WO2006095514A1 - Heat exchanger, refrigeration cycle apparatus, and coating for use therein - Google Patents

Heat exchanger, refrigeration cycle apparatus, and coating for use therein Download PDF

Info

Publication number
WO2006095514A1
WO2006095514A1 PCT/JP2006/301797 JP2006301797W WO2006095514A1 WO 2006095514 A1 WO2006095514 A1 WO 2006095514A1 JP 2006301797 W JP2006301797 W JP 2006301797W WO 2006095514 A1 WO2006095514 A1 WO 2006095514A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
paint
coating film
heat exchanger
polyvalent carboxylic
Prior art date
Application number
PCT/JP2006/301797
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Itami
Makio Takeuchi
Kanji Akai
Teruo Kido
Hideo Ohya
Takayuki Hyoudou
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2006095514A1 publication Critical patent/WO2006095514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/46Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing oxalates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/086Organic or non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the present invention relates to a heat exchanger, a refrigeration cycle apparatus, and a paint used for them.
  • heat exchanger fins are subjected not only to a ground treatment for preventing corrosion of an aluminum fin base material but also to a hydrophilic treatment for preventing water droplets of condensed water generated during heat exchange. Yes.
  • a hydrophilic treatment By this hydrophilic treatment, the water droplets are prevented from being dispersed and the water droplets are prevented from scattering.
  • problems such as power loss and noise caused by narrowing the air ventilation path are eliminated.
  • the fin base material a base material of aluminum or aluminum alloy, which is excellent in lightness, workability, and thermal conductivity, is often used.
  • a chemical conversion treatment with chromate is used as a base treatment applied to the fin base.
  • Patent Document 1 A method of applying water glass is disclosed in Patent Document 1.
  • methods (i) to (V) are methods using an organic material as a main component
  • methods (vi) are methods using an inorganic material as a main component.
  • Patent Document 2 discloses a method of forming a coating film containing an organic resin and silica as main components on the surface of an aluminum fin.
  • the hydrophilicity of the fin surface is sufficiently exerted immediately after the coating film is formed, but the hydrophilicity gradually decreases due to repeated drying and wetting and adhesion of hydrocarbons.
  • Patent Document 1 JP 2002-275650 A
  • Patent Document 2 Japanese Patent Laid-Open No. 10-30069
  • the hydrophilicity of the fin surface is reduced, and there is a risk that water droplets may be scattered from the outlet of the indoor unit. Further, in this case, the corrosion resistance of the fin base material is also lowered, so that the corrosion of the fin may be accelerated.
  • the mechanism for degrading the hydrophilicity of the coating film has not been elucidated, and the actual situation is that no permanent measures have been taken to maintain the hydrophilicity of the fins.
  • An object of the present invention is to solve the problem of a heat exchanger using aluminum fins in an evaporator and a refrigeration cycle apparatus including the heat exchanger, that is, water repellency on the fin surface. is there.
  • the present inventors have found that the water repellency of the fin surface is caused by adhesion of an organic substance to the fin and two hydroxyl groups present in the hydrophilic coating film. Not only does it become ether-bonded or the hydroxyl group is converted to a carbonyl group, the hydrophilicity decreases, but also the power contained in the organic substance ⁇ or the carboxylic acid compound derived from the organic substance, the ano-remium and water.
  • the main cause is aluminum carboxylate
  • the hydrophilic coating contains a compound that reacts with aluminum in preference to the rubonic acid compound. It has been found that the formation of aluminum carboxylate is suppressed by having it.
  • the coating film Contains aluminum scavenger.
  • the aluminum scavenger is preferably at least one of a chelating agent, a polybasic acid, and a salt thereof.
  • the aluminum scavenger is, for example, one or more of a chelating agent, a polybasic acid, and a salt thereof.
  • the hydrophilic property of a coating film can be maintained for a long period of time, and the water-repellent property of a fin surface can be suppressed. Moreover, the trouble of removing the aluminum carboxylate can be reduced.
  • the reaction product of the carboxylic acid compound and aluminum ions remains in the coating film, the contribution to the water repellency of the fin surface can be kept small.
  • the rubonic acid compound is divalent, the same effect as when a large amount of aluminum scavenger is used can be obtained.
  • the amount of the divalent carboxylic acid compound already contained in the coating film is estimated to be small with respect to the coating film because the acid value of the resin used is low. In the case of the present invention, since it usually contains an amount of the order of several percent with respect to the coating film, it differs from the conventional coating film.
  • the polybasic acid is a polyvalent carboxylic acid having a molecular weight of 90 to 250. Also preferred are the forces at which the carbons in the two carboxyl groups are directly bonded, or polyvalent carboxylic acids in which:! In this case, the molecular weight (carboxynole group equivalent) per carboxynole group contained in the polybasic acid is reduced. For this reason, the number of bonding points with the aluminum ion increases, and the aluminum ion is easily trapped by the two carboxyleno groups in the polyvalent carboxylic acid. Thereby, the production
  • a chelating agent having a molecular weight of 100 to 700 is preferable to use as the chelating agent.
  • chelating agents include ethylenediamine amine acetic acid (EDTA), ditrimethyl triacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), glutamic acid diacetic acid (GLDA), hydroxyethyl ethylenediamine amine acetic acid (HEDTA), glycol Ether diamine tetraacetic acid (GEDTA), triethylenetetramine hexaacetic acid (TTHA), hydroxyethyl iminoniacetic acid (HIDA), dihydroxyethylglycine (DHEG) or cyclohexane diamine tetraacetic acid (CyDTA) are used.
  • EDTA ethylenediamine amine acetic acid
  • NDA ditrimethyl triacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • GLDA glutamic acid diacetic
  • the content of the aluminum scavenger is preferably 0.01 to 10% by weight with respect to the coating film.
  • the aluminum scavenger is oxalic acid or maleic acid in the polyvalent carboxylic acid, the content thereof is 0.:! To 10% by weight with respect to the coating film.
  • ethylenetetramine hexaacetic acid (TTHA) or diethylenetriamine pentaacetic acid (DTP A) is used, it is preferably 0.4 to 10% by weight based on the coating film.
  • TTHA ethylenetetramine hexaacetic acid
  • DTP A diethylenetriamine pentaacetic acid
  • the coating film includes a corrosion-resistant organic coating film formed on the outer surface of the fin, and the coating film.
  • the hydrophilic coating is composed of a polyacrylic acid-based coating, a polybutyl alcohol-based coating, an epoxy-based coating, an acrylic cellulose-based coating, and an acrylic amide-based coating.
  • the organic coating film is an acrylic silicone coating film, a polymethyl methacrylate coating film, a polystyrene coating film, a polymethylstyrene coating film, a poly It is preferably composed of two or more kinds of resins forming an acetic acid-based coating film, a polyethylene-based coating film, a urethane-based coating film, or the above-mentioned coating film. In this case, the hydrophilicity of the fin surface can be maintained for a long time.
  • a second aspect of the present invention is a refrigeration cycle apparatus including the above heat exchanger, and in this case as well, the same operational effects as in the case of the above heat exchanger can be obtained.
  • a third aspect of the present invention is a hydrophilic paint applied to the surface of an aluminum fin for a heat exchanger.
  • the function as a heat exchanger fin is suitably exhibited, and the same effect as in the case of the heat exchanger can be obtained.
  • FIG. 1 is a block diagram showing a schematic configuration of a refrigeration cycle apparatus of the present embodiment.
  • FIG. 2 is a perspective view showing the overall configuration of the heat exchanger of the present embodiment.
  • FIG. 3 is a partial sectional view showing a sectional structure near the surface of the fin.
  • the refrigeration cycle apparatus 10 includes a heat exchanger 11 (evaporator), a compressor 12, a switching valve 13, an expansion valve 14, and a fan 15.
  • the surroundings are cooled via the fins of the heat exchanger 11 by evaporating the refrigerant in the heat exchanger 11.
  • the refrigeration cycle apparatus 10 is used in various refrigerators such as air conditioners, containers, and showcases.
  • the heat exchanger 11 is a cross fin coil type heat exchanger, and is configured by overlapping a plurality of fins 16.
  • a heat transfer tube 18 for circulating the refrigerant is disposed inside the heat exchanger 11.
  • the fin 16 is made of an aluminum fin base material 16a, and a coating film 20 is formed on the surface of the fin base material 16a. Is provided.
  • the fin base material 16a is made of an aluminum or aluminum alloy fin base material.
  • the surface of the fin base material 16a is provided with a corrosion-resistant organic coating film 20b as a base treatment in order to improve the corrosion resistance.
  • a corrosion-resistant organic coating film 20b instead of the organic coating film 20b, chromate may be applied as a base treatment.
  • a hydrophilic coating film 20a is formed so as to cover the surface of the organic coating film 20b.
  • the coating film 20 is composed of the organic coating film 20b and the hydrophilic coating film 20a.
  • At least one of the hydrophilic coating film 20a and the organic coating film 20b contains an aluminum scavenger.
  • hydrophilic coating film 20a for example,
  • Organic resin that is a combination of hydrophilic organic resin and colloidal silica as the main components and, if necessary, a cross-linking agent
  • Water glass coating film that is a mixture of an alkali silicate as a main component and an anionic or nonionic hydrophilic organic resin.
  • organic resin coating film (1) and organic resin 'colloidal silica coating film (2) are preferred. Is more preferable.
  • the hydrophilic organic resin used for forming the organic resin-based coating film (1) contains a hydroxyl group, a carboxynole group, an amino group, or the like in the molecule and is used as it is, or each functional group is an acid or Examples thereof include resins that can be water-soluble or water-dispersed in a state neutralized with a base.
  • hydrophilic organic resin for example, polybulu alcohol, modified polybulu alcohol
  • polybulal alcohol resin polyacrylic acid, carboxyl group-containing acrylic resin , Copolymers of ethylene and acrylic acid, acrylic resins such as ionomers, epoxy resins such as adducts of epoxy resins and amines, acrylamide resins, polyethylene glycol, carboxylate group-containing polyesters
  • Synthetic hydrophilic resins such as stealth resins; natural polysaccharides such as starch, cellulose, and algin; oxidized starch, dextrin, propylene glycol alginate, carboxymethyl starch, carboxymethyl cellulose, hydroxymethyl starch, hydroxymethyl cellulose, hydroxyethyl cellulose And derivatives of natural polysaccharides such as acrylic cellulose resins.
  • acrylic resin, polybulal alcohol resin polyacrylic acid, carboxyl group-containing acrylic resin , Copolymers of ethylene and acrylic acid, acrylic resins such as ionomers, epoxy resins such as adducts of epoxy resins and amines, acrylamide
  • Examples of the crosslinking agent used for forming the organic resin coating film (1) include melamine resin, urea resin, phenol resin, polyepoxy compound, blocked polyisocyanate compound, metal chelate. There are compounds.
  • the cross-linking agent preferably has water solubility or water dispersibility from the viewpoint of uniformly dispersing an aluminum capturing material or the like in the coating film 20.
  • cross-linking agent examples include, for example, methyl etherified melamine resin, butyl etherified melamine resin, methylbutyl mixed etherified melamine resin, methyl etherified urea resin, methyl etherified benzoguanamine resin, polyphenols, and aliphatic poly Divalent or polyglycidyl ether of valent alcohol, amine-modified epoxy resin, blocked product of triisocyanurate of hexamethylene diisocyanate; metal of metal element such as titanium (Ti), zirconium (Zr), aluminum (A1) There are chelate compounds. As the metal chelate compound, one having two or more metal alkoxide bonds in one molecule is preferable.
  • Organic resin As the hydrophilic organic resin used for forming the colloidal silica-based coating film (2), the same hydrophilic organic resin used for forming the organic resin-based coating film (1) is used.
  • the colloidal silica used to form the organic resin 'colloidal silica-based coating film (2) is les, so-called silica sol or finely divided silica.
  • the particle diameter of colloidal silica is usually 5 nm to 10 ⁇ m, preferably 5 nm to 1 ⁇ m.
  • colloidal silica what is supplied as a water dispersion can be used as it is, or a fine powdered silica dispersed in water can be used.
  • the organic resin 'colloidal silica-based coating film (2) is formed by reacting an organic resin and colloidal silica in the presence of alkoxysilane, which may be formed by simply mixing the organic resin and colloidal silica. Also good.
  • anionic or nonionic hydrophilic organic resin used for forming the water glass-based coating film (3) among the hydrophilic organic resins used for forming the organic resin-based coating film (1), anionic Alternatively, nonionic organic resins are used.
  • Examples of the organic coating film 20b include an acrylic silicone coating film, a polymethyl methacrylate coating film, a polystyrene coating film, a polymethylstyrene coating film, a polyvinyl acetate coating film, a polyethylene coating film, and a urethane. And a coating film obtained by combining two or more resins forming these coating films.
  • an aluminum scavenger for example, among chelating agents, polybasic acids, and salts thereof
  • a chelating agent having a molecular weight of 100 to 700 is preferable.
  • diethylenetriaminepentaacetic acid (DTPA) and triethylenetetraminehexaacetic acid (TTHA) are preferred because they can easily capture and sequester aluminum ions and have high stability.
  • polybasic acid for example, a polyvalent carboxylic acid having a molecular weight of 90 to 250 is used.
  • the polyvalent carboxylic acid As the polyvalent carboxylic acid, it reacts with aluminum ions to form a salt and captures the aluminum ion, so the carbons of the two carboxyl groups contained in the polyvalent carboxylic acid are directly bonded.
  • multivalent carboxylic acids which are bonded with 10 to 10 atoms apart are preferred.
  • polyvalent carboxylic acid examples include oxalic acid, malonic acid, fumaric acid, maleic acid, adipic acid, sebacic acid, azelaic acid, dodecanoic acid, phthalic acid, trimellitic acid, and glutamic acid. Of these, oxalic acid and maleic acid are preferred.
  • the content of the aluminum scavenger is, for example, that of the polybasic acid oxalic acid or maleic acid. In other words, the content is 0.1% by weight or more, preferably 0.2% by weight or more, based on the coating film 20. In this way, the reaction between the aluminum scavenger and the aluminum ions can be promoted, and the hydrophilicity of the surface of the fin 16 can be maintained for a long time.
  • the content of the aluminum scavenger is 10% by weight or less with respect to the coating film 20, and preferably 3% by weight or less.
  • the hydrophilicity of the surface of the fin 16 can be maintained for a long time, and the coating film 20 that does not impair the original hydrophilicity of the coating film 20 can be easily formed.
  • the aluminum scavenger can be uniformly dispersed in the coating film 20.
  • a chelating agent is used as an aluminum scavenger.
  • TTHA triethylenetetramine hexaacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • the content thereof is 0.4% by weight or more with respect to the coating film 20. It is preferably at least 10% by weight, more preferably at most 10% by weight, and preferably at most 8% by weight.
  • the hydrophilicity of the surface of the fin 16 can be maintained for a long period of time, and the coating film 20 that easily impairs the original hydrophilicity of the coating film 20 can be easily formed. Further, the aluminum scavenger can be uniformly dispersed in the coating film 20.
  • the amount of the polyvalent carboxylic acid as a coating film forming raw material that may remain in the coating film 20 is very small.
  • the paint used for forming the coating film 20 is defined as the paint of the present invention.
  • the proportions of various components contained in the paint are the same as in the case of the coating film 20 described above. That is, the difference between the state of the coating film 20 formed on the surface of the fin 16 or the state of the paint before the coating film 20 is formed.
  • the fin 16 is formed by applying the organic coating film 20b to the surface of the fin base 16a and providing the hydrophilic coating film 20a so as to cover the surface.
  • the fin base 16a a conventionally known aluminum fin base is used.
  • the organic coating film 20b is formed by applying a paint to the surface of the fin base material 16a and drying the paint.
  • a coating method such as immersion coating, shower coating, spray coating, roll coating, and electrodeposition coating is used.
  • the paint is applied to the state force assembled in the heat exchanger 11 or to the fin base material 16a before being assembled.
  • the fin base material 16a is dried. At that time The drying temperature is set to about 60-250 ° C, and the drying time is set to 2 seconds to 30 minutes.
  • the thickness of the organic coating film 20b is usually from 0.001 to 10 / im, and preferably from 0.1 to 3 ⁇ . If the thickness is less than 0.001 / im, the corrosion resistance and water resistance of the fin base material 16a may not be sufficiently obtained. On the other hand, if the thickness exceeds 10 ⁇ m, the organic coating film 20b is likely to break, and there is a possibility that sufficient hydrophilicity may not be obtained. An aluminum scavenger may be added to the organic coating film 20b.
  • a hydrophilic coating 20a is formed by applying a hydrophilic coating to the surface of the fin base material 16a on which the organic coating 20b is formed and drying the coating.
  • a method for forming the hydrophilic coating film 20a for example, a coating method such as dip coating, shower coating, spray coating, roll coating, or electrodeposition coating is used.
  • the thickness of the hydrophilic coating film 20a is usually from 0.3 to 5 zm, and preferably from 0.5 to 3 zm, but is not particularly limited to these set values.
  • the drying conditions of the hydrophilic coating film 20a are set according to the type of organic resin and the film thickness thereof, but preferably the drying temperature is set to about 80 to 250 ° C and the drying time is about It is set between 5 seconds and about 30 minutes.
  • An aluminum scavenger may be added to the hydrophilic coating film 20a.
  • the coating film 20 contains an aluminum scavenger.
  • an aluminum scavenger As a result, even if the organic substance comes into contact with the fins 16, the aluminum ions eluted from the fins 16 are captured by the aluminum scavenger. Therefore, the reaction between the carboxylic acid compound derived from the organic substance and the aluminum ion can be avoided, and the ability to suppress the formation of aluminum carboxylate as the reaction product can be suppressed.
  • the content and type of the aluminum scavenger it is possible to more effectively suppress the formation of strong aluminum sulfonate.
  • the material for forming the coating film 20 the water repellency of the surface of the fin 16 can be further effectively suppressed.
  • the same effect can be obtained even if the fin 16 is used in the heat exchanger 11 that uses the evaporator.
  • the same effect can be obtained in the refrigeration cycle apparatus 10 including the heat exchanger 11. Further, when the fins 16 are formed using the coating material and the heat exchanger 11 is manufactured using the fins 16, the same effects can be obtained.
  • the present invention since water repellency on the surface of the fin 16 is suppressed, it is possible to prevent scattering of water droplets formed on the surface of the fin 16 and between the fins 16, and the air conditioning system. Blow The performance can also be improved.
  • the present invention is particularly applicable to uses such as heat exchangers, air conditioners, and refrigerators for indoor air conditioners.
  • the paint described in Table 1 was applied to the surface of the chromate-treated aluminum fin substrate so that the film thickness after drying was 0.5 ⁇ m.
  • the paint was dried at 200-220 ° C for 30 seconds to produce two types of coated products. Fins were formed from these paints, and heat exchangers were made using them. At that time, half of the fin bundles constituting the heat exchanger were fins coated with the paint of Example 1, and the other half were fins coated with the paint of Conventional Example 1. Then, this heat exchanger is built into a multi-flow cassette type air conditioner, and the air conditioner is installed on the ceiling of the office.
  • Example 2 a heat exchanger was produced under the same conditions as in Example 1 except that the paint of Example 2 was used, and the above evaluation test was performed. In that case, the same result as in Example 1 was obtained.
  • Example 1 Example 2 Conventional Example 1 Hydrophilic paint (* 1) 1 0 0 1 0 0 1 0 0 Paint composition Triethylenetetraminehexanoic acid 1--(parts by weight, solid content)

Abstract

A heat exchanger which uses, in the evaporator thereof, a fin made of aluminum having a coating film formed on the surface thereof, wherein the coating film comprises an aluminum capturing agent. A heat exchanger is manufactured by using the above fin and a refrigeration cycle apparatus equipped with the above heat exchanger is manufactured.

Description

明 細 書  Specification
熱交換器、冷凍サイクル装置、及びそれらに使用する塗料  Heat exchanger, refrigeration cycle apparatus, and paint used for them
技術分野  Technical field
[0001] 本発明は、熱交換器、冷凍サイクル装置、及びそれらに使用する塗料に関する。  The present invention relates to a heat exchanger, a refrigeration cycle apparatus, and a paint used for them.
背景技術  Background art
[0002] 一般に、熱交換器用フィンには、アルミニウム製のフィン基材の腐食を防止する下 地処理のみならず、熱交換時に発生する凝縮水の水滴化を防止する親水化処理が 施されている。この親水化処理により、凝縮水の水滴化が抑制されて該水滴の飛散 が防止される。また、該水滴により隣接するフィン間にブリッジが形成されることも抑止 されるため、空気の通風路が狭められることによって生じる電力損失や騒音等の問題 ち角军消される。  [0002] Generally, heat exchanger fins are subjected not only to a ground treatment for preventing corrosion of an aluminum fin base material but also to a hydrophilic treatment for preventing water droplets of condensed water generated during heat exchange. Yes. By this hydrophilic treatment, the water droplets are prevented from being dispersed and the water droplets are prevented from scattering. In addition, since the formation of a bridge between adjacent fins due to the water droplets is suppressed, problems such as power loss and noise caused by narrowing the air ventilation path are eliminated.
[0003] フィン基材として、軽量性、加工性、熱伝導性に優れるアルミニウムやアルミニウム 合金の基材がよく用いられる。また、フィン基材に施される下地処理として、クロメート による化成処理が利用されてレ、る。  [0003] As the fin base material, a base material of aluminum or aluminum alloy, which is excellent in lightness, workability, and thermal conductivity, is often used. In addition, a chemical conversion treatment with chromate is used as a base treatment applied to the fin base.
[0004] 一方、フィン基材の表面に施される親水化処理として、例えば、  [0004] On the other hand, as a hydrophilization treatment applied to the surface of the fin substrate, for example,
(i)有機樹脂に、シリカ、水ガラス、水酸化アルミニウム、炭酸カルシウム、チタニア等 を含む塗料、又はこれらに加え界面活性剤を更に含む塗料を塗布する方法、  (i) a method of applying a paint containing silica, water glass, aluminum hydroxide, calcium carbonate, titania, or the like, or a paint further containing a surfactant in addition to the organic resin,
(ii)ポリビュルアルコールと特定の水溶性ポリマーとを組合せて用いる方法、  (ii) a method of using a combination of polybulal alcohol and a specific water-soluble polymer,
(iii)特定の親水性モノマーからなる親水性重合体部分と疎水性重合体部分とを含 むブロック共重合体と、金属キレート型架橋剤とを組合せて用いる方法、  (iii) a method of using a combination of a block copolymer containing a hydrophilic polymer portion and a hydrophobic polymer portion made of a specific hydrophilic monomer, and a metal chelate-type crosslinking agent,
(iv)ポリアクリルアミド系樹脂を用いる方法、  (iv) a method using a polyacrylamide resin,
(v)ポリアクリル酸ポリマー等の高分子と、該高分子との水素結合によりポリマーコン プレックスを形成するポリエチレンオキサイドやポリビュルピロリドン等の高分子とを組 合せて用いる方法、  (v) a method of using a combination of a polymer such as a polyacrylic acid polymer and a polymer such as polyethylene oxide or polybylpyrrolidone that forms a polymer complex by hydrogen bonding with the polymer;
(vi)水ガラスを塗布する方法、などが特許文献 1に開示されている。これらのうち、 (i) 〜 (V)の方法は有機材料を主成分として用いる方法であり、 (vi)の方法は無機材料 を主成分として用いる方法である。 [0005] 一方、特許文献 2には、有機樹脂及びシリカを主成分として含む塗膜をアルミユウ ム製のフィンの表面に形成する方法が開示されている。し力しながら、この方法によ れば、塗膜が形成された直後はフィン表面の親水性が十分に発揮されるものの、乾 湿の繰り返しや炭化水素類の付着などにより親水性が次第に低下する傾向にある。 特許文献 1 :特開 2002— 275650号公報 (vi) A method of applying water glass is disclosed in Patent Document 1. Among these, methods (i) to (V) are methods using an organic material as a main component, and methods (vi) are methods using an inorganic material as a main component. On the other hand, Patent Document 2 discloses a method of forming a coating film containing an organic resin and silica as main components on the surface of an aluminum fin. However, according to this method, the hydrophilicity of the fin surface is sufficiently exerted immediately after the coating film is formed, but the hydrophilicity gradually decreases due to repeated drying and wetting and adhesion of hydrocarbons. Tend to. Patent Document 1: JP 2002-275650 A
特許文献 2:特開平 10— 30069号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-30069
発明の開示  Disclosure of the invention
[0006] 近年、高い気密性や断熱性の建物の内部や、油分、ホルムアルデヒド、 VOC (揮 発性有機化合物)等の化学物質の浮遊する環境の下で室内用熱交換器を使用する 場合が増えている。この場合、化学物質がフィン表面の親水性塗膜に付着して堆積 することにより、フィン表面の親水性が低下して撥水性を呈するようになる。その結果 、凝縮水がフィンの表面に付着して水滴化し易くなり、該水滴を室内機の吹出口から 飛散させてしまう虞がある。又、同様に、堆積した異物を取り除くためフィンを洗浄し た場合にも、フィン表面の親水性の低下を招くため、水滴を室内機の吹出口から飛 散させてしまう虞がある。更に、この場合、フィン基材の耐食性の低下も招くため、フィ ンの腐食を促進する虞もある。現在、塗膜の親水性を劣化させるメカニズムは解明さ れておらず、フィンに対して親水性を維持する恒久的な対策が行われていないのが 実情である。  [0006] In recent years, indoor heat exchangers are sometimes used inside highly airtight or heat-insulating buildings or in environments where chemical substances such as oil, formaldehyde, and VOC (volatile organic compounds) float. is increasing. In this case, the chemical substance adheres to and accumulates on the hydrophilic coating film on the fin surface, whereby the hydrophilicity of the fin surface is lowered and water repellency is exhibited. As a result, the condensed water adheres to the surface of the fin and is likely to form water droplets, which may cause the water droplets to be scattered from the blowout port of the indoor unit. Similarly, when the fins are washed to remove the accumulated foreign matter, the hydrophilicity of the fin surface is reduced, and there is a risk that water droplets may be scattered from the outlet of the indoor unit. Further, in this case, the corrosion resistance of the fin base material is also lowered, so that the corrosion of the fin may be accelerated. At present, the mechanism for degrading the hydrophilicity of the coating film has not been elucidated, and the actual situation is that no permanent measures have been taken to maintain the hydrophilicity of the fins.
[0007] 本発明の目的は、アルミニウム製のフィンを蒸発器に使用する熱交換器、及び熱交 換器を備える冷凍サイクル装置の問題、すなわち、フィン表面の撥水化を解消するこ とにある。  [0007] An object of the present invention is to solve the problem of a heat exchanger using aluminum fins in an evaporator and a refrigeration cycle apparatus including the heat exchanger, that is, water repellency on the fin surface. is there.
[0008] 本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、フィン表面の撥 水化は、有機物質のフィンへの付着や、親水性塗膜に存在する 2つの水酸基がエー テル結合したり、水酸基がカルボニル基に変換されたりして親水性が低下することの みならず、有機物質中に含まれる力 \或いは有機物質由来のカルボン酸化合物とァ ノレミニゥムと水との反応物であるカルボン酸アルミニウムが主原因であることを見出し [0008] As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the water repellency of the fin surface is caused by adhesion of an organic substance to the fin and two hydroxyl groups present in the hydrophilic coating film. Not only does it become ether-bonded or the hydroxyl group is converted to a carbonyl group, the hydrophilicity decreases, but also the power contained in the organic substance \ or the carboxylic acid compound derived from the organic substance, the ano-remium and water. Discovered that the main cause is aluminum carboxylate
、更に、カルボン酸アルミニウムは洗浄しても除去され難いことも見出した。そして、力 ルボン酸化合物よりも優先してアルミニウムと反応する化合物を親水性塗膜中に含 有することにより、カルボン酸アルミニウムの生成が抑制されることを見出した。 Furthermore, it has also been found that aluminum carboxylate is difficult to remove even after washing. The hydrophilic coating contains a compound that reacts with aluminum in preference to the rubonic acid compound. It has been found that the formation of aluminum carboxylate is suppressed by having it.
[0009] 上記の課題を解決するため、本発明の第一の態様によれば、外面に塗膜が設けら れたアルミニウム製のフィンを蒸発器に使用する熱交換器において、該塗膜はアルミ ニゥム捕捉剤を含有する。上記熱交換器において、アルミニウム捕捉剤は、キレート 剤、多塩基酸、及びこれら塩のうちの 1種以上であるのが好ましい。  [0009] In order to solve the above problems, according to a first aspect of the present invention, in a heat exchanger using an aluminum fin having an outer surface provided with a coating film in an evaporator, the coating film Contains aluminum scavenger. In the heat exchanger, the aluminum scavenger is preferably at least one of a chelating agent, a polybasic acid, and a salt thereof.
[0010] この場合、環境内の有機物質がフィンの表面と接触しても、フィン基材力 溶出する アルミニウムイオンは、塗膜に含まれるアルミニウム捕捉剤によって捕捉される。その ため、アルミニウムイオンと有機物質中のカルボン酸化合物との反応が抑制されて、 その反応物であるカルボン酸アルミニウムの生成が抑制される。この場合、アルミユウ ム捕捉剤として、例えば、キレート剤、多塩基酸、及びこれらの塩のうちの 1種以上で ある。このように、カルボン酸アルミニウムの生成が抑制されることにより、塗膜の親水 性を長期間維持することができ、フィン表面の撥水化を抑制することができる。また、 カルボン酸アルミニウムを除去する手間を軽減することもできる。  [0010] In this case, even if organic substances in the environment come into contact with the surface of the fin, the aluminum ions that elute the fin base material are captured by the aluminum scavenger contained in the coating film. As a result, the reaction between the aluminum ions and the carboxylic acid compound in the organic substance is suppressed, and the production of aluminum carboxylate as the reaction product is suppressed. In this case, the aluminum scavenger is, for example, one or more of a chelating agent, a polybasic acid, and a salt thereof. Thus, by suppressing the production | generation of aluminum carboxylate, the hydrophilic property of a coating film can be maintained for a long period of time, and the water-repellent property of a fin surface can be suppressed. Moreover, the trouble of removing the aluminum carboxylate can be reduced.
[0011] 一方、塗膜中にカルボン酸化合物が既に含有されている場合、アルミニウム捕捉剤 をその塗膜中に含有させることにより、カルボン酸化合物と併存させることができる。 初期段階では、フィン基材はほとんど腐食されておらず、アルミニウムイオンの溶出 量は極僅かである。仮に、フィン基材の腐食が進行し、アルミニウムイオンの溶出量 が増大しても、アルミニウムイオンはアルミニウム捕捉剤によって捕捉される。一部の アルミニウムイオンは、塗膜中のカルボン酸化合物と結合するものの、カルボン酸化 合物が一価の場合、アルミニウムイオンは、より安定性の高いアルミニウム捕捉剤との 結合に順次移行する。また、カルボン酸化合物とアルミニウムイオンとの反応物は塗 膜中に留まるため、フィン表面の撥水化に対する寄与は小さく抑えられる。さらに、力 ルボン酸化合物が二価の場合、アルミニウム捕捉剤を多量に使用する場合と同様の 作用効果が得られる。なお、塗膜中に既に含有されている二価のカルボン酸化合物 の量は、使用される樹脂の酸価が低いため、塗膜に対する量は僅かであると推定さ れる。本発明の場合、通常、塗膜に対して数%オーダーの量を含有させるため、従 来の塗膜とは異なる。  [0011] On the other hand, when a carboxylic acid compound is already contained in the coating film, it can coexist with the carboxylic acid compound by containing an aluminum scavenger in the coating film. In the initial stage, the fin base material is hardly corroded, and the amount of aluminum ions eluted is very small. Even if the corrosion of the fin base proceeds and the amount of aluminum ions eluted increases, the aluminum ions are captured by the aluminum scavenger. Some aluminum ions bind to the carboxylic acid compound in the coating film, but when the carboxylic acid compound is monovalent, the aluminum ions sequentially shift to binding with a more stable aluminum scavenger. In addition, since the reaction product of the carboxylic acid compound and aluminum ions remains in the coating film, the contribution to the water repellency of the fin surface can be kept small. Furthermore, when the rubonic acid compound is divalent, the same effect as when a large amount of aluminum scavenger is used can be obtained. The amount of the divalent carboxylic acid compound already contained in the coating film is estimated to be small with respect to the coating film because the acid value of the resin used is low. In the case of the present invention, since it usually contains an amount of the order of several percent with respect to the coating film, it differs from the conventional coating film.
[0012] 上記熱交換器において、多塩基酸は、分子量 90〜250の多価カルボン酸である のが好ましぐ又、 2個のカルボキシル基中の炭素が直接結合する力、或いは:!〜 10 個の原子を隔てて結合する多価カルボン酸が好ましい。この場合、多塩基酸に含ま れるカルボキシノレ基 1個当たりの分子量 (カルボキシノレ基当量)が小さくなる。そのた め、アルミニウムイオンとの結合点が増えて、該多価カルボン酸中の 2個のカルボキ シノレ基によってアルミニウムイオンが捕捉され易くなる。これにより、カルボン酸アルミ 二ゥムの生成が抑制され、フィン表面の撥水化を一層抑制することができる。 [0012] In the heat exchanger, the polybasic acid is a polyvalent carboxylic acid having a molecular weight of 90 to 250. Also preferred are the forces at which the carbons in the two carboxyl groups are directly bonded, or polyvalent carboxylic acids in which:! In this case, the molecular weight (carboxynole group equivalent) per carboxynole group contained in the polybasic acid is reduced. For this reason, the number of bonding points with the aluminum ion increases, and the aluminum ion is easily trapped by the two carboxyleno groups in the polyvalent carboxylic acid. Thereby, the production | generation of carboxylate aluminum is suppressed and the water-repellent property of the fin surface can be suppressed further.
[0013] 上記熱交換器において、多価カルボン酸として、シユウ酸、マロン酸、フマル酸、マ レイン酸、アジピン酸、セバシン酸、ァゼライン酸、ドデカノ二酸、フタル酸、トリメリット 酸、グノレタミン酸が使用される。  [0013] In the heat exchanger, as the polyvalent carboxylic acid, oxalic acid, malonic acid, fumaric acid, maleic acid, adipic acid, sebacic acid, azelaic acid, dodecanoic acid, phthalic acid, trimellitic acid, gnoretamic acid Is used.
[0014] 上記熱交換器において、キレート剤として、分子量が 100〜700であるキレート剤を 用いるのが好ましレ、。キレート剤として、例えば、エチレンジァミン四酢酸(EDTA)、 二トリ口三酢酸(NTA)、ジエチレントリアミン五酢酸(DTPA)、グルタミン酸二酢酸( GLDA)、ヒドロキシェチルエチレンジァミン三酢酸(HEDTA)、グリコールエーテル ジァミン四酢酸(GEDTA)、トリエチレンテトラミン六酢酸 (TTHA)、ヒドロキシェチル イミノニ酢酸(HIDA)、ジヒドロキシェチルグリシン(DHEG)又はシクロへキサンジァ ミン四酢酸(CyDTA)が使用される。  [0014] In the above heat exchanger, it is preferable to use a chelating agent having a molecular weight of 100 to 700 as the chelating agent. Examples of chelating agents include ethylenediamine amine acetic acid (EDTA), ditrimethyl triacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), glutamic acid diacetic acid (GLDA), hydroxyethyl ethylenediamine amine acetic acid (HEDTA), glycol Ether diamine tetraacetic acid (GEDTA), triethylenetetramine hexaacetic acid (TTHA), hydroxyethyl iminoniacetic acid (HIDA), dihydroxyethylglycine (DHEG) or cyclohexane diamine tetraacetic acid (CyDTA) are used.
[0015] このように、多価カルボン酸及びキレート剤の種類を規定することにより、アルミユウ ムイオンの捕捉を促進することができ、フィン表面の撥水化をより一層抑制することが できる。  [0015] Thus, by defining the types of the polyvalent carboxylic acid and the chelating agent, it is possible to promote the capture of aluminum ions and to further suppress the water repellency of the fin surface.
[0016] 上記熱交換器において、アルミニウム捕捉剤の含有量は、塗膜に対して 0. 01〜1 0重量%であることが好ましい。この場合、アルミニウム捕捉剤が多価カルボン酸中の シユウ酸又はマレイン酸の場合、その含有量は、塗膜に対して 0. :!〜 10重量%であ り、又、キレート剤中にトリエチレンテトラミン六酢酸 (TTHA)又はジエチレントリァミン 五酢酸 (DTP A)を用いる場合、塗膜に対して 0. 4〜: 10重量%であるのが好ましい。 この場合、塗膜は、必要な塗膜特性及びアルミニウム捕捉性を有しているため、カル ボン酸アルミニウムの生成が抑制され、ひいては、フィン表面の撥水化が抑制される  [0016] In the heat exchanger, the content of the aluminum scavenger is preferably 0.01 to 10% by weight with respect to the coating film. In this case, when the aluminum scavenger is oxalic acid or maleic acid in the polyvalent carboxylic acid, the content thereof is 0.:! To 10% by weight with respect to the coating film. When ethylenetetramine hexaacetic acid (TTHA) or diethylenetriamine pentaacetic acid (DTP A) is used, it is preferably 0.4 to 10% by weight based on the coating film. In this case, since the coating film has the necessary coating film properties and aluminum scavenging properties, the formation of aluminum carbonate is suppressed, and consequently the water repellency of the fin surface is suppressed.
[0017] 上記熱交換器において、塗膜は、フィンの外面に形成される耐食性有機塗膜と、そ の有機塗膜を覆う親水性塗膜とからなり、親水性塗膜は、ポリアクリル酸系塗膜、ポリ ビュルアルコール系塗膜、エポキシ系塗膜、アクリルセルロース系塗膜、アクリルアミ ド系塗膜又は前記塗膜を形成する樹脂のうちの 2種以上からなり、有機塗膜は、ァク リルシリコーン塗膜、ポリメタクリル酸メチル系塗膜、ポリスチレン系塗膜、ポリメチルス チレン系塗膜、ポリ酢酸ビュル系塗膜、ポリエチレン系塗膜、ウレタン系塗膜又は前 記塗膜を形成する樹脂のうちの 2種以上からなることが好ましい。この場合、フィン表 面の親水性を長期間維持することができる。 [0017] In the heat exchanger, the coating film includes a corrosion-resistant organic coating film formed on the outer surface of the fin, and the coating film. The hydrophilic coating is composed of a polyacrylic acid-based coating, a polybutyl alcohol-based coating, an epoxy-based coating, an acrylic cellulose-based coating, and an acrylic amide-based coating. It consists of two or more of the resins forming the film or the coating film, and the organic coating film is an acrylic silicone coating film, a polymethyl methacrylate coating film, a polystyrene coating film, a polymethylstyrene coating film, a poly It is preferably composed of two or more kinds of resins forming an acetic acid-based coating film, a polyethylene-based coating film, a urethane-based coating film, or the above-mentioned coating film. In this case, the hydrophilicity of the fin surface can be maintained for a long time.
[0018] 本発明の第二の態様は、上記の熱交換器を備える冷凍サイクル装置であり、この 場合も、上記熱交換器の場合と同等の作用効果が得られる。  [0018] A second aspect of the present invention is a refrigeration cycle apparatus including the above heat exchanger, and in this case as well, the same operational effects as in the case of the above heat exchanger can be obtained.
[0019] 本発明の第三の態様は、熱交換器用アルミニウムフィンの表面に塗付される親水 性塗料である。熱交換器用アルミニウムフィンの表面の塗付に使用する場合、熱交 換器用フィンとしての機能を好適に発揮し、上記熱交換器の場合と同等の作用効果 が得られる。  [0019] A third aspect of the present invention is a hydrophilic paint applied to the surface of an aluminum fin for a heat exchanger. When used for coating the surface of the heat exchanger aluminum fin, the function as a heat exchanger fin is suitably exhibited, and the same effect as in the case of the heat exchanger can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本実施形態の冷凍サイクル装置の概略構成を示すブロック図。  FIG. 1 is a block diagram showing a schematic configuration of a refrigeration cycle apparatus of the present embodiment.
[図 2]本実施形態の熱交換器の全体構成を示す斜視図。  FIG. 2 is a perspective view showing the overall configuration of the heat exchanger of the present embodiment.
[図 3]フィンの表面付近の断面構造を示す部分断面図。  FIG. 3 is a partial sectional view showing a sectional structure near the surface of the fin.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0021] 本発明の一実施形態について図 1〜図 3を参照して説明する。 [0021] One embodiment of the present invention will be described with reference to FIGS.
[0022] 図 1に示すように、冷凍サイクル装置 10は、熱交換器 11 (蒸発器)、圧縮機 12、切 換弁 13、膨張弁 14、及びファン 15を備える。冷凍サイクル装置 10では、熱交換器 1 1の内部で冷媒を蒸発させることにより、熱交換器 11のフィンを介してその周囲が冷 却される。冷凍サイクル装置 10は、空気調和器や、コンテナ用、ショーケース用等の 各種の冷蔵庫に用いられる。 As shown in FIG. 1, the refrigeration cycle apparatus 10 includes a heat exchanger 11 (evaporator), a compressor 12, a switching valve 13, an expansion valve 14, and a fan 15. In the refrigeration cycle apparatus 10, the surroundings are cooled via the fins of the heat exchanger 11 by evaporating the refrigerant in the heat exchanger 11. The refrigeration cycle apparatus 10 is used in various refrigerators such as air conditioners, containers, and showcases.
[0023] 図 2に示すように、熱交換器 11は、クロスフィンコイル型の熱交換器であり、複数枚 のフィン 16を重ね合わせることにより構成されている。また、熱交換器 11の内部には 、冷媒を流通させるための伝熱管 18が配設されている。図 3に示すように、フィン 16 は、アルミニウム製のフィン基材 16aからなり、フィン基材 16aの表面には、塗膜 20が 設けられている。 As shown in FIG. 2, the heat exchanger 11 is a cross fin coil type heat exchanger, and is configured by overlapping a plurality of fins 16. In addition, a heat transfer tube 18 for circulating the refrigerant is disposed inside the heat exchanger 11. As shown in FIG. 3, the fin 16 is made of an aluminum fin base material 16a, and a coating film 20 is formed on the surface of the fin base material 16a. Is provided.
[0024] フィン基材 16aは、アルミニウム又はアルミニウム合金製のフィン基材からなる。フィ ン基材 16aの表面には、耐食性を向上させるため、耐食性の有機塗膜 20bが下地処 理として施されている。この場合、有機塗膜 20bに代えて、クロメートが下地処理とし て施されてもよい。そして、有機塗膜 20bの表面を覆うように親水性塗膜 20aが形成 されている。本実施形態において、有機塗膜 20bと親水性塗膜 20aとから塗膜 20が 構成されている。  [0024] The fin base material 16a is made of an aluminum or aluminum alloy fin base material. The surface of the fin base material 16a is provided with a corrosion-resistant organic coating film 20b as a base treatment in order to improve the corrosion resistance. In this case, instead of the organic coating film 20b, chromate may be applied as a base treatment. A hydrophilic coating film 20a is formed so as to cover the surface of the organic coating film 20b. In the present embodiment, the coating film 20 is composed of the organic coating film 20b and the hydrophilic coating film 20a.
[0025] 親水性塗膜 20a及び有機塗膜 20bの少なくとも一方はアルミニウム捕捉剤を含有 する。  [0025] At least one of the hydrophilic coating film 20a and the organic coating film 20b contains an aluminum scavenger.
[0026] 親水性塗膜 20aの代表例として、例えば、  [0026] As a representative example of the hydrophilic coating film 20a, for example,
(1)主成分である親水性有機樹脂と必要に応じて架橋剤とを組合せた有機樹脂系 塗膜、  (1) An organic resin-based coating film in which a hydrophilic organic resin as a main component is combined with a crosslinking agent as necessary,
(2)主成分である親水性有機樹脂及びコロイダルシリカと必要に応じて架橋剤とを組 合せた有機樹脂 ·コロイダルシリ力系塗膜、  (2) Organic resin that is a combination of hydrophilic organic resin and colloidal silica as the main components and, if necessary, a cross-linking agent
(3)主成分であるアルカリ珪酸塩とァニオン系又はノニオン系親水性有機樹脂との混 合物である水ガラス系塗膜、等がある。これらのうち、成形加工性及び耐臭気性に優 れるという観点から、有機樹脂系塗膜(1)、有機樹脂 'コロイダルシリカ系塗膜 (2)が 好ましぐ有機樹脂系塗膜(1)がより好ましい。  (3) Water glass coating film that is a mixture of an alkali silicate as a main component and an anionic or nonionic hydrophilic organic resin. Of these, from the viewpoint of excellent molding processability and odor resistance, organic resin coating film (1) and organic resin 'colloidal silica coating film (2) are preferred. Is more preferable.
[0027] 有機樹脂系塗膜(1)の形成に用いられる親水性有機樹脂として、分子内に水酸基 やカルボキシノレ基やアミノ基等を含み、そのままの状態で、或いは前記各官能基を 酸又は塩基で中和した状態で、水溶化又は水分散化させることの可能な樹脂が挙げ られる。  [0027] The hydrophilic organic resin used for forming the organic resin-based coating film (1) contains a hydroxyl group, a carboxynole group, an amino group, or the like in the molecule and is used as it is, or each functional group is an acid or Examples thereof include resins that can be water-soluble or water-dispersed in a state neutralized with a base.
[0028] 親水性有機樹脂として、例えば、ポリビュルアルコール、変性ポリビュルアルコール  [0028] As the hydrophilic organic resin, for example, polybulu alcohol, modified polybulu alcohol
(例えば、アタリノレアミド、不飽和カルボン酸、スルホン酸基含有モノマー、カチオン性 モノマー、不飽和シランモノマー等との共重合物)等のポリビュルアルコール系樹脂 、ポリアクリル酸、カルボキシル基含有アクリル樹脂、エチレンとアクリル酸との共重合 体アイオノマー等のアクリル酸系樹脂、エポキシ樹脂とァミンとの付加物等のェポキ シ系樹脂、アクリルアミド系樹脂、ポリエチレングリコール、カルボキシノレ基含有ポリェ ステル樹脂等の合成親水性樹脂;デンプン、セルロース、アルギン等の天然多糖類; 酸化デンプン、デキストリン、アルギン酸プロピレングリコール、カルボキシメチルデン プン、カルボキシメチルセルロース、ヒドロキシメチルデンプン、ヒドロキシメチルセル ロース、ヒドロキシェチルセルロース、アクリルセルロース系樹脂等の天然多糖類の誘 導体等がある。これらのうち、アクリル酸系樹脂、ポリビュルアルコール系樹脂、ェポ キシ系樹脂、アクリルセルロース系樹脂、アクリルアミド系樹脂又は前記樹脂のうちの 2種以上を含む樹脂が好ましい。 (E.g., copolymer of aliolinoleamide, unsaturated carboxylic acid, sulfonic acid group-containing monomer, cationic monomer, unsaturated silane monomer, etc.), etc., polybulal alcohol resin, polyacrylic acid, carboxyl group-containing acrylic resin , Copolymers of ethylene and acrylic acid, acrylic resins such as ionomers, epoxy resins such as adducts of epoxy resins and amines, acrylamide resins, polyethylene glycol, carboxylate group-containing polyesters Synthetic hydrophilic resins such as stealth resins; natural polysaccharides such as starch, cellulose, and algin; oxidized starch, dextrin, propylene glycol alginate, carboxymethyl starch, carboxymethyl cellulose, hydroxymethyl starch, hydroxymethyl cellulose, hydroxyethyl cellulose And derivatives of natural polysaccharides such as acrylic cellulose resins. Among these, acrylic resin, polybulal alcohol resin, epoxy resin, acrylic cellulose resin, acrylamide resin, or a resin containing two or more of the above resins is preferable.
[0029] 有機樹脂系塗膜(1)の形成に用いられる架橋剤として、例えば、メラミン樹脂、尿素 樹脂、フエノール樹脂、ポリエポキシィ匕合物、ブロック化ポリイソシァネートイ匕合物、金 属キレート化合物等がある。架橋剤は、塗膜 20中にアルミニウム捕捉材などを均一 に分散させるという観点から、水溶性又は水分散性を有していることが好ましい。  [0029] Examples of the crosslinking agent used for forming the organic resin coating film (1) include melamine resin, urea resin, phenol resin, polyepoxy compound, blocked polyisocyanate compound, metal chelate. There are compounds. The cross-linking agent preferably has water solubility or water dispersibility from the viewpoint of uniformly dispersing an aluminum capturing material or the like in the coating film 20.
[0030] 架橋剤の具体例として、例えば、メチルエーテル化メラミン樹脂、ブチルエーテル化 メラミン樹脂、メチルブチル混合エーテル化メラミン樹脂、メチルエーテル化尿素樹脂 、メチルエーテル化べンゾグアナミン樹脂、ポリフエノール類又は脂肪族多価アルコ 一ルのジ一又はポリグリシジルエーテル、ァミン変性エポキシ樹脂、へキサメチレンジ イソシァネートのトリイソシァヌレート体のブロック化物;チタン(Ti)、ジルコニウム(Zr) 、アルミニウム (A1)等の金属元素の金属キレートイ匕合物等がある。金属キレート化合 物として、一分子中に 2個以上の金属アルコキシド結合を有するものが好ましい。  [0030] Specific examples of the cross-linking agent include, for example, methyl etherified melamine resin, butyl etherified melamine resin, methylbutyl mixed etherified melamine resin, methyl etherified urea resin, methyl etherified benzoguanamine resin, polyphenols, and aliphatic poly Divalent or polyglycidyl ether of valent alcohol, amine-modified epoxy resin, blocked product of triisocyanurate of hexamethylene diisocyanate; metal of metal element such as titanium (Ti), zirconium (Zr), aluminum (A1) There are chelate compounds. As the metal chelate compound, one having two or more metal alkoxide bonds in one molecule is preferable.
[0031] 有機樹脂 'コロイダルシリカ系塗膜 (2)の形成に用いられる親水性有機樹脂として、 有機樹脂系塗膜(1)の形成に用いられる親水性有機樹脂と同様のものが使用される  [0031] Organic resin: As the hydrophilic organic resin used for forming the colloidal silica-based coating film (2), the same hydrophilic organic resin used for forming the organic resin-based coating film (1) is used.
[0032] 有機樹脂'コロイダルシリカ系塗膜(2)の形成に用いられるコロイダルシリカは、レ、 わゆる、シリカゾル又は微粉状シリカである。コロイダルシリカの粒子径は、通常、 5n m〜10 μ mであり、好ましくは、 5nm〜l μ mである。コロイダルシリカとしては、水分 散液として供給されるものを、そのまま使用するか、或いは、微粉状シリカを水に分散 させたもの力 吏用される。この場合、有機樹脂 'コロイダルシリカ系塗膜 (2)は、有機 樹脂及びコロイダルシリカを単に混合して形成してもよぐ有機樹脂及びコロイダルシ リカをアルコキシシランの存在下で反応させて形成してもよい。 [0033] 水ガラス系塗膜(3)の形成に用いられるァニオン系又はノニオン系親水性有機樹 脂として、有機樹脂系塗膜(1)の形成に用いられる親水性有機樹脂のうち、ァニオン 系又はノニオン系有機樹脂が使用される。 [0032] The colloidal silica used to form the organic resin 'colloidal silica-based coating film (2) is les, so-called silica sol or finely divided silica. The particle diameter of colloidal silica is usually 5 nm to 10 μm, preferably 5 nm to 1 μm. As colloidal silica, what is supplied as a water dispersion can be used as it is, or a fine powdered silica dispersed in water can be used. In this case, the organic resin 'colloidal silica-based coating film (2) is formed by reacting an organic resin and colloidal silica in the presence of alkoxysilane, which may be formed by simply mixing the organic resin and colloidal silica. Also good. [0033] As an anionic or nonionic hydrophilic organic resin used for forming the water glass-based coating film (3), among the hydrophilic organic resins used for forming the organic resin-based coating film (1), anionic Alternatively, nonionic organic resins are used.
[0034] 有機塗膜 20bとして、例えば、アクリルシリコーン塗膜、ポリメタクリル酸メチル系塗 膜、ポリスチレン系塗膜、ポリメチルスチレン系塗膜、ポリ酢酸ビニル系塗膜、ポリエ チレン系塗膜、ウレタン系塗膜、又はこれらの塗膜を形成する樹脂を 2種以上組合せ た塗膜などが挙げられる。  [0034] Examples of the organic coating film 20b include an acrylic silicone coating film, a polymethyl methacrylate coating film, a polystyrene coating film, a polymethylstyrene coating film, a polyvinyl acetate coating film, a polyethylene coating film, and a urethane. And a coating film obtained by combining two or more resins forming these coating films.
[0035] アルミニウム捕捉剤として、例えば、キレート剤、多塩基酸、及びこれらの塩のうちの  [0035] As an aluminum scavenger, for example, among chelating agents, polybasic acids, and salts thereof
1種以上が用いられる。キレート剤としては、分子量 100〜700のキレート剤が好まし く、例えば、エチレンジァミン四酢酸(EDTA)、二トリ口三酢酸(NTA)、ジエチレント リアミン五酢酸(DTPA)、グルタミン酸二酢酸(GLDA)、ヒドロキシェチルエチレンジ アミン三酢酸(HEDTA)、グリコールエーテルジァミン四酢酸(GEDTA)、トリエチレ ンテトラミン六酢酸(TTHA)、ヒドロキシェチルイミノ二酢酸(HIDA)、ジヒドロキシェ チルダリシン(DHEG)又はシクロへキサンジァミン四酢酸(CyDTA)等が挙げられる 。これらのうち、アルミニウムイオンを捕捉し易ぐ封鎖し易ぐ且つ、高い安定度を有 する点から、ジエチレントリアミン五酢酸(DTP A)、トリエチレンテトラミン六酢酸 (TT HA)が好ましい。  One or more are used. As the chelating agent, a chelating agent having a molecular weight of 100 to 700 is preferable. For example, ethylenediamine tetraacetic acid (EDTA), ditrimethyltriacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), glutamic acid diacetic acid (GLDA), Hydroxyethyl ethylenediamine triacetic acid (HEDTA), glycol ether diamine tetraacetic acid (GEDTA), triethylenetetramine hexaacetic acid (TTHA), hydroxyethyliminodiacetic acid (HIDA), dihydroxyethyldaricin (DHEG) or cyclohex Xanthamine tetraacetic acid (CyDTA) and the like. Of these, diethylenetriaminepentaacetic acid (DTPA) and triethylenetetraminehexaacetic acid (TTHA) are preferred because they can easily capture and sequester aluminum ions and have high stability.
[0036] 多塩基酸として、例えば、分子量が 90〜250である多価カルボン酸が用いられる。  [0036] As the polybasic acid, for example, a polyvalent carboxylic acid having a molecular weight of 90 to 250 is used.
多価カルボン酸としては、アルミニウムイオンと反応し、塩を生成してアルミニウムィォ ンを捕捉する性質に優れる点から、多価カルボン酸に含まれる 2個のカルボキシル基 の炭素が直接結合するか、或いは:!〜 10個の原子を隔てて結合する多価カルボン 酸が好ましい。これにより、アルミニウムイオンと有機物質由来のカルボン酸化合物と の反応が回避されるため、カルボン酸アルミニウムの生成が抑制されて、フィン 16の 表面の撥水化が抑制される。  As the polyvalent carboxylic acid, it reacts with aluminum ions to form a salt and captures the aluminum ion, so the carbons of the two carboxyl groups contained in the polyvalent carboxylic acid are directly bonded. Alternatively: !! multivalent carboxylic acids which are bonded with 10 to 10 atoms apart are preferred. As a result, the reaction between the aluminum ions and the carboxylic acid compound derived from the organic substance is avoided, so that the formation of aluminum carboxylate is suppressed and the water repellency of the fin 16 surface is suppressed.
[0037] 多価カルボン酸として、例えば、シユウ酸、マロン酸、フマル酸、マレイン酸、アジピ ン酸、セバシン酸、ァゼライン酸、ドデカノ二酸、フタル酸、トリメリット酸、グルタミン酸 等が挙げられる。これらのうち、シユウ酸、マレイン酸が好ましい。  [0037] Examples of the polyvalent carboxylic acid include oxalic acid, malonic acid, fumaric acid, maleic acid, adipic acid, sebacic acid, azelaic acid, dodecanoic acid, phthalic acid, trimellitic acid, and glutamic acid. Of these, oxalic acid and maleic acid are preferred.
[0038] アルミニウム捕捉剤の含有量は、例えば、多塩基酸のシユウ酸又はマレイン酸の場 合、塗膜 20に対して 0. 1重量%以上であり、 0. 2重量%以上であるのが好ましい。こ のようにすれば、アルミニウム捕捉剤とアルミニウムイオンとの反応を促進することが でき、フィン 16の表面の親水性を長期間維持することができる。一方、アルミニウム捕 捉剤の含有量は、塗膜 20に対して 10重量%以下であり、 3重量%以下であるのが好 ましレ、。このようにすれば、フィン 16の表面の親水性を長期間維持することができ、塗 膜 20本来の親水性を損なうことなぐ同塗膜 20を容易に形成することもできる。更に は、アルミニウム捕捉剤を塗膜 20中に均一に分散させることもできる。アルミニウム捕 捉剤として、キレート剤が使用される。キレート剤として、例えば、トリエチレンテトラミン 六酢酸 (TTHA)又はジエチレントリアミン五酢酸 (DTPA)を使用する場合、その含 有量は、塗膜 20に対して 0. 4重量%以上であり、 0. 8重量%以上であるのが好まし く、 10重量%以下であり、 8重量%以下であるのが好ましい。このようにすれば、フィ ン 16の表面の親水性を長期間維持することができ、塗膜 20本来の親水性を損なうこ となぐ同塗膜 20を容易に形成することもできる。更には、アルミニウム捕捉剤を塗膜 20中に均一に分散させることもできる。 [0038] The content of the aluminum scavenger is, for example, that of the polybasic acid oxalic acid or maleic acid. In other words, the content is 0.1% by weight or more, preferably 0.2% by weight or more, based on the coating film 20. In this way, the reaction between the aluminum scavenger and the aluminum ions can be promoted, and the hydrophilicity of the surface of the fin 16 can be maintained for a long time. On the other hand, the content of the aluminum scavenger is 10% by weight or less with respect to the coating film 20, and preferably 3% by weight or less. In this way, the hydrophilicity of the surface of the fin 16 can be maintained for a long time, and the coating film 20 that does not impair the original hydrophilicity of the coating film 20 can be easily formed. Further, the aluminum scavenger can be uniformly dispersed in the coating film 20. A chelating agent is used as an aluminum scavenger. When, for example, triethylenetetramine hexaacetic acid (TTHA) or diethylenetriaminepentaacetic acid (DTPA) is used as the chelating agent, the content thereof is 0.4% by weight or more with respect to the coating film 20. It is preferably at least 10% by weight, more preferably at most 10% by weight, and preferably at most 8% by weight. By doing so, the hydrophilicity of the surface of the fin 16 can be maintained for a long period of time, and the coating film 20 that easily impairs the original hydrophilicity of the coating film 20 can be easily formed. Further, the aluminum scavenger can be uniformly dispersed in the coating film 20.
[0039] 塗膜 20中に塗膜形成原料としての多価カルボン酸が残存していることもある力 そ の量は極僅かである。また、塗膜 20の形成に用いられる塗料が本発明の塗料として 定義される。塗料中に含まれる各種成分の割合は、上述した塗膜 20の場合と同様で ある。つまり、フィン 16の表面に形成された塗膜 20の状態カ 或いは塗膜 20を形成 する前の塗料の状態かの違レ、である。  [0039] The amount of the polyvalent carboxylic acid as a coating film forming raw material that may remain in the coating film 20 is very small. In addition, the paint used for forming the coating film 20 is defined as the paint of the present invention. The proportions of various components contained in the paint are the same as in the case of the coating film 20 described above. That is, the difference between the state of the coating film 20 formed on the surface of the fin 16 or the state of the paint before the coating film 20 is formed.
[0040] 次に、フィン 16及びその製造方法について説明する。  Next, the fin 16 and the manufacturing method thereof will be described.
[0041] フィン 16は、フィン基材 16aの表面に有機塗膜 20bを施し、その表面を覆うように親 水性塗膜 20aを設けることにより形成される。  [0041] The fin 16 is formed by applying the organic coating film 20b to the surface of the fin base 16a and providing the hydrophilic coating film 20a so as to cover the surface.
[0042] フィン基材 16aとして、従来より知られるアルミニウム製のフィン基材が使用される。  [0042] As the fin base 16a, a conventionally known aluminum fin base is used.
下地処理では、例えば、フィン基材 16aの表面に塗料を塗付し、塗料を乾燥すること によって、有機塗膜 20bが形成される。有機塗膜 20bの形成方法として、例えば、浸 漬塗装、シャワー塗装、スプレー塗装、ロール塗装、電着塗装等の塗装法が用いら れる。塗料は、熱交換器 11に組み立てられた状態力、、或いは組み立てられる前のフ イン基材 16aに塗布される。塗付後、フィン基材 16aの乾燥が行われる。その際、乾 燥温度は約 60〜250°Cに設定され、乾燥時間は 2秒〜 30分に設定される。 In the base treatment, for example, the organic coating film 20b is formed by applying a paint to the surface of the fin base material 16a and drying the paint. As a method for forming the organic coating film 20b, for example, a coating method such as immersion coating, shower coating, spray coating, roll coating, and electrodeposition coating is used. The paint is applied to the state force assembled in the heat exchanger 11 or to the fin base material 16a before being assembled. After application, the fin base material 16a is dried. At that time The drying temperature is set to about 60-250 ° C, and the drying time is set to 2 seconds to 30 minutes.
[0043] 有機塗膜 20bの厚さは、通常、 0. 001〜10 /i mであり、好ましくは、 0. 1 ~3 μ ΐη である。その厚さが 0. 001 /i m未満になると、フィン基材 16aの耐食性、耐水性等が 十分に得られない虞がある。一方、その厚さが 10 x mを超えると、有機塗膜 20bが割 れ易くなり、親水性が十分に得られない虞がある。この有機塗膜 20b中にアルミニゥ ム捕捉剤を添加してもよい。 [0043] The thickness of the organic coating film 20b is usually from 0.001 to 10 / im, and preferably from 0.1 to 3 μΐη. If the thickness is less than 0.001 / im, the corrosion resistance and water resistance of the fin base material 16a may not be sufficiently obtained. On the other hand, if the thickness exceeds 10 × m, the organic coating film 20b is likely to break, and there is a possibility that sufficient hydrophilicity may not be obtained. An aluminum scavenger may be added to the organic coating film 20b.
[0044] 有機塗膜 20bが形成されたフィン基材 16aの表面に親水性塗料を塗付し、該塗料 を乾燥することにより、親水性塗膜 20aが形成される。親水性塗膜 20aの形成方法と して、例えば、浸漬塗装、シャワー塗装、スプレー塗装、ロール塗装、電着塗装等の 塗装法が用いられる。親水性塗膜 20aの厚さは、通常、 0. 3〜5 z mであり、好ましく は、 0. 5〜3 z mであるが、これらの設定値に特に限定されなレ、。又、親水性塗膜 20 aの乾燥条件は、有機樹脂の種類、その膜厚に応じて設定されるが、好ましくは、乾 燥温度が約 80〜250°Cに設定され、乾燥時間が約 5秒〜約 30分に設定される。こ の親水性塗膜 20a中にアルミニウム捕捉剤を添加してもよい。 [0044] A hydrophilic coating 20a is formed by applying a hydrophilic coating to the surface of the fin base material 16a on which the organic coating 20b is formed and drying the coating. As a method for forming the hydrophilic coating film 20a, for example, a coating method such as dip coating, shower coating, spray coating, roll coating, or electrodeposition coating is used. The thickness of the hydrophilic coating film 20a is usually from 0.3 to 5 zm, and preferably from 0.5 to 3 zm, but is not particularly limited to these set values. The drying conditions of the hydrophilic coating film 20a are set according to the type of organic resin and the film thickness thereof, but preferably the drying temperature is set to about 80 to 250 ° C and the drying time is about It is set between 5 seconds and about 30 minutes. An aluminum scavenger may be added to the hydrophilic coating film 20a.
[0045] 本実施形態によれば、以下のような効果を得ることができる。 According to the present embodiment, the following effects can be obtained.
[0046] (1)塗膜 20はアルミニウム捕捉剤を含有する。これにより、有機物質がフィン 16と接 触しても、フィン 16から溶出するアルミニウムイオンはアルミニウム捕捉剤によって捕 捉される。そのため、有機物質由来のカルボン酸化合物とアルミニウムイオンとの反 応を回避することができ、その反応物であるカルボン酸アルミニウムの生成を抑制す ること力 Sできる。また、アルミニウム捕捉剤の含有量及び種類を規定することにより、力 ルボン酸アルミニウムの生成を一層効果的に抑制することもできる。更には、塗膜 20 の形成材料を規定することにより、フィン 16の表面の撥水化をより一層効果的に抑制 することもできる。このフィン 16を蒸発器に用いる熱交換器 11におレ、ても同様の作用 効果が得られる。また、該熱交換器 11を備える冷凍サイクル装置 10においても同様 の作用効果が得られる。更に、上記塗料を用いてフィン 16を形成し、そのフィン 16を 用いて熱交換器 11を製造した場合においても同様の作用効果が得られる。  [0046] (1) The coating film 20 contains an aluminum scavenger. As a result, even if the organic substance comes into contact with the fins 16, the aluminum ions eluted from the fins 16 are captured by the aluminum scavenger. Therefore, the reaction between the carboxylic acid compound derived from the organic substance and the aluminum ion can be avoided, and the ability to suppress the formation of aluminum carboxylate as the reaction product can be suppressed. In addition, by defining the content and type of the aluminum scavenger, it is possible to more effectively suppress the formation of strong aluminum sulfonate. Furthermore, by defining the material for forming the coating film 20, the water repellency of the surface of the fin 16 can be further effectively suppressed. The same effect can be obtained even if the fin 16 is used in the heat exchanger 11 that uses the evaporator. The same effect can be obtained in the refrigeration cycle apparatus 10 including the heat exchanger 11. Further, when the fins 16 are formed using the coating material and the heat exchanger 11 is manufactured using the fins 16, the same effects can be obtained.
[0047] 本発明によれば、フィン 16の表面の撥水化が抑制されるため、フィン 16の表面や フィン 16間に形成される水滴の飛散防止を図ることができ、又、空調システムの送風 性能の向上を図ることもできる。本発明は、特に、室内用空調機の熱交換器、空気調 整器又は冷凍機等の用途に適用される。 [0047] According to the present invention, since water repellency on the surface of the fin 16 is suppressed, it is possible to prevent scattering of water droplets formed on the surface of the fin 16 and between the fins 16, and the air conditioning system. Blow The performance can also be improved. The present invention is particularly applicable to uses such as heat exchangers, air conditioners, and refrigerators for indoor air conditioners.
実施例  Example
[0048] 次に、実施例及び比較例を挙げて実施形態をさらに具体的に説明する。  Next, the embodiment will be described more specifically with reference to examples and comparative examples.
[0049] [実施例 1、 2及び従来例 1]  [0049] [Examples 1 and 2 and Conventional Example 1]
クロメート処理されたアルミニウム製のフィン基材の表面に、乾燥後の膜厚が 0. 5 μ mになるように、表 1に記載の塗料を塗布した。そして、塗料を 200〜220°Cで 30秒 間乾燥することにより、 2種類の塗装物を作製した。これらの塗装物からフィンを形成 し、それらを用いて熱交換器を作製した。その際、熱交換器を構成するフィンの束の うち半数に実施例 1の塗料を塗付したフィンを使用し、残りの半数に従来例 1の塗料 を塗付したフィンを使用した。そして、この熱交換器をマルチフローカセットタイプの エアコンディショナーに組み込み、該エアコンディショナーを事務所の天井に設置し The paint described in Table 1 was applied to the surface of the chromate-treated aluminum fin substrate so that the film thickness after drying was 0.5 μm. The paint was dried at 200-220 ° C for 30 seconds to produce two types of coated products. Fins were formed from these paints, and heat exchangers were made using them. At that time, half of the fin bundles constituting the heat exchanger were fins coated with the paint of Example 1, and the other half were fins coated with the paint of Conventional Example 1. Then, this heat exchanger is built into a multi-flow cassette type air conditioner, and the air conditioner is installed on the ceiling of the office.
、 7〜9月の 3力月間、 1日当たり 10時間の冷房運転を行レ、、評価試験を実施した。評 価試験を開始してから 3力月後、エアコンディショナーの前面パネルを外してフィンの 状態を観察した。その結果、実施例 1の塗料を塗付したフィンでは、水滴によるブリツ ジの形成や水滴の飛散などが確認されなかった。一方、従来例 1の塗料を塗付した フィンでは、水滴によるブリッジの形成や水滴の飛散などが確認された。 In July and September, we conducted a cooling operation for 10 hours per day and conducted an evaluation test. Three months after the start of the evaluation test, the air conditioner front panel was removed and the fins were observed. As a result, in the fin coated with the paint of Example 1, formation of a bridge due to water droplets or scattering of water droplets was not confirmed. On the other hand, in the fins coated with the paint of Conventional Example 1, formation of bridges due to water droplets and scattering of water droplets were confirmed.
[0050] 次に、実施例 2の塗料を用いる以外は、実施例 1の場合と同じ条件で熱交換器を作 製し、上記評価試験を実施した。その場合にも、実施例 1の場合と同様の結果が得ら れた。 [0050] Next, a heat exchanger was produced under the same conditions as in Example 1 except that the paint of Example 2 was used, and the above evaluation test was performed. In that case, the same result as in Example 1 was obtained.
[0051] これらの評価試験によって、実施例 1及び実施例 2の場合、フィン表面の親水性は 良好に保たれるが、従来例 1の場合、フィン表面の親水性は低下するという結果が得 られた。  [0051] According to these evaluation tests, in the case of Example 1 and Example 2, the hydrophilicity of the fin surface was kept good, but in the case of Conventional Example 1, the hydrophilicity of the fin surface was decreased. It was.
[0052] [表 1] 実施例 1 実施例 2 従来例 1 親水性塗料 (* 1 ) 1 0 0 1 0 0 1 0 0 塗料組成 トリエチレンテトラミン六鲊酸 1 - - (重量部、 固形分)  [0052] [Table 1] Example 1 Example 2 Conventional Example 1 Hydrophilic paint (* 1) 1 0 0 1 0 0 1 0 0 Paint composition Triethylenetetraminehexanoic acid 1--(parts by weight, solid content)
シユウ酸 - 3
Figure imgf000014_0001
Oxalic acid-3
Figure imgf000014_0001

Claims

請求の範囲 The scope of the claims
[1] 外面に塗膜が設けられたアルミニウム製のフィンを蒸発器に使用する熱交換器にお いて、  [1] In a heat exchanger that uses aluminum fins with a coating film on the outer surface for the evaporator,
前記塗膜はアルミニウム捕捉剤を含有することを特徴とする熱交換器。  The heat exchanger, wherein the coating film contains an aluminum scavenger.
[2] 前記アルミニウム捕捉剤は、キレート剤、多塩基酸、及びこれらの塩のうちの 1種以上 であることを特徴とする請求項 1記載の熱交換器。  [2] The heat exchanger according to claim 1, wherein the aluminum scavenger is at least one of a chelating agent, a polybasic acid, and a salt thereof.
[3] 前記多塩基酸は、分子量が 90〜250である多価カルボン酸であることを特徴とする 請求項 2記載の熱交換器。  [3] The heat exchanger according to claim 2, wherein the polybasic acid is a polyvalent carboxylic acid having a molecular weight of 90 to 250.
[4] 前記多価カルボン酸は、該多価カルボン酸に含まれる 2個のカルボキシル基中の炭 素が直接結合するか、或いは 1〜: 10個の原子を隔てて結合する多価カルボン酸で あることを特徴とする請求項 3記載の熱交換器。  [4] The polyvalent carboxylic acid is a polyvalent carboxylic acid in which carbons in two carboxyl groups contained in the polyvalent carboxylic acid are directly bonded, or 1 to: bonded with a separation of 10 atoms. The heat exchanger according to claim 3, wherein:
[5] 前記多価カルボン酸は、シユウ酸、マロン酸、フマノレ酸、マレイン酸、アジピン酸、セ バシン酸、ァゼライン酸、ドデカノ二酸、フタル酸、トリメリット酸、又はグルタミン酸であ ることを特徴とする請求項 3又は 4に記載の熱交換器。  [5] The polyvalent carboxylic acid is oxalic acid, malonic acid, fumanoleic acid, maleic acid, adipic acid, sebacic acid, azelaic acid, dodecanoic acid, phthalic acid, trimellitic acid, or glutamic acid. The heat exchanger according to claim 3 or 4, characterized by the above.
[6] 前記キレート剤の分子量は 100〜700であり、前記キレート剤は、エチレンジァミン四 酢酸(EDTA)、二トリ口三酢酸(NTA)、ジエチレントリアミン五酢酸(DTP A)、グル タミン酸ニ酢酸(GLDA)、ヒドロキシェチルエチレンジァミン三酢酸(HEDTA)、ダリ コールエーテルジァミン四酢酸(GEDTA)、トリエチレンテトラミン六酢酸(TTHA)、 ヒドロキシェチルイミノ二酢酸(HIDA)、ジヒドロキシェチルダリシン(DHEG)、又は シクロへキサンジァミン四酢酸(CyDTA)であることを特徴とする請求項 2記載の熱 交換器。  [6] The chelating agent has a molecular weight of 100 to 700, and the chelating agent is ethylenediamine tetraacetic acid (EDTA), ditrimethyl triacetic acid (NTA), diethylenetriaminepentaacetic acid (DTP A), glutamic acid nitric acid ( GLDA), hydroxyethyl ethylenediamine amine acetic acid (HEDTA), darikol etherdiamine amine acetic acid (GEDTA), triethylenetetramine hexaacetic acid (TTHA), hydroxyethyliminodiacetic acid (HIDA), dihydroxyethyl 3. The heat exchanger according to claim 2, wherein the heat exchanger is lysine (DHEG) or cyclohexanediaminetetraacetic acid (CyDTA).
[7] 前記アルミニウム捕捉剤の含有量は、前記塗膜に対して 0. 01〜: 10重量%であるこ とを特徴とする請求項 1〜6のいずれ力、 1項に記載の熱交換器。  [7] The heat exchanger according to any one of [1] to [6], wherein the content of the aluminum scavenger is 0.01 to 10% by weight with respect to the coating film. .
[8] 前記多価カルボン酸がシユウ酸又はマレイン酸である場合、その含有量は、前記塗 膜に対して 0. 1〜: 10重量%であり、前記キレート剤がトリエチレンテトラミン六酢酸 (T THA)又はジエチレントリアミン五酢酸 (DTPA)の場合、その含有量は、前記塗膜 に対して 0. 4〜: 10重量%であることを特徴とする請求項 5又は 7に記載の熱交換器 [8] When the polyvalent carboxylic acid is oxalic acid or maleic acid, the content thereof is 0.1 to 10% by weight with respect to the coating film, and the chelating agent is triethylenetetramine hexaacetic acid ( The heat exchanger according to claim 5 or 7, wherein the content of TTHA) or diethylenetriaminepentaacetic acid (DTPA) is 0.4 to 10% by weight with respect to the coating film.
[9] 前記塗膜は、前記フィンの外面に形成される耐食性有機塗膜と、その有機塗膜を覆 う親水性塗膜とからなり、前記親水性塗膜は、ポリアクリル酸系塗膜、ポリビニルァノレ コール系塗膜、エポキシ系塗膜、アクリルセルロース系塗膜、アクリルアミド系塗膜、 又は前記塗膜を形成する樹脂のうちの 2種以上力 なり、前記耐食性有機塗膜は、 アクリルシリコーン塗膜、ポリメタクリル酸メチル系塗膜、ポリスチレン系塗膜、ポリメチ ノレスチレン系塗膜、ポリ酢酸ビュル系塗膜、ポリエチレン系塗膜、ウレタン系塗膜、又 は前記各塗膜を形成する樹脂のうちの 2種以上力 なることを特徴とする請求項 1〜 8のレ、ずれか 1項に記載の熱交換器。 [9] The coating film comprises a corrosion-resistant organic coating film formed on the outer surface of the fin and a hydrophilic coating film covering the organic coating film. The hydrophilic coating film is a polyacrylic acid coating film. , A polyvinyl alcohol-based coating film, an epoxy-based coating film, an acrylic cellulose-based coating film, an acrylamide-based coating film, or a resin that forms the coating film. Silicone coating, polymethyl methacrylate-based coating, polystyrene-based coating, polymethylolstyrene-based coating, polyacetate butyl-based coating, polyethylene-based coating, urethane-based coating, or resin forming each of the above-mentioned coatings The heat exchanger according to claim 1, wherein two or more of the forces are used.
[10] 請求項 1〜9のいずれ力 4項に記載の熱交換器を備えることを特徴とする冷凍サイク ル装置。  [10] A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 9.
[11] 熱交換器用アルミニウムフィンの表面に塗付される親水性塗料であって、その塗料は アルミニウム捕捉剤を含有することを特徴とする塗料。  [11] A hydrophilic paint applied to the surface of an aluminum fin for a heat exchanger, wherein the paint contains an aluminum scavenger.
[12] 前記アルミニウム捕捉剤は、キレート剤、多塩基酸、及びこれら塩のうちの 1種以上で あることを特徴とする請求項 11記載の塗料。  [12] The paint according to claim 11, wherein the aluminum scavenger is at least one of a chelating agent, a polybasic acid, and a salt thereof.
[13] 前記多塩基酸は、分子量が 90〜250である多価カルボン酸であることを特徴とする 請求項 12記載の塗料。 13. The paint according to claim 12, wherein the polybasic acid is a polyvalent carboxylic acid having a molecular weight of 90 to 250.
[14] 前記多価カルボン酸は、該多価カルボン酸に含まれる 2個のカルボキシル基中の炭 素が直接結合するか、或いは 1〜: 10個の原子を隔てて結合する多価カルボン酸で あることを特徴とする請求項 13記載の塗料。  [14] The polyvalent carboxylic acid is a polyvalent carboxylic acid in which carbons in two carboxyl groups contained in the polyvalent carboxylic acid are directly bonded, or 1 to: bonded with a separation of 10 atoms. 14. The paint according to claim 13, wherein:
[15] 前記多価カルボン酸は、シユウ酸、マロン酸、フマノレ酸、マレイン酸、アジピン酸、セ バシン酸、ァゼライン酸、ドデカノ二酸、フタル酸、トリメリット酸又はグノレタミン酸であ ることを特徴とする請求項 13又は 14に記載の塗料。  [15] The polyvalent carboxylic acid is oxalic acid, malonic acid, fumanoleic acid, maleic acid, adipic acid, sebacic acid, azelaic acid, dodecanoic acid, phthalic acid, trimellitic acid, or gnoretamic acid. 15. The paint according to claim 13 or 14, characterized in that
[16] 前記キレート剤の分子量は 100〜700であり、前記キレート剤は、エチレンジァミン四 酢酸(EDTA)、二トリ口三酢酸(NTA)、ジエチレントリアミン五酢酸(DTP A)、グル タミン酸ニ酢酸(GLDA)、ヒドロキシェチルエチレンジァミン三酢酸(HEDTA)、ダリ コールエーテルジァミン四酢酸(GEDTA)、トリエチレンテトラミン六酢酸(TTHA)、 ヒドロキシェチルイミノ二酢酸(HIDA)、ジヒドロキシェチルグリシン(DHEG)又はシ クロへキサンジァミン四酢酸(CyDTA)であることを特徴とする請求項 12記載の塗料 [16] The chelating agent has a molecular weight of 100 to 700, and the chelating agent includes ethylenediamine tetraacetic acid (EDTA), ditrimethyl triacetic acid (NTA), diethylenetriaminepentaacetic acid (DTP A), glutamic acid nitric acid ( GLDA), hydroxyethyl ethylenediamine triacetic acid (HEDTA), darikol ether diamine tetraacetic acid (GEDTA), triethylenetetramine hexaacetic acid (TTHA), hydroxyethyl iminodiacetic acid (HIDA), dihydroxyethyl 13. The coating material according to claim 12, which is glycine (DHEG) or cyclohexanediamin tetraacetic acid (CyDTA).
[17] 前記アルミニウム捕捉剤の含有量は、塗膜に対して 0. 01〜: 10重量%であることを特 徴とする請求項 11〜: 16のいずれ力 1項に記載の塗料。 [17] The paint according to any one of [11] to [16], wherein the content of the aluminum scavenger is 0.01 to 10% by weight with respect to the coating film.
[18] 前記多価カルボン酸がシユウ酸又はマレイン酸の場合、その含有量は、前記塗膜に 対して 0. 1〜: 10重量%であり、前記キレート剤がトリエチレンテトラミン六酢酸 (TTH A)又はジエチレントリアミン五酢酸 (DTPA)の場合、その含有量は、前記塗膜に対 して 0. 4〜: 10重量%であることを特徴とする請求項 15又は 17に記載の塗料。  [18] When the polyvalent carboxylic acid is oxalic acid or maleic acid, the content thereof is 0.1 to 10% by weight with respect to the coating film, and the chelating agent is triethylenetetramine hexaacetic acid (TTH 18. The paint according to claim 15 or 17, wherein in the case of A) or diethylenetriaminepentaacetic acid (DTPA), the content thereof is 0.4 to 10% by weight with respect to the coating film.
[19] 前記親水性塗料は、ポリアクリル酸系塗料、ポリビニルアルコール系塗料、エポキシ 系塗料、アクリルセルロース系塗料、アクリルアミド系塗料、又は前記塗料を形成する 樹脂のうちの 2種以上からなることを特徴とする請求項 11〜: 18のいずれ力 4項に記 載の塗料。  [19] The hydrophilic paint is composed of two or more of polyacrylic acid paint, polyvinyl alcohol paint, epoxy paint, acrylic cellulose paint, acrylamide paint, or resin forming the paint. The paint according to any one of claims 11 to 18, wherein the force is any one of the four items.
[20] 熱交換器用アルミニウムフィンの表面に設けられる親水性塗膜と前記熱交換器用ァ ノレミニゥムフィンとの間に耐食性有機塗膜を形成する塗料であって、その塗料はアル ミニゥム捕捉剤を含有することを特徴とする塗料。  [20] A paint for forming a corrosion-resistant organic paint film between a hydrophilic paint film provided on the surface of an aluminum fin for heat exchanger and the anoremum fin for heat exchanger, and the paint is used to capture aluminum. A paint characterized by containing an agent.
[21] 前記アルミニウム捕捉剤は、キレート剤、多塩基酸及びこれらの塩のうちの 1種以上 であることを特徴とする請求項 20記載の塗料。 21. The paint according to claim 20, wherein the aluminum scavenger is at least one of a chelating agent, a polybasic acid, and a salt thereof.
[22] 前記多塩基酸は、分子量が 90〜250である多価カルボン酸であることを特徴とする 請求項 21記載の塗料。 22. The coating material according to claim 21, wherein the polybasic acid is a polyvalent carboxylic acid having a molecular weight of 90 to 250.
[23] 前記多価カルボン酸は、該多価カルボン酸に含まれる 2個のカルボキシル基中の炭 素が直接結合するか、或いは 1〜: 10個の原子を隔てて結合する多価カルボン酸で あることを特徴とする請求項 22記載の塗料。  [23] The polyvalent carboxylic acid is a polyvalent carboxylic acid in which carbons in two carboxyl groups contained in the polyvalent carboxylic acid are directly bonded, or 1 to: bonded with a separation of 10 atoms. 23. The paint according to claim 22, wherein
[24] 前記多価カルボン酸は、シユウ酸、マロン酸、フマル酸、マレイン酸、アジピン酸、セ バシン酸、ァゼライン酸、ドデカノ二酸、フタル酸、トリメリット酸又はグノレタミン酸であ ることを特徴とする請求項 22又は 23に記載の塗料。  [24] The polyvalent carboxylic acid is oxalic acid, malonic acid, fumaric acid, maleic acid, adipic acid, sebacic acid, azelaic acid, dodecanoic acid, phthalic acid, trimellitic acid, or gnoretamic acid. 24. A paint according to claim 22 or 23.
[25] 前記キレート剤の分子量は 100〜700であり、前記キレート剤は、エチレンジァミン四 酢酸(EDTA)、二トリ口三酢酸(NTA)、ジエチレントリアミン五酢酸(DTPA)、グル タミン酸ニ酢酸(GLDA)、ヒドロキシェチルエチレンジァミン三酢酸(HEDTA)、ダリ コールエーテルジァミン四酢酸(GEDTA)、トリエチレンテトラミン六酢酸(TTHA)、 ヒドロキシェチルイミノ二酢酸(HIDA)、ジヒドロキシェチルグリシン(DHEG)又はシ クロへキサンジァミン四酢酸(CyDTA)であることを特徴とする請求項 21記載の塗料 [25] The chelating agent has a molecular weight of 100 to 700, and the chelating agent is ethylenediammine tetraacetic acid (EDTA), ditrimethyl triacetic acid (NTA), diethylenetriaminepentaacetic acid (DTPA), glutamic acid diacetic acid (GLDA). ), Hydroxyethyl ethylenediamine amine acetic acid (HEDTA), darikol etherdiamine amine acetic acid (GEDTA), triethylenetetramine hexaacetic acid (TTHA), The paint according to claim 21, which is hydroxyethyliminodiacetic acid (HIDA), dihydroxyethylglycine (DHEG), or cyclohexanediaminetetraacetic acid (CyDTA).
[26] 前記アルミニウム捕捉剤の含有量は、前記塗膜に対して 0. 01〜: 10重量%であるこ とを特徴とする請求項 20〜25のいずれ力、 1項に記載の塗料。 26. The paint according to any one of claims 20 to 25, wherein the content of the aluminum scavenger is 0.01 to 10% by weight with respect to the coating film.
[27] 前記多価カルボン酸がシユウ酸又はマレイン酸の場合、その含有量は、前記塗膜に 対して 0. 1〜: 10重量%であり、前記キレート剤がトリエチレンテトラミン六酢酸 (TTH A)又はジエチレントリアミン五酢酸 (DTPA)の場合、その含有量は、前記塗膜に対 して 0. 4〜: 10重量%であることを特徴とする請求項 24又は 26に記載の塗料。  [27] When the polyvalent carboxylic acid is oxalic acid or maleic acid, the content thereof is 0.1 to 10% by weight with respect to the coating film, and the chelating agent is triethylenetetramine hexaacetic acid (TTH 27. The paint according to claim 24 or 26, wherein the content of A) or diethylenetriaminepentaacetic acid (DTPA) is 0.4 to 10% by weight with respect to the coating film.
[28] 前記耐食性有機塗料は、アクリルシリコーン塗料、ポリメタクリル酸メチル系塗料、ポリ スチレン系塗料、ポリメチルスチレン系塗料、ポリ酢酸ビュル系塗料、ポリエチレン系 塗料、ウレタン系塗料、又は前記塗料を形成する樹脂のうちの 2種以上からなること を特徴とする請求項 20〜27のいずれか 1項に記載の塗料。  [28] The corrosion-resistant organic paint is an acrylic silicone paint, a polymethyl methacrylate paint, a polystyrene paint, a polymethylstyrene paint, a polymethyl butyl paint, a polyethylene paint, a urethane paint, or the paint. The paint according to any one of claims 20 to 27, comprising two or more kinds of resins to be treated.
PCT/JP2006/301797 2005-02-04 2006-02-02 Heat exchanger, refrigeration cycle apparatus, and coating for use therein WO2006095514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005029437A JP2006213978A (en) 2005-02-04 2005-02-04 Heat exchanger, refrigerating cycle apparatus and coating material used therefor
JP2005-029437 2005-02-04

Publications (1)

Publication Number Publication Date
WO2006095514A1 true WO2006095514A1 (en) 2006-09-14

Family

ID=36953118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301797 WO2006095514A1 (en) 2005-02-04 2006-02-02 Heat exchanger, refrigeration cycle apparatus, and coating for use therein

Country Status (2)

Country Link
JP (1) JP2006213978A (en)
WO (1) WO2006095514A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096416A (en) * 2008-10-16 2010-04-30 Furukawa-Sky Aluminum Corp Precoat aluminum fin material for heat exchanger
WO2010110332A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096231A1 (en) * 2010-02-05 2011-08-11 日鉄ハード株式会社 Thermal spray material and method for forming a sprayed coating
WO2011096233A1 (en) * 2010-02-05 2011-08-11 日鉄ハード株式会社 Thermal spray material and method for forming a sprayed coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209185A (en) * 1986-03-11 1987-09-14 Nippon Foil Mfg Co Ltd Fin material for heat exchanger
JP2000282267A (en) * 1999-03-29 2000-10-10 Nippon Paint Co Ltd Rust preventive and hydrophilicity impartation agent for aluminum alloy and rust preventive and hydrophilicity impartation treating agent using the same
JP2002146549A (en) * 2000-11-14 2002-05-22 Kobe Steel Ltd Method for producing fin material made of aluminum and fin material made of aluminum produced by the method
JP2004293916A (en) * 2003-03-27 2004-10-21 Furukawa Sky Kk Method of manufacture of aluminum coating material for fin of heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62209185A (en) * 1986-03-11 1987-09-14 Nippon Foil Mfg Co Ltd Fin material for heat exchanger
JP2000282267A (en) * 1999-03-29 2000-10-10 Nippon Paint Co Ltd Rust preventive and hydrophilicity impartation agent for aluminum alloy and rust preventive and hydrophilicity impartation treating agent using the same
JP2002146549A (en) * 2000-11-14 2002-05-22 Kobe Steel Ltd Method for producing fin material made of aluminum and fin material made of aluminum produced by the method
JP2004293916A (en) * 2003-03-27 2004-10-21 Furukawa Sky Kk Method of manufacture of aluminum coating material for fin of heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096416A (en) * 2008-10-16 2010-04-30 Furukawa-Sky Aluminum Corp Precoat aluminum fin material for heat exchanger
WO2010110332A1 (en) * 2009-03-24 2010-09-30 株式会社神戸製鋼所 Aluminum fin material for heat exchanger
EP2413085A1 (en) * 2009-03-24 2012-02-01 Kabushiki Kaisha Kobe Seiko Sho Aluminum fin material for heat exchanger
CN102348954A (en) * 2009-03-24 2012-02-08 株式会社神户制钢所 Aluminum fin material for heat exchanger
EP2413085A4 (en) * 2009-03-24 2014-09-10 Kobe Steel Ltd Aluminum fin material for heat exchanger

Also Published As

Publication number Publication date
JP2006213978A (en) 2006-08-17

Similar Documents

Publication Publication Date Title
JP5570127B2 (en) Hydrophilic treatment agent, aluminum-containing metal material and aluminum alloy heat exchanger
CN102292404B (en) Hydrophilizing agent for aluminum-containing metal material, hydrophilizing method, and hydrophilized aluminum-containing metal material
WO2006095514A1 (en) Heat exchanger, refrigeration cycle apparatus, and coating for use therein
JP4769112B2 (en) Aluminum coating material and aluminum fin material for heat exchanger using the same
JPS6246586B2 (en)
JP2011245477A (en) Aluminum coating material and method for manufacturing the same
JPH0136503B2 (en)
WO2006082905A1 (en) Heat exchanger, refrigeration cycle apparatus, and hydrophilic coating for use therein
JP2857343B2 (en) Method for producing resin-based precoated fin material for heat exchanger having excellent hydrophilicity
JP3430482B2 (en) Heat exchange material
JP2003201577A (en) Aluminum or aluminum alloy material for heat exchanger fin, and fin for heat exchanger
JP3383914B2 (en) Aluminum fin material for heat exchanger
JP2006214675A (en) Heat exchanger, refrigerating cycle device, and hydrophilic paint used in them
JP4478057B2 (en) Surface-treated metal plate
JP5599763B2 (en) Water-soluble resin, fin material for heat exchanger using the same, and heat exchanger
JPH11201688A (en) Fin material for heat-exchanger
JP5567301B2 (en) Hydrophilization composition for heat exchanger fin material
JPH093397A (en) Highly hydrophilic paint
JP2019073749A (en) Hydrophilic surface treatment aluminum containing metal material and heat exchanger
JP4467264B2 (en) Fin coating composition and fin material
JPH10168381A (en) Highly hydrophilic coating material
JP5436482B2 (en) Heat exchanger and manufacturing method thereof
JP4818003B2 (en) Pre-coated aluminum fin material for heat exchanger
JP3274060B2 (en) Aluminum surface treated fin material with excellent stain resistance
JP2001329377A (en) Hydrophilized composition for heat exchanger fin material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712940

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712940

Country of ref document: EP