WO2006097558A2 - Nanopartículas de quitosano y polientilenglicol como sistema de administración de moléculas biológicamente activas - Google Patents

Nanopartículas de quitosano y polientilenglicol como sistema de administración de moléculas biológicamente activas Download PDF

Info

Publication number
WO2006097558A2
WO2006097558A2 PCT/ES2006/000123 ES2006000123W WO2006097558A2 WO 2006097558 A2 WO2006097558 A2 WO 2006097558A2 ES 2006000123 W ES2006000123 W ES 2006000123W WO 2006097558 A2 WO2006097558 A2 WO 2006097558A2
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
nanoparticles
peg
biologically active
active molecule
Prior art date
Application number
PCT/ES2006/000123
Other languages
English (en)
French (fr)
Other versions
WO2006097558A3 (es
Inventor
Mª José ALONSO FERNÁNDEZ
Kevin Janes
Noemi Csaba
Original Assignee
Advanced In Vitro Cell Technologies, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced In Vitro Cell Technologies, S.L. filed Critical Advanced In Vitro Cell Technologies, S.L.
Priority to BRPI0608635-7A priority Critical patent/BRPI0608635A2/pt
Priority to EP06725817A priority patent/EP1864653A4/en
Priority to US11/908,599 priority patent/US20080095810A1/en
Priority to CA002602031A priority patent/CA2602031A1/en
Priority to MX2007011212A priority patent/MX2007011212A/es
Priority to AU2006224548A priority patent/AU2006224548A1/en
Priority to JP2008501338A priority patent/JP2008533108A/ja
Publication of WO2006097558A2 publication Critical patent/WO2006097558A2/es
Publication of WO2006097558A3 publication Critical patent/WO2006097558A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the invention is directed to nanoparticulate systems for the release of biologically active molecules. Specifically, it is directed to nanoparticulate systems, constituted by an ionically cross-linked chitosan-polyethylene glycol conjugate in which a biologically active molecule can be located, as well as procedures for obtaining it.
  • patent application US2004138095 describes an aqueous suspension of nanoparticles for the release of insulin, among other active ingredients, based on triblock polyethylene glycol / hydrophilic polyamino acid / hydrophobic polyamino acid copolymers.
  • US Pat. No. 5,641,515 describes a pharmaceutical formulation for the controlled release of insulin comprising nanoparticles formed by biodegradable polycyanoacrylate in which insulin is trapped forming a complex.
  • hydrophilic nanoparticles based on macromolecules of natural origin such as albumin nanoparticles (W. Lin et al, Pharm. Res., 11, 1994) and gelatin (HJ. Watzke et al., Adv. Colloid Interface ScL, 50, 1-14, 1994) and based on polysaccharides such as alginate (M. Rajaonarivonvy et al., J. Pharm. Sci., 82, 912-7, 1993).
  • WO-A-01/32751 refers to a process for the production of chitosans or chitosan derivatives in the form of nanoparticles, consisting of the dissolution of chitosan or derivatives in an aqueous medium and subsequently raising the pH in the presence of an agent surface modifier, to such an extent that chitosan precipitation is reached.
  • WO-A-99/47130 refers to nanoparticles that have a biocompatible and biodegradable polyelectrolyte complex, from at least one polycation (which can be chitosan) and at least one polyanion, as well as an active ingredient, being the nanoparticles obtainable by further treating the polyelectrolyte complex during or after their formation with at least one crosslinking agent (glyoxal, TSTU or EDAP).
  • at least one polycation which can be chitosan
  • polyanion as well as an active ingredient
  • chitosan nanoparticles in combination with polyoxyethylene (ES 2098188 and ES 2114502), in addition to the active ingredient that can be a therapeutic or antigenic macromolecule.
  • polyoxyethylene ES 2098188 and ES 2114502
  • the formation of these nanoparticles takes place due to a joint precipitation process of the chitosan and the active macromolecule in the form of polymeric nanoaggregates, caused by the addition of a basic agent such as tripolyphosphate.
  • chitosan can be modified by covalent bonding with polyethylene glycol through the amino function, which is known as the pegylation process.
  • EP patents 1304346 and US 6,730,735 describe a composition for the administration of drugs by mucosal routes comprising a conjugate of chitosan and PEG, both being covalently linked through the amino group of chitosan.
  • Application US2004 / 0156904 describes a pharmaceutical agent release system, in which the active agent is incorporated into a matrix prepared from a composition that includes chitosan-PEG and a water insoluble polymer such as polylactic-co-glycolic acid. (PLGA)
  • Application WO01 / 32751 describes the obtaining of chitosan nanoparticles that precipitate in the presence of a surfactant, including polyethylene glycol, at Increase the pH of the solution where they are.
  • a surfactant including polyethylene glycol
  • PEG does not covalently bind to chitosan.
  • [5 PEGs have remarkable properties with respect to non-pegylated chitosan nanoparticles, for example in nasal insulin administration or in immunogenicity in response to nasal administration of diphtheria toxoid.
  • an object of the present invention is directed to a system comprising nanoparticles for the release of a biologically active molecule, wherein the 20 nanoparticles comprise a conjugate comprising a) at least 50% by weight of chitosan or a derivative thereof and b) less than 50% by weight of polyethylene glycol (PEG) or a derivative thereof, where both components a) and b) are covalently linked through the chitosan amino groups, and characterized in that said nanoparticles are crosslinked by an agent crosslinker 5
  • PEG polyethylene glycol
  • biologically active molecule has a broad meaning and comprises molecules such as low molecular weight drugs, polysaccharides, proteins, peptides, lipids, oligonucleotides and nucleic acids and combinations thereof.
  • the biologically active molecule has the function of preventing, alleviating, curing or diagnosing diseases.
  • the biologically active molecule has a cosmetic function.
  • a second aspect of the present invention relates to a pharmaceutical composition or vaccine comprising the nanoparticles defined above.
  • the composition or vaccine is for mucosal administration.
  • the invention is directed to a cosmetic composition comprising the nanoparticles defined above.
  • compositions comprising the chitosan-PEG nanoparticles in which one or more biologically active molecules such as a drug, a vaccine, or genetic material can be retained. Also, trapped in the nanostructure can be found peptides, proteins or polysaccharides that are not considered active biological molecules "per se” but that can contribute to the effectiveness of the administration system.
  • a final aspect of the invention is a method of obtaining a system for the release of a biologically active molecule as defined, comprising: a) preparation of an aqueous solution of the chitosan-PEG conjugate; b) preparation of an aqueous solution of the crosslinking agent; and c) mixing, with stirring, the solutions of steps a) and b), so that the chitosan-PEG nanoparticles are spontaneously obtained by ionic gelation and subsequent precipitation.
  • the active ingredient is incorporated either in the aqueous solution of the chitosan or in the aqueous solution of the crosslinking agent, prior to mixing of both phases.
  • Figure IA Effect of the degree of pegylation of the chitosan, the pH of the polymer solution and the chitosan-PEG / TTP ratio on the size of the nanoparticles.
  • Figure IB Effect of the degree of pegylation of the chitosan, the pH of the polymer solution and the chitosan-PEG / TTP ratio on the polydispersity in the size of the nanoparticles.
  • Figure 2A Analysis of agarose gel electrophoresis of plasmid DNA associated with chitosan and chitosan-PEG nanoparticles after 1 day incubation in acetate buffer (pH: 4 and 7.4) and in purified water (MQ).
  • Figure 2B Analysis of agarose gel electrophoresis of plasmid DNA associated with chitosan and chitosan-PEG nanoparticles after 4 weeks of incubation in acetate buffer (pH: 4 and 7.4) and in purified water (MQ).
  • Figure 3 Analysis of agarose gel electrophoresis of plasmid DNA associated with chitosan and chitosan-PEG nanoparticles in the presence of chitosanase.
  • Figure 4A Effect of the degree of pegylation on the transfection efficiency of high molecular weight chitosan (CS) nanoparticles.
  • Figure 4B Effect of pDNA loading on the transfection efficiency of high molecular weight chitosan (CS) nanoparticles.
  • Figure 5 A Effect of pDNA loading on the transfection efficiency of low molecular weight chitosan (CS) nanoparticles.
  • Figure 5B Effect of the degree of pegylation on the efficiency in the transfection of chitosan nanoparticles (CS) of low molecular weight.
  • Figure 6 Glycemia after intranasal administration of 10 U / kg of insulin contained in different formulations or acetate buffer (control). The glycemia is expressed in% with respect to the base values, in mean value ⁇ S. E. M.
  • the system of the present invention comprises nanoparticles, the structure of which comprises a cross-linked conjugate of chitosan and polyethylene glycol (PEG), into which an active ingredient can be incorporated.
  • nanoparticle means a structure comprising a conjugate, the result of the covalent bond between chitosan and PEG through the amino groups of chitosan, which is also crosslinked by ionic gelation by the action of an agent crosslinker of an anionic character.
  • the formation of the covalent bonds and the consequent ionic crosslinking of the system generates characteristic, independent and observable physical entities, whose average size is less than 1 ⁇ m, that is, an average size between 1 and 999 nm.
  • average size is meant the average diameter of the population of nanoparticles that move together in the aqueous medium in which they are formed.
  • the nanoparticles of the system are characterized by having an average particle size of less than 1 ⁇ m, preferably having an average size between
  • the average particle size is mainly influenced by the proportion of chitosan with respect to PEG, by the degree of chitosan deacetylation and also by the conditions of particle formation (chitosan-PEG concentration, cross-linking agent concentration and ratio of both).
  • the presence of PEG reduces the average particle size with respect to systems formed by non-pegylated chitosan.
  • the nanoparticles can have an electric charge (measured by the potential Z), whose magnitude can vary from +0.1 mV to +50 mV, preferably between +1 and +40 mV, depending on the variables mentioned and in particular of the degree of functionalization of chitosan with PEG.
  • the positive charge of the nanoparticles may be of interest to favor their interaction with mucous surfaces.
  • the neutral charge may be more interesting for parenteral administration.
  • the system comprising nanoparticles for the release of a biologically active molecule that has been defined above has a chitosan content in the conjugate greater than 50%, preferably greater than 75% by weight.
  • the content of PEG in the conjugate is less than 50%, preferably less than 25%.
  • Chitosan is a naturally occurring polymer derived from chitin (poly-N-acetyl-D-glucosamine), where an important part of the N-acetyl groups have been removed by hydrolysis.
  • the degree of deacetylation is in a range between 30 and 95%, preferably between 60 and 95%, indicating that between 5 and 40% of the amino groups are acetylated. It therefore presents aminopolysaccharide structure and cationic character. It includes the repetition of monomer units of formula (I):
  • n is an integer, and also m units where the amino group is acetylated.
  • the sum of n + m represents the degree of polymerization, that is, the number of monomer units in the chitosan chain.
  • the chitosan used to obtain the chitosan-PEG conjugates of the present invention has a molecular weight between 5 and 2000 kDa, preferably between 10 and 500 kDa, more preferably between 10 and 100 IcDa.
  • Examples of commercial chitosans that can be used are UPG 113, UP CL 213 and
  • UP CLl 13 that can be obtained from NovaMatrix, Drammen, Norway.
  • the number of monomer units comprising the chitosan used in obtaining the chitosan-PEG conjugates is between 30 and 3000 monomers, preferably between 60 and 600.
  • a derivative thereof can also be used, which is understood as a chitosan in which one or more hydroxyl groups and / or one or more amino groups have been modified, in order to increase the solubility of the chitosan or increase the mucoadhesive character of it.
  • These derivatives include, among others, acetylated, alkylated or sulphonated chitosans, thiolated derivatives, as described in Roberts, Chitin Chemistry, Macmillan, 1992, 166.
  • a derivative is selected from O-alkyleteres, O- acylesters, trimethylchitosan, chitosans modified with polyethylene glycol, etc.
  • polyethylene glycol in its most common form, is a polymer of formula (II):
  • the degree of polymerization of PEG is in the range between 50 and 500, which corresponds to a molecular weight between 2 and 20 kDa, preferably between 5 and 10 kDa.
  • a modified PEG For the formation of the chitosan-PEG complex, a modified PEG must be used in which one or both terminal hydroxyl groups are modified.
  • modified PEGs that can be used to obtain the chitosan-PEG conjugates are those that have the formula (III):
  • Xi is a hydroxyl radical protecting group that blocks OH function for subsequent reactions.
  • the hydroxyl protecting groups are well known in the art, representative protecting groups (already including the oxygen to be protected) are silyl ethers such as trimethylsilyl ether, triethylsilyl ether, tert-butyldimethylsilyl ether, tert-butyldiphenylsilyl ether, tri-isopropylsilyl ether, diethylisopropylsilyl ether, texyldimethylsilyl ether, triphenyl silyl ether, di-tert-butylmethylsilyl ether; alkyl ethers such as methyl ether, tert-butyl ether, benzyl ether, p-methoxybenzyl ether, 3,4-dimethoxybenzyl ether, trityl ether; allyl ether; alkoxymethyl ether such
  • hydroxyl protecting groups can be found in reference books such as "Protective Groups in Organic Synthesis” by Greene and Wuts, John Wiley & Sons, Inc., New York, 1999.
  • the protecting group is an alkyl ether, more preferably it is methyl ether.
  • X 2 can be a hydrogen or a bridge group that allows anchoring to the chitosan amino groups.
  • the preferred, but not exclusive, form is a succinimide or a derivative thereof.
  • X 1 can also be a group that allows anchoring with groups other than the amino group. For example, to achieve union with SH groups, maleimide is used as a bridge molecule.
  • the number of chitosan amino groups that react with the PEG, or what is the same, the functionalization of the chitosan amino groups with the PEG, known as PEGylation, is between 0.1% and 5%, preferably between 0.2% and 2%, more preferably between 0.5% and 1%.
  • the resulting chitosan-PEG conjugate has a molecular weight between 5 and 3000 kDa, preferably between 10 and 500 kDa.
  • the nanoparticle system of the invention is characterized in that ionic cross-linking of the chitosan-PEG conjugate has been formed.
  • the crosslinking agent is an ammonium salt that allows the cross-linking of the chitosan-PEG conjugate by ionic gelation, favoring the spontaneous formation of the nanoparticles.
  • the crosslinking agent is a polyphosphate salt, the use of sodium tripolyphosphate (TTP) being preferred.
  • Crosslinking to give rise to the nanoparticle system is simple and known to the person skilled in the art, as set out in the background of the invention.
  • a second aspect of the present invention is a pharmaceutical composition comprising the previously defined nanoparticles.
  • pharmaceutical compositions include any liquid composition (suspension of nanoparticles in water or in water with additives such as viscosifiers, pH buffers, etc.) or solid (lyophilized or atomized nanoparticles forming a powder that can be used to make granules, tablets or capsules ) for administration either orally, orally or sublingually, either topically, or in liquid or semi-solid form for administration by transdermal, ocular, nasal, vaginal or parenteral route.
  • the contact of the nanoparticles with the skin or mucous membranes can be improved by giving the particles a significant positive charge, which will favor their interaction with the aforementioned negatively charged surfaces.
  • these systems offer the possibility of modulating the in vivo distribution of the associated drugs or molecules.
  • the formulation is administered mucosally.
  • the positive charge presented by the chitosan-PEG conjugate provides better absorption of drugs on the mucosal surface through its interaction with the mucosa and the surfaces of epithelial cells that are negatively charged.
  • Chitosan-PEG nanoparticles are systems that have a high capacity to associate bioactive molecules. This association capacity depends on the type of molecule incorporated as well as the indicated formulation parameters. Therefore, another aspect of the present invention is a composition comprising chitosan-PEG nanoparticles as previously defined and at least one biologically active molecule.
  • biologically active molecule refers to any substance that is used in the treatment, cure, prevention or diagnosis of a disease or that is used to improve the physical and mental well-being of humans and animals.
  • biologically active molecules can include from low molecular weight drugs to molecules such as polysaccharides, proteins, peptides, lipids, oligonucleotides and nucleic acids and combinations thereof.
  • molecules associated with these nanoparticles include proteins such as tetanus toxoid and diphtheria toxoid, polysaccharides such as heparin, peptides such as insulin, as well as plasmids encoding various proteins.
  • the biologically active molecule is insulin.
  • the biologically active molecule is diphtheria or tetanus toxoid. In another preferred embodiment the biologically active molecule is heparin. In another preferred embodiment the biologically active molecule is a plasmid DNA.
  • the nanoparticulate systems of the present invention can also incorporate other active molecules that have no therapeutic effect but give rise to cosmetic compositions.
  • These cosmetic compositions include any liquid composition (nanoparticle suspension) or emulsion for administration.
  • active molecules that can be incorporated into the nanoparticles are anti-acne, antifungal, antioxidant, deodorant, antiperspirant, anti-dandruff, skin bleaches, bronzers, UV light absorbers, enzymes, cosmetic biocides, among others.
  • Another aspect of the present invention is a vaccine comprising the previously defined nanoparticles and an antigen. The administration of an antigen by the system consisting of the nanoparticles allows to achieve an immune response.
  • the vaccine can comprise a protein, polysaccharide or it can be a DNA vaccine.
  • a DNA vaccine is a DNA molecule that encodes the expression of an antigen that will result in an immune response.
  • the antigen is the tetanus toxoid and the diphtheria toxoid.
  • Another aspect of the present invention relates to a process for the preparation of chitosan-PEG nanoparticles as previously defined, comprising: a) preparation of an aqueous solution of the chitosan-PEG conjugate; b) preparation of an aqueous solution of the crosslinking agent; and c) mixing, with stirring, the solutions of steps a) and b), so that the chitosan-PEG nanoparticles are spontaneously obtained by ionic gelation and subsequent precipitation.
  • the pH of the initial solution of the chitosan-PEG conjugate is modified to reach values between 4.5 and 6.5 by adding sodium hydroxide prior to mixing both solutions.
  • the resulting chitosan-PEG / crosslinking agent ratio is between 2/1 and 8/1, the 3/1 ratio being preferred, which provides formulations with a relatively low polydispersity.
  • the use of higher chitosan-PEG / crosslinking agent ratios as well as the preparation of particles in more acidic media is also possible.
  • crosslinking agent allows the cross-linking of the chitosan-PEG conjugate in such a way that a mesh is formed between which it can remain inserted a biologically active molecule that can subsequently be released.
  • the crosslinking agent gives the nanoparticles the characteristics of size, potential and structure that makes them suitable as a biologically active molecule delivery system.
  • the biologically active molecule can be incorporated directly into the solutions of steps a) or b), or after dissolution in an aqueous or organic phase, so that the chitosan-PEG nanoparticles containing the biologically active molecule are obtained spontaneously by ionic gelation. and consequent precipitation.
  • the incorporation of the biologically active molecule can be carried out according to the following methods: a) the active molecule is dissolved directly in the solutions of the crosslinking agent or chitosan-PEG; b) the active molecule is dissolved in an acidic or basic aqueous solution, prior to its incorporation into the solutions of crosslinking agent or chitosan-PEG; or c) the active molecule is dissolved in a polar organic solvent, miscible with water, prior to its incorporation into the solutions of crosslinking agent or chitosan-PEG
  • the process of manufacturing the chitosan-PEG nanoparticles can also comprise an additional step , in which said nanoparticles are lyophilized.
  • Chitosan-PEG nanoparticles can be lyophilized in the presence of a cryoprotectant such as glucose in a concentration of 5%. Other usual additives may be present.
  • a cryoprotectant such as glucose in a concentration of 5%.
  • Other usual additives may be present.
  • the determination of particle size before and after lyophilization is not significantly modified. That is, the nanoparticles can be lyophilized and resuspended without a variation in them (Table I).
  • Table I Characteristics of CS-PEG nanoparticles before and after lyophilization. size (nm) PI * size (nm) PI
  • Chitosan-PEG nanoparticles were prepared according to the ionic gelation technique described for chitosan for example in WO 9804244. Specifically, chitosan with 0.5% or 1% pegylation degree (percentage of amino groups that are functionalized with ⁇ PEG ) was initially dissolved in ultrapure water at a concentration of 1 mg / mL. In order to study its possible effect on the formation of nanoparticles, the initial pH of the chitosan-PEG solution was modified to reach values between 4.5 and 6.5 by the addition of NaOH before the preparation of the particles.
  • TTP Sodium tripolyphosphate
  • chitosan-PEG / TTP ratios 2/1, 3/1 and 4/1.
  • the formation of the nanoparticles occurs spontaneously after the addition of a fixed volume of TTP solution (0.6 mL) to a fixed volume of chitosan-PEG solution (1.5 mL) under magnetic stirring.
  • the effect that the degree of pegylation of the chitosan, the pH of the polymer solution and the chitosan-PEG / TTP ratio cause on the size and polydispersity of the nanoparticles is shown in Figures IA and IB.
  • the size distribution of the nanoparticles is also affected by the degree of pegylation of the chitosan as well as by the pH of the chitosan-PEG solution.
  • the optimal chitosan-PEG / TTP ratio is 3/1 to obtain formulations with a relatively low dispersion.
  • the size of the nanoparticles is determined by photonic correlation spectroscopy, using a Zetasizer III (Malvern Instruments, Malvern, UK).
  • the size of the chitosan-PEG nanoparticles ranged between 70 and 310 nm.
  • Pegylation causes a marked decrease in the size of the nanoparticles and the surface charge. In the latter case, the degree of pegylation also has a great influence since the surface charge decreases even more when the degree of pegylation increases from 0.5% to 1%.
  • plasmid DNA was incorporated into the TTP solution prior to the formation of the nanoparticles.
  • This solution of TTP containing the DNA was subsequently added to the chitosan-PEG solution and kept under magnetic stirring.
  • the theoretical loads of DNA were 5, 10 or 20% with respect to the total amount of chitosan-PEG used to prepare the nanoparticles (1 mg).
  • the efficiency of plasmid DNA encapsulation was always greater than 90% as confirmed by fluorescence assays (Pico Green dsDNA dye) and agarose gel electrophoresis.
  • Tables IV, V and VI show the characteristics of the different chitosan and chitosan-PEG nanoparticles. Similar to nanoparticles without loading, loaded DNA formulations containing PEG are much smaller and have less positive surface charge than non-PEG formulations.
  • the presence of DNA also causes changes in the characteristics of vehicles, especially at high percentages of DNA, where the surface load generally decreases.
  • large loads of DNA allow inducing the formation of more crosslinked structures, which causes a decrease in particle size. This can be observed in the case of non-pegylated vehicles, where the size decreases from approximately 270-300 nm to 220 nm.
  • the size of the pegylated vehicles increases with the DNA load, especially when chitosan-PEG is used with a degree of pegylation of
  • Plasmid DNA was effectively associated with both chitosan and chitosan-PEG particles. As shown in Figures 2A and 2B, no release of plasmid DNA (according to agarose gel electrophoresis analysis) is detected when nanoparticles loaded with plasmid DNA are incubated for more than one month, both in acetate buffer (pH: 4, pH: 7.4) as in purified water (MQ).
  • plasmid DNA can be released from the chitosan and chitosan-PEG nanoparticles when the nanoparticles loaded with plasmid DNA are incubated in acetate buffer at pH 6 in the presence of chitosanase (0.6 mg / mL).
  • Figure 4 shows the effect that the degree of pegylation of chitosan (0.5% and 1%) causes on the transfection efficiency of high molecular weight chitosan nanoparticles (125 kDa, HMW CS NP) that contain a charge of 20 % plasmid DNA (pDNA).
  • the dose of plasmid per well was 1 ⁇ g.
  • the results indicate that a degree of pegylation of 0.5% has a positive effect on the transfection capacity of these nanoparticles. This degree of pegylation was chosen for subsequent experiments.
  • the results shown in Figure 4b indicate that the efficiency of transfection increases with the pDNA load of the nanoparticles. This observation is interesting because the plasmid dose was constant (1 ⁇ g) and therefore, the nanoparticle dose decreases as the pDNA load increases.
  • the final size of the chitosan nanoparticles was 605 + 15 nm while that of the chitosan-PEG nanoparticles was 590 + 6 nm.
  • diabetes is induced in male Wistar rats, weighing between 200 and 220 g, by an injection of streptozotocin (65 mg / kg i.v.) in a citrate buffer at pH 4.5. They were considered diabetic when the glycemic concentration was greater than 400 mg / dl after three weeks of streptozotocin treatment.
  • glycemia decreases significantly from 30 minutes, specifically 16% (p ⁇ 0.01), the maximum decrease being 32% (p ⁇ 0.001) observed after 2 hours from intranasal administration.
  • glycemia is also reduced but to a significantly lesser degree than when insulin is associated with chitosan-PEG nanoparticles.
  • Example 7 To perform this experiment, fasting diabetic rats were used overnight. Each of the preparations described in Example 7 was administered nasally. After one hour, each group of rats received an oral administration of glucose of 2 g per kg of body mass. Glycemia was measured in blood from samples collected from the tail vein before glucose administration and after 10, 20, 30, 60, 90 and 120 minutes.
  • Figure 7 shows the effect of insulin-containing nanoparticles on the glycemic response to oral glucose administration.
  • oral glucose administration was followed by an increase in blood glucose whose maximum value, 105% (p ⁇ 0.001), was reached 30 minutes later. Subsequently, glycemia dropped gently for 2 hours.
  • the insulin dissolved in acetate buffer (10 U / kg) did not significantly change this result.
  • the same amount of insulin in chitosan solution increased the glycemic response to glucose by 189% (p ⁇ 0.05) while insulin associated with chitosan or chitosan-PEG nanoparticles increased it by 193% (p ⁇ . 01) and 225% (p ⁇ .01) respectively.
  • the most effective preparation was that corresponding to insulin associated with chitosan-PEG nanoparticles, followed by insulin associated with chitosan nanoparticles and finally that corresponding to insulin in chitosan solution.
  • U / kg of body weight associated with chitosan-PEG nanoparticles considerably reduces glycemia from 15 minutes to at least 7 hours after intranasal release and improves the glycemic response when an oral glucose load occurs. A less marked effect is detected with 4 U / kg of insulin associated with these nanoparticles.
  • Example 9 In vivo evaluation of the immune response caused by nanoparticles loaded with diphtheria toxoid.
  • the association of the diphtheria toxoid (TD) with the chitosan or chitosan-PEG nanoparticles is carried out by incorporating the TD into an aqueous TTP solution (300 ⁇ g of TD).
  • the nanoparticles are formed spontaneously under the addition of different volumes of the aqueous TTP solution (1 mg / mL) to 3 mL of a chitosan or chitosan-PEG solution (1 mg / mL) with magnetic stirring.
  • the volumes of the TTP solution were calculated in order to achieve chitosan: TTP ratios of 8: 1 and 2: 1.
  • Chitosan is marketed in the form of its hydrochloride salt, Protosan Cl ® 113 and Protosan Cl ® 213 with a degree of deacetylation of 86%.
  • Chitosan nanoparticles are isolated by centrifugation at 10,000 g for 40 minutes at 5 0 C.
  • the nanoparticles are collected on a centrifuge ultrafilter (Amicon ® ultra-4 100000 NMWL, Millipore) at 3800 g for 30 minutes The supernatant is removed and the nanoparticles are resuspended in pH 7.4 saline phosphate buffer for administration in mice.
  • mice The immunogenicity of the chitosan and chitosan-PEG formulations was performed with mice by intranasal immunization. Male BALB / c mice, 6 weeks old and 22-25 grams in weight, were used. The mice were divided into 5 groups. Two groups were treated with chitosan nanoparticles loaded with TD (CS-113 Cl, CS-213 Cl) and one group with chitosan-PEG nanoparticles loaded with TD. The dose used was 10 ⁇ g of TD incorporated in 100 ⁇ g of nanoparticles and taken to 10 ⁇ L of phosphate buffer pH 7.4, with 5 ⁇ L being administered in each nostril.
  • Another group was treated with free toxoid (10 ⁇ g / mouse) in pH 7.4 saline phosphate buffer.
  • a group received a DTP vaccine (diphtheria, tetanus and pertussis) intraperitoneally, adsorbed on aluminum phosphate (10 ⁇ g / mouse).
  • Doses were administered on days 0, 7 and 14 to conscious mice.
  • blood samples were taken from the tail of the mice on days 14, 28, 42, 56 and 70 after administration of the first dose.
  • samples of saliva, broncho-alveolar and intestinal lavage were also collected on day 70.
  • PBSTM PBST containing 5% w / v of skimmed milk powder and 0.1% w / v sodium azide as a preservative
  • 100 ⁇ L of PBSTM was added to all wells and incubated during 1 hour at 37 0 C. After washing with PBST the samples were diluted serially in two steps in PBSTM and the plates were incubated for 2 hours at 37 ° C. Then 100 uL of conjugate diluted immunoglobulin peroxidase anti-mouse IgG goat 1: 2000 in PBSTM, was added to the wells and incubated at 37 0 C for 2 h.
  • the plates were washed and 50 ⁇ L of o-phenylenediamine dihydrochloride (0.45 mg / mL) in 0.05 M citrate phosphate buffer pH 5.0 was added to the wells as a substrate. Following color development (30 minutes at 37 0 C) the plates were read at 450 nm on a microplate reader (3350-UV, Biorad). The levels of IgG anti-diphtheria caused by nanoparticles loaded with
  • TD and the control solution of TD following an intranasal immunization are shown in Figure 8.
  • the results corresponding to the commercial formulation (TD adsorbed on aluminum phosphate) administered intraperitoneally are also represented.
  • the results indicate that, after the first month, the IgG levels observed for nanoparticles loaded with TD were significantly better than those corresponding to the fluid vaccine (p ⁇ 0.05).
  • these values are comparable with those obtained for the formulation used as an adjuvant (TD adsorbed on aluminum phosphate) administered parenterally. Consequently, these results clearly reflect the adjuvant effect of the formulations containing the nanoparticles.
  • Another observation to highlight was the growing and lasting immune response over time.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Cosmetics (AREA)

Abstract

La presente invención describe sistemas nanoparticulados para la liberación de moléculas biológicamente activas constituidos por el polímero quitosano o sus derivados modificado químicamente con polietilenglicol y reticulado con un agente reticulante. Estos sistemas son especialmente útiles para composiciones farmacéuticas, vacunas y formulaciones cosméticas.

Description

NANOPARTÍ CULAS DE QUITOSANO Y POLIENTILENGLICOL COMO SISTEMA DE ADMINISTRACIÓN DE MOLÉCULAS BIOLÓGICAMENTE
ACTIVAS
CAMPO DE LA INVENCIÓN
La invención se dirige a sistemas nanoparticulados para la liberación de moléculas biológicamente activas. En concreto se dirige a sistemas nanoparticulados, constituidos por un conjugado de quitosano-polietilenglicol reticulado iónicamente en el cual se puede ubicar una molécula biológicamente activa, así como a procedimientos para su obtención.
ESTADO DE LA TÉCNICA
Los sistemas para la liberación de agentes biológicamente activos constituyen un campo de investigación en continuo desarrollo. Es conocido que la administración de ingredientes activos al cuerpo humano y animal por diferentes vías de administración presenta dificultades. Algunos fármacos, entre los que se encuentran péptidos, proteínas y polisacáridos no se absorben de manera efectiva a través de superficies mucosas dada la limitada permeabilidad de las barreras epiteliales. Por ejemplo la insulina, cuya administración actualmente es por vía subcutánea y por lo tanto indeseable para el paciente, es uno de esos ingredientes activos con una pobre capacidad para traspasar barreras mucosas como la nasal o la intestinal, lo que hace necesario el desarrollo de sistemas de administración que permitan una mejor absorción de esta molécula activa si se quieren encontrar vías alternativas a la subcutánea.
De entre las posibilidades propuestas recientemente para superar las barreras biológicas a las que se enfrentan los fármacos, destaca la incorporación de los ingredientes activos en partículas de pequeño tamaño. La interacción de dichas partículas con las mucosas se ve afectada entre otros factores por el tamaño de estas partículas, aumentando dicha interacción con la disminución del tamaño de las partículas. Así, la solicitud de patente US2004138095 describe una suspensión acuosa de nanopartículas para la liberación de insulina, entre otros principios activos, basadas en copolímeros tribloque polietilenglicol/poliaminoácido hidrofílico/poliaminoácido hidrofóbico. Por su parte, la patente US5,641,515 describe una formulación farmacéutica para la liberación controlada de insulina que comprende nanopartículas formadas por policianoacrilato biodegradable en el cual la insulina queda atrapada formando un complejo.
Asimismo, se han desarrollado sistemas nanoparticulados a base de polímeros hidrofílicos para su aplicación como sistemas de liberación de fármacos. Así lo demuestra la abundante literatura existente en este campo. Se han publicado numerosos trabajos que describen diversos métodos de elaboración de nanopartículas hidrofílicas a base de macromoléculas de origen natural como son las nanopartículas de albúmina (W. Lin et al, Pharm. Res., 11, 1994) y gelatina (HJ. Watzke et al., Adv. Colloid Interface ScL, 50, 1-14, 1994) y a base de polisacáridos como el alginato (M. Rajaonarivonvy et al., J. Pharm. Sci., 82, 912-7, 1993). Sin embargo la mayoría de estos métodos requieren el uso de disolventes orgánicos, aceites y elevadas temperaturas, aspectos que limitan enormemente la explotación de estos sistemas. Dentro de estos métodos, el más inocuo ha sido el propuesto para la elaboración de nanopartículas de alginato, basado en un proceso de gelificación iónica en presencia de calcio y posterior endurecimiento en presencia de polielectrolito catiónico poli-L-lisina. Estas nanopartículas presentan sin embargo los problemas relativos a la toxicidad sistémica y elevado coste de la poli-L-lisina.
Una alternativa a estos sistemas ha sido el desarrollo de nanopartículas de quitosano, existiendo en el estado de la técnica publicaciones que describen su utilidad para la administración de ingredientes activos así como a su procedimiento de obtención (J. Appl. Polym. Sci. 1997, 63, 125-132; Pharm. Res. 14, 1997b, 1431-6; Pharm. Res. 16, 1991a, 1576-81; S.T.P. Pharm. Sci. 9,1999b, 429-36, Pharm. Res. 16, 1999, 1830-5; J. Control Reléase 74, 2001, 317-23 y US5,843,509). Estas nanopartículas tienen el inconveniente de su limitada estabilidad en determinadas condiciones de pH y fuerza iónica. El documento WO-A-01/32751 se refiere a un procedimiento para la elaboración de quitosanos o derivados de quitosano en forma de nanopartículas, consistente en la disolución del quitosano o derivados en un medio acuoso y elevando posteriormente el pH en presencia de un agente modificador de superficie, hasta tal punto que se llega a la precipitación del quitosano.
El documento WO-A-99/47130 se refiere a nanopartículas que presentan un complejo de polielectrolito biocompatible y biodegradable, a partir de al menos un policatión (que puede ser el quitosano) y al menos un polianión, así como un ingrediente activo, siendo las nanopartículas obtenibles tratando adicionalmente el complejo de polielectrolito durante o después de su formación con al menos un agente reticulante (glioxal, TSTU o EDAP).
Es conocido también la obtención de nanopartículas de quitosano en combinación con polioxietileno (ES 2098188 y ES 2114502), además del ingrediente activo que puede ser una macromolécula terapéutica o antigénica. La formación de estas nanopartículas tiene lugar debido a un proceso de precipitación conjunta del quitosano y de la macromolécula activa en forma de nanoagregados poliméricos, causado por la adición de un agente de carácter básico como es el tripolifosfato.
Por otra parte, el quitosano puede ser modificado por la unión covalente con polietilenglicol a través de la función amino, lo que se conoce como proceso de pegilación. Las patentes EP 1304346 y US 6,730,735 describen una composición para la administración de fármacos por vías mucosas que comprende un conjugado de quitosano y PEG, estando ambos unidos covalentemente a través del grupo amino del quitosano.
La solicitud US2004/0156904 describe un sistema de liberación de agentes farmacéuticos, en el cual el agente activo se incorpora a una matriz preparada a partir de una composición que incluye quitosano-PEG y un polímero insoluble en agua como el ácido poliláctico-co-glicólico (PLGA).
La solicitud WO01/32751 describe la obtención de nanopartículas de quitosano que precipitan en presencia de un tensioactivo, entre ellos el polietilenglicol, al aumentar el pH de la disolución donde se encuentran. Sin embargo, el PEG no se une covalentemente al quitosano.
A pesar de las numerosas publicaciones dirigidas al desarrollo de sistemas para la liberación de fármacos, existe aún una necesidad de proporcionar un tipo de sistema nanoparticulado que presente una gran capacidad de asociación con una molécula biológicamente activa y que permita su liberación a una velocidad controlada.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
.0 Los inventores han encontrado que un sistema constituido por nanopartículas de quitosano modificado con PEG obtenidas mediante un procedimiento de gelificación iónica en presencia de un agente que provoca la reticulación del quitosano, permite una eficaz asociación de moléculas biológicamente activas así como su posterior liberación en un entorno biológico adecuado. Las nanopartículas de quitosano modificado con
[5 PEG presentan notables propiedades respecto a las nanopartículas de quitosano sin pegilar, por ejemplo en administración nasal de insulina o en inmunogenicidad como respuesta a la administración nasal de toxoide diftérico.
Así, un objeto de la presente invención se dirige a un sistema que comprende nanopartículas para la liberación de una molécula biológicamente activa, donde las 20 nanopartículas comprenden un conjugado que comprende a) al menos un 50% en peso de quitosano o un derivado del mismo y b) menos de un 50% en peso de polietilenglicol (PEG) o un derivado del mismo, donde ambos componentes a) y b) están unidos covalentemente a través de los grupos amino del quitosano, y caracterizado porque dichas nanopartículas se encuentran reticuladas mediante un agente reticulante. 5 La expresión "molécula biológicamente activa" tiene un sentido amplio y comprende moléculas tales como fármacos de bajo peso molecular, polisacáridos, proteínas, péptidos, lípidos, oligonucleótidos y ácidos nucleicos y combinaciones de las mismas. En una variante de la invención la molécula biológicamente activa tiene como función prevenir, paliar, curar o diagnosticar enfermedades. En otra variante de la 0 invención la molécula biológicamente activa tiene una función cosmética. Un segundo aspecto de la presente invención se refiere a una composición farmacéutica o vacuna que comprende las nanop articulas definidas anteriormente. En un aspecto preferente, la composición o vacuna es para administración por vía mucosa.
En otro aspecto la invención se dirige a una composición cosmética que comprende las nanopartículas definidas anteriormente.
Otro aspecto de la presente invención se refiere a una composición que comprende las nanopartículas de quitosano-PEG en cuyo seno puede estar retenida una o más moléculas biológicamente activas como puede ser un fármaco, una vacuna, o material genético. Asimismo, atrapados en la nanoestructura se pueden encontrar péptidos, proteínas o polisacáridos que no son considerados moléculas biológicas activas "per se" pero que pueden contribuir a la eficacia del sistema de administración.
Un último aspecto de la invención lo constituye un procedimiento de obtención de un sistema para la liberación de una molécula biológicamente activa tal como se ha definido, que comprende: a) preparación de una disolución acuosa del conjugado quitosano-PEG; b) preparación de una disolución acuosa del agente reticulante; y c) mezclado, bajo agitación, de las disoluciones de las etapas a) y b), de modo que se obtienen espontáneamente las nanopartículas de quitosano-PEG mediante gelificación iónica y consiguiente precipitación. En una variante del procedimiento el ingrediente activo se incorpora bien a la solución acuosa del quitosano o a la solución acuosa del agente reticulante, previamente al mezclado de ambas fases.
DESCRIPCIÓN DETALLADA DE LAS FIGURAS Figura IA: Efecto del grado de pegilación del quitosano, del pH de la disolución del polímero y de la relación quitosano-PEG/TTP sobre el tamaño de las nanopartículas. Figura IB: Efecto del grado de pegilación del quitosano, del pH de la disolución del polímero y de la relación quitosano-PEG/TTP sobre la polidispersidad en el tamaño de las nanopartículas.
Figura 2A: Análisis de electroforesis en gel de agarosa de ADN plasmídico asociado a nanopartículas de quitosano y quitosano-PEG después de 1 día de incubación en tampón acetato (pH: 4 y 7.4) y en agua purificada (MQ).
Figura 2B: Análisis de electroforesis en gel de agarosa de ADN plasmídico asociado a nanopartículas de quitosano y quitosano-PEG después de 4 semanas de incubación en tampón acetato (pH: 4 y 7.4) y en agua purificada (MQ). Figura 3: Análisis de electroforesis en gel de agarosa de ADN plasmídico asociado a nanopartículas de quitosano y quitosano-PEG en presencia de quitosanasa.
Figura 4A: Efecto del grado de pegilación sobre la eficacia en la transfección de nanopartículas de quitosano (CS) de alto peso molecular.
Figura 4B: Efecto de la carga de pADN sobre la eficacia en la transfección de nanopartículas de quitosano (CS) de alto peso molecular.
Figura 5 A: Efecto de la carga de pADN sobre la eficacia en la transfección de nanopartículas de quitosano (CS) de bajo peso molecular.
Figura 5B: Efecto del grado de pegilación sobre la eficacia en la transfección de nanopartículas de quitosano (CS) de bajo peso molecular. Figura 6: Glicemia después de la administración intranasal de 10 U/kg de insulina contenida en diferentes formulaciones o tampón acetato (control). La glicemia viene expresada en % con respecto a los valores base, en valor medio ± S. E. M. Los valores base antes de las diferentes administraciones son los siguientes: tampón acetato (β): 423±16 mg/dl (n=7); insulina (o): 430+15 mg/dl (n=7); insulina en disolución de quitosano (•): 439±12 mg/dl (n=8); nanopartículas de quitosano (*): 469+14 mg/dl (n=7); nanopartículas de quitosano-PEG (o): 458+21 mg/dl (n=8).
Figura 7: Tests de tolerancia a la glucosa realizados después de la administración intranasal de las formulaciones que contienen insulina o tampón acetato en ratas diabéticas sometidas a ayuno durante la noche. La glucosa (2 g por kg de masa corporal) se administró intragástricamente a tiempo O y una hora después de las administraciones intranasales: tampón acetato (β) (n=10); insulina (α) (n=6); insulina en disolución de quitosano (•) (n=6); nanopartículas de quitosano (4) (n=6); nanopartículas de quitosano-PEG (o) (n=6). Figura 8: Títulos finales de IgG anti-TD en suero de ratón después de la administración intranasal de 10 μg de TD incorporado en diferentes formulaciones de nanopartículas de quitosano y quitosano-PEG en los días 0, 7 y 14 (n=6). IN: Intranasal; IP: Intraperitoneal. * Diferencias significativas estadísticamente (α<0.5).
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El sistema de la presente invención comprende nanopartículas, cuya estructura comprende un conjugado reticulado de quitosano y polietilenglicol (PEG), en la cual se puede incorporar un ingrediente activo. Por el término "nanopartícula" se entiende una estructura que comprende un conjugado, fruto de la unión covalente entre el quitosano y el PEG a través de los grupos amino del quitosano, el cual además se encuentra reticulado mediante gelificación iónica por la acción de un agente reticulante de carácter aniónico. La formación de los enlaces covalentes y la consiguiente reticulación iónica del sistema genera entidades físicas características, independientes y observables, cuyo tamaño medio es inferior a 1 μm, es decir, un tamaño medio comprendido entre 1 y 999 nm.
Por "tamaño medio" se entiende el diámetro promedio de la población de nanopartículas que se mueven conjuntamente en el medio acuoso en el cual se forman.
El tamaño medio de estos sistemas se puede medir mediante procedimientos estándar conocidos por el experto en la materia, y que se describen, por ejemplo, en la parte experimental más abajo.
Las nanopartículas del sistema se caracterizan por presentar un tamaño medio de partículas inferior a 1 μm, preferentemente tienen un tamaño medio comprendido entre
1 999 nm, preferentemente entre 50 y 800 nm, y aún más preferentemente entre 50 nm y 500 nm. El tamaño medio de las partículas se ve influenciado principalmente por la proporción de quitosano con respecto al PEG, por el grado de desacetilación del quitosano y también por las condiciones de formación de las partículas (concentración de quitosano-PEG, concentración de agente reticulante y relación de ambos). La presencia del PEG reduce el tamaño medio de las partículas respecto a sistemas formados por quitosano sin pegilar.
Por otra parte, las nanopartículas pueden presentar una carga eléctrica (medida mediante el potencial Z), cuya magnitud puede variar desde +0.1 mV hasta +50 mV, preferentemente entre +1 y +40 mV, dependiendo de las variables mencionadas y de forma particular del grado de funcionalización del quitosano con el PEG. La carga positiva de las nanopartículas puede ser de interés para favorecer la interacción de las mismas con superficies mucosas. No obstante la carga neutra puede resultar más interesante para la administración parenteral de las mismas.
El sistema que comprende nanopartículas para la liberación de una molécula biológicamente activa que se ha definido más arriba tiene un contenido de quitosano en el conjugado superior al 50%, preferentemente superior al 75% en peso. Por su parte el contenido de PEG en el conjugado es inferior al 50%, preferentemente inferior al 25%.
El quitosano es un polímero de origen natural derivado de la quitina (poli-N- acetil-D-glucosamina), donde una parte importante de los grupos acetilo de los N se han eliminado por hidrólisis. Por lo general, el grado de desacetilación se encuentra en un rango comprendido entre 30 y 95%, preferentemente entre 60 y 95%, lo que indica que entre un 5 y un 40% de los grupos amino están acetilados. Presenta por lo tanto estructura aminopolisacárida y carácter catiónico. Comprende la repetición de unidades monoméricas de fórmula (I):
Figure imgf000009_0001
(I) donde n es un número entero, y además m unidades donde el grupo amino está acetilado. La suma de n+m representa el grado de polimerización, es decir, el número de unidades monoméricas en la cadena de quitosano.
El quitosano empleado para la obtención de los conjugados quitosano-PEG de la presente invención tiene un peso molecular comprendido entre 5 y 2000 kDa, preferentemente entre 10 y 500 kDa, más preferentemente entre 10 y 100 IcDa.
Ejemplos de quitosanos comerciales que se pueden utilizar son UPG 113, UP CL 213 y
UP CLl 13 que se pueden obtener de NovaMatrix, Drammen, Norway.
El número de unidades monoméricas que comprenden el quitosano empleado en la obtención de los conjugados quitosano-PEG está comprendido entre 30 y 3000 monómeros, preferentemente entre 60 y 600.
Como alternativa al quitosano se puede utilizar asimismo un derivado del mismo, entendiéndose como tal un quitosano en el que se ha modificado uno o más grupos hidroxilos y/o uno o más grupos amino, con el fin de elevar la solubilidad del quitosano o incrementar el carácter mucoadhesivo del mismo. Estos derivados incluyen, entre otros, quitosanos acetilados, alquilados o sulfonatados, derivados tiolados, tal como se describe en Roberts, Chitin Chemistry, Macmillan, 1992, 166. De forma preferente cuando se utiliza un derivado se selecciona entre O-alquiletéres, O-acilésteres, trimetilquitosano, quitosanos modificados con polietilenglicol, etc. Otros derivados posibles son las sales, tales como citrato, nitrato, lactato, fosfato, glutamato, etc. En cualquier caso, el experto en la materia sabe identificar las modificaciones que se pueden realizar sobre el quitosano sin afectar a la estabilidad y viabilidad comercial de la formulación final.
Por su parte, el polietilenglicol (PEG), en su forma más común, es un polímero de fórmula (II):
H-(O-CH2-CH2)p- O- H (H) donde p es un número entero que representa el grado de polimerización del PEG. En la presente invención el grado de polimerización del PEG se encuentra en el rango comprendido entre 50 y 500, lo que corresponde a un peso molecular de entre 2 y 20 kDa, preferentemente de entre 5 y 10 kDa.
Para la formación del complejo quitosano-PEG ha de emplearse un PEG modificado en el cual uno o los dos grupos hidroxilo terminales se encuentran modificados. Entre los PEG modificados que pueden emplearse para la obtención de los conjugados quitosano-PEG se encuentran aquellos que presentan la fórmula (III):
Figure imgf000011_0001
(III) donde: Xi es un grupo protector de radicales hidroxilo que bloquea la función OH para reacciones posteriores. Los grupos protectores de hidroxilo son bien conocidos en la técnica, grupos protectores representativos (ya incluyendo el oxígeno a proteger) son los silil éteres tales como trimetilsilü éter, trietilsilü éter, terc-butildimetilsilil éter, ter- butildifenilsilil éter, tri-isopropilsilil éter, dietilisopropilsilil éter, texildimetilsilil éter, trifenüsilil éter, di-terc-butilmetilsilil éter; alquil éteres tales como metil éter, terc-butil éter, bencil éter, p-metoxibencil éter, 3,4-dimetoxibencil éter, tritil éter; alil éter; alcoximetil éter tal como metoximetil éter, 2-metoxietoximetil éter, benciloximetil éter, p-metoxibenciloximetil éter, 2-(trimetilsilil)etoximetil éter; tetrahidropiranil éter y éteres relacionados; metiltiometil éter; esteres tales como éster acetato, éster benzoato; éster pivalato; éster metoxiacetato; éster cloroacetato; éster levulinato; carbonatos tales como carbonato de bencilo, carbonato de p-nitrobencilo, carbonato de tere-butilo, carbonato de 2,2,2-tricloroetüo, carbonato de 2-(trimetilsilil)etilo, carbonato de alilo. Ejemplos adicionales de grupos protectores de hidroxilo pueden hallarse en libros de referencia tales como "Protective Groups in Organic Synthesis" de Greene y Wuts, John Wiley & Sons, Inc., Nueva York, 1999. En una realización preferente el grupo protector es un alquil éter, más preferentemente es metil éter.
X2 puede ser un hidrógeno o bien un grupo puente que permita el anclaje a los grupos amino del quitosano. De entre las moléculas puente utilizadas la forma preferente, pero no exclusiva, es una succinimida o un derivado de la misma. De forma alternativa X1 puede ser igualmente un grupo que permita el anclaje con otros grupos distintos del grupo amino. Por ejemplo, para lograr la unión con grupos SH se utiliza como molécula puente la maleimida.
El número de grupos amino del quitosano que reaccionan con el PEG, o lo que es lo mismo, la funcionalización de los grupos amino del quitosano con el PEG, conocido como PEGilación, está comprendido entre 0.1% y 5%, preferentemente entre 0.2% y 2%, más preferentemente entre 0.5% y 1%.
El conjugado de quitosano-PEG resultante tiene un peso molecular comprendido entre 5 y 3000 kDa, preferentemente entre 10 y 500 kDa. El sistema de nanopartículas de la invención se caracteriza porque se han formado medíate reticulación iónica del conjugado quitosano-PEG. El agente reticulante es una sal amónica que permite la reticulación del conjugado quitosano-PEG mediante gelificación iónica, favoreciendo la formación espontánea de las nanopartículas. En la presente invención el agente reticulante es una sal de polifosfato, siendo preferente el empleo de tripolifosfato de sodio (TTP). La reticulación para dar lugar al sistema de nanopartículas es sencilla y conocida del experto en la materia, tal como se recoge en los antecedentes de la invención.
Un segundo aspecto de la presente invención lo constituye una composición farmacéutica que comprende las nanopartículas previamente definidas. Ejemplos de composiciones farmacéuticas incluyen cualquier composición líquida (suspensión de nanopartículas en agua o en agua con aditivos tales como viscosizantes, tampones de pH, etc) o sólida (nanopartículas liofϊlizadas o atomizadas formando un polvo que se puede utilizar para elaborar granulados, comprimidos o cápsulas) para su administración bien por vía oral, bucal o sublingual, bien tópica, o bien en forma líquida o semisólida para su administración por vía transdérmica, ocular, nasal, vaginal o bien parenteral. En el caso de las vías no parenterales el contacto de las nanopartículas con la piel o mucosas podrá mejorarse dotando a las partículas de una importante carga positiva, lo que favorecerá su interacción con las citadas superficies cargadas negativamente. En el caso de las vías parenterales, más en concreto para la administración intravenosa, estos sistemas ofrecen la posibilidad de modular la distribución in vivo de los fármacos o moléculas que puedan llevar asociadas.
En un aspecto preferente la formulación se administra por vía mucosa. La carga positiva que presenta el conjugado quitosano-PEG proporciona una mejor absorción de los fármacos sobre la superficie mucosa a través de su interacción con la mucosa y las superficies de las células epiteliales que están cargadas negativamente.
Las nanopartículas de quitosano-PEG son sistemas que presentan una alta capacidad de asociación de moléculas bioactivas. Esta capacidad de asociación depende del tipo de molécula incorporada así como de los parámetros de formulación señalados. Por tanto, otro aspecto de la presente invención lo constituye una composición que comprende nanopartículas de quitosano-PEG como las definidas previamente y al menos una molécula biológicamente activa.
El término "molécula biológicamente activa" se refiere a cualquier sustancia que se emplea en el tratamiento, cura, prevención o diagnosis de una enfermedad o que es empleada para mejorar el bienestar físico y mental de humanos y animales. Estas moléculas biológicamente activas pueden incluir desde fármacos de bajo peso molecular hasta moléculas del tipo de polisacáridos, proteínas, péptidos, lípidos, oligonucleótidos y ácidos nucleicos y combinaciones de las mismas. Ejemplos de moléculas asociadas a estas nanopartículas incluyen proteínas como el toxoide tetánico y el toxoide diftérico, polisacáridos como la heparina, péptidos como la insulina, así como plásmidos codificadores de diversas proteínas.
En una realización preferente la molécula biológicamente activa es la insulina.
En otra realización preferente la molécula biológicamente activa es el toxoide diftérico o tetánico. En otra realización preferente la molécula biológicamente activa es la heparina. En otra realización preferente la molécula biológicamente activa es un plásmido ADN.
Los sistemas nanoparticulados de la presente invención también pueden incorporar otras moléculas activas que no presentan efecto terapéutico pero que dan lugar a composiciones cosméticas. Estas composiciones cosméticas incluyen cualquier composición líquida (suspensión de nanopartículas) o emulsión para su administración por vía tópica. Entre las moléculas activas que pueden incorporarse a las nanopartículas cabe citar agentes anti-acné, antifúngicos, antioxidantes, desodorantes, antitranspirantes, anticaspa, blanqueadores de piel, bronceadores, absorbentes de luz UV, enzimas, biocidas cosméticos, entre otros. Otro aspecto de la presente invención lo constituye una vacuna que comprende las nanopartículas previamente definidas y un antígeno. La administración de un antígeno por parte del sistema constituido por las nanopartículas permite conseguir una respuesta inmune. La vacuna puede comprender una proteína, polisacárido o bien puede ser una vacuna ADN. Estrictamente hablando, una vacuna ADN es una molécula de ADN que codifica la expresión de un antígeno que dará lugar a una respuesta inmune. En una realización preferente el antígeno es el toxoide tetánico y el toxoide diftérico.
Otro aspecto de la presente invención se refiere a un procedimiento para la preparación de nanopartículas de quitosano-PEG como las definidas previamente, que comprende: a) preparación de una disolución acuosa del conjugado quitosano-PEG; b) preparación de una disolución acuosa del agente reticulante; y c) mezclado, bajo agitación, de las disoluciones de las etapas a) y b), de modo que se obtienen espontáneamente las nanopartículas de quitosano- PEG mediante gelificación iónica y consiguiente precipitación. El pH de la disolución inicial del conjugado quitosano-PEG se modifica hasta alcanzar valores comprendidos entre 4.5 y 6.5 mediante la adición de hidróxido sódico previamente al mezclado de ambas disoluciones.
En una variante del procedimiento la relación quitosano-PEG/agente reticulante resultante está comprendida entre 2/1 y 8/1, siendo preferente la relación 3/1, la cual proporciona formulaciones con una polidispersidad relativamente baja. No obstante, el empleo de relaciones mayores quitosano-PEG/agente reticulante así como la preparación de partículas en medios más ácidos también es posible.
La presencia del agente reticulante permite el entrecruzamiento del conjugado quitosano-PEG de tal manera que se forma una malla entre la cual puede quedar insertada una molécula biológicamente activa que posteriormente puede ser liberada.
Además, el agente reticulante confiere a las nanopartículas las características de tamaño, potencial y estructura que las hace adecuadas como sistema de administración de moléculas biológicamente activas. La molécula biológicamente activa se puede incorporar directamente a las disoluciones de las etapas a) ó b), o previa disolución en una fase acuosa u orgánica, de modo que se obtienen espontáneamente las nanopartículas de quitosano-PEG conteniendo la molécula biológicamente activa mediante gelificación iónica y consiguiente precipitación. Por lo tanto la incorporación de la molécula biológicamente activa se puede realizar según los siguientes métodos: a) la molécula activa es disuelta directamente en las disoluciones del agente reticulante o de quitosano-PEG; b) la molécula activa es disuelta en una disolución acuosa acida o básica, previamente a su incorporación a las disoluciones de agente reticulante o de quitosano-PEG; o c) la molécula activa es disuelta en un disolvente orgánico polar, miscible con el agua, previamente a su incorporación a las disoluciones de agente reticulante o de quitosano-PEG El procedimiento de elaboración de las nanopartículas de quitosano-PEG puede comprender además una etapa adicional, en la cual dichas nanopartículas son liofílizadas. Desde un punto de vista farmacéutico es importante poder disponer de las nanopartículas en forma liofilizada ya que así se mejora su estabilidad durante el almacenamiento. Las nanopartículas de quitosano-PEG (con diferentes grados de PEGilación) pueden ser liofilizadas en presencia de un crioprotector como puede ser la glucosa en una concentración del 5%. Otros aditivos habituales pueden estar presentes. De hecho, la determinación del tamaño de partícula antes y después de su liofilización no se ve modificada significativamente. Es decir, que las nanopartículas pueden ser liofilizadas y resuspendidas sin que se produzca una variación en las mismas (tabla I). Tabla I: Características de las nanopartículas de CS-PEG antes y después de la • liofilización. tamaño (nm) P.I.* tamaño (nm) P.I.
Formulación antes de liofilización liofüizadas con 5% de glucosa quitosano-PEG 0.5% 74.7 ± 9.5 0.231 78.6 ± 18.3 0.224 quitosano-PEG 1% 76.9 ± 6.0 0.500 87.7 ± 22.3 0.418
*P.L: índice de polidispersidad
A continuación, se describen algunos ejemplos ilustrativos que ponen de manifiesto las características y ventajas de la invención, no se deben interpretar como limitativos del objeto de la invención.
EJEMPLOS Ejemplo 1
Optimización en la preparación de nanopartículas de quitosano-PEG
Las nanopartículas de quitosano-PEG se prepararon según la técnica de gelificación iónica descrita para quitosano por ejemplo en WO 9804244. En concreto, el quitosano con un 0.5% ó 1% de grado de pegilación (porcentaje de grupos amino que están funcionalizados con^PEG) se disolvió inicialmente en agua ultrapura a una concentración de 1 mg/mL. Con el fin de estudiar su posible efecto sobre la formación de las nanopartículas, el pH inicial de la disolución de quitosano-PEG se modificó hasta alcanzar valores comprendidos entre 4.5 y 6.5 mediante la adición de NaOH antes de la preparación de las partículas. El tripolifosfato sódico (TTP) también se disolvió en agua a diferentes concentraciones con el objetivo de obtener relaciones de quitosano- PEG/TTP de 2/1, 3/1 y 4/1. La formación de las nanopartículas ocurre espontáneamente tras la adición de un volumen fijo de disolución de TTP (0.6 mL) a un volumen fijo de disolución de quitosano-PEG (1.5 mL) bajo agitación magnética. El efecto que el grado de pegilación del quitosano, el pH de la disolución del polímero y la relación quitosano-PEG/TTP provocan sobre el tamaño y polidispersidad de las nanopartículas se muestra en las figuras IA y IB. A partir de los resultados obtenidos se puede concluir que las nanopartículas de quitosano-PEG con un grado de pegilación del 0.5-1% pueden prepararse fácilmente con un amplio rango de condiciones experimentales, siendo el pH el parámetro más influyente en el tamaño de las nanopartículas. Más aún, el efecto del pH llega a ser más remarcado a medida que el grado de pegilación aumenta de 0.5 a 1%.
Por otra parte, la distribución de tamaños de las nanopartículas también se ve afectada por el grado de pegilación del quitosano así como por el pH de la solución de quitosano-PEG. Aparentemente, la relación óptima quitosano-PEG/TTP es de 3/1 para obtener formulaciones con una dispersidad relativamente baja.
El tamaño de las nanopartículas se determina mediante espectroscopia de correlación fotónica, empleando para ello un Zetasizer III (Malvern Instruments, Malvern, UK). El tamaño de las nanopartículas de quitosano-PEG osciló entre 70 y 310 nm.
Ejemplo 2
Comparación entre las nanopartículas de quitosano y las de quitosano-PEG
Como puede observarse a partir de la Tabla II, la pegilación cambia la solubilidad del quitosano. Esto tiene influencia sobre la formación de las nanopartículas. La relación óptima quitosano/TTP típicamente situada entre 6/1 y 4/1 se desplaza en el caso del quitosano-PEG a valores menores, típicamente entre 4/1 y 2/1. Estas diferencias se deben probablemente a la modificación química del quitosano, que experimenta un cambio de los grupos disponibles que pueden interaccionar pudiendo alterar las condiciones de gelación ionotrópica. Tabla II quitosano quitosano-PEG 0.5% quitosano-PEG 1% pH inicial 4.7-4.8 4.6-4.7 4.6-4.7 lí ,m !it .e,. d,e , 6 ,.u4-6.5, ¿ 6. o9- -77.11 77.n1-7.i2 solubilidad Con relación a las nanopartículas, se puede observar que las nanopartículas preparadas a partir de quitosano pegilado son significativamente diferentes a las constituidas por quitosano puro. Esto se ilustra en la tabla III, donde se muestran las características de las nanopartículas formadas por quitosano, quitosano-PEG con grados de pegilación del 0.5% y 1% (al valor del pH inicial, en su relación óptima de polímero).
La pegilación provoca un descenso marcado en el tamaño de las nanopartículas y en la carga de la superficie. En este último caso, el grado de pegilación también tiene una gran influencia ya que la carga de la superficie disminuye aún más cuando el grado de pegilación aumenta de 0.5% a 1%.
Tabla III tamaño (nm) P.I. potencial (mV) quitosano, 4/1 265+10 0.363 +29.1+1.1 quitosano-PEG 0.5%, 3/1 74+9 0.231 +12.1+1.8 quitosano-PEG 1%, 3/1 77+6 0.500 +1.6±0.6
P.I.=índice de polidispersidad
Ejemplo 3 Formación y caracterización de nanopartículas de quitosano con diferentes grados de pegilación cargadas con ADN
Para su encapsulación, ADN plasmídico se incorporó a la disolución de TTP previamente a la formación de las nanopartículas. Esta disolución de TTP conteniendo el ADN se adicionó posteriormente a la disolución de quitosano-PEG y se mantuvo bajo agitación magnética. Las cargas teóricas de ADN fueron de 5, 10 o 20% respecto a la cantidad total de quitosano-PEG empleado para la preparación de las nanopartículas (1 mg). La eficiencia de la encapsulación del ADN plasmídico fue siempre superior al 90% como así lo confirman los ensayos de fluorescencia (colorante Pico Green dsDNA) y electroforesis en gel de agarosa. Las tablas IV, V y VI muestran las características de las diferentes nanopartículas de quitosano y quitosano-PEG. Similarmente a las nanopartículas sin cargar, las formulaciones cargadas de ADN que contienen PEG son mucho más pequeñas y presentan menos carga positiva en su superficie que las formulaciones sin PEG.
En todos los casos, la presencia de ADN también causa cambios en las características de los vehículos, especialmente a altos porcentajes de ADN, donde la carga de la superficie generalmente disminuye. Con relación al tamaño de la nanopartícula, cargas grandes de ADN permiten inducir la formación de estructuras más reticuladas, lo que provoca un descenso del tamaño de la partícula. Esto se puede observar en el caso de vehículos no pegilados, donde el tamaño disminuye desde aproximadamente 270-300 nm a 220 nm.
Sin embargo, el tamaño de los vehículos pegilados aumenta con la carga de ADN, especialmente cuando se emplea quitosano-PEG con un grado de pegilación de
0.5%.
Tabla IV quitosano sin PEG, 4/1 tamaño (nm) P.I. potencial (mV) blanco 265±10 0.363 29.1+1.1
+5% ADN 278+17 0.340 40.5+5.6
+10% ADN 309±2 0.378 41.6±0.8
+20%ADN 216+7 0.363 35.2+1.8
Tabla V quitosano-PEG 0.5%, 3/1 tamaño (nm) P.I. potencial (mV) blanco 74±9 0.231 +121+1.8
+5% ADN 115+14 0.227 +13.4+2.1
+10% ADN 131+13 0.207 +11.3+3.9
+20%ADN 181+8 0.209 +5.7+1.6 Tabla VI quitosano-PEG 1%, 3/1 tamaño (nm) P.I. potencial (mV) blanco 77+6 0.500 +1.6+0.6
+5% ADN 78+7 0.485 +3.7+0.4
+10%ADN 78+10 0.256 +1.3+2.1
+20%ADN 105+2 0.229 -0.6±0.4
Ejemplo 4
Liberación in vitro de ADN plasmídico ADN plasmídico fue eficazmente asociado tanto a partículas de quitosano como de quitosano-PEG. Como se muestra en las figuras 2A y 2B, no se detecta liberación de ADN plasmídico (según análisis de electroforesis en gel de agarosa) cuando se incuban nanopartículas cargadas con ADN plasmídico durante más de un mes, tanto en tampón acetato (pH:4, pH:7.4) como en agua purificada (MQ).
Ejemplo 5
Liberación in vitro de ADN plasmídico en presencia de enzimas
Como puede observarse a partir del análisis de electroforesis (Figura 3), el ADN plasmídico puede liberarse de las nanopartículas de quitosano y quitosano-PEG cuando se incuban las nanopartículas cargadas de ADN plasmídico en tampón acetato a pH 6 en presencia de quitosanasa (0.6 mg/mL).
Estos resultados ponen de manifiesto que el ADN plasmídico ha sido eficazmente asociado a las nanopartículas, sin embargo, no está irreversiblemente enlazado a ellas ya que puede ser liberado cuando el vehículo polimérico se degrada enzimáticamente. Ejemplo 6
Eficacia en la transfección del ADN plasmídico fGFP) asociado a nanopartículas de quitosano-PEG
La eficacia de la transfección mediante nanopartículas de quitosano y quitosano- PEG ha sido evaluada para la codificación del plásmido GFP en un modelo de línea celular HEK 293.
La figura 4 muestra el efecto que el grado de pegilación del quitosano (0.5% y 1%) provoca sobre la eficacia en la transfección de nanopartículas de quitosano de alto peso molecular (125 kDa, HMW CS NP) que contienen una carga de un 20% de ADN plasmídico (pDNA). La dosis de plásmido por pocilio fue de 1 μg. Los resultados indican que un grado de pegilación de 0.5% tiene un efecto positivo en la capacidad de transfección de estas nanopartículas. Este grado de pegilación se eligió para los experimentos posteriores. Los resultados mostrados en la figura 4b indican que la eficacia de la transfección aumenta con la carga de pDNA de las nanopartículas. Esta observación es interesante ya que la dosis de plásmido fue constante (1 μg) y por tanto, la dosis de nanopartículas disminuye a medida que la carga de pDNA aumenta.
El efecto de la carga de plásmido sobre la eficacia en la transfección también fue evaluada para nanopartículas de quitosano-PEG de bajo peso molecular (10 kDa, LMW
CS-PEG NP) En este caso, el nivel mayor de expresión se observó para la carga menor (5%) (Figura 5a). Por otra parte, para esta carga baja (5% pDNA) se observó que la pegilación tenía un efecto negativo en la eficacia de transfección (Figura 5b).
La conclusión principal de estos experimentos es que la pegilación del quitosano tiene un efecto positivo (HMW CS-PEG NP) o negativo (LMW CS-PEG NP) dependiendo del peso molecular del quitosano.
Ejemplo 7
Efecto biológico de la administración intranasal de insulina encapsulada e insulina libre a una concentración de 10 U/kg Para realizar la encapsulación de la insulina en las nanopartículas de quitosano, se disolvieron previamente 2.4 mg de insulina en una disolución de NaOH a la cual se incorporaron posteriormente 1.2 mL de TTP. Esta mezcla se adicionó después a 3 mL de quitosano. Transcurridos 5 min bajo agitación magnética, la preparación se centrifugó a 10.000 g por 40 min. El sobrenadante se retiró y el precipitado se disolvió en tampón. Por su parte, para la preparación de las nanopartículas de quitosano-PEG se llevó a cabo el mismo procedimiento pero adicionando 10 mg/mL de PEG 400 a 2mg/mL de quitosano.
El tamaño final de las nanopartículas de quitosano, determinado mediante espectroscopia de correlación fotónica, fue de 605+15 nm mientras que el de las nanopartículas de quitosano-PEG fue de 590+6 nm.
Inicialmente, la diabetes es inducida en ratas Wistar machos, que pesan entre 200 y 220 g, mediante una inyección de estreptozotocina (65 mg/kg i.v.) en un tampón citrato a pH 4.5. Se consideraban diabéticas cuando la concentración de glicemia era mayor de 400 mg/dl transcurridas tres semanas del tratamiento con estreptozotocina.
Para realizar este experimento se emplearon ratas sometidas a ayuno. Se dividieron en diferentes grupos dependiendo de la formulación que les fuera a ser administrada. Las diferentes formulaciones consistían en: una disolución control (tampón acetato, pH 4.3), insulina disuelta en tampón acetato, insulina disuelta en disolución de quitosano, insulina asociada a nanopartículas de quitosano e insulina asociada a nanopartículas de quitosano-PEG), siendo la concentración de insulina de 10 U por kg de masa corporal. La administración de estas formulaciones se realizó colocando un pequeño volumen de las mismas (10-20 μl) en cada orificio nasal utilizando una pipeta Eppendorf, estando las ratas anestesiadas con éter en posición supina. Posteriormente, los animales se mantuvieron conscientes durante todo el experimento con el fin de evitar cualquier influencia que la anestesia pudiera provocar en los niveles de glucosa en sangre.
Para determinar los niveles de glucosa en sangre, se recogieron muestras de sangre procedentes de la vena de la cola, antes de la administración nasal y cada cuarto de hora después hasta cumplidos 90 minutos. Posteriormente, se recogieron cada hora durante 2 a 7 horas y por último transcurridas 24 horas desde la administración nasal. El nivel de glucosa en sangre se determinó inmediatamente empleando un analizador de glucosa (Prestige from Chronolyss). Durante el experimento, las ratas se mantuvieron en ayuno. Como se muestra en la figura 6, la administración nasal de tampón acetato, pH
4.3, provoca la disminución lenta y progresiva de la glicemia en función del tiempo, siendo el descenso máximo del 28% con respecto a los valores control, trascurridas 6 horas desde la administración. La administración nasal de 10 U/kg de insulina en disolución de tampón acetato no cambió significativamente el resultado anterior. Sin embargo, cuando la insulina se encuentra asociada a nanopartículas de quitosano-PEG, los niveles de glicemia disminuyen un 18% (p<0.01) en sólo 15 minutos después de la administración, llegando a alcanzar un descenso máximo del 45-50% (p<0.01 y pθ.001 respectivamente) a los 45 minutos de dicha administración. Destacar que, este descenso se mantiene al menos transcurridas 7 horas desde la administración nasal. Asimismo, se observa un acusado descenso en los niveles de glicemia cuando se administra, por vía intranasal, insulina asociada a nanopartículas de quitosano. En este caso, la glicemia disminuye significativamente desde los 30 minutos, en concreto un 16% (p<0.01) siendo el máximo descenso un 32% (p<0.001) observado tras 2 horas desde la administración intranasal. Cuando la insulina se disuelve en una disolución de quitosano también se reduce la glicemia pero en un grado significativamente menor que cuando la insulina está asociada a nanopartículas de quitosano-PEG.
Ejemplo 8
Efecto de las nanopartículas que contienen insulina sobre la respuesta glicémica a una administración oral de glucosa.
Para realizar este experimento se emplearon ratas diabéticas sometidas a ayuno durante la noche. Se les administró por vía nasal cada una de las preparaciones descritas en el ejemplo 7. Transcurrida una hora, cada grupo de ratas recibió por vía oral una administración de glucosa de 2 g por cada kg de masa corporal. Se midió la glicemia en sangre procedente de muestras recogidas de la vena del rabo antes de la administración de glucosa y después de 10, 20, 30, 60, 90 y 120 minutos.
La figura 7 muestra el efecto de las nanopartículas que contienen insulina sobre la respuesta glicémica a la administración oral de glucosa. En ratones control que han recibido tampón acetato, la administración oral de glucosa estuvo seguida de un aumento de la glicemia cuyo valor máximo, 105% (p<0.001), se alcanzó 30 minutos después. Posteriormente, la glicemia descendió suavemente durante 2 horas. Por su parte, la insulina disuelta en tampón acetato (10 U/kg) no cambió significativamente este resultado. Sin embargo, la misma cantidad de insulina en disolución de quitosano aumentó la respuesta glicémica a la glucosa en un 189% (p<0.05) mientras que la insulina asociada a nanopartículas de quitosano o quitosano-PEG la aumentó en un 193% (pθ.01) y un 225% (pθ.01) respectivamente.
Por lo tanto, comparando los A. U. C. (área bajo la curva) a partir de las diferentes formulaciones analizadas, la preparación más efectiva fue la correspondiente a insulina asociada a nanopartículas de quitosano-PEG, seguido de la insulina asociada a nanopartículas de quitosano y por último la correspondiente a insulina en disolución de quitosano.
Estos resultados ponen de manifiesto que el empleo de nanopartículas de quitosano-PEG descritas en la presente invención aumenta la absorción nasal de insulina en ratas diabéticas. Los resultados experimentales muestran que la insulina (10
U/kg de peso corporal) asociada a nanopartículas de quitosano-PEG reduce considerablemente la glicemia desde 15 minutos hasta al menos 7 horas después de la liberación intranasal y mejora la respuesta glicémica cuando se produce una carga oral de glucosa. Un efecto menos marcado se detecta con 4 U/kg de insulina asociada a dichas nanopartículas.
Cuando la insulina se asocia a nanopartículas únicamente constituidas por quitosano o cuando la insulina se encuentra en disolución con quitosano la eficiencia es menor que cuando está asociada a nanopartículas quitosano-PEG, mientras que la insulina libre no presenta ningún efecto significativo sobre parámetros biológicos después de su liberación intranasal en ratas diabéticas.
Ejemplo 9 Evaluación in vivo de la respuesta inmune provocada por las nanopartículas cargadas con toxoide diftérico.
La asociación del toxoide diftérico (TD) a las nanopartículas de quitosano o quitosano-PEG se realiza por incorporación del TD a una disolución acuosa de TTP (300 μg de TD). Las nanopartículas se forman espontáneamente bajo adición de diferentes volúmenes de la disolución acuosa de TTP (1 mg/mL) a 3 mL de una disolución de quitosano ó quitosano-PEG (1 mg/mL) con agitación magnética. Los volúmenes de la disolución de TTP se calcularon con el fin de conseguir relaciones quitosano:TTP de 8: 1 y 2:1. El quitosano se comercializa en forma de su sal de hidrocloruro, Protosan Cl® 113 y Protosan Cl® 213 con un grado de desacetilación del 86%. Las nanopartículas de quitosano se aislan por centrifugación a 10.000 g por 40 minutos a 50C. En el caso de quitosano-PEG, las nanopartículas se recogen sobre un ultrafiltro de centrifugación (Amicon® ultra-4 100000 NMWL, Millipore) a 3800 g por 30 minutos. El sobrenadante se elimina y las nanopartículas se resuspenden en tampón fosfato salino de pH 7.4 para su administración en ratones. La inmunogenicidad de las formulaciones de quitosano y quitosano-PEG se realizó con ratones mediante inmunización intranasal. Se emplearon ratones macho BALB/c de 6 semanas de vida y 22-25 gr de peso. Los ratones se dividieron en 5 grupos. Dos grupos se trataron con nanopartículas de quitosano cargadas con TD (CS- 113 Cl, CS-213 Cl) y un grupo con nanopartículas de quitosano-PEG cargadas con TD. La dosis empleada fue de 10 μg de TD incorporados en 100 μg de nanopartículas y llevados a 10 μL de tampón fosfato de pH 7.4, administrándose 5 μL en cada orificio nasal. Otro grupo se trató con toxoide libre (10 μg/ratón) en tampón fosfato salino de pH 7.4. Además, como control, un grupo recibió una vacuna de DTP (difteria, tétanos y pertussis) intraperitonealmente, adsorbida en fosfato de aluminio (10 μg/ratón). Las dosis se administraron los días 0, 7 y 14 a ratones conscientes. Para realizar los ensayos de respuesta inmune in vivo, se tomaron muestras de sangre de la cola de los ratones los días 14, 28, 42, 56 y 70 después de la administración de la primera dosis. Por su parte, se recogieron también muestras de lavado de saliva, bronco-alveolar e intestinal el día 70. La salivación se indujo mediante inyección intraperitonealmente de pilocarpina (50 μL, 1 mg/mL). Se recogió una alícuota de 100 μL del flujo inicial de saliva de cada ratón. Posteriormente los ratones se anestesiaron con pentobarbital y se sacrificaron. Los lavados bronco-alveolares se obtuvieron inyectando y aspirando 5 mL de medio de lavado en la traquea para inflar los pulmones mediante una cánula intravenosa. Por su parte, los segmentos intestinales (duodeno, yeyuno, ileon) se eliminaron asépticamente y se homogeneizaron en 4 mL de una disolución de 1 mM PMSF, 1 mM de ácido yodoacético y 10 mM de EDTA. Las muestras se aclararon mediante centrifugación y azida sódica, PMSF y suero bovino se adicionó como conservante. Todas las muestras se almacenaron a -2O0C hasta realizar los ensayos de concentración de anticuerpos. La evaluación de las respuestas del anticuerpo en suero y en tejidos mucosos se llevó a cabo mediante un test ELISA. En primer lugar, las microplacas (DYNEX, immulon®) se recubrieron con 100 μL de TD (4μg/pocillo) en 0.05 M de tampón carbonato de p 9.6 y se incubaron durante la noche a 4°C. Entre etapa y etapa los pocilios se lavaron tres veces con PBST de pH 7.4 (0.01 M PBS, o tampón fosfato, que contiene 5% v/v de Tween 20). Con el fin de minimizar las reacciones no específicas, se adicionó a todos los pocilios 100 μL de PBSTM (PBST que contiene 5% p/v de leche desnatada en polvo y 0.1% p/v de azida sódica como conservante) y se incubaron durante 1 hora a 370C. Después del lavado con PBST, las muestras se diluyeron en serie en dos etapas en PBSTM y las placas se incubaron por otras 2 horas a 37°C. Posteriormente, se diluyeron 100 μL de conjugado de peroxidasa de inmunoglobulina IgG anti-ratón de cabra en 1:2000 en PBSTM, se adicionaron a los pocilios y se incubaron a 370C durante 2 h. Las placas se lavaron y se adicionaron a los pocilios 50 μL de o-fenilendiamina dihidrocloraro (0.45 mg/mL) en 0.05 M de tampón citrato- fosfato d pH 5.0 como sustrato. Siguiendo el desarrollo del color (30 minutos a 370C) las placas se leyeron a 450 nm sobre un lector de microplacas (3350-UV, Biorad). Los niveles de anti-difteria IgG provocados por las nanopartículas cargadas con
TD y la disolución control de TD siguiendo una inmunización intranasal se muestran en la ñgura 8. En esta figura, se representan también los resultados correspondientes a la formulación comercial (TD adsorbido en fosfato de aluminio) administrada intraperitonealmente. En términos generales, los resultados indican que, transcurrido el primer mes, los niveles de IgG observados para nanopartículas cargadas con TD fueron significativamente mejores que los correspondientes a la vacuna fluida (p<0.05). De hecho, estos valores son comparables con aquellos obtenidos para la formulación utilizada como adyuvante (TD adsorbida en fosfato de aluminio) administrada parenteral emente. Consecuentemente, estos resultados claramente reflejan el efecto adyuvante de las formulaciones que contienen las nanopartículas. Otra observación a remarcar fue la creciente y duradera respuesta inmune a lo largo del tiempo. Finalmente, con respecto a la influencia de la composición de las nanopartículas, es interesante señalar que el peso molecular del quitosano no tiene ningún efecto sobre la respuesta inmune alcanzada por las nanopartículas de quitosano, sin embargo, la PEGilación del quitosano tiene una consecuencia remarcada en la eficacia de las nanopartículas. De hecho, transcurrido un mes, los niveles de IgG fueron significativamente mayores para las nanopartículas de quitosano-PEG que para las nanopartículas de quitosano.

Claims

REIVINDICACIONES
1. Un sistema que comprende nanopartículas para la liberación de moléculas biológicamente activas, donde las nanopartículas comprenden un conjugado que comprende a) al menos un 50% en peso de quitosano o un derivado del mismo y b) menos de un 50% en peso de polietilenglicol (PEG) o un derivado del mismo, donde ambos componentes a) y b) están unidos covalentemente a través de los grupos amino del quitosano, y caracterizado porque dichas nanopartículas se encuentran reticuladas mediante un agente reticulante.
2. Sistema según reivindicación 1 donde la proporción de quitosano o un derivado del mismo respecto al polietilenglicol es preferentemente superior al 75% en peso.
3. Sistema según reivindicación 1 donde la proporción de polietilenglicol es pi-eferentemente inferior al 25% en peso.
4. Sistema según reivindicaciones 1 a 3 donde el grado de polimerización del quitosano o número de unidades monoméricas que comprenden el quitosano o un derivado del mismo está comprendido entre 30 y 3000, preferentemente entre 60 y
600.
5. Sistema según reivindicaciones 1 a 4 donde el quitosano o su derivado tiene un peso molecular comprendido entre 5 y 2000 kDa, preferentemente entre 10 y 500 kDa, más preferentemente entre 10 y 100 kDa.
6. Sistema según reivindicaciones 1 a 5 donde el quitosan o su derivado tiene un grado de desacetilación comprendido entre 30% y 95%, preferentemente entre 60% y 95%.
7. Sistema según reivindicaciones 1 a 6 donde el PEG es un PEG modificado que presenta una fórmula (III):
Figure imgf000028_0001
donde Xi es un grupo protector de radicales hidroxilo, X2 es un hidrógeno o un grupo puente que permita el anclaje a los grupos amino del quitosano, y p el grado de polimerización.
8. Sistema según la reivindicación 7 donde Xi es un grupo alquilo, preferentemente metilo.
9. Sistema según reivindicaciones 1 a 8 donde el PEG tiene un grado de polimerización comprendido entre 50 y 500.
10. Sistema según reivindicaciones 1 a 9 donde el PEG tiene un peso molecular comprendido entre 2 y 20 kDa, preferentemente entre 5 y 10 kDa.
11. Sistema según reivindicaciones 1 a 10 donde la funcionalización de los grupos amino del quitosano o su derivado con el PEG está comprendida entre 0.1% y 5%, preferentemente entre 0.5% y 1%.
12. Un sistema según cualquiera de las reivindicaciones 1 a 11 que además comprende una molécula biológicamente activa seleccionada del grupo consistente en fármacos de bajo peso molecular, polisacáridos, proteínas, péptidos, lípidos, oligonucleótidos y ácidos nucleicos y combinaciones de las mismas.
13. Sistema según cualquiera de las reivindicaciones 1 a 12 donde el agente reticulante es una sal de polifosfato, preferentemente tripolifosfato sódico.
14. Sistema según cualquiera de las reivindicaciones 1 a 13 donde el tamaño medio de las nanopartículas está comprendido entre 1 y 999 nanómetros, preferentemente entre 50 y 800 nm.
15. Sistema según cualquiera de las reivindicaciones 1 a 14 donde la carga eléctrica (potencial Z) está comprendida entre +0.1 mV y +50 mV, preferentemente entre +1 y +40 mV.
16. Una composición farmacéutica que comprende un sistema como el definido en cualquiera de las reivindicaciones 1 a 15 y una molécula biológicamente activa capaz de prevenir, paliar o curar enfermedades.
17. Composición según la reivindicación 16 para administración por vía oral, bucal, sublingual, tópica, transdérmica, ocular, nasal, vaginal o parenteral.
18. Composición según reivindicación 16 o 17 donde la molécula biológicamente activa se selecciona de entre polisacáridos, proteínas, péptidos, lípidos, oligonucleótidos, ácidos nucleicos y combinaciones de las mismas.
19. Composición según cualquiera de las reivindicaciones 16 a 18 donde la molécula biológicamente activa es insulina, heparina, antígenos proteicos ó plásmidos ADN.
20. Composición cosmética que comprende un sistema para la liberación de una molécula biológicamente activa como el definido en cualquiera de las reivindicaciones 1 a 15.
21. Composición cosmética según reivindicación 20 donde la molécula activa se selecciona de entre agentes anti-acné, antifüngicos, antioxidantes, desodorantes, antitranspirantes, anticaspa, blanqueadores de piel, bronceadores, absorbentes de luz UV, enzimas y biocidas cosméticos.
22. Una vacuna que comprende un sistema para la liberación de una molécula biológicamente activa como el definido en cualquiera de las reivindicaciones 1 a 15 y un antígeno.
23. Vacuna según reivindicación 22 donde el antígeno se selecciona de entre proteínas, polisacáridos y moléculas de ADN.
24. Vacuna según la reivindicación 22 o 23 donde el antígeno es el toxoide tetánico ó el toxoide diftérico.
25. Procedimiento de obtención de un sistema para la liberación controlada de molécula biológicamente activa según cualquiera de las reivindicaciones 1 a 15 que comprende: a) preparación de una disolución acuosa del conjugado quitosano-PEG; b) preparación de una disolución acuosa del agente reticulante; y c) mezclado, bajo agitación, de las disoluciones de las etapas a) y b), de modo que se obtienen espontáneamente las nanopartículas de quitosano-PEG mediante gelificación iónica y consiguiente precipitación.
26. Procedimiento para la obtención de nanopartículas según reivindicación 25, donde el agente reticulante es un tripolifosfato, preferentemente tripolifosfato sódico.
27. Procedimiento según cualquiera de las reivindicaciones 25 y 26 donde la molécula biológicamente activa se disuelve previamente en a) o en b) o en otra fase acuosa u orgánica que se adiciona sobre a) o b).
28. Procedimiento según la reivindicación 27, donde la molécula biológicamente activa se selecciona de entre insulina, heparina, plásmido ADN, toxoide tetánico y toxoide diftérico.
PCT/ES2006/000123 2005-03-14 2006-03-14 Nanopartículas de quitosano y polientilenglicol como sistema de administración de moléculas biológicamente activas WO2006097558A2 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BRPI0608635-7A BRPI0608635A2 (pt) 2005-03-14 2006-03-14 nanopartÍculas de quitosana e polietilenoglicol como sistema de administraÇço de molÉculas biologicamente ativas
EP06725817A EP1864653A4 (en) 2005-03-14 2006-03-14 CHITOSAN AND POLYETHYLENE GLYCOL NANOPARTICLES USED AS BIOLOGICALLY ACTIVATED MOLECULE DELIVERY SYSTEMS
US11/908,599 US20080095810A1 (en) 2005-03-14 2006-03-14 Nanoparticles Of Chitosan And Polyethyleneglycol As A System For The Administration Of Biologically-Active Molecules
CA002602031A CA2602031A1 (en) 2005-03-14 2006-03-14 Nanoparticles of chitosan and polyethyleneglycol as a system for the administration of biologically-active molecules
MX2007011212A MX2007011212A (es) 2005-03-14 2006-03-14 Nanoparticulas de quitosano y polientilenglicol como sistema de administraciòn de moléculas biológicamente activas.
AU2006224548A AU2006224548A1 (en) 2005-03-14 2006-03-14 Nanoparticles of chitosan and polyethyleneglycol as a system for the administration of biologically-active molecules
JP2008501338A JP2008533108A (ja) 2005-03-14 2006-03-14 生物学的に活性な分子の投与系としての、キトサンとポリエチレングリコールとのナノ粒子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200500590A ES2259914B1 (es) 2005-03-14 2005-03-14 Nanoparticulas de quitosano y polietilenglicol como sistema de administracion de moleculas biologicamente activas.
ESP200500590 2005-03-14

Publications (2)

Publication Number Publication Date
WO2006097558A2 true WO2006097558A2 (es) 2006-09-21
WO2006097558A3 WO2006097558A3 (es) 2006-11-09

Family

ID=36992092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/000123 WO2006097558A2 (es) 2005-03-14 2006-03-14 Nanopartículas de quitosano y polientilenglicol como sistema de administración de moléculas biológicamente activas

Country Status (11)

Country Link
US (1) US20080095810A1 (es)
EP (1) EP1864653A4 (es)
JP (1) JP2008533108A (es)
KR (1) KR20070119694A (es)
CN (1) CN101175486A (es)
AU (1) AU2006224548A1 (es)
BR (1) BRPI0608635A2 (es)
CA (1) CA2602031A1 (es)
ES (1) ES2259914B1 (es)
MX (1) MX2007011212A (es)
WO (1) WO2006097558A2 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152691A1 (zh) * 2008-06-17 2009-12-23 浙江大学 聚乙二醇修饰壳寡糖脂肪酸嫁接物及制备方法和应用
CN103172874A (zh) * 2013-04-15 2013-06-26 北京中地泓科环境科技有限公司 以壳聚糖/珍珠岩为原料制备颗粒的方法
US9358302B2 (en) 2009-03-23 2016-06-07 The Brigham And Women's Hospital, Inc. Glycoconjugate vaccines

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101952324B (zh) * 2007-07-12 2014-08-13 巴斯夫欧洲公司 基于硝化纤维素的分散剂
US8557288B2 (en) * 2008-08-15 2013-10-15 Washington University Hydrogel microparticle formation in aqueous solvent for biomedical applications
JP5763617B2 (ja) * 2009-03-26 2015-08-12 ウォーソー・オーソペディック・インコーポレーテッド 標的化薬物送達用組成物のための潜在的成分を特定する方法
JP5804453B2 (ja) * 2009-05-14 2015-11-04 国立大学法人 東京大学 結晶性ポリオール微粒子及びその調製方法
US8642088B2 (en) 2009-09-04 2014-02-04 Wisconsin Alumni Research Foundation Tannin-chitosan composites
EP2498763A4 (en) * 2009-11-09 2015-10-07 Spotlight Technology Partners Llc HYDROGELS BASED ON POLYSACCHARIDE
US8802076B2 (en) 2010-10-04 2014-08-12 Duke University Compositions and methods for modulating an immune response
KR101346661B1 (ko) * 2010-11-15 2014-02-06 부경대학교 산학협력단 키토올리고당을 포함하는 피부 노화 방지용 화장료 조성물
TWI400088B (zh) * 2010-12-17 2013-07-01 Univ Nat Chiao Tung 藥物載體原料及其製備方法和使用方法
CN102406610B (zh) * 2011-08-17 2013-06-12 杭州师范大学 一种具有长循环性能的微粒给药***及其制备方法
CN104274830B (zh) * 2013-07-04 2016-08-17 复旦大学 一种基于抗原共价结合壳聚糖纳米粒的鼻腔免疫载体
AU2015271295B2 (en) * 2014-06-06 2020-04-16 Merck Patent Gmbh Antigen-loaded chitosan nanoparticles for immunotherapy
KR20180114946A (ko) * 2016-03-02 2018-10-19 더 보드 오브 리젠츠 오브 더 유니버시티 오브 텍사스 시스템 면역요법을 위한 sting 활성화 나노백신
WO2018074237A1 (ja) 2016-10-17 2018-04-26 ポーラ化成工業株式会社 アニオン性ポリマー及びカチオン性ポリマー若しくはペプチドを含む複合粒子並びにその製造方法
CN109125264B (zh) * 2017-06-19 2020-10-30 林海祥 一种抗感染抗肿瘤的粘膜免疫制剂
JP2021501339A (ja) * 2017-10-31 2021-01-14 エヌゲイジアイティー・デジタル・ヘルス・インコーポレイテッド 息の中の化合物を検出し識別するためのポータブルデバイスおよび方法
GB201818517D0 (en) * 2018-11-13 2018-12-26 Univ Liverpool John Moores Nanoparticles and uses thereof
CN110101681B (zh) * 2019-05-16 2021-11-05 中国计量大学 提高火龙果γ-生育酚生物利用度的微粒制备方法
CN110384684B (zh) * 2019-08-26 2021-04-06 安徽农业大学 一种单羧基壳聚糖/紫草素复合纳米颗粒及其制备方法
CN111388452B (zh) * 2020-04-30 2021-10-26 中国药科大学 脂肪组织靶向肽p3-壳聚糖寡聚乳酸-聚乙二醇递送***及其在核酸药物递送上的应用
WO2023147504A1 (en) * 2022-01-29 2023-08-03 The Regents Of The University Of California Polysaccharide a-based particulate systems for attenuation of autoimmunity, allergy, and transplant rejection

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IE80468B1 (en) * 1995-04-04 1998-07-29 Elan Corp Plc Controlled release biodegradable nanoparticles containing insulin
ES2093562B1 (es) * 1995-05-26 1997-07-01 Univ Santiago Compostela Estabilizacion de sistemas coloidales mediante formacion de complejos ionicos lipido-polisacarido.
US6649192B2 (en) * 1996-07-29 2003-11-18 Universidade De Santiago De Compostela Application of nanoparticles based on hydrophilic polymers as pharmaceutical forms
ES2114502B1 (es) * 1996-07-29 1999-07-01 Univ Santiago Compostela Aplicacion de nanoparticulas a base de polimeros hidrofilicos como formas farmaceuticas.
US6730735B2 (en) * 1997-07-03 2004-05-04 West Pharmaceutical Services Drug Delivery & Clinical Research Centre Limited Conjugate of polyethylene glycol and chitosan
US20020054914A1 (en) * 1999-02-03 2002-05-09 Tulin Morcol Compositions and methods for therapuetic agents complexed with calcium phosphate and encased by casein
FR2822834B1 (fr) * 2001-04-02 2005-02-25 Flamel Tech Sa Suspension colloidale de nanoparticules a base de copolymeres amphiphile pour la vectorisation de principes actifs et leur mode de preparation
FR2842106B1 (fr) * 2002-07-11 2006-07-14 Centre Nat Rech Scient Dispersions aqueuses de particules nanometriques ou micrometriques pour l'encapsulation de composes chimiques
US20040156904A1 (en) * 2003-02-12 2004-08-12 The Research Foundation Of State University Of New York Biodegradable polymer device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP1864653A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009152691A1 (zh) * 2008-06-17 2009-12-23 浙江大学 聚乙二醇修饰壳寡糖脂肪酸嫁接物及制备方法和应用
US8466127B2 (en) 2008-06-17 2013-06-18 Zhejiang University Pegylated and fatty acid grafted chitosan oligosaccharide, synthesis method and application for drug delivery system
US9358302B2 (en) 2009-03-23 2016-06-07 The Brigham And Women's Hospital, Inc. Glycoconjugate vaccines
CN103172874A (zh) * 2013-04-15 2013-06-26 北京中地泓科环境科技有限公司 以壳聚糖/珍珠岩为原料制备颗粒的方法

Also Published As

Publication number Publication date
CA2602031A1 (en) 2006-09-21
BRPI0608635A2 (pt) 2010-01-19
US20080095810A1 (en) 2008-04-24
KR20070119694A (ko) 2007-12-20
ES2259914A1 (es) 2006-10-16
ES2259914B1 (es) 2007-06-16
MX2007011212A (es) 2009-02-19
EP1864653A2 (en) 2007-12-12
CN101175486A (zh) 2008-05-07
JP2008533108A (ja) 2008-08-21
AU2006224548A1 (en) 2006-09-21
WO2006097558A3 (es) 2006-11-09
EP1864653A4 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
ES2259914B1 (es) Nanoparticulas de quitosano y polietilenglicol como sistema de administracion de moleculas biologicamente activas.
ES2333659T3 (es) Nanoparticulas pegiladas.
Kang et al. Tailoring the stealth properties of biocompatible polysaccharide nanocontainers
US8147868B2 (en) Physiologically active polypeptide- or protein-encapsulating polymer micelles, and method for production of the same
Yan et al. An overview of biodegradable nanomaterials and applications in vaccines
WO2008136536A1 (ja) 化学架橋ヒアルロン酸誘導体を含むハイブリッドゲルおよびそれを用いた医薬組成物
C Silva et al. Delivery systems for biopharmaceuticals. Part II: liposomes, micelles, microemulsions and dendrimers
ES2279172T3 (es) Nanoparticulas para la administracion de ingredientes activos, procedimiento para la elaboracion de dichas particulas y composiciones que las contienen.
Slomkowski et al. Progress in nanoparticulate systems for peptide, proteins and nucleic acid drug delivery
Zambito Nanoparticles based on chitosan derivatives
WO2014199982A1 (ja) ポリカチオン性トリブロックコポリマーとポリアニオン性ポリマーと生理活性ペプチドを含む組成物
US20230310621A1 (en) Complexes for the delivery of proteinaceous agents
Inamdar et al. Applications of Polymers in Delivery of Biologics
Yang 19 Dendrimers in Drug Delivery
Shah et al. chitosan Nanoparticles
Coué et al. In vitro and in vivo evaluation of insulin-loaded poly (amidoamine) nanoparticles for oral protein delivery
Bowman Oral delivery of polymer-DNA nanoparticles for hemophilia A

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: MX/A/2007/011212

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2008501338

Country of ref document: JP

Ref document number: 2602031

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 562383

Country of ref document: NZ

Ref document number: 2006224548

Country of ref document: AU

Ref document number: 2006725817

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1020077023563

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWE Wipo information: entry into national phase

Ref document number: 11908599

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2006224548

Country of ref document: AU

Date of ref document: 20060314

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2006224548

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 200680016228.3

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006725817

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11908599

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0608635

Country of ref document: BR

Kind code of ref document: A2