JPH0136503B2 - - Google Patents

Info

Publication number
JPH0136503B2
JPH0136503B2 JP4320983A JP4320983A JPH0136503B2 JP H0136503 B2 JPH0136503 B2 JP H0136503B2 JP 4320983 A JP4320983 A JP 4320983A JP 4320983 A JP4320983 A JP 4320983A JP H0136503 B2 JPH0136503 B2 JP H0136503B2
Authority
JP
Japan
Prior art keywords
water
silica
parts
resin
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4320983A
Other languages
Japanese (ja)
Other versions
JPS59170170A (en
Inventor
Yoshiaki Myosawa
Etsuji Ukita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP4320983A priority Critical patent/JPS59170170A/en
Publication of JPS59170170A publication Critical patent/JPS59170170A/en
Publication of JPH0136503B2 publication Critical patent/JPH0136503B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は表面に親水性皮膜を形成する処理組成
物に関し、さらに詳しくは、被塗物表面を親水化
して、水の接触角を40゜以下に維持し、水滴の発
生を抑制もしくは防止し、さらに防錆性に優れた
表面を形成する、界面活性剤を反応せしめた有機
−無機複合体反応物からなる表面親水化処理組成
物に関する。 近年、空調機器が普及してきているが、空調器
の熱交換部は、熱交換効率を上げるため、フイン
とフインとの間隔を狭めて、送り込まれる空気と
フインとの接触面積が大きくなるように設計され
ている。冷房時においてはフインの表面が親水性
でないと、凝縮した水によつて水滴ブリツジ(フ
インとフインとの間を水が埋める)が生じ、通風
抵抗が著しく増加し、熱交換効率を低下させるな
どの欠点があつた。 従来、金属表面を親水化する方法として、シリ
カ、酸化チタンを分散した水性エマルジヨン塗料
(特開昭53−125437号公報)、多孔性シリカを含有
せしめた有機高分子樹脂溶液(特公昭57−46000
号公報)などを用いる方法が知られているが、シ
リカ及び酸化チタンの表面が疎水性の有機樹脂で
おおわれているため親水化効果は十分でなかつ
た。そこで、本発明者らは、先に従来法よりすぐ
れた親水化効果と親水性持続性を示す親水化処理
方法として、水分散性シリカ、水溶性もしくは水
分散性の有機重合体および反応性シラン化合物よ
りなる有機−無機複合体反応物を用いて、金属表
面の親水化処理を行う方法を提案した(特開昭55
−99976号公報)。 上記提案になる有機−無機複合体反応物をルー
ムクーラに使用したところ、熱交換機のフイン間
隔が1.5mmを超える場合は問題ないが1.5mm以下の
ものについては、フイン表面の水濡性以外にフイ
ン表面における水の接触角を40゜以下に保つ必要
があることが判明した。もつとも従来においても
公知のシリカと有機樹脂とを組合せた被覆膜での
水との接触角は、概略60〜90゜にも達するため接
触角を小さくする方法として、ガラス、鏡、眼鏡
などの曇り止め剤(防曇剤)に利用されている界
面活性剤を併用する方法が提案されている。この
方法による空調機への適用例として、有機樹脂−
ツビイターイオン化合物−界面活性剤−アミノプ
ラスト樹脂よりなる混合組成物(特開昭56−
65057号公報)、ポリエステル樹脂−合成シリカ−
界面活性剤よりなる混合組成物(特開昭55−
164264号公報)などでフイン表面を被覆する方法
が開示されている。 しかしながら、最近において熱交換機の製造工
程の省力化の目的から、予め塗装処理した親水化
アルミニウム板を使用する方法が開発されてい
る。かかる方法においては、親水化処理したアル
ミニウム板を成型する際に撥水性のプレス油を塗
布し、加工後、溶剤またはアルカリ塩水溶液で脱
プレス油する工程が不可欠である。かかる工程に
前記した公知の親水化処理組成物を用いて処理し
たアルミニウム板をかけると該組成物中の界面活
性剤が単に混合されたものであるため脱脂工程に
おいて界面活性剤が抽出されてしまつたり、また
空調機の運転時に発生する凝縮水によつても被膜
中から界面活性剤が抽出されて急速に界面活性剤
が消失し、接触角が大巾に増大する欠点が認めら
れる。即ち、界面活性剤を混合使用する前記した
公知の処理剤では、その親水性の持続性の点で実
用できるものではなかつた。 そこで、本発明者らは、本発明者らの先願にな
る有機−無機複合体反応物を利用して、これと界
面活性剤とを組合せて前記した欠点のない接触角
が40゜以下で耐溶剤脱脂性、耐水性に優れた親水
化処理組成物を得るべく鋭意研究を重ねた結果、
本発明を完成するに至つたものである。 かくして、本発明によれば、 (A)水分散性シリカ、(B)水溶性もしくは水分散性
の有機重合体樹脂、(C)ジ−もしくはトリ−アルコ
キシシラン化合物及び(D)ジアルキルスルホコハク
酸エステル塩及びまたはアルキレンオキシドシラ
ン化合物からなる界面活性剤、よりなる混合物を
50℃以上で反応せしめてなる有機−無機複合体反
応物を主要成分とする表面親水化処理組成物が提
供される。 本発明における水分散性シリカ(A)は、いわゆる
シリカゾルおよび微粉状シリカであつて、粒子径
が7mμ〜10μで、通常、水分散液として供給さ
れているものをそのまま使用するか、または微粉
状のシリカを水に分散させて使用することができ
る。本発明における水分散性シリカの好ましい粒
子径は7mμ〜1μであつて、粒子径が1μ以上で
あると親水化処理組成物の貯蔵安定性が十分では
ない。 本発明における有機重合体樹脂(B)としては、分
子内に水酸基、カルボキシル基および/またはア
ミノ基を含有する、水溶化もしくは水分散化でき
る樹脂であれば良く、例えば、アクリル共重合体
樹脂、アルキド樹脂、ポリエステル樹脂、エポキ
シ樹脂、オレフイン−カルボン酸樹脂およびポリ
ビニルアルコールなどが挙げられる。これらの有
機重合体樹脂の水溶化もしくは水分散化は樹脂骨
格中に導入された官能基に応じて、酸性樹脂では
アミン化合物、アンモニア水、アルカリ金属水酸
化物で中和することによつて、また塩基性樹脂で
は、酢酸、乳酸などの脂肪酸、リン酸などの鉱酸
で中和することによつて達成できる。 本発明において、無機−有機複合体反応物にお
ける水分散性シリカ(A)と水溶性もしくは水分散性
の有機重合体樹脂(B)との配合割合は、固形分重量
百分比で10:90ないし95:5、好ましくは10:90
ないし50:50である。水分散性シリカが10%未満
であると親水化効果が十分でなくなり、95%より
多くなると被膜形成性が低下する。 本発明におけるシラン化合物(C)としては、例え
ば、ジビニルジメトキシシラン、ジビニルジ−β
−メトキシエトキシシラン、ジ(γ−グリシドオ
キシプロピル)ジメトキシシラン、ビニルトリエ
トキシシラン、ビニルトリス(β−メトキシエト
キシ)シラン、γ−グリシドオキシプロピルトリ
メトキシシラン、γ−メタクリルオキシプロピル
トリメトキシシラン、β−(3,4−エポキシシ
クロヘキシル)エチルトリメトキシシラン、N−
β(アミノエチル)γ−プロピルメチルジメトキ
シシラン、N−β(アミノエチル)γ−アミノプ
ロピルトリメトキシシラン、γ−アミノプロピル
トリエトキシシランなどのジアルコキシシラン、
トリアルコキシシランなどが必要に応じて用いら
れる。 本発明のシラン化合物(C)は、水分散性シリカ(A)
と有機重合体樹脂(B)との複合化反応における触媒
として機能するとともに、両者の架橋剤としての
役割を果す。シラン化合物(C)の使用割合は、水分
散性シリカ(A)と水溶性もしくは水分散性の有機重
合体樹脂(B)の両成分の固形分重量合計に対して通
常0.5〜15%、好ましくは1〜10%であつて、0.5
%未満では添加による反応促進効果および架橋効
果が明瞭でなく、また15%をこえて添加しても、
これらの効果をさらに増大させることはできな
い。 本発明における界面活性剤(D)は、物体表面の水
との接触角を低下させる機能を付与する目的で用
いられる湿潤作用の大である界面活性剤であれ
ば、陰イオン系、陽イオン系、両性イオン系、非
イオン系のいずれも使用することができるが、本
発明の組合せにおいて前記の複合化反応への適応
性、複合体反応物の安定性、被膜の界面活性能持
続性の点から、最も効果のすぐれた界面活性剤で
ある陰イオン性の下記一般式で示されるジアルキ
ルスルホコハク酸エステル塩: (R1:炭素数1〜18のアルキル基を示す。 M:リチウム、ナトリウム又はカリウムであるア
ルカリ金属を示すかもしくはアンモニウム又はア
ミン基を示す) および非イオン性の下記一般式で示されるアルキ
レンオキシドシラン化合物: (CH33Si〔OSi(CH32x〔OCH3SiC3H6O (C2H4O)a(C3H6O)bR2yOSi(CH33 (X:5〜20の整数、a:5〜20の整数、 b:0〜15の整数、y:1〜8の整数及び R2:炭素数1〜6の低級アルキル基を表わす) が選ばれる。 アルキレンオキシドシラン化合物の代表的なも
のとしては、例えば下記の化合物が挙げられる。 (イ) (CH33Si〔OSi(CH326〔OCH3SiC3H6O
(C2H4O)8CH37OSi(CH33 分子量約3600 (ロ) (CH33Si〔OSi(CH3219〔OCH3SiC3H6O
(C2H4O)19(C3H6O)14C4H9〕OSi(CH33 分子量約7000 (ハ) (CH33Si〔OSi(CH327〔OCH3SiC3H6O
(C2H4O)15CH33OSi(CH33 分子量約3100 これらの界面活性剤は単独もしくは併用するこ
とができ、その配合量は複合体反応物固形分中の
含有量として1〜20重量%、好ましくは5〜12重
量%である。配合量が1%以下であると得られる
組成物を被膜としたときの水との接触角を40゜以
下に保持することが不可能であり、他方配合量が
20%を越えると被膜の吸水が著しく、被膜が膨潤
し被塗物体から離脱するおそれがある。 これらの界面活性剤(D)は前記成分(A)〜(C)と混合
し、その混合物を50℃以上の温度で加熱すること
によつて、混合物中のシラン化合物の触媒作用と
架橋作用によつて、有機樹脂、および微粒子のシ
リカとの水素結合またはフアンデアワールズ結合
などにより、固定化されるものと推測される。 本発明における(A)〜(D)成分の複合化合成反応
は、まず、水分散性シリカ(A)と有機重合体樹脂(B)
の水分散液もしくは水溶液を混合した後、緩かに
撹拌しながら界面活性剤(D)を徐々に混合する。つ
いでシラン化合物(C)を添加する。混合速度は界面
活性剤による発泡を抑制することに注意し適宜選
択する。 この混合物を撹拌下で50℃以上沸点(通常105
〜110℃程度)以下の温度で連続的に加熱するこ
とによつて達成される。具体的には50〜90℃で加
熱することによつて成分間の結合が十分に行われ
る。加熱を継続するにしたがつて、混合液の粘度
は徐々に上昇し、遂にはほゞ一定となり変化が認
められなくなるので、その時間をもつて反応の終
点として加熱を停止すればよい。通常0.5〜5時
間を要する。 かくして得られた複合体反応物からなる組成物
は、この状態で実用に供せられるが、更に耐水
性、耐溶剤性を増強するために、従来公知の架橋
剤あるいは硬化剤を用いることができる。即ち、
メラミン樹脂、尿素樹脂、ベンゾグアナミン樹
脂、エポキシ樹脂などの架橋性樹脂、チタン、ジ
ルコニウム、アルミニウム、モリブデン、バナジ
ウム、クロム、亜鉛、ニツケル、コバルト、銅、
鉄などのカチオン性化合物、酸素酸塩化合物およ
びキレート化合物などがあげられる。また、必要
に応じて、該組成物に顔料などを分散させて、光
学的陰ペイ性のある組成物、あるいは染料などを
溶解させて有彩色透明の組成物、あるいは通常公
知の防錆用顔料(クロム酸塩系、鉛系、モリブデ
ン酸塩系など)、防錆剤(タンニン酸、没食子酸
などのフエノール性カルボン酸およびその塩類、
フイチン酸、ホスフオン酸、ベンゾトリアゾー
ル、イミダゾール、亜硝酸、クロム酸など)を添
加した組成物とすることもできる。また、浸漬塗
装方法を用いる場合は被塗物からの塗料のタレに
より処理浴中に気泡が発生する場合があるが、こ
の様な現象を発生させないために消泡性のある溶
剤、たとえばブタノール、エチレングリコール、
モノブチルエーテルなどを添加した組成物とする
こともできる。 本発明で得られた組成物は被塗物表面に従来公
知の方法(浸漬塗装、スプレー塗装、ロール塗
装、電着塗装など)で塗布し、常温乾燥もしくは
加熱乾燥、場合によつては紫外線または電子線照
射乾燥させて、被塗物表面に硬化被膜を形成させ
ることができる。 被塗物としては、特に限定されるものでないが
好適には金属、例えばアルミニウム、銅、亜鉛、
鉄、スズおよびそれらの合金などがあげられる。
また、金属の耐腐食性を向上させるために、これ
らの金属表面に従来公知の表面処理(たとえば、
クロム酸処理、リン酸処理、陽極酸化処理、ベー
マイト処理、チタン、ジルコニウム塩処理など)
を施すことは、本発明の効果をより高めるために
有用である。 また、本発明の組成物による被膜が透明である
場合には、透明物体、たとえば、プラスチツクフ
イルム、合成樹脂成型品、透明性のセラミツク成
型品などに適用することにより防曇効果剤として
利用できる。また、建造物、器物などの成形物の
結露防止、着氷防止効果剤としても活用すること
ができる。 本発明の組成物によつて形成された被膜は、シ
リカ粒子が被膜表面に露出した形で点在してお
り、加えて界面活性剤との相剰効果により水濡性
がよく、また、シリカ粒子および界面活性剤が有
機樹脂と架橋しているため、水によつて被膜表面
のシリカおよび界面活性剤が流出してしまうこと
もなく、水濡性および水との接触角の持続性も非
常に良好であり、かつ、シリカ複合体そのものが
防食性と被塗物への付着性がすぐれているため、
耐久性のある親水性被膜として効果的である。 以下に実施例、比較例を示す。これらの例は本
発明をより詳細に説明するためのものであつて、
本発明になんら制限を加えるものではない。部お
よび%は重量部および重量%を示す。 例1 アクリル共重合体の製造例 温度計、撹拌機、冷却器、滴下ロートを備えた
1の四ツ口フラスコにイソプロピルアルコール
180部を入え、窒素置換の後、フラスコ内の温度
を約85℃に調整し、エチルアクリレート140部、
メチルメタクリレート68部、スチレン15部、N−
n−ブトキシメチルアクリルアミド15部、2−ヒ
ドロキシエチルアクリレート38部、アクリル酸24
部よりなる単量体混合物を、2,2′−アゾビス
(2,4−ジメチルワレロニトリル)6部よりな
る触媒とともに約2時間を要して滴下する。滴下
終了後同温度で、さらに5時間反応を続けると重
合率がほぼ100%、固形分約63%、酸価約67の無
色透明な樹脂溶液が得られる。この樹脂溶液500
部に対してジメチルアミノエタノール108部を混
合し、加水後充分に撹拌することによつてPH約10
のアクリル共重合系水分散樹脂液を得る。 例2 油変性アルキド樹脂の合成 フラスコ中にアマニ油100部、トリメチロール
プロパン70部、リサージ0.07部を入れ、撹拌しな
がら窒素気流中で220℃まで加熱し、この温度で
30分間反応させた後、冷却し、70℃になつたとこ
ろで無水フタル酸110部、キシロール13部を加え、
撹拌しながら220℃まで加熱し、キシロール還流
下で反応させ、酸価が15まで下がつたときに反応
を打切り、80℃まで冷却したときにキシロール38
部、エチレングリコールモノエチルエーテル32部
を加え、固形分約70%で、酸価15、水酸基当量約
1200のアルキド樹脂溶液を得た。 例3 脂肪酸変性エポキシ樹脂の合成 エポキシ当量950を持つビスフエノールAタイ
プエポキシ樹脂(商品名エピコート1004、シエル
化学(株)製)62部、アマニ油19部、桐油19部、キシ
レン3部をフラスコに入れ、窒素を通しながら
徐々に加熱し、240℃まで上昇させた後、この温
度で2時間加熱還流を行なつた後、冷却し、70℃
まで下がつたときにエチレングリコールモノエチ
ルエーテル40部を加え、固形分約70%、酸価約
54、水酸基当量約520の脂肪酸変性エポキシ樹脂
溶液を得た。 有機−無機複合体反応物からなる組成物(以下
「シリカ複合体組成物」という)の合成例 1 例1で得たアクリル共重合系樹脂溶液500部に
対してジメチルアミノエタノール108部を混合し、
加水後充分に撹拌することによつて、固形分20
%、PH約10のアクリル共重合系樹脂水分散液を得
た。この水分散液375gをフラスコ中に仕込み、
室温下で十分に撹拌しながら「スノーテツクス−
N」(日産化学工業(株)製、水性コロイダルシリカ
分散液、SiO2含有量20%、PH9〜10)125gを約
10分を要して滴下した。滴下終了後、ジアルキル
スルホコハク酸エステルソーダー塩(第一工業製
薬社製、商品名「ネオコールYSK」)15gを撹拌
下で5分を要して滴下し、ついで撹拌下でγ−メ
タクリルオキシプロピルトリメトキシシラン(信
越化学工業社製、商品名「KBM503」1.5gを滴
下混合し、ついで80℃に加熱して、同温度にて2
時間保持して反応せしめ、乳白色のシリカ複合体
組成物1を得た。 シリカ複合体の合成例 2 合成例1において、アクリル樹脂を450g、コ
ロイダルシリカを50g、シラン化合物を1gに代
えた以外は同様の方法で反応させ、乳白色のシリ
カ複合体組成物2を得た。 シリカ複合体の合成例 3 合成例2で得た油変性アルキド樹脂溶液500部
に対してトリエチルアミン20部を混合し、加水後
十分に撹拌することによつて、固形分20%、PH約
10のアルキド樹脂水分散液を得た。この水分散液
200gをフラスコ中に仕込み、室温下で十分に撹
拌しながら、水分散シリカ(デグス社製、商品名
「アエロジル#200」の微粉状シリカを水分散させ
たもの、SiO2含有量20%)300gを約10分を要し
て滴下した。滴下終了後、アルキレンオキシドシ
ラン界面活性剤(日本ユニカー社製、前記(ロ)に相
当する商品名「NUCシリコーンL−77)5gを
撹拌下で3分を要して滴下し、ついで撹拌下でγ
−グリシドオキシプロピルトリメトキシシラン
(信越化学工業社製品、商品名「KBM403」)2.5
gを撹拌下で滴下混合し、ついで85℃に加熱し
て、同温度にて2時間保持して反応せしめ、乳白
色のシリカ複合体組成物3を得た。 シリカ複合体の合成例 4 例3で得た脂肪酸変性エポキシ樹脂溶液500部
に対してジエチルアミノエタノール70部を混合
し、加水後十分撹拌することによつて、固形分20
%、PH約10の脂肪酸変性エポキシ樹脂水分散液を
得た。この水分散液300gをフラスコ中に仕込み、
室温下で十分に撹拌しながら「スノーテツクス
O」(日産化学工業(株)製、水性コロイダルシリカ
分散液SiO2含有量20%、PH3〜4)200gを徐々
に滴下した。滴下終了後、ジアルキルスルホコハ
ク酸エステルソーダー塩「ネオコールYSK」25
gを10分を要して滴下し、ついでシラン化合物
「KBM403」2.5gを撹拌下で滴下混合し、ついで
80℃に加熱して、同温度で2時間保持して反応せ
しめ、乳白色のシリカ複合体組成物4を得た。 シリカ複合体の合成例 5 アクリル酸付加ポリエチレン(日本ポリウレタ
ン(株)製、商品名「ニツポラン3202」、固形分24%
の水分散液、PH8.0)375gをフラスコ中に仕込
み、室温下で十分に撹拌しながら、コロイダルシ
リカ「スノーテツクスN」50gを徐々に滴下し
た。ついでシリコーン界面活性剤「NUCシリコ
ーンL77」10gを10分を要して滴下し、続いてシ
ラン化合物「KBM503」1gを滴下混合し、つ
いで80℃に加熱して、同温度で4時間保持して反
応せしめ、乳白色で水分散性のシリカ複合体組成
物5を得た。 シリカ複合体の合成例 6 ポリビニルアルコール(電気化学工業社製、商
品名、デンカポバールB−05)の20%水溶液450
gをフラスコ中に仕込み、撹拌しながら、コロイ
ダルシリカ「スノーテツクスN」50gを徐々に滴
下し、ついでシリコーン界面活性剤「NUCシリ
コーンL77」5gを3分を要して滴下し、続いて
ビニルトリス(β−メトキシエトキシ)シラン
(信越化学工業社製、商品名「KBC1003」)1g
を滴下混合し、80℃で2時間反応させ、乳白色の
シリカ複合体組成物6を得た。 シリカ複合体の合成例 7 合成例6において、ポリビニルアルコールを
300g、コロイダルシリカを200g、ジアルキルス
ルホコハク酸エステルソーダー塩界面活性剤「ネ
オコールYSK」を2g、シラン化合物
「KBM503」を2.5gに替えた以外は同様の方法で
反応させ、乳白色のシリカ複合体組成物7を得
た。 比較合成例 1〜7 シリカ複合体の合成例1〜7において、界面活
性剤を添加せず合成した複合体に各合成例記載の
界面活性剤および添加量で混合物を調製しそれぞ
れ比較例1〜7とした。 比較合成例 8〜14 シリカ複合体の合成例1〜7において、水分散
性シリカ及びシラン化合物を添加せず、有機樹脂
と界面活性剤の組合せて合成した組成物をそれぞ
れ比較例8〜14とした。 実施例 1 前記で合成したシリカ複合体組成物1の180部
(固形分)に対して、メラミン樹脂(米国シアナ
ミドインターナシヨナル製、商品名「サイメル
303」)を20部(固形分)添加して、撹拌混合せし
めて塗装用の組成物を調整した。ついで本組成物
をアルカリ脱脂(日本パーカライジング(株)製、商
品名「フアインクリーナー、4327)したアルミニ
ウム板(JIS,A−1100、板厚0.1mm)に、乾燥膜
厚で1ミクロンになるように塗布し、240℃の熱
風で30秒間焼付けした。この塗板について親水性
を検討したところ表−1に示したごとく、すぐれ
た水濡性と親水性持続性が認められた。また、塩
水噴霧試験による耐食性では240時間経過しても
全く白サビの発生が認められなかつた。さらにア
ルミニウム板に対する密着性についても、表−1
に示した試験後も全く異常は認められなかつた。 実施例 2〜7 前記で合成したシリカ複合体組成物各2〜7に
ついて、実施例1と同様にして塗装用の組成物を
調整した。このものを用いて実施例1と同様にし
て塗板を作成し試験した。その結果は実施例1に
記述した結果と一致した。親水性について表−1
に示した。 比較例 1〜14 前記で示した比較合成例1〜14の組成物各80部
(固形分)に対して、実施例1に示したメラミン
樹脂を20部(固形分)添加して、撹拌混合せしめ
塗装用の組成物を調整した。このものを用いて実
施例1と同様にして塗板を作成して試験した。そ
の結果、親水性について表−1に示した如く、比
較例1〜7において水濡性は良好であつたが、ト
リクレンテスト、流水浸漬テスト、乾湿サイクル
テストにおいて水との接触角が実施例1〜7に比
べて著しく増大した。また、比較例8〜14におい
てはトリクレン処理により親水性が消失し、さら
に水との接触角は著しく増大した。塩水噴霧によ
る耐食性、アルミニウム板との密着性は実施例1
〜7の結果と同等であつた。
The present invention relates to a treatment composition that forms a hydrophilic film on the surface, and more specifically, it makes the surface of the object to be coated hydrophilic, maintains the contact angle of water at 40° or less, suppresses or prevents the generation of water droplets, Furthermore, the present invention relates to a surface hydrophilic treatment composition comprising an organic-inorganic composite reactant reacted with a surfactant, which forms a surface with excellent rust prevention properties. In recent years, air conditioning equipment has become popular, and in order to increase heat exchange efficiency, the heat exchange section of air conditioners has been designed to narrow the distance between the fins and increase the contact area between the air being sent in and the fins. Designed. During cooling, if the surface of the fins is not hydrophilic, condensed water will cause water drop bridging (water fills the space between the fins), which will significantly increase ventilation resistance and reduce heat exchange efficiency. There were some shortcomings. Conventionally, methods for making metal surfaces hydrophilic include water-based emulsion paints in which silica and titanium oxide are dispersed (Japanese Patent Publication No. 53-125437), and organic polymer resin solutions containing porous silica (Japanese Patent Publication No. 57-46000).
However, the hydrophilic effect was not sufficient because the surfaces of silica and titanium oxide were covered with a hydrophobic organic resin. Therefore, the present inventors have previously developed a hydrophilic treatment method using water-dispersible silica, water-soluble or water-dispersible organic polymers, and reactive silane as a hydrophilic treatment method that exhibits a superior hydrophilic effect and hydrophilic sustainability compared to conventional methods. We proposed a method for hydrophilizing metal surfaces using organic-inorganic composite reactants consisting of compounds (Japanese Unexamined Patent Application Publication No. 1983-1999).
-99976). When the organic-inorganic composite reactant proposed above was used in a room cooler, there was no problem when the fin spacing of the heat exchanger exceeded 1.5 mm, but when the fin spacing was less than 1.5 mm, there were problems other than the water wettability of the fin surface. It was found that the contact angle of water on the fin surface must be kept below 40°. However, since the contact angle with water of a coating film made of a combination of silica and organic resin, which has been known in the past, reaches approximately 60 to 90 degrees, the method of reducing the contact angle is to reduce the contact angle with glass, mirrors, glasses, etc. A method has been proposed in which surfactants used in anti-fogging agents (anti-fogging agents) are used in combination. As an example of application of this method to air conditioners, organic resin
Mixed composition consisting of Zubitar ionic compound-surfactant-aminoplast resin
65057), polyester resin - synthetic silica
Mixed composition consisting of surfactants
164264) discloses a method of coating the fin surface. However, recently, for the purpose of saving labor in the manufacturing process of heat exchangers, a method has been developed in which a hydrophilized aluminum plate that has been previously coated is used. In this method, it is essential to apply water-repellent press oil when molding a hydrophilized aluminum plate, and after processing, remove the press oil with a solvent or an aqueous alkali salt solution. When an aluminum plate treated with the above-mentioned known hydrophilic treatment composition is applied to such a process, the surfactant in the composition is simply mixed, so the surfactant is extracted in the degreasing process. The problem is that the surfactant is extracted from the coating by dripping and condensed water generated during operation of an air conditioner, and the surfactant rapidly disappears, resulting in a large increase in the contact angle. That is, the above-mentioned known treatment agents containing a surfactant cannot be put to practical use in terms of sustainability of hydrophilicity. Therefore, the present inventors utilized the organic-inorganic composite reactant of the present inventors' prior application and combined it with a surfactant to achieve a contact angle of 40° or less without the above-mentioned drawbacks. As a result of intensive research to obtain a hydrophilic treatment composition with excellent solvent degreasing and water resistance,
This has led to the completion of the present invention. Thus, according to the invention: (A) a water-dispersible silica, (B) a water-soluble or water-dispersible organic polymer resin, (C) a di- or trialkoxysilane compound, and (D) a dialkyl sulfosuccinate ester. A mixture consisting of a surfactant consisting of a salt and or an alkylene oxide silane compound.
Provided is a surface hydrophilization treatment composition containing as a main component an organic-inorganic composite reactant reacted at 50°C or higher. The water-dispersible silica (A) in the present invention is a so-called silica sol and finely powdered silica, and has a particle size of 7 mμ to 10μ, and is usually supplied as an aqueous dispersion and used as it is, or in the form of a fine powder. of silica can be used by dispersing it in water. The preferred particle size of the water-dispersible silica in the present invention is 7 mμ to 1 μm, and if the particle size is 1 μm or more, the storage stability of the hydrophilic treatment composition will not be sufficient. The organic polymer resin (B) in the present invention may be any resin that contains a hydroxyl group, a carboxyl group, and/or an amino group in its molecule and can be water-solubilized or water-dispersible, such as an acrylic copolymer resin, Examples include alkyd resins, polyester resins, epoxy resins, olefin-carboxylic acid resins, and polyvinyl alcohols. Depending on the functional group introduced into the resin skeleton, these organic polymer resins can be made water-solubilized or water-dispersed by neutralizing them with amine compounds, aqueous ammonia, or alkali metal hydroxides in the case of acidic resins. In the case of basic resins, this can be achieved by neutralizing them with fatty acids such as acetic acid and lactic acid, and mineral acids such as phosphoric acid. In the present invention, the blending ratio of water-dispersible silica (A) and water-soluble or water-dispersible organic polymer resin (B) in the inorganic-organic composite reaction product is 10:90 to 95 in terms of solid weight percentage. :5, preferably 10:90
Or 50:50. If the water-dispersible silica content is less than 10%, the hydrophilic effect will not be sufficient, and if it is more than 95%, the film forming property will decrease. Examples of the silane compound (C) in the present invention include divinyldimethoxysilane, divinyldi-β
-methoxyethoxysilane, di(γ-glycidoxypropyl)dimethoxysilane, vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, γ-glycidoxypropyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, N-
Dialkoxysilanes such as β (aminoethyl) γ-propylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane,
Trialkoxysilane and the like are used as necessary. The silane compound (C) of the present invention is a water-dispersible silica (A)
It functions as a catalyst in the composite reaction between the organic polymer resin (B) and the organic polymer resin (B), and also serves as a crosslinking agent for both. The proportion of the silane compound (C) used is usually 0.5 to 15%, preferably 0.5 to 15%, based on the total solid weight of both the water-dispersible silica (A) and the water-soluble or water-dispersible organic polymer resin (B). is 1 to 10%, and 0.5
If it is less than 15%, the reaction acceleration effect and crosslinking effect of addition are not clear, and even if it is added more than 15%,
These effects cannot be further increased. The surfactant (D) in the present invention can be an anionic or cationic surfactant, as long as it is a surfactant with a high wetting effect and used for the purpose of imparting a function of reducing the contact angle with water on the surface of an object. Both zwitterionic and non-ionic systems can be used; however, in the combination of the present invention, the following points should be considered: adaptability to the above-mentioned complex reaction, stability of the complex reactant, and durability of the surface active ability of the coating. Anionic dialkyl sulfosuccinate salts represented by the following general formula, which are the most effective surfactants: ( R1 : represents an alkyl group having 1 to 18 carbon atoms; M: represents an alkali metal such as lithium, sodium, or potassium, or represents an ammonium or amine group) and a nonionic alkylene oxide represented by the following general formula. Silane compound: (CH 3 ) 3 Si [OSi (CH 3 ) 2 ] x [OCH 3 SiC 3 H 6 O (C 2 H 4 O) a (C 3 H 6 O) b R 2 ] y OSi (CH 3 ) 3 (X: an integer of 5 to 20, a: an integer of 5 to 20, b: an integer of 0 to 15, y: an integer of 1 to 8, and R 2 : a lower alkyl group having 1 to 6 carbon atoms) is selected. Representative alkylene oxide silane compounds include, for example, the following compounds. (A) (CH 3 ) 3 Si [OSi(CH 3 ) 2 ] 6 [OCH 3 SiC 3 H 6 O
(C 2 H 4 O) 8 CH 3 ] 7 OSi(CH 3 ) 3 Molecular weight approx. 3600 (B) (CH 3 ) 3 Si [OSi(CH 3 ) 2 ] 19 [OCH 3 SiC 3 H 6 O
(C 2 H 4 O) 19 (C 3 H 6 O) 14 C 4 H 9 ] OSi (CH 3 ) 3 Molecular weight approximately 7000 (c) (CH 3 ) 3 Si [OSi (CH 3 ) 2 ] 7 [OCH 3SiC3H6O _ _
(C 2 H 4 O) 15 CH 3 ] 3 OSi(CH 3 ) 3 Molecular weight: Approximately 3100 These surfactants can be used alone or in combination, and the blending amount is determined based on the content in the solid content of the complex reactant. 1 to 20% by weight, preferably 5 to 12% by weight. When the blending amount is 1% or less, it is impossible to maintain the contact angle with water at 40° or less when the resulting composition is used as a coating;
If it exceeds 20%, the coating will absorb water significantly, causing the coating to swell and potentially separate from the object being coated. By mixing these surfactants (D) with the components (A) to (C) above and heating the mixture at a temperature of 50°C or higher, the silane compounds in the mixture have a catalytic effect and a crosslinking effect. Therefore, it is presumed that the immobilization occurs through hydrogen bonds or Juan der Waals bonds between the organic resin and the silica particles. In the composite synthesis reaction of components (A) to (D) in the present invention, first, water-dispersible silica (A) and organic polymer resin (B) are combined.
After mixing the aqueous dispersion or solution, the surfactant (D) is gradually mixed with gentle stirring. Then, the silane compound (C) is added. The mixing speed is appropriately selected with consideration given to suppressing foaming caused by the surfactant. This mixture is stirred at a boiling point above 50℃ (usually 105℃).
This is achieved by continuous heating at a temperature below 110°C. Specifically, the components are sufficiently bonded by heating at 50 to 90°C. As the heating continues, the viscosity of the mixed liquid gradually increases until it becomes almost constant and no change is observed, so that the heating can be stopped at that time, which is the end point of the reaction. It usually takes 0.5 to 5 hours. The composition composed of the composite reactant thus obtained can be put to practical use in this state, but in order to further enhance water resistance and solvent resistance, a conventionally known crosslinking agent or curing agent can be used. . That is,
Crosslinkable resins such as melamine resin, urea resin, benzoguanamine resin, epoxy resin, titanium, zirconium, aluminum, molybdenum, vanadium, chromium, zinc, nickel, cobalt, copper,
Examples include cationic compounds such as iron, oxyacid compounds, and chelate compounds. In addition, if necessary, a pigment or the like can be dispersed in the composition to create an optically negative composition, or a chromatic and transparent composition can be created by dissolving a dye, or a commonly known antirust pigment. (chromate-based, lead-based, molybdate-based, etc.), rust inhibitors (phenolic carboxylic acids and their salts such as tannic acid and gallic acid,
It is also possible to prepare a composition to which phytic acid, phosphonic acid, benzotriazole, imidazole, nitrous acid, chromic acid, etc. are added. In addition, when using the dip coating method, bubbles may be generated in the treatment bath due to paint dripping from the object to be coated, but in order to prevent this phenomenon from occurring, a solvent with antifoaming properties such as butanol, etc. ethylene glycol,
A composition containing monobutyl ether or the like may also be used. The composition obtained in the present invention is applied to the surface of the object to be coated by a conventionally known method (dip coating, spray coating, roll coating, electrodeposition coating, etc.), dried at room temperature or heated, and in some cases, exposed to ultraviolet light or A cured film can be formed on the surface of the object by electron beam irradiation and drying. The object to be coated is not particularly limited, but preferably metals such as aluminum, copper, zinc,
Examples include iron, tin, and their alloys.
In addition, in order to improve the corrosion resistance of metals, conventionally known surface treatments (for example,
chromic acid treatment, phosphoric acid treatment, anodizing treatment, boehmite treatment, titanium, zirconium salt treatment, etc.)
It is useful to further enhance the effects of the present invention. Further, when the coating formed by the composition of the present invention is transparent, it can be used as an antifogging agent by applying it to transparent objects such as plastic films, synthetic resin molded products, transparent ceramic molded products, etc. It can also be used as an agent for preventing dew condensation and icing on molded objects such as buildings and vessels. The coating formed by the composition of the present invention has silica particles scattered on the coating surface in an exposed manner, and has good water wettability due to the synergistic effect with the surfactant. Because the particles and surfactant are cross-linked with the organic resin, the silica and surfactant on the coating surface will not be washed away by water, and the water wettability and contact angle with water are extremely long-lasting. In addition, the silica composite itself has excellent corrosion resistance and adhesion to the coated object.
Effective as a durable hydrophilic coating. Examples and comparative examples are shown below. These examples are intended to explain the invention in more detail, and include:
This is not intended to limit the invention in any way. Parts and percentages refer to parts and percentages by weight. Example 1 Production example of acrylic copolymer Isopropyl alcohol was added to a four-necked flask equipped with a thermometer, stirrer, condenser, and dropping funnel.
After adding 180 parts of ethyl acrylate and purging with nitrogen, adjust the temperature inside the flask to approximately 85°C, and add 140 parts of ethyl acrylate,
68 parts of methyl methacrylate, 15 parts of styrene, N-
15 parts of n-butoxymethylacrylamide, 38 parts of 2-hydroxyethyl acrylate, 24 parts of acrylic acid
1.5 parts of the monomer mixture are added dropwise over a period of about 2 hours together with a catalyst of 6 parts of 2,2'-azobis(2,4-dimethylvaleronitrile). When the reaction is continued for another 5 hours at the same temperature after the completion of the dropwise addition, a colorless and transparent resin solution with a polymerization rate of approximately 100%, a solid content of approximately 63%, and an acid value of approximately 67 is obtained. This resin solution 500
by mixing 108 parts of dimethylaminoethanol to 100 parts of dimethylaminoethanol, and stirring thoroughly after adding water, the pH was adjusted to about 10.
A water-dispersed acrylic copolymer resin solution is obtained. Example 2 Synthesis of oil-modified alkyd resin Put 100 parts of linseed oil, 70 parts of trimethylolpropane, and 0.07 parts of litharge into a flask, heat to 220°C in a nitrogen stream while stirring, and at this temperature.
After reacting for 30 minutes, it was cooled and when the temperature reached 70°C, 110 parts of phthalic anhydride and 13 parts of xylol were added.
Heat to 220°C with stirring, react under reflux of xylol, stop the reaction when the acid value drops to 15, and cool to 80°C, xylol 38
1 part and 32 parts of ethylene glycol monoethyl ether, the solid content is approximately 70%, the acid value is 15, and the hydroxyl equivalent is approximately
1200 alkyd resin solution was obtained. Example 3 Synthesis of fatty acid-modified epoxy resin 62 parts of bisphenol A type epoxy resin (trade name Epicote 1004, manufactured by Ciel Chemical Co., Ltd.) having an epoxy equivalent of 950, 19 parts of linseed oil, 19 parts of tung oil, and 3 parts of xylene are placed in a flask. After gradually heating the mixture with nitrogen gas and raising it to 240°C, heat under reflux at this temperature for 2 hours, cool it, and heat it to 70°C.
40 parts of ethylene glycol monoethyl ether was added to reduce the solid content to about 70% and the acid value to about 70%.
54, a fatty acid-modified epoxy resin solution with a hydroxyl equivalent of about 520 was obtained. Synthesis example of a composition consisting of an organic-inorganic composite reactant (hereinafter referred to as "silica composite composition") 1 108 parts of dimethylaminoethanol was mixed with 500 parts of the acrylic copolymer resin solution obtained in Example 1. ,
By thoroughly stirring after adding water, the solid content can be reduced to 20%.
%, an aqueous acrylic copolymer resin dispersion with a pH of about 10 was obtained. Pour 375g of this aqueous dispersion into a flask,
While stirring thoroughly at room temperature,
Approx .
It took 10 minutes to drip. After the addition, 15 g of dialkyl sulfosuccinate sodium salt (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., trade name "Neocol YSK") was added dropwise over 5 minutes under stirring, and then γ-methacryloxypropyltrimethoxy was added under stirring. 1.5 g of silane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBM503") was added dropwise and mixed, then heated to 80℃, and then heated to 80℃ for 2 hours at the same temperature.
A milky-white silica composite composition 1 was obtained by holding the reaction mixture for a certain period of time. Synthesis Example 2 of Silica Composite A milky white silica composite composition 2 was obtained by reacting in the same manner as in Synthesis Example 1 except that 450 g of acrylic resin, 50 g of colloidal silica, and 1 g of silane compound were used. Synthesis Example 3 of Silica Composite 20 parts of triethylamine was mixed with 500 parts of the oil-modified alkyd resin solution obtained in Synthesis Example 2, and by stirring thoroughly after adding water, the solid content was 20% and the pH was approx.
10 alkyd resin aqueous dispersions were obtained. This aqueous dispersion
Pour 200g into a flask, and while stirring thoroughly at room temperature, add 300g of water-dispersed silica (manufactured by Degus Corporation, product name "Aerosil #200" fine powder silica dispersed in water, SiO 2 content 20%). was added dropwise over a period of about 10 minutes. After the dropping was completed, 5 g of alkylene oxide silane surfactant (manufactured by Nippon Unicar Co., Ltd., trade name "NUC Silicone L-77" corresponding to the above (b)) was added dropwise over 3 minutes under stirring, and then under stirring. γ
-Glycidoxypropyltrimethoxysilane (product of Shin-Etsu Chemical Co., Ltd., trade name "KBM403") 2.5
The mixture was mixed dropwise with stirring, then heated to 85° C., and kept at the same temperature for 2 hours to react, to obtain a milky white silica composite composition 3. Synthesis example of silica composite 4 70 parts of diethylaminoethanol was mixed with 500 parts of the fatty acid-modified epoxy resin solution obtained in Example 3, and by stirring thoroughly after adding water, a solid content of 20
% and a pH of about 10, an aqueous dispersion of fatty acid-modified epoxy resin was obtained. Pour 300g of this aqueous dispersion into a flask,
200 g of "Snowtex O" (manufactured by Nissan Chemical Industries, Ltd., aqueous colloidal silica dispersion SiO 2 content 20%, PH 3-4) was gradually added dropwise at room temperature with sufficient stirring. After completion of dripping, add dialkyl sulfosuccinic acid ester soda salt "Neokol YSK" 25
g was added dropwise over 10 minutes, then 2.5 g of the silane compound "KBM403" was added dropwise and mixed under stirring, and then
The mixture was heated to 80°C and kept at the same temperature for 2 hours to react, yielding a milky white silica composite composition 4. Synthesis example of silica composite 5 Acrylic acid-added polyethylene (manufactured by Nippon Polyurethane Co., Ltd., trade name "Nitsuporan 3202", solid content 24%)
375 g of an aqueous dispersion of PH8.0) was placed in a flask, and 50 g of colloidal silica "Snowtex N" was gradually added dropwise with sufficient stirring at room temperature. Next, 10 g of the silicone surfactant "NUC Silicone L77" was added dropwise over 10 minutes, followed by 1 g of the silane compound "KBM503" added dropwise, then heated to 80°C and kept at the same temperature for 4 hours. As a result of the reaction, a milky white, water-dispersible silica composite composition 5 was obtained. Synthesis example of silica composite 6 20% aqueous solution of polyvinyl alcohol (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name, Denka Poval B-05) 450
g into a flask, and while stirring, 50 g of colloidal silica ``Snowtex N'' was gradually added dropwise. Next, 5 g of silicone surfactant ``NUC Silicone L77'' was added dropwise over 3 minutes, and then vinyl Tris (β -Methoxyethoxy)silane (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBC1003") 1 g
were mixed dropwise and reacted at 80° C. for 2 hours to obtain a milky white silica composite composition 6. Synthesis Example 7 of Silica Complex In Synthesis Example 6, polyvinyl alcohol was
A milky white silica composite composition was obtained by reacting in the same manner except that 300g of colloidal silica, 200g of colloidal silica, 2g of dialkyl sulfosuccinate soda salt surfactant "Neocol YSK", and 2.5g of silane compound "KBM503" were used. I got a 7. Comparative Synthesis Examples 1 to 7 In Synthesis Examples 1 to 7 of silica composites, a mixture was prepared using the surfactant and amount added as described in each synthesis example to the composite synthesized without adding a surfactant, and Comparative Examples 1 to 7 were prepared, respectively. It was set at 7. Comparative Synthesis Examples 8 to 14 In Synthesis Examples 1 to 7 of silica composites, compositions synthesized by combining an organic resin and a surfactant without adding water-dispersible silica and a silane compound were used as Comparative Examples 8 to 14, respectively. did. Example 1 Melamine resin (manufactured by Cyanamid International, USA, trade name: Cymel) was added to 180 parts (solid content) of the silica composite composition 1 synthesized above.
A composition for coating was prepared by adding 20 parts (solid content) of ``303'' and stirring and mixing. Next, this composition was applied to an aluminum plate (JIS, A-1100, plate thickness 0.1 mm) that had been alkaline degreased (manufactured by Nippon Parkerizing Co., Ltd., trade name "Fine Cleaner, 4327") so that the dry film thickness was 1 micron. The coated plate was coated with hot air at 240°C for 30 seconds. When the hydrophilicity of this coated plate was examined, it was found that it had excellent water wettability and sustained hydrophilicity as shown in Table 1. In terms of corrosion resistance, no white rust was observed even after 240 hours.Furthermore, adhesion to aluminum plates was also evaluated in Table 1.
No abnormalities were observed after the test shown in . Examples 2 to 7 For each of the silica composite compositions 2 to 7 synthesized above, coating compositions were prepared in the same manner as in Example 1. Using this material, a coated plate was prepared and tested in the same manner as in Example 1. The results were consistent with those described in Example 1. Table 1 regarding hydrophilicity
It was shown to. Comparative Examples 1 to 14 To 80 parts (solid content) of each of the compositions of Comparative Synthesis Examples 1 to 14 shown above, 20 parts (solid content) of the melamine resin shown in Example 1 were added and mixed by stirring. A composition for glazing was prepared. Using this material, a coated plate was prepared and tested in the same manner as in Example 1. As a result, as shown in Table 1 regarding hydrophilicity, the water wettability was good in Comparative Examples 1 to 7, but the contact angle with water in the tri-clean test, running water immersion test, and dry-wet cycle test was lower than that of Example 1. - It increased significantly compared to 7. Furthermore, in Comparative Examples 8 to 14, the hydrophilicity disappeared due to the trichlene treatment, and furthermore, the contact angle with water increased significantly. Corrosion resistance due to salt spray and adhesion to aluminum plate are as shown in Example 1.
The results were similar to those of 7.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (A)水分散性シリカ、(B)水溶性もしくは水分散
性の有機重合体樹脂、(C)ジ−もしくはトリ−アル
コキシシラン化合物及び(D)ジアルキルスルホコハ
ク酸エステル塩及びまたはアルキレンオキシドシ
ラン化合物よりなる混合物を50℃以上で反応せし
めてなる有機−無機複合体反応物を主要成分とす
る表面親水化処理組成物。
1 (A) water-dispersible silica, (B) water-soluble or water-dispersible organic polymer resin, (C) di- or trialkoxysilane compound, and (D) dialkyl sulfosuccinate salt and/or alkylene oxide silane compound A surface hydrophilic treatment composition whose main component is an organic-inorganic composite reactant obtained by reacting a mixture of the following at 50°C or higher.
JP4320983A 1983-03-17 1983-03-17 Surface hydrophilizing composition Granted JPS59170170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4320983A JPS59170170A (en) 1983-03-17 1983-03-17 Surface hydrophilizing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4320983A JPS59170170A (en) 1983-03-17 1983-03-17 Surface hydrophilizing composition

Publications (2)

Publication Number Publication Date
JPS59170170A JPS59170170A (en) 1984-09-26
JPH0136503B2 true JPH0136503B2 (en) 1989-08-01

Family

ID=12657525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4320983A Granted JPS59170170A (en) 1983-03-17 1983-03-17 Surface hydrophilizing composition

Country Status (1)

Country Link
JP (1) JPS59170170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035938A1 (en) * 1996-03-28 1997-10-02 Nippon Light Metal Company, Ltd. Water-based hydrophilic coating agent and process for producing precoated fin for heat exchanger by using the agent

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120772A (en) * 1986-11-10 1988-05-25 Takenaka Komuten Co Ltd Binder for ceramic paint
JP2637793B2 (en) * 1988-10-03 1997-08-06 株式会社日本触媒 Composition for coating
JPH07268274A (en) * 1994-04-01 1995-10-17 Kansai Paint Co Ltd Composition and method for imparting hydrophilicity
US5585186A (en) * 1994-12-12 1996-12-17 Minnesota Mining And Manufacturing Company Coating composition having anti-reflective, and anti-fogging properties
JP4558875B2 (en) * 1999-12-21 2010-10-06 関西ペイント株式会社 Hydrophilic composition for heat exchanger fin material
JP4370111B2 (en) * 2003-03-06 2009-11-25 日華化学株式会社 Hydrophilic treatment agent composition and hydrophilic protective film forming method
EP1751345B1 (en) * 2004-05-19 2008-04-09 Basf Se Method for finishing absorbent materials
JP5005964B2 (en) * 2006-06-22 2012-08-22 関西ペイント株式会社 Anionic electrodeposition coating composition
JP2008031299A (en) * 2006-07-28 2008-02-14 Asahi Kasei Chemicals Corp Functional aluminum building material
JP2008150457A (en) * 2006-12-15 2008-07-03 Nicca Chemical Co Ltd Wiping up type hydrophilization treatment agent, method for forming hydrophilic protective membrane and hydrophilic protective membrane
JP2009006231A (en) * 2007-06-27 2009-01-15 Kansai Paint Co Ltd Method for manufacturing hydrophilically-treated aluminum plate
KR101868762B1 (en) * 2014-08-08 2018-07-17 니혼 파커라이징 가부시키가이샤 Hydrophilization treatment agent for aluminum-containing metal material
JP6145592B1 (en) * 2017-03-21 2017-06-14 日本パーカライジング株式会社 Hydrophilic treatment agent for aluminum-containing metal materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997035938A1 (en) * 1996-03-28 1997-10-02 Nippon Light Metal Company, Ltd. Water-based hydrophilic coating agent and process for producing precoated fin for heat exchanger by using the agent

Also Published As

Publication number Publication date
JPS59170170A (en) 1984-09-26

Similar Documents

Publication Publication Date Title
JPH0136503B2 (en)
JP4688602B2 (en) Surface treatment method for flux brazed aluminum heat exchanger
JPS6246586B2 (en)
JPH0643579B2 (en) Hydrophilizing agent for heat exchanger fin materials
JP4510196B2 (en) Method for producing aqueous resin composition for anticorrosive coating agent
US10023750B2 (en) Aqueous hydrophilizing surface treatment agent, hydrophilic coating film and hydrophilizing surface treatment method
JPH06228459A (en) Composition for hydrophilicization method for hydrophilicization using the same
JP2002275650A (en) Hydrophilization treated aluminum fin material for heat exchanger
JP3430482B2 (en) Heat exchange material
JP2001208497A (en) Fin material for heat exchanger
JP2006213859A (en) Heat exchanger, refrigerating cycle unit, and hydrophilic coating for use in their production
JPH0914889A (en) Metal heat exchanger containing aluminum and manufacture thereof
JP2001158872A (en) Composition for hydrophilization treatment
JPH0680852A (en) Composition treated to be hydrophilic, treatment to be hydrophilic and heat exchanger fin treated to be hydrophilic
JP4176026B2 (en) anti-rust
JP3225793B2 (en) Highly hydrophilic paint
JPH029067B2 (en)
JPH0326381A (en) Heat exchanger made of aluminum and production thereof
JPH05202313A (en) Agent for hydrophilic treatment
JP3420721B2 (en) Pre-coated fin material for heat exchanger
JP2997066B2 (en) Paint composition and coated aluminum material
JP4562897B2 (en) Fin material for heat exchanger having non-chromate reaction type underlayer and heat exchanger provided with the same
JP2019073749A (en) Hydrophilic surface treatment aluminum containing metal material and heat exchanger
NZ226866A (en) Process for generating antimicrobial and hydrophilic surfaces on aluminium substrates
JPH0657810B2 (en) Hydrophilic treatment composition for heat exchanger fin and hydrophilic treatment method using the same