WO2006103944A1 - PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS - Google Patents

PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS Download PDF

Info

Publication number
WO2006103944A1
WO2006103944A1 PCT/JP2006/305227 JP2006305227W WO2006103944A1 WO 2006103944 A1 WO2006103944 A1 WO 2006103944A1 JP 2006305227 W JP2006305227 W JP 2006305227W WO 2006103944 A1 WO2006103944 A1 WO 2006103944A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
bath salt
electrolysis
salt
solid
Prior art date
Application number
PCT/JP2006/305227
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Takemura
Tadashi Ogasawara
Makoto Yamaguchi
Masahiko Hori
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005094205A external-priority patent/JP2006274340A/en
Priority claimed from JP2005096690A external-priority patent/JP4227113B2/en
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to US11/887,511 priority Critical patent/US20090101517A1/en
Priority to CA002602801A priority patent/CA2602801A1/en
Priority to AU2006229128A priority patent/AU2006229128A1/en
Priority to EP06729224A priority patent/EP1876248A1/en
Priority to EA200702096A priority patent/EA200702096A1/en
Publication of WO2006103944A1 publication Critical patent/WO2006103944A1/en
Priority to NO20075092A priority patent/NO20075092L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/04Electrolytic production, recovery or refining of metal powders or porous metal masses from melts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells

Definitions

  • the present invention provides a method for producing ⁇ or Ti alloy at a low cost in an efficient manner, and obtaining Ca that can be used for reduction of Ti and other non-reducible metals as solid Ca and bath salt. It is related with the pulling-up electrolysis method which can do.
  • Metals such as Ti, Zr, Ta, Hf, and V are useful metals each having excellent characteristics.
  • metal Ti and Ti alloys are excellent in corrosion resistance, design, etc., and are lightweight and excellent in mechanical properties.
  • its use has been expanding, including the use of non-toxic metals for medical devices as a metal.
  • TiCl tetrasalt titanium
  • molten Mg is filled in a reaction vessel, and a TiCl liquid is supplied to the liquid surface from above, Melting M
  • the reaction takes place only near the molten Mg surface, the TiCl supply rate is limited.
  • the generated Ti powder is agglomerated due to the adhesiveness between molten Mg and Ti, and sinters and grows by the heat of the melt, so it is difficult to take out the generated Ti out of the reaction vessel. Therefore, it is difficult to continuously manufacture products, and there is a limit to improving productivity, resulting in increased manufacturing costs and extremely high product prices.
  • Ca can be used in addition to g.
  • Ca has a stronger affinity for C1 than Mg, and is in principle suitable as a reducing agent for TiCl.
  • TiCl is reduced by Ca
  • Ca has a stronger affinity for C1 than Mg. In principle, it is suitable as a reducing agent for TiCl.
  • metal Ca is mainly produced by volatile reduction using carbonate as a raw material!
  • German technical literature (“HANDBUCH DER TECHNISCHEN ELEKTROCHE MIE” DRITTER BAND (1934) p. 128-p. 164 "Calcium, Strontium, Barium.” Von Dr. V. Makow)
  • the molten CaCl was electrolyzed and remelted to separate the adhering salt.
  • Manufactures Ca It is described.
  • the voltage during electrolysis is very high. Therefore, it can be predicted that a large amount of electric energy with a large required power (current X voltage) will be consumed and the manufacturing cost will increase.
  • the present invention has been made in view of such circumstances, and provides a method for producing T or Ti alloy by Ca reduction, and in particular, a method for producing Ti or Ti alloy efficiently and inexpensively.
  • This is the first purpose.
  • Ca which can be used for the reduction of Ti, can be applied to the manufacturing method of the above-mentioned T and Ti alloys, with low cell voltage and high current efficiency.
  • the second objective is to provide a pull-up electrolysis method that can be obtained at the same time.
  • the molten salt is reacted with a metal chloride containing TiCl to Ca in the molten salt.
  • T and Ti alloys are continuously produced.
  • Establishing a method hereinafter referred to as “Method for producing T or Ti alloy by Ca reduction” including various embodiments
  • An electrolysis method was proposed. The development process and knowledge gained for each method will be explained separately in “Method of producing Ti or Ti alloy by Ca reduction” and “Pulling electrolysis method”.
  • TiC is produced by extracting CaC 1 produced as a by-product to the outside of the reaction vessel and electrolyzing it.
  • the reaction field (the region where the reaction between Ca and TiCl occurs) becomes too hot and the reaction vessel wears down drastically.
  • the Ca is solidified together with the molten CaCl solution.
  • rod-like Ca is formed by electrolysis of molten CaCl.
  • Fig. 1 shows the production of Ca by electrolysis of molten CaCl disclosed in the German technical literature.
  • the solidified salt adheres to the surface of this calcium rod, it is remelted and separated in calcium chloride. It is described that the current density of the force sword during electrolysis is 125 AZcm 2 , the voltage is 35 to 40 V, and the purity of the re-dissolved metal Ca is 98 to 99%.
  • the present inventors developed a pulling electrolysis method capable of obtaining Ca that can be used for the reduction of refractory metals, particularly Ti.
  • the resulting Ca can be extracted and electrolyzed, and the generated Ca can be used in the reaction of the formation of metals such as Ti in the reaction vessel.
  • metals such as Ti in the reaction vessel.
  • reaction field is limited to the vicinity of the Mg liquid surface
  • heat generation area is widened and cooling is facilitated, so the TiCl supply rate can be greatly increased and productivity is significantly improved.
  • the present inventors further reduced the energy loss due to repeated heat generation and heat removal, and further reduced the difficulty in controlling the temperature of the reaction field.
  • the molten CaCl solution was extracted from the reaction vessel and electrolyzed
  • the produced Ca is recovered together with the molten CaCl solution as a solid, and this solid is reduced.
  • solid Ca and bath salt are supplied as a Ca source in the molten salt containing CaCl in the reaction vessel when producing T or Ti alloy by Ca reduction, for example, solid Ca
  • the metal Ca is supplied as the Ca source, it can be dissolved quickly and uniformly, and the reaction between the metal salt containing TiCl and Ca can proceed uniformly over a wide range in the reaction vessel.
  • the present invention is based on the above-mentioned results of the study on the production method of T or Ti alloy by Ca reduction, and further in the context of such production technology of Ti or Ti alloy by Ca reduction. (A) to (d) based on the knowledge of the following (1) to (3) Ti or Ti alloy production method and the following (4) and (5) pulling electrolysis method It is a summary.
  • Electrolysis of the reduction process that produces Ti alloy and the bath salt extracted from the reduction process This is a method for producing a T alloy or Ti alloy that includes an electrolysis step for generating Ca, and collects solids containing Ca and bath salts in the electrolysis step and transfers the solids to the reduction step. This is a method for producing cocoons or Ti alloys.
  • Solid state as defined in the present invention means that Ca and bath salts are solid on the surface of the cathode when the cathode is pulled up (however, the surface is wet during solidification) It is included). Specifically, when the entire solid body is solid (that is, when the solidification is completed), it is solid in appearance but actually partly solid, This means that any solid bath salt or the like that is incompletely solidified and contains a molten bath salt or the like is included.
  • the bath salt extracted from the reduction process is electrolyzed, and Ca and bath salt are recovered as solids and transferred to the reduction process.
  • the production and thermal efficiency can be greatly improved, and the reaction temperature can be easily controlled, making it possible to manufacture Ti or Ti alloys at a low cost.
  • the pulling electrolysis method of the above (4) and (5) is a method of recovering Ca by regulating the bath temperature, cathode current density, voltage, and cathode pulling rate within a predetermined range. With low current and high current efficiency, Ca can be obtained as solid Ca and bath salts with relatively low power consumption.
  • Figure 1 shows the production of Ca by electrolysis of molten CaCl as disclosed in the German technical literature.
  • FIG. 2 is a diagram for explaining the pulling electrolysis method of the present invention.
  • FIG. 3 is a diagram illustrating the relationship between the cathode pulling rate and the current efficiency when the electrolysis method of the present invention is performed.
  • FIG. 4 is a graph showing the relationship between bath temperature and cathode pulling rate in pulling electrolysis.
  • FIG. 5 is a diagram showing a configuration example of a metal Ti production apparatus by Ca reduction.
  • the method for producing a T alloy or Ti alloy of the present invention is a metal containing TiCl in Ca in a Ca-containing bath salt.
  • a more specific configuration is "Ca in the Ca-containing bath salt contains TiCl.”
  • It includes a reduction step in which metal chloride is reacted to form Ti or Ti alloy in the bath salt, and an electrolysis step in which the bath salt extracted from the reduction step is electrolyzed to produce Ca.
  • it is a method for producing a Ti alloy, in which a solid containing Ca and a bath salt is recovered in the electrolysis step, and the solid is transferred to the reduction step.
  • the solid material containing Ca and bath salt is recovered in the electrolysis process, and the solid material is transferred to the reduction process. It is an invention.
  • a molten salt is used as the bath salt. It is usually preferable to use a molten salt containing CaCl.
  • the reduction reaction with Ca proceeds, so it can be used as a bath salt.
  • the method of collecting the solid is not limited at all! ⁇ .
  • the Ca generated in the electrolysis process is taken out as a solid substance containing a bath salt, and the salt strength of the electrolysis bath is taken out and transferred to the reduction process (that is, the reduction process proceeds, for example, charged into the reaction vessel). .
  • the transfer of Ca produced in the electrolysis process to the reduction process may be carried out using the entire amount as the above-mentioned solid matter, or a part thereof as the above-mentioned solid matter, and others may increase the Ca concentration, for example.
  • the production efficiency can be increased and the heat efficiency can be greatly improved by reducing the heat loss.
  • the cooling capacity of the entire reaction system can be improved, the reaction temperature can be easily controlled, the raw material charging speed can be increased, and the production of Ti or Ti alloy by Ca reduction can be performed more efficiently and cheaply. . It is also possible to make the device compact.
  • the recovered Ca and the Ca concentration in the solid containing the bath salt are obtained.
  • the Ca concentration in the solid can be 20% by mass
  • the electrolysis temperature can be set to 800 ° C
  • the Ca concentration can be set to 30% by mass.
  • the electrolysis temperature it is possible to control the Ca concentration in the solid containing Ca and the bath salt. For this reason, for example, when the temperature of the reaction field where the reduction reaction occurs is lowered, the electrolysis temperature is lowered to lower the Ca concentration in the solid, and conversely, the reaction rate in the reduction process is to be increased. In some cases, it is possible to use and separate Ca and bath salt-containing solids according to the operating conditions, such as raising the electrolysis temperature to increase the Ca concentration in the solids.
  • the bath salt is electrolyzed at a bath temperature of 680 to 900 ° C., a cathode current density of 0.1 to 200 AZcm 2 and a voltage of 10 V or less, and is fixed on the cathode surface.
  • the bath salt and Ca are recovered in solid form by pulling up the cathode at a pulling speed of 0.05 cmZmin or more while adhering and solidifying the shape.
  • FIG. 2 is a view for explaining the pulling electrolysis method of the present invention.
  • a bath salt 2 is held in an electrolytic cell 1 and an anode 3 and a cathode 4 are attached.
  • chlorine (C1) is generated at the anode 3
  • Ca is deposited at the cathode 4.
  • Such precipitation of Ca and the adhesion and solidification force of the bath salt in the vicinity of the precipitated Ca repeatedly occur as the cathode 4 is pulled up, and are immersed in the bath salt 2 when the cathode 4 starts electrolysis.
  • the solid Ca and bath salt 5 contained in a mixed state of Ca and bath salt are formed downward.
  • this solid Ca and bath salt contain CaCl in the reaction vessel when used as a Ca source in the production of Ti or Ti alloy by Ca reduction.
  • Any material that dissolves quickly and uniformly when supplied as a Ca source in a molten salt containing 2 may be used.
  • any salt can be used as the bath salt as long as the temperature can be adjusted within the above temperature range and Ca is generated by electrolysis.
  • a mixture of Ca halide salt for example, binary mixed salt such as calcium fluoride and salt calcium, salt calcium and salt potassium, or salt calcium, calcium fluoride
  • Use ternary mixed salts such as salt and potassium. Since the melting point of the bath salt can be changed by using such a mixed salt, it is possible to select the bath salt according to the set bath temperature.
  • the bath temperature is 680 to 900 ° C.
  • the reaction temperature is too low to cause the formation of Ca electrolysis, while when the bath temperature exceeds 900 ° C, the dissolved amount of the produced Ca in the bath salt is small. This is because increasing the current efficiency makes it difficult to obtain high current efficiency (ie, Ca recovery efficiency).
  • the cathode current density is 0.1 to 200 AZcm 2 .
  • the lower limit of the current density depends on the rate at which Ca generated by electrolysis is re-dissolved in the bath, and if the current density is less than 0.1 lAZcm 2 , Ca cannot be recovered because the dissolution rate of Ca in the bath salt is faster than the rate of Ca formation.
  • the upper limit of the current density is 200 AZcm 2, and if the current density exceeds this value, the voltage cannot be lowered even if the distance between the electrodes is adjusted, and the power consumption increases. That's it.
  • the cathode current density is 0.1 to 70 AZcm 2 , the voltage can be reduced to 5 V or less, and the power consumption can be greatly reduced, which is desirable. Furthermore, if the cathode current density is 10 to 50 AZcm 2 , in addition to a significant reduction in power consumption, it is possible to obtain a high current efficiency of 90% or more.
  • this range is the optimum range for the cathode current density.
  • the reason for setting the voltage during electrolysis to 10 V or less is to suppress the increase in power consumption as much as possible.
  • the electrolysis under high voltage (35-40V) described in the German technical literature is considered to be a force considered to cause electrolytic deposition of metal Ca.
  • Ca, Ca and bath salt are used. Since it collects as a solid substance in which is mixed, a high voltage is not necessary.
  • the lower limit of the voltage is not particularly defined, it must be at least higher than the decomposition voltage of molten CaCl (approximately 3.2 V) in order for Ca to proceed and precipitation of Ca.
  • the cathode pulling speed is 0.05 cmZmin or more. If the pulling rate is slower than this, it will be difficult to attach the produced Ca to the cathode surface. This is thought to be due to the fact that the produced Ca dissolves and spreads widely in the bath.
  • the upper limit of the pulling speed is not particularly defined. This is because, as specified by the electrolysis method of the present invention, if the operation of pulling up the cathode while solidifying and solidifying the cathode surface is carried out, the upper limit of the pulling rate is naturally determined. That is, if the pulling speed is too fast, the cross-sectional area of the solid that is pulled up becomes too small (that is, it becomes thin), and the solid that is pulled up is cut in the middle, making it impossible to pull it up continuously. Considering such restrictions on the pulling operation, it is desirable that the pulling speed is less than lOcmZmin.
  • FIG. 3 is a diagram illustrating the relationship between the cathode pulling rate and the current efficiency when the electrolysis method of the present invention is performed. This is an example of electrolysis at a voltage of 10 V or less and a distance between electrodes of 7 cm or less.
  • the age and solid lines indicate the bath temperature during electrolysis at 720 ° C (720 ° C electrolysis), and the dashed line indicates the bath temperature at 800 ° C (800 ° C electrolysis).
  • the mark indicates the case of using a cylindrical cathode with a diameter of 8 mm
  • the mark indicates the case of using a cylindrical cathode with a diameter of 5 mm
  • the mark ⁇ indicates the case of using a cylindrical cathode with a diameter of 15 mm.
  • the current efficiency is determined by the amount of deposited Ca, which is also determined based on Faraday's law.
  • the Ca in the solid matter on the cathode surface does not include Ca which has been deposited on the cathode surface and then dissolved or exfoliated, so the current efficiency here is synonymous with the Ca recovery efficiency.
  • the current efficiency of the 800 ° C electrolysis is lower than that of the 720 ° C electrolysis over the entire range of the pulling rate. This is because the higher the bath temperature, the greater the amount of Ca dissolved in CaCl, the lower the amount of Ca recovered.
  • the Ca concentration is 20% by mass.
  • the Ca concentration is 30% by mass. The details of this phenomenon are unknown, but when the bath temperature is high, the bath salt attached to the cathode surface (deposited Ca surface) at the time of pulling is easy to flow off before solidifying and separate from Ca, and in the collected solids This is thought to be due to the concentration of Ca.
  • the bath temperature the recovered solid Ca and the Ca concentration in the bath salt
  • the degree of Ca can be controlled, and when using this solid Ca and bath salt as a Ca source, the Ca concentration can be grasped and the concentration can be arbitrarily determined.
  • FIG. 4 is a diagram showing the relationship between bath temperature and cathode pulling rate in pulling electrolysis.
  • the hatched portion in the figure is a region where the pulling speed is 0.05 cmZmin or more and good current efficiency (ie, Ca recovery efficiency) expressed by the above equation (1) is obtained.
  • Ca and bath salt are recovered in solid form.
  • solid means a solid state in appearance.
  • the term “solid” means a solid state in appearance.
  • the bath temperature at which the bath temperature is high and the melting point of the bath salt is large, the solid state on the cathode surface.
  • Ca While the bath salt adhering to the pulled cathode surface is difficult to solidify, Ca generally has a higher melting point than the bath salt, so it precipitates as a solid from the beginning or immediately becomes a solid even in a molten state. This is because unsolidified bath salt is taken into the solid.
  • Ca is obtained as solid Ca and bath salt with low voltage and high current efficiency (and with relatively low power consumption). be able to.
  • This solid Ca and bath salt are particularly effective when used as a Ca source in the production of Ti or Ti alloy by Ca reduction.
  • This manufacturing process includes the manufacturing method of Ti or Ti alloy by Ca reduction of the present invention, that is, That is, by reacting Ca in the Ca-containing bath salt with a metal chloride containing TiCl, Ti is added to the bath salt.
  • the present invention includes a reduction step for producing a Ti alloy and an electrolysis step for electrolyzing a bath salt extracted from the reduction step to produce Ca.
  • FIG. 5 is a diagram showing an example of the configuration of a metal Ti production apparatus using Ca reduction.
  • TiCl is used as a raw material
  • Ca-containing bath salt containing CaCl is used as a Ca-containing bath salt.
  • a salting process for producing TiCl is added.
  • a reducing agent supply pipe 7 for supplying Ca as a reducing agent is provided at the ceiling of the reaction vessel 6.
  • the bottom of the reaction vessel 6 has a taper shape that is gradually reduced in diameter in order to promote the discharge of the generated Ti particles, and the generated Ti particles are discharged at the center of the lower end.
  • Ti discharge pipe 8 is provided.
  • a cylindrical separation wall 9 is disposed inside the reaction vessel 6 with a predetermined gap between the inner surface of the straight body portion. At the top of the reaction vessel 6, the CaCl in the vessel is moved to the side.
  • Discharged molten salt discharge pipe 10 is provided, and TiCl which is Ti raw material is supplied at the bottom
  • a raw material supply pipe 11 is provided through the separation wall 9 so as to reach the center of the container.
  • the surface is set at a level higher than the molten salt discharge pipe 10 and lower than the upper end of the separation wall 9.
  • the TiCl gas is added to the molten CaCl liquid inside the separation wall 9 by the raw material supply pipe 11.
  • the Ti particles are compressed to squeeze the molten CaCl solution.
  • the electrolysis step 13 the molten CaCl solution 13b introduced into the electrolytic cell 13a from the reaction vessel 6 and the separation step 12 is separated into Ca and C1 gas by electrolysis.
  • the Ca generated on the cathode 13d side is recovered as solid Ca and bath salt 13e mixed with Ca and bath salt by pulling up the cathode 13d, returned to the reaction vessel 6, and replenished with Ca. .
  • Ca may be replenished (supplied) using the above-mentioned solid Ca and bath salt as a whole, or a part thereof may be used as the above-mentioned solid Ca and bath salt.
  • CaCl solution may be used.
  • solid Ca and bath salt 13e generate heat generated by the reaction between TiCl and Ca.
  • TiO is chlorinated in the presence of carbon powder (C) to produce TiCl. Also C powder
  • the reducing agents Ca and C1 gas are cycled.
  • the replenishment of gold is substantially only by supplementing TiO and C.
  • the genus Ti can be produced continuously, but at this time, solid Ca and bath salt recovered by the electrolysis method of the present invention can be suitably used as a Ca source.
  • the bath salt extracted from the reduction process is electrolyzed, and Ca and the bath salt are recovered as solids.
  • the method of transferring to the reduction step can use the latent heat of fusion that the solid material has to suppress heat generation in the reduction process, greatly improve production efficiency and thermal efficiency, and control the reaction temperature. This makes it easy to increase the raw material charging speed and produce Ti or Ti alloy efficiently and inexpensively.
  • the pulling electrolysis method of the present invention is a method of recovering Ca by regulating the bath temperature, cathode current density, voltage, and cathode pulling rate within a predetermined range, and with low voltage and high current efficiency. Thus, it is possible to obtain solid Ca and bath salt with relatively little power consumption.
  • this solid Ca and bath salt dissolve quickly and uniformly in the reaction vessel. This is because the metal chloride containing Ca and TiCl melts during the reduction reaction.

Abstract

In the production of Ti or a Ti alloy by reduction of Ca, a bath salt withdrawn from the step of reduction is electrolyzed, and Ca and the bath salt are recovered as a solid which is then transferred to the step of reduction. According to this process, the latent heat of fusion possessed by the solid can be utilized to suppress the generation of heat in the step of reduction and thus to significantly improve the production efficiency and the thermal efficiency. At the same time, the reaction temperature can easily be controlled, and, thus, the starting material charge speed can be increased to produce Ti or Ti alloy with good efficiency. In this case, the use of a pull-up electrolysis method can realize the production of solid Ca and bath salt at low voltage with high current efficiency and, thus, with relatively low power consumption. When the solid Ca and bath salt are used as a Ca source in the production of Ti or Ti alloy by Ca reduction, Ti or Ti alloy can be produced with high efficiency.

Description

明 細 書  Specification
Tiまたは Ti合金の製造方法およびそれに適用できる引上げ電解方法 技術分野  Manufacturing method of Ti or Ti alloy and pulling electrolysis method applicable to it
[0001] 本発明は、効率よぐ安価に τほたは Ti合金を製造する方法、および Tiその他の 難還元性金属の還元に使用可能な Caを、固体状の Caおよび浴塩として得ることが できる引上げ電解方法に関する。  [0001] The present invention provides a method for producing τ or Ti alloy at a low cost in an efficient manner, and obtaining Ca that can be used for reduction of Ti and other non-reducible metals as solid Ca and bath salt. It is related with the pulling-up electrolysis method which can do.
背景技術  Background art
[0002] Ti、 Zr、 Ta、 Hf、 Vなどの金属はそれぞれ優れた特性を備えた有用な金属である。  [0002] Metals such as Ti, Zr, Ta, Hf, and V are useful metals each having excellent characteristics.
これらの金属は、還元され難ぐまた、共存する同族元素や不純物等の分離が必要 であるため、通常は多くの工程を経て精製された後、それらの酸ィ匕物またはハロゲン 化物とし、これを Mgや Na等の還元力の強 ヽ金属で還元することにより製造されて!ヽ る。  Since these metals are difficult to reduce and need to separate coexisting homologous elements and impurities, they are usually refined through many steps and then converted into their oxides or halides. It is manufactured by reducing with strong reducing metals such as Mg and Na!
[0003] なかでも、金属 Tiさらに Ti合金は耐食性、意匠性などに優れ、且つ、軽量で機械的 特性にも優れており、従来から、航空機材料、熱交換器用材料、化学プラント用材料 として、また、屋根材、ゴルフのヘッドなどとしても広く使用されている。特に近年にお いては、人体に対して毒性のない金属として医療関係の機器類への使用など、その 用途は拡大する一方である。  [0003] Among these, metal Ti and Ti alloys are excellent in corrosion resistance, design, etc., and are lightweight and excellent in mechanical properties. Conventionally, as aircraft materials, heat exchanger materials, and chemical plant materials, It is also widely used as a roofing material and golf head. In particular, in recent years, its use has been expanding, including the use of non-toxic metals for medical devices as a metal.
[0004] し力しながら、金属 Tiは製鍊が困難であるため、金属として非常に高価であり、ェ 業的に、安価で且つ生産性の高い製造方法の開発が望まれている。  [0004] However, since it is difficult to produce metal Ti, it is very expensive as a metal, and it is desired to develop a production method that is industrially inexpensive and highly productive.
すなわち、従来、金属 Tiの製鍊方法としては、四塩ィ匕チタン (TiCl )を Mg、 Na等  That is, conventionally, as a method for producing metal Ti, tetrasalt titanium (TiCl) is used as Mg, Na, etc.
4  Four
の還元力の強い金属(還元金属)により還元して金属 Tiとする方法が採用されてきた 。しかし、これらの方法では、ノ ツチ方式での製造となるため、生産性の向上に限界 があることが問題となっている。  A method of reducing to Ti with metal having a strong reducing power (reduced metal) has been adopted. However, since these methods are notched manufacturing, there is a problem in that there is a limit in improving productivity.
[0005] 例えば、金属 Tiの工業的な製法として一般的に行われて 、るクロール法では、反 応容器内に溶融 Mgを充填し、その液面に上方から TiClの液体を供給して、溶融 M  [0005] For example, in the crawl method, which is generally performed as an industrial production method of metal Ti, molten Mg is filled in a reaction vessel, and a TiCl liquid is supplied to the liquid surface from above, Melting M
4  Four
gの液面近傍で TiClを Mgにより還元し、金属 Tiを得ている。しかし、反応容器内の  TiCl is reduced with Mg near the liquid surface of g to obtain metallic Ti. However, in the reaction vessel
4  Four
溶融 Mgの液面近傍だけで反応が行われるため、 TiClの供給速度が制限される。 [0006] また、生成した Ti粉力 溶融 Mgと Tiとの粘着性により凝集し、溶融液が有する熱に より焼結して粒成長するため、生成した Tiの反応容器外への取り出しが難しぐ製造 を連続的に行うことが困難で生産性の向上に限界があり、製造コストが嵩み、製品価 格が非常に高くなる。 Since the reaction takes place only near the molten Mg surface, the TiCl supply rate is limited. [0006] In addition, the generated Ti powder is agglomerated due to the adhesiveness between molten Mg and Ti, and sinters and grows by the heat of the melt, so it is difficult to take out the generated Ti out of the reaction vessel. Therefore, it is difficult to continuously manufacture products, and there is a limit to improving productivity, resulting in increased manufacturing costs and extremely high product prices.
[0007] そのため、クロール法以外の Ti製造方法に関して、従来力 多くの研究開発が行 われてきた。例えば、米国特許第 2205854号明細書には、 TiClの還元剤として M  [0007] For this reason, much research and development has been performed on Ti production methods other than the crawl method. For example, U.S. Pat.No. 2,205,854 discloses M as a reducing agent for TiCl.
4  Four
g以外に例えば Caの使用が可能なことが記載されている。 Caは Mgより C1との親和力 が強ぐ原理的には TiClの還元剤に適している。しかし、 TiClを Caにより還元する  For example, it is described that Ca can be used in addition to g. Ca has a stronger affinity for C1 than Mg, and is in principle suitable as a reducing agent for TiCl. However, TiCl is reduced by Ca
4 4  4 4
金属 Tiの製造方法は未だ実用化されていない。その理由としては、 CaClの電解が  The manufacturing method of metal Ti has not been put into practical use yet. The reason is that electrolysis of CaCl
2 難しいことなどが考えられる。  2 Difficult things are possible.
[0008] 別の Ti製造方法としては、米国特許第 2845386号明細書に記載されたオルソン の方法がある。これは、 TiClを経由せず、 TiOを Caにより直接還元する酸化物直 [0008] Another Ti manufacturing method is the Olson method described in US Pat. No. 2,845,386. This is because oxides directly reduce TiO with Ca without passing through TiCl.
4 2  4 2
接還元法の一種である。酸化物直接還元法は高能率であるが、高純度の Tiを低コス トで製造するのには適さない。なぜなら、高価な高純度の TiOを使用しなければなら  It is a kind of contact reduction method. Although the direct oxide reduction method is highly efficient, it is not suitable for producing high-purity Ti at a low cost. Because you have to use expensive high purity TiO
2  2
ないからである。  Because there is no.
[0009] すなわち、前記の米国特許明細書に記載された Ti製造方法には、 V、ずれも Caは 精製が容易ではない上に、酸ィ匕され易いため取り扱いが難しいという問題がある。さ らに、酸化物直接還元法では、高価な高純度の TiOを使用しなければならないとい  [0009] That is, the Ti production method described in the above-mentioned US patent specification has a problem that V and deviation Ca are not easy to purify and are difficult to handle because they are easily oxidized. Furthermore, in the direct oxide reduction method, expensive high-purity TiO must be used.
2  2
う問題があり、これらの方法は未だ実用化されて 、な 、。  These methods are still in practical use.
[0010] しかしながら、 Caは Mgより C1との親和力が強ぐ原理的には TiClの還元剤に適し [0010] However, Ca has a stronger affinity for C1 than Mg. In principle, it is suitable as a reducing agent for TiCl.
4  Four
ている。したがって、安価な Caを得ることができれば、 Tiを始め、最終的に塩化物とし た後 Mgで還元する Zrや Hf、さらには Ta、 Vなどの難還元性金属の還元剤として使 用することが可能と考えられ、工業的に有益である。  ing. Therefore, if cheap Ca can be obtained, it should be used as a reducing agent for Zr, Hf, and other difficult-to-reduced metals such as Ta, V, etc. Is considered possible and is industrially beneficial.
[0011] 金属 Caは、現在、主として炭酸塩を原料として揮発還元法により製造されて!、るが 、ドイツ技術文献("HANDBUCH DER TECHNISCHEN ELEKTROCHE MIE" DRITTER BAND (1934) p. 128〜p. 164 「Calcium, Strontium , Barium.」 Von Dr. V. Makow)に、金属 Caの工業的製造が行われた初期に おいては、溶融 CaClを電気分解し、再溶融して付着する塩を分離し、 Caを製造し たことが記載されている。 [0011] Currently, metal Ca is mainly produced by volatile reduction using carbonate as a raw material! However, German technical literature ("HANDBUCH DER TECHNISCHEN ELEKTROCHE MIE" DRITTER BAND (1934) p. 128-p. 164 "Calcium, Strontium, Barium." Von Dr. V. Makow), in the early days of industrial production of metallic Ca, the molten CaCl was electrolyzed and remelted to separate the adhering salt. Manufactures Ca It is described.
[0012] しかし、このドイツ技術文献に記載の溶融 CaClの電気分解による Caの製造では、  However, in the production of Ca by electrolysis of molten CaCl described in this German technical document,
2  2
電解時の電圧が非常に高い。そのため、所要電力(電流 X電圧)が大きぐ多大な電 気エネルギーが消費され、製造コストが高くなることが予測できる。  The voltage during electrolysis is very high. Therefore, it can be predicted that a large amount of electric energy with a large required power (current X voltage) will be consumed and the manufacturing cost will increase.
発明の開示  Disclosure of the invention
[0013] 本発明は、このような状況に鑑みてなされたもので、 Ca還元による Tほたは Ti合金 の製造方法、特に、 Tiまたは Ti合金を効率よぐ安価に製造する方法を提供すること を第 1の目的としている。さら〖こ、前記難還元性金属を対象として、特に上記 Tほたは Ti合金の製造方法に適用できるように、 Tiの還元に使用し得る Caを、低い槽電圧で 、し力も高い電流効率で得ることができる引上げ電解方法の提供することを第 2の目 的としている。  [0013] The present invention has been made in view of such circumstances, and provides a method for producing T or Ti alloy by Ca reduction, and in particular, a method for producing Ti or Ti alloy efficiently and inexpensively. This is the first purpose. Furthermore, for the above-mentioned difficult-to-reduced metals, Ca, which can be used for the reduction of Ti, can be applied to the manufacturing method of the above-mentioned T and Ti alloys, with low cell voltage and high current efficiency. The second objective is to provide a pull-up electrolysis method that can be obtained at the same time.
[0014] 前記の課題を解決するために、本発明者らは、 TiClの Ca還元法に着目し、検討  [0014] In order to solve the above-mentioned problems, the present inventors focused on the Ca reduction method of TiCl and examined it.
4  Four
を重ねた。その結果、 CaClを含み且つ Caが溶解した溶融塩を反応容器内に保持  Repeated. As a result, molten salt containing CaCl and dissolving Ca is retained in the reaction vessel.
2  2
し、その溶融塩中の Caに TiClを含む金属塩化物を反応させることにより前記溶融  The molten salt is reacted with a metal chloride containing TiCl to Ca in the molten salt.
4  Four
塩中に Ti粒または Ti合金粒を生成させ、この溶融塩中に生成した Ti粒または Ti合 金粒を溶融塩から分離、回収することにより、連続的に Tほたは Ti合金を製造する方 法 (以下、この方法を、各種実施形態を含め「Ca還元による Tほたは Ti合金の製造 方法」という)を確立するとともに、これに適用できる固体状の Caを得ることができる引 上げ電解方法を提案した。それぞれの方法に関する開発経緯や得られた知見につ いて、「Ca還元による Tiまたは Ti合金の製造方法」および「引上げ電解方法」に区分 して説明する。  By producing Ti grains or Ti alloy grains in the salt and separating and recovering the Ti grains or Ti alloy grains produced in the molten salt from the molten salt, T and Ti alloys are continuously produced. Establishing a method (hereinafter referred to as “Method for producing T or Ti alloy by Ca reduction” including various embodiments), and a solid Ca that can be applied to this method. An electrolysis method was proposed. The development process and knowledge gained for each method will be explained separately in “Method of producing Ti or Ti alloy by Ca reduction” and “Pulling electrolysis method”.
[0015] (Ca還元による Tiまたは Ti合金の製造方法にっ 、て)  [0015] (By the production method of Ti or Ti alloy by Ca reduction)
Ca還元による Tほたは Ti合金の製造方法では、 Tiの生成にともな 、副生する CaC 1を反応容器外へ抜き出して電気分解し、生成された Caを反応容器内での Tiなどの In the method of manufacturing Ti alloy by Ca reduction, TiC is produced by extracting CaC 1 produced as a by-product to the outside of the reaction vessel and electrolyzing it.
2 2
金属の生成反応に使用することができる。この場合、 Caと CaCl  It can be used for metal production reactions. In this case, Ca and CaCl
2を厳密に分離する必 要がな!、ことが、この方法における大きな利点の一つである。  One of the major advantages of this method is that the two do not need to be strictly separated!
[0016] この Ca還元による Tほたは Ti合金の製造方法によれば、溶融 CaCl中で Ti生成反  [0016] According to the method of manufacturing T or Ti alloy by this Ca reduction, Ti formation reaction in molten CaCl
2  2
応が進行する。したがって、反応容器内の還元剤(Mg)の液面に TiClを供給し、反 応場が液面近傍に限定されるクロール法と比べて、反応場が拡大し、発熱領域も広 力 Sり冷却が容易になることから、 Tiの原料である TiClの供給速度を大幅に高めるこ Response progresses. Therefore, TiCl is supplied to the liquid level of the reducing agent (Mg) in the reaction vessel and Compared with the crawl method, where the reaction field is limited to the vicinity of the liquid surface, the reaction field is expanded, the heat generation area is wide, and cooling is easy, so the supply rate of TiCl, the Ti raw material, is greatly increased. This
4  Four
とができ、生産性の大幅な向上が期待できる。  And a significant improvement in productivity can be expected.
[0017] しかし、溶融 CaCl中の Caと TiClの反応は発熱反応であり、高い生産性を維持す  [0017] However, the reaction between Ca and TiCl in molten CaCl is an exothermic reaction and maintains high productivity.
2 4  twenty four
るためには発熱領域を冷却して脱熱する必要があるため、生産効率が低下するととも に、熱損失が大きいため熱効率も低下する。  In order to achieve this, it is necessary to cool the heat-generating area to remove heat, so that the production efficiency is lowered and the heat efficiency is also lowered due to the large heat loss.
[0018] また、 TiClの供給速度が大きすぎて急激な発熱が生じ、冷却能を超える場合、反 [0018] Also, if the supply rate of TiCl is too high and sudden heat generation occurs and the cooling capacity is exceeded,
4  Four
応場 (前記 Caと TiClの反応が起こる領域)が高温になり過ぎ、反応容器の損耗が激  The reaction field (the region where the reaction between Ca and TiCl occurs) becomes too hot and the reaction vessel wears down drastically.
4  Four
しくなる。逆に温度が下がりすぎると反応速度が低下する。そのため、 TiClの還元ェ  I will be. Conversely, when the temperature is too low, the reaction rate decreases. Therefore, TiCl reduction
4 程では、高 、生産性を維持するための精密な温度制御が必要となる。  At about 4, high temperature control is necessary to maintain high productivity.
[0019] この問題を解決するために、本発明者らは、この発熱、脱熱の繰り返しによる生産 効率の低下およびエネルギー損失を極力抑えるとともに、反応場の温度制御の困難 性を緩和するための方策についてさらに検討した結果、溶融 CaCl  [0019] In order to solve this problem, the present inventors have suppressed production efficiency reduction and energy loss due to repeated heat generation and heat removal as much as possible, and alleviated the difficulty of temperature control of the reaction field. As a result of further examination of the measures, molten CaCl
2液を反応容器外 へ抜き出して電気分解し、生成した Caを溶融 CaCl液とともに(すなわち、 Ca濃度を  Two liquids are extracted outside the reaction vessel and electrolyzed, and the generated Ca is mixed with molten CaCl liquid (ie, the Ca concentration is reduced).
2  2
高めた CaCl液として)反応容器内へ戻すのではなぐ Caを溶融 CaCl液とともに固  Rather than returning to the reaction vessel (as enhanced CaCl solution), the Ca is solidified together with the molten CaCl solution.
2 2  twenty two
形物として回収し、この固形物を還元工程へ戻すという着想を得た。  The idea was that it was recovered as a form and returned to the reduction step.
[0020] この方法が実現できれば、 Caと TiClの反応にともなう発熱を Caおよび CaClの固 [0020] If this method can be realized, the exothermic heat generated by the reaction between Ca and TiCl can be reduced.
4 2 形物が有している融解潜熱を利用して吸収することができる。これにより、熱効率を大 きく向上させ得るとともに、反応温度の制御が容易になり、 Ca還元による Tほたは Ti 合金の製造方法を一層効率よく行うことが可能となる。  4 2 Can be absorbed by using the latent heat of fusion of the shape. As a result, the thermal efficiency can be greatly improved, the reaction temperature can be easily controlled, and the production method of T or Ti alloy by Ca reduction can be performed more efficiently.
[0021] ところで、前記ドイツ技術文献によると、溶融 CaClの電気分解により棒状の Caが [0021] By the way, according to the German technical literature, rod-like Ca is formed by electrolysis of molten CaCl.
2  2
得られることが記載されて 、る。  It is described that it is obtained.
[0022] 図 1は、前記ドイツ技術文献で開示される、溶融 CaClの電気分解により Caを製造 [0022] Fig. 1 shows the production of Ca by electrolysis of molten CaCl disclosed in the German technical literature.
2  2
するカルシウム炉の要部の概略構成を示す図である。図 1に示す概略構成のカルシ ゥム炉 (電解装置)において、先ず、電解質として溶融塩ィ匕カルシウム (CaCl ) 16が  It is a figure which shows schematic structure of the principal part of the calcium furnace to do. In the calcium furnace (electrolyzer) having a schematic configuration shown in FIG. 1, first, molten salt calcium (CaCl) 16 is used as an electrolyte.
2 黒鉛坩堝 15 (黒鉛プレートで被覆された鉄製容器で、冷却されている)内に装入され 、溶融、昇温される。なお、坩堝 15の底部、内壁部では、冷却により電解質の一部が 固化し、固化電解質 20が形成されている。 [0023] 続いて、アノード(陽極) 17と力ソード(陰極) 18間に通電して電気分解が行われる 。このとき、力ソード 18に Caが析出する度合に応じて電流と電圧の変動が小さくなる ように力ソード 18が引き上げられ、それにともない Cal9が棒状に成長する。 2 Charged in a graphite crucible 15 (an iron container covered with a graphite plate and cooled), melted, and heated. Note that, at the bottom and inner wall of the crucible 15, a part of the electrolyte is solidified by cooling to form a solidified electrolyte 20. Subsequently, electrolysis is carried out by energizing between the anode (anode) 17 and the force sword (cathode) 18. At this time, the force sword 18 is pulled up so that the fluctuations in current and voltage are reduced according to the degree of Ca precipitation on the force sword 18, and Cal9 grows in a rod shape.
このカルシウム棒の表面には固化した塩が付着しているので、塩化カルシウム中で 再溶融され分離される。なお、電解時の力ソードの電流密度は 125AZcm2、電圧は 35〜40V、再溶解した金属 Caの純度は 98〜99%である、と記載されている。 Since the solidified salt adheres to the surface of this calcium rod, it is remelted and separated in calcium chloride. It is described that the current density of the force sword during electrolysis is 125 AZcm 2 , the voltage is 35 to 40 V, and the purity of the re-dissolved metal Ca is 98 to 99%.
[0024] ここで行われているのは Caの電解生成である力 本発明者らは、電解工程で Caと 電解浴塩 (CaClを使用)を含有する固形物の回収について実験、検討を行った。そ  [0024] What is being done here is the force of electrolytic generation of Ca. The present inventors conducted experiments and studies on the recovery of solids containing Ca and electrolytic bath salt (using CaCl) in the electrolysis process. It was. So
2  2
の結果、電解時に陰極を徐々に引き上げることによって、電解により生成する Caが陰 極表面で析出し、この析出した Caの近傍で CaClが凝固物として付着する現象が繰  As a result, by gradually pulling up the cathode during electrolysis, Ca generated by electrolysis precipitates on the negative electrode surface, and CaCl adheres as a solidified substance in the vicinity of the precipitated Ca.
2  2
り返し起こり、 Caと電解浴塩が混在した固形物が得られることを知見した。  It has been found that a solid material that is repeatedly mixed and contains Ca and electrolytic bath salt can be obtained.
[0025] (引上げ電解方法について) [0025] (About pulling electrolysis method)
さらに、本発明者らは、難還元性金属、特に Tiの還元に使用できる Caを得ることが できる引上げ電解方法を開発するため、 CaCl  Furthermore, the present inventors developed a pulling electrolysis method capable of obtaining Ca that can be used for the reduction of refractory metals, particularly Ti.
2を含有する電解浴を用いて、電解時 の槽電圧 (以下、単に「電圧」という)を低くし、し力も高い電流効率 (すなわち、高い C a回収効率)が得られる電解条件を見いだすべく検討を重ねた。その結果、浴温、陰 極における電流密度(以下、「陰極電流密度」または単に「電流密度」という)、および 陰極引上げ速度等について、次のような知見を得た。  In order to find an electrolysis condition in which an electrolytic bath containing 2 can be used to lower the cell voltage during electrolysis (hereinafter simply referred to as “voltage”) and to obtain high current efficiency (ie, high Ca recovery efficiency). Repeated examination. As a result, the following knowledge was obtained regarding the bath temperature, the current density in the negative electrode (hereinafter referred to as “cathode current density” or simply “current density”), the cathode pulling rate, and the like.
[0026] (a)陰極電流密度を上げると電圧が高くなるので、電圧を下げるため、陰極と陽極と を近づけ、両極間の距離 (極間距離)を小さくすると、電流効率が低下する。逆に、極 間距離を大きくすると、電流効率は向上するが、電圧が高くなる。すなわち、電圧の 低下と電流効率の向上とを両立させることは困難である。 (A) Since the voltage increases as the cathode current density is increased, current efficiency decreases if the cathode and anode are brought closer to each other and the distance between the electrodes (distance between the electrodes) is reduced in order to decrease the voltage. Conversely, increasing the distance between the electrodes improves current efficiency but increases the voltage. That is, it is difficult to achieve both a reduction in voltage and an improvement in current efficiency.
[0027] (b)電流密度を一定範囲(0. l〜200AZcm2)として、電圧を下げるために両極を 近づけると、極間距離が 7cm以下で電圧は 10V以下となる。 (B) If the current density is within a certain range (0.1 to 200 AZcm 2 ) and the two electrodes are brought close together to reduce the voltage, the distance between the electrodes is 7 cm or less and the voltage is 10 V or less.
[0028] (c)前記 (b)の条件を満たし、且つ陰極の引上げ速度を上げていくと、電流効率が高 くなる。この効果は、引上げ速度 0. 05cmZmin以上で認められる。 [0028] (c) When the condition (b) is satisfied and the cathode pulling rate is increased, the current efficiency increases. This effect is observed at a pulling speed of 0.05 cmZmin or higher.
陰極の引上げにより回収されるのは、電解により生成 (析出)した Caとその表面に付 着し凝固した浴塩からなる固体状の「Caおよび浴塩」である。 [0029] (d)前記 (c)の条件で、浴温を高くすると回収される Caおよび浴塩中の Ca濃度が上 昇する。また、高温の浴塩の場合、電流効率が幾分低下するが、陰極の引上げ速度 を上げることによって電流効率は向上する。引上げ速度が下記(1)式を満たす場合 は、良好な電流効率が得られる。 What is recovered by pulling up the cathode is solid “Ca and bath salts” consisting of Ca produced (precipitated) by electrolysis and bath salts that adhere to the surface and solidify. [0029] (d) When the bath temperature is increased under the conditions of (c) above, the concentration of Ca recovered and the Ca concentration in the bath salt increase. In the case of a hot bath salt, the current efficiency is somewhat reduced, but the current efficiency is improved by increasing the pulling rate of the cathode. When the pulling speed satisfies the following formula (1), good current efficiency can be obtained.
V≥0. 0035 X t- 2. 4 · · · (1)  V≥0. 0035 X t- 2.4 (1)
但し、 V:陰極引き上げ速度(cmZmin)  V: Cathode lifting speed (cmZmin)
t:浴温 (°C)  t: Bath temperature (° C)
[0030] さらに、 Caを固体状の「Caおよび浴塩」として回収できることには、以下に述べる特 異な禾 IJ点がある。  [0030] Further, the ability to recover Ca as solid "Ca and bath salt" has the following special IJ points.
[0031] 前述の通り、本発明者らは、連続的な製造が困難なクロール法に替え、 CaClを含  [0031] As described above, the present inventors changed to the crawl method, which is difficult to produce continuously, and contained CaCl.
2 み且つ Caが溶解した溶融塩を反応容器内に保持し、その溶融塩中の Caに TiClを  2 Hold the molten salt in which Ca is dissolved in the reaction vessel, and add TiCl to Ca in the molten salt.
4 含む金属塩化物を反応させて前記溶融塩中に Ti粒または Ti合金粒を生成させ、こ れを溶融塩から分離、回収することにより、連続的に Tほたは Ti合金を製造する方法 を確立した。  (4) A method of continuously producing T alloy or Ti alloy by reacting the metal chloride contained therein to produce Ti grains or Ti alloy grains in the molten salt, and separating and recovering them from the molten salt. Established.
[0032] 前述の通り、この製造方法では、 Tiの生成にともない副生する CaClを反応容器外  [0032] As described above, in this production method, CaCl produced as a by-product with the formation of Ti is removed from the reaction vessel.
2  2
へ抜き出して電気分解し、生成された Caを反応容器内での Tiなどの金属の生成反 応に使用することができる。この場合、 Caと CaCl  The resulting Ca can be extracted and electrolyzed, and the generated Ca can be used in the reaction of the formation of metals such as Ti in the reaction vessel. In this case, Ca and CaCl
2を厳密に分離する必要がないこと 力 この方法における大きな利点の一つである。  There is no need to strictly separate the two forces. One of the major advantages of this method.
[0033] この Ca還元による Tほたは Ti合金の製造方法によれば、溶融 CaCl中で Ti生成反  [0033] According to the method of producing T or Ti alloy by this Ca reduction, Ti formation reaction in molten CaCl
2  2
応が進行する。したがって、還元反応の生じる領域 (すなわち、反応場)がクロール法 Response progresses. Therefore, the region where the reduction reaction occurs (ie, the reaction field)
(反応場が Mgの液面近傍に限定される)と比べて著しく拡大し、発熱領域も広がり冷 却が容易になることから、 TiClの供給速度を大幅に高めることができ、生産性を著し (The reaction field is limited to the vicinity of the Mg liquid surface), and the heat generation area is widened and cooling is facilitated, so the TiCl supply rate can be greatly increased and productivity is significantly improved. Shi
4  Four
く向上させることができる。  Can be improved.
[0034] しかし、溶融 CaCl中の Caと TiClの反応は発熱反応であり、高い生産性を維持す [0034] However, the reaction between Ca and TiCl in molten CaCl is an exothermic reaction and maintains high productivity.
2 4  twenty four
るためには発熱領域を冷却して脱熱する必要があり、熱損失が大きいため熱効率も 低下する。  In order to achieve this, it is necessary to cool the heat-generating area to remove heat, and since the heat loss is large, the thermal efficiency also decreases.
[0035] また、 TiClの供給速度が大きすぎて急激な発熱が生じ、冷却能を超える場合、反  [0035] Also, if the supply rate of TiCl is too high and sudden heat generation occurs and the cooling capacity is exceeded,
4  Four
応場が高温になり過ぎ、反応容器の損耗が激しくなる。逆に温度が下がりすぎると反 応速度が低下する。そのため、 TiClの還元工程では、高い生産性を維持するため The reaction field becomes too hot and the reaction vessel becomes very worn. Conversely, if the temperature falls too low, The response speed decreases. Therefore, to maintain high productivity in the TiCl reduction process
4  Four
の精密な温度制御が必要となる。  Precise temperature control is required.
[0036] この問題を解決するために、本発明者らは、この発熱、脱熱の繰り返しによるエネ ルギー損失を少なくするとともに、反応場の温度制御の困難性を緩和するための方 策についてさらに検討した結果、溶融 CaCl液を反応容器外へ抜き出して電気分解  [0036] In order to solve this problem, the present inventors further reduced the energy loss due to repeated heat generation and heat removal, and further reduced the difficulty in controlling the temperature of the reaction field. As a result of the examination, the molten CaCl solution was extracted from the reaction vessel and electrolyzed
2  2
し、生成した Caを溶融 CaCl液とともに固形物として回収し、この固形物を還元工程  The produced Ca is recovered together with the molten CaCl solution as a solid, and this solid is reduced.
2  2
へ戻すという着想を得た。  I got the idea to go back.
[0037] この方法が実現できれば、 Caと TiClの反応にともなう発熱を Caおよび CaClの固  [0037] If this method can be realized, the heat generated by the reaction between Ca and TiCl can be reduced by solidifying Ca and CaCl.
4 2 形物が有している融解潜熱を利用して吸収することができる。これにより、生産効率 および熱効率を大きく向上させ得るとともに、反応温度の制御が容易になって Ca還 元による Tほたは Ti合金の製造を一層効率よく行うことが可能となる。  4 2 Can be absorbed by using the latent heat of fusion of the shape. As a result, production efficiency and thermal efficiency can be greatly improved, and the reaction temperature can be easily controlled, making it possible to produce T or Ti alloy by Ca reduction more efficiently.
[0038] しかも、この固体状の Caおよび浴塩を、 Ca還元により Tほたは Ti合金を製造する 際に、反応容器内の CaClを含む溶融塩中に Ca源として供給すると、例えば、固形 [0038] Moreover, when the solid Ca and bath salt are supplied as a Ca source in the molten salt containing CaCl in the reaction vessel when producing T or Ti alloy by Ca reduction, for example, solid Ca
2  2
の金属 Caを Ca源として供給する場合とは異なり、速やかに且つ均一に溶解し、 TiCl を含む金属塩ィ匕物と Caとの反応を反応容器内の広い範囲で均一に進行させ得るこ Unlike the case where the metal Ca is supplied as the Ca source, it can be dissolved quickly and uniformly, and the reaction between the metal salt containing TiCl and Ca can proceed uniformly over a wide range in the reaction vessel.
4 Four
とが判明した。  It turned out.
[0039] このように、 Ca還元による Tiまたは Ti合金の製造方法においては、固体状の Caお よび浴塩を Ca源として利用することにより得られる効果は非常に大きい。  [0039] Thus, in the method for producing Ti or Ti alloy by Ca reduction, the effect obtained by using solid Ca and bath salt as a Ca source is very large.
[0040] 本発明は、上述した Ca還元による Tほたは Ti合金の製造方法に関する検討結果、 さらに、このような Ca還元による Tiまたは Ti合金の製造技術との係わりの中で、且つ 、前述の(a)〜(d)の知見に基づいてなされたものであり、下記(1)〜(3)の Tiまたは Ti合金の製造方法、および下記 (4)、(5)の引上げ電解方法を要旨としている。  [0040] The present invention is based on the above-mentioned results of the study on the production method of T or Ti alloy by Ca reduction, and further in the context of such production technology of Ti or Ti alloy by Ca reduction. (A) to (d) based on the knowledge of the following (1) to (3) Ti or Ti alloy production method and the following (4) and (5) pulling electrolysis method It is a summary.
[0041] (l) Ca含有浴塩中の Caに TiClを含む金属塩化物を反応させて前記浴塩中に Tiま  [0041] (l) Ca in the Ca-containing bath salt is reacted with a metal chloride containing TiCl, and Ti is added to the bath salt.
4  Four
たは Ti合金を生成させる還元工程を経て、 Tほたは Ti合金を製造する方法であって 、前記還元工程へ固体状の Caおよび浴塩を供給することを特徴とする Tほたは Ti合 金の製造方法である。  Or a process for producing a Ti alloy through a reduction process for producing a Ti alloy, characterized by supplying solid Ca and bath salt to the reduction process. This is a method for producing the alloy.
[0042] (2) Ca含有浴塩中の Caに TiClを含む金属塩化物を反応させて前記浴塩中に Tiま  [0042] (2) By reacting Ca in the Ca-containing bath salt with a metal chloride containing TiCl, Ti in the bath salt is reacted.
4  Four
たは Ti合金を生成させる還元工程と、還元工程から抜き出された浴塩を電気分解し て Caを生成させる電解工程を含む Tほたは Ti合金の製造方法であって、前記電解 工程で Caおよび浴塩を含有する固形物を回収し、この固形物を前記還元工程へ移 送することを特徴とする Ήまたは Ti合金の製造方法である。 Electrolysis of the reduction process that produces Ti alloy and the bath salt extracted from the reduction process This is a method for producing a T alloy or Ti alloy that includes an electrolysis step for generating Ca, and collects solids containing Ca and bath salts in the electrolysis step and transfers the solids to the reduction step. This is a method for producing cocoons or Ti alloys.
[0043] (3)上記(1)、 (2)の Tほたは Ti合金の製造方法にぉ 、て、 Caおよび浴塩を含有す る固形物の回収を、陰極表面に固形物を付着凝固させつつ陰極を引き上げることに より行うことができる。また、 Ca含有浴塩として CaClを含む Ca含有浴塩を用いること [0043] (3) According to the above (1) and (2) T and Ti alloy production methods, solids containing Ca and bath salts are collected, and the solids are attached to the cathode surface. This can be done by pulling up the cathode while solidifying. Use Ca-containing bath salt containing CaCl as the Ca-containing bath salt.
2  2
とすれば、本発明者らが提案した、 Ca還元による Tほたは Ti合金の製造方法をより 一層効率よく行うことが可能となり、望ましい。  If this is the case, it becomes possible to more efficiently carry out the method for producing T and Ti alloys by the Ca reduction proposed by the present inventors, which is desirable.
[0044] (4) Ca含有浴塩を用いて固体状の Caを回収する電解方法であって、浴温 680〜90 0°C、陰極電流密度 0. l〜200AZcm2、電圧 10 V以下で浴塩を電気分解するとと もに、陰極表面に固形物を付着凝固させつつ引上げ速度 0. 05cmZmin以上で陰 極を引き上げることにより Caおよび浴塩を固体状で回収することを特徴とする引上げ 電解方法である。この引上げ電解方法は、上記(1)、(2)の Tほたは Ti合金の製造 方法に記載の電解工程で Ca含有浴塩カゝら Caを回収する電解方法として適用できる (4) An electrolytic method for recovering solid Ca using a Ca-containing bath salt, wherein the bath temperature is 680 to 900 ° C., the cathode current density is 0.1 to 200 AZcm 2 , and the voltage is 10 V or less. Electrolysis of bath salt and solidification of solid matter on the cathode surface, while pulling up the negative electrode at a pulling speed of 0.05 cmZmin or more Is the method. This pulling electrolysis method can be applied as an electrolysis method for recovering Ca from a Ca-containing bath salt in the electrolysis step described in the method for producing T or Ti alloy in (1) and (2) above.
[0045] (5)上記 (4)の引上げ電解方法において、引き上げ速度が、さらに下記(1)式を満た すこととすれば、良好な電流効率で固体状の Caおよび浴塩を回収することができ、 望ましい。 [0045] (5) In the pulling electrolysis method of (4) above, if the pulling rate further satisfies the following formula (1), solid Ca and bath salt can be recovered with good current efficiency. Is desirable.
V≥0. 0035 X t- 2. 4 · · · (1)  V≥0. 0035 X t- 2.4 (1)
但し、 V:陰極引き上げ速度(cmZmin)  V: Cathode lifting speed (cmZmin)
t:浴温 (°C)  t: Bath temperature (° C)
[0046] また、 Ca含有浴塩として CaClを含む Ca含有浴塩を用いることとすれば、上記(1)  [0046] If a Ca-containing bath salt containing CaCl is used as the Ca-containing bath salt, the above (1)
2  2
、(2)の Tiまたは Ti合金の製造方法に適用する場合に、より一層効率よく製造を行う ことができるので、望ましい。  When applied to the method of manufacturing Ti or Ti alloy of (2), it is desirable because it can be manufactured more efficiently.
[0047] 本発明で規定する「固体状」とは、 Caおよび浴塩を、陰極を引き上げた時点におい て、陰極表面の固形物が外見上は固体 (但し、表面が凝固途中の濡れた状態を含 む)であることを意味する。具体的に言えば、前記固形物全体が固体 (すなわち、凝 固が完了した状態)の場合と、外見上は固体であるが実際には一部固体の状態で、 固形物の内部に凝固が未完了で溶融状態の浴塩等が存在している場合、のいずれ をも含むことを意味する。 [0047] "Solid state" as defined in the present invention means that Ca and bath salts are solid on the surface of the cathode when the cathode is pulled up (however, the surface is wet during solidification) It is included). Specifically, when the entire solid body is solid (that is, when the solidification is completed), it is solid in appearance but actually partly solid, This means that any solid bath salt or the like that is incompletely solidified and contains a molten bath salt or the like is included.
[0048] 上記(1)、 (2)の Tiまたは Ti合金の製造方法は、浴塩中の Caにより TiClを還元し  [0048] In the method for producing Ti or Ti alloy described in (1) and (2) above, TiCl is reduced by Ca in the bath salt.
4 て Tほたは Ti合金を製造するに際し、還元工程から抜き出された浴塩を電気分解し 、 Caおよび浴塩を固形物として回収して前記還元工程へ移送する方法で、還元ェ 程での発熱を抑え、生産効率および熱効率を大きく向上させ得るとともに、反応温度 の制御が容易になり、 Tiまたは Ti合金の製造を効率よぐ安価に行うことができる。  In the process of producing Ti alloy, the bath salt extracted from the reduction process is electrolyzed, and Ca and bath salt are recovered as solids and transferred to the reduction process. The production and thermal efficiency can be greatly improved, and the reaction temperature can be easily controlled, making it possible to manufacture Ti or Ti alloys at a low cost.
[0049] 上記 (4)、 (5)の引上げ電解方法は、浴温、陰極電流密度、電圧、および陰極の引 上げ速度を所定範囲に規定して Caを回収する方法であり、この電解方法によって、 低い電圧でし力も高い電流効率で、したがって、比較的少ない電力消費量で Caを固 体状の Caおよび浴塩として得ることができる。 [0049] The pulling electrolysis method of the above (4) and (5) is a method of recovering Ca by regulating the bath temperature, cathode current density, voltage, and cathode pulling rate within a predetermined range. With low current and high current efficiency, Ca can be obtained as solid Ca and bath salts with relatively low power consumption.
図面の簡単な説明  Brief Description of Drawings
[0050] 図 1は、ドイツ技術文献で開示される、溶融 CaClの電気分解により Caを製造する  [0050] Figure 1 shows the production of Ca by electrolysis of molten CaCl as disclosed in the German technical literature.
2  2
カルシウム炉の要部の概略構成を示す図である。  It is a figure which shows schematic structure of the principal part of a calcium furnace.
図 2は、本発明の引上げ電解方法を説明するための図である。  FIG. 2 is a diagram for explaining the pulling electrolysis method of the present invention.
図 3は、本発明の電解方法を実施した場合の陰極引上げ速度と電流効率の関係を 例示する図である。  FIG. 3 is a diagram illustrating the relationship between the cathode pulling rate and the current efficiency when the electrolysis method of the present invention is performed.
図 4は、引上げ電解における浴温と陰極引上げ速度の関係を示す図である。  FIG. 4 is a graph showing the relationship between bath temperature and cathode pulling rate in pulling electrolysis.
図 5は、 Ca還元による金属 Ti製造装置の構成例を示す図である。  FIG. 5 is a diagram showing a configuration example of a metal Ti production apparatus by Ca reduction.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0051] 本発明の Tiまたは Ti合金の製造方法およびそれに適用できる引上げ電解方法、さ らにこれらを組み合わせた本発明の最適な製造プロセスについて、それらの内容を 区分して説明する。 [0051] The production method of Ti or Ti alloy of the present invention, the pulling electrolysis method applicable thereto, and the optimum production process of the present invention that combines these will be described separately.
[0052] 1. Tほたは Ti合金の製造方法 [0052] 1. T-fired Ti alloy manufacturing method
本発明の Tほたは Ti合金の製造方法は、 Ca含有浴塩中の Caに TiClを含む金属  The method for producing a T alloy or Ti alloy of the present invention is a metal containing TiCl in Ca in a Ca-containing bath salt.
4 塩ィ匕物を反応させて前記浴塩中に Tほたは Ti合金を生成させる還元工程を経て、 T ほたは Ti合金を製造する方法であって、前記還元工程へ固体状の Caおよび浴塩を 供給することを特徴として 、る。 [0053] その実施形態としては、より具体的な構成は『Ca含有浴塩中の Caに TiClを含む 4 A method for producing T or Ti alloy through a reduction step in which a salt solution is reacted to form T or Ti alloy in the bath salt. And bath salt is supplied. [0053] As an embodiment thereof, a more specific configuration is "Ca in the Ca-containing bath salt contains TiCl."
4 金属塩化物を反応させて前記浴塩中に Tiまたは Ti合金を生成させる還元工程と、還 元工程カゝら抜き出された浴塩を電気分解して Caを生成させる電解工程を含む Tほ たは Ti合金の製造方法であって、前記電解工程で Caおよび浴塩を含有する固形物 を回収し、この固形物を前記還元工程へ移送する方法』である。  4 It includes a reduction step in which metal chloride is reacted to form Ti or Ti alloy in the bath salt, and an electrolysis step in which the bath salt extracted from the reduction step is electrolyzed to produce Ca. Alternatively, it is a method for producing a Ti alloy, in which a solid containing Ca and a bath salt is recovered in the electrolysis step, and the solid is transferred to the reduction step.
[0054] すなわち、本発明の Tほたは Ti合金の製造方法は、浴塩中の Caにより TiClを還 [0054] That is, in the method for producing the T or Ti alloy of the present invention, TiCl is reduced by Ca in the bath salt.
4 元して Tほたは Ti合金を製造する方法にぉ 、て、電解工程で Caおよび浴塩を含有 する固形物を回収し、この固形物を前記還元工程へ移送することを特徴とする発明 である。  4 Based on the method of manufacturing a Ti alloy, the solid material containing Ca and bath salt is recovered in the electrolysis process, and the solid material is transferred to the reduction process. It is an invention.
[0055] 前記の浴塩としては溶融塩を用いる。通常は CaClを含む溶融塩を用いるのが好  [0055] A molten salt is used as the bath salt. It is usually preferable to use a molten salt containing CaCl.
2  2
適であるが、これに限定されない。溶融状態で導電性があり、 Caの溶解度が極端に 小さくなければ Caによる還元反応が進行するので、浴塩として用いることができる。 前記固形物の回収方法は何ら限定されな!ヽ。電解工程で生成した Caを浴塩が含 まれた状態の固形物として電解浴塩力 取り出し、これを還元工程へ移送 (すなわち 、還元工程が進行する、例えば反応容器内へ装入)すればよい。  Appropriate but not limited. If it is electrically conductive in the molten state and the solubility of Ca is not extremely low, the reduction reaction with Ca proceeds, so it can be used as a bath salt. The method of collecting the solid is not limited at all!ヽ. The Ca generated in the electrolysis process is taken out as a solid substance containing a bath salt, and the salt strength of the electrolysis bath is taken out and transferred to the reduction process (that is, the reduction process proceeds, for example, charged into the reaction vessel). .
[0056] このとき、電解工程で生成した Caの還元工程への移送は、その全量を前記の固形 物として行ってもよいし、一部を前記の固形物とし、その他は例えば Ca濃度を高めた CaCl [0056] At this time, the transfer of Ca produced in the electrolysis process to the reduction process may be carried out using the entire amount as the above-mentioned solid matter, or a part thereof as the above-mentioned solid matter, and others may increase the Ca concentration, for example. CaCl
2液として戻してもよい。この場合でも、固形物として移送した程度に応じて前述 の効果 (生産効率および熱効率の向上、反応温度の制御性向上など)が得られる。  It may be returned as two liquids. Even in this case, the above-mentioned effects (improvement of production efficiency and thermal efficiency, improvement of controllability of reaction temperature, etc.) can be obtained depending on the degree of transfer as a solid.
[0057] このような「固形物回収 移送」方法を採用することによって、 Caと TiClの反応にと  [0057] By adopting such a “solid recovery and transfer” method, the reaction between Ca and TiCl can be improved.
4 もなう発熱を Caおよび CaClの固形物が有している融解潜熱を利用して吸収するこ  4 Absorb the exothermic heat by using the latent heat of fusion of the Ca and CaCl solids.
2  2
とができ、生産効率を高めるとともに、熱損失を少なくして熱効率を大きく向上させる ことができる。また、反応系全体としての冷却能が高められるので、反応温度の制御 が容易になり、原料装入速度を高めて Ca還元による Tiまたは Ti合金の製造を一層 効率よぐ安価に行うことができる。装置をコンパクトにすることも可能である。  As a result, the production efficiency can be increased and the heat efficiency can be greatly improved by reducing the heat loss. In addition, since the cooling capacity of the entire reaction system can be improved, the reaction temperature can be easily controlled, the raw material charging speed can be increased, and the production of Ti or Ti alloy by Ca reduction can be performed more efficiently and cheaply. . It is also possible to make the device compact.
[0058] さらに、 Ca還元による Tiまたは Ti合金の製造方法においては、操業の過程で、還 元工程と電解工程におけるそれぞれの反応速度を変動させる場合 (または、不可避 的に変動が生じる場合)が起こり得る力 そのようなときに、 Caおよび CaClの固形物 を Ca源として保持 (一時的に保管)し、必要に応じてこれを使用するという副次的な 効果も十分期待できる。 [0058] Furthermore, in the method for producing Ti or Ti alloy by Ca reduction, there are cases in which the reaction rates in the reduction process and the electrolysis process are varied (or inevitably varied) during the operation. Possible force In such cases, Ca and CaCl solids As a Ca source, the secondary effect of holding (temporary storage) and using it as needed can be fully expected.
[0059] すなわち、還元工程と電解工程における反応速度を調整する際の緩衝剤 (バッファ 一)としての役割を担わせることが可能である。 Ca濃度を高めた CaCl液を高温状態 That is, it is possible to play a role as a buffering agent (buffer one) when adjusting the reaction rate in the reduction process and the electrolysis process. CaCl solution with increased Ca concentration at high temperature
2  2
で保持したり、ー且冷やして使用時に溶融状態にしたりするのは、エネルギーの損失 が非常に大きくなる。カロえて、高濃度の Caを含む固形物を回収することができるので 、 Caを CaCl液とともに還元工程へ戻す場合に比べて、還元工程への輸送量を減少  Holding it at a low temperature, or cooling it to a molten state during use, results in a significant loss of energy. Since solids containing high concentration of Ca can be recovered, the transport amount to the reduction process is reduced compared to when Ca is returned to the reduction process together with the CaCl solution.
2  2
させることがでさる。  It can be done.
[0060] また、本発明の Tほたは Ti合金の製造方法にぉ 、て、 Ca含有浴塩の温度を調節 することにより、回収される Caおよび浴塩を含有する固形物中の Ca濃度を調節する ことが可能である。例えば、電解温度を 720°Cとすることにより、前記固形物中の Ca 濃度を 20質量%に、また、電解温度を 800°Cとすることにより、 Ca濃度を 30質量% にすることができる。  [0060] Further, according to the method for producing the T alloy or Ti alloy of the present invention, by adjusting the temperature of the Ca-containing bath salt, the recovered Ca and the Ca concentration in the solid containing the bath salt are obtained. Can be adjusted. For example, by setting the electrolysis temperature to 720 ° C, the Ca concentration in the solid can be 20% by mass, and by setting the electrolysis temperature to 800 ° C, the Ca concentration can be set to 30% by mass. .
[0061] すなわち、電解温度を管理することにより、 Caおよび浴塩を含有する固形物中の C a濃度を制御することができる。これによつて、例えば、還元反応が起こる反応場の温 度を低くした ヽ場合には、電解温度を下げて前記固形物中の Ca濃度を低下させ、 逆に還元工程における反応速度を速めたい場合には電解温度を上げて固形物中の Ca濃度を高める等、操業状況に応じた Caおよび浴塩含有固形物の使 、分けが可 會 になる。  That is, by controlling the electrolysis temperature, it is possible to control the Ca concentration in the solid containing Ca and the bath salt. For this reason, for example, when the temperature of the reaction field where the reduction reaction occurs is lowered, the electrolysis temperature is lowered to lower the Ca concentration in the solid, and conversely, the reaction rate in the reduction process is to be increased. In some cases, it is possible to use and separate Ca and bath salt-containing solids according to the operating conditions, such as raising the electrolysis temperature to increase the Ca concentration in the solids.
[0062] 2.引上げ電解方法  [0062] 2. Pull-up electrolysis method
本発明の引上げ電解方法は、前記のように、浴塩を、浴温 680〜900°C、陰極電 流密度 0. l〜200AZcm2、電圧 10 V以下で電気分解するとともに、陰極表面に固 形物を付着凝固させつつ引上げ速度 0. 05cmZmin以上で陰極を引き上げること により浴塩および Caを固体状で回収する方法である。 In the pulling electrolysis method of the present invention, as described above, the bath salt is electrolyzed at a bath temperature of 680 to 900 ° C., a cathode current density of 0.1 to 200 AZcm 2 and a voltage of 10 V or less, and is fixed on the cathode surface. In this method, the bath salt and Ca are recovered in solid form by pulling up the cathode at a pulling speed of 0.05 cmZmin or more while adhering and solidifying the shape.
[0063] 図 2は、本発明の引上げ電解方法を説明するための図である。同図に示すように、 電解槽 1には浴塩 2が保持され、陽極 3と陰極 4が取り付けられている。両電極間に 通電して電気分解を開始すると、陽極 3では塩素(C1 )が発生し、陰極 4では Caが析  FIG. 2 is a view for explaining the pulling electrolysis method of the present invention. As shown in the figure, a bath salt 2 is held in an electrolytic cell 1 and an anode 3 and a cathode 4 are attached. When electrolysis starts when both electrodes are energized, chlorine (C1) is generated at the anode 3, and Ca is deposited at the cathode 4.
2  2
出する。 [0064] このとき、同図中に矢印で示すように、陰極 4を上方へ徐々に引き上げていくと、浴 塩 2の液面より上の露出した部分では温度が急激に低下するので、電解により生成( 析出)した Caに付着している浴塩が次々に凝固し始める。一方、導電性は保たれて いるので、前記浴塩の凝固と同時に Caの析出が引き続き起こる。 Put out. [0064] At this time, as indicated by an arrow in the figure, when the cathode 4 is gradually pulled upward, the temperature rapidly decreases in the exposed portion above the liquid surface of the bath salt 2, The bath salt adhering to the Ca produced (precipitated) due to this begins to solidify one after another. On the other hand, since the conductivity is maintained, the precipitation of Ca continues simultaneously with the solidification of the bath salt.
[0065] このような Caの析出と、この析出した Caの近傍での浴塩の付着凝固力 陰極 4の引 き上げに伴って繰り返し起こり、陰極 4の電解開始時に浴塩 2に浸漬されていた部分 カゝら下方に向けて、 Caおよび浴塩が混在した状態で含有される固体状の Caおよび 浴塩 5が形成される。  [0065] Such precipitation of Ca and the adhesion and solidification force of the bath salt in the vicinity of the precipitated Ca repeatedly occur as the cathode 4 is pulled up, and are immersed in the bath salt 2 when the cathode 4 starts electrolysis. The solid Ca and bath salt 5 contained in a mixed state of Ca and bath salt are formed downward.
[0066] 前記固体状の Caおよび浴塩中では、 Caは細かい粒状で分散しており、その表面 積が非常に大きい。したがって、この固体状の Caおよび浴塩は、 Ca還元による Tiま たは Ti合金の製造において Ca源として利用する際に、反応容器内の CaClを含む  [0066] In the solid Ca and the bath salt, Ca is finely dispersed and has a very large surface area. Therefore, this solid Ca and bath salt contain CaCl in the reaction vessel when used as a Ca source in the production of Ti or Ti alloy by Ca reduction.
2 溶融塩中に溶解し易いという特性を有している。なお、前記「Caおよび浴塩が混在し た状態」に関し、その混在比や混在の偏り等については特に規定しない。 CaCl  2 Has the property of being easily dissolved in molten salt. Regarding the “state where Ca and bath salts are mixed”, the mixing ratio, mixing bias, etc. are not particularly specified. CaCl
2を含 む溶融塩中に Ca源として供給したときに、速やかに且つ均一に溶解する状態のもの であればよい。  Any material that dissolves quickly and uniformly when supplied as a Ca source in a molten salt containing 2 may be used.
[0067] 本発明の電解方法において、浴塩としては、その温度を前記の温度範囲内に調整 でき、且つ電解により Caが生成される浴塩であれば、どのような組成のものでも使用 できる。通常は、 Caのハロゲンィ匕塩の混合物、例えば、フッ化カルシウムと塩ィ匕カル シゥム、塩ィ匕カルシウムと塩ィ匕カリウム等の 2元系混合塩、または、塩ィ匕カルシウム、 フッ化カルシウムおよび塩ィ匕カリウム等の 3元系混合塩を使用する。このような混合塩 を使用することによって浴塩の融点を変えることができるので、設定する浴温に応じ た浴塩の選択が可能である。  [0067] In the electrolysis method of the present invention, any salt can be used as the bath salt as long as the temperature can be adjusted within the above temperature range and Ca is generated by electrolysis. . Usually, a mixture of Ca halide salt, for example, binary mixed salt such as calcium fluoride and salt calcium, salt calcium and salt potassium, or salt calcium, calcium fluoride Use ternary mixed salts such as salt and potassium. Since the melting point of the bath salt can be changed by using such a mixed salt, it is possible to select the bath salt according to the set bath temperature.
[0068] 浴温は 680〜900°Cとする。浴温が 680°C未満では、反応温度が低すぎて Caの電 解生成が困難であり、一方、浴温が 900°Cを超えると、生成した Caの浴塩中への溶 解量が増えるため高い電流効率 (すなわち、 Ca回収効率)を得ることが困難となるか らである。  [0068] The bath temperature is 680 to 900 ° C. When the bath temperature is less than 680 ° C, the reaction temperature is too low to cause the formation of Ca electrolysis, while when the bath temperature exceeds 900 ° C, the dissolved amount of the produced Ca in the bath salt is small. This is because increasing the current efficiency makes it difficult to obtain high current efficiency (ie, Ca recovery efficiency).
[0069] 陰極電流密度は 0. l〜200AZcm2とする。電流密度の下限は電解により生成し た Caが浴中に再溶解する速度に依存しており、電流密度が 0. lAZcm2未満では、 Caの生成速度よりも浴塩中への Ca溶解速度の方が速ぐ Caを回収することができな い。一方、電流密度の上限を 200AZcm2とするのは、この値を超える電流密度で電 解すると、電極間距離を調整しても電圧を下げることができず、電力消費量が増大す るカゝらである。 [0069] The cathode current density is 0.1 to 200 AZcm 2 . The lower limit of the current density depends on the rate at which Ca generated by electrolysis is re-dissolved in the bath, and if the current density is less than 0.1 lAZcm 2 , Ca cannot be recovered because the dissolution rate of Ca in the bath salt is faster than the rate of Ca formation. On the other hand, the upper limit of the current density is 200 AZcm 2, and if the current density exceeds this value, the voltage cannot be lowered even if the distance between the electrodes is adjusted, and the power consumption increases. That's it.
[0070] 陰極電流密度を 0. l〜70AZcm2とすれば、電圧を 5V以下にすることが可能で、 電力消費量を大きく低減することができ、望ましい。さらに、陰極電流密度を 10〜50 AZcm2とすれば、電力消費量の大幅な低減に加え、 90%以上の高い電流効率を 得ることが可能である。 [0070] If the cathode current density is 0.1 to 70 AZcm 2 , the voltage can be reduced to 5 V or less, and the power consumption can be greatly reduced, which is desirable. Furthermore, if the cathode current density is 10 to 50 AZcm 2 , in addition to a significant reduction in power consumption, it is possible to obtain a high current efficiency of 90% or more.
[0071] すなわち、電圧の低下と電流効率の向上という相反する要請をともに満たすことが できる。したがって、この範囲が陰極電流密度の最適範囲であり、実際の操業では陰 極電流密度を 10〜 50AZcm2として電解を行うのが望まし!/、。 [0071] That is, it is possible to satisfy both conflicting demands for voltage reduction and current efficiency improvement. Therefore, this range is the optimum range for the cathode current density. In actual operation, it is desirable to perform electrolysis with a negative current density of 10 to 50 AZcm 2 ! / ,.
[0072] 電解時の電圧を 10V以下とするのは、電力消費量の増大をできるだけ抑えるため である。前記ドイツ技術文献に記載される高 、電圧(35〜40V)の下での電気分解 は、金属 Caを電解析出させるためと考えられる力 本発明の電解方法では、 Caを、 Caおよび浴塩が混在した固形物として回収するので、高電圧は必要ではない。電圧 の下限は特に定めないが、電気分解が進行して Caが析出するためには、少なくとも 溶融 CaClの分解電圧(3. 2V程度)より高いことが必要である。  [0072] The reason for setting the voltage during electrolysis to 10 V or less is to suppress the increase in power consumption as much as possible. The electrolysis under high voltage (35-40V) described in the German technical literature is considered to be a force considered to cause electrolytic deposition of metal Ca. In the electrolysis method of the present invention, Ca, Ca and bath salt are used. Since it collects as a solid substance in which is mixed, a high voltage is not necessary. Although the lower limit of the voltage is not particularly defined, it must be at least higher than the decomposition voltage of molten CaCl (approximately 3.2 V) in order for Ca to proceed and precipitation of Ca.
2  2
[0073] 陰極の引上げ速度は 0. 05cmZmin以上とする。引上げ速度がこれより遅いと、生 成した Caを陰極表面に付着させることが困難になる。これは、生成した Caが溶解し て浴中に広範囲に広がることによるものと考えられる。  [0073] The cathode pulling speed is 0.05 cmZmin or more. If the pulling rate is slower than this, it will be difficult to attach the produced Ca to the cathode surface. This is thought to be due to the fact that the produced Ca dissolves and spreads widely in the bath.
[0074] 引上げ速度の上限は特に定めない。本発明の電解方法で規定するように、陰極表 面に固形物を付着凝固させつつ陰極を引き上げる操作を実施しょうとすれば、引上 げ速度の上限は自ずと定まるからである。すなわち、引上げ速度が速すぎると、引き 上げられる固形物の断面積が小さく(すなわち、細く)なりすぎて引き上げる固形物が 途中で切断し、連続的な引上げができなくなる。このような引上げ操作上の制約を考 慮すると、引上げ速度は lOcmZmin以下とするのが望ましい。  [0074] The upper limit of the pulling speed is not particularly defined. This is because, as specified by the electrolysis method of the present invention, if the operation of pulling up the cathode while solidifying and solidifying the cathode surface is carried out, the upper limit of the pulling rate is naturally determined. That is, if the pulling speed is too fast, the cross-sectional area of the solid that is pulled up becomes too small (that is, it becomes thin), and the solid that is pulled up is cut in the middle, making it impossible to pull it up continuously. Considering such restrictions on the pulling operation, it is desirable that the pulling speed is less than lOcmZmin.
[0075] 前述の本発明の電解方法において、引き上げ速度が、さらに前記(1)式を満たす こととすれば、良好な電流効率で Caおよび浴塩を回収することができる。 [0076] 図 3は、本発明の電解方法を実施した場合の陰極引上げ速度と電流効率の関係を 例示する図である。電圧 10V以下、極間距離 7cm以下での電解例である。同図中に 示す令印および実線は、電解時の浴温を 720°Cとした場合(720°C電解)、破線は 浴温を 800°Cとした場合 (800°C電解)で、◎印は直径 8mmの円柱形状の陰極を用 いた場合、參印は直径 5mmの円柱形状の陰極を用いた場合、〇印は直径 15mm の円柱形状の陰極を用いた場合である。 [0075] In the electrolysis method of the present invention described above, if the pulling rate further satisfies the formula (1), Ca and bath salts can be recovered with good current efficiency. FIG. 3 is a diagram illustrating the relationship between the cathode pulling rate and the current efficiency when the electrolysis method of the present invention is performed. This is an example of electrolysis at a voltage of 10 V or less and a distance between electrodes of 7 cm or less. In the figure, the age and solid lines indicate the bath temperature during electrolysis at 720 ° C (720 ° C electrolysis), and the dashed line indicates the bath temperature at 800 ° C (800 ° C electrolysis). The mark indicates the case of using a cylindrical cathode with a diameter of 8 mm, the mark indicates the case of using a cylindrical cathode with a diameter of 5 mm, and the mark ◯ indicates the case of using a cylindrical cathode with a diameter of 15 mm.
[0077] このとき、電流効率は、通電量カもファラデーの法則に基づき求められる Ca析出量  [0077] At this time, the current efficiency is determined by the amount of deposited Ca, which is also determined based on Faraday's law.
(理論析出量)に対する陰極表面の固形物 (すなわち、固体状の Caおよび浴塩)中 の Ca量の比(百分率)である。この陰極表面の固形物中の Caには、ー且、陰極表面 に析出した後溶解または剥離した Caは含まれて 、な 、ので、ここで言う電流効率は Ca回収効率と同義である。  This is the ratio (percentage) of the amount of Ca in the solids on the cathode surface (ie, solid Ca and bath salt) to (theoretical precipitation). The Ca in the solid matter on the cathode surface does not include Ca which has been deposited on the cathode surface and then dissolved or exfoliated, so the current efficiency here is synonymous with the Ca recovery efficiency.
[0078] 図 3から明らかなように、陰極引上げ速度と電流効率の間には密接な関係があり、 浴温の高低に拘わらず、引上げ速度を速めると電流効率が向上する。これは、生成 した Caの一部は溶解して陰極近傍力 浴中へ広がるが、引き上げ速度を速くするこ とにより、溶解する前に浴塩表面力 露出させ、溶解を抑えて Ca回収効率 (すなわち 、電流効率)を高めることができるためと推測される。なお、 800°C電解において、陰 極の形状 (断面の直径)の影響は、調査した範囲では認められな 、。  As is apparent from FIG. 3, there is a close relationship between the cathode pulling rate and the current efficiency, and the current efficiency is improved by increasing the pulling rate regardless of the bath temperature. This is because a part of the generated Ca dissolves and spreads into the near-cathode force bath, but by increasing the pulling rate, the bath salt surface force is exposed before dissolution, suppressing dissolution and Ca recovery efficiency ( That is, it is presumed that current efficiency) can be increased. The effect of the negative electrode shape (cross-sectional diameter) on 800 ° C electrolysis was not observed within the investigated range.
[0079] また、浴温が高い場合、電流効率が幾分低下する。前記図 3に示した例では、引上 げ速度の全範囲に亘つて、 800°C電解の方が 720°C電解よりも電流効率が低い。こ れは、浴温の高い方が生成した Caの CaClへの溶解量が多ぐ Caの回収量が減少  [0079] Further, when the bath temperature is high, the current efficiency is somewhat lowered. In the example shown in FIG. 3, the current efficiency of the 800 ° C electrolysis is lower than that of the 720 ° C electrolysis over the entire range of the pulling rate. This is because the higher the bath temperature, the greater the amount of Ca dissolved in CaCl, the lower the amount of Ca recovered.
2  2
することによるものと考えられる。したがって、特に高温の浴塩を用いる場合は、引上 げ速度を速めて電流効率を高める条件下で電解を行うのが望ましい。  This is thought to be due to Therefore, when using a high temperature bath salt, it is desirable to perform the electrolysis under conditions that increase the pulling rate and increase the current efficiency.
[0080] 浴温が高い場合の方が、回収される固体状の Caおよび浴塩中の Ca濃度が高い。  [0080] When the bath temperature is higher, the recovered solid Ca and the Ca concentration in the bath salt are higher.
一例を挙げると、 720°Cでは前記 Ca濃度は 20質量%である力 800°Cでは 30質量 %となる。この現象についての詳細は不明であるが、浴温が高い場合、引上げ時に 陰極表面 (析出 Ca表面)に付着した浴塩は凝固する前に流れ落ちて Caと分離し易く 、回収される固形物中の Caが濃化することによるものと考えられる。  For example, at 720 ° C, the Ca concentration is 20% by mass. At 800 ° C, the Ca concentration is 30% by mass. The details of this phenomenon are unknown, but when the bath temperature is high, the bath salt attached to the cathode surface (deposited Ca surface) at the time of pulling is easy to flow off before solidifying and separate from Ca, and in the collected solids This is thought to be due to the concentration of Ca.
[0081] したがって、浴温を調整することにより、回収される固体状 Caおよび浴塩中の Ca濃 度を制御することが可能であり、この固体状 Caおよび浴塩を Ca源として使用するに 際し、 Ca濃度を把握できるとともに、その濃度を任意に定め得るので好適である。 [0081] Therefore, by adjusting the bath temperature, the recovered solid Ca and the Ca concentration in the bath salt The degree of Ca can be controlled, and when using this solid Ca and bath salt as a Ca source, the Ca concentration can be grasped and the concentration can be arbitrarily determined.
[0082] 前記図 3に示した電解時における浴温、陰極引上げ速度および電流密度の関係に 基づいて、良好な電流効率が得られる浴温と引上げ速度の関係を求めたのが、前記 (1)式である。本発明の電解方法において、前記(1)式が満たされる場合は、 Caを 固体状の Caおよび浴塩として効率よく回収することができる。  Based on the relationship between the bath temperature, the cathode pulling rate and the current density during electrolysis shown in FIG. 3, the relationship between the bath temperature and the pulling rate at which good current efficiency can be obtained was determined as (1 ). In the electrolysis method of the present invention, when the above formula (1) is satisfied, Ca can be efficiently recovered as solid Ca and bath salt.
[0083] 図 4は、引上げ電解における浴温と陰極引上げ速度の関係を示す図である。同図 中の斜線を付した部分が引上げ速度 0. 05cmZmin以上で、且つ前記(1)式で示 される良好な電流効率 (すなわち、 Ca回収効率)が得られる領域である。この領域の 下限は、前記(1)式の両辺が等号で結ばれた場合の式 (V=0. 0035 X t— 2. 4 伹 し、 700≤t≤900)で表される。  FIG. 4 is a diagram showing the relationship between bath temperature and cathode pulling rate in pulling electrolysis. The hatched portion in the figure is a region where the pulling speed is 0.05 cmZmin or more and good current efficiency (ie, Ca recovery efficiency) expressed by the above equation (1) is obtained. The lower limit of this region is expressed by the equation (V = 0.0035 X t—2.4 、, 700≤t≤900) when both sides of equation (1) are connected by an equal sign.
[0084] 本発明の電解方法では、 Caおよび浴塩を固体状で回収する。「固体状」とは、前述 のように、外見上固体状態を呈していることであって、例えば浴温が高ぐ浴温と浴塩 の融点との差が大きい場合は、陰極表面の固形物の内部に溶融状態の浴塩等が存 在することがある。引き上げた陰極表面に付着している浴塩は凝固し難ぐ一方、 Ca は一般に浴塩より融点が高いので、最初から固形物として析出するか、最初は溶融 状態でもすぐに固形物となるため、固形物内に未凝固の浴塩が取り込まれるからで ある。  [0084] In the electrolysis method of the present invention, Ca and bath salt are recovered in solid form. As described above, the term “solid” means a solid state in appearance. For example, when the difference between the bath temperature at which the bath temperature is high and the melting point of the bath salt is large, the solid state on the cathode surface. There may be molten bath salt etc. inside the object. While the bath salt adhering to the pulled cathode surface is difficult to solidify, Ca generally has a higher melting point than the bath salt, so it precipitates as a solid from the beginning or immediately becomes a solid even in a molten state. This is because unsolidified bath salt is taken into the solid.
[0085] また、浴温と浴塩の融点との差が小さ!/、場合は、浴塩が凝固し易 、ので、陰極表面 の固形物全体が固体として回収される。  [0085] Further, in the case where the difference between the bath temperature and the melting point of the bath salt is small! /, Since the bath salt is easily solidified, the entire solid on the cathode surface is recovered as a solid.
[0086] このように、本発明の電解方法によれば、低い電圧でしかも高い電流効率で (した がって、比較的少ない電力消費量で)、 Caを固体状の Caおよび浴塩として得ること ができる。この固体状の Caおよび浴塩は、特に、 Ca還元による Tiまたは Ti合金の製 造方法を実施する際に Ca源として用いれば、非常に効果的である。  [0086] Thus, according to the electrolysis method of the present invention, Ca is obtained as solid Ca and bath salt with low voltage and high current efficiency (and with relatively low power consumption). be able to. This solid Ca and bath salt are particularly effective when used as a Ca source in the production of Ti or Ti alloy by Ca reduction.
[0087] 3.製造プロセス  [0087] 3. Manufacturing process
次に、本発明の Ca還元により Tほたは Ti合金を製造するに際し、本発明の引上げ 電解方法が組み込まれた製造プロセスについて説明する。  Next, a manufacturing process in which the pulling electrolysis method of the present invention is incorporated when manufacturing a T alloy or a Ti alloy by the Ca reduction of the present invention will be described.
[0088] この製造プロセスは、本発明の Ca還元による Tiまたは Ti合金の製造方法、すなわ ち、 Ca含有浴塩中の Caに TiClを含む金属塩化物を反応させて前記浴塩中に Tiま [0088] This manufacturing process includes the manufacturing method of Ti or Ti alloy by Ca reduction of the present invention, that is, That is, by reacting Ca in the Ca-containing bath salt with a metal chloride containing TiCl, Ti is added to the bath salt.
4  Four
たは Ti合金を生成させる還元工程と、還元工程から抜き出された浴塩を電気分解し て Caを生成させる電解工程を含む Tほたは Ti合金の製造方法を実施する際に、本 発明の引上げ電解方法で回収される固体状の Caおよび浴塩を前記 TiClを含む金  The present invention includes a reduction step for producing a Ti alloy and an electrolysis step for electrolyzing a bath salt extracted from the reduction step to produce Ca. The solid Ca and bath salt recovered by the pulling electrolysis method of
4 属塩ィ匕物と反応させる Caとして用いる方法である。  This is a method used as Ca to react with the genus 4 salts.
[0089] 図 5は、 Ca還元による金属 Ti製造装置の構成例を示す図である。なお、この例で は、原料として TiCl、 Ca含有浴塩として CaClを含む Ca含有浴塩が用いられ、また [0089] FIG. 5 is a diagram showing an example of the configuration of a metal Ti production apparatus using Ca reduction. In this example, TiCl is used as a raw material, and Ca-containing bath salt containing CaCl is used as a Ca-containing bath salt.
4 2  4 2
、還元工程 (以下に述べる反応容器 6内で進行する工程)、電解工程に加えて、生成 した金属 Tiを分離、回収する分離工程と、電解により生成する塩素 (C1 )を利用して  In addition to the reduction process (the process that proceeds in the reaction vessel 6 described below), the electrolysis process, the separation process that separates and recovers the produced metal Ti, and the chlorine (C1) produced by electrolysis
2  2
TiClを製造する塩ィ匕工程が付加されている。  A salting process for producing TiCl is added.
4  Four
[0090] 図 5において、反応容器 6の天井部には、還元剤である Caを供給する(この場合は 、固体状の Caおよび浴塩を供給する)還元剤供給管 7が設けられている。反応容器 6の底部は、生成 Ti粒の排出を促進するために下方に向力つて漸次縮径されたテー パー形状になっており、その下端中心部には、生成された Ti粒を排出する Ti排出管 8が設けられている。  In FIG. 5, a reducing agent supply pipe 7 for supplying Ca as a reducing agent (in this case, supplying solid Ca and bath salt) is provided at the ceiling of the reaction vessel 6. . The bottom of the reaction vessel 6 has a taper shape that is gradually reduced in diameter in order to promote the discharge of the generated Ti particles, and the generated Ti particles are discharged at the center of the lower end. Ti discharge pipe 8 is provided.
[0091] 一方、反応容器 6の内側には、円筒形状の分離壁 9が、直胴部内面との間に所定 の隙間をあけて配置されている。反応容器 6の上部には、容器内の CaClを側方へ  [0091] On the other hand, a cylindrical separation wall 9 is disposed inside the reaction vessel 6 with a predetermined gap between the inner surface of the straight body portion. At the top of the reaction vessel 6, the CaCl in the vessel is moved to the side.
2 排出する溶融塩排出管 10が設けられており、下部には、 Ti原料である TiClを供給  2 Discharged molten salt discharge pipe 10 is provided, and TiCl which is Ti raw material is supplied at the bottom
4 する原料供給管 11が、容器内中心部に達するように分離壁 9を貫通して設けられて いる。  A raw material supply pipe 11 is provided through the separation wall 9 so as to reach the center of the container.
[0092] 反応容器 6内に、溶融塩として、 Caが溶解した溶融 CaCl液が保持される。その液  [0092] In the reaction vessel 6, a molten CaCl solution in which Ca is dissolved is held as a molten salt. The liquid
2  2
面は、溶融塩排出管 10より高く分離壁 9の上端より低いレベルに設定される。  The surface is set at a level higher than the molten salt discharge pipe 10 and lower than the upper end of the separation wall 9.
この状態で、原料供給管 11により、分離壁 9より内側の溶融 CaCl液に TiClのガ  In this state, the TiCl gas is added to the molten CaCl liquid inside the separation wall 9 by the raw material supply pipe 11.
2 4 スが供給される。これにより、分離壁 9より内側で、溶融 CaCl液中の Caにより TiCl  2 4 is supplied. As a result, TiCl is introduced inside the separation wall 9 by Ca in the molten CaCl solution.
2 4 が還元され、その溶融 CaCl液中に粒子状の金属 Tiが生成する。  2 4 is reduced, and particulate metallic Ti forms in the molten CaCl solution.
2  2
[0093] 反応容器 6内の分離壁 9より内側の溶融 CaCl液中に生成された Ti粒は、その液  [0093] Ti particles produced in the molten CaCl solution inside the separation wall 9 in the reaction vessel 6
2  2
中を沈降して容器内の底部に堆積する。堆積 Ti粒は、適宜 Ti排出管 8から溶融 CaC 1液とともに下方に抜き出され、分離工程 12へ送られる。 [0094] 分離壁 9より内側での還元反応により Caを消費された溶融 CaCl液は、分離壁 9の It settles down and accumulates at the bottom of the container. The deposited Ti particles are appropriately extracted together with the molten CaC 1 solution from the Ti discharge pipe 8 and sent to the separation step 12. [0094] The molten CaCl liquid in which Ca was consumed by the reduction reaction inside the separation wall 9
2  2
下方を経由して分離壁 9の外側を上昇し、溶融塩排出管 10から排出される。排出さ れた溶融 CaCl液は電解工程 13へ送られる。  It goes up the outside of the separation wall 9 via the lower part and is discharged from the molten salt discharge pipe 10. The discharged molten CaCl solution is sent to the electrolysis process 13.
2  2
[0095] 分離壁 9より内側では、還元剤供給管 7から、固体状の Caおよび浴塩が溶融 CaCl  [0095] Inside the separation wall 9, from the reducing agent supply pipe 7, the solid Ca and the bath salt are molten CaCl.
2 液へ供給され、 Caが補充される。  2 Supplied to solution and replenished with Ca.
[0096] 一方、分離工程 12では、反応容器 6から溶融 CaCl液とともに抜き出された Ti粒が [0096] On the other hand, in the separation step 12, Ti particles extracted from the reaction vessel 6 together with the molten CaCl liquid are removed.
2  2
溶融 CaCl液から分離される。具体的には、その Ti粒を圧縮して溶融 CaCl液を絞り  Separated from molten CaCl solution. Specifically, the Ti particles are compressed to squeeze the molten CaCl solution.
2 2 取る。分離工程 12で得られた溶融 CaCl液は電解工程 13へ送られる。  Take 2 2. The molten CaCl solution obtained in the separation step 12 is sent to the electrolysis step 13.
2  2
[0097] 電解工程 13では、反応容器 6および分離工程 12から電解槽 13a内へ導入された 溶融 CaCl液 13bが電気分解により Caと C1ガスに分離される。  [0097] In the electrolysis step 13, the molten CaCl solution 13b introduced into the electrolytic cell 13a from the reaction vessel 6 and the separation step 12 is separated into Ca and C1 gas by electrolysis.
2 2  twenty two
[0098] 陰極 13d側に生成する Caは陰極 13dの引上げ操作により Caおよび浴塩が混在し た固体状の Caおよび浴塩 13eとして回収され、反応容器 6内へ戻され、 Caが補充さ れる。なお、 Caの補充 (供給)は、その全量を前記の固体状 Caおよび浴塩を用いて 行ってもよいし、一部を前記固体状 Caおよび浴塩とし、その他は例えば Ca濃度を高 めた CaCl液を用いて行ってもよい。  [0098] The Ca generated on the cathode 13d side is recovered as solid Ca and bath salt 13e mixed with Ca and bath salt by pulling up the cathode 13d, returned to the reaction vessel 6, and replenished with Ca. . In addition, Ca may be replenished (supplied) using the above-mentioned solid Ca and bath salt as a whole, or a part thereof may be used as the above-mentioned solid Ca and bath salt. Alternatively, CaCl solution may be used.
2  2
[0099] 反応容器 6内へ移送された固体状 Caおよび浴塩 13eは、溶解し易ぐ反応容器内 で速やかに且つ均一に溶解する。固体状 Caおよび浴塩の内部に前述した溶融状態 の浴塩等が存在する場合は、溶解が一層速やかに進行するので、 TiCl Ca  [0099] The solid Ca and bath salt 13e transferred into the reaction vessel 6 dissolve quickly and uniformly in the reaction vessel that is easily dissolved. When the above-mentioned molten salt or the like is present inside the solid Ca and bath salt, dissolution proceeds more rapidly.
4と との反 応を容器内の広い範囲で均一に進行させる上で有効である。  This is effective in allowing the reaction with 4 to proceed uniformly over a wide area in the container.
[0100] しかも、固体状 Caおよび浴塩 13eは、 TiClと Caとの反応にともない発生する熱を  [0100] Moreover, solid Ca and bath salt 13e generate heat generated by the reaction between TiCl and Ca.
4  Four
吸収して融解し、生産効率および熱効率を大きく向上させる。また、反応系全体とし ての冷却能が高められるので、反応温度の制御が容易になり、原料装入速度を高め て Ca還元による Tほたは Ti合金の製造を一層効率よく行うことができる。なお、固体 状 Caおよび浴塩全体が固体であれば、融解潜熱を最大限に利用することができる。  Absorbs and melts, greatly improving production efficiency and thermal efficiency. In addition, since the cooling capacity of the entire reaction system is enhanced, the reaction temperature can be easily controlled, the raw material charging speed can be increased, and the production of T or Ti alloy by Ca reduction can be performed more efficiently. . If solid Ca and the entire bath salt are solid, the latent heat of fusion can be utilized to the maximum.
[0101] さらに、 Ca還元による Tiまたは Ti合金の製造方法においては、操業の過程で、還 元工程と電解工程におけるそれぞれの反応速度を変動させる場合 (または、不可避 的に変動が生じる場合)が起こり得るが、そのようなときに、固体状 Caおよび浴塩を C a源の緩衝剤 (バッファー)として保持 (一時的に保管)し、必要に応じてこれを使用す ると!/、う副次的な効果も十分期待できる。 [0101] Furthermore, in the manufacturing method of Ti or Ti alloy by Ca reduction, there are cases where the reaction rates in the reduction process and the electrolysis process are changed (or inevitably changed) in the course of operation. In such cases, solid Ca and bath salts can be retained (temporarily stored) as a Ca source buffer (buffer) and used as needed. And you can expect the side effects!
[0102] 電解工程 13で陽極 13c側に発生した C1ガスは、塩ィ匕工程 14へ送られる。ここでは  [0102] The C1 gas generated on the anode 13c side in the electrolysis step 13 is sent to the salting step 14. here
2  2
、 TiOが炭素粉末 (C)の存在下で塩化処理され、 TiClが製造される。また、 C粉末 TiO is chlorinated in the presence of carbon powder (C) to produce TiCl. Also C powder
2 4 twenty four
を併用することにより、副生する酸素が COの形で排出される。製造された TiClは、  By using in combination, by-product oxygen is emitted in the form of CO. The TiCl produced is
2 4 原料供給管 11により反応容器 6内に導入される。このようにして、 CaClの循環により  2 4 It is introduced into the reaction vessel 6 through the raw material supply pipe 11. In this way, by circulation of CaCl
2  2
、還元剤である Caおよび C1ガスがサイクルされる。  The reducing agents Ca and C1 gas are cycled.
2  2
[0103] このように、この製造プロセスによれば、実質的に TiOおよび Cの補給だけで、金  [0103] Thus, according to this manufacturing process, the replenishment of gold is substantially only by supplementing TiO and C.
2  2
属 Tiを連続的に製造できるが、この時、本発明の電解方法で回収される固体状 Ca および浴塩を Ca源として好適に使用することが可能である。  The genus Ti can be produced continuously, but at this time, solid Ca and bath salt recovered by the electrolysis method of the present invention can be suitably used as a Ca source.
産業上の利用の可能性  Industrial applicability
[0104] 本発明の製造方法によれば、 Ca還元による Tiまたは Ti合金の製造に際し、還元ェ 程カゝら抜き出された浴塩を電気分解し、 Caおよび浴塩を固形物として回収して前記 還元工程へ移送する方法で、前記固形物が有して ヽる融解潜熱を利用して還元ェ 程での発熱を抑え、生産効率および熱効率を大きく向上させ得るとともに、反応温度 の制御が容易になり、原料装入速度を高めて Tiまたは Ti合金の製造を効率よぐ安 価に行うことができる。また、本発明の引上げ電解方法は、浴温、陰極電流密度、電 圧、および陰極の引上げ速度を所定範囲に規定して Caを回収する方法で、低い電 圧でしかも高い電流効率で、したがって、比較的少ない電力消費量で、固体状の Ca および浴塩を得ることがでさる。 [0104] According to the production method of the present invention, in the production of Ti or Ti alloy by Ca reduction, the bath salt extracted from the reduction process is electrolyzed, and Ca and the bath salt are recovered as solids. The method of transferring to the reduction step can use the latent heat of fusion that the solid material has to suppress heat generation in the reduction process, greatly improve production efficiency and thermal efficiency, and control the reaction temperature. This makes it easy to increase the raw material charging speed and produce Ti or Ti alloy efficiently and inexpensively. Further, the pulling electrolysis method of the present invention is a method of recovering Ca by regulating the bath temperature, cathode current density, voltage, and cathode pulling rate within a predetermined range, and with low voltage and high current efficiency. Thus, it is possible to obtain solid Ca and bath salt with relatively little power consumption.
この固体状 Caおよび浴塩を Ca還元による Tほたは Ti合金の製造の際に Ca源とし て使用すれば、固体状 Caおよび浴塩は反応容器内で速やかに且つ均一に溶解す るとともに、これが還元反応中に融解することにより Caと TiClを含む金属塩化物の  If this solid Ca and bath salt are used as a Ca source in the production of T or Ti alloy by Ca reduction, the solid Ca and bath salt dissolve quickly and uniformly in the reaction vessel. This is because the metal chloride containing Ca and TiCl melts during the reduction reaction.
4  Four
反応による過度の発熱を抑え、 Tほたは Ti合金の製造を効率よく行うことができる。  Excessive heat generation due to reaction is suppressed, and T and Ti alloys can be produced efficiently.

Claims

請求の範囲 The scope of the claims
[1] Ca含有浴塩中の Caに TiClを含む金属塩化物を反応させて前記浴塩中に Tiまた  [1] By reacting Ca in a Ca-containing bath salt with a metal chloride containing TiCl, Ti or
4  Four
は Ti合金を生成させる還元工程を経て、 Tほたは Ti合金を製造する方法であって、 前記還元工程へ固体状の Caおよび浴塩を供給することを特徴とする Tほたは Ti合 金の製造方法。  Is a method of producing a T alloy through a reduction process for producing a Ti alloy, characterized in that solid Ca and bath salt are supplied to the reduction process. Gold manufacturing method.
[2] Ca含有浴塩中の Caに TiClを含む金属塩化物を反応させて前記浴塩中に Tほた  [2] By reacting Ca in the Ca-containing bath salt with a metal chloride containing TiCl,
4  Four
は Ti合金を生成させる還元工程と、還元工程から抜き出された浴塩を電気分解して Is a reduction process that produces Ti alloy and an electrolysis of the bath salt extracted from the reduction process.
Caを生成させる電解工程を含む Tほたは Ti合金の製造方法であって、 T, which includes an electrolytic process to generate Ca, is a method for producing a Ti alloy,
前記電解工程で Caおよび浴塩を含有する固形物を回収し、この固形物を前記還 元工程へ移送することを特徴とする Tiまたは Ti合金の製造方法。  A method for producing Ti or a Ti alloy, comprising: collecting solids containing Ca and bath salt in the electrolysis step and transferring the solids to the reduction step.
[3] 前記 Caおよび浴塩を含有する固形物の回収を、陰極表面に固形物を付着凝固さ せつつ陰極を引き上げることにより行うことを特徴とする請求項 2に記載の Tiまたは Ti 合金の製造方法。 [3] The Ti or Ti alloy according to claim 2, wherein the solid material containing Ca and bath salt is collected by pulling up the cathode while solidifying the solid matter on the cathode surface. Production method.
[4] 前記 Ca含有浴塩として CaClを含む Ca含有浴塩を用いることを特徴とする請求項  [4] The Ca-containing bath salt containing CaCl is used as the Ca-containing bath salt.
2  2
1〜3のいずれかに記載の Tほたは Ti合金の製造方法。  A method for producing a T alloy or a Ti alloy according to any one of 1 to 3.
[5] Ca含有浴塩を用いて固体状の Caを回収する電解方法であって、 [5] An electrolytic method for recovering solid Ca using a Ca-containing bath salt,
浴温 680〜900°C、陰極電流密度 0. l〜200AZcm2、電圧 10V以下で浴塩を電 気分解するとともに、陰極表面に固形物を付着凝固させつつ引上げ速度 0. 05cm Zmin以上で陰極を引き上げることにより Caおよび浴塩を固体状で回収することを特 徴とする引上げ電解方法。 Bath temperature is 680-900 ° C, cathode current density is 0.1-200 AZcm 2 , and the salt is electrolyzed at a voltage of 10 V or less. This is a pulling electrolysis method characterized by recovering Ca and bath salt in a solid state by pulling up.
[6] 請求項 2に記載の電解工程で Ca含有浴塩力 Caを回収する電解方法であって、 浴温 680〜900°C、陰極電流密度 0. l〜200AZcm2、電圧 10V以下で浴塩を電 気分解するとともに、陰極表面に固形物を付着凝固させつつ引上げ速度 0. 05cm Zmin以上で陰極を引き上げることにより Caおよび浴塩を固体状で回収することを特 徴とする引上げ電解方法。 [6] An electrolysis method for recovering Ca-containing bath salt Ca in the electrolysis process according to claim 2, wherein the bath temperature is 680 to 900 ° C, the cathode current density is 0.1 to 200 AZcm 2 , and the voltage is 10 V or less. Pulling electrolysis method characterized by recovering Ca and bath salt in solid form by electrolyzing the salt and pulling the cathode at a pulling speed of 0.05 cm Zmin or more while solidifying the solid matter on the cathode surface. .
[7] 前記引き上げ速度が、さらに下記(1)式を満たすことを特徴とする請求項 5または 6 に記載の引上げ電解方法。 7. The pulling electrolysis method according to claim 5 or 6, wherein the pulling rate further satisfies the following formula (1).
V≥0. 0035 X t- 2. 4 · · · (1) t:浴温 (°c) V≥0. 0035 X t- 2.4 (1) t: Bath temperature (° c)
前記 Ca含有浴塩として CaClを含む Ca含有浴塩を用いることを特徴とする請求項 The Ca-containing bath salt containing CaCl is used as the Ca-containing bath salt.
2  2
または 6に記載の弓 I上げ電解方法。 Or the bow I raising electrolysis method of 6.
PCT/JP2006/305227 2005-03-29 2006-03-16 PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS WO2006103944A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US11/887,511 US20090101517A1 (en) 2005-03-29 2006-03-16 Method for Producing Ti or Ti Alloy, and Pulling Electrolysis Method Applicable Thereto
CA002602801A CA2602801A1 (en) 2005-03-29 2006-03-16 Process for producing ti or ti alloy, and pull-up electrolysis method applicable to said process
AU2006229128A AU2006229128A1 (en) 2005-03-29 2006-03-16 Process for producing Ti or Ti alloy, and pull-up electrolysis method applicable to said process
EP06729224A EP1876248A1 (en) 2005-03-29 2006-03-16 PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
EA200702096A EA200702096A1 (en) 2005-03-29 2006-03-16 METHOD OF MANUFACTURING Ti OR ALLOY Ti AND THE APPLICABLE METHOD FOR ELECTROLYSIS WITH EXTRACTION
NO20075092A NO20075092L (en) 2005-03-29 2007-10-09 Process for producing Ti or Ti alloys, and process for winding electrolysis application for the process

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005094205A JP2006274340A (en) 2005-03-29 2005-03-29 METHOD FOR PRODUCING Ti OR Ti ALLOY
JP2005-094205 2005-03-29
JP2005-096690 2005-03-30
JP2005096690A JP4227113B2 (en) 2005-03-30 2005-03-30 Pull-up electrolysis method

Publications (1)

Publication Number Publication Date
WO2006103944A1 true WO2006103944A1 (en) 2006-10-05

Family

ID=37053205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305227 WO2006103944A1 (en) 2005-03-29 2006-03-16 PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS

Country Status (7)

Country Link
US (1) US20090101517A1 (en)
EP (1) EP1876248A1 (en)
AU (1) AU2006229128A1 (en)
CA (1) CA2602801A1 (en)
EA (1) EA200702096A1 (en)
NO (1) NO20075092L (en)
WO (1) WO2006103944A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR076567A1 (en) 2009-05-12 2011-06-22 Metalysis Ltd METHOD AND APPARATUS FOR REDUCTION OF SOLID RAW MATERIAL
AU2011330970B2 (en) 2010-11-18 2016-10-20 Metalysis Limited Electrolysis apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2111531A (en) * 1981-07-11 1983-07-06 Toho Titanium Co Ltd Method for manufacturing titanium metal
JPS6447823A (en) * 1987-08-17 1989-02-22 Toho Titanium Co Ltd Production of metallic titanium
JP2002129250A (en) * 2000-10-30 2002-05-09 Katsutoshi Ono Method for producing metallic titanium
JP2004131784A (en) * 2002-10-09 2004-04-30 Katsutoshi Ono Method for smelting metallic titanium
JP2005068539A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp Method and apparatus for producing metal
JP2005068540A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp METHOD AND APPARATUS FOR PRODUCING METAL THROUGH REDUCTION BY Ca
JP2006057143A (en) * 2004-08-20 2006-03-02 Toho Titanium Co Ltd Method and device for producing metal by molten salt electrolysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) * 1954-03-16 1958-07-29 Du Pont Production of metals

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2111531A (en) * 1981-07-11 1983-07-06 Toho Titanium Co Ltd Method for manufacturing titanium metal
JPS6447823A (en) * 1987-08-17 1989-02-22 Toho Titanium Co Ltd Production of metallic titanium
JP2002129250A (en) * 2000-10-30 2002-05-09 Katsutoshi Ono Method for producing metallic titanium
JP2004131784A (en) * 2002-10-09 2004-04-30 Katsutoshi Ono Method for smelting metallic titanium
JP2005068539A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp Method and apparatus for producing metal
JP2005068540A (en) * 2003-08-28 2005-03-17 Sumitomo Titanium Corp METHOD AND APPARATUS FOR PRODUCING METAL THROUGH REDUCTION BY Ca
JP2006057143A (en) * 2004-08-20 2006-03-02 Toho Titanium Co Ltd Method and device for producing metal by molten salt electrolysis

Also Published As

Publication number Publication date
AU2006229128A1 (en) 2006-10-05
EA200702096A1 (en) 2008-04-28
CA2602801A1 (en) 2006-10-05
NO20075092L (en) 2007-12-19
US20090101517A1 (en) 2009-04-23
EP1876248A1 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP2904744B2 (en) Method for electrolytic production of magnesium or its alloy
Suzuki Direct reduction processes for titanium oxide in molten salt
US20070187255A1 (en) Method for producing ti or ti alloy through reduction by ca
JP2709284B2 (en) Manufacturing method of magnesium metal
US20090152122A1 (en) Method for electrolyzing molten salt, electrolytic cell, and process for producing ti using said method
WO2006098199A1 (en) Method of high-melting-point metal separation and recovery
WO2005035805A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY TROUGH REDUCTION BY Ca
JP4347089B2 (en) Method for producing Ti or Ti alloy by Ca reduction
WO2006103944A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
US20090114546A1 (en) Method for Removing/Concentrating Metal-Fog-Forming Metal Present in Molten Salt, Apparatus Thereof, and Process and Apparatus for Producing Ti or Ti Alloy by use of them
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP4198434B2 (en) Method for smelting titanium metal
JP2689520B2 (en) Method for producing metallic titanium
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
JP4227113B2 (en) Pull-up electrolysis method
JP2004052037A (en) Method and apparatus for refining metallic titanium
JPH02259092A (en) Production of calcium
JP4249685B2 (en) Method for producing Ti by Ca reduction
JP2005264181A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY USING MOLTEN Ca ALLOY AS Ca TRANSFERRING MEDIUM
JP2009133010A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009875.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2602801

Country of ref document: CA

Ref document number: 11887511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006229128

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006729224

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 200702096

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2006229128

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2006729224

Country of ref document: EP