WO2006082714A1 - Scan beam irradiation device - Google Patents

Scan beam irradiation device Download PDF

Info

Publication number
WO2006082714A1
WO2006082714A1 PCT/JP2006/300804 JP2006300804W WO2006082714A1 WO 2006082714 A1 WO2006082714 A1 WO 2006082714A1 JP 2006300804 W JP2006300804 W JP 2006300804W WO 2006082714 A1 WO2006082714 A1 WO 2006082714A1
Authority
WO
WIPO (PCT)
Prior art keywords
deviation
axis direction
symbol
scanning
scanning beam
Prior art date
Application number
PCT/JP2006/300804
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Imai
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2007501526A priority Critical patent/JP4555909B2/en
Priority to CN2006800013062A priority patent/CN101080801B/en
Publication of WO2006082714A1 publication Critical patent/WO2006082714A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a scanning beam irradiation apparatus that forms a scanned image by irradiating a charged particle beam such as an electron beam or an ion beam onto a sample and scanning it in a two-dimensional manner.
  • the present invention relates to a scanning beam irradiation apparatus having a correction function.
  • the scanning beam and the sample stage are relatively moved in the X-axis direction and the Y-axis direction.
  • the scanning signal is usually acquired by moving one line in the X-axis direction and then acquiring the detection signal, and then repeating the operation of shifting by one line in the Y-axis direction.
  • this misalignment correction is performed by providing a mark for alignment on the sample, confirming the position of the mark provided on the sample while operating the stage, and adjusting the coordinates of the stage and the scanning beam. This is done by transforming the coordinates.
  • the correction value is manually obtained while visually checking the scanned image.
  • an object of the present invention is to provide a scanning beam irradiation apparatus that solves the conventional problems as described above and automatically obtains correction of the deviation in the visual field of the scanning signal.
  • the present invention corrects the relative positional relationship between a plurality of beam sources, and corrects at least one positional deviation in the rotation direction, X-axis direction, and Y-axis direction of the beam sources. It is to provide a laser irradiation apparatus.
  • a scanning beam irradiation apparatus supports a stage that can move in at least a two-dimensional direction, and irradiates the specimen with a scanning beam.
  • Beam source a mark provided on the sample
  • a detection mechanism for detecting the irradiation position of the scanning beam
  • an image forming mechanism for forming a scanned image based on a detection signal from the detection mechanism
  • the image forming mechanism is provided for controlling the driving of the beam source and the stage based on the misalignment correction coefficient.
  • the scanning beam also has, for example, a charged electron beam force.
  • the mark includes, for example, a stage symbol for detecting the coordinates of the stage, and the stage symbol includes a position symbol that determines a position on the stage and a direction symbol that determines the direction of the position symbol.
  • the detection mechanism is configured to detect charged particles having a sample force irradiated with a scanning beam.
  • the image forming mechanism includes a scanned image storage unit that forms a scanned image based on a detection signal from the detection mechanism and stores the scanned image.
  • the control mechanism detects a positional deviation between the scanned image and the mark obtained by the image forming mechanism and calculates a positional deviation correction coefficient, and based on the positional deviation correction coefficient.
  • a control unit that controls the driving of the beam source and the stage is provided.
  • the scanning beam irradiation apparatus further includes a storage unit that stores a positional deviation correction coefficient.
  • the scanning beam irradiation apparatus includes a plurality of beam sources for emitting a scanning beam irradiated on the sample.
  • the mark includes, for example, a scanning beam symbol force provided in each scanning range of the scanning beam of each beam source. From the positional deviation of the scanning image of the scanning beam symbol, the mark is used in the scanning beam coordinate system. It is possible to determine at least one of the positional deviation amount of the rotational deviation of the beam source, the Y-axis direction deviation, and the X-axis direction deviation.
  • the scanning beam symphonor includes a horizontal symbol including a straight line in the scanning direction and an oblique symbol including a straight line oblique to the horizontal symbol.
  • the rotational deviation is obtained from the amount of positional deviation in the Y-axis direction at both ends of the horizontal symbol, and ⁇ is calculated from the amount of positional deviation in the Y-axis direction of the same portion in two horizontal symbols of the scanned image obtained by the two beam sources.
  • the deviation in the axial direction can be obtained, and the deviation in the X-axis direction can be obtained from the amount of positional deviation in the ⁇ -axis direction of the same portion in two oblique symbols of the scanned image obtained by the two beam sources.
  • the present invention it is possible to automatically detect the positional deviation between the position of the scanned image and the position of the sample on the stage, and to automatically correct the positional deviation.
  • the scanning beam can always be directed to the correct position of the sample.
  • FIG. 1 is a schematic diagram showing an embodiment of a scanning beam irradiation apparatus according to the present invention.
  • ⁇ 2] Explanatory drawing of marks provided on the sample.
  • FIG. 3A is an explanatory diagram for explaining an example of one shape of the mark
  • B is an explanatory diagram for explaining another example of the shape of the mark.
  • A is an explanatory diagram for detecting a rotation direction deviation caused by a mark
  • B is an explanatory diagram for detecting a Y axis direction deviation caused by a mark
  • C is an X axis direction deviation caused by a mark. It is explanatory drawing for detecting this.
  • FIG. 5A is a diagram for explaining a deviation of the beam source in the Y-axis direction
  • B is a diagram for explaining a deviation of the beam source in the X-axis direction.
  • FIG. 6 A is a diagram for explaining X-axis direction deviation and Y-axis direction deviation of a beam source, and B is a diagram for explaining X-axis direction deviation and Y-axis direction deviation of a beam source. Yes, C is a diagram for explaining the deviation of the beam source in the Y-axis direction, and D is a diagram for explaining the deviation of the beam source in the X-axis direction.
  • FIG. 7 A is a diagram for explaining correction of a rotational deviation of a scanned image
  • B is an explanatory diagram showing a scanned image in which the rotational deviation is corrected
  • C is a deviation in the Y-axis direction.
  • FIG. 7 is an explanatory diagram showing a scanned image in which is corrected
  • D is an explanatory diagram showing a scanned image in which a deviation in the X-axis direction is corrected.
  • FIG. 8 is a flowchart for explaining a procedure for obtaining a parameter for correcting each positional deviation of a deviation in the rotational direction of the beam source, a deviation in the Y-axis direction, and a deviation in the X-axis direction.
  • FIG. 10 A is an illustration of a horizontal symbol with two points specified to determine the rotational direction deviation, and B is an explanatory diagram of a horizontal symbol with two other points specified to determine the rotational direction deviation
  • FIG. 11 A is an explanatory diagram showing the length of the frame, B is an explanatory diagram showing the number of direction points of the frame, C is an explanatory diagram showing the rotational direction deviation of the frame, and D is FIG. 5 is an explanatory diagram showing a frame rotational direction deviation, and E is an explanatory diagram showing a display example of a frame rotational direction deviation.
  • FIG. 13A is an explanatory diagram showing the positional relationship between the beam source and the scanning beam symbol; Is an explanatory view showing a scanning image of a scanning beam symbol, and C is an explanatory view showing correction of a deviation in the Y-axis direction between beam sources.
  • FIG. 14 A is a diagram showing the relationship between the frame and the Y-axis direction deviation, B is an explanatory diagram showing the length of the frame, and C is an explanatory diagram showing the number of direction points of the frame. .
  • FIG. 15 is a flowchart for explaining calculation of a deviation correction coefficient of a beam source in the X-axis direction.
  • FIG. 16 A is an explanatory diagram showing X-axis direction deviation correction between beam sources, B is an explanatory diagram showing a scanning beam symbol image of the beam source, and C is an X axis between the beam sources. It is a figure for demonstrating direction shift correction.
  • FIG. 17 A is an explanatory diagram showing correction of displacement in the X-axis direction between the beam sources, B is an explanatory diagram showing the length of the frame, and C is an explanatory diagram showing the number of direction points of the frame. is there.
  • FIG. 18 A is a diagram for explaining the order of correction calculation for beam source rotational direction deviation correction, and B is a diagram for explaining the order of correction calculation for beam source Y-axis direction deviation correction. C is a diagram for explaining the order of the correction calculation of the X-axis direction deviation correction of the beam source.
  • FIG. 19 is a front view showing an example of a display screen of the scanning beam irradiation apparatus.
  • FIG. 1 shows an embodiment of a scanning beam irradiation apparatus according to the present invention.
  • the scanning beam irradiation apparatus 1 includes a stage 3 that supports a sample and can move in at least a two-dimensional direction, a beam source 2 that irradiates the sample with a scanning beam, a mark provided on the sample, and an irradiation of the scanning beam.
  • a detection mechanism 4 for detecting the position, an image forming mechanism for forming a scanned image based on a detection signal from the detection mechanism 4, and a position shift by detecting a positional deviation between the scanned image formed by the image forming mechanism and the mark.
  • a control mechanism for calculating a deviation correction coefficient and controlling the driving of the beam source and the stage based on the position deviation correction coefficient.
  • the detection mechanism 4 is configured to detect charged particles of the sample force irradiated with the scanning beam.
  • the image forming mechanism includes a scanned image storage unit 6 that forms a scanned image based on a detection signal from the detection mechanism and stores the scanned image.
  • the control mechanism detects a positional deviation between the scanned image and the mark obtained by the image forming mechanism and calculates a positional deviation correction coefficient, and a beam source and a stage based on the positional deviation correction coefficient. Is provided with a control unit 9 for controlling the driving of the motor.
  • the beam source 2 irradiates the sample with a charged particle beam such as an electron ion beam.
  • the stage 3 supports a sample such as a substrate and can be moved in the X and Y directions by a drive mechanism (not shown).
  • Detection mechanism 4 detects secondary electrons generated by the irradiation of charged particle beam from beam source 2, and scans the irradiation position of the beam on the sample by scanning the charged particle beam or moving the stage. .
  • the scanned image forming unit 5 forms a scanned image using the detection signal acquired by the detection mechanism 4.
  • the scanned image storage unit 6 stores the formed scanned image.
  • the misregistration correction coefficient calculation unit 7 calculates a misregistration correction coefficient based on the obtained scanned image.
  • the parameter storage unit 8 stores parameters such as the positional deviation correction coefficient calculated by the positional deviation correction coefficient calculation unit 7.
  • the control unit 9 performs drive control of the beam source 2 and the stage 3 based on the obtained misregistration correction coefficient and other parameters.
  • the misregistration correction coefficient calculation unit 7 obtains a deviation of the deviation in the rotational direction with respect to the reference coordinates (beam coordinate system or stage coordinate system) of the beam source 2, and corrects the obtained deviation amount.
  • a configuration comprising a plurality of rotational direction deviation correction coefficient calculation unit 7a and a plurality of beam sources 2
  • the amount of deviation in the Y-axis direction deviation between each beam source is obtained, and the correction coefficient for correcting the obtained deviation amount Y-axis direction deviation correction coefficient calculation unit 7b and the X-axis direction deviation deviation amount between each beam source are calculated, and a correction coefficient for correcting the obtained deviation amount is calculated.
  • X-axis direction deviation correction coefficient calculation Part 7C is
  • the scanning beam irradiation apparatus 1 of the present invention includes a mark provided on the sample for calculating the positional deviation between the sample disposed on the stage 3 and the beam source.
  • FIG. 2 is a view for explaining marks provided in the scanning beam irradiation apparatus 1 of the present invention.
  • the mark includes a stage symbol 11 for obtaining the stage coordinates and a scanning beam symbol 12 for calculating the positional deviation of the scanning beam.
  • the marks are formed by etching or the like on the upper and Z or lower edges of the stage.
  • FIG. 2 shows an example in which the mark is provided at the upper end of the stage. However, in addition to the configuration provided at the lower end, the mark may be provided at both ends of the upper end and the lower end.
  • the stage symbol 11 is provided for each beam source 2, and the scanning beam symbol 12 is provided between the beam sources.
  • the beam source 2 obtains a scanned image by scanning the scanning range of the path 13 by scanning the irradiation beam and moving the stage.
  • FIG. 3A and FIG. 3B are diagrams for explaining an example of the shape of the mark.
  • FIG. 3A shows an example of the shape of the stage symbol 11.
  • the stage symbol 11 includes a position symbol 1 la that defines a position on the stage, and a direction symbol 1 lb that indicates whether the position symbol 1 la is within the scanning range! If the position symbol 1 la is not found in the obtained scanned image, the direction in which the position symbol 11a exists can be confirmed by referring to the direction symbol lib.
  • the shapes of the position symbol 1 la and the direction symbol 1 lb shown in FIG. 3A are examples, and are not limited to these shapes.
  • FIG. 3B shows an example of the shape of the scanning beam symbol 11a.
  • the scanning beam symbol 12 is provided in each scanning range of the scanning beam of each beam source 2.
  • the scanning beam symbol 12 is shifted in the rotation direction of the beam source in the coordinate system of the scanning beam, and in the Y-axis direction. It is used as an index for obtaining positional deviation such as deviation in the X-axis direction.
  • the scanning beam symbol 12 includes a horizontal symbol 12a including a straight line in the scanning direction and an oblique symbol 12b including a meridian inclined in a direction of 45 degrees with respect to the horizontal symbol 12a, for example.
  • the rotational direction deviation is obtained from the amount of positional deviation in the Y-axis direction at both ends of the horizontal symbol 12a.
  • Fig. 4 (b) is a diagram for explaining the detection of the rotational direction deviation by the horizontal symbol.
  • the rotational angle deviation angle 0 corresponds to the amount of positional deviation in the Y-axis direction at both ends of the horizontal symbol 12a. Therefore, the rotational direction deviation amount is calculated from the positional deviation amount in the Y-axis direction. Togashi.
  • FIG. 4B is a diagram for explaining detection of a deviation in the Y-axis direction by a horizontal symbol.
  • the deviation in the Y-axis direction of the two beam sources corresponds to the amount of positional deviation in the Y-axis direction of the two horizontal symbols 12a of the scanned image obtained by scanning with each beam source.
  • Axial position deviation force Y-axis direction deviation amount between beam sources can be calculated.
  • FIG. 4C is a diagram for explaining detection of a deviation in the X-axis direction by an oblique symbol.
  • the X-axis direction deviation of the two beam sources corresponds to the angle of the two skew symbols 12b in the scanned image obtained by scanning with each beam source, in the Y-axis direction displacement amount.
  • the amount of deviation in the X-axis direction and the amount of deviation in the Y-axis direction are the same angle.
  • the amount of deviation can be obtained as the amount of deviation in the X-axis direction.
  • the angle of the oblique symbol 12b may be any angle other than 45 degrees with respect to the horizontal symbol 12a.
  • the amount of deviation in the X-axis direction deviation and the amount of deviation in the Y-axis direction are not the same angle, but have a predetermined corresponding angle relationship. By calculating based on, the amount of deviation in the X-axis direction can be obtained.
  • FIG. 4C indicates a thick line
  • the thin line is marked with respect to the mark indicated by the line
  • the mark indicated by the line is shifted to the left side.
  • the right side of FIG. 4C indicates the thick line.
  • the mark indicated by the thin line is shifted to the right.
  • This X-axis direction deviation can be obtained from the Y-axis direction deviation of the oblique symbol 12b (shown by the solid line).
  • the Y-axis direction deviation and the X-axis direction deviation will be described with reference to FIGS. 5A, 5B, and 6A to 6D. Here, the deviation between the beam source m and the beam source ml is shown.
  • FIG. 5A is a diagram for explaining a deviation in the Y-axis direction.
  • the deviation in the Y-axis direction between the beam sources can be obtained from the amount of deviation in the Y-axis direction of the horizontal symbol 12a (indicated by the solid line) of the mark by comparing the marks in the scanned image obtained by each beam source.
  • FIG. 5B is a diagram for explaining the X-axis direction deviation.
  • the X-axis direction deviation between the beam sources can be obtained from the amount of deviation in the Y-axis direction of the oblique symbol 12b (shown by a solid line) of the mark by comparing each mark of the scanned image obtained by each beam source.
  • FIG. 6A to FIG. 6D are diagrams for explaining the X-axis direction deviation and the Y-axis direction deviation.
  • the deviation in the Y-axis direction between the beam sources is obtained from the amount of deviation in the Y-axis direction of the horizontal symbol 12a of the mark by comparing each mark of the scanned image obtained by each beam source as shown in FIG. 6C.
  • the X-axis direction deviation between the beam sources is obtained from the amount of deviation in the Y-axis direction of the oblique symbol 12b of the mark by comparing each mark of the scanned image obtained by each beam source as shown in FIG. 6D.
  • FIG. 7A to FIG. 7D are diagrams for explaining the deviation correction of the scanned image by the positional deviation correction.
  • the three beam sources each show a state where a scanned image is acquired by four passes.
  • FIG. 7A shows an example of a scanned image including a rotational direction shift. If a deviation occurs in the rotation direction due to the installation angle of the beam source 2 or the irradiation state of the beam, a deviation in the rotation direction is included in the obtained scanned image. A straight scanned image appears as an oblique line having an angle with respect to the horizontal due to a rotational direction shift.
  • FIG. 7B shows a state where the rotational direction deviation is corrected. Diagonal lines become straight lines due to rotational direction deviation correction. At this time, if there is a deviation in the Y-axis direction between the beam sources, the straight line of the scanned image obtained by each beam source is shifted in the Y-axis direction.
  • FIG. 7C shows a state in which a deviation in the Y-axis direction is corrected using a horizontal symbol.
  • the Y-axis misalignment correction eliminates the Y-axis misalignment between the beam sources.
  • the beam source If there is a deviation in the X axis direction, the straight line of the scanned image obtained by each beam source will be shifted in the X axis direction.
  • FIG. 7D shows a state in which the deviation in the X-axis direction is corrected using an oblique symbol.
  • X-axis misalignment correction eliminates X-axis misalignment between beam sources.
  • parameters for correcting rotational direction deviation, Y-axis direction deviation, X-axis direction deviation, etc. are set to "0" (S1).
  • a scanned image of the mark formed on the stage is acquired by scanning the beam.
  • a scanning image of the scanning beam symbol is acquired in order to correct the rotational direction deviation, the Y-axis direction deviation, and the X-axis direction deviation (S2).
  • a correction factor for the rotational deviation of the beam source is obtained using the acquired scanning beam symbol (S3), and a control parameter is set using the obtained rotational deviation deviation coefficient (S4). ), The beam is scanned again using the rotation direction deviation correction coefficient in a state where the rotation direction deviation is corrected, and a scanned image of the scanning beam symbol is obtained (S5).
  • Beam control parameters are set using the rotational direction deviation correction coefficient, the Y-axis direction deviation correction coefficient, and the X-axis direction deviation correction coefficient obtained in the respective steps (S8).
  • FIGS. 9, 10A, 10B, and 11A to 11E the rotational direction deviation correction will be described with reference to FIGS. 9, 10A, 10B, and 11A to 11E.
  • FIGS. 12, 13A to 13C, and FIGS. 14A to 14C, to 15 will be described.
  • the Y-axis direction deviation correction will be described with reference to FIG. 16, and the X-axis direction deviation correction will be described with reference to FIGS. 16A to 16C, FIGS. 17A to 17C, and FIGS. 18A to 18C.
  • FIG. 9 is a flowchart for explaining the calculation of the beam direction rotation direction deviation correction coefficient (S 3 in the flowchart of FIG. 8).
  • a case where a plurality of beam sources (the number of beam sources is N) will be described.
  • a rotational direction deviation correction coefficient is calculated from the obtained Y-axis direction deviation amount (S3d).
  • n n + 1 (S3e), compare n and N (S3f), until n becomes N (S3b)
  • FIG. 10A shows an example of specifying two points in a horizontal symbol.
  • the upper end of one of the two horizontal symbols is specified (Check No. 1), and the bottom of the other horizontal symbol is specified.
  • Check No. 2 the upper end of one of the two horizontal symbols
  • FIG. 10B is a diagram showing another example of specifying two points in a horizontal symbol. Points specified in a scanned image by specifying both ends (check No. 1 and check No. 2) of one horizontal symbol.
  • the amount of deviation can be obtained from the number of points in the Y-axis direction.
  • the amount of deviation is expressed as the number of points obtained by subtracting the check No. 2 point from the check No. 1 point in the figure.
  • FIG. 11 shows the relationship between the frame and the rotational direction deviation.
  • FIG. 11A and FIG. 11B show an example of the range of one frame and the number of points of one frame.
  • This frame has a length LX (eg 47 mm) in the X direction and a length Ly (eg 3 mm) in the y direction, has Px points in the X direction, and Py points in the y direction. .
  • the shift coefficient of the rotation direction shift in the frame is calculated by associating the shift amount of the horizontal symbol in the Y-axis direction with the number of points in the frame.
  • the calculation can be performed using the following formula.
  • Rotational direction deviation correction coefficient Frame length in Y direction Z frame Point in Y direction Z frame Length in X direction X Deviation amount
  • the amount of deviation is shifted by 2 points in the Y-axis direction! / in case of,
  • FIG. 11C shows a case where the rotational direction deviation is a left rotation
  • FIG. 11D shows a case where the rotational direction deviation is a right rotation
  • Fig. 11E shows a display example of the rotation direction deviation. "Right” in the figure indicates that the rotation direction deviation is right rotation
  • “left” in the figure indicates that the rotation direction deviation is left rotation. It shows that there is. In the case of the above numerical example, it corresponds to the clockwise direction.
  • FIG. 12 is a flowchart for explaining the calculation of the Y axis direction deviation correction coefficient of the beam source (S6 in the flowchart of FIG. 8).
  • the number of beam sources is N
  • a procedure for sequentially obtaining correction coefficients for correcting misalignment in the Y-axis direction of other beam sources with reference to the beam source m is shown. Yes.
  • a deviation in the Y-axis direction of the adjacent beam source with respect to the reference beam source is obtained, and a correction coefficient for correcting the obtained deviation in the Y-axis direction is obtained.
  • Obtain the correction coefficient by obtaining the deviation in the Y-axis direction.
  • a correction coefficient for the deviation in the Y-axis direction is obtained for the beam source (m—1, m—2, •••, 1) existing on one side with respect to the reference beam source m (S6b to S6f). ), And then determine the correction factor for the Y-axis misalignment for the beam source (m + l, m + 2, ..., N) on the other side of the reference beam source m (S6g to S6k) .
  • FIG. 13 is a diagram for explaining correction of deviation in the Y-axis direction between beam sources.
  • FIG. 13A shows the positional relationship between the beam sources m and m-1 and the scanning beam symbol
  • FIG. 13B shows a scanning image of the scanning beam symbol.
  • the scanning beam symbol images of the beam source m and the beam source m-1 are observed shifted in the Y-axis direction due to the beam source shifting in the Y-axis direction.
  • check No. 1 and check No. 2 are specified for the horizontal symbol of the scanning beam symbol (indicated by a solid line), and the number of points in the Y-axis direction for this specified point The amount of deviation can be obtained with.
  • the amount of deviation is represented by the number of points obtained by subtracting the points of check No. 2 from the points of check No. 1 in the figure.
  • FIG. 14 shows the relationship between the frame and the Y-axis direction deviation.
  • FIG. 14B and FIG. 14C show an example of the frame range and the number of points of the frame, and show a state where they are shifted by py in the Y direction.
  • FIG. 14A shows the scanned images of the two scanning beam symbols (each shown only on one side), and can be observed to be shifted by py in the Y direction.
  • the frame has a length Lx in the X direction (eg 47 mm) and a length Ly in the y direction (eg 3 mm), has a number of points Px in the X direction, and a number of points y in the y direction.
  • the amount of deviation of the horizontal symbol in the Y-axis direction is calculated by the deviation coefficient of the deviation in the Y-axis direction by associating the number of points with the frame. This calculation is performed by the following formula.
  • Y-axis direction deviation correction factor deviation amount X frame Y-direction length Z frame Y-direction point Z minimum resolution
  • FIG. 15 is a flowchart for explaining calculation of a beam source X-axis direction deviation correction coefficient (S 7 in the flowchart of FIG. 8).
  • a procedure for sequentially obtaining correction coefficients for correcting misalignment in the Y-axis direction of other beam sources with reference to the beam source m is shown. Yes.
  • the X-axis direction deviation of the adjacent beam source with respect to the reference beam source is obtained, a correction coefficient for correcting the obtained X-axis direction deviation is obtained, and further, the X-axis of the adjacent beam source is obtained.
  • the direction coefficient is obtained and the correction coefficient is obtained.
  • a correction coefficient for deviation in the X-axis direction is obtained for a beam source (m-1, m-2, ..., 1) existing on one side with respect to the reference beam source m (S7b to S7f ), And then, for the beam source (m + 1, m + 2, ..., N) existing on the other side with respect to the reference beam source m, the correction coefficient for the deviation in the X-axis direction is obtained (S7g to S7k) .
  • FIG. 16 is a diagram for explaining correction of deviation in the X-axis direction between beam sources.
  • FIG. 16A shows a positional relationship among the beam source m, the beam source m-1, and the scanning beam symbol
  • FIG. 16B shows a scanning image of the scanning beam symbol.
  • the X-axis direction deviation of the beam symbol image between the beam source m and the beam source m-1 is observed as a Y-axis direction deviation when the oblique symbol is at an angle of 45 degrees with respect to the horizontal symbol.
  • check No. 1 and check No. 2 are specified for the diagonal symbol (displayed with a solid line) of the scanning beam symbol, and the number of points in the Y-axis direction of these specified points is specified. The amount of deviation is required.
  • the shift amount is represented by the number of points obtained by subtracting the check No. 2 point from the check No. 1 point in the figure.
  • FIG. 17 shows the relationship between the frame and the deviation in the X-axis direction.
  • 17B and 17C show an example of a frame range and the number of points of one frame, and show a state in which they are shifted by px in the X direction.
  • the frame has a length Lx in the X direction (eg 47 mm) and a length Ly in the y direction (eg 3 mm),
  • the deviation coefficient of the deviation in the X-axis direction is calculated by associating the deviation amount of the oblique symbol in the Y-axis direction with the number of points in the frame. This calculation is performed by the following formula.
  • X-axis deviation correction coefficient deviation amount X frame length in Y direction Z frame point in Y direction Z minimum resolution
  • the amount of deviation is 2 points in the Y axis direction.
  • FIG. 18 is a diagram for explaining the order of correction calculations for rotational direction deviation correction, Y-axis direction deviation correction, and X-axis direction deviation correction.
  • FIG. 18A shows, as an example, a case where the left force is also directed to the right and the calculation process of the beam source rotational direction deviation correction is sequentially performed.
  • Rotation direction deviation correction is not related to each beam source, and beam rotation direction deviation correction does not affect the rotation direction deviation correction of other beam sources! Can be done.
  • FIG. 18B shows an example of the order of correction in the Y-axis direction deviation, and the Y-axis direction deviation correction is performed in sequence with respect to the central beam source No. 4 in seven beam sources.
  • First correct the Y-axis misalignment with the reference beam source No. 4 with the No. 3 beam source adjacent to the left side, and then the No. 3 and No. 2 beam sources.
  • After correcting the Y-axis misalignment between the beam sources perform the Y-axis misalignment correction between the No. 2 and No. 1 beam sources to complete the Y-axis misalignment correction of the beam source on the left. .
  • the Y-axis direction deviation correction is performed with the No. 5 beam source adjacent to the right side, and then No. 5 and No. 4 are corrected.
  • the Y axis of the beam source on the right side Complete the misalignment correction.
  • FIG. 18C is an example of the order of X-axis misalignment correction. Similar to the misalignment correction in the X-axis direction, the X-axis misalignment correction is sequentially performed for seven beam sources with reference to the center beam source No. 4. Perform X axis deviation correction for all beam sources.
  • FIG. 19 shows an example of a display screen that displays an image for correction processing using marks such as an image for displaying a scanned image and a symbol for a scanned beam.
  • a scanned image is displayed on the left screen of FIG. 19, and a predetermined position of a mark such as a scanning beam symbol displayed on the scanned image can be designated.
  • the coordinate value of the point on the scanned image is displayed in the lower part of the left screen in Fig. 19.
  • the coordinate value of the first correction point is displayed in the right part.
  • the coordinate value of the second correction point is displayed on the right.
  • the right screen of FIG. 19 displays the scanning beam symbol and the specified correction point, and below that, there are buttons for selecting correction items and operation details, and a guide list indicating correction items. Is displayed.
  • buttons for selecting correction items are buttons for selecting rotational adjustment, buttons for avoiding Y axial adjustment, and X axial adjust. ) Button to select.
  • buttons for selecting the operation contents there are a “Next” button for adding the correction points displayed in “Portl” and “Port2” to the guide list and registering them, and a “Back” button for restoring them.
  • deviation correction coefficients are displayed for each correction item such as rotational direction deviation correction, Y-axis direction deviation correction, and X-axis direction deviation correction according to the state.
  • the state in which the correction coefficient has already been acquired, the state currently being acquired, the state before acquisition, etc. can be displayed with different background colors.
  • FIG. 19 only a part of the guide list is shown.
  • the scanning beam irradiation apparatus of the present invention can be applied to a TFT array inspection apparatus, an electron beam microanalyzer, a scanning electron microscope, an X-ray analysis apparatus, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Electron Beam Exposure (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiation-Therapy Devices (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

There is provided a scan beam irradiation device for automatically correcting a field-of-view shift of a scan signal. The scan beam irradiation device (1) includes a stage (3) movable in two-dimensional directions, a beam source (2) for applying a scan beam to a sample, a detection mechanism (4) for detecting a mark arranged on the sample and charged particles from the irradiation position of the scan beam, an image formation mechanism (5) for forming a scan image based on the detection signal from the detection mechanism, and control mechanisms (7, 8, 9) for detecting a positional shift of the mark in the scan image formed by the image formation mechanism, calculating a positional shift correction coefficient, and controlling drive of the beam source and the stage. Moreover, by using a device having a plurality of beam sources, it is possible to correct relative positional relationship between the beam sources.

Description

明 細 書  Specification
走査ビーム照射装置  Scanning beam irradiation device
技術分野  Technical field
[0001] 本発明は、電子ビームやイオンビーム等の荷電粒子ビームを試料上に照射し二次 元的に走査して走査画像を形成する走査ビーム照射装置に関し、特に、走査画像の 直線性を補正する機能を備える走査ビーム照射装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a scanning beam irradiation apparatus that forms a scanned image by irradiating a charged particle beam such as an electron beam or an ion beam onto a sample and scanning it in a two-dimensional manner. The present invention relates to a scanning beam irradiation apparatus having a correction function.
背景技術  Background art
[0002] 一つ又は複数のビーム源からの走査ビームを試料上に照射し二次元的に走査す るには、走査ビームと試料ステージとを X軸方向及び Y軸方向に相対的に移動するこ とによって、通常、 X軸方向に 1ライン分移動して検出信号を取得した後、 Y軸方向に 1ライン分ずらす操作を繰り返すことによって 1フレーム分の走査信号を取得している  [0002] To scan a sample by irradiating a scanning beam from one or a plurality of beam sources to perform two-dimensional scanning, the scanning beam and the sample stage are relatively moved in the X-axis direction and the Y-axis direction. As a result, the scanning signal is usually acquired by moving one line in the X-axis direction and then acquiring the detection signal, and then repeating the operation of shifting by one line in the Y-axis direction.
[0003] ステージの座標と走査ビームの座標とがー致していない場合には、検出信号を取 得して得られる走査画像の位置とステージ上に配置された試料の位置との間に位置 ずれ (走査信号の視野ずれ)力 S生じることになる。 [0003] When the coordinates of the stage and the coordinates of the scanning beam do not match, there is a displacement between the position of the scanning image obtained by obtaining the detection signal and the position of the sample placed on the stage. (Scanning signal field shift) Force S is generated.
[0004] 従来、この位置ずれの補正は、試料上に位置合わせのためのマークを設け、ステ ージを動作させながら試料上に設けたマークの位置を確認し、ステージの座標と走 查ビームの座標を座標変換することによって行っている。 [0004] Conventionally, this misalignment correction is performed by providing a mark for alignment on the sample, confirming the position of the mark provided on the sample while operating the stage, and adjusting the coordinates of the stage and the scanning beam. This is done by transforming the coordinates.
また、走査信号の視野ずれを補正する際、走査画像を目視で確認しながら補正値 を手動で求めるようにして 、る。  Also, when correcting the visual field shift of the scanning signal, the correction value is manually obtained while visually checking the scanned image.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、走査信号の視野ずれを補正するために、走査画像を目視で確認し ながら補正値を手動で求めると、走査のための作業時間が長くなるという問題がある 他、客観的な走査基準がないため作業者によって補正値が異なるという問題があつ た。 [0005] However, in order to correct the visual field shift of the scanning signal, if the correction value is manually obtained while visually confirming the scanning image, there is a problem that the working time for scanning becomes long and there is an objective. There is a problem that the correction value varies depending on the operator because there is no scanning reference.
[0006] また、補正値を得るためのマークが試料側に設けられて 、るため、試料を交換する 毎に位置ずれが生じ、ステージ動作と走査ビームとの関係を求めることが困難である という問題がある。 [0006] Since a mark for obtaining a correction value is provided on the sample side, the sample is exchanged. There is a problem that positional deviation occurs every time and it is difficult to obtain the relationship between the stage operation and the scanning beam.
[0007] 更に、複数のビーム源力 の走査ビームによって走査を行う構成では、これら複数 のビーム源間の相対位置を補正する必要がある。これらビーム源間の相対位置を補 正するには、ビーム源間のビームピッチや、制御値あたりの移動量等を計算しながら 行わなければならないと共に、これらの演算を人手によって行う場合には、計算やず れ方向の間違い等の人為的な誤りが発生する要素が含まれるという問題があった。  [0007] Further, in a configuration in which scanning is performed with a scanning beam having a plurality of beam source forces, it is necessary to correct the relative positions between the plurality of beam sources. In order to correct the relative position between these beam sources, it is necessary to calculate the beam pitch between beam sources, the amount of movement per control value, etc., and when performing these calculations manually, There was a problem that it included elements that caused human error such as calculation and misdirection.
[0008] そこで、本発明の目的は、上述の如き従来の問題点を解決し、走査信号の視野ず れの補正を自動的に得るようにした走査ビーム照射装置を提供することにある。  [0008] Therefore, an object of the present invention is to provide a scanning beam irradiation apparatus that solves the conventional problems as described above and automatically obtains correction of the deviation in the visual field of the scanning signal.
[0009] また、本発明は、複数のビーム源の相対的位置関係を補正し、ビーム源の回転方 向、 X軸方向、 Y軸方向の少なくとも一つの位置ずれを補正するようにした走査ビー ム照射装置を提供することにある。  [0009] Further, the present invention corrects the relative positional relationship between a plurality of beam sources, and corrects at least one positional deviation in the rotation direction, X-axis direction, and Y-axis direction of the beam sources. It is to provide a laser irradiation apparatus.
課題を解決するための手段  Means for solving the problem
[0010] 上述の目的を達成するため、本発明の一つの実施例に係る走査ビーム照射装置 は、試料を支持し少なくとも二次元方向に移動可能なステージと、この試料に走査ビ ームを照射するビーム源と、試料に設けられたマークと、走査ビームの照射位置を検 出する検出機構と、この検出機構からの検出信号に基づき走査画像を形成する画像 形成機構と、この画像形成機構によって形成された走査画像とマークとの位置ずれ を検出して位置ずれ補正係数を算出し且つこの位置ずれ補正係数に基づきビーム 源およびステージの駆動を制御する制御機構とを備えている。 In order to achieve the above-described object, a scanning beam irradiation apparatus according to an embodiment of the present invention supports a stage that can move in at least a two-dimensional direction, and irradiates the specimen with a scanning beam. Beam source, a mark provided on the sample, a detection mechanism for detecting the irradiation position of the scanning beam, an image forming mechanism for forming a scanned image based on a detection signal from the detection mechanism, and the image forming mechanism. A misalignment correction coefficient is calculated by detecting misalignment between the formed scanned image and the mark, and a control mechanism is provided for controlling the driving of the beam source and the stage based on the misalignment correction coefficient.
[0011] 上記走査ビームは、例えば、荷電電子ビーム力も成っている。  [0011] The scanning beam also has, for example, a charged electron beam force.
[0012] 上記マークは、例えば、ステージの座標を検出するためのステージ用シンボルから 成り、このステージ用シンボルは、ステージ上の位置を定める位置シンボルと、位置 シンボルの方向を定める方向シンボルとを備えて 、る。  [0012] The mark includes, for example, a stage symbol for detecting the coordinates of the stage, and the stage symbol includes a position symbol that determines a position on the stage and a direction symbol that determines the direction of the position symbol. And
[0013] 上記検出機構は、走査ビームが照射された試料力 の荷電粒子を検出するように 構成されている。  [0013] The detection mechanism is configured to detect charged particles having a sample force irradiated with a scanning beam.
[0014] 上記画像形成機構は、検出機構からの検出信号に基づいて走査画像を形成し且 つこの走査画像を記憶する走査画像記憶部を含む。 [0015] 上記制御機構は、画像形成機構によって得られた走査画像とマークとの位置ずれ を検出して位置ずれ補正係数を算出する位置ずれ補正係数算出部と、この位置ず れ補正係数に基づきビーム源およびステージの駆動を制御する制御部を備えている [0014] The image forming mechanism includes a scanned image storage unit that forms a scanned image based on a detection signal from the detection mechanism and stores the scanned image. [0015] The control mechanism detects a positional deviation between the scanned image and the mark obtained by the image forming mechanism and calculates a positional deviation correction coefficient, and based on the positional deviation correction coefficient. A control unit that controls the driving of the beam source and the stage is provided.
[0016] 本発明に係る走査ビーム照射装置は、更に、位置ずれ補正係数を記憶する記憶 部を備えている。 [0016] The scanning beam irradiation apparatus according to the present invention further includes a storage unit that stores a positional deviation correction coefficient.
[0017] また、本発明に係る走査ビーム照射装置は、試料に照射される走査ビームを放出 する複数のビーム源を備えて 、る。  [0017] Further, the scanning beam irradiation apparatus according to the present invention includes a plurality of beam sources for emitting a scanning beam irradiated on the sample.
[0018] マークは、例えば、各ビーム源の走査ビームの各走査範囲内に設ける走査ビーム 用シンボル力 成り、この走査ビーム用シンボルの走査画像の位置ずれから、走查ビ ームの座標系においてビーム源の回転方向ずれ、 Y軸方向ずれ、 X軸方向ずれの 少なくともいずれか一つの位置ずれ量を求めることができる。  [0018] The mark includes, for example, a scanning beam symbol force provided in each scanning range of the scanning beam of each beam source. From the positional deviation of the scanning image of the scanning beam symbol, the mark is used in the scanning beam coordinate system. It is possible to determine at least one of the positional deviation amount of the rotational deviation of the beam source, the Y-axis direction deviation, and the X-axis direction deviation.
[0019] 上記走査ビーム用シンポノレは、走査方向の直線を含む水平シンボルと、この水平 シンボルに対して斜め方向の直線を含む斜めシンボルとを備えている。  [0019] The scanning beam symphonor includes a horizontal symbol including a straight line in the scanning direction and an oblique symbol including a straight line oblique to the horizontal symbol.
[0020] 上記水平シンボルの両端の Y軸方向の位置ずれ量から回転方向ずれを求め、二 つのビーム源により得られる走査画像の二つの水平シンボルにおいて同一部分の Y 軸方向の位置ずれ量から γ軸方向ずれを求め、二つのビーム源により得られる走査 画像の二つの斜めシンボルにおいて同一部分の γ軸方向の位置ずれ量から X軸方 向ずれを求めることができる。  [0020] The rotational deviation is obtained from the amount of positional deviation in the Y-axis direction at both ends of the horizontal symbol, and γ is calculated from the amount of positional deviation in the Y-axis direction of the same portion in two horizontal symbols of the scanned image obtained by the two beam sources. The deviation in the axial direction can be obtained, and the deviation in the X-axis direction can be obtained from the amount of positional deviation in the γ-axis direction of the same portion in two oblique symbols of the scanned image obtained by the two beam sources.
発明の効果  The invention's effect
[0021] 本発明によれば、走査画像の位置とステージ上の試料の位置との位置ずれを自動 的に検出し、且つその位置ずれを自動的に補正することができ、これによつて、走査 ビームを常に試料の正しい位置に照射することができる。  [0021] According to the present invention, it is possible to automatically detect the positional deviation between the position of the scanned image and the position of the sample on the stage, and to automatically correct the positional deviation. The scanning beam can always be directed to the correct position of the sample.
[0022] 本発明によれば、複数のビーム源の相対的位置関係を補正することができる。またAccording to the present invention, it is possible to correct the relative positional relationship between a plurality of beam sources. Also
、ビーム源の回転方向、 X軸方向、 Y軸方向の少なくとも一つの位置ずれを補正する ことができる。 It is possible to correct at least one positional deviation in the rotation direction of the beam source, the X-axis direction, and the Y-axis direction.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]本発明に係る走査ビーム照射装置の一実施例を示す概略図。 圆 2]試料に設けられたマークの説明図。 FIG. 1 is a schematic diagram showing an embodiment of a scanning beam irradiation apparatus according to the present invention. 圆 2] Explanatory drawing of marks provided on the sample.
[図 3]Aは、マークの一形状例を説明するための説明図であり、 Bは、マークの他の形 状例を説明するための説明図である。  FIG. 3A is an explanatory diagram for explaining an example of one shape of the mark, and B is an explanatory diagram for explaining another example of the shape of the mark.
[図 4]Aは、マークによる回転方向ずれを検出するための説明図であり、 Bは、マーク による Y軸方向ずれを検出するための説明図であり、 Cは、マークによる X軸方向ず れを検出するための説明図である。  [FIG. 4] A is an explanatory diagram for detecting a rotation direction deviation caused by a mark, B is an explanatory diagram for detecting a Y axis direction deviation caused by a mark, and C is an X axis direction deviation caused by a mark. It is explanatory drawing for detecting this.
[図 5]Aは、ビーム源の Y軸方向ずれを説明するための図であり、 Bは、ビーム源の X 軸方向ずれを説明するための図である。  FIG. 5A is a diagram for explaining a deviation of the beam source in the Y-axis direction, and B is a diagram for explaining a deviation of the beam source in the X-axis direction.
[図 6]Aは、ビーム源の X軸方向ずれ及び Y軸方向ずれを説明するための図であり、 Bは、ビーム源の X軸方向ずれ及び Y軸方向ずれを説明するための図であり、 Cは、 ビーム源の Y軸方向ずれを説明するための図であり、 Dは、ビーム源の X軸方向ずれ を説明するための図である。  [FIG. 6] A is a diagram for explaining X-axis direction deviation and Y-axis direction deviation of a beam source, and B is a diagram for explaining X-axis direction deviation and Y-axis direction deviation of a beam source. Yes, C is a diagram for explaining the deviation of the beam source in the Y-axis direction, and D is a diagram for explaining the deviation of the beam source in the X-axis direction.
[図 7]Aは、走査画像の回転方向ずれの補正を説明するための図であり、 Bは、回転 方向ずれが補正された走査画像を示す説明図であり、 Cは、 Y軸方向ずれが補正さ れた走査画像を示す説明図であり、 Dは、 X軸方向ずれが補正された走査画像を示 す説明図である。  [FIG. 7] A is a diagram for explaining correction of a rotational deviation of a scanned image, B is an explanatory diagram showing a scanned image in which the rotational deviation is corrected, and C is a deviation in the Y-axis direction. FIG. 7 is an explanatory diagram showing a scanned image in which is corrected, and D is an explanatory diagram showing a scanned image in which a deviation in the X-axis direction is corrected.
[図 8]ビーム源の回転方向ずれ、 Y軸方向ずれ、及び X軸方向ずれの各位置ずれを 補正するパラメータを求める手順を説明するためのフローチャート。  FIG. 8 is a flowchart for explaining a procedure for obtaining a parameter for correcting each positional deviation of a deviation in the rotational direction of the beam source, a deviation in the Y-axis direction, and a deviation in the X-axis direction.
圆 9]ビーム源の回転方向ずれ補正係数の算出を説明するためのフローチャート。 [9] A flow chart for explaining the calculation of the correction correction coefficient for the rotational direction of the beam source.
[図 10]Aは、回転方向ずれを求めるため 2点が指定された水平シンボルの説明図で あり、 Bは、回転方向ずれを求めるため他の 2点が指定された水平シンボルの説明図 [Fig. 10] A is an illustration of a horizontal symbol with two points specified to determine the rotational direction deviation, and B is an explanatory diagram of a horizontal symbol with two other points specified to determine the rotational direction deviation
[図 11]Aは、フレームの長さを示す説明図であり、 Bは、フレームの方向ポイント数を 示す説明図であり、 Cは、フレームの回転方向ずれを示す説明図であり、 Dは、フレ ームの回転方向ずれを示す説明図であり、 Eは、フレームの回転方向ずれの表示例 を示す説明図である。 [FIG. 11] A is an explanatory diagram showing the length of the frame, B is an explanatory diagram showing the number of direction points of the frame, C is an explanatory diagram showing the rotational direction deviation of the frame, and D is FIG. 5 is an explanatory diagram showing a frame rotational direction deviation, and E is an explanatory diagram showing a display example of a frame rotational direction deviation.
圆 12]ビーム源の Y軸方向ずれ補正係数の算出を説明するためのフローチャート。 [12] A flowchart for explaining calculation of a deviation correction coefficient of the beam source in the Y-axis direction.
[図 13]Aは、ビーム源と走査ビーム用シンボルとの位置関係を示す説明図であり、 B は、走査ビーム用シンボルの走査画像を示す説明図であり、 Cは、ビーム源間の Y軸 方向ずれの補正を示す説明図である。 FIG. 13A is an explanatory diagram showing the positional relationship between the beam source and the scanning beam symbol; Is an explanatory view showing a scanning image of a scanning beam symbol, and C is an explanatory view showing correction of a deviation in the Y-axis direction between beam sources.
[図 14]Aは、フレームと Y軸方向ずれとの関係を示す図であり、 Bは、フレームの長さ を示す説明図であり、 Cは、フレームの方向ポイント数を示す説明図である。  [FIG. 14] A is a diagram showing the relationship between the frame and the Y-axis direction deviation, B is an explanatory diagram showing the length of the frame, and C is an explanatory diagram showing the number of direction points of the frame. .
[図 15]ビーム源の X軸方向ずれ補正係数の算出を説明するためのフローチャート。  FIG. 15 is a flowchart for explaining calculation of a deviation correction coefficient of a beam source in the X-axis direction.
[図 16]Aは、ビーム源間の X軸方向ずれ補正を示す説明図であり、 Bは、ビーム源の 走査ビーム用シンボル画像を示す説明図であり、 Cは、ビーム源間の X軸方向ずれ 補正を説明するための図である。  [FIG. 16] A is an explanatory diagram showing X-axis direction deviation correction between beam sources, B is an explanatory diagram showing a scanning beam symbol image of the beam source, and C is an X axis between the beam sources. It is a figure for demonstrating direction shift correction.
[図 17]Aは、ビーム源間の X軸方向ずれ補正を示す説明図であり、 Bは、フレームの 長さを示す説明図であり、 Cは、フレームの方向ポイント数を示す説明図である。  [FIG. 17] A is an explanatory diagram showing correction of displacement in the X-axis direction between the beam sources, B is an explanatory diagram showing the length of the frame, and C is an explanatory diagram showing the number of direction points of the frame. is there.
[図 18]Aは、ビーム源の回転方向ずれ補正の補正演算の順序を説明するための図 であり、 Bは、ビーム源の Y軸方向ずれ補正の補正演算の順序を説明するための図 であり、 Cは、ビーム源の X軸方向ずれ補正の補正演算の順序を説明するための図 である。  [FIG. 18] A is a diagram for explaining the order of correction calculation for beam source rotational direction deviation correction, and B is a diagram for explaining the order of correction calculation for beam source Y-axis direction deviation correction. C is a diagram for explaining the order of the correction calculation of the X-axis direction deviation correction of the beam source.
[図 19]走査ビーム照射装置の表示画面の一例を示す正面図である。  FIG. 19 is a front view showing an example of a display screen of the scanning beam irradiation apparatus.
符号の説明  Explanation of symbols
[0024] 1…走査ビーム照射装置、 2· ··ビーム源、 3· "ステージ、 4· ··検出機構、 5…走査画像 形成部、 6…走査画像記憶部、 7· ··位置ずれ補正係数算出部、 7a…回転方向ずれ補 正係数算出部、 71τ ··Υ軸方向ずれ補正係数算出部、 7c〜X軸方向ずれ補正係数算 出部、 8· ··パラメータ記憶部、 9· ··制御部、 11· ··ステージ用シンボル、 11a…位置シン ボル、 lib…方向シンボル、 12…走査ビーム用シンボル、 12a…水平シンボル、 12b- ·· 斜めシンポノレ、 13 · 'パス  [0024] 1 ... Scanning beam irradiation device, 2 ... Beam source, 3 "Stage, 4 ... Detection mechanism, 5 ... Scanning image forming unit, 6 ... Scanning image storage unit, 7 ... Misalignment correction Coefficient calculation unit, 7a… Rotational direction deviation correction coefficient calculation unit, 71τ · Υ-axis direction deviation correction coefficient calculation unit, 7c to X-axis direction deviation correction coefficient calculation unit, 8 ··· Parameter storage unit, 9 ··· · Control unit ······· Stage symbol, 11a… Position symbol, lib… Direction symbol, 12… Scanning beam symbol, 12a… Horizontal symbol, 12b
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下、本発明の実施の形態について、図面に示された実施例に基づき詳細に説 明する。 Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.
[0026] 図 1は、本発明に係る走査ビーム照射装置の一実施例を示す。この走査ビーム照 射装置 1は、試料を支持し少なくとも二次元方向に移動可能なステージ 3と、試料に 走査ビームを照射するビーム源 2と、試料に設けられたマークと、走査ビームの照射 位置を検出する検出機構 4と、この検出機構 4からの検出信号に基づき走査画像を 形成する画像形成機構と、この画像形成機構によって形成された走査画像とマーク との位置ずれを検出して位置ずれ補正係数を算出し且つ該位置ずれ補正係数に基 づき前記ビーム源およびステージの駆動を制御する制御機構とを備えている。 FIG. 1 shows an embodiment of a scanning beam irradiation apparatus according to the present invention. The scanning beam irradiation apparatus 1 includes a stage 3 that supports a sample and can move in at least a two-dimensional direction, a beam source 2 that irradiates the sample with a scanning beam, a mark provided on the sample, and an irradiation of the scanning beam. A detection mechanism 4 for detecting the position, an image forming mechanism for forming a scanned image based on a detection signal from the detection mechanism 4, and a position shift by detecting a positional deviation between the scanned image formed by the image forming mechanism and the mark. And a control mechanism for calculating a deviation correction coefficient and controlling the driving of the beam source and the stage based on the position deviation correction coefficient.
[0027] 検出機構 4は、走査ビームが照射された試料力ゝらの荷電粒子を検出するように構成 されている。画像形成機構は、検出機構からの検出信号に基づいて走査画像を形 成し且つこの走査画像を記憶する走査画像記憶部 6を含む。制御機構は、画像形成 機構によって得られた走査画像とマークとの位置ずれを検出して位置ずれ補正係数 を算出する位置ずれ補正係数算出部 7と、この位置ずれ補正係数に基づきビーム源 およびステージの駆動を制御する制御部 9を備えている。ビーム源 2は、電子ゃィォ ン等の荷電粒子ビームを試料上に照射する。ステージ 3は、基板等の試料を支持し 図示しない駆動機構によって X, Y方向に移動可能である。検出機構 4は、ビーム源 2からの荷電粒子ビームの照射によって試料力 発生する二次電子等を検出し、荷 電粒子ビームのスキャンやステージの移動によって試料上においてビームの照射位 置を走査する。 [0027] The detection mechanism 4 is configured to detect charged particles of the sample force irradiated with the scanning beam. The image forming mechanism includes a scanned image storage unit 6 that forms a scanned image based on a detection signal from the detection mechanism and stores the scanned image. The control mechanism detects a positional deviation between the scanned image and the mark obtained by the image forming mechanism and calculates a positional deviation correction coefficient, and a beam source and a stage based on the positional deviation correction coefficient. Is provided with a control unit 9 for controlling the driving of the motor. The beam source 2 irradiates the sample with a charged particle beam such as an electron ion beam. The stage 3 supports a sample such as a substrate and can be moved in the X and Y directions by a drive mechanism (not shown). Detection mechanism 4 detects secondary electrons generated by the irradiation of charged particle beam from beam source 2, and scans the irradiation position of the beam on the sample by scanning the charged particle beam or moving the stage. .
[0028] 走査画像形成部 5は、検出機構 4で取得された検出信号を用いて走査画像を形成 する。走査画像記憶部 6は、この形成された走査画像を記憶する。位置ずれ補正係 数算出部 7は、得られた走査画像に基づいて位置ずれ補正係数を算出する。パラメ ータ記憶部 8は、位置ずれ補正係数算出部 7で算出された位置ずれ補正係数等のパ ラメータを記憶する。制御部 9は、得られた位置ずれ補正係数やその他のパラメータ に基づいてビーム源 2やステージ 3の駆動制御を行う。  The scanned image forming unit 5 forms a scanned image using the detection signal acquired by the detection mechanism 4. The scanned image storage unit 6 stores the formed scanned image. The misregistration correction coefficient calculation unit 7 calculates a misregistration correction coefficient based on the obtained scanned image. The parameter storage unit 8 stores parameters such as the positional deviation correction coefficient calculated by the positional deviation correction coefficient calculation unit 7. The control unit 9 performs drive control of the beam source 2 and the stage 3 based on the obtained misregistration correction coefficient and other parameters.
[0029] 位置ずれ補正係数算出部 7は、ビーム源 2の基準座標(ビーム座標系あるいはステ ージ座標系)に対する回転方向ずれのずれ畳を求め、この求められたずれ量を補正 する補正係数を算出する回転方向ずれ補正係数算出部 7aと、ビーム源 2を複数備え る構成において、各ビーム源間の Y軸方向ずれのずれ量を求め、この求められたず れ量を補正する補正係数を算出する Y軸方向ずれ補正係数算出部 7bと、各ビーム 源間の X軸方向ずれのずれ量を求め、この求められたずれ量を補正する補正係数を 算出する X軸方向ずれ補正係数算出部 7Cとを備えている。 [0030] 本発明の走査ビーム照射装置 1は、ステージ 3上に配置された試料とビーム源との 位置ずれを算出するため試料に設けられたマークを備える。図 2は、本発明の走査ビ ーム照射装置 1が備えるマークを説明するための図である。図 2において、マークは、 ステージ座標を取得するステージ用シンボル 11と、走査ビームの位置ずれを算出す るための走査ビーム用シンボル 12を備える。マークはステージの上端及び Z又は下 端にエッチング等によって形成される。図 2ではマークはステージの上端に設けた例 を示しているが、下端に設ける構成の他、上端及び下端の両端に設ける構成としても よい。ステージ用シンボル 11はビーム源 2毎に設けられ、走査ビーム用シンボル 12は ビーム源間に設けられる。 [0029] The misregistration correction coefficient calculation unit 7 obtains a deviation of the deviation in the rotational direction with respect to the reference coordinates (beam coordinate system or stage coordinate system) of the beam source 2, and corrects the obtained deviation amount. In a configuration comprising a plurality of rotational direction deviation correction coefficient calculation unit 7a and a plurality of beam sources 2, the amount of deviation in the Y-axis direction deviation between each beam source is obtained, and the correction coefficient for correcting the obtained deviation amount Y-axis direction deviation correction coefficient calculation unit 7b and the X-axis direction deviation deviation amount between each beam source are calculated, and a correction coefficient for correcting the obtained deviation amount is calculated. X-axis direction deviation correction coefficient calculation Part 7C. [0030] The scanning beam irradiation apparatus 1 of the present invention includes a mark provided on the sample for calculating the positional deviation between the sample disposed on the stage 3 and the beam source. FIG. 2 is a view for explaining marks provided in the scanning beam irradiation apparatus 1 of the present invention. In FIG. 2, the mark includes a stage symbol 11 for obtaining the stage coordinates and a scanning beam symbol 12 for calculating the positional deviation of the scanning beam. The marks are formed by etching or the like on the upper and Z or lower edges of the stage. FIG. 2 shows an example in which the mark is provided at the upper end of the stage. However, in addition to the configuration provided at the lower end, the mark may be provided at both ends of the upper end and the lower end. The stage symbol 11 is provided for each beam source 2, and the scanning beam symbol 12 is provided between the beam sources.
[0031] ビーム源 2は、照射ビームのスキャン及びステージの移動によってパス 13の走查範 囲内を走査して走査画像を取得する。  [0031] The beam source 2 obtains a scanned image by scanning the scanning range of the path 13 by scanning the irradiation beam and moving the stage.
[0032] 図 3Aおよび図 3Bは、マークの形状例を説明するための図である。図 3Aは、ステー ジ用シンボル 11の一形状例を示している。ステージ用シンボル 11は、ステージ上の位 置を定める位置シンボル 1 laと、位置シンボル 1 laが走査範囲の!/、ずれ方向にある!/ヽ かを示す方向シンルボル 1 lbとを備える。得られた走査画像内に位置シンボル 1 laが 見つからない場合には、この方向シンボル libを参照することで位置シンボル 11aが 存在する方向を確認することができる。  FIG. 3A and FIG. 3B are diagrams for explaining an example of the shape of the mark. FIG. 3A shows an example of the shape of the stage symbol 11. The stage symbol 11 includes a position symbol 1 la that defines a position on the stage, and a direction symbol 1 lb that indicates whether the position symbol 1 la is within the scanning range! If the position symbol 1 la is not found in the obtained scanned image, the direction in which the position symbol 11a exists can be confirmed by referring to the direction symbol lib.
[0033] なお、図 3Aに示された位置シンボル 1 la及び方向シンボル 1 lbの形状は一例であり 、この形状に限定されるものではない。  Note that the shapes of the position symbol 1 la and the direction symbol 1 lb shown in FIG. 3A are examples, and are not limited to these shapes.
[0034] また、図 3Bは、走査ビーム用シンボル 11aの一形状例を示している。走査ビーム用 シンボル 12は、各ビーム源 2の走査ビームの各走査範囲内に設けられ、この走査ビー ム用シンボル 12は、走査ビームの座標系におけるビーム源の回転方向ずれ、 Y軸方 向ずれ、 X軸方向ずれ等の位置ずれを求めるための指標として用いられる。  FIG. 3B shows an example of the shape of the scanning beam symbol 11a. The scanning beam symbol 12 is provided in each scanning range of the scanning beam of each beam source 2. The scanning beam symbol 12 is shifted in the rotation direction of the beam source in the coordinate system of the scanning beam, and in the Y-axis direction. It is used as an index for obtaining positional deviation such as deviation in the X-axis direction.
[0035] 走査ビーム用シンボル 12は、走査方向の直線を含む水平シンボル 12aと、水平シン ボル 12aに対して例えば 45度方向に傾斜した経線を含む斜めシンボル 12bとを備えて いる。  [0035] The scanning beam symbol 12 includes a horizontal symbol 12a including a straight line in the scanning direction and an oblique symbol 12b including a meridian inclined in a direction of 45 degrees with respect to the horizontal symbol 12a, for example.
[0036] 以下、主に走査ビーム用シンボルによる、回転方向ずれ、 Y軸方向ずれ、及び X軸 方向ずれの補正について説明する。 [0037] 水平シンボル 12aの両端の Y軸方向の位置ずれ量から回転方向ずれが求められる 。図 4Αは、水平シンボルによる回転方向ずれの検出を説明するための図である。図 4 Αにおいて、回転方向のずれ角度 0は水平シンボル 12aの両端の Y軸方向の位置ず れ量に対応して 、るため、 Y軸方向の位置ずれ量から回転方向ずれ量を算出するこ とがでさる。 Hereinafter, correction of rotational direction deviation, Y-axis direction deviation, and X-axis direction deviation mainly using the scanning beam symbols will be described. [0037] The rotational direction deviation is obtained from the amount of positional deviation in the Y-axis direction at both ends of the horizontal symbol 12a. Fig. 4 (b) is a diagram for explaining the detection of the rotational direction deviation by the horizontal symbol. In Fig. 4 (b), the rotational angle deviation angle 0 corresponds to the amount of positional deviation in the Y-axis direction at both ends of the horizontal symbol 12a. Therefore, the rotational direction deviation amount is calculated from the positional deviation amount in the Y-axis direction. Togashi.
[0038] また、二つのビーム源により得られる走査画像の二つの水平シンボル 12aにおいて 同一部分の Y軸方向の位置ずれ量から Y軸方向ずれが求められる。図 4Bは、水平 シンボルによる Y軸方向ずれの検出を説明するための図である。図 4Bにおいて、二 つのビーム源の Y軸方向のずれは、各ビーム源で走査して得られる走査画像の二つ の水平シンボル 12aの Y軸方向の位置ずれ量に対応しているため、 Y軸方向の位置 ずれ量力 ビーム源間の Y軸方向ずれ量を算出することができる。  [0038] Further, in the two horizontal symbols 12a of the scanned image obtained by the two beam sources, the Y-axis direction deviation is obtained from the amount of positional deviation in the Y-axis direction of the same portion. FIG. 4B is a diagram for explaining detection of a deviation in the Y-axis direction by a horizontal symbol. In FIG. 4B, the deviation in the Y-axis direction of the two beam sources corresponds to the amount of positional deviation in the Y-axis direction of the two horizontal symbols 12a of the scanned image obtained by scanning with each beam source. Axial position deviation force Y-axis direction deviation amount between beam sources can be calculated.
[0039] また、二つのビーム源により得られる走査画像の二つの斜めシンボル 12bにおいて 同一部分の Y軸方向の位置ずれ量から X軸方向ずれが求められる。図 4Cは、斜めシ ンボルによる X軸方向ずれの検出を説明するための図である。図 4Cにおいて、二つ のビーム源の X軸方向ずれは、各ビーム源で走査して得られる走査画像の二つの斜 めシンボル 12bの角度を Y軸方向の位置ずれ量に対応している。この斜めシンボル 1 2bの角度を水平シンボル 12aに対して 45度の角度とする場合には、 X軸方向ずれの ずれ量と Y軸方向ずれのずれ量とは同角度となるため、 Y軸方向ずれのずれ量を X 軸方向ずれのずれ量として求めることができる。  [0039] Further, in the two oblique symbols 12b of the scanning image obtained by the two beam sources, the deviation in the X-axis direction is obtained from the amount of positional deviation in the Y-axis direction of the same portion. FIG. 4C is a diagram for explaining detection of a deviation in the X-axis direction by an oblique symbol. In Fig. 4C, the X-axis direction deviation of the two beam sources corresponds to the angle of the two skew symbols 12b in the scanned image obtained by scanning with each beam source, in the Y-axis direction displacement amount. When the angle of the diagonal symbol 12b is 45 degrees with respect to the horizontal symbol 12a, the amount of deviation in the X-axis direction and the amount of deviation in the Y-axis direction are the same angle. The amount of deviation can be obtained as the amount of deviation in the X-axis direction.
[0040] なお、斜めシンボル 12bの角度を水平シンボル 12aに対して 45度以外の任意の角度 とすることもできる。この場合には、 X軸方向ずれのずれ量と Y軸方向ずれのずれ量と は同角度ではなく所定の対応角度関係となるため、 Y軸方向ずれのずれ量に対して 所定の対応角度関係に基づいた演算を行うことで X軸方向ずれのずれ量を求めるこ とがでさる。  [0040] It should be noted that the angle of the oblique symbol 12b may be any angle other than 45 degrees with respect to the horizontal symbol 12a. In this case, the amount of deviation in the X-axis direction deviation and the amount of deviation in the Y-axis direction are not the same angle, but have a predetermined corresponding angle relationship. By calculating based on, the amount of deviation in the X-axis direction can be obtained.
[0041] なお、図 4Cの左方は、太!、線で示すマークを基準としたとき細!、線で示すマークが 左方にずれた状態を示し、図 4Cの右方は、太い線で示すマークを基準としたとき細 い線で示すマークが右方にずれた状態を示している。この X軸方向ずれは、斜めシ ンボル 12b (実線で示す〉の Y軸方向ずれから求めることができる。 [0042] 図 5A、図 5Bおよび図 6A乃至図 6Dを用いて Y軸方向ずれ及び X軸方向ずれにつ いて説明する。なお、ここでは、ビーム源 mとビーム源 m—lの間のずれが示されてい る。 [0041] Note that the left side of FIG. 4C indicates a thick line, the thin line is marked with respect to the mark indicated by the line, and the mark indicated by the line is shifted to the left side. The right side of FIG. 4C indicates the thick line. When the mark indicated by is used as a reference, the mark indicated by the thin line is shifted to the right. This X-axis direction deviation can be obtained from the Y-axis direction deviation of the oblique symbol 12b (shown by the solid line). [0042] The Y-axis direction deviation and the X-axis direction deviation will be described with reference to FIGS. 5A, 5B, and 6A to 6D. Here, the deviation between the beam source m and the beam source ml is shown.
[0043] 図 5Aは、 Y軸方向ずれを説明するための図である。ビーム源間の Y軸方向ずれは 、各ビーム源によって得られる走査画像の各マークを比較し、そのマークの水平シン ボル 12a (実線で示す)の Y軸方向のずれ量から求めることができる。  FIG. 5A is a diagram for explaining a deviation in the Y-axis direction. The deviation in the Y-axis direction between the beam sources can be obtained from the amount of deviation in the Y-axis direction of the horizontal symbol 12a (indicated by the solid line) of the mark by comparing the marks in the scanned image obtained by each beam source.
[0044] 図 5Bは、 X軸方向ずれを説明するための図である。ビーム源間の X軸方向ずれは 、各ビーム源によって得られる走査画像の各マークを比較し、そのマークの斜めシン ボル 12b (実線で示す)の Y軸方向のずれ量から求めることができる。  FIG. 5B is a diagram for explaining the X-axis direction deviation. The X-axis direction deviation between the beam sources can be obtained from the amount of deviation in the Y-axis direction of the oblique symbol 12b (shown by a solid line) of the mark by comparing each mark of the scanned image obtained by each beam source.
[0045] 図 6A乃至図 6Dは、 X軸方向ずれ及び Y軸方向ずれを説明するための図である。  FIG. 6A to FIG. 6D are diagrams for explaining the X-axis direction deviation and the Y-axis direction deviation.
ビーム源間の Y軸方向ずれは、図 6Cに示すように各ビーム源によって得られる走査 画像の各マークを比較し、そのマークの水平シンボル 12aの Y軸方向のずれ量から求 められる。ビーム源間の X軸方向ずれは、図 6Dに示すように各ビーム源によって得ら れる走査画像の各マークを比較し、そのマークの斜めシンボル 12bの Y軸方向のず れ量から求められる。  The deviation in the Y-axis direction between the beam sources is obtained from the amount of deviation in the Y-axis direction of the horizontal symbol 12a of the mark by comparing each mark of the scanned image obtained by each beam source as shown in FIG. 6C. The X-axis direction deviation between the beam sources is obtained from the amount of deviation in the Y-axis direction of the oblique symbol 12b of the mark by comparing each mark of the scanned image obtained by each beam source as shown in FIG. 6D.
[0046] 上記した回転方向ずれ、 Y軸方向ずれ、及び X軸方向ずれの各位置ずれを補正す ることで、走査画像のずれを補正することができる。図 7A乃至図 7Dは、位置ずれ補 正による走査画像のずれ補正を説明するための図である。なお、ここでは、 3つのビ ーム源がそれぞれ 4つのパスによって走査画像を取得する状態を示している。  [0046] By correcting the positional deviations of the rotational direction deviation, the Y-axis direction deviation, and the X-axis direction deviation described above, the deviation of the scanned image can be corrected. FIG. 7A to FIG. 7D are diagrams for explaining the deviation correction of the scanned image by the positional deviation correction. Here, the three beam sources each show a state where a scanned image is acquired by four passes.
[0047] 図 7Aは、回転方向ずれを含む走査画像例を示している。ビーム源 2の設置角度や ビームの照射状鰻によって回転方向にずれが生じると、得られる走査画像に回転方 向ずれが含まれることになる。直線の走査画像は、回転方向ずれによって水平に対 して角度を有する斜めの線として表れる。  FIG. 7A shows an example of a scanned image including a rotational direction shift. If a deviation occurs in the rotation direction due to the installation angle of the beam source 2 or the irradiation state of the beam, a deviation in the rotation direction is included in the obtained scanned image. A straight scanned image appears as an oblique line having an angle with respect to the horizontal due to a rotational direction shift.
[0048] 図 7Bは、回転方向ずれを補正した状態を示している。回転方向ずれ補正によって 斜めの線は直線となる。このとき、ビーム源間において Y軸方向のずれが存在する場 合には、各ビーム源で得られる走査画像の直線は Y軸方向にずれる。  FIG. 7B shows a state where the rotational direction deviation is corrected. Diagonal lines become straight lines due to rotational direction deviation correction. At this time, if there is a deviation in the Y-axis direction between the beam sources, the straight line of the scanned image obtained by each beam source is shifted in the Y-axis direction.
[0049] 図 7Cは、水平シンボルを用いて Y軸方向ずれを補正した状態を示して 、る。 Y軸方 向ずれ補正によってビーム源間の Y軸方向のずれは解消される。このとき、ビーム源 間において X軸方向ずれ方向にずれが存在する場合には、各ビーム源で得られる 走査画像の直線は X軸方向にずれる。 [0049] FIG. 7C shows a state in which a deviation in the Y-axis direction is corrected using a horizontal symbol. The Y-axis misalignment correction eliminates the Y-axis misalignment between the beam sources. At this time, the beam source If there is a deviation in the X axis direction, the straight line of the scanned image obtained by each beam source will be shifted in the X axis direction.
[0050] 図 7Dは、斜めシンボルを用いて X軸方向ずれを補正した状態を示して 、る。 X軸方 向ずれ補正によってビーム源間の X軸方向のずれは解消される。  [0050] FIG. 7D shows a state in which the deviation in the X-axis direction is corrected using an oblique symbol. X-axis misalignment correction eliminates X-axis misalignment between beam sources.
[0051] 次に、図 8のフローチャートを用いて、回転方向ずれ、 Y軸方向ずれ、及び X軸方向 ずれの各位置ずれを補正するパラメータを求める手順について説明する。  [0051] Next, a procedure for obtaining parameters for correcting the positional deviations of the rotational direction deviation, the Y-axis direction deviation, and the X-axis direction deviation will be described using the flowchart of FIG.
[0052] はじめに、走査画像を取得する際の制御パラメータの内で回転方向ずれ、 Y軸方 向ずれ、 X軸方向ずれ等を補正するパラメータを" 0"に設定し (S1)、この状態でビー ムを走査して、ステージ上に形成したマークの走査画像が取得される。ここでは、回 転方向ずれ、 Y軸方向ずれ、及び X軸方向ずれを補正するために、走査ビーム用シ ンボルの走査画像が取得される(S2)。  [0052] First, among the control parameters for acquiring a scanned image, parameters for correcting rotational direction deviation, Y-axis direction deviation, X-axis direction deviation, etc. are set to "0" (S1). A scanned image of the mark formed on the stage is acquired by scanning the beam. Here, a scanning image of the scanning beam symbol is acquired in order to correct the rotational direction deviation, the Y-axis direction deviation, and the X-axis direction deviation (S2).
[0053] この取得された走査ビーム用シンボルを用いてビーム源の回転方向ずれの補正係 数を求め(S3)、この求められた回転方向ずれ補正係数を用いて制御パラメータを設 定し (S4)、回転方向ずれを補正した状態で回転方向ずれ補正係数を再度用いてビ ームを走査して、走査ビーム用シンボルの走査画像が取得される(S5)。  [0053] A correction factor for the rotational deviation of the beam source is obtained using the acquired scanning beam symbol (S3), and a control parameter is set using the obtained rotational deviation deviation coefficient (S4). ), The beam is scanned again using the rotation direction deviation correction coefficient in a state where the rotation direction deviation is corrected, and a scanned image of the scanning beam symbol is obtained (S5).
[0054] 次に、回転方向ずれを補正して取得された走査画像の走査ビーム用シンボルの水 平シンボルを用いて Y軸方向ずれ補正係数 (補正量)が求められ (S6)、走査ビーム 用シンボルの斜めシンボルを用いて X軸方向ずれ補正係数 (補正量)が求められる ( S7)。  [0054] Next, using the horizontal symbol of the scanning beam symbol of the scanned image obtained by correcting the rotational direction deviation, a Y-axis direction deviation correction coefficient (correction amount) is obtained (S6). Using the diagonal symbol, the X-axis misalignment correction coefficient (correction amount) is obtained (S7).
[0055] 前記各工程で求められた回転方向ずれ補正係数、 Y軸方向ずれ補正係数、 X軸 方向ずれ補正係数を用いてビーム制御のパラメータを設定する(S8)。  [0055] Beam control parameters are set using the rotational direction deviation correction coefficient, the Y-axis direction deviation correction coefficient, and the X-axis direction deviation correction coefficient obtained in the respective steps (S8).
[0056] 以下、図 9、図 10A,図 10B,図 11A乃至図 11Eを参照して回転方向ずれ補正に ついて説明し、図 12、図 13A乃至図 13C、図 14A乃至図 14C,〜図 15を参照して Y軸方向ずれ補正について説明し、図 16A乃至図 16C、図 17A乃至図 17C、図 18 A乃至図 18Cを参照して X軸方向ずれ補正について説明する。  Hereinafter, the rotational direction deviation correction will be described with reference to FIGS. 9, 10A, 10B, and 11A to 11E. FIGS. 12, 13A to 13C, and FIGS. 14A to 14C, to 15 will be described. The Y-axis direction deviation correction will be described with reference to FIG. 16, and the X-axis direction deviation correction will be described with reference to FIGS. 16A to 16C, FIGS. 17A to 17C, and FIGS. 18A to 18C.
[0057] 図 9は、ビーム源の回転方向ずれ補正係数の算出(図 8のフローチャート中の S3)を 説明するためのフローチャートである。なお、ここでは、複数のビーム源(ビーム源の 個数を Nとする)を備える場合にっ 、て説明する。 [0058] n=0として (S3a)、ビーム源 nの走査画像から走査用ビームシンボルの水平シンポ ルについて 2点を指定し (S3b)、これら指定された 2点の Y軸方向のずれ量が求めら れる(S3c)。 FIG. 9 is a flowchart for explaining the calculation of the beam direction rotation direction deviation correction coefficient (S 3 in the flowchart of FIG. 8). Here, a case where a plurality of beam sources (the number of beam sources is N) will be described. [0058] With n = 0 (S3a), two points are specified for the horizontal symbol of the beam symbol for scanning from the scanned image of the beam source n (S3b), and the amount of deviation in the Y-axis direction between these two specified points is Required (S3c).
この求められた Y軸方向ずれ量から回転方向ずれ補正係数が算出される(S3d)。  A rotational direction deviation correction coefficient is calculated from the obtained Y-axis direction deviation amount (S3d).
[0059] n=n+ lとして(S3e)、 nと Nとを比較し(S3f)、 nが Nとなるまで(S3b) [0059] n = n + 1 (S3e), compare n and N (S3f), until n becomes N (S3b)
〜(S3e)の工程を繰り返すことによって、全てのビーム源について回転方向ずれ補正 係数が算出される。  By repeating the steps (S3e), rotational direction deviation correction coefficients are calculated for all the beam sources.
[0060] 前記(S3b)の工程では、回転方向ずれを求めるために水平シンボル中の 2点が指 定されている。図 10Aは、水平シンボルにおける 2点の一指定例を示す図であり、二 つの水平シンボルの一方の水平シンボルの上側の端部を指定し(チェック No. 1)、他 方の水平シンボルの下側の端部を指定する(チェック No. 2)。また、図 10Bは、水平 シンボルにおける 2点の他の指定例を示す図であり、一つの水平シンボルの両端部( チェック No. 1,チェック No. 2)を指定し、走査画像において指定した点の Y軸方向の ポイント数でずれ量が求められる。なお、ここでは、ずれ量は、図中のチェック No. 1の ポイントからチェック No. 2のポイントを差し引 、たポイント数で表されて 、る。  [0060] In the step (S3b), two points in the horizontal symbol are designated in order to obtain the rotational direction deviation. Fig. 10A shows an example of specifying two points in a horizontal symbol. The upper end of one of the two horizontal symbols is specified (Check No. 1), and the bottom of the other horizontal symbol is specified. Specify the side edge (Check No. 2). FIG. 10B is a diagram showing another example of specifying two points in a horizontal symbol. Points specified in a scanned image by specifying both ends (check No. 1 and check No. 2) of one horizontal symbol. The amount of deviation can be obtained from the number of points in the Y-axis direction. Here, the amount of deviation is expressed as the number of points obtained by subtracting the check No. 2 point from the check No. 1 point in the figure.
[0061] 図 11は、フレームと回転方向ずれとの関係を示している。図 11Aおよび図 11Bは、 一フレームの範囲及び一フレームのポイント数の一例を示して 、る。このフレームは、 X方向長さ LX (例えば、 47mm)と y方向長さ Ly (例えば、 3mm)とを有し、 X方向に Pxの ポイント数を有し、 y方向に Pyのポイント数を有する。  FIG. 11 shows the relationship between the frame and the rotational direction deviation. FIG. 11A and FIG. 11B show an example of the range of one frame and the number of points of one frame. This frame has a length LX (eg 47 mm) in the X direction and a length Ly (eg 3 mm) in the y direction, has Px points in the X direction, and Py points in the y direction. .
[0062] そこで、水平シンボルの Y軸方向のずれ量を、ポイント数をフレームに対応づけるこ とでフレームにおける回転方向ずれのずれ係数が算出される。算出は以下の式によ つて行うことができる。  [0062] Therefore, the shift coefficient of the rotation direction shift in the frame is calculated by associating the shift amount of the horizontal symbol in the Y-axis direction with the number of points in the frame. The calculation can be performed using the following formula.
回転方向ずれネ ΐ正係数 =フレーム Y方向の長さ Zフレーム Y方向のポイント Zフレ ーム X方向の長さ Xずれ量  Rotational direction deviation correction coefficient = Frame length in Y direction Z frame Point in Y direction Z frame Length in X direction X Deviation amount
例えば、一フレームの範囲が(47mm X 3mm〉であり、一フレームのポイント数が(352 0ポイント X 68ポイント)であるとき、ずれ量として Y軸方向で 2ポイント数分ずれて!/、る 場合には、  For example, if the range of one frame is (47mm x 3mm) and the number of points in one frame is (352 0 points x 68 points), the amount of deviation is shifted by 2 points in the Y-axis direction! / in case of,
0. 001855347 = 3 (mm) /68 (point) /47 (mm) /2 (point) となる。 0. 001855347 = 3 (mm) / 68 (point) / 47 (mm) / 2 (point) It becomes.
[0063] 図 11Cは、回転方向ずれが左回転の場合を示し、図 11Dは、回転方向ずれが右 回転の場合を示している。図 11Eは、回転方向ずれの回転方向の表示例であり、図 中の" right"は回転方向ずれが右回転であることを示し、図中の" left"は回転方向ず れが左回転であることを示している。なお、上記数値例の場合には、右回転方向に 対応している。  [0063] FIG. 11C shows a case where the rotational direction deviation is a left rotation, and FIG. 11D shows a case where the rotational direction deviation is a right rotation. Fig. 11E shows a display example of the rotation direction deviation. "Right" in the figure indicates that the rotation direction deviation is right rotation, and "left" in the figure indicates that the rotation direction deviation is left rotation. It shows that there is. In the case of the above numerical example, it corresponds to the clockwise direction.
[0064] 次に、 Y軸方向ずれ補正係数の算出について説明する。  Next, calculation of the Y-axis direction deviation correction coefficient will be described.
[0065] 図 12は、ビーム源の Y軸方向ずれ補正係数の算出(図 8のフローチャート中の S6) を説明するためのフローチャートである。なお、ここでは、複数のビーム源(ビーム源 の個数を Nとする)を備える場合について、ビーム源 mを基準として他のビーム源の Y 軸方向ずれ補正する補正係数を順に求める手順を示している。  FIG. 12 is a flowchart for explaining the calculation of the Y axis direction deviation correction coefficient of the beam source (S6 in the flowchart of FIG. 8). Here, for a case where a plurality of beam sources are provided (the number of beam sources is N), a procedure for sequentially obtaining correction coefficients for correcting misalignment in the Y-axis direction of other beam sources with reference to the beam source m is shown. Yes.
[0066] 先ず、基準のビーム源 mが設定される。複数のビーム源内で何れのビーム源を基準 のビーム源として設定するかは任意とすることができる。例えば、ビーム源の個数が" 7"である場合に、 m=4として中央に位置する第 4番目のビーム源を基準とすることが できる(S6a)。  First, a reference beam source m is set. Which of the plurality of beam sources is set as the reference beam source can be arbitrarily set. For example, when the number of beam sources is “7”, the fourth beam source located in the center with m = 4 can be used as a reference (S6a).
[0067] 次に、基準のビーム源に対して隣接するビーム源の Y軸方向ずれを求め、この求め られた Y軸方向ずれを補正する補正係数を求め、さら〖こ、隣接するビーム源の Y軸方 向ずれを求めて補正係数を求める。この演算を基準のビーム源の両側について行う ことで、全てのビーム源にっ 、て基準のビーム源に対して Y軸方向ずれを補正する 補正係数を求めることができる。  [0067] Next, a deviation in the Y-axis direction of the adjacent beam source with respect to the reference beam source is obtained, and a correction coefficient for correcting the obtained deviation in the Y-axis direction is obtained. Obtain the correction coefficient by obtaining the deviation in the Y-axis direction. By performing this calculation on both sides of the reference beam source, it is possible to obtain a correction coefficient for correcting the deviation in the Y-axis direction with respect to the reference beam source for all beam sources.
[0068] はじめに、基準のビーム源 mに対して一方の側に存在するビーム源(m— 1, m— 2, •••, 1)について Y軸方向ずれの補正係数を求め(S6b〜S6f)、次に基準のビーム源 m に対して他方の側に存在するビーム源 (m+l, m十 2, · ··, N)について Y軸方向ずれ の補正係数を求める(S6g〜S6k)。  [0068] First, a correction coefficient for the deviation in the Y-axis direction is obtained for the beam source (m—1, m—2, •••, 1) existing on one side with respect to the reference beam source m (S6b to S6f). ), And then determine the correction factor for the Y-axis misalignment for the beam source (m + l, m + 2, ..., N) on the other side of the reference beam source m (S6g to S6k) .
[0069] Y軸方向ずれの補正係数を求める場合、ビーム源 mとビーム源 m— 1の走査画像か ら走查用ビームシンボルの水平シンボルについて 2点を指定し(S6b)、これら指定さ れた 2点の Y軸方向のずれ量が求められる(S6c)。この求められた Y軸方向ずれ量か ら Y軸方向ずれ補正係数が算出される (S6d)。 [0070] m=m— 1として(S6e)、 mと" 0"とを比較し(S6f)、 mが" 0"となるまで(S6b)〜(S6e)の 工程を繰り返すことによって、基準のビーム源 l〜m— 1のビーム源について Y軸方向 ずれ補正係数が算出される。 [0069] When calculating the correction coefficient for the Y-axis direction deviation, two points are designated for the horizontal symbol of the beam symbol for scanning from the scanned images of the beam source m and the beam source m-1 (S6b). The amount of deviation in the Y-axis direction between the two points is obtained (S6c). A Y axis direction deviation correction coefficient is calculated from the obtained Y axis direction deviation amount (S6d). [0070] As m = m—1 (S6e), m is compared with “0” (S6f), and steps (S6b) to (S6e) are repeated until m becomes “0”. The deviation correction coefficient in the Y-axis direction is calculated for the beam sources 1 to m-1.
[0071] 次に、ビーム源 mとビーム源 m+ 1の走査画像から走査用ビームシンボルの水平シ ンボルについて 2点が指定され (S6g)、これら指定された 2点の Y軸方向のずれ量が 求められる(S6h)。この求められた Y軸方向ずれ量力 Y軸方向ずれ補正係数が算 出される(S6i)。  [0071] Next, two points are designated for the horizontal symbol of the beam symbol for scanning from the scanned images of the beam source m and the beam source m + 1 (S6g), and the deviation amount in the Y-axis direction of these two designated points is determined. Required (S6h). The obtained Y-axis direction displacement amount force Y-axis direction displacement correction coefficient is calculated (S6i).
[0072] m=m+ lとして(S6j)、 mど 'Ν"とを比較し(S6k)、 mが" N"となるまで(S6g)〜(S6j)の 工程を繰り返すことによって、基準のビーム源 m+ l〜Nについて Y軸方向ずれ補正 係数が算出される。  [0072] As m = m + l (S6j), m is compared with 'Ν' (S6k), and the steps (S6g) to (S6j) are repeated until m becomes "N". Y-axis misalignment correction coefficients are calculated for sources m + 1 to N.
[0073] これによつて、基準のビーム源 mに対して全てのビーム源の Y軸方向ずれを補正す る補正係数を求めることができる。  Thus, it is possible to obtain a correction coefficient for correcting the deviation in the Y-axis direction of all the beam sources with respect to the reference beam source m.
[0074] 図 13は、ビーム源間の Y軸方向ずれ補正を説明するための図である。図 13Aは、 ビーム源 mと m—1と走査ビーム用シンボルとの位置関係を示し、図 13Bは、走査ビー ム用シンボルの走査画像を示して 、る。ビーム源 mとビーム源 m— 1との走査ビーム用 シンボルの画像は、ビーム源の Y軸方向ずれによって、 Y軸方向にずれて観察され る。ここで、図 13Cに示すように、走査ビーム用シンボルの水平シンボル(実線で表 示)についてチェック No. 1とチェック No. 2とを指定し、この指定された点の Y軸方向 のポイント数でずれ量が求められる。  FIG. 13 is a diagram for explaining correction of deviation in the Y-axis direction between beam sources. FIG. 13A shows the positional relationship between the beam sources m and m-1 and the scanning beam symbol, and FIG. 13B shows a scanning image of the scanning beam symbol. The scanning beam symbol images of the beam source m and the beam source m-1 are observed shifted in the Y-axis direction due to the beam source shifting in the Y-axis direction. Here, as shown in Fig. 13C, check No. 1 and check No. 2 are specified for the horizontal symbol of the scanning beam symbol (indicated by a solid line), and the number of points in the Y-axis direction for this specified point The amount of deviation can be obtained with.
[0075] なお、ここでは、ずれ量は図中のチェック No. 1のポイントからチェック No. 2のポイン トを差し引 、たポイント数で表わされる。  [0075] Here, the amount of deviation is represented by the number of points obtained by subtracting the points of check No. 2 from the points of check No. 1 in the figure.
[0076] 図 14はフレームと Y軸方向ずれとの関係を示している。図 14Bおよび図 14Cは、 - フレームの範囲及び フレームのポイント数の一例を示し、 Y方向に py分だけずれて いる状態を示している。図 14Aは、二つの走査ビーム用シンボルの走査画像(それ ぞれ片側のみが示されて 、る)を示し、 Y方向に pyだけずれて 、ることを観察すること ができる。  FIG. 14 shows the relationship between the frame and the Y-axis direction deviation. FIG. 14B and FIG. 14C show an example of the frame range and the number of points of the frame, and show a state where they are shifted by py in the Y direction. FIG. 14A shows the scanned images of the two scanning beam symbols (each shown only on one side), and can be observed to be shifted by py in the Y direction.
[0077] フレームは X方向長さ Lx (例えば、 47mm)と y方向長さ Ly (例えば、 3mm)を有し、 X 方向に Pxのポイント数を有し、 y方向にァ yのポイント数を有する。 [0078] 前記したフレームとの対応関係において、水平シンボルの Y軸方向のずれ量を、ポ イント数をフレームに対応づけることで Y軸方向ずれのずれ係数により算出される。こ の算出は以下の式によって行われる。 [0077] The frame has a length Lx in the X direction (eg 47 mm) and a length Ly in the y direction (eg 3 mm), has a number of points Px in the X direction, and a number of points y in the y direction. Have. In the correspondence relationship with the frame described above, the amount of deviation of the horizontal symbol in the Y-axis direction is calculated by the deviation coefficient of the deviation in the Y-axis direction by associating the number of points with the frame. This calculation is performed by the following formula.
Y軸方向ずれ補正係数 =ずれ量 Xフレーム Y方向の長さ Zフレーム Y方向のポィ ント Z最小分解能  Y-axis direction deviation correction factor = deviation amount X frame Y-direction length Z frame Y-direction point Z minimum resolution
例えば、一フレームの範囲が(47mm X 3mm)であり、一フレームの Y方向のサンプリ ング点数が 68であるとき、ずれ量として Y軸方向で一 4ポイント数分ずれて ヽる場合に は、 44=— 4 (point) X 3000 (um) /6. 8 (point) Z4 (um)となる。  For example, when the range of one frame is (47mm X 3mm) and the number of sampling points in the Y direction of one frame is 68, if the deviation amount is 14 points in the Y axis direction, 44 = —4 (point) X 3000 (um) / 6. 8 (point) Z4 (um).
[0079] 次に、 X軸方向ずれ補正係数の算出について説明する。 Next, calculation of the X axis direction deviation correction coefficient will be described.
[0080] 図 15は、ビーム源の X軸方向ずれ補正係数の算出(図 8のフローチャート中の S7) を説明するためのフローチャートである。なお、ここでは、複数のビーム源(ビーム源 の個数を Nとする)を備える場合について、ビーム源 mを基準として他のビーム源の Y 軸方向ずれ補正する補正係数を順に求める手順を示している。  FIG. 15 is a flowchart for explaining calculation of a beam source X-axis direction deviation correction coefficient (S 7 in the flowchart of FIG. 8). Here, for a case where a plurality of beam sources are provided (the number of beam sources is N), a procedure for sequentially obtaining correction coefficients for correcting misalignment in the Y-axis direction of other beam sources with reference to the beam source m is shown. Yes.
[0081] 先ず、基準のビーム源 mが設定される。複数のビーム源内で何れのビーム源を基準 のビーム源として設定するかは任意とすることができる。例えば、ビーム源の個数が" 7"である場合に、 m=4として中央に位置する第 4番目のビーム源を基準とすることが できる(S7a)。 First, a reference beam source m is set. Which of the plurality of beam sources is set as the reference beam source can be arbitrarily set. For example, when the number of beam sources is “7”, the fourth beam source located in the center with m = 4 can be used as a reference (S 7 a).
[0082] 次に、基準のビーム源に対して隣接するビーム源の X軸方向ずれを求め、この求め られた X軸方向ずれを補正する補正係数を求め、さらに、隣接するビーム源の X軸方 向ずれを求めて補正係数を求める。この演算を基準のビーム源の両側について行う ことで、全てのビーム源にっ 、て基準のビーム源に対して X軸方向ずれを補正する 補正係数を求めることができる。  [0082] Next, the X-axis direction deviation of the adjacent beam source with respect to the reference beam source is obtained, a correction coefficient for correcting the obtained X-axis direction deviation is obtained, and further, the X-axis of the adjacent beam source is obtained. The direction coefficient is obtained and the correction coefficient is obtained. By performing this calculation on both sides of the reference beam source, it is possible to obtain a correction coefficient for correcting the deviation in the X-axis direction with respect to the reference beam source for all the beam sources.
[0083] はじめに、基準のビーム源 mに対して一方の側に存在するビーム源(m— 1, m— 2, · ··, 1)について X軸方向ずれの補正係数を求め(S7b〜S7f)、次に基準のビーム源 m に対して他方の側に存在するビーム源 (m+ 1, m十 2, · · · , N)について X軸方向ず れの補正係数を求める(S7g〜S7k)。  [0083] First, a correction coefficient for deviation in the X-axis direction is obtained for a beam source (m-1, m-2, ..., 1) existing on one side with respect to the reference beam source m (S7b to S7f ), And then, for the beam source (m + 1, m + 2, ..., N) existing on the other side with respect to the reference beam source m, the correction coefficient for the deviation in the X-axis direction is obtained (S7g to S7k) .
[0084] X軸方向ずれの補正係数を求める場合、ビーム源 mとビーム源 m—1との走査画像 力 走査用ビームシンボルの斜めシンボルについて 2点を指定し(S7b)、これら指定 された 2点の Y軸方向のずれ量を求める(S7c)。この求められた Y軸方向ずれ量から[0084] When obtaining the correction coefficient for the deviation in the X-axis direction, specify two points for the oblique image of the scanning beam force scanning beam symbol of the beam source m and the beam source m-1 (S7b). Determine the amount of deviation in the Y-axis direction between the two points (S7c). From this calculated Y-axis direction deviation
X軸方向ずれ補正係数を算出する (S7d)。 An X-axis direction deviation correction coefficient is calculated (S7d).
[0085] m=m— 1として(S7e)、 mと" 0"とを比較し(S7f)、 mが" 0"となるまで(S7b〉〜(S7e)の 工程を繰り返すことによって、基準のビーム源 l〜m— 1のビーム源について X軸方向 ずれ補正係数が算出される。 [0085] As m = m—1 (S7e), m is compared with “0” (S7f), and the process of S7b> to (S7e) is repeated until m becomes “0”. X-axis deviation correction coefficient is calculated for the beam sources 1 to m-1.
[0086] 次に、ビーム源 mとビーム源 m+ 1との走査画像から走査用ビームシンボルの斜めシ ンボルについて 2点を指定し (S7g)、これら指定された 2点の Y軸方向のずれ量を求め る(S7h〉。この求められた Y軸方向ずれ量カゝら X軸方向ずれ補正係数が算出される (S[0086] Next, two points are specified for the oblique symbol of the beam symbol for scanning from the scanned images of the beam source m and the beam source m + 1 (S7g), and the amount of deviation in the Y-axis direction between these two specified points (S7h) The X-axis misalignment correction coefficient is calculated based on the calculated Y-axis misalignment amount (S
7i) o 7i) o
[0087] m=m+lとして(S7j)、 mど 'Ν"とを比較し(S7k)、 mが" N"となるまで(S7g)〜(S7j)の 工程を繰り返すことによって、基準のビーム源 m+ l〜Nのビーム源について X軸方向 ずれ補正係数が算出される。  [0087] m = m + l (S7j), m is compared with 'Ν' (S7k), and the steps (S7g) to (S7j) are repeated until m becomes "N". The X axis deviation correction coefficient is calculated for the beam sources m + 1 to N.
[0088] これによつて、基準のビーム源 mに対して全てのビーム源の X軸方向ずれを補正す る補正係数を求めることができる。  Thus, it is possible to obtain a correction coefficient for correcting the deviation in the X-axis direction of all the beam sources with respect to the reference beam source m.
[0089] 図 16は、ビーム源間の X軸方向ずれ補正を説明するための図である。図 16Aは、 ビーム源 mとビーム源 m— 1と走査ビーム用シンボルとの位置関係を示し、図 16Bは、 走査ビーム用シンボルの走査画像を示して 、る。ビーム源 mとビーム源 m— 1との走 查ビーム用シンボルの画像の X軸方向ずれは、斜めシンボルが水平シンボルに対し て 45度の角度にある場合には Y軸方向ずれとして観察される。ここで、図 16Cに示す ように、走査ビーム用シンボルの斜めシンボル(実線で表示)についてチェック No. 1 とチェック No. 2とを指定し、これら指定された点の Y軸方向のポイント数でずれ量が 求められる。  FIG. 16 is a diagram for explaining correction of deviation in the X-axis direction between beam sources. FIG. 16A shows a positional relationship among the beam source m, the beam source m-1, and the scanning beam symbol, and FIG. 16B shows a scanning image of the scanning beam symbol. The X-axis direction deviation of the beam symbol image between the beam source m and the beam source m-1 is observed as a Y-axis direction deviation when the oblique symbol is at an angle of 45 degrees with respect to the horizontal symbol. . Here, as shown in Fig. 16C, check No. 1 and check No. 2 are specified for the diagonal symbol (displayed with a solid line) of the scanning beam symbol, and the number of points in the Y-axis direction of these specified points is specified. The amount of deviation is required.
[0090] なお、ここでは、ずれ量は図中のチェック No. 1のポイントからチェック No. 2のポイン トを差し引 、たポイント数で表わされる。  [0090] Here, the shift amount is represented by the number of points obtained by subtracting the check No. 2 point from the check No. 1 point in the figure.
[0091] 図 17はフレームと X軸方向ずれとの関係を示している。図 17Bおよび図 17Cは、 - フレームの範囲及び一フレームのポイント数の一例を示し、 X方向に px分だけずれて いる状態を示している。図 17Aは、二つの走査ビーム用シンボルの走査画像(それ ぞれ片側のみが示されて 、る)を示し、 X方向に pxだけずれた状態が Y方向に py ( = PX>だけずれた状態として観察される。 FIG. 17 shows the relationship between the frame and the deviation in the X-axis direction. 17B and 17C show an example of a frame range and the number of points of one frame, and show a state in which they are shifted by px in the X direction. Fig. 17A shows the scanned images of the two scanning beam symbols, each of which shows only one side, and the state shifted by px in the X direction is py (= Observed as a state shifted by PX>.
[0092] フレームは X方向長さ Lx (例えば、 47mm) ·と y方向長さ Ly (例えば、 3mm)とを有し、 [0092] The frame has a length Lx in the X direction (eg 47 mm) and a length Ly in the y direction (eg 3 mm),
X方向に Pxのポイント数を有し、 y方向に pyのポイント数を有する。 It has Px points in the X direction and py points in the y direction.
[0093] 前記フレームとの対応関係において、斜めシンボルの Y軸方向のずれ量をポイント 数をフレームに対応づけることで X軸方向ずれのずれ係数が算出される。この算出は 以下の式によって行われる。 In the correspondence relationship with the frame, the deviation coefficient of the deviation in the X-axis direction is calculated by associating the deviation amount of the oblique symbol in the Y-axis direction with the number of points in the frame. This calculation is performed by the following formula.
X軸方向ずれ補正係数 =ずれ量 Xフレーム Y方向の長さ Zフレーム Y方向のポィ ント Z最小分解能  X-axis deviation correction coefficient = deviation amount X frame length in Y direction Z frame point in Y direction Z minimum resolution
例えば、一フレームの範囲が(47mm X 3mm)であり、一フレームの Y方向のサンプリ ング点数が 68であるとき、ずれ量として Y軸方向で 2ポイント数分ずれている場合には  For example, if the range of one frame is (47mm X 3mm) and the number of sampling points in the Y direction of one frame is 68, the amount of deviation is 2 points in the Y axis direction.
22 = 2 (point) X 3000 (um) /68 (point) /4 (um)となる。 22 = 2 (point) X 3000 (um) / 68 (point) / 4 (um).
[0094] 図 18は、回転方向ずれ補正、 Y軸方向ずれ補正、及び X軸方向ずれ補正の補正 演算の順序を説明するための図である。  FIG. 18 is a diagram for explaining the order of correction calculations for rotational direction deviation correction, Y-axis direction deviation correction, and X-axis direction deviation correction.
[0095] 図 18Aは、一例として左力も右に向力つて順にビーム源の回転方向ずれ補正の演 算処理を行う場合について示している。回転方向ずれ補正は、各ビーム源との間で 関連がなく、 ビームの回転方向ずれ補正が他のビーム源の回転方向ずれ補正に 影響しな!、ため、ビーム源につ 、て任意の順序で行うことができる。  FIG. 18A shows, as an example, a case where the left force is also directed to the right and the calculation process of the beam source rotational direction deviation correction is sequentially performed. Rotation direction deviation correction is not related to each beam source, and beam rotation direction deviation correction does not affect the rotation direction deviation correction of other beam sources! Can be done.
[0096] 図 18Bは、 Y軸方向ずれ補正の順序の一例であり、 7個のビーム源において中央の ビーム源 No. 4を基準として順に Y軸方向ずれ補正を行う。第 1番目に基準のビーム 源 No. 4に対して左側に隣接する No. 3のビーム源との問で Y軸方向ずれ補正を行い 、次に、 No.3と No. 2のビーム源との間で Y軸方向ずれ補正を行った後、 No. 2と No. 1 のビーム源との間で Y軸方向ずれ補正を行って左方にあるビーム源の Y軸方向ずれ 補正を完了する。  FIG. 18B shows an example of the order of correction in the Y-axis direction deviation, and the Y-axis direction deviation correction is performed in sequence with respect to the central beam source No. 4 in seven beam sources. First, correct the Y-axis misalignment with the reference beam source No. 4 with the No. 3 beam source adjacent to the left side, and then the No. 3 and No. 2 beam sources. After correcting the Y-axis misalignment between the beam sources, perform the Y-axis misalignment correction between the No. 2 and No. 1 beam sources to complete the Y-axis misalignment correction of the beam source on the left. .
[0097] 次に、第 4番目に基準のビーム源 No, 4に対して右側に隣接する No. 5のビーム源と の間で Y軸方向ずれ補正を行い、次に、 No. 5と No. 6のビーム源との間で Y軸方向 ずれ補正を行った後、 No. 6と No. 7のビーム源との間で Y軸方向ずれ補正を行って 右方にあるビーム源の Y軸方向ずれ補正を完了する。 [0098] これにより、全てのビーム源についての Y軸方向ずれを補正することができる。 [0097] Next, for the fourth reference beam source No. 4, the Y-axis direction deviation correction is performed with the No. 5 beam source adjacent to the right side, and then No. 5 and No. 4 are corrected. After correcting the Y-axis direction deviation with the beam source No. 6 and then correcting the Y-axis direction deviation between the No. 6 and No. 7 beam sources, the Y axis of the beam source on the right side Complete the misalignment correction. [0098] Thereby, the deviation in the Y-axis direction for all the beam sources can be corrected.
[0099] 図 18Cは、 X軸方向ずれ補正の順序の一例であり、 Υ軸方向ずれ補正と同様に、 7 個のビーム源において中央のビーム源 No. 4を基準として順に X軸方向ずれ補正を 行って全てのビーム源の X軸方向ずれ補正を行う。 [0099] FIG. 18C is an example of the order of X-axis misalignment correction. Similar to the misalignment correction in the X-axis direction, the X-axis misalignment correction is sequentially performed for seven beam sources with reference to the center beam source No. 4. Perform X axis deviation correction for all beam sources.
[0100] なお、 Y軸方向、 X軸方向の補正において、補正を補正後のマークと順次比較する ことによって補正を行う場合、基準のマークに対する補正係数を求める場合には、前 回の補正値を考慮する必要がある。 [0100] In the correction in the Y-axis direction and X-axis direction, when performing correction by sequentially comparing the correction with the corrected mark, when calculating the correction coefficient for the reference mark, the previous correction value Need to be considered.
[0101] 次に、本発明の走査ビーム照射装置のアプリケーション上の動作を説明する。 Next, the operation on the application of the scanning beam irradiation apparatus of the present invention will be described.
図 19は、表示画面例であり、走査画像を表示する画像、走査ビーム用シンボル等 のマークを用いて補正処理をための画像を表示する。  FIG. 19 shows an example of a display screen that displays an image for correction processing using marks such as an image for displaying a scanned image and a symbol for a scanned beam.
[0102] 図 19の左方画面には走査画像が表示され、この走査画像に表示された走査ビー ム用シンボル等のマークの所定位置を指定することができる。走査画像上のポイント の座標値は、図 19の左方画面の下方部分に表示され、 "Portl"のボタンをクリックす ると、第 1の補正ポイントの座標値がその右部分に表示され、同様に" Port2"のボタン をクリックすると、第 2の補正ポイントの座標値がその右部分に表示される。 A scanned image is displayed on the left screen of FIG. 19, and a predetermined position of a mark such as a scanning beam symbol displayed on the scanned image can be designated. The coordinate value of the point on the scanned image is displayed in the lower part of the left screen in Fig. 19. When the "Portl" button is clicked, the coordinate value of the first correction point is displayed in the right part. Similarly, when the “Port2” button is clicked, the coordinate value of the second correction point is displayed on the right.
[0103] 図 19の右方画面には走査ビーム用シンボルと指定された補正ポイントとが表示さ れ、その下方には補正事項や操作内容を選択するボタン、及び婦正事項を表すガイ ドリストが表示される。 [0103] The right screen of FIG. 19 displays the scanning beam symbol and the specified correction point, and below that, there are buttons for selecting correction items and operation details, and a guide list indicating correction items. Is displayed.
[0104] 補正事項を選択するボタンは、回転方向ずれ補正 (rotational adjust)を選択するボ タン、 Y軸方向ずれ補正 (Y axial adjust)を避択するボタン、 X軸方向ずれ補正 (X axial adjust)を選択するボタンがある。操作内容を選択するボタンとして、 "Portl", "P ort2"に表示された補正ポイントをガイドリストに追加して登録する" Next"ボタン、元に もどす" Back"ボタンが設けられる。  [0104] The buttons for selecting correction items are buttons for selecting rotational adjustment, buttons for avoiding Y axial adjustment, and X axial adjust. ) Button to select. As buttons for selecting the operation contents, there are a “Next” button for adding the correction points displayed in “Portl” and “Port2” to the guide list and registering them, and a “Back” button for restoring them.
[0105] ガイドリストには、回転方向ずれ補正、 Y軸方向ずれ補正、 X軸方向ずれ補正等の各 補正事項について、ずれ補正係数 (パラメータ)がその状態に応じて表示される。例 えば、補正係数が既に取得されている状態、現在取得中である状態、取得前の状態 等を、背景色を異ならせて表示することができる。なお、図 19では、ガイドリストの一 部のみを示している。 産業上の利用可能性 In the guide list, deviation correction coefficients (parameters) are displayed for each correction item such as rotational direction deviation correction, Y-axis direction deviation correction, and X-axis direction deviation correction according to the state. For example, the state in which the correction coefficient has already been acquired, the state currently being acquired, the state before acquisition, etc. can be displayed with different background colors. In FIG. 19, only a part of the guide list is shown. Industrial applicability
本発明の走査ビーム照射装置は、 TFTアレイ検査装置、電子線マイクロアナライザ 、走査電子顕微鏡、 X線分析装置等に適用することができる。  The scanning beam irradiation apparatus of the present invention can be applied to a TFT array inspection apparatus, an electron beam microanalyzer, a scanning electron microscope, an X-ray analysis apparatus, and the like.

Claims

請求の範囲 The scope of the claims
[1] 試料を支持し少なくとも二次元方向に移動可能なステージと、  [1] a stage that supports the sample and is movable in at least two dimensions;
前記試料に走査ビームを照射するビーム源と、  A beam source for irradiating the sample with a scanning beam;
前記試料に設けられたマークと、  A mark provided on the sample;
前記走査ビームの照射位置を検出する検出機構と、  A detection mechanism for detecting an irradiation position of the scanning beam;
前記検出機構からの検出信号に基づき走査画像を形成する画像形成機構と、 前記画像形成機構によって形成された走査画像と前記マークとの位置ずれを 検出して位置ずれ補正係数を算出し且つ該位置ずれ補正係数に基づき前記ビーム 源およびステージの駆動を制御する制御機構とを備えていることを特徴とする走査ビ ーム照射装置。  An image forming mechanism that forms a scanned image based on a detection signal from the detection mechanism; a positional deviation between the scanned image formed by the image forming mechanism and the mark is detected; a positional deviation correction coefficient is calculated; A scanning beam irradiation apparatus, comprising: a control mechanism that controls driving of the beam source and the stage based on a deviation correction coefficient.
[2] 前記走査ビームは、荷電電子ビームから成ることを特徴とする請求項 1記載の走 查ビーム照射装置。  2. The scanning beam irradiation apparatus according to claim 1, wherein the scanning beam is a charged electron beam.
[3] 前記マークは前記ステージの座標を検出するためのステージ用シンボル力も成 り、該ステージ用シンボルは、ステージ上の位置を定める位置シンボルと、位置シン ボルの方向を定める方向シンボルとを備えていることを特徴とする請求項 1に記載の 走査ビーム照射装置。  [3] The mark also has a symbol power for the stage for detecting the coordinates of the stage, and the symbol for the stage includes a position symbol for determining the position on the stage and a direction symbol for determining the direction of the position symbol. The scanning beam irradiation apparatus according to claim 1, wherein:
[4] 前記検出機構は、走査ビームが照射された試料力もの荷電粒子を検出するよう に構成されていることを特徴とする請求項 1記載の走査ビーム照射装置。  4. The scanning beam irradiation apparatus according to claim 1, wherein the detection mechanism is configured to detect charged particles having a sample force irradiated with the scanning beam.
[5] 前記画像形成機構は、前記検出機構からの検出信号に基づいて走査画像を 形成し且つ該走査画像を記憶する走査画像記憶部を含むことを特徴とする請求項 1 記載の走査ビーム照射装置。 5. The scanning beam irradiation according to claim 1, wherein the image forming mechanism includes a scanned image storage unit that forms a scanned image based on a detection signal from the detection mechanism and stores the scanned image. apparatus.
[6] 前記制御機構は、前記画像形成機構によって得られた走査画像と前記マーク との位置ずれを検出して位置ずれ補正係数を算出する位置ずれ補正係数算出部と 、該位置ずれ補正係数に基づき前記ビーム源およびステージの駆動を制御する制 御部とを備えていることを特徴とする請求項 1記載の走査ビーム照射装置。  [6] The control mechanism includes a misregistration correction coefficient calculation unit that detects misregistration between the scanned image obtained by the image forming mechanism and the mark and calculates a misregistration correction coefficient. 2. The scanning beam irradiation apparatus according to claim 1, further comprising a control unit that controls driving of the beam source and the stage.
[7] 更に前記位置ずれ補正係数を記憶する記憶部を備えていることを特徴とする請 求項 6記載の走査ビーム照射装置。 [7] The apparatus further comprises a storage unit for storing the misregistration correction coefficient. The scanning beam irradiation apparatus according to claim 6.
[8] 複数のビーム源を備え、 [8] with multiple beam sources,
前記マークは前記各ビーム源の走査ビームの各走査範囲内に設ける走査ビーム用 シンボルであり、該走查ビーム用シンボルの走査画像の位置ずれから、走査ビーム の座標系においてビーム源の回転方向ずれ、 Y軸方向ずれ、 X軸方向ずれの少なく とも ヽずれか一つの位置ずれ量を求めることを特徴とする請求項 1に記載の走査ビー ム照射装置。  The mark is a symbol for a scanning beam provided in each scanning range of the scanning beam of each beam source. From the positional deviation of the scanning image of the symbol for the scanning beam, the rotational direction deviation of the beam source in the scanning beam coordinate system. 2. The scanning beam irradiating device according to claim 1, wherein at least one of the displacement in the Y-axis direction and the displacement in the X-axis direction is determined.
[9] 前記走査ビーム用シンボルは、前記走査方向の直線を含む水平シンボルと、前記 水平シンボルに対して斜め方向の直線を含む斜めシンボルとを備えることを特徴とす る請求項 8に記載の走査ビーム照射装置。  9. The scanning beam symbol comprises: a horizontal symbol including a straight line in the scanning direction; and an oblique symbol including a straight line oblique to the horizontal symbol. Scanning beam irradiation device.
[10] 前記水平シンボルの両端の Y軸方向の位置ずれ量から回転方向ずれを求め、二 つのビーム源により得られる走査画像の二つの水平シンボルにおいて同一部分の Y 軸方向の位置ずれ量から Y軸方向ずれを求め、二つのビーム源により得られる走査 画像の二つの斜めシンボルにおいて同一部分の Y軸方向の位置ずれ量から X軸方 向ずれを求めることを特徴とする請求項 9に記載の走査ビーム照射装置。  [10] The rotational deviation is obtained from the amount of positional deviation in the Y-axis direction at both ends of the horizontal symbol, and Y is obtained from the amount of positional deviation in the Y-axis direction of the same part in the two horizontal symbols of the scanned image obtained by the two beam sources 10. The deviation in the X-axis direction is obtained from the amount of positional deviation in the Y-axis direction of the same portion in two oblique symbols of the scanned image obtained by the two beam sources. Scanning beam irradiation device.
PCT/JP2006/300804 2005-02-02 2006-01-20 Scan beam irradiation device WO2006082714A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007501526A JP4555909B2 (en) 2005-02-02 2006-01-20 Scanning beam irradiation device
CN2006800013062A CN101080801B (en) 2005-02-02 2006-01-20 Scan beam irradiation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-026721 2005-02-02
JP2005026721 2005-02-02

Publications (1)

Publication Number Publication Date
WO2006082714A1 true WO2006082714A1 (en) 2006-08-10

Family

ID=36777103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300804 WO2006082714A1 (en) 2005-02-02 2006-01-20 Scan beam irradiation device

Country Status (5)

Country Link
JP (1) JP4555909B2 (en)
KR (1) KR100893283B1 (en)
CN (1) CN101080801B (en)
TW (1) TWI290430B (en)
WO (1) WO2006082714A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064957A (en) * 2006-09-06 2008-03-21 Fujifilm Corp Electron beam drawing apparatus and method for compensating deviation of electron beam
JP2008084626A (en) * 2006-09-27 2008-04-10 Hitachi High-Technologies Corp Method of scanning charged particle beam and charged particle beam device
JP2011008968A (en) * 2009-06-23 2011-01-13 Shimadzu Corp Scanning beam irradiation device
WO2012169505A1 (en) * 2011-06-09 2012-12-13 株式会社日立ハイテクノロジーズ Stage device and control method for stage device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102047130B (en) * 2008-06-02 2013-09-04 株式会社岛津制作所 Liquid crystal array inspection apparatus and method for correcting imaging range
US8410447B2 (en) * 2008-10-23 2013-04-02 Shimadzu Corporation Particle radiotherapy apparatus
JP6643072B2 (en) * 2015-12-10 2020-02-12 キヤノン株式会社 Microscope system and control method thereof
CN109166781A (en) * 2018-09-11 2019-01-08 镇江乐华电子科技有限公司 scanning transmission electron microscopic imaging method and system
JP7238672B2 (en) * 2019-07-25 2023-03-14 株式会社ニューフレアテクノロジー Multi-beam writing method and multi-beam writing apparatus
CN111879494B (en) * 2020-08-10 2022-05-17 中国空气动力研究与发展中心超高速空气动力研究所 Low-density wind tunnel flow field space measuring point position calibration method based on electron beam fluorescence
CN112259469B (en) * 2020-10-21 2022-10-18 上海华力集成电路制造有限公司 Semiconductor device critical dimension measuring method and method for obtaining SEM image

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940452A (en) * 1982-08-30 1984-03-06 Fujitsu Ltd Electron beam device
JPH05251315A (en) * 1991-11-14 1993-09-28 Fujitsu Ltd Electron beam apparatus
WO2001069643A1 (en) * 2000-03-13 2001-09-20 Hitachi, Ltd. Charged particle beam scanning device
JP2002064056A (en) * 2000-06-09 2002-02-28 Advantest Corp Mask, calibration method of deflecting amount of electron beam, and electron beam exposure system
JP2002251974A (en) * 2001-02-23 2002-09-06 Hitachi Ltd Electron beam type visual inspection device
JP2004015069A (en) * 2003-09-03 2004-01-15 Toshiba Corp Charged particle beam drawing system and drawing method
JP2004356276A (en) * 2003-05-28 2004-12-16 Riipuru:Kk Charged beam proximity lithography method and system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349504B1 (en) * 2001-08-03 2002-11-25 株式会社日立製作所 Electron beam drawing equipment and electron microscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940452A (en) * 1982-08-30 1984-03-06 Fujitsu Ltd Electron beam device
JPH05251315A (en) * 1991-11-14 1993-09-28 Fujitsu Ltd Electron beam apparatus
WO2001069643A1 (en) * 2000-03-13 2001-09-20 Hitachi, Ltd. Charged particle beam scanning device
JP2002064056A (en) * 2000-06-09 2002-02-28 Advantest Corp Mask, calibration method of deflecting amount of electron beam, and electron beam exposure system
JP2002251974A (en) * 2001-02-23 2002-09-06 Hitachi Ltd Electron beam type visual inspection device
JP2004356276A (en) * 2003-05-28 2004-12-16 Riipuru:Kk Charged beam proximity lithography method and system
JP2004015069A (en) * 2003-09-03 2004-01-15 Toshiba Corp Charged particle beam drawing system and drawing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008064957A (en) * 2006-09-06 2008-03-21 Fujifilm Corp Electron beam drawing apparatus and method for compensating deviation of electron beam
JP2008084626A (en) * 2006-09-27 2008-04-10 Hitachi High-Technologies Corp Method of scanning charged particle beam and charged particle beam device
JP2011008968A (en) * 2009-06-23 2011-01-13 Shimadzu Corp Scanning beam irradiation device
WO2012169505A1 (en) * 2011-06-09 2012-12-13 株式会社日立ハイテクノロジーズ Stage device and control method for stage device
JP2012256516A (en) * 2011-06-09 2012-12-27 Hitachi High-Technologies Corp Stage device and control method of the same
CN103608890A (en) * 2011-06-09 2014-02-26 株式会社日立高新技术 Stage device and control method for stage device
US8907303B2 (en) 2011-06-09 2014-12-09 Hitachi High-Technologies Corporation Stage device and control method for stage device
CN103608890B (en) * 2011-06-09 2015-01-28 株式会社日立高新技术 Stage device and control method for stage device

Also Published As

Publication number Publication date
CN101080801A (en) 2007-11-28
KR20070056142A (en) 2007-05-31
TWI290430B (en) 2007-11-21
TW200633496A (en) 2006-09-16
JPWO2006082714A1 (en) 2008-08-07
KR100893283B1 (en) 2009-04-17
CN101080801B (en) 2010-06-23
JP4555909B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
WO2006082714A1 (en) Scan beam irradiation device
US7164127B2 (en) Scanning electron microscope and a method for evaluating accuracy of repeated measurement using the same
US20060151697A1 (en) Charged particle beam equipment and charged particle microscopy
US8907303B2 (en) Stage device and control method for stage device
JP5174712B2 (en) Charged particle beam apparatus and position correction processing method in charged particle beam
US20090283677A1 (en) Section image acquiring method using combined charge particle beam apparatus and combined charge particle beam apparatus
JPWO2006112242A1 (en) Board inspection equipment
JP5424144B2 (en) Vision inspection system and coordinate conversion method using the same
JP5677677B2 (en) Charged particle beam equipment
JP5576469B2 (en) Pattern inspection apparatus and pattern inspection method
JP2706703B2 (en) Standard sample, position correction method using the same, and composite measurement device
JP5296578B2 (en) Automatic specimen tilting device for electron microscope
JP5472690B2 (en) Scanning beam irradiation device
JP5546290B2 (en) Charged particle beam apparatus and length measuring method using charged particle beam
JP2006173038A (en) Charged particle beam device, sample image display method, and image shift sensitivity measuring method
JP5703404B2 (en) Charged particle beam apparatus and length measuring method using charged particle beam
JP4253023B2 (en) Charged particle beam apparatus and scanning electron microscope control apparatus
KR102515771B1 (en) Method for acquiring image and ion beam apparatus
WO2023021540A1 (en) Charged particle beam device
JP5218683B2 (en) Charged particle beam equipment
JP5012756B2 (en) Charged particle beam equipment
JP5435120B2 (en) Charged particle beam equipment
JPH09147778A (en) Charged particle beam device
WO2024028233A1 (en) Method and device for correcting image errors when scanning a charged particle beam over a sample
JPH08227680A (en) Beam device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007501526

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077008362

Country of ref document: KR

Ref document number: 1020077008261

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680001306.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712029

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712029

Country of ref document: EP