媒 +CSF + SCR触媒 +DOC、本触媒 +SCR触媒 ZDPF + DOCなどがあげられる。ここで、 SCR触媒 ZDPFとは、 SCR触媒が被覆 された DPFのことをいう。
なお、 SCRを配する場合には、アンモニア水、尿素水などの供給システムを設置し 、 NOx還元触媒としては、例えば、アルミナ、シリカアルミナ、活性炭、ゼォライトなど の担体に、 Ni、 Mn、 Co、 Mo、 Ti、 Fe、 V、 Wなどの遷移金属の 1種以上を担持した 触媒を挙げることができる。 [0067] また、本発明の触媒は、異なる組成、機能を持った他の触媒と積層して構成する事 もできる。このようなケースとしては、最高使用温度が比較的高温である排気ガス浄 化システムや、触媒を流通する排気ガス温度が比較的低 ヽ状況で強制再生を実施 する必要のある排気ガス浄ィ匕システムや、軽油燃焼性能を向上すること、あるいは本 触媒の被毒を防ぐことなどが重視される排気ガス浄ィ匕システムが挙げられ、触媒を使 用する環境に起因する特殊な要求特性を満たすことを目的とする。
例えば、想定する最高使用温度が比較的高温である排気ガス浄化システムや、流 通ガス温度が比較的低い状況で強制再生を実施する必要のある排気ガス浄ィ匕シス テムにおいて、軽油燃焼性能を向上する為には、一体構造型担体の表面に触媒組 成物を被覆するにあたり、その最表面層に Pt— PdZAl O系触媒層を設ける事が
2 3
できる。
実施例
[0068] 以下、実施例を挙げて本発明の好ましい態様を説明する力 本発明は以下の実施 例によって何ら制限されるものではない。
[0069] [実施例 1]
以下に示す手順で、母材としての活性アルミナ (混合アルミナ)に触媒金属 (Pt、 Pd )を担持してから、セリウムイオン交換 )8型ゼオライトを混合し、触媒成分を調製した。 次に、この触媒成分を一体構造型担体にコーティングして、本発明の排気ガス浄ィ匕 用酸化触媒を得た。
<活性アルミナ >
比表面積が 143m2Zgの Ύ — Al
Figure imgf000019_0001
の γ — Al O (以下、「アルミナ 2」)、および比表面積が 220m2/gの La含有 γ — Al
2 3
O ( y - Al O /La O (重量比) = 98· 4/1. 6) (以下、「アルミナ 3」)を、 100 : 7
2 3 2 3 2 3
4: 200 (重量比)の割合で混合して、活性アルミナ(以下、「混合アルミナ」 )を得た。 この混合アルミナの比表面積は 182m2/gであった。
上記混合アルミナに、前記混合アルミナとの合計量中の Pt金属元素量が 1. 47重 量%となる量の亜硝酸ジアンミン白金 (Π)の 20重量%水溶液と、 Pd金属元素量が 0 . 49重量%となる量の硝酸ジアンミンパラジウムの 28重量%水溶液を加えて含浸処 理を行い、次いで水分を乾燥 '除去して、貴金属を分散させた混合アルミナ (以下、「 Pt-Pd/Al O」)を得た。
2 3
<セリウムでイオン交換した β型ゼオライト >
セリウムでイオン交換した j8型ゼオライトは、以下の方法により得られたものを用い た。
すなわち、 NHイオンでイオン交換されている j8型ゼオライトを、 0. 05モル濃度の
4
硝酸セリウム水溶液中に分散し、 24時間攪拌した後濾過し、脱イオン水で洗浄する。 このセリウムイオン交換 j8型ゼオライトは、酸ィ匕セリウム(CeO )換算のセリウム(Ce)
2
の含有量が 1. 2重量%、 |8型ゼオライトのシリカ(SiO ) Zアルミナ (Al O )モル比(
2 2 3
SAR)力 25である。
<触媒成分の調製 >
上記 Pt—PdZAl O粉末 (a)と、セリウムをイオン交換した j8型ゼオライト (b)と、他
2 3
に Feでイオン交換した β型ゼオライト(c)、および水素でイオン交換した MFI型ゼォ ライト (d)を混合'攪拌して [触媒成分 1]を得た。各成分の混合比率は、 a : b : c : d= l 00 : 16 : 12 : 12である。
<一体構造型担体へのコーティング >
[触媒成分 1] 100重量部に対して、水 86部、および酢酸 7. 6部を加えて攪拌 '混 合して、スラリーを調製した。このスラリー中で市販のセラミック製ノ、二カム担体 A (40 0cpsi、壁厚: 6mil)をゥォッシュコートし、乾燥後、 450°Cで 0. 5時間焼成して、触媒 化された担体を得た。これを [本触媒 1]とする。 [本触媒 1]中の Pt金属の含有量は 1 . 5g Pd金属の含有量は 0. 5gZLであり、また、 [触媒成分 1]の量は 142gZL であった。
<触媒性能評価 >
こうして得られた触媒の未燃炭化水素の酸化性能を評価するために、下記の条件 のもと、軽油噴霧開始力 終了までの間に本触媒力 流出する排気ガスの温度 (°c) を測定した。
排気ガスの温度は、「Bed Temp」、すなわち触媒中心軸上の下流側端面から 10 mm上流で測定し、未燃炭化水素供給前後の Bed Tempの温度差「 Δ TJを求めた 測定した結果力 排気ガス昇温挙動を読み取るために、グラフ化して図 2に示した
。図 2では、 ΔΤを縦軸にとり、横軸に時間経過をとつている。なお、グラフ中の時間 経過は各触媒において一定である。
[0071] ·触媒容量:直径 143. 8mmX長さ 76. 2mm ( 1240ml)
•評価エンジン: 2L 直列型 4気筒ディーゼルエンジン
.ェキゾ一ストパイプへの噴霧軽油燃料の噴霧量: 22mlZmin
'燃料噴霧時間: 3min
'空間速度(SV) : 72, 800/hr
.回転数: 1520 ± 10/rpm
.触媒入口側排気ガス温度: 300士 5°C
•温度測定手段: Φ 0. 5mmの Τ型熱電対
[0072] [比較例 1]
以下に示す手順で、活性アルミナ (アルミナ 2)に触媒金属 (Pt)を担持してから、セ リウムイオン交換 型ゼオライトを混合し、触媒成分を調製した。次に、この触媒成分 を一体構造型担体にコーティングして、比較用の排気ガス浄化用酸化触媒を得た。
[0073] く活性アルミナ >
活性アルミナとして、比表面積が 157m2/gの γ— Al Ο (前記の「アルミナ 2」)を
2 3
用いた。このアルミナ 2に、 Pt金属元素量が 2. 1重量%となる量の亜硝酸ジアンミン 白金 (Π)の 20重量%水溶液を加えて含浸処理を行 、、次 、で水分を乾燥'除去し て、貴金属を分散させた活性アルミナ (以下、「PtZAl O」)を得た。
2 3
<セリウムをイオン交換した β型ゼオライト >
実施例 1に記載した、酸ィ匕セリウム (CeO )換算のセリウム (Ce)の含有量が 1. 2重
2
0 /0、 j8型ゼオライトのシリカ(SiO )Zアルミナ (Al O )モル比(SAR)が 25である、
2 2 3
セリウムでイオン交換した β型ゼオライトを用いた。
<触媒成分の調整 >
前述した PtZAl O粉末 (a)を、前記 Ceでイオン交換した β型ゼオライト (b)、 Fe
2 3
でイオン交換した β型ゼオライト(c)、および Ηでイオン交換した MFI型ゼオライト(d) と混合'攪拌して [触媒成分 2]を得た。各成分の混合比率は、 a :b : c : d= 100 : 16 : l 2 : 12である。
<一体構造型担体へのコーティング >
[触媒成分 2] 100重量部に対して、水 86部、および酢酸 7. 6部を加えて攪拌 '混 合して、スラリーを調製した。このスラリー中で市販のセラミック製ノ、二カム担体 A (40 Ocpsi、壁厚: 6mil)をゥォッシュコートし、乾燥後、 450°Cで 0. 5時間焼成して、触媒 化された担体を得た。これを [比較例触媒 1]とする。
[比較例触媒 1]中の Pt金属の含有量は 2. OgZLであり、 [比較例触媒 1]の量は 17 3. lgZLであった。
[0074] <触媒性能評価 >
こうして得られた触媒の未燃炭化水素の酸ィ匕性能を評価するため、前記の条件の もと、実施例 1と同様に、軽油噴霧開始力も終了までの間に本触媒力も流出する排気 ガスの温度 (°C)を測定した。測定した結果力 排気ガス昇温挙動を読み取るために 、グラフ化して図 2に示した。図 2では、 ΔΤを縦軸にとり、横軸に時間経過をとつてい る。
[0075] [比較例 2]
以下に示す手順で、活性アルミナ (混合アルミナ)に触媒金属 (Pt、 Pd)を担持して から、鉄イオン交換 j8型ゼオライト、水素でイオン交換した MFI型ゼオライトを混合し 、触媒成分を調製した。次に、この触媒成分を一体構造型担体にコーティングして、 比較用の排気ガス浄化用酸化触媒を得た。この触媒は、 Ceイオン交換 型ゼォライ トを含有していない。
[0076] <触媒成分の調製 >
活性アルミナとして前記混合アルミナを用い、この混合アルミナとの合計量中の Pt 金属元素量が 1. 47重量%となる量の亜硝酸ジアンミン白金 (Π)の 20重量%水溶液 と、 Pd金属元素量が 0. 49重量%となる量の硝酸ジアンミンパラジウムの 28重量% 水溶液を加えて含浸処理を行い、次いで水分を乾燥 '除去して、貴金属を分散させ た混合アルミナ、 Pt-Pd/Al Oを得た。
2 3
この Pt— PdZAl O粉末 (a)と Feでイオン交換した β型ゼオライト (b)および水素 でイオン交換した MFI型ゼオライト (c)を混合 ·攪拌して [触媒成分 3]を得た。各成分 の混合比率は、 & : 。= 100 : 20 : 20でぁる。
<一体構造型担体へのコーティング >
[触媒成分 3] 100重量部に対して、水 86部、および酢酸 7. 6部を加えて攪拌 '混 合して、スラリーを調製した。このスラリー中で市販のセラミック製ノ、二カム担体 A (40 0cpsi、壁厚: 6mil)をゥォッシュコートし、乾燥後、 450°Cで 0. 5時間焼成して、触媒 化された担体を得た。これを [比較例触媒 2]とする。
[比較例触媒 2]中の Pt金属の含有量は 1. 5gZL、 Pd金属の含有量は 0. 5g/L であり、また、 [比較例触媒 2]の含有量は 142gZLであった。
[0077] <触媒性能評価 >
こうして得られた触媒の未燃炭化水素の酸ィ匕性能を評価するため、前記の条件の もと、軽油噴霧開始力 終了までの間に本触媒力 流出する排気ガスの温度 (°C)を 測定した。測定した結果力 排気ガス昇温挙動を読み取るために、グラフ化して図 2 に示した。図 2では、 ΔΤを縦軸にとり、横軸に時間経過をとつている。
[0078] [比較例 3]
以下に示す手順で、活性アルミナ (混合アルミナ)に触媒金属 (Pt、 Pd)を担持し、 セリウムイオン交換 ι8型ゼオライトを混合することなぐ触媒成分を調製した。次に、こ の触媒成分を一体構造型担体にコーティングして、比較用の排気ガス浄化用酸化触 媒を得た。
[0079] <触媒成分の調整 >
活性アルミナとして前記混合アルミナを用い、混合アルミナとの合計量中の Pt金属 元素量が 1. 06重量%となる量の亜硝酸ジアンミン白金 (Π)の 20重量%水溶液と、 P d金属元素量が 0. 35重量%となる量の硝酸ジアンミンパラジウムの 28重量%水溶 液を加えて含浸処理を行い、次いで水分を乾燥 '除去して、貴金属を分散させた混 合アルミナ、 Pt-Pd/Al O [触媒成分 4]を得た。
2 3
<一体構造型担体へのコーティング >
[触媒成分 4] 100重量部に対して、水 86部、および酢酸 7. 6部を加えて攪拌'混 合して、スラリーを調製した。このスラリー中で市販のセラミック製ノ、二カム担体 A (40 Ocpsi、壁厚: 6mil、直径 143. 8mmX長さ 76. 2mm (容量: 1240ml) )をゥォッシ ュコートし、乾燥後、 450°Cで 0. 5時間焼成して、触媒化された担体を得た。これを [ 比較例触媒 3]とする。
[比較例触媒 3]中の Pt金属の含有量は 1. 5gZL、 Pd金属の含有量は 0. 5gZLで あり、 [比較例触媒 3]の含有量は 142. OgZLであった。
[0080] <触媒性能評価 >
こうして得られた触媒の未燃炭化水素の酸化性能を評価するために、 ECE + EU DC120モードに基づき、エンジンベンチにて、 HCのトランジェント モードでの浄化 性能を評価した。その結果を図 3に表す。
図 3中の縦軸は、排気ガス中の炭化水素を炭素数 1の炭化水素に換算した HCの 総量 (Total HC :THCとも!/、う)の転換率(Conversion)を体積%で表し、横軸は 時間の経過を表す。
また、図 3のテスト結果 1回における、 EUDC、 ECEにおける THC換算の HCの総 排出量を図 4に表した。図 4では、縦軸に THCの排出量を表し、また、参照データと して触媒を介さない状態の排気ガス中の THCデータを付記した。
なお、 ECE、 EUDC120とは、欧州の排気ガス規制におけるトランジェント評価モ ードのことをいう。
[0081] 以上の結果から、実施例 1の酸ィ匕触媒による最高到達温度は、比較例 1、比較例 2 に比べて高ぐセリウムをイオン交換した β型ゼオライトが未燃炭化水素の燃焼性向 上に寄与して 、ることが確認された。
実施例 1の触媒の酸ィ匕活性は、比較例 1と比べて大幅に改善されている。また排気 ガス温度安定性に関しても、セリウムをイオン交換した β型ゼオライトを配合しないで 調製した比較例 2と比べて、実施例 1では温度変化が小さく安定している事がわかる また、比較例 3の触媒は、ゼォライトが含まれていないために、 ECE、 EUDCのよう な、低温時の HC酸ィ匕性能が確認できるトランジェント モードのような浄化性能評価 では、実施例 1の触媒よりも劣っていることがわかる。
このように、本発明の触媒は、多量の未燃炭化水素を噴霧した場合、排気ガスの昇 温性能に優れ、かつ上昇した温度の安定性にも優れるもので、排気ガス浄化用触媒 として優れた能力を発揮する事がわかる。
産業上の利用可能性
排気ガス中の未燃炭化水素を効率的に酸ィ匕でき、特にディーゼル機関において少 な ヽ燃料噴霧で触媒温度を上昇しうる排気ガス浄化用酸化触媒、及びそれを用いた 排気ガス浄ィ匕システムとして利用できる。

Claims

請求の範囲
[1] 炭化水素の酸化反応に対して触媒活性を示す触媒層が、一体構造型担体を被覆 してなる排気ガス浄化用酸化触媒であって、
前記触媒層は、白金、およびパラジウムが担持された活性アルミナを主成分とし、さ らに、セリウムでイオン交換した β型ゼオライトを含有することを特徴とする排気ガス 浄化用酸化触媒。
[2] 前記白金、およびパラジウムの含有量は、一体構造型担体の容量当り、それぞれ 0 . l〜5gZL、及び 0. 05〜2gZLであることを特徴とする請求項 1に記載の排気ガス 浄化用酸化触媒。
[3] 前記活性アルミナは、 La— O系構造を含むことを特徴とする請求項 1又は 2に記載 の排気ガス浄化用酸化触媒。
[4] 前記活性アルミナは、比表面積が 30〜300m2/gであることを特徴とする請求項 1
〜3に記載の排気ガス浄化用酸化触媒。
[5] 活性アルミナの含有量は、一体構造型担体の容量当り、 25〜285g/Lであること を特徴とする請求項 1〜4に記載の排気ガス浄化用酸化触媒。
[6] 前記セリウムイオン交換 β型ゼオライトは、セリウム (Ce)の含有量が、酸化セリウム(
CeO )換算で 0. 15〜3. 4wt%であることを特徴とする、請求項 1〜5に記載の排気
2
ガス浄化用酸化触媒。
[7] 前記セリウムイオン交換 β型ゼオライトは、シリカ(SiO ) Zアルミナ (Al O )のモル
2 2 3 比(SAR)が 18〜200であることを特徴とする、請求項 1〜6に記載の排気ガス浄ィ匕 用酸化触媒。
[8] セリウムイオン交換 |8型ゼオライトの含有量は、一体構造型担体の容量当り、 4〜1 15gZLであることを特徴とする請求項 1〜7に記載の排気ガス浄ィ匕用酸ィ匕触媒。
[9] 前記一体構造型担体は、セル密度が 100〜900セル Zinch2のフロースルー型担 体であることを特徴とする請求項 1〜8に記載の排気ガス浄化用酸化触媒。
[10] 請求項 1〜9に記載の排気ガス浄化用酸化触媒を、未燃炭化水素を含む排気ガス 流路に配置してなる排気ガス浄ィ匕システムであって、
排気ガスを該酸化触媒に流通させて未燃炭化水素を酸化し、その際に発生する酸 化熱によって排気ガスの温度を上昇させることを特徴とする排気ガス浄ィ匕システム。
[11] 前記酸化触媒の後方に、さらに、窒素酸化物を吸着浄化する触媒を配置すること を特徴とする請求項 10に記載の排気ガス浄ィ匕システム。
[12] 前記酸化触媒の後方に、さらに、排気ガス中のパティキュレートを捕捉するフィルタ 一、又は触媒ィ匕フィルターを配置することを特徴とする請求項 10又は 11に記載の排 気ガス浄化システム。
PCT/JP2006/305355 2005-04-01 2006-03-17 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム WO2006109417A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06729345.6A EP1864713B1 (en) 2005-04-01 2006-03-17 Oxidation catalyst for exhaust gas purification and exhaust gas purification system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-106283 2005-04-01
JP2005106283A JP4681922B2 (ja) 2005-04-01 2005-04-01 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム

Publications (1)

Publication Number Publication Date
WO2006109417A1 true WO2006109417A1 (ja) 2006-10-19

Family

ID=37086708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305355 WO2006109417A1 (ja) 2005-04-01 2006-03-17 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム

Country Status (3)

Country Link
EP (1) EP1864713B1 (ja)
JP (1) JP4681922B2 (ja)
WO (1) WO2006109417A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985353A1 (en) * 2007-04-27 2008-10-29 N.E. Chemcat Corporation Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying process of exhaust gas
EP1941942A3 (en) * 2006-11-29 2010-08-11 ICT Co., Ltd. Oxidation Catalyst and Exhaust-Gas Purification System Using the Same
WO2012023494A1 (ja) * 2010-08-20 2012-02-23 三井金属鉱業株式会社 軽油成分の燃焼に適した酸化触媒
US9034287B2 (en) 2013-03-13 2015-05-19 Basf Corporation Catalyst compositions, articles, methods and systems

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294041B2 (ja) 2006-07-31 2009-07-08 本田技研工業株式会社 NOx浄化触媒
RU2452558C2 (ru) * 2006-10-23 2012-06-10 Умикоре Аг Унд Ко.Кг Безванадиевый катализатор для селективного каталитического восстановления и способ его приготовления
JP5110954B2 (ja) * 2007-05-09 2012-12-26 エヌ・イーケムキャット株式会社 選択還元型触媒を用いた排気ガス浄化触媒装置並びに排気ガス浄化方法
JP4714259B2 (ja) * 2008-11-26 2011-06-29 本田技研工業株式会社 Co酸化用銀触媒
JP2011152496A (ja) * 2010-01-26 2011-08-11 Isuzu Motors Ltd ディーゼルエンジン排気ガス中のnoxの脱硝方法
KR101860741B1 (ko) 2010-09-15 2018-05-24 존슨 맛쎄이 퍼블릭 리미티드 컴파니 조합된 슬립 촉매와 탄화수소 발열 촉매
US9120077B2 (en) * 2010-10-01 2015-09-01 Basf Corporation Surface-coated zeolite materials for diesel oxidation applications
JP5891072B2 (ja) * 2012-03-06 2016-03-22 株式会社キャタラー 担持触媒製造用組成物
EP2974791A4 (en) * 2013-03-15 2016-12-14 N E Chemcat Corp OXIDATION CATALYST AND EXHAUST GAS CLEANING PROCESS WITH THIS
JP5676679B2 (ja) 2013-04-19 2015-02-25 株式会社キャタラー 排気ガス浄化用触媒
GB2519846B (en) 2013-08-28 2018-01-24 Johnson Matthey Plc Method of oxidizing excess CO in an exhaust gas
KR101716174B1 (ko) * 2015-12-03 2017-03-14 희성촉매 주식회사 디젤엔진 백연 방출 억제를 위한 촉매조성물
WO2018224651A2 (en) * 2017-06-09 2018-12-13 Basf Se Catalytic article and exhaust gas treatment systems
KR20230125088A (ko) 2017-06-09 2023-08-28 바스프 코포레이션 촉매 물품 및 배기가스 처리 시스템
US10850264B2 (en) * 2018-05-18 2020-12-01 Umicore Ag & Co. Kg Hydrocarbon trap catalyst
CN112588021A (zh) * 2020-11-18 2021-04-02 辽宁工程技术大学 一种催化装置及有机废气处理***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09872A (ja) * 1995-06-23 1997-01-07 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
JPH09225265A (ja) * 1996-02-23 1997-09-02 Nissan Motor Co Ltd 排気ガス浄化装置
JP2001300319A (ja) * 2000-04-26 2001-10-30 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2002239346A (ja) * 2002-01-04 2002-08-27 Nissan Motor Co Ltd 排気ガス浄化装置および製造方法
JP2004536756A (ja) * 2000-11-15 2004-12-09 エンゲルハード・コーポレーシヨン 金属で促進された水熱的に安定なNOx還元用ゼオライト・ベータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489048B2 (ja) * 2000-02-01 2004-01-19 日産自動車株式会社 排気ガス浄化用触媒
JP4642978B2 (ja) * 2000-08-08 2011-03-02 株式会社キャタラー 排ガス浄化用触媒
JP4413520B2 (ja) * 2003-04-17 2010-02-10 株式会社アイシーティー 排ガス浄化用触媒及びその触媒を用いた排ガスの浄化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09872A (ja) * 1995-06-23 1997-01-07 Ngk Insulators Ltd 排ガス浄化システム及び排ガス浄化方法
JPH09225265A (ja) * 1996-02-23 1997-09-02 Nissan Motor Co Ltd 排気ガス浄化装置
JP2001300319A (ja) * 2000-04-26 2001-10-30 Nissan Motor Co Ltd 排気ガス浄化用触媒及びその製造方法
JP2004536756A (ja) * 2000-11-15 2004-12-09 エンゲルハード・コーポレーシヨン 金属で促進された水熱的に安定なNOx還元用ゼオライト・ベータ
JP2002239346A (ja) * 2002-01-04 2002-08-27 Nissan Motor Co Ltd 排気ガス浄化装置および製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1864713A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1941942A3 (en) * 2006-11-29 2010-08-11 ICT Co., Ltd. Oxidation Catalyst and Exhaust-Gas Purification System Using the Same
US8034311B2 (en) 2006-11-29 2011-10-11 Ict Co., Ltd. Oxidation catalyst and exhaust-gas purification system using the same
TWI449572B (zh) * 2006-11-29 2014-08-21 Umicore Shokubai Japan Co Ltd Oxidation catalyst and the oxidation catalyst using an exhaust gas purification system
EP3925700A1 (en) * 2006-11-29 2021-12-22 Umicore Shokubai Japan Co., Ltd. Oxidation catalyst and exhaust-gas purification system using the same
EP1985353A1 (en) * 2007-04-27 2008-10-29 N.E. Chemcat Corporation Exhaust gas purification catalyst for automobile, exhaust gas purification catalyst system and purifying process of exhaust gas
WO2012023494A1 (ja) * 2010-08-20 2012-02-23 三井金属鉱業株式会社 軽油成分の燃焼に適した酸化触媒
JP5502885B2 (ja) * 2010-08-20 2014-05-28 三井金属鉱業株式会社 軽油成分の燃焼に適した酸化触媒
US9034287B2 (en) 2013-03-13 2015-05-19 Basf Corporation Catalyst compositions, articles, methods and systems

Also Published As

Publication number Publication date
EP1864713A4 (en) 2011-09-21
EP1864713B1 (en) 2013-11-20
JP4681922B2 (ja) 2011-05-11
JP2006281127A (ja) 2006-10-19
EP1864713A1 (en) 2007-12-12

Similar Documents

Publication Publication Date Title
JP4681922B2 (ja) 排気ガス浄化用酸化触媒、及びそれを用いた排気ガス浄化システム
JP5110954B2 (ja) 選択還元型触媒を用いた排気ガス浄化触媒装置並びに排気ガス浄化方法
JP5989214B2 (ja) アンモニア酸化触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP5769708B2 (ja) 選択還元型触媒を用いた排気ガス浄化装置及び排気ガス浄化方法
JP5769732B2 (ja) 選択還元型触媒、およびそれを用いた排気ガス浄化装置並びに排気ガス浄化方法
JP5732297B2 (ja) アンモニア酸化触媒、および排気ガス浄化装置並びに排気ガス浄化方法
US7767175B2 (en) Ammonia SCR catalyst and method of using the catalyst
CN102355951B (zh) 层状柴油机氧化催化剂复合材料
JP5806131B2 (ja) NOx吸蔵脱硝触媒
CN102781544B (zh) 改进的催化烟灰过滤器
WO2013172128A1 (ja) 排気ガス浄化装置
WO2018025827A1 (ja) コールドスタート対応尿素scrシステム
JP2009262098A (ja) 選択還元触媒を用いた排気ガス浄化方法
KR20150131029A (ko) 디젤 적용을 위한 구역화된 촉매
JP3204682U (ja) バイパス流路を用いたコールドスタート対応尿素scrシステム
GB2559853A (en) NOx adsorber Catalyst
JP2016043320A (ja) 尿素加水分解触媒及び尿素加水分解材料を用いた選択還元触媒
JP5651727B2 (ja) 選択還元触媒を用いた排気ガス浄化方法
JP2004527372A (ja) 窒素酸化物の接触還元のための触媒と方法
GB2562609A (en) NOx Adsorber catalyst
JP2006255539A (ja) 排ガス浄化装置
JP4695962B2 (ja) 排気ガス浄化用酸化触媒、それを用いた一体構造型酸化触媒及び排気ガス浄化方法
JP2012152744A (ja) 排気ガス浄化用選択還元触媒及びそれを用いた排気ガス浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006729345

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006729345

Country of ref document: EP