WO2001069643A1 - Charged particle beam scanning device - Google Patents

Charged particle beam scanning device Download PDF

Info

Publication number
WO2001069643A1
WO2001069643A1 PCT/JP2000/001503 JP0001503W WO0169643A1 WO 2001069643 A1 WO2001069643 A1 WO 2001069643A1 JP 0001503 W JP0001503 W JP 0001503W WO 0169643 A1 WO0169643 A1 WO 0169643A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflection
scanning
charged particle
pattern
particle beam
Prior art date
Application number
PCT/JP2000/001503
Other languages
French (fr)
Japanese (ja)
Inventor
Kenjiro Yamamoto
Masatsugu Kametani
Yasuhiro Gunji
Hiroshi Miyai
Ryuichi Funatsu
Taku Ninomiya
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/001503 priority Critical patent/WO2001069643A1/en
Priority to JP2001567610A priority patent/JP4186464B2/en
Publication of WO2001069643A1 publication Critical patent/WO2001069643A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention belongs to a charged particle beam scanning apparatus that irradiates a charged particle beam to a predetermined position on a sample, and particularly relates to an apparatus that measures a beam irradiation position.
  • a position shift due to an optical system such as deflection distortion which is one of the causes of a position shift of a beam irradiation position, is often corrected.
  • deflection distortion which is one of the causes of a position shift of a beam irradiation position
  • changes in the frequency characteristics of the circuit changes in the waveform due to the filter time constant, distortion of the integrator op-amp or transistor, distortion of the capacitor or resistor, etc.
  • Leakage current, crosstalk, noise (such as switching noise), glitches, and digital feed-through noise are generated.
  • a misalignment occurs. Therefore, in order to measure the displacement of the beam irradiation position due to these factors, it is necessary to measure the beam irradiation position during the deflection operation independently of the measurement of the displacement such as deflection distortion.
  • An example of a deflection control device for generating a beam scanning signal is the charged particle beam scanning type automatic inspection device disclosed in Japanese Patent Application Laid-Open No. 5-258703.
  • Japanese Patent Application Laid-Open No. 5-258703 discloses an analog system in which a deflection circuit is constituted by an analog integration circuit.
  • the signal generated by the method disclosed in the above-mentioned publication is a ramp waveform, and the controllable state quantity is a slope value which is a slope quantity of a ramp wave, and a reset value which is a swingback quantity of the ramp wave. It is.
  • the slope The slope of the analog signal specified by the value is compared with the line size value that is the adjustment value, and the offset specified by the retrace value is compared with the offset value that is the adjustment value. Feedback and keep the scanning signal constant.
  • the ramp portion of the ramp wave is a constant straight line.
  • the distortion of the deflection signal or the displacement of the beam irradiation position is called linear distortion.
  • One method of measuring the linear distortion which is one form of measuring the beam irradiation position during the deflection operation, is described in Japanese Patent Application Laid-Open No. 7-22303. This is shown in an electron beam lithography apparatus using an energy generator.
  • the method for measuring the linear distortion of a line generator described in Japanese Patent Application Laid-Open No. Hei 7-22303 is based on a method in which a set value of a start point register or an end point register is changed in a fixed step, and each step starts from the start of scanning.
  • a linear standard mark arranged at a pitch is scanned by an electron beam using a line generator signal, and a change point of a reflected electron detection signal when the signal crosses the standard mark is used as a trigger for scanning. It shows how to measure the time from the start signal to crossing the mark and the time interval between marks.
  • the charged particle beam scanning type automatic inspection device deflects the charged particle beam and scans it on an inspection object such as a wafer mask to obtain an image showing the physical properties of the inspection object. It is known that inspection is performed by comparing or evaluating acquired image patterns. In the inspection apparatus, improvement in resolution is desired in accordance with a demand for fine defect detection by miniaturization of a design rule of an integrated circuit and the like. For example, the entire inspection of an 8-inch wafer takes an enormous amount of time on the order of several tens of hours, and there is a demand for a reduction in inspection time. The resolution of the inspection device depends on the deflection scanning position accuracy.
  • the inspection time can be shortened by increasing the deflection speed, a high-precision position control technology with a line width or less and a deflection technology that performs high-speed scanning are required in the deflection scanning of the charged particle beam. I have. Further, as the size of the wafer is increased, for example, the inspection area is increased due to the increase of the wafer diameter to 12 inches, the demand for higher speed and higher accuracy is increasing.
  • the required accuracy is, for example, that an electron beam, which is a spot of 0.1 m, is detected at intervals of 0.1 ⁇ m and deflected over a deflection range of several hundred meters.
  • the error is ideally about one tenth of the spot, so the position is determined by an error of 0.01 m or less, that is, an error of tens of thousands or less of the output range. Must be done.
  • the spot and the interval are 0.05 m, double precision is required.
  • the image data capture interval time is 10 ns
  • the use of an analog aperture wave for the deflection scanning signal requires a time stability of 1 ns or less, and the image data capture interval time is also required.
  • time stability with an accuracy of 500 ps or less is required.
  • the method for measuring the linear distortion of a line generator described in JP-A-7-22303, JP-A-63-86517, and JP-A-7-130597 in the electron beam lithography apparatus is described below. Since it measures the transit time between marks, it must be at least Ins or 500 ps or less (frequency 1 GHz or 2 GHz) to satisfy the required accuracy of the inspection device. Force that requires the above time accuracy? However, the element for determining the threshold of the primary (reflected) electron detection signal is also difficult to realize due to the presence of jitter, and has a problem that the measurement accuracy depends on the mark interval. Drawing with a width and mark interval of 0.05 m is difficult to achieve.
  • a comparison is made between one chip formed on a substrate and another chip, that is, a pattern at a distant position. Inspection of semiconductor pattern defects by means of the following: frequency characteristics of the circuit, changes in the waveform due to the filter time constant, crosstalk, noise (such as switching noise), glitches, and digital feedthrough noise Due to the misregistration of specific pixels caused by such factors as above, there is a problem that a false detection that a normal part is determined to be defective occurs, and the sensitivity of the comparative inspection is reduced. In the linear distortion measuring method disclosed in the above publication, the positional deviation due to such factors may not be detected because the positional deviation of each pixel in the inspection apparatus is not measured.
  • a first object of the present invention relates to a beam scanning type inspection apparatus that performs an inspection by scanning a charged particle beam, and relates to a beam deflection scanning position or a detection pixel position during an actual inspection.
  • the present invention provides a method or an apparatus for measuring the positional deviation of an object in a short time with an excellent accuracy exceeding the required accuracy, and correcting the positional deviation by a correction means.
  • Another object of the present invention is to provide an inspection apparatus capable of reducing false alarms and obtaining accurate butterfly information required for a highly sensitive comparison inspection.
  • a specific object of the present invention is to provide a method or an apparatus for measuring a displacement based on image data obtained by actually scanning a charged particle beam in order to solve the above problems.
  • DISCLOSURE OF THE INVENTION The present invention is also to provide a method or an apparatus for correcting a displacement caused by a deflection scanning operation.
  • the present invention is realized in a charged particle beam scanning device by the following means.
  • a charged particle beam scanning device that irradiates a charged particle beam to a predetermined position, one or more registered patterns are drawn on a sample according to physical properties or structural boundaries.
  • the beam is obtained. Measure the irradiation position or displacement.
  • Deflection control means for controlling the beam to be directed to a desired position on the sample, and irradiation of a product generated by irradiating the beam onto the sample with a beam input from the deflection control means.
  • Image acquisition means for acquiring pixel image information by acquiring pixel data by acquiring the pixel data on a predetermined area on the sample by capturing the image data based on the projection timing signal; and It is composed of displacement measurement means for measuring the position or displacement of each pixel obtained by calculating the boundary position on the image based on the image information of the sample including the pattern.
  • the charged particle beam is actually scanned, image data is obtained, and the beam irradiation position or position shift based on the image data can be measured. Deflection scanning position can be measured
  • Pixel data representing the amount of the product at the desired irradiation position is generated from the synchronization signal indicating the irradiation timing of the desired beam irradiation position and the analog electric signal from the deflection control means. It is constituted by pixel data generation means and image information generation means for generating image information by associating the beam irradiation position information obtained from the deflection control means with the pixel data.
  • the position shift measuring means is provided on the sample in at least two regions where the amount of the product is different due to a difference in physical properties or structure from a certain boundary, and The amount of products generated when the irradiation of the beam having the area of is performed on a certain position 1 included in the set of positions including the boundary, and the amount of the product generated in the irradiation area at the position 1 It is determined by the sum of the product of the product of the unit area and the irradiation area of each area in the two areas, and is determined by the distance from the boundary or the position.
  • the relative position 1 from the center position of the beam irradiation area to the boundary position is determined by the size of the irradiation area and the size Calculated with accuracy that depends on the resolution of multi-tone values
  • a boundary pattern position on the acquired image is calculated using a plurality of sets of the boundary position calculating means to perform the calculation, and a pair of the relative position 1 calculated by the boundary position calculating means and the pixel position information 1 included in the acquired image information. It comprises a boundary pattern calculating means, and a shift amount calculating means for calculating a shift amount of each acquired pixel from a desired position based on the boundary pattern position and the registered boundary information.
  • the beam irradiation position can be calculated accurately only by the beam irradiation area being on the boundary, and the beam irradiation position can be calculated based on the image information.
  • the displacement can be measured.
  • the registration pattern boundary is placed at a predetermined position where the measurement is performed, and the actual operation of the device is performed by performing the operation of driving the device or the close operation. Measure the beam irradiation position or displacement in the state.
  • a line image is obtained by beam scanning or slit beam irradiation in a predetermined direction, and this is shifted a plurality of times in a direction perpendicular to the longitudinal direction of the line image.
  • a deflection operation for acquiring the line image is performed.
  • the displacement of each pixel position in the single direction and the displacement of each pixel position in the vertical direction are independently measured at least one of them. It is possible to do this.
  • the measurement is performed in the state where deflection distortion correction, which is a factor other than the displacement caused by the beam scanning operation, is performed, or in the state where the influence of deflection distortion is small.
  • the pattern boundary has one or a plurality of straight lines having a predetermined inclination in accordance with the displacement accuracy with respect to the single direction.
  • the pattern boundary has one or a plurality of straight lines having a predetermined verticality with respect to the single direction.
  • the reference position in the scanning direction can be measured, and the deviation of the entire scanning position can be measured.
  • the pattern boundary has one or more straight lines having a predetermined parallelism with respect to the single direction. This makes it possible to measure the displacement in the direction perpendicular to the scanning direction.
  • the deflection scanning position or a deflection control position or a scanning position deviation correction data corresponding to the time from the deflection scanning start time at which the deflection distortion correction has been performed for the deflection scanning position.
  • a deflection scanning correction unit that receives the correction data, receives a deflection scanning position or the deflection control position, or receives an input of a pixel number or a deflection scanning start signal, and generates correction information for the positional deviation.
  • Deflection / scanning correction information generated by the deflection / scanning correction means and deflection / scanning position information generated by the deflection control means or adding means for digitally or analogously adding the deflection / control position information It consists of.
  • Deflection distortion correction means for performing deflection distortion correction based on a predetermined function, and a position deviation correction coefficient data creating means for correcting a positional deviation corresponding to the deflection scanning position, comprising: The correction coefficient data obtained by adding the coefficient data of the function and the coefficient data calculated by the positional deviation correction coefficient data creating means is provided to the deflection distortion correcting means as a coefficient for determining the form of the function.
  • the deflection scanning position deviation can be corrected without particularly preparing the deflection scanning position deviation correcting means.
  • the displacement measurement or the measurement and the display of the measurement result or the measurement and the reflection of the measurement result to the correction means are automatically performed.
  • misalignment measurement and correction are automatically performed when the setting is changed. It can be performed at high speed and automatically, making it easy for the user to grasp the status, and managing the equipment so that it can always keep the equipment in a highly accurate state. You.
  • the apparatus irradiates a charged particle beam onto a sample to capture information of the sample at a predetermined position, and processes the information to inspect the sample. Constitute.
  • the charged particle beam scanning inspection device makes it possible for the charged particle beam scanning inspection device to measure the beam deflection scanning position or the detection pixel position misalignment at the time of actual inspection with a short time and excellent accuracy exceeding the required accuracy. Can be corrected, and false reports that determine a normal part as a defect can be reduced, and accurate pattern information required for a highly sensitive comparison inspection can be obtained. In addition, even when correction is not performed or cannot be performed, it is possible to predict a false position by making it possible to measure the displacement.
  • the sample is irradiated with a charged particle beam, the information of the sample at a predetermined position is captured, and the first pattern formed at a remote position on the sample and the
  • the position deviation is measured when the inspection condition is changed, and the result is corrected for the deflection scanning position deviation.
  • the correction is performed by giving the image processing means or the image processing means for performing the comparative inspection or both.
  • FIG. 1 is a diagram simply showing an example of the configuration of a charged particle beam scanning type apparatus of the present invention
  • FIG. 2 is a diagram showing details of a charged particle beam scanning type inspection apparatus which is an application example of the present invention.
  • FIG. 3 is a diagram illustrating an example of a scanning sequence of the inspection apparatus
  • FIG. 4 is a diagram illustrating a relationship between a deflection output signal of beam scanning and a typical timing signal.
  • FIG. 5 is a diagram for explaining the relationship
  • FIG. 5 is a diagram for explaining deflection distortion and deflection scanning position deviation.
  • FIG. 6 is a diagram for explaining a deflection scanning position or a method for measuring the position deviation according to the present invention.
  • FIG. 1 is a diagram simply showing an example of the configuration of a charged particle beam scanning type apparatus of the present invention
  • FIG. 2 is a diagram showing details of a charged particle beam scanning type inspection apparatus which is an application example of the present invention.
  • FIG. 3 is a diagram illustrating an example
  • FIG. 7 is a diagram for explaining a method of correcting the positional deviation measured by the present invention
  • FIG. 8 is a diagram illustrating a projection process for correcting distortion of an optical system to make the surface isotropic.
  • the coordinate transformation equation (Equation 1) is expressed by the following cubic equation.
  • FIG. 10 is an equation 3 showing an example of a method of converting the coefficient of the deflection scanning position shift correction function into the coefficient of the deflection distortion correction equation.
  • FIG. 1 shows a simple example of the configuration of the charged particle beam scanning type apparatus in the embodiment of the present invention.
  • the sample 11 is irradiated with the charged particle beam 10, the product generated at that time is taken in as information of the sample 11, the information is converted into pixel data by the image acquisition means 13, and the pixel data is A process for associating with the beam deflection position is performed to obtain image data of the sample 11.
  • the product is a force composed of the example of secondary electrons in Fig. 1. If it reflects the information of the sample, it may be a secondary electron or a reflected electron. It may be a transmitted electron.
  • the image acquisition means 13 determines the beam scanning position and the timing for taking in the information from the deflection control means 14 for deflecting the beam to a predetermined position. Obtain the beam irradiation timing signal 18.
  • Displacement measuring means 1 that holds registered pattern data with one or more physical properties or structural boundaries drawn on sample 11 for the purpose of measuring the displacement of the deflection scanning position
  • the displacement measurement means 15 is the registered pattern data to be held and the image acquisition means.
  • the deflection scanning position can be shifted or arbitrary.
  • the position or displacement of each beam irradiation position or each pixel position is measured.
  • the image obtaining means 13 is composed of a product capturing means 12, a pixel data generating means 103, and an image information generating means 104.
  • the product capturing means 12 captures a product generated by irradiating the sample with the beam, and converts the product into an analog electric signal reflecting the amount of the product.
  • the pixel data generating means 103 receives the desired signal from the deflection control means 14 based on a beam irradiation timing signal 18 indicating the irradiation timing of a desired beam irradiation position and the analog electric signal.
  • the pixel data representing the amount of the product at the irradiation position is generated.
  • the image information generating unit 104 generates image information by associating the beam irradiation position information obtained from the deflection control unit 14 with the pixel data. In this way, the image acquisition means acquires image information from which the boundary position such as physical properties and structure on the sample can be measured from the image information generated above.
  • the displacement measuring means 15 comprises a boundary position calculating means 105, a boundary pattern calculating means 106 and a displacement amount calculating means 107.
  • Boundary position calculator In step 105, pixel data obtained by converting the amount of the product obtained from the image acquisition means 13 into a predetermined multi-gradation value is used to determine the relative distance from the center position of the beam irradiation area to the boundary position. The position is calculated with an accuracy that depends on the size of the irradiation area and the resolution of the multi-tone value.
  • the distance from the boundary is determined by the sum of the product of the irradiation area and the amount of product per unit area of each of the at least two regions in the irradiation region at the position 1. Or use what is determined by location.
  • the boundary pattern calculation unit 106 calculates a boundary pattern position on the acquired image using a plurality of pairs of the relative position calculated by the boundary position calculation unit and the pixel position information of the acquired image information. . Further, the shift amount calculating means 107 calculates a shift amount of each acquired pixel from a desired position based on the boundary pattern position and the registered boundary information. In this way, the displacement measuring means measures the displacement of the beam deflection position or the pixel position based on the image information.
  • the position shift information is transferred from the position shift measuring unit 15 to the deflection position correcting unit 17 attached to the deflection control unit 14. Realization. Further, in the case of an inspection device, the displacement can be corrected by correcting image data by image processing at the time of a test. In this case, the displacement information is described later. To the image processing unit of the inspection apparatus shown in FIG.
  • FIG. 2 is a detailed embodiment of a charged particle beam scanning type inspection apparatus which is an application example of the embodiment of the present invention.
  • the present invention relates to the inspection device Is the force shown? It can also be applied to all devices that perform beam scanning by deflecting a beam from a beam light source, such as a drawing device and a microscope (SEM).
  • a beam light source such as a drawing device and a microscope (SEM).
  • the control devices shown in FIG. 2 are roughly divided into an electron optical system device 20, an image processing system device 21, a deflection control system device 22, and a stage control system device 23.
  • the former three and the height sensor 24 are connected to the host control CPU 26 via the bus 25 and are controlled collectively.
  • the stage control system 23 and the host control CPU 26 are connected to the system control CPU 28 via LAN 27, and control relating to the operation of the entire system is performed.
  • the image acquisition means 13 is an image processing system 21
  • the displacement measuring means 15 is an upper control CPU 26 or a system control CPU 28
  • the deflection control means 14 is The deflection control device 22 and the sample stage control means 16 correspond to the stage control device 23.
  • the electron optical system device 20 controls various power supplies and currents and controls the state of the electron beam.
  • the beam 30 from the electron gun 29 is accelerated, and the lens axis of the focusing coil 38 is used to adjust the optical axis of the electron beam 30 irradiated on the wafer 31, and focus and astigmatism.
  • Adjust and control irradiation intensity Enlargement / reduction of the beam diameter related to the size and resolution of the inspection defect is performed by a focus stop, and the irradiation intensity is controlled by a beam current, an acceleration voltage, a retarding voltage, and the like.
  • the beam current is measured by a current value flowing into the Faraday cup 37 when a voltage is applied to a blanking electrode described later.
  • the detector 32 takes in the secondary electrons generated from the wafer 31 deflected by the wind filter deflector 33, converts the amount of secondary electrons into grayscale digital information, Send to device 21.
  • the image processing system device 21 detects the type and position of the defect formed on the wafer by comparing and inspecting the information of the pattern formed on the substrate 31. I do. At this time, the system control CPU 28 directly receives the defect data, displays the inspection result, and performs control according to the operation of the operator. In the present invention, the system control CPU 28 holds the data of the known figure, controls the image acquisition of the figure, compares the obtained image with the known figure data, and performs the deflection scanning position shift. Measurement.
  • the deflection control system 22 is used for the image processing system 21. Transmitting a signal.
  • the evening signal is specially designated as a beam irradiation timing signal 18.
  • the product taking-in means 12 in FIG. 1 corresponds to the detector 32.
  • the stage control system device 23 controls the position and the moving speed of the stage 39, that is, the sample such as the wafer 31 to be inspected, based on the stage position information by the laser interferometer.
  • the deflection control system device 22 first turns on / off the blanking electrode 34 so as not to irradiate the wafer with the electron beam 30 except at the time of inspection. In addition, it controls a deflector 35 for performing astigmatism correction iiiij control and beam deflection control, and a moving focus coil 36 for performing focus correction.
  • the deflector 35 is composed of an eight-pole plate or an electrostatic deflector having a greater number of poles, and deflects the electron beam 30 by voltage control to adjust the beam irradiation position on the wafer 31. Control.
  • the deflection control system 22 performs a correction operation for deflection distortion, drift, etc., a tracking operation for the stage position, and a deviation correction for the deflection scanning position according to the present invention. This is reflected in the control value given to the deflector 35.
  • the present invention relates to a method in which the sample in which the registration pattern is drawn, the method described in the position displacement measuring means, and a measurement program for performing the same processing as the method. 1
  • Low cost if prepared for the upper control CPU 26 or the system control CPU 28 in the figure. And can be easily implemented.
  • the present invention can be easily realized even for a device without an image acquisition device such as a drawing device by attaching a device for acquiring an image as shown in FIG.
  • FIG. 3 is a diagram for explaining an example of a scanning sequence of a charged particle beam scanning type apparatus and an outline of a comparative inspection of the inspection apparatus shown in FIG. 2.
  • Fig. 3 (a) and (b) show examples of the scanning method
  • (c :) and (d) show examples of the stage moving method
  • (e), (f) and (g) show examples of the comparison method.
  • the scanning sequence should be determined based on the relationship between the user's requirements, the electrical characteristics of the inspection object, and the required accuracy, and the methods shown in the figures may be combined or other scanning methods may be used.
  • measurement can be performed in any scanning sequence, and therefore, measurement can be performed by a scanning method that is close to the actual operation state of the apparatus.
  • the scanning method 40 is a method in which scanning is performed in one direction, and the dotted line portion is a return line portion and blanking is performed so as not to irradiate the beam to the wafer.
  • Scanning method 41 is a method of scanning in the reciprocating direction, and is suitable for high-speed operation because return and blanking are unnecessary.However, there is unevenness in the forward and return paths, so the position accuracy is reduced. Inferior to 40. When this method is used, in the present invention, independent position deviation detection or correction is performed in the forward path and the return path.
  • FIG. 3 (c) shows the trajectory 42 of the scan on the wafer in the continuous stage movement method
  • FIG. 3 (d) shows the trajectory 43 of the scan in the step-and-repeat method.
  • an image for the deflection area is acquired at a time while the stage is stopped, and the stage moves to the next inspection position and the image for the next deflection area is acquired.
  • the images of the plurality of deflection areas are joined to obtain an image of the wafer.
  • the beam movement distance above the laser beam per scan and the stage movement for one scan time By matching the distances, a continuous image can be obtained without stopping the stage without deviating from the deflection area.
  • the beam scanning direction is performed in the reciprocating direction of the stage, and the inspection is performed on the entire surface of the stage.
  • the stage continuous movement method with no stage step operation time enables faster and continuous inspection, but deflection control or stage control so that the target position does not deviate from the deflection area.
  • the stage moving direction and the beam scanning direction may be directions in which comparative inspection can be performed. Since the chip pattern is rectangular, it is preferable to perform scanning in the chip pattern direction. In this case, the stage movement direction is basically substantially orthogonal to the beam scanning direction. From the viewpoint of stage movement accuracy, it is better to operate with one axis alone than with two axes. For this reason, in an actual inspection device, the direction of the chip, that is, the direction of the eno, is also adjusted to the stage axis.
  • the scanning method 40 and the step-and-repeat method (method for stopping the stage) when the deflection distortion correction described later is performed in advance, and when it is negligible and you want to avoid mixing of stage errors.
  • the method is suitable. However, if the registration pattern falls within the deflection area, there is no need to move the stage at all.
  • the error of each factor can be separated by performing the measurement in combination thereof, so that the measurement accuracy can be improved, and the deflection distortion and the stage error can be evaluated.
  • FIG. 3 (e) is a diagram for explaining an example of pattern defect inspection. Return Defect inspection is performed by comparing pattern images. For comparison, there are a method of comparing the design data and the pattern on “ ⁇ ⁇ ”, “turn”, and a method of comparing the image information at the position where the same pattern is drawn on “ ⁇ ⁇ ”.
  • the comparison unit is a cell unit
  • the former is a device in which minute cells such as memory are arranged regularly, and the latter is a non-repetitive complex pattern that is not repeated in the entire chip such as CPU and ASIC. Corresponds to the one formed.
  • the stage control device and the deflection control device scan the stripe 65 in conjunction with each other, and the image processing device performs the line scan. After the image of the pin 58 is acquired, the image is compared with the already acquired line 57, and a defect is determined based on the difference, and this is performed over the entire cell. Therefore, in the deflection scanning, at least the positional accuracy of the lines 57 and 58 must be ensured in the cell comparison.
  • the scan of the line 66 is performed for the comparison inspection of the chip 59 and the chip 60, and the comparison of the line 61 and the line 62 is performed. Is performed.
  • the inspection area on the wafer in the stage movement direction is called a stripe
  • the inspection area on the wafer of one scan is called a line.
  • the cell-to-cell spacing is at most 10 m
  • the current chip width is about 3 x 10 ⁇ 4 m at maximum
  • the chip comparison is the worst in simple comparison compared to cell comparison inspection. A 3000 times position accuracy is required.
  • chip comparison a position error and a chip position rotation error are generated depending on a pattern drawing method on a wafer such as a drawing on a step.
  • the actual location of the chip is on the chip 63 and the line 62 is on the line 64, so the chip comparison inspection can be performed simply by a straight line scan like the stripe 66.
  • Fig. 3 (f) and (g) show the comparison of lines 57 and 58 in cell comparison and line 61 and line 62 in chip comparison, respectively, in the case of misalignment. Is explained.
  • the black circle in the figure indicates the center position of each pixel.
  • the position of the line must be accurately corrected. It is difficult to completely eliminate the force error.
  • the relative position error (deviation) 70 on the cell pattern at each acquired line position is small.
  • the measurement and correction of the deflection scanning position or the displacement are indispensable as in the embodiment of the present invention.
  • Fig. 4 (a) shows the concept of the deflection control signal in beam scanning during one scan, and is a diagram illustrating the relationship between an analog output showing an example of the deflection control signal and a typical timing signal.
  • the deflection output signal indicates the force for outputting the control signal for the X axis and the Y axis in the direction perpendicular thereto, and the figure shows one axis.
  • the analog output in the X-axis direction or the ⁇ -axis direction generally takes the shape of a ramp wave 44.
  • the deflection control signal In order to equalize the distance on the sample between them, the deflection control signal must be a straight line as shown by the ideal waveform 45 shown by the broken line in FIG. 4, but the ramp wave 44 is accurate. Does not become a straight line. For this reason, the start signal and the end signal shown in FIG. 4 (a) may be specified in order to use a region close to a straight line in the waveform of the ramp wave 44.
  • Typical signals necessary for image acquisition include an image acquisition start signal 51, an image acquisition timing signal 46, which is a synchronization signal, and an image acquisition enable signal 47, and the like.
  • the beam irradiation timing signal 18 in FIG. 1 specifically shows these signals, and in particular, the image capture timing signal 46 corresponds as a representative signal.
  • the signals shown in this explanatory diagram are input to the image processing system device 21 in FIG. With these signals, when the image capture enable signal 47 is active, wafer information can be captured as pixels at the rising edge of the image capture timing signal, and a hapattern image can be obtained.
  • the image capture enable signal 47 when the image capture enable signal 47 is active, wafer information can be captured as pixels at the rising edge of the image capture timing signal, and a hapattern image can be obtained.
  • the width 4.9 of the ramp wave in Fig. 4 (a) (more precisely, the time width of the use area of the ramp wave) is defined by the capture interval of one pixel and the number of pixels in one scan.
  • the height 50 of the pump wave (more precisely, the potential difference in the area where the ramp wave is used) is defined by the control voltage value for the pixel spacing on the wafer, the distance on the wafer, and the number of pixels in one scan.
  • Fig. 4 (b) shows a curve 1111 in which a part of the ramp wave in Fig. 4 (a) is enlarged, a ramp wave 48 with a larger slope, and the pixel position in each case. Indicates 108 and 109.
  • FIG. 4 (b) shows that the pixel position 109 in such a highly distorted ramp wave is This conceptually shows that the deflection scanning position shift is larger than the pixel interval 108 in the ramp wave 111 with relatively small distortion.
  • the slope of the ramp wave is large, and deflection scanning position shift is a serious problem. Such a displacement can be measured and corrected by the present invention.
  • the deflection scanning position shift amount of interest in the embodiment of the present invention is such that when the width 49 and the height 50 of the ramp wave change, the state of the distortion of the ramp wave changes. Affected. Changes in the width 49 and the height 50 of the ramp wave are caused by changing the sample, changing the scan direction, changing the capture interval, the number of pixels, and changing the pixel interval setting. The measurement and correction of the scanning position deviation are performed every time such setting conditions are changed, so that high accuracy can be always maintained.
  • FIG. 4 (c) shows the grid waveform 68 of the digital deflection control output signal 53, the crosstalk waveform 69 of the analog deflection control output signal, and the pixels when they occur.
  • FIG. 4 is a diagram illustrating a position 1 110. Since the digital method uses a DA converter for the output of the control waveform, it causes local distortion called glitch or digital feedthrough noise depending on its characteristics. This distortion is noise generated in a very short time on the order of pico to nanosecond, and becomes more problematic during high-speed scanning. Also in the analog system, local distortion such as the crosstalk ramp waveform 69 is affected by crosstalk from switching elements and digital signals, and sneak noise from all signals. May cause.
  • a deflection scanning position shift 54 occurs only in a certain specific pixel. Because grid and crosstalk are caused by certain situations, they are reproducible for each scan and tend to occur at the same pixel location. Therefore, such a displacement can be prevented by the present invention. It is possible to measure and correct the deflection scanning position deviation. However, similarly to the distortion shown in FIG. 4 (b), the waveform 68 affected by glitch or digital feedthrough noise or crosstalk can be changed by changing the setting. Change. Therefore, as described above, it is desirable that the measurement and correction of the deflection scanning position in the embodiment of the present invention be performed every time the setting condition is changed.
  • FIG. 5 is a diagram for explaining the deflection distortion and the deflection scanning position shift focused on in the present invention.
  • distortion occurs at the beam irradiation position in the deflection area.
  • the distortion is caused by an uneven distribution of electric or magnetic fields on the beam path.
  • the main causes of the distortion are the distortion of the beam deflection position with respect to the control voltage caused by the non-uniformity of the deflector electric field, the distortion caused by the electric field distortion of the retarding voltage, the distortion inside the coil, and various other coils or electrodes. Distortion due to the magnetic field and electric field of the lens, and the magnetization and charging of each part of the mirror.
  • the optical system distortion can be measured by using a reference wafer and calculating the difference between the target wafer position and the actual irradiation position during scanning in the deflection area.
  • a reference point where the mark positions are arranged uniformly is used to measure the position of a predetermined position on the minimum 9 points of the wafer.
  • a coordinate conversion equation such as Equation 1 shown in FIG. 8 is obtained, which shows the correspondence between the control target position and the actual beam position in the entire deflection control area.
  • Equation 1 is a coordinate transformation equation expressed by a cubic equation that performs a projection process for correcting the distortion of the optical system to make the plane isotropic.
  • the distortion of the above optical system is represented by a cubic equation approximation, as represented by barrel-type and pincushion-type distortion.
  • the correction can be performed by performing the calculation of the above-mentioned conversion formula 1 which is represented by a target conversion formula and makes the target position correspond to the control value to the deflector.
  • the mark used at this time measures the relative relationship between the line position and the mark on the wafer, and as shown in Fig. 5 (b), to reduce the influence of the deflection scanning position shift.
  • a cross shape is mainly used.
  • the deflection area 76 before deflection distortion correction shown on the left side of FIG. 5 (a) is a diagram that visually shows the deflection distortion and statically sets the target position of the square area in the deflection area.
  • the line 73 is enlarged and the center position of the pixel is schematically indicated by a black circle, it is as shown in the line 74 before the deflection scanning position shift correction in FIG. 5 (c).
  • a deflection scanning position shift such as the line 74 shows the same shift regardless of the position in the deflection area 77. This is measured according to the present invention, and by performing deflection scanning position correction, the pixel interval becomes uniform as in line 75. In order to accurately correct the deflection scanning position shift, it is necessary to simultaneously correct and adjust focus and astigmatism in addition to the deflection distortion correction.
  • FIG. 6 shows a method for measuring the deflection scanning position or the displacement in the embodiment of the present invention.
  • FIG. 6 (a) shows the detector output 80 when the beam spot 78 crosses the pattern boundary 79 drawn on the wafer when the beam spot 78 is circular.
  • the density difference 81 of the detector output 80 differs depending on the physical characteristics of the drawn figure or the depth of the step. Therefore, the present invention measures the deflection scanning position.
  • the figure used for the image processing may use a plurality of processes with different shadings, and may use a three-dimensional drawing technique. When the beam spot is located on the boundary, the degree of overlap with the boundary can be determined based on the density, so that accurate position measurement can be performed.
  • the position is accurately measured.
  • the maximum value of the gray level difference is measured before and after passing through the pattern boundary, and an intermediate value indicates that the center of the beam spot is located on the boundary center as shown in the figure.
  • the edge of the reference pattern boundary may itself change smoothly with respect to the deflection position. In such a case, the correspondence between the deflection position near the pattern boundary and the shading should be measured in advance. To avoid this, the edge of the reference pattern boundary should be sharpened.
  • Fig. 6 (a) The right figure shows the detector output when the beam spot 78 crosses the pattern boundary 79 at a certain angle. Beam position from pattern boundary If the angle is known in advance, even when the pattern boundary described later has a certain inclination with the deflection scanning direction, the beam is deflected by the shading caused by the overlap between the beam spot and the boundary. Position can be measured accurately.
  • the slope is determined by a statistical method by measuring the boundary with a plurality of pixels. The angle can be calculated. Further, it is possible to measure the position of each pixel by knowing the distance from the calculated straight line from the density of each pixel measured.
  • Fig. 6 (b) shows the case where a pattern image is obtained by moving vertically to the deflection scanning direction.
  • the significance of the pattern boundary 83 perpendicular to the deflection scanning direction is shown.
  • Figure is an explanatory diagram for explaining the measurement principle.
  • the black circle in the figure indicates the center position of the pixel, and does not correspond to the actual beam spot diameter.
  • the pattern boundary 83 makes it possible to measure the fluctuation error 82 of the entire line due to the fluctuation of the synchronizing signal and the like from the deviation of the deflection scanning position and to measure it with high accuracy.
  • the pattern boundary 83 is displayed as the acquired image boundary 89.
  • the pixel positions are evenly arranged.
  • the data obtained by inverting the boundary 89 with a line symmetry with respect to the boundary 83 is the position of each pixel. It is calculated as The deflection of the entire line in the direction perpendicular to the deflection scanning direction is obtained by acquiring an image using this method and a pattern boundary that has a large inclination with respect to the deflection scanning direction described later. It can be measured by a method that overlaps the time registration pattern. The swing of the entire line obtained by this measurement is caused by the positioning accuracy of the deflection control device when the above-mentioned stage movement method is step-and-repeat.
  • the deflection position at which scanning is performed is always the same, and this is due to the stage accuracy.
  • the positional deviation due to the fluctuation of the entire line due to the deflection control is often extremely small to a negligible degree compared to the deviation of each pixel in the deflection scanning positional deviation.
  • FIG. 6 (c) shows the significance of the figure boundary 85 parallel to the deflection scanning direction.
  • the deflection scanning position deviation in the direction perpendicular to the deflection scanning direction can be measured. Since the deflection control signal in the deflection scanning direction and the deflection control signal in the direction perpendicular to the deflection scanning direction are often generated using independent circuits, it is significant that the deflection scanning position or the displacement can be detected independently.
  • the figure boundary 85 is displayed as the acquired image boundary 90. The position of each pixel is data that is inverted in line symmetry with respect to the figure boundary 85.
  • Correction memory When there is a correction means such as a pixel, the pixel at a certain position is deliberately shifted as shown in pixel 84 in the figure, and the correction position and the deflection position of the correction means such as a memory address are measured. Can be formed.
  • this method is combined with the above-mentioned method for calculating the inclination of the registered pattern, it is not necessary to know the exact position and inclination of the registered pattern, and to measure and correct the deflection scanning position or positional deviation. Becomes possible.
  • the upper part of the figure shows the positional relationship between the pattern boundary and the line in two ways. The upper part shows the case where most of the pixels on one line overlap the butter line boundary, and the lower part shows the two lines.
  • the line spacing is almost equal to or smaller than the beam spot diameter, and as shown in the figure, if measurement is performed over multiple lines, the pixel and pattern boundary As shown in Fig. 6 (d), the pattern boundary has a certain inclination with the deflection scanning direction, so that the deviation of the deflection scanning position can be accurately measured for each pixel. As shown in the figure. Since the same pixel is measured more than once on the pattern boundary 87, which has a larger slope than the turn boundary 86, the averaging process can be used to determine the effect of the edge on the pattern boundary and the edge described above. Influences such as tilt error of the line and swing of the whole line can be reduced, and measurement accuracy is high.
  • the line interval is almost the same as the beam spot diameter, and if the measurement accuracy is 1 pixel or less, the inclination is sufficient if an angle of 45 degrees with the deflection scanning direction is sufficient. ?
  • the deflection scanning position deviation should be measured using a pattern having a slope corresponding to the required accuracy. Since the curve of the image boundary 88 obtained from the pattern boundary 86 includes the influence of the above-described deviation in the deflection scanning direction of the entire line and the deviation of the deflection scanning position in the vertical direction, the curve at the same time is perpendicular to the deflection scanning direction. It is possible to calculate the deflection scanning position deviation only in the deflection scanning direction by measuring the deflection scanning position deviation in the direction and canceling the deviation by calculation.
  • the registration pattern consists of a straight line in the deflection scanning direction, a direction perpendicular thereto, and a predetermined size. It is ideal to combine straight lines with different slopes. However, if the fluctuation of the entire line can be neglected, the vertical straight line may be omitted, a straight line having a small inclination may be used, or the lines may be independently arranged. As shown on the right side of the figure, the misalignment is caused by the overlap of the pattern boundary and beam spot described above with respect to the ideal deflection direction (X direction) and its vertical (y direction) deflection position. It is calculated from the following.
  • the value of the grayscale data displayed as the acquired image boundary 88 represents the distance of each pixel from the pattern edge caused by the fact that a certain pixel is shifted in the deflection direction.
  • the deflection scanning position and displacement in the deflection direction are calculated based on this data, the inclination of the pattern that may be given or calculated, and the position of the deflection position y of each line.
  • e) shows an example of a known figure combining the above pattern boundaries. As described above, displacement can be measured by a right-angled triangle having sides parallel to the deflection direction and its vertical direction, but having multiple pattern boundaries reduces errors. And improve accuracy. There are two methods: one is to cross multiple pattern boundaries in one line, and the other is to continuously arrange multiple patterns and scan continuously. By drawing the combined figure as shown on the left side of the figure, the deflection scanning position deviation can be measured accurately with a single sequence.
  • Figure 6 (f) shows an example of a figure pattern that roughly measures the deflection scan position shift.
  • the measurement accuracy depends on the deflection scanning accuracy, when moving the stage, the stage accuracy, and the position accuracy of the entire line. Therefore, the measurement accuracy is inferior to the measurement method described above.
  • An object of the present invention is to measure the deflection scanning position shift by actually measuring the image information of the pattern registered as described above. It is hoped that the composition of the pattern provided will have a form suitable for the purpose. The deflection scanning position or the displacement can be accurately measured by the method described above.
  • FIG. 7 is a diagram for explaining an outline of a method of correcting a deflection scanning position shift measured in the present invention. This part is shown as deflection position correcting means 17 in FIG.
  • the deflection scanning position shift is caused by dynamically deflecting the beam. Therefore, the deflection scanning position shift can correspond to a position in one line, as suggested in FIG. Therefore, it is appropriate that the deflection scanning position deviation correcting means input signal 95 of the deflection scanning position deviation correcting means 92 in FIG. 7 (a) is a signal representing a relative position from a certain reference position in the line. It is.
  • the deflection scanning position shift correction means input signal 95 is, for example, data based on a pixel number as a signal indicating a pixel position or a signal indicating a deflection distance from a certain reference position in one line. Then, the deflection scanning position or data calculated based on the deflection control signal can be used.
  • the deflection scanning position deviation correcting means input signal 95 Is a signal corresponding to the address of the memory.
  • the resolution and correction accuracy of this method are determined by the number of bits of the memory address signal and the number of bits of the correction data, respectively. In this method, since the value stored in the memory is the correction value, it can be corrected even if there is a local displacement, and is the most effective correction means.
  • the memory circuit needs to prepare a control signal generation part, that is, one that corrects the displacement in the X-axis direction (scanning direction) and one that corrects the displacement in the Y-axis direction? X-axis direction (scanning direction) depending on the relationship with the accuracy Only one that corrects the positional deviation may be used, or a plurality of memory circuits for correction may be prepared in another control circuit.
  • the address of the memory can be specified by a method corresponding to only one of the X coordinate or the Y coordinate, and the X and Y coordinates. There is a method to correspond to both two-dimensional positions.
  • Equation 3 shown in FIG. 10 is an equation showing an example of a method of converting the coefficient of the deflection scan position deviation correction function into the coefficient of the deflection distortion correction equation, and shows a case of a two-variable and cubic equation.
  • the deflection scanning position shift correction function happens to have the same form as the deflection distortion correction function shown in Equation 1 and performs different types of calculations.
  • the input variables are different, and in the case of static distortion such as deflection distortion, the input variable was the deflection area coordinates, that is, the deflection position (x0, y0), whereas the deflection scanning position deviation correction In this case, the input variable is the relative position (Xs, ys) from the reference position in the line.
  • the deflection scanning position displacement measurement and correction data generation means which is the upper control system
  • 96 Data representing the amount of correction corresponding to the input signal 95 of the displacement correction means is created, and the input signal is used as an address, and the data representing the amount of correction is written into memory as correction data 97.
  • the deflection scanning position deviation measurement and correction data generation means 96 which is a higher-level control system, statistically processes the position deviation amount and calculates a predetermined approximate expression as shown in Expression 3. Find the coefficient and correct the coefficient By giving the data 97 to the deflection scanning position shift correcting means 92 in advance, the position shift measurement result is reflected on the correcting means.
  • the deflection scanning position shift correcting means 92 may be constituted by an analog circuit such as a function generator circuit for creating a correction signal waveform or a combination circuit of filter circuits.
  • the deflection scanning position shift correction means input signal 95 is a line start signal, and the higher-level control system, the deflection scanning position shift measurement and correction data generation means 96, Using the simulation model of the circuit, the setting parameters of the circuit are calculated, and the correction data 97 of the circuit is set.
  • the data output by the deflection scanning position shift correcting means 92 represents the correction information for the position shift, and the deflection control signal 91 and the digital or analog signals are added to the adder circuit 93 in an analogous manner.
  • a scanning signal 94 in which the deflection scanning position deviation is corrected can be obtained.
  • the deflection control signal 91 corresponds to a deflection position signal if the deflection distortion or the like is not corrected.
  • the deflection scanning position deviation correcting means 92 uses the relative position in the line for its input, the deflection scanning position deviation correction means 92 performs an operation separately from the deflection control signal 91 and performs addition in the final stage. There is a need to do.
  • FIG. 7 (c) shows a modification of the above-described means for realizing the approximate coordinate conversion operation method, in which the deflection scanning position deviation correction means is not prepared as a circuit for performing an operation for all deflection positions in real time.
  • a method for realizing the deflection scanning position deviation correction only by changing the coefficient of the correction operation circuit 99 for the deflection distortion or the like.
  • FIG. 9 shows the conversion operation of the deflection scanning position shift coefficient into the deflection distortion correction coefficient. An example of this is shown in Equation 2. Equation 2 is an equation when the order of the deflection scanning position shift correction function is the third order.
  • Equation 2 The function shown in the upper part of Equation 2 is based on the function form of Equation 3 described above, and represents a coefficient when one variable and cubic equation are corrected.
  • the input value of this function is the relative position (Xs, ys) from the line scanning start position, and the addition of the line scanning start position and the relative position is expressed by the following equation (1). Since it corresponds to the deflection position (X 0, y 0) which is the input of the deflection distortion correction function shown in (2), as shown in the lower side of Equation 2, the deflection scanning position deviation coefficient and the scanning start position are variables. It can be converted to a deflection distortion correction coefficient.
  • the Y direction is omitted in the function in the lower part of Equation 2.
  • the conversion operation means 100 for converting the deflection scanning position shift coefficient into the deflection distortion correction coefficient shown in FIG. 7 (b) receives the deflection scanning start position signal 102.
  • the converted coefficient data output from the conversion operation means 100 is added to the deflection distortion coefficient data and input to the correction operation means 99 for deflection distortion and the like.
  • the deflection calculating means for correcting the deflection distortion etc. 99 receives the input of the deflection scanning position signal 98, and in addition to correcting the static distortion such as the deflection distortion, also performs the deflection scanning position deviation correction at the same time.
  • the scanning signal 94 can be output.
  • the scanning position deviation deflection distortion coefficient conversion operation 100 may be performed in units of one line, and can be performed by a processor without using a dedicated arithmetic circuit.
  • a device having only means by performing the calculation simultaneously by the processor that performs the deflection coefficient calculation, the deflection scanning position can be corrected.
  • the circuit equipped with the deflection distortion correction circuit can perform the deflection scanning position shift correction in the embodiment of the present invention without modifying the circuit.
  • the positional deviation information is transferred to the image processing system, so that the position can be compared at the time of image comparison. It is possible to correct the acquired data using an interpolation method or the like based on the displacement information, and it is possible to reduce false detection of the defect. As described above, it is possible to reflect the result measured by the deflection scanning position deviation measuring means to the correction means, and it is possible to improve the deflection position accuracy or reduce the erroneous detection of a defect.
  • the measurement of the deflection scanning position shift and the setting of the correction data are performed when the scanning state is changed, when the inspection object such as a wafer is replaced, for example, when one pixel is set to 0.1. It is desirable to perform this at the time of changing the accuracy setting of the comparative inspection, such as changing from / m to 0.05, "m. In this case, it is desirable to perform everything automatically and in a short time.
  • the operations that occur during the above-mentioned measurement or correction include the position of the registered pattern for scanning the system control unit, the loading of data at the pattern boundary, and the registered pattern.
  • Loading of the loaded sample into the sample chamber (not necessary if it is already loaded or mounted on the stage), input of scanning conditions, input of measurement execution, correction from system control unit to deflection control unit For example, a transfer of data overnight.
  • an execution confirmation is presented, and the execution is selected. I do. In this case, it is necessary to register the position of the registration pattern to be scanned and the data of the data at the boundary of the pattern in the system control unit in advance.
  • the sample may be already mounted on the stage, and it may be automatically executed at the time of each correction alignment or calibration.
  • the system control unit performs automatic operations such as visually displaying the measurement results, recording the data as history data, and providing data to correction means implemented by image processing or the deflection control device.
  • the inspection apparatus can be managed in a state where it is always maintained with high accuracy.
  • the effects of the embodiment of the present invention are as follows. The following effects can be obtained by measuring the deflection scanning position or the displacement using the image data.
  • the pixel positions of consecutive pixels can be measured with high accuracy.
  • the deflection scanning position or displacement can be measured independently for the scanning direction component and the direction component perpendicular thereto.
  • Position fluctuation of the entire scanning position (line) can be measured independently for the scanning direction component and the component perpendicular to the scanning direction.
  • the beam position can be controlled with high accuracy even at the point where the charged particle beam scanning is being performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

While a charged particle beam scanning device is actually in operation, a charged particle beam (10) is applied to a sample (11) and scans the sample to obtain image data of a registered pattern formed on the sample. A position discrepancy measuring means (15) matches a registered pattern data stored in it with a pattern boundary position on an image calculated from the image data from an image obtaining means (13) and detects a deviation between them to measure the discrepancy of a deflection scanning position or positions or position discrepancies of arbitrary respective beam application positions or respective pixel positions. The position discrepancies of the respective pixel positions are corrected by a deflection position correcting means (17) attached to a deflection control means (14) in accordance with position discrepancy information data transferred from the position discrepancy measuring means (15).

Description

明 細 書  Specification
荷電粒子ビーム走査式装置 技術分野 Charged particle beam scanning system
本発明は、 荷電粒子ビームを試料上の所定の位置に照射する荷電粒子 ビーム走査式装置に属し、 特にビーム照射位置の測定を行う装置に関す る o 背景技術  The present invention belongs to a charged particle beam scanning apparatus that irradiates a charged particle beam to a predetermined position on a sample, and particularly relates to an apparatus that measures a beam irradiation position.
荷電粒子走査式装置では、 ビーム照射位置の位置ずれを生じさせる 1 つ の要因である偏向歪等の光学系起因のものによる位置ずれの補正を行う こ とが多い。 しかし、 実際に偏向を行う高速走査動作状態では、 回路の 周波数特性ゃフィ ルタ時定数による波形の変化や、 積分回路のオペア ン プも し く は ト ラ ンジス タの歪、 コ ンデンサや抵抗のリ ー ク電流、 ク ロス ト ー ク 、 ノ イ ズ (ス イ ッ チン グノ イ ズな ど) 、 グリ ッ チ、 デジタ ルフ ィ 一 ドスルー雑音が発生し、 前記偏向歪の調整時等の測定時には生じなか つた位置ずれが発生する。 従って、 これらの要因による ビーム照射位置 の位置ずれを測定する為に偏向歪等の位置ずれ測定とは独立して偏向動 作時のビーム照射位置の測定を行う必要がある。 In the case of a charged particle scanning apparatus, a position shift due to an optical system such as deflection distortion, which is one of the causes of a position shift of a beam irradiation position, is often corrected. However, in the high-speed scanning operation state where deflection is actually performed, changes in the frequency characteristics of the circuit, changes in the waveform due to the filter time constant, distortion of the integrator op-amp or transistor, distortion of the capacitor or resistor, etc. Leakage current, crosstalk, noise (such as switching noise), glitches, and digital feed-through noise are generated. A misalignment occurs. Therefore, in order to measure the displacement of the beam irradiation position due to these factors, it is necessary to measure the beam irradiation position during the deflection operation independently of the measurement of the displacement such as deflection distortion.
ビーム走査信号を生成する偏向制御装置は、特開平 5 - 258703号公報に 示されている荷電粒子ビーム走査式自動検査装置の例がある。 特開平 5 -258703号公報では、 偏向回路部をアナログ積分回路で構成したアナ口 グ方式が示されている。 前記公報で示される方式で生成される信号は、 ラ ンプ波形で、 制御可能な状態量は、 ランプ波の傾斜量であるスロープ 値、 ラ ンプ波の振り戻し量である リ ト レ一ス値である。 また、 スロープ 値で指定されるアナ口グ信号の傾斜量は調整値であるラ イ ンサイズ値と 比較され、 リ ト レース値で指定されるオフセッ ト は調整値である片寄り 値と比較され、 それぞれアナログフ ィ ー ドバッ ク し、 走査信号を一定に 保っている。 このよ う なアナログ方式では、 ラ ンプ波の傾斜部分は一定 の直線であるこ とが望ま しく 、 この場合、 偏向信号の歪も しく はビーム 照射位置の位置ずれは直線性歪と呼ばれる。 偏向動作時のビーム照射位 置の測定の 1 つの形態である前記直線性歪の測定の 1 つの方法は、 特開 平 7 -22303号公報記載の前記アナ口グ積分回路と同様な構成のラィ ンジ エネ レ一タ を用いた電子線描画装置において示されている。 特開平 7- 22303 号公報記載のラ イ ンジェネ レータの直線性歪の測定方法は、 始点 レジス タ または終点レジス タの設定値を一定のステ ッ プで変化させ、 各々のステツ プにおいて走査開始から始点あるいは終点レジスタ と同じ 値の偏向電圧を検出するまでの時間を測定する方法と、 特開昭 63 -86517 号、 特開平 7- 130597号公報にも示されている様に、 試料上に等ピッチに 配列された直線標準マ一ク をライ ン ジヱネレ一タ信号によつて電子ビ一 ムで走査し、 標準マーク横切る と きの反射電子検出信号の変化点を ト リ ガと して、 走査開始信号からマーク を横切るまで時間およびマーク間の 時間間隔を測定する方法が示されている。 An example of a deflection control device for generating a beam scanning signal is the charged particle beam scanning type automatic inspection device disclosed in Japanese Patent Application Laid-Open No. 5-258703. Japanese Patent Application Laid-Open No. 5-258703 discloses an analog system in which a deflection circuit is constituted by an analog integration circuit. The signal generated by the method disclosed in the above-mentioned publication is a ramp waveform, and the controllable state quantity is a slope value which is a slope quantity of a ramp wave, and a reset value which is a swingback quantity of the ramp wave. It is. Also the slope The slope of the analog signal specified by the value is compared with the line size value that is the adjustment value, and the offset specified by the retrace value is compared with the offset value that is the adjustment value. Feedback and keep the scanning signal constant. In such an analog system, it is desirable that the ramp portion of the ramp wave is a constant straight line. In this case, the distortion of the deflection signal or the displacement of the beam irradiation position is called linear distortion. One method of measuring the linear distortion, which is one form of measuring the beam irradiation position during the deflection operation, is described in Japanese Patent Application Laid-Open No. 7-22303. This is shown in an electron beam lithography apparatus using an energy generator. The method for measuring the linear distortion of a line generator described in Japanese Patent Application Laid-Open No. Hei 7-22303 is based on a method in which a set value of a start point register or an end point register is changed in a fixed step, and each step starts from the start of scanning. A method of measuring the time until a deflection voltage having the same value as that of the start point or end point register is detected, and a method of measuring the time on a sample as disclosed in JP-A-63-86517 and JP-A-7-130597. A linear standard mark arranged at a pitch is scanned by an electron beam using a line generator signal, and a change point of a reflected electron detection signal when the signal crosses the standard mark is used as a trigger for scanning. It shows how to measure the time from the start signal to crossing the mark and the time interval between marks.
荷電粒子ビーム走査式自動検査装置は、 荷電粒子ビームを偏向し、 ゥ ュハゃマスク等の被検査物上をスキャ ンするこ とで被検査物の物理的性 質を現した画像を得、 取得した画像パターンを比較も し く は評価するこ とで検査を行う ものと して知られている。 前記検査装置において、 集積 回路のデザイ ンルールの微細化等による微細欠陥検出の要求に従い、 分 解能の向上が望まれている。 また、 例えば 8 イ ンチウェハの全面検査は 数 10時間オーダの膨大な時間がかかってお り、検査時間短縮の要求があ る。 前記検査装置の分解能は偏向走査位置精度に依存する ところが大き く 、 また偏向速度の高速化によ り検査時間短縮が図れるこ とから、 荷電 粒子ビームの偏向走査において、 線幅以下の高精度位置制御技術かつ高 速に走査を行う偏向技術が要求されている。またウェハサイズの大型化、 例えばゥェハ直径 1 2 ィ ンチ化による検査面積の増大に伴い、 更に高速 高精度化の要求が高まっている。 The charged particle beam scanning type automatic inspection device deflects the charged particle beam and scans it on an inspection object such as a wafer mask to obtain an image showing the physical properties of the inspection object. It is known that inspection is performed by comparing or evaluating acquired image patterns. In the inspection apparatus, improvement in resolution is desired in accordance with a demand for fine defect detection by miniaturization of a design rule of an integrated circuit and the like. For example, the entire inspection of an 8-inch wafer takes an enormous amount of time on the order of several tens of hours, and there is a demand for a reduction in inspection time. The resolution of the inspection device depends on the deflection scanning position accuracy. In addition, since the inspection time can be shortened by increasing the deflection speed, a high-precision position control technology with a line width or less and a deflection technology that performs high-speed scanning are required in the deflection scanning of the charged particle beam. I have. Further, as the size of the wafer is increased, for example, the inspection area is increased due to the increase of the wafer diameter to 12 inches, the demand for higher speed and higher accuracy is increasing.
このよ う な検査装置の場合、 要求精度は、 例えば、 0 . 1 mのスポ ッ トである電子ビームを 0 . 1 Λ m間隔で検出を行い、 数 1 0 0 mの 偏向範囲にわたって偏向する場合では、 その誤差は理想的には前記スポ ッ トの 1 0分の 1 程度であるので 0 . 0 1 m以下の誤差、 つま り 出力 範囲の数万分の 1以下の誤差によ り位置決めされねばならない。 さ らに 前記スポッ ト及び間隔が 0 . 0 5 mの場合はその倍の精度が要求され る。 また、 時刻精度は、 例えば画像データ取り込み間隔時間が 1 0 n s の場合、 偏向走査信号にアナ口グラ ンプ波を使用する と 1 n s以下での 時刻安定性が要求され、 さらに画像データ取り込み間隔時間が 5 n s の 場合は 5 0 0 p s以下の精度の時刻安定性が要求される。 In the case of such an inspection device, the required accuracy is, for example, that an electron beam, which is a spot of 0.1 m, is detected at intervals of 0.1 μm and deflected over a deflection range of several hundred meters. In such a case, the error is ideally about one tenth of the spot, so the position is determined by an error of 0.01 m or less, that is, an error of tens of thousands or less of the output range. Must be done. Further, when the spot and the interval are 0.05 m, double precision is required. For example, when the image data capture interval time is 10 ns, the use of an analog aperture wave for the deflection scanning signal requires a time stability of 1 ns or less, and the image data capture interval time is also required. When the time is 5 ns, time stability with an accuracy of 500 ps or less is required.
前記、 電子線描画装置における、 前記特開平 7- 22303号公報、 特開昭 63-8651 7号、 特開平 7- 130597 号公報に示すライ ンジヱネ レ— タの直線 性歪測定方法は、試料上のマーク間の通過時間を測定する ものである為、 前記検査装置の要求精度を満たすには少な く と も I n s も しく は 5 0 0 p s以下 (周波数 1 G H z も し く は 2 G H z以上) の時刻精度が必要で ある力?、 前記 1 次 (反射) 電子検出信号のス レシホール ドを決定する素 子にもジッ 夕があるため実現困難であり、 また測定精度がマ一ク間隔に 依存する問題があるカ^ マ一ク幅及びマーク間隔を 0 . 0 5 mにて描 画するこ とは実現困難である。  The method for measuring the linear distortion of a line generator described in JP-A-7-22303, JP-A-63-86517, and JP-A-7-130597 in the electron beam lithography apparatus is described below. Since it measures the transit time between marks, it must be at least Ins or 500 ps or less (frequency 1 GHz or 2 GHz) to satisfy the required accuracy of the inspection device. Force that requires the above time accuracy? However, the element for determining the threshold of the primary (reflected) electron detection signal is also difficult to realize due to the presence of jitter, and has a problem that the measurement accuracy depends on the mark interval. Drawing with a width and mark interval of 0.05 m is difficult to achieve.
また、 前記検査装置において、 特に基板上に形成されたあるチッ プと 別のチッ プとの比較、 すなわち離れた位置のパター ンの比較を行う こ と で半導体パターン欠陥を検査する場合、 前記回路の周波数特性ゃフィ ル タ時定数による波形の変化や、 クロス トーク、 ノ イズ (スイ ッチングノ ィズなど) 、 グリ ッチ、 デジタルフ ィ ー ドスル一雑音などの要因によ り 生じる特定画素の位置ずれによ り、 正常な個所を欠陥である と判定する 虚報が生じ、 比較検査の感度が低下する という問題がある。 このよ う な 要因の位置ずれは、 前記公報による直線性歪測定方法では、 検査装置に おける各画素においての位置ずれの測定が為されないため検出されない 場合がある という問題が生じる。 Further, in the inspection apparatus, in particular, a comparison is made between one chip formed on a substrate and another chip, that is, a pattern at a distant position. Inspection of semiconductor pattern defects by means of the following: frequency characteristics of the circuit, changes in the waveform due to the filter time constant, crosstalk, noise (such as switching noise), glitches, and digital feedthrough noise Due to the misregistration of specific pixels caused by such factors as above, there is a problem that a false detection that a normal part is determined to be defective occurs, and the sensitivity of the comparative inspection is reduced. In the linear distortion measuring method disclosed in the above publication, the positional deviation due to such factors may not be detected because the positional deviation of each pixel in the inspection apparatus is not measured.
以上よ り、 本発明の第一の目的は、 荷電粒子ビームを走査することに よ り検査を行う ビーム走査式検査装置に関し、 実際の検査時におけるビ ーム偏向走査位置も しく は検出画素位置の位置ずれを、 短時間で要求精 度以上の優れた精度に測定する方法も し く は装置を提供するこ とであり さ らに補正手段によ り前記位置ずれを補正するこ とによ り、 虚報を低減 させ、 高感度な比較検査に必要な正確なバタ一ン情報を得るこ とを可能 とする検査装置を提供することにある。  As described above, a first object of the present invention relates to a beam scanning type inspection apparatus that performs an inspection by scanning a charged particle beam, and relates to a beam deflection scanning position or a detection pixel position during an actual inspection. The present invention provides a method or an apparatus for measuring the positional deviation of an object in a short time with an excellent accuracy exceeding the required accuracy, and correcting the positional deviation by a correction means. Another object of the present invention is to provide an inspection apparatus capable of reducing false alarms and obtaining accurate butterfly information required for a highly sensitive comparison inspection.
また本発明の具体的な目的は、 上記課題を解決するために、 実際に 荷電粒子ビームを走査してえられた画像データ をも とに位置ずれを測定 する方法も しく は装置を提供するこ とにあり、 さ らに偏向走査動作によ り発生する位置ずれを補正する方法も しく は装置を提供するこ とにある, 発明の開示  Further, a specific object of the present invention is to provide a method or an apparatus for measuring a displacement based on image data obtained by actually scanning a charged particle beam in order to solve the above problems. DISCLOSURE OF THE INVENTION The present invention is also to provide a method or an apparatus for correcting a displacement caused by a deflection scanning operation.
上記目的を達成するために、 本発明は、 荷電粒子ビーム走査式装置に おいて、 以下のよ う な手段によ り実現する。  In order to achieve the above object, the present invention is realized in a charged particle beam scanning device by the following means.
( 1 ) 荷電粒子ビームを所定の位置に照射する荷電粒子ビーム走査式装 置において、 物理的性質または構造の境界によ り 1 つも しく は複数の登 録されたパターンが描かれた試料上にビームを照射するこ とによ り生じ る生成物を取り込み、 前記登録パタ ー ンの画像情報を得、 前記画像情報 から算出 した画像上のパターン境界位置情報と前記登録パター ンの境界 位置情報との差異を検出するこ とで、 ビーム照射の位置も し く は位置ず れを測定する。 (1) In a charged particle beam scanning device that irradiates a charged particle beam to a predetermined position, one or more registered patterns are drawn on a sample according to physical properties or structural boundaries. Caused by beam irradiation By obtaining the image information of the registered pattern, detecting the difference between the pattern boundary position information on the image calculated from the image information and the boundary position information of the registered pattern, the beam is obtained. Measure the irradiation position or displacement.
これによ り、 画像データによる ビーム照射の位置も しく は位置ずれの 測定が可能とな り、 実際に荷電粒子ビームを走査して偏向動作を行って いる時のビーム照射の位置も し く は位置ずれ測定が可能となる。  This makes it possible to measure the beam irradiation position or misalignment based on image data, and it is also possible to measure the beam irradiation position when scanning and deflecting a charged particle beam. Position shift measurement becomes possible.
( 2 ) 荷電粒子ビームを所定の位置に偏向する荷電粒子ビーム走査式装 置において、 物理的性質または構造の境界によ り 1 つも しく は複数の登 録されたパターンが描かれた試料と、 ビームを試料上の所望の位置に偏 向するための制御を行う偏向制御手段と、 前記試料上にビームを照射す るこ とによ り生じる生成物を前記偏向制御手段から入力されるビーム照 射タ イ ミ ング信号を基に取り込むこ とで画素データを生成し、 前記画素 データを前記試料上の所定の領域について取得することによ り試料画像 情報を取得する画像取得手段と、 前記登録パター ンを含む試料の画像情 報を基に、 画像上の境界位置を算出するこ とで取得された各画素の位置 も し く は位置ずれを測定する位置ずれ測定手段によ り構成する。  (2) In a charged particle beam scanning device that deflects a charged particle beam to a predetermined position, a sample in which one or more registered patterns are drawn depending on physical properties or structural boundaries; Deflection control means for controlling the beam to be directed to a desired position on the sample, and irradiation of a product generated by irradiating the beam onto the sample with a beam input from the deflection control means. Image acquisition means for acquiring pixel image information by acquiring pixel data by acquiring the pixel data on a predetermined area on the sample by capturing the image data based on the projection timing signal; and It is composed of displacement measurement means for measuring the position or displacement of each pixel obtained by calculating the boundary position on the image based on the image information of the sample including the pattern.
これによ り 、 実際に荷電粒子ビームを走査して画像データを得、 画像 データによるビーム照射の位置も し く は位置ずれの測定が可能とな り 、 実際の偏向走査による高速動作状態での偏向走査位置の測定が可能とな る  As a result, the charged particle beam is actually scanned, image data is obtained, and the beam irradiation position or position shift based on the image data can be measured. Deflection scanning position can be measured
( 3 ) 前記画像取得手段を、 前記試料上にビームを照射するこ とによ り 生じる生成物を取り込み、 前記生成物の量を反映したアナ口グ電気信号 に変換する生成物取り込み手段と、 前記偏向制御手段から所望のビーム 照射位置の照射タ ィ ミ ングを示す同期信号と前記アナログ電気信号から . 前記所望の照射位置での前記生成物の量を表した画素データを生成する 画素デ一夕生成手段と、 前記偏向制御手段から得られる ビーム照射位置 情報と前記画素データ と を関連付けることによ り画像情報を生成する画 像情報生成手段によ り構成する。 (3) a product capturing means for capturing the product generated by irradiating the sample with the beam, and converting the image capturing means into an analog electrical signal reflecting the amount of the product; Pixel data representing the amount of the product at the desired irradiation position is generated from the synchronization signal indicating the irradiation timing of the desired beam irradiation position and the analog electric signal from the deflection control means. It is constituted by pixel data generation means and image information generation means for generating image information by associating the beam irradiation position information obtained from the deflection control means with the pixel data.
これによ り 、 前記生成した画像情報から前記試料上の物理的性質や構 造などの境界位置が測定可能な画像情報が取得できる。  This makes it possible to obtain image information from which the boundary position such as physical properties and structure on the sample can be measured from the generated image information.
( 4 ) 前記位置ずれ測定手段を、 前記試料上に、 ある境界を境に物理的 性質や構造が異なるこ と による前記生成物の量が異なる少な く と も 2つ の領域があ り 、 所定の面積を持つビームの照射が前記境界を含む位置の 集合に含まれるある位置 1 に対して行われた場合に生じる生成物の量 1 、 前記位置 1 での照射領域内の前記少な く と も 2つの領域における各 領域の単位面積の生成物の量と照射面積の積の総和によって定ま り、 前 記境界からの距離も し く は位置によって定まるこ と を利用し、 前記画像 取得手段から得られる前記生成物の量 1 を所定の多階調値に変換した画 素データ 1 よ り 、 ビーム照射領域の中心位置から前記境界位置への相対 位置 1 を、 前記照射領域の大き さ と前記多階調値の分解能に依存する精 度で算出する境界位置算出手段と、 前記境界位置算出手段によ り算出さ れる前記相対位置 1 と取得画像情報の有する画素位置情報 1 の組を複数 用い、 取得画像上の境界パタ ー ン位置を算出する境界パター ン算出手段 と、 前記境界パター ン位置と登録された境界情報を基に、 各取得画素の 所望の位置からのずれ量を算出するずれ量算出手段によ り構成する。  (4) The position shift measuring means is provided on the sample in at least two regions where the amount of the product is different due to a difference in physical properties or structure from a certain boundary, and The amount of products generated when the irradiation of the beam having the area of is performed on a certain position 1 included in the set of positions including the boundary, and the amount of the product generated in the irradiation area at the position 1 It is determined by the sum of the product of the product of the unit area and the irradiation area of each area in the two areas, and is determined by the distance from the boundary or the position. From the pixel data 1 obtained by converting the amount 1 of the obtained product into a predetermined multi-tone value, the relative position 1 from the center position of the beam irradiation area to the boundary position is determined by the size of the irradiation area and the size Calculated with accuracy that depends on the resolution of multi-tone values A boundary pattern position on the acquired image is calculated using a plurality of sets of the boundary position calculating means to perform the calculation, and a pair of the relative position 1 calculated by the boundary position calculating means and the pixel position information 1 included in the acquired image information. It comprises a boundary pattern calculating means, and a shift amount calculating means for calculating a shift amount of each acquired pixel from a desired position based on the boundary pattern position and the registered boundary information.
これによ り 、 画素検出タイ ミ ングが正確に境界上にな く と も、 ビーム 照射領域が境界上にあるだけで、 正確なビーム照射位置を算出でき、 画 像情報を基にビーム照射位置も し く は位置ずれ量を測定するこ とが可能 となる。  As a result, even if the pixel detection timing does not exactly lie on the boundary, the beam irradiation position can be calculated accurately only by the beam irradiation area being on the boundary, and the beam irradiation position can be calculated based on the image information. Alternatively, the displacement can be measured.
( 5 ) 測定を行う所定の位置に登録パター ン境界を配置し、 実際に前記 装置が駆動する動作または近い動作を行う こ とで、 実際の装置駆動動作 状態における ビーム照射の位置も し く は位置ずれを測定する。 (5) The registration pattern boundary is placed at a predetermined position where the measurement is performed, and the actual operation of the device is performed by performing the operation of driving the device or the close operation. Measure the beam irradiation position or displacement in the state.
これによ り 、 オフ ラ イ ンの静的な測定でな く 、 装置を実際に動作させ る状態での位置ずれ測定も し く は精度評価が可能となる。  As a result, it is possible to perform not only a static measurement offline but also a position shift measurement or an accuracy evaluation in a state where the device is actually operated.
( 6 ) 所定方向のビーム走査も しく はス リ ツ ト状のビーム照射によ り線 画像を取得し、 これを前記線画像の長手方向とは垂直の方向にずら して 複数回にわた り前記線画像取得を実施する偏向動作を行う。  (6) A line image is obtained by beam scanning or slit beam irradiation in a predetermined direction, and this is shifted a plurality of times in a direction perpendicular to the longitudinal direction of the line image. A deflection operation for acquiring the line image is performed.
これによ り 、 前記画像情報を基に前記単一方向の各画素位置の位置ず れと前記垂直方向の各画素位置の位置ずれを、 独立して少な く と も どち らか一方を測定するこ とが可能となる。  Thereby, based on the image information, the displacement of each pixel position in the single direction and the displacement of each pixel position in the vertical direction are independently measured at least one of them. It is possible to do this.
( 7 ) ビーム走査動作に起因する位置ずれ以外の要因である偏向歪補正 が為された状態も し く は偏向歪の影響が少ない状態において測定する。  (7) The measurement is performed in the state where deflection distortion correction, which is a factor other than the displacement caused by the beam scanning operation, is performed, or in the state where the influence of deflection distortion is small.
これによ り、 ビーム走査動作のみに起因するビーム照射位置の位置ず れを測定することが可能となる。  This makes it possible to measure the displacement of the beam irradiation position caused by only the beam scanning operation.
( 8 ) 前記登録パター ンにおいて、 パター ン境界が、 前記単一方向に対 して位置ずれ測定精度に応じた所定の傾斜を有する直線を 1 つも しく は 複数持つ。  (8) In the registered pattern, the pattern boundary has one or a plurality of straight lines having a predetermined inclination in accordance with the displacement accuracy with respect to the single direction.
これによ り、 図形境界を横切る画素の位置が正確にかつ、 連続した画 素の位置も し く は位置ずれが測定可能となる。 また、 傾斜の角度が大き い程、 高精度な測定が可能となる。  This makes it possible to accurately measure the position of a pixel that crosses a figure boundary and to measure the position or displacement of a continuous pixel. In addition, the higher the angle of inclination, the higher the accuracy of the measurement.
( 9 ) 前記登録パター ンにおいて、 パター ン境界が、 前記単一方向に対 して所定の垂直度を持つ直線を 1 つも しく は複数持つ。  (9) In the registration pattern, the pattern boundary has one or a plurality of straight lines having a predetermined verticality with respect to the single direction.
これによ り 、 走査方向の基準位置が測定可能とな り、 走査位置全体の ずれが測定できる。 また、 複数設置するこ とによ り走査方向の直線性の 評価が可能となる。  As a result, the reference position in the scanning direction can be measured, and the deviation of the entire scanning position can be measured. In addition, it is possible to evaluate the linearity in the scanning direction by installing multiple units.
( 1 0 ) 前記登録パタ ー ンにおいて、 パタ ー ン境界が、 前記単一方向に 対して所定の平行度を持つ直線を 1 つも し く は複数持つ。 これによ り、 走査方向と垂直な方向の位置ずれの測定が可能となる。(10) In the registered pattern, the pattern boundary has one or more straight lines having a predetermined parallelism with respect to the single direction. This makes it possible to measure the displacement in the direction perpendicular to the scanning direction.
( 1 1 ) 前記位置ずれの情報から、 偏向走査位置または偏向走査位置に 対して偏向歪補正を行った偏向制御位置または画素番号または偏向走査 開始時刻からの時間に対応する走査位置ずれ補正デ一タ を作成する前記 測定手段と、 前記補正データ を受け取り、 偏向走査位置または前記偏向 制御位置または画素番号または偏向走査開始信号の入力を受け位置ずれ 分の補正情報を生成する偏向走査補正手段と、 前記偏向走査補正手段に よ り生成された偏向走査補正情報と前記偏向制御手段において生成され る偏向走査位置情報も し く は前記偏向制御位置情報をデジタ ルも しく は アナログ的に加算する加算手段によ り構成する。 (11) From the information on the positional deviation, the deflection scanning position or a deflection control position or a scanning position deviation correction data corresponding to the time from the deflection scanning start time at which the deflection distortion correction has been performed for the deflection scanning position. A deflection scanning correction unit that receives the correction data, receives a deflection scanning position or the deflection control position, or receives an input of a pixel number or a deflection scanning start signal, and generates correction information for the positional deviation. Deflection / scanning correction information generated by the deflection / scanning correction means and deflection / scanning position information generated by the deflection control means or adding means for digitally or analogously adding the deflection / control position information It consists of.
これによ り、 前記測定手段によ り測定された偏向走査位置ずれの補正 が可能となる。  This makes it possible to correct the deflection scanning position deviation measured by the measuring means.
( 1 2 ) 所定の関数に基づき偏向歪補正を行う偏向歪補正手段と、 偏向 走査位置に対応する位置ずれを補正する位置ずれ補正係数デ一タ作成手 段と を具備し、 偏向歪補正の前記関数の係数データ と前記位置ずれ補正 係数デ一タ作成手段によ り算出される係数データを加算した補正係数デ ータを前記関数の形態を決める係数と して偏向歪補正手段に与える。  (12) Deflection distortion correction means for performing deflection distortion correction based on a predetermined function, and a position deviation correction coefficient data creating means for correcting a positional deviation corresponding to the deflection scanning position, comprising: The correction coefficient data obtained by adding the coefficient data of the function and the coefficient data calculated by the positional deviation correction coefficient data creating means is provided to the deflection distortion correcting means as a coefficient for determining the form of the function.
これによ り 、 偏向歪補正手段を有する装置において、 偏向走査位置ず れ補正手段を特に用意しな く と も偏向走査位置ずれの補正が可能となる , ( 1 3 ) 前記位置ずれ測定の実行を行う所定の作業に対する操作手段を 具備し、 前記登録バタ一ンが描かれた試料の供給および登録バタ一ン情 報の入力を自動も し く は手動操作にて行う ことで測定準備を行い、 前記 操作手段によ り逐次測定パラメータ及び開始の指定を行う こ とで自動的 に位置ずれ測定または測定と測定結果の表示または測定と測定結果の補 正手段への反映を行う。  Accordingly, in the apparatus having the deflection distortion correcting means, the deflection scanning position deviation can be corrected without particularly preparing the deflection scanning position deviation correcting means. (13) Execution of the position deviation measurement Operation means for a predetermined operation of performing the measurement, and preparing the measurement by automatically or manually performing the supply of the sample on which the registered pattern is drawn and the input of the registered pattern information. By sequentially designating the measurement parameters and the start by the operation means, the displacement measurement or the measurement and the display of the measurement result or the measurement and the reflection of the measurement result to the correction means are automatically performed.
これによ り、 設定変更を行ったと き に自動的に位置ずれ測定と補正を 高速かつ自動的に行う こ とが可能とな り、 利用者がその状態を把握する こ とが容易にな り、 かつ常に装置を高精度な状態に保てるよ う に管理す る こ とができ る。 As a result, misalignment measurement and correction are automatically performed when the setting is changed. It can be performed at high speed and automatically, making it easy for the user to grasp the status, and managing the equipment so that it can always keep the equipment in a highly accurate state. You.
( 1 4 ) 前記装置が、 試料上に荷電粒子ビームを照射することで所定の 位置における試料の情報を取り込み、 前記情報の処理を行う ことで試料 の検査を行う荷電粒子ビーム走査式検査装置において構成する。  (14) In a charged particle beam scanning type inspection apparatus, the apparatus irradiates a charged particle beam onto a sample to capture information of the sample at a predetermined position, and processes the information to inspect the sample. Constitute.
これによ り 、 荷電粒子ビーム走査式検査装置において、 実際の検査時 における ビーム偏向走査位置も し く は検出画素位置の位置ずれを、 要求 精度以上の短時間かつ優れた精度で測定も し く は補正するこ とが可能と な り 、 正常な個所を欠陥である と判定する虚報を低減させ、 高感度な比 較検査に必要な正確なパターン情報を得るこ とが可能となる。 また、 補 正を行わないも し く は補正できない場合においても、 位置ずれを測定可 能とするこ とで、 虚報位置の予測が可能となる。  This makes it possible for the charged particle beam scanning inspection device to measure the beam deflection scanning position or the detection pixel position misalignment at the time of actual inspection with a short time and excellent accuracy exceeding the required accuracy. Can be corrected, and false reports that determine a normal part as a defect can be reduced, and accurate pattern information required for a highly sensitive comparison inspection can be obtained. In addition, even when correction is not performed or cannot be performed, it is possible to predict a false position by making it possible to measure the displacement.
( 1 5 ) 試料上に荷電粒子ビームを照射し、 所定の位置における試料の 情報を取り込み、 試料上の離れた位置に形成された第 1 のパターンと第 (15) The sample is irradiated with a charged particle beam, the information of the sample at a predetermined position is captured, and the first pattern formed at a remote position on the sample and the
2のバタ一ンの比較を行う こ とでバタ一ン欠陥を検査する荷電粒子ビー ム走査式検査装置において、 前記位置ずれの測定を検査条件の変更時に 行い、 その結果を偏向走査位置ずれ補正手段も しく は比較検査を実行す る画像処理手段も し く はその両方へ与えるこ と によ り補正を実施する。 In the charged particle beam scanning inspection system that inspects the pattern defect by comparing the patterns in (2), the position deviation is measured when the inspection condition is changed, and the result is corrected for the deflection scanning position deviation. The correction is performed by giving the image processing means or the image processing means for performing the comparative inspection or both.
これによ り 、 検査条件の変更時、 ビームの偏向動作状態が異なる こ とによ り画素検出位置のずれが生じる場合においても逐次補正を行う こ とが可能とな り、 また、 補正手段を用意しな く と も、 比較検査を実行す る画像処理手段において画素位置の測定値をも とに画素デ—タの修正が 可能とな り 、 虚報が生じるこ とな く 、 高感度な比較検査に必要な正確な ノ、。ターン情報を得るこ とが可能となる。 図面の簡単な説明 As a result, when the inspection condition is changed, it is possible to perform the correction sequentially even when the deviation of the pixel detection position occurs due to the difference in the beam deflecting operation state. Even if no preparation is made, the pixel data can be corrected based on the measured values of the pixel positions in the image processing means for performing the comparison inspection, and a high-sensitivity comparison can be performed without generating false alarms. Precise information required for inspection. Turn information can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の荷電粒子ビーム走査式装置の構成についての一例 を単純に示す図であり 、 第 2図は、 本発明の応用例である荷電粒子ビー ム走査式検査装置の詳細を示す図であ り、 第 3図は、 検査装置の走査シ 一ケ ンスの例を説明した図、 第 4図は、 ビーム走査の偏向出力信号と代 表的なタ イ ミ ン グ信号との関係を説明した図、 第 5図は、 偏向歪と偏向 走査位置ずれを説明する図であ り 、 第 6図は、 本発明の偏向走査位置も し く は位置ずれの測定方法を説明する図であり 、 第 7図は、 本発明で測 定した位置ずれを補正する方法を説明する図であり、 第 8図は、 光学系 の歪を補正して平面等方化するための投影処理を行う 3次式で表される 座標変換式 (式 1 ) であり、 第 9図は、 偏向走査位置ずれ補正関数の次 数が 3次の場合を表す式 2であ り、 第 1 0図は、 偏向走査位置ずれ補正 関数の係数を偏向歪補正式の係数に変換する方法の例を示す式 3 である < 発明を実施するための最良の形態  FIG. 1 is a diagram simply showing an example of the configuration of a charged particle beam scanning type apparatus of the present invention, and FIG. 2 is a diagram showing details of a charged particle beam scanning type inspection apparatus which is an application example of the present invention. FIG. 3 is a diagram illustrating an example of a scanning sequence of the inspection apparatus, and FIG. 4 is a diagram illustrating a relationship between a deflection output signal of beam scanning and a typical timing signal. FIG. 5 is a diagram for explaining the relationship, and FIG. 5 is a diagram for explaining deflection distortion and deflection scanning position deviation. FIG. 6 is a diagram for explaining a deflection scanning position or a method for measuring the position deviation according to the present invention. FIG. 7 is a diagram for explaining a method of correcting the positional deviation measured by the present invention, and FIG. 8 is a diagram illustrating a projection process for correcting distortion of an optical system to make the surface isotropic. The coordinate transformation equation (Equation 1) is expressed by the following cubic equation. FIG. 10 is an equation 3 showing an example of a method of converting the coefficient of the deflection scanning position shift correction function into the coefficient of the deflection distortion correction equation. Form
(本発明の実施例における荷電粒子走査式装置の構成概要)  (Outline of Configuration of Charged Particle Scanning Device in Embodiment of the Present Invention)
第 1 図に示す実施例は、 本発明の実施例における荷電粒子ビーム走査 式装置の構成についての単純な一例を示すものである。  The embodiment shown in FIG. 1 shows a simple example of the configuration of the charged particle beam scanning type apparatus in the embodiment of the present invention.
荷電粒子ビーム 1 0 を試料 1 1 に照射し、 そのと き発生する生成物を 試料 1 1 の情報と して取り込み、 前記情報を画像取得手段 1 3 にて画素 データ と し、 前記画素データをビーム偏向位置と関連付ける処理が施さ れ試料 1 1 の画像データ とする。 このと き前記生成物は, 第 1 図は 2次 電子の例で構成されている力'、 試料の情報を反映する ものであれば 2次 電子であっても, 反射電子であっても, 透過電子であっても構わない。 また画像取得手段 1 3 はビームを所定の位置に偏向する偏向制御手段 1 4 から ビーム走査位置と前記情報の取り込みタイ ミ ングを規定する ビー ム照射タィ ミ ング信号 1 8 を得る。 偏向走査位置の位置ずれを測定する 目的で試料 1 1 上に描かれた 1 つも し く は複数の物理的性質または構造 の境界を持つ登録されたパター ンデータを保持する位置ずれ測定手段 1The sample 11 is irradiated with the charged particle beam 10, the product generated at that time is taken in as information of the sample 11, the information is converted into pixel data by the image acquisition means 13, and the pixel data is A process for associating with the beam deflection position is performed to obtain image data of the sample 11. In this case, the product is a force composed of the example of secondary electrons in Fig. 1. If it reflects the information of the sample, it may be a secondary electron or a reflected electron. It may be a transmitted electron. Further, the image acquisition means 13 determines the beam scanning position and the timing for taking in the information from the deflection control means 14 for deflecting the beam to a predetermined position. Obtain the beam irradiation timing signal 18. Displacement measuring means 1 that holds registered pattern data with one or more physical properties or structural boundaries drawn on sample 11 for the purpose of measuring the displacement of the deflection scanning position
5 は、 前記登録バタ―ンが描かれている試料上の位置を試料台制御手段 1 6 と偏向制御手段 1 4 に送り、 試料台制御手段 1 6 は試料 1 1上に描 かれた登録バタ一ンを偏向領域内へ移動し、 偏向制御手段 1 4 は試料 15 sends the position on the sample on which the registration pattern is drawn to the sample stage control means 16 and the deflection control means 14, and the sample stage control means 16 registers the registration pattern drawn on the sample 11. The deflection control means 14 moves the sample into the deflection area.
1 上に描かれた登録パター ンの荷電粒子ビーム による走査を実施する。 位置ずれ測定手段 1 5 は、 保持する登録パター ンデータ と画像取得手段1 Scan the registered pattern drawn above with a charged particle beam. The displacement measurement means 15 is the registered pattern data to be held and the image acquisition means.
1 3 からの前記画像デ一夕 よ り算出される画像上のパタ一ン境界位置と のマッチングをと り, その差異を検出するこ と によ り偏向走査位置のず れも し く は任意の各ビーム照射位置も し く は各画素位置の位置も しく は 位置ずれを測定する。 By matching with the pattern boundary position on the image calculated from the image data from 13 and detecting the difference, the deflection scanning position can be shifted or arbitrary. The position or displacement of each beam irradiation position or each pixel position is measured.
画像取得手段 1 3 は、 生成物取り込み手段 1 2 と画素データ生成手段 1 0 3 と画像情報生成手段 1 0 4から構成される。 生成物取り込み手段 1 2 は、 前記試料上にビームを照射するこ とによ り生じる生成物を取り 込み、 前記生成物の量を反映したアナログ電気信号に変換する。 画素デ —タ生成手段 1 0 3 は、 偏向制御手段 1 4から所望のビーム照射位置の 照射タ ィ.ミ ングを示すビーム照射タ ィ ミ ング信号 1 8 と前記アナログ電 気信号から、 前記所望の照射位置での前記生成物の量を表した画素デー タ を生成する。 また、 画像情報生成手段 1 0 4 は、 偏向制御手段 1 4 か ら得られる ビーム照射位置情報と前記画素データ と を関連付けることに よ り画像情報を生成する。 このよ う に して、 前記画像取得手段では、 前 記生成した画像情報から前記試料上の物理的性質や構造などの境界位置 が測定可能な画像情報を取得する。  The image obtaining means 13 is composed of a product capturing means 12, a pixel data generating means 103, and an image information generating means 104. The product capturing means 12 captures a product generated by irradiating the sample with the beam, and converts the product into an analog electric signal reflecting the amount of the product. The pixel data generating means 103 receives the desired signal from the deflection control means 14 based on a beam irradiation timing signal 18 indicating the irradiation timing of a desired beam irradiation position and the analog electric signal. The pixel data representing the amount of the product at the irradiation position is generated. Further, the image information generating unit 104 generates image information by associating the beam irradiation position information obtained from the deflection control unit 14 with the pixel data. In this way, the image acquisition means acquires image information from which the boundary position such as physical properties and structure on the sample can be measured from the image information generated above.
位置ずれ測定手段 1 5 は、 境界位置算出手段 1 0 5 と境界バタ—ン算 出手段 1 0 6 とずれ量算出手段 1 0 7から構成される。 境界位置算出手 段 1 0 5では、 画像取得手段 1 3 から得られる前記生成物の量を所定の 多階調値に変換した画素デ一タ よ り 、 ビーム照射領域の中心位置から前 記境界位置への相対位置を、 前記照射領域の大き さ と前記多階調値の分 解能に依存する精度で算出する。 こ こでは、 前記試料上に、 ある境界を 境に物理的性質や構造が異なるこ とによる前記生成物の量が異なる少な く と も 2 つの領域があ り、 所定の面積を持つビームの照射が前記境界を 含む位置の集合に含まれるある位置 1 に対して行われた場合に生じる生 成物の量 1 力?、 前記位置 1 での照射領域内の前記少な く と も 2つの領域 における各領域の単位面積あた り の生成物の量と照射面積の積の総和に よって定ま り 、 前記境界からの距離も し く は位置によって定まること を 利用する。 境界パター ン算出手段 1 0 6 では、 前記境界位置算出手段に よ り算出される前記相対位置と取得画像情報の有する画素位置情報の組 を複数用い、 取得画像上の境界パター ン位置を算出する。 また、 ずれ量 算出手段 1 0 7では、 前記境界バタ一ン位置と登録された境界情報を基 に、 各取得画素の所望の位置からのずれ量を算出する。 このよ う にして 前記位置ずれ測定手段は、 画像情報を基にビーム偏向位置も しく は画素 位置のずれ量を測定する。 The displacement measuring means 15 comprises a boundary position calculating means 105, a boundary pattern calculating means 106 and a displacement amount calculating means 107. Boundary position calculator In step 105, pixel data obtained by converting the amount of the product obtained from the image acquisition means 13 into a predetermined multi-gradation value is used to determine the relative distance from the center position of the beam irradiation area to the boundary position. The position is calculated with an accuracy that depends on the size of the irradiation area and the resolution of the multi-tone value. Here, there are at least two regions on the sample where the amount of the product is different due to a difference in physical properties and structure from a certain boundary, and irradiation with a beam having a predetermined area is performed. The amount of product that would occur if the process was performed for a location 1 in the set of locations that included the boundary 1 force? The distance from the boundary is determined by the sum of the product of the irradiation area and the amount of product per unit area of each of the at least two regions in the irradiation region at the position 1. Or use what is determined by location. The boundary pattern calculation unit 106 calculates a boundary pattern position on the acquired image using a plurality of pairs of the relative position calculated by the boundary position calculation unit and the pixel position information of the acquired image information. . Further, the shift amount calculating means 107 calculates a shift amount of each acquired pixel from a desired position based on the boundary pattern position and the registered boundary information. In this way, the displacement measuring means measures the displacement of the beam deflection position or the pixel position based on the image information.
また、 前記位置ずれを偏向走査位置にて補正する場合は、 位置ずれ測 定手段 1 5から前記位置ずれ情報を偏向制御手段 1 4 に付随する偏向位 置補正手段 1 7 に転送するこ と よ り実現する。 さ らに、 検査装置の場合、 位置ずれの補正は検査時に画像処理によ り画像デ―タの補正を行う事で 実施する事が可能であ り、 この場合、 前記位置ずれ情報は、 後述する第 2図に示される検査装置の画像処理部に転送される。  When correcting the position shift at the deflection scanning position, the position shift information is transferred from the position shift measuring unit 15 to the deflection position correcting unit 17 attached to the deflection control unit 14. Realization. Further, in the case of an inspection device, the displacement can be corrected by correcting image data by image processing at the time of a test. In this case, the displacement information is described later. To the image processing unit of the inspection apparatus shown in FIG.
(検査装置概要)  (Outline of inspection equipment)
第 2 図は、 本発明の実施例における応用例である荷電粒子ビーム走査 式検査装置の詳細な実施例である。 但し、 本発明は、 前記検査装置につ いて示したものである力?、 ビーム光源からのビームを偏向してビーム走 査を行う全ての装置、 例えば描画装置、 顕微鏡 ( S E M ) などにも応用 可能である。 FIG. 2 is a detailed embodiment of a charged particle beam scanning type inspection apparatus which is an application example of the embodiment of the present invention. However, the present invention relates to the inspection device Is the force shown? It can also be applied to all devices that perform beam scanning by deflecting a beam from a beam light source, such as a drawing device and a microscope (SEM).
第 2 図に示す制御装置を大き く分ける と、 電子光学系装置 2 0、 画像 処理系装置 2 1 、 偏向制御系装置 2 2 、 ステージ制御系装置 2 3がある。 前者 3つと高さセンサ 2 4 は、 バス 2 5 によ り上位制御 CPU 2 6 に接続 され、 統括制御される。 さ らにステ一ジ制御系 2 3 と上位制御 CPU 2 6 は、 L A N 2 7 によ り システム制御 CPU 2 8 に接続され、 システム全体 の動作に関わる制御が行われる。 こ こでは、 第 1 図において画像取得手 段 1 3 は画像処理系装置 2 1 、 位置ずれ測定手段 1 5 は上位制御 CPU 2 6 も し く はシステム制御 CPU 2 8、 偏向制御手段 1 4 は偏向制御系装置 2 2 、 試料台制御手段 1 6 はステージ制御系装置 2 3 に対応している。 電子光学系装置 2 0 は、 各種電源や電流の制御を行い、 電子ビームの 状態制御を行なう。 例えば、 電子銃 2 9からのビーム 3 0 を、 加速し、 焦点コイル 3 8 などによる レンズ作用を利用 して、 ウェハ 3 1上に照射 される電子ビーム 3 0 の光軸調整、 焦点 · 非点調整と照射強度を制御す る。 検査欠陥のサイズや分解能に関連する ビ—ム径の拡大縮小は、 焦点 絞り で行い、 照射強度の制御は、 ビーム電流、 加速電圧やリ タ一ディ ン グ電圧等で制御する。 ビーム電流は、 後述するブランキング電極に電圧 が印加されている と きにフ ァ ラデーカ ッ プ 3 7 に流れ込む電流値で計測 される。  The control devices shown in FIG. 2 are roughly divided into an electron optical system device 20, an image processing system device 21, a deflection control system device 22, and a stage control system device 23. The former three and the height sensor 24 are connected to the host control CPU 26 via the bus 25 and are controlled collectively. Further, the stage control system 23 and the host control CPU 26 are connected to the system control CPU 28 via LAN 27, and control relating to the operation of the entire system is performed. Here, in FIG. 1, the image acquisition means 13 is an image processing system 21, the displacement measuring means 15 is an upper control CPU 26 or a system control CPU 28, and the deflection control means 14 is The deflection control device 22 and the sample stage control means 16 correspond to the stage control device 23. The electron optical system device 20 controls various power supplies and currents and controls the state of the electron beam. For example, the beam 30 from the electron gun 29 is accelerated, and the lens axis of the focusing coil 38 is used to adjust the optical axis of the electron beam 30 irradiated on the wafer 31, and focus and astigmatism. Adjust and control irradiation intensity. Enlargement / reduction of the beam diameter related to the size and resolution of the inspection defect is performed by a focus stop, and the irradiation intensity is controlled by a beam current, an acceleration voltage, a retarding voltage, and the like. The beam current is measured by a current value flowing into the Faraday cup 37 when a voltage is applied to a blanking electrode described later.
検出器 3 2 は、 ウ イ ー ン フ ィ ルタ偏向器 3 3 によ り偏向されたウェハ 3 1 から発生する 2次電子を取り込み、 2次電子量を濃淡デジタル情報 に変換し、 画像処理系装置 2 1 へ送る。  The detector 32 takes in the secondary electrons generated from the wafer 31 deflected by the wind filter deflector 33, converts the amount of secondary electrons into grayscale digital information, Send to device 21.
画像処理系装置 2 1 は、 ゥヱハ 3 1上に形成されたパタ ー ンの情報の 比較検査によ ってウェハ上に形成された欠陥の種類と欠陥位置等の検出 を行う。 この時、 システム制御 CPU 2 8 は前記欠陥のデータを直接受け 取り 、 検査結果の表示やオペレー タの操作に従った制御を行なう。 本発 明においては、 システム制御 CPU 2 8 にて、 既知図形のデータを保持し、 前記図形の画像取得制御と、 得られた画像と既知図形デ一タの比較を行 い、 偏向走査位置ずれの測定を行う。 The image processing system device 21 detects the type and position of the defect formed on the wafer by comparing and inspecting the information of the pattern formed on the substrate 31. I do. At this time, the system control CPU 28 directly receives the defect data, displays the inspection result, and performs control according to the operation of the operator. In the present invention, the system control CPU 28 holds the data of the known figure, controls the image acquisition of the figure, compares the obtained image with the known figure data, and performs the deflection scanning position shift. Measurement.
ビームを偏向する タ イ ミ ングと、 検出器 3 2から入力される画像情報 を取り込むタ イ ミ ングを一致させる為、 偏向制御系装置 2 2 は、 画像処 理系装置 2 1 にタ イ ミ ング信号を伝送している。 第 1 図では、 前記夕 ィ ミ ン グ信号をビーム照射タ イ ミ ング信号 1 8 と して特記している。 また 第 1 図の生成物取り込み手段 1 2 は、 検出器 3 2 に対応する。  In order to match the timing for deflecting the beam with the timing for capturing the image information input from the detector 32, the deflection control system 22 is used for the image processing system 21. Transmitting a signal. In FIG. 1, the evening signal is specially designated as a beam irradiation timing signal 18. The product taking-in means 12 in FIG. 1 corresponds to the detector 32.
ステージ制御系装置 2 3 は、 レーザ干渉計によるステージ位置情報を 基にステージ 3 9つま り検査対象であるウェハ 3 1等の試科の位置及び 移動速度を制御する。  The stage control system device 23 controls the position and the moving speed of the stage 39, that is, the sample such as the wafer 31 to be inspected, based on the stage position information by the laser interferometer.
偏向制御系装置 2 2 は、 まず被検査時以外は電子ビーム 3 0 をゥェハ に照射させないよ う にブラ ンキング電極 3 4のオン/オフを行う。 また 非点の補正 iiiij御と ビームの偏向制御を行う偏向器 3 5 と、 焦点補正を行 う動焦点コイル 3 6 を制御する。 偏向器 3 5 は、 8極板も し く はそれ以 上の極数を持つ静電偏向器で構成され、 電圧制御にて電子ビーム 3 0 を 偏向させてウェハ 3 1 上のビーム照射位置を制御する。 偏向制御系装置 2 2 は検査シーケ ンスに従いビームを走査する機能に加え、 偏向歪、 ド リ フ ト等の補正演算と、 ステージ位置の追従演算及び本発明である偏向 走査位置のずれ補正を行い、 偏向器 3 5 に与える制御値に反映させる。 以上よ り、 検査装置または画像取得を行う装置において本発明は、 前 記登録パタ一ンの描かれた試料と、 前記位置ずれ測定手段に示した方法 およびそれと同等な処理を行う測定プログラムを第 1 図における上位制 御 CPU 2 6 も し く はシステム制御 CPU 2 8相当部に用意すれば低コス ト で容易に実施可能である。 描画装置などの画像取得装置が付随していな い装置に関しても、 本発明は第 1 図に示すよ う な画像取得をおこなう装 置を取り付けることによって容易に実現できる。 The deflection control system device 22 first turns on / off the blanking electrode 34 so as not to irradiate the wafer with the electron beam 30 except at the time of inspection. In addition, it controls a deflector 35 for performing astigmatism correction iiiij control and beam deflection control, and a moving focus coil 36 for performing focus correction. The deflector 35 is composed of an eight-pole plate or an electrostatic deflector having a greater number of poles, and deflects the electron beam 30 by voltage control to adjust the beam irradiation position on the wafer 31. Control. In addition to the function of scanning the beam in accordance with the inspection sequence, the deflection control system 22 performs a correction operation for deflection distortion, drift, etc., a tracking operation for the stage position, and a deviation correction for the deflection scanning position according to the present invention. This is reflected in the control value given to the deflector 35. As described above, in the inspection apparatus or the apparatus for acquiring an image, the present invention relates to a method in which the sample in which the registration pattern is drawn, the method described in the position displacement measuring means, and a measurement program for performing the same processing as the method. 1 Low cost if prepared for the upper control CPU 26 or the system control CPU 28 in the figure. And can be easily implemented. The present invention can be easily realized even for a device without an image acquisition device such as a drawing device by attaching a device for acquiring an image as shown in FIG.
(走査シ―ケンスおよび比較検査概要)  (Overview of scanning sequence and comparative inspection)
第 3図は、 荷電粒子ビーム走査式装置の走査シーケ ンスの例と第 2 図 に示す検査装置の比較検査の概要を説明した図であ り 、 こ こではそれぞ れの本発明との関係を述べる。 第 3図 ( a ) 及び ( b ) はスキャ ン方法、 ( c: ) 、 ( d ) はステージ移動方法、 ( e ) 、 ( f ) 、 ( g ) は比較方 法の例を示す。 走査シーケ ンスはユーザの要求及び被検査物の電気的特 性、 要求精度との関係で決定すべきであり、 図に示す方法を組み合わせ たり、 図以外の走査方法をとつても よい。 本発明ではどのよ う な走査シ —ケンスにおいても測定可能であり、 したがつて実際の装置稼動状態に 近い走査方法にて測定を行う こ とができる。 スキヤ ン方法 4 0は、 1 方 向にスキヤ ンする方法で、 点線部分は帰線部分でゥェハにビームを照射 しないよ う にブラ ン ク を行う 。 スキャ ン方法 4 1 は往復方向にスキャ ン する方法で、 帰線及びブラ ン クが不必要なため高速動作に適するが、 往 路と復路での不均一性があるので位置精度がスキヤ ン方法 4 0 に劣る。 この方式を使用する場合は、 本発明では往路と復路で独立した位置ずれ 検出または補正を行う。 第 3図 ( c ) はステージ連続移動方式でのゥェ ハ上の前記スキャ ンの軌跡 4 2 で、 ( d ) はステップアン ドリ ピー ト方 式でのスキャ ンの軌跡 4 3 である。 ステ ッ プア ン ドリ ピ一 ト方式は、 1 回にステージ停止状態で偏向領域分の画像を取得し、 ステージのステツ プ動作で次の検査位置まで移動し、 次の偏向領域分の画像を取得する動 作を繰り返すこ と によ り 、 前記複数の偏向領域分の画像をつなぎ合わせ るこ とでウェハの画像を得る。 ステージ連続移動方式は、 1 スキャ ンあ た り のゥ ヱハ上のビームの移動距離と、 1 スキャ ン時間のステージ移動 距離をマッチングさせることで、 偏向領域から逸脱せずにステージを停 止しないで連続した画像を得る。 第 3 図 ( c ) 、 ( d ) に示すよ う にビ —ム走査方向は、 ステージの往復方向について行われ、 ゥヱハ全面につ いての検査を行う。 ステージのステツ プ動作時間がないステ一ジ連続移 動方式の方が高速にかつ連続した検査が可能であるが、 目標の位置が偏 向領域から逸脱しないよ う に、 偏向制御あるいはステージの制御が必要 となる。 ステージ移動方向及びビームスキャ ン方向は、 比較検査が可能 などのよ う な方向でも よい力 、チップのパターンは矩形であるこ とから、 チッ プパター ン方向に合わせてスキャ ンするのが良い。 この場合、 ステ —ジ移動方向は、 基本的にビーム走査方向とほぼ直交する。 ステージ移 動精度の観点からは、 2軸連動で動作する よ り 1 軸単独で動作する方が 精度が良い。 このため、 実際の検査装置においては、 チップ方向すなわ ちウ エノ、の向き をステージ軸に合わせること も行われる。 FIG. 3 is a diagram for explaining an example of a scanning sequence of a charged particle beam scanning type apparatus and an outline of a comparative inspection of the inspection apparatus shown in FIG. 2. State. Fig. 3 (a) and (b) show examples of the scanning method, (c :) and (d) show examples of the stage moving method, and (e), (f) and (g) show examples of the comparison method. The scanning sequence should be determined based on the relationship between the user's requirements, the electrical characteristics of the inspection object, and the required accuracy, and the methods shown in the figures may be combined or other scanning methods may be used. According to the present invention, measurement can be performed in any scanning sequence, and therefore, measurement can be performed by a scanning method that is close to the actual operation state of the apparatus. The scanning method 40 is a method in which scanning is performed in one direction, and the dotted line portion is a return line portion and blanking is performed so as not to irradiate the beam to the wafer. Scanning method 41 is a method of scanning in the reciprocating direction, and is suitable for high-speed operation because return and blanking are unnecessary.However, there is unevenness in the forward and return paths, so the position accuracy is reduced. Inferior to 40. When this method is used, in the present invention, independent position deviation detection or correction is performed in the forward path and the return path. FIG. 3 (c) shows the trajectory 42 of the scan on the wafer in the continuous stage movement method, and FIG. 3 (d) shows the trajectory 43 of the scan in the step-and-repeat method. In the step-and-repeat method, an image for the deflection area is acquired at a time while the stage is stopped, and the stage moves to the next inspection position and the image for the next deflection area is acquired. By repeating the operation, the images of the plurality of deflection areas are joined to obtain an image of the wafer. In the continuous stage movement method, the beam movement distance above the laser beam per scan and the stage movement for one scan time By matching the distances, a continuous image can be obtained without stopping the stage without deviating from the deflection area. As shown in Fig. 3 (c) and (d), the beam scanning direction is performed in the reciprocating direction of the stage, and the inspection is performed on the entire surface of the stage. The stage continuous movement method with no stage step operation time enables faster and continuous inspection, but deflection control or stage control so that the target position does not deviate from the deflection area. Is required. The stage moving direction and the beam scanning direction may be directions in which comparative inspection can be performed. Since the chip pattern is rectangular, it is preferable to perform scanning in the chip pattern direction. In this case, the stage movement direction is basically substantially orthogonal to the beam scanning direction. From the viewpoint of stage movement accuracy, it is better to operate with one axis alone than with two axes. For this reason, in an actual inspection device, the direction of the chip, that is, the direction of the eno, is also adjusted to the stage axis.
本発明にて既知図形の画像を取得する場合、 上記のどの方法を用いて も測定可能な画像を取得することは可能である。 後述する偏向歪の補正 があらかじめ行われる力、、 無視できる場合でステ一ジの誤差混入を避け たい場合はスキャ ン方法 4 0 とステッ プアン ドリ ピー ト方式 (ステージ を停止させる方式) を使用する方法が適している。 但し、 登録パター ン が偏向領域内に収まる場合は、 ステージを全く 移動させる必要はない。 また、 偏向歪要因による誤差混入を避けたい場合は、 偏向領域の中心領 域のある一定の場所にてスキヤ ン方式 4 0の偏向走査を行い、 ステージ 連続移動方式にて画像を取得するを使用する方法が適している。 以上よ り 、 本発明では、 これらを組み合わせた測定を行う こ とによ り各要因の 誤差を分離できるため、 測定精度の向上や、 偏向歪やステージの誤差評 価も可能となる。  When acquiring an image of a known figure according to the present invention, it is possible to acquire an image that can be measured by any of the above methods. Use the scanning method 40 and the step-and-repeat method (method for stopping the stage) when the deflection distortion correction described later is performed in advance, and when it is negligible and you want to avoid mixing of stage errors. The method is suitable. However, if the registration pattern falls within the deflection area, there is no need to move the stage at all. In order to avoid errors due to deflection distortion, use scanning method 40 deflection scanning at a certain location in the center area of the deflection area and acquire images using the stage continuous movement method. The method is suitable. As described above, according to the present invention, the error of each factor can be separated by performing the measurement in combination thereof, so that the measurement accuracy can be improved, and the deflection distortion and the stage error can be evaluated.
第 3 図 ( e ) はパターン欠陥検査の例を説明した図である。 ノ ター ン 欠陥検査は、 パターン画像の比較によ り行う。 比較は、 デザイ ンデータ と ゥヱハ上のノ、 "タ ー ンの比較を行う手法と、 ゥヱハ上において同パター ンが描かれている位置の画像情報の比較を行う手法がある。 比較単位は セル単位とチッ プ単位で比較する ものがある。 前者はメ モリ等の微小な セルを規則正し く 配列された素子に、 後者は CPU、 ASIC等のチッ プ全体 に非橾り返しの複雑なバタ一ンを形成したものに対応する。 FIG. 3 (e) is a diagram for explaining an example of pattern defect inspection. Return Defect inspection is performed by comparing pattern images. For comparison, there are a method of comparing the design data and the pattern on “ゥ ヱ”, “turn”, and a method of comparing the image information at the position where the same pattern is drawn on “ゥ ヱ”. The comparison unit is a cell unit The former is a device in which minute cells such as memory are arranged regularly, and the latter is a non-repetitive complex pattern that is not repeated in the entire chip such as CPU and ASIC. Corresponds to the one formed.
第 3 図 ( e ) の例でセル 5 5 とセル 5 6の比較を行う場合、 ステージ 制御装置及び偏向制御装置は連動してス ト ライ プ 6 5の走査を行い、 画 像処理装置はライ ン 5 8の画像取得後、 既に取得されているライ ン 5 7 と比較を行い、 その差異から欠陥判定を行い、 これをセル全域にわたつ て行う。 従つて偏向走査は前記セル比較においては、 少な く と もラ イ ン 5 7 とラ イ ン 5 8 の位置精度が確保されなければならない。 同様にチッ プ比較検査の場合、 チッ プ 5 9 とチッ プ 6 0の比較検査に対し、 ス ト ラ イ ブ 6 6 の走査が行われ、 ラ イ ン 6 1 とラ イ ン 6 2 の比較が行われる。 ここで、 ステージ移動方向のウェハ上の検査領域をス ト ライプ、 1 スキ ヤ ンのゥェハ上の検査領域をライ ン と呼ぶ。 セルとセルの間隔はせいぜ レ、 10 mであるのに対して現在チッ プの幅は最大約 3 X 10† 4 mあ り、 チッ プ比較はセル比較検査に比べ、単純比較では最悪約 3000倍の位置精 度が要求される。 また、 チッ プ比較の場合、 ステ ツバでの描画などゥェ ハ上のパタ一ンの描画手法に依つては位置誤差及びチッ プ位置回転誤差 が発生してお り 、 この場合チッ プ 6 0の実際の場所はチッ プ 6 3 、 ライ ン 6 2 はライ ン 6 4 にある事にな り 、 単純にス ト ライ プ 6 6のよ う に直 線的な走査のみでは、 チッ プ比較検査が実現出来ない問題があり、 ス ト ライ プ 6 7のよ う にチッ プ位置の補正を行う こ とが行われる。 このよ う な誤差によ り、 実際に比較が行われるチッ プ位置に対して、 画像取得さ れたライ ンの位置が異なる という問題が生じる。 第 3図 ( f ) 、 ( g ) は、 それぞれ、 位置ずれがあった場合のセル比 較におけるライ ン 5 7 とライ ン 5 8の比較とチップ比較におけるライ ン 6 1 と ラ イ ン 6 2の比較状況を説明している。 図の黒丸は、 各画素の中 心位置を示している。 上記に示した様にラ イ ンの位置は正確に補正され るべきである力 誤差を完全にな く すのは困難である。 前述のよ う にセ ル比較の比較を行う ラ イ ンは近接した位置関係にあるため、 それぞれの 取得ライ ン位置におけるセルパターン上の相対位置誤差 (ずれ) 7 0 は 小さい。 そのため、 第 3図 ( f ) に示すよ う に偏向走査位置ずれがあつ ても図の両矢印で示す比較検査を行う位置がすべて誤差 7 0で示す量の 位置ずれであるため、 比較検査は可能である。 しかしチップ比較におい ては、比較を行う ライ ンがゥヱハ上において離れた位置関係にあるため、 誤差 7 1 が大き く なる。 この場合の比較検査は、 画像処理において統計 的処理を行い、 比較パター ンのマツチングが最も合う取得画像位置で行 われる力5'、 その結果の画素比較は概略、 第 3 図 ( g ) の両矢印で示され る位置で行われる。 図に示すよ う な偏向走査位置ずれによる画素位置が 均等間隔でない部分がある と、 実際のパターンが正常であっても、 異な る位置で比較を行う ために欠陥である と判定する虚報を生じさせる。 し たがって、 チッ プ比較においては本発明の実施例におけるよ う に偏向走 査位置も し く は位置ずれの測定および補正が不可欠となる。 In the example of FIG. 3 (e), when comparing the cell 55 and the cell 56, the stage control device and the deflection control device scan the stripe 65 in conjunction with each other, and the image processing device performs the line scan. After the image of the pin 58 is acquired, the image is compared with the already acquired line 57, and a defect is determined based on the difference, and this is performed over the entire cell. Therefore, in the deflection scanning, at least the positional accuracy of the lines 57 and 58 must be ensured in the cell comparison. Similarly, in the case of the chip comparison inspection, the scan of the line 66 is performed for the comparison inspection of the chip 59 and the chip 60, and the comparison of the line 61 and the line 62 is performed. Is performed. Here, the inspection area on the wafer in the stage movement direction is called a stripe, and the inspection area on the wafer of one scan is called a line. While the cell-to-cell spacing is at most 10 m, the current chip width is about 3 x 10 † 4 m at maximum, and the chip comparison is the worst in simple comparison compared to cell comparison inspection. A 3000 times position accuracy is required. In the case of chip comparison, a position error and a chip position rotation error are generated depending on a pattern drawing method on a wafer such as a drawing on a step. The actual location of the chip is on the chip 63 and the line 62 is on the line 64, so the chip comparison inspection can be performed simply by a straight line scan like the stripe 66. Therefore, there is a problem that the chip position cannot be corrected as in the case of stripe 67. Due to such an error, there is a problem that the position of the line obtained by the image is different from the chip position where the comparison is actually performed. Fig. 3 (f) and (g) show the comparison of lines 57 and 58 in cell comparison and line 61 and line 62 in chip comparison, respectively, in the case of misalignment. Is explained. The black circle in the figure indicates the center position of each pixel. As indicated above, the position of the line must be accurately corrected. It is difficult to completely eliminate the force error. As described above, since the lines for cell comparison are in close proximity, the relative position error (deviation) 70 on the cell pattern at each acquired line position is small. Therefore, as shown in Fig. 3 (f), even if there is a deviation in the deflection scanning position, the positions where the comparison inspection indicated by the double-headed arrows in the figure are all misalignment indicated by the error 70, so that the comparison inspection is not performed. It is possible. However, in the chip comparison, the error 71 becomes large because the lines to be compared are located apart from each other on the wafer. In this case, the comparative inspection performs statistical processing in image processing, and the force 5 'is applied at the acquired image position where the matching of the comparison pattern is the best. The resulting pixel comparison is roughly as shown in Fig. 3 (g). This is performed at the position indicated by the arrow. As shown in the figure, if there is a part where the pixel positions are not evenly spaced due to the deviation of the deflection scanning position, even if the actual pattern is normal, the comparison will be made at different positions and false judgment will be made that the pixel is defective. Let it. Therefore, in the chip comparison, the measurement and correction of the deflection scanning position or the displacement are indispensable as in the embodiment of the present invention.
(偏向出力信号およびタ イ ミ ン グ信号)  (Deflection output signal and timing signal)
第 4図 ( a ) は 1 スキャン中のビーム走査における偏向制御信号の概 念を示し、 偏向制御信号の一例を示すアナログ出力と代表的なタイ ミ ン グ信号との関係を説明した図である。 図に示す制御信号の場合、 偏向出 力信号は、 X軸とそれに垂直方向の Y軸について制御信号を出力する力 、 図では 1 軸分を示している。 図の例のよ う に、 X軸方向あるいは Υ軸方 向のアナログ出力はおおむねラ ンプ波 4 4 の形状を呈す。 隣接する画素 間の試料上の距離を均等にするには、 前記偏向制御信号は、 第 4図の破 線に示す理想波形 4 5 に示すよ う な直線でなく てはならないが、 ランプ 波 4 4 は正確には直線とはならない。 そのため、 ラ ンプ波 4 4の波形の 中でも直線に近い領域を使用する目的で、 第 4図 ( a ) に示すス タ ー ト 信号とェン ド信号が規定される場合もある。 Fig. 4 (a) shows the concept of the deflection control signal in beam scanning during one scan, and is a diagram illustrating the relationship between an analog output showing an example of the deflection control signal and a typical timing signal. . In the case of the control signal shown in the figure, the deflection output signal indicates the force for outputting the control signal for the X axis and the Y axis in the direction perpendicular thereto, and the figure shows one axis. As shown in the example in the figure, the analog output in the X-axis direction or the Υ-axis direction generally takes the shape of a ramp wave 44. Adjacent pixels In order to equalize the distance on the sample between them, the deflection control signal must be a straight line as shown by the ideal waveform 45 shown by the broken line in FIG. 4, but the ramp wave 44 is accurate. Does not become a straight line. For this reason, the start signal and the end signal shown in FIG. 4 (a) may be specified in order to use a region close to a straight line in the waveform of the ramp wave 44.
画像取得に必要な代表的な信号は、 画像取り込み開始信号 5 1 、 同期 信号である画像取り込みタ イ ミ ング信号 4 6、 画像取り込み有効信号 4 7 などがあ り 、 それぞれのタ イ ミ ングの一例を示すと、 第 4 図 ( a ) の よ う な関係となる。 第 1 図における ビーム照射タ イ ミ ング信号 1 8 は、 具体的にはこれらの信号を示すが、 特に画像取り込みタイ ミ ング信号 4 6が代表信号と して対応している。 本説明図に示す信号は、 第 2図にお いては、 画像処理系装置 2 1 に入力される。 これらの信号によ り画像取 り込み有効信号 4 7がアクティ ブである と きに前記画像取り込みタイ ミ ング信号の立ち上がりでウェハ情報を画素と して取り込み、 ゥヱハパタ ーン画像を得ることが可能と なる。  Typical signals necessary for image acquisition include an image acquisition start signal 51, an image acquisition timing signal 46, which is a synchronization signal, and an image acquisition enable signal 47, and the like. For example, the relationship is as shown in Fig. 4 (a). The beam irradiation timing signal 18 in FIG. 1 specifically shows these signals, and in particular, the image capture timing signal 46 corresponds as a representative signal. The signals shown in this explanatory diagram are input to the image processing system device 21 in FIG. With these signals, when the image capture enable signal 47 is active, wafer information can be captured as pixels at the rising edge of the image capture timing signal, and a hapattern image can be obtained. And
第 4 図 ( a ) のラ ンプ波の幅 4 9 (正確にはラ ンプ波の使用領域の時 間幅) は、 1 画素の取り込み間隔と 1 スキャ ンの画素数によ り規定され、 ラ ンプ波の高さ 5 0 (正確にはランプ波の使用領域の電位差) は、 ゥェ ハ上の画素間隔と ゥェハ上の距離に対する制御電圧値と 1 スキヤンの画 素数によ り規定される。 第 4図 ( b ) には、 第 4図 ( a ) のラ ンプ波の 一部を拡大した曲線 1 1 1 と、 それよ り傾きの大きなラ ンプ波 4 8 と、 それぞれの場合の画素位置 1 0 8、 1 0 9 を示す。 ラ ンプ波 1 1 1 とラ ンプ波 4 8の違いのよ う に、 一般に、 同一の制御回路では、 回路の周波 数特性、 スルーレー ト などの制限や、 リ ーク電流、 素子特性の歪などの 影響でラ ンプ波の傾きが大きいほど歪が大き く なる現象がある。 第 4 図 ( b ) は、 このよ う な歪の大きなラ ンプ波における画素位置 1 0 9 は、 歪の比較的小さなラ ンプ波 1 1 1 における画素間隔 1 0 8 よ り偏向走査 位置ずれが大きいこ と を概念的に示している。 検査装置などのよ う にス キャ ンの高速性が要求される用途においては、 前記ラ ンプ波の傾きが大 き く 、 偏向走査位置ずれが大きな問題となる。 このよ う な位置ずれは、 本発明によ り測定および補正が可能である。 但し、 上記から分かるよ う に本発明の実施例において着目 している偏向走査位置ずれ量は、 ランプ 波の幅 4 9及び高さ 5 0が変化する と、 ラ ンプ波の歪の状態が変化する こ とによ り影響を受ける。 ラ ンプ波の幅 4 9及び高さ 5 0の変化は、 試 料の交換、 スキャ ン方向の変更、 取り込み間隔、 画素数、 画素間隔設定 変更で生じるこ とから、 本発明の実施例における偏向走査位置ずれの測 定及び補正は、 このよ う な設定条件を変更する毎に行う ことで常に高精 度を保つこ とが可能となる。 The width 4.9 of the ramp wave in Fig. 4 (a) (more precisely, the time width of the use area of the ramp wave) is defined by the capture interval of one pixel and the number of pixels in one scan. The height 50 of the pump wave (more precisely, the potential difference in the area where the ramp wave is used) is defined by the control voltage value for the pixel spacing on the wafer, the distance on the wafer, and the number of pixels in one scan. Fig. 4 (b) shows a curve 1111 in which a part of the ramp wave in Fig. 4 (a) is enlarged, a ramp wave 48 with a larger slope, and the pixel position in each case. Indicates 108 and 109. Generally, like the difference between the ramp wave 111 and the ramp wave 48, in the same control circuit, the frequency characteristics and slew rate of the circuit are limited, and the leakage current and element characteristics are distorted. As a result, there is a phenomenon that the larger the slope of the ramp wave, the larger the distortion. FIG. 4 (b) shows that the pixel position 109 in such a highly distorted ramp wave is This conceptually shows that the deflection scanning position shift is larger than the pixel interval 108 in the ramp wave 111 with relatively small distortion. In applications requiring high-speed scanning, such as inspection equipment, the slope of the ramp wave is large, and deflection scanning position shift is a serious problem. Such a displacement can be measured and corrected by the present invention. However, as can be seen from the above, the deflection scanning position shift amount of interest in the embodiment of the present invention is such that when the width 49 and the height 50 of the ramp wave change, the state of the distortion of the ramp wave changes. Affected. Changes in the width 49 and the height 50 of the ramp wave are caused by changing the sample, changing the scan direction, changing the capture interval, the number of pixels, and changing the pixel interval setting. The measurement and correction of the scanning position deviation are performed every time such setting conditions are changed, so that high accuracy can be always maintained.
第 4図 ( c ) はデジタル方式偏向制御出力信号 5 3 のグリ ッ ジの波形 6 8および、 アナ口グ方式偏向制御出力信号のク ロス トークの波形 6 9 と、 それらが発生した場合の画素位置 1 1 0 を説明した図である。 デジ タ ル方式は、 制御波形の出力に D A変換器を使用するため、 その特性に よ り、 グリ ツチも し く はデジタ ルフ ィ 一 ドスル一雑音と呼ばれる局所的 な歪を生じさせる。 この歪は、 ピコ〜ナノ秒オーダの非常に短い時間で 生じる雑音であり 、 高速スキャ ン時ほど問題となる。 またアナログ方式 においても、 スイ ッチング素子やデジタル信号などからのク ロス トーク やすべての信号からの回り込みノ イズの影響を受け、 ク ロス トークのラ ンプ波形 6 9のよ う に局所的な歪を生じさせる場合がある。 これらの雑 音によ り生じる出力波形の歪によ り 、 ある特定画素のみに偏向走査位置 ずれ 5 4 を発生させる。 グリ ッジやク ロス トークは、 ある決まった状況 によ り発生するため、 各スキャ ンに対して再現性があ り、 同じ画素位置 で生じる傾向がある。 したがって、 このよ う な位置ずれも本発明によ り 偏向走査位置ずれの測定及び補正が可能である。 但し、 第 4 図 ( b ) に 示した歪と同様に、 前記設定の変更によ り、 グリ ッチも しく はデジタル フ ィ 一 ドスル一雑音、 ク ロス トーク による影響を受けた波形 6 8が変化 する。 そのため、 上記のよ う に本発明の実施例における偏向走査位置ず れの測定及び補正は、やはり設定条件を変更する毎に行うのが望ま しい。 なお、 前記ク ロス トークの影響や前記グリ ツチも しく はデジタルフ ィ ー ドスルー雑音の影響を測定するためには、 静的 (低速) な測定および測 定を行う画素を間引いた測定では実現できず、 本発明が目的とする実走 査による測定と、 連続した画素の測定精度が必要となる。 Fig. 4 (c) shows the grid waveform 68 of the digital deflection control output signal 53, the crosstalk waveform 69 of the analog deflection control output signal, and the pixels when they occur. FIG. 4 is a diagram illustrating a position 1 110. Since the digital method uses a DA converter for the output of the control waveform, it causes local distortion called glitch or digital feedthrough noise depending on its characteristics. This distortion is noise generated in a very short time on the order of pico to nanosecond, and becomes more problematic during high-speed scanning. Also in the analog system, local distortion such as the crosstalk ramp waveform 69 is affected by crosstalk from switching elements and digital signals, and sneak noise from all signals. May cause. Due to the distortion of the output waveform caused by these noises, a deflection scanning position shift 54 occurs only in a certain specific pixel. Because grid and crosstalk are caused by certain situations, they are reproducible for each scan and tend to occur at the same pixel location. Therefore, such a displacement can be prevented by the present invention. It is possible to measure and correct the deflection scanning position deviation. However, similarly to the distortion shown in FIG. 4 (b), the waveform 68 affected by glitch or digital feedthrough noise or crosstalk can be changed by changing the setting. Change. Therefore, as described above, it is desirable that the measurement and correction of the deflection scanning position in the embodiment of the present invention be performed every time the setting condition is changed. In order to measure the influence of the crosstalk and the influence of the glitch or digital feedthrough noise, static (low-speed) measurement and measurement in which pixels for measurement are thinned out can be realized. Instead, the measurement by the actual running inspection aimed at by the present invention and the measurement accuracy of continuous pixels are required.
(偏向歪、 走査歪)  (Deflection distortion, scanning distortion)
第 5図は、 偏向歪と本発明にて着目 している偏向走査位置ずれを説明 する図である。 光学系装置起因によ り、 偏向領域のビーム照射位置に歪 が生じる。 前記歪は、 ビーム経路上の電場または磁場の不均一な分布に よ り生じる。 歪の主な要因には偏向器電場の不均一性によ り生じる制御 電圧に対する ビーム偏向位置の歪、 リ ターデイ ング電圧の電界歪によ り 生じる ゥヱハ内歪、 その他各種コイルも し く は電極の磁界、 電界による 歪、 鏡体各部の磁化や帯電によ り生じる歪がある。  FIG. 5 is a diagram for explaining the deflection distortion and the deflection scanning position shift focused on in the present invention. Due to the optical system, distortion occurs at the beam irradiation position in the deflection area. The distortion is caused by an uneven distribution of electric or magnetic fields on the beam path. The main causes of the distortion are the distortion of the beam deflection position with respect to the control voltage caused by the non-uniformity of the deflector electric field, the distortion caused by the electric field distortion of the retarding voltage, the distortion inside the coil, and various other coils or electrodes. Distortion due to the magnetic field and electric field of the lens, and the magnetization and charging of each part of the mirror.
前記光学系歪の計測は、 基準ウェハを用い、 偏向領域内の走査時にお いて、 目標とするウェハ位置と実際の照射位置との差を算出するこ と に よ り可能である。 光学系歪のァライ メ ン トは第 5図 ( b ) に示すよ う に マーク位置が均一に配置されている基準ゥヱハを用い、 最小 9点のゥェ ハ上における所定箇所の位置を測定し、 偏向制御領域全体における制御 目標位置と実際のビーム位置との対応を示す、 第 8図に示す式 1 の如き 座標変換式を求める。 式 1 は、 光学系の歪を補正して平面等方化するた めの投影処理を行う 3次式で表される座標変換式である。 上記光学系の 歪は、 樽型、 糸巻き型歪などに代表されるよ う に、 3次方程式近似の座 標変換式で表され、 目標の位置を偏向器への制御値に対応させる前記変 換式 1 の演算を行う こ とによ り補正を行う こ とが可能である。 この時使 用するマークは前記ライ ン位置と ウェハ上のマークの相対関係を測定す る ものであ り 、 第 5図 ( b ) に示すよ う に偏向走査位置ずれの影響を低 減するため十字型の形状を したものが主に用いられる。 第 5図 ( a ) の 左側に示す偏向歪補正前の偏向領域 7 6 は、 偏向歪を視覚的に示した図 であり 、 偏向領域内の正方形にと られた領域の目標位置を静的に直接、 偏向器に与えた場合の、 実際のビーム照射領域の一例を示す。 式 1 に示 す偏向歪補正を行う こ とによ り第 5図 ( a ) の右側に示す偏向歪補正後 の偏向領域 7 7のよ う に目標位置である正方形領域となる。 この時偏向 走査の 1 ライ ンは図に示すよ う に偏向歪補正前のライ ン 7 2 の歪が偏向 歪補正後のラ イ ン 7 3 に示すよ う に、 ほぼ直線になる。 しかし、 偏向走 査動作による動的要因によ り生じる位置ずれはまだ補正されていない。 したがって、 ラ イ ン 7 3 を拡大し、 画素の中心位置を黒丸にて模式的に 示すと、 第 5図 ( c ) の偏向走査位置ずれ補正前のラ イ ン 7 4のよ う に なる。 ラ イ ン 7 4 のよ う な偏向走査位置ずれは偏向領域 7 7内のどの位 置をスキャ ン して も同じずれを示す。 これを本発明によ り測定し、 偏向 走査位置補正を行う こ とでラ イ ン 7 5のよ う に画素間隔が均一になる。 精度良く 偏向走査位置ずれを補正する場合は、前記偏向歪の補正以外に、 焦点、 非点の補正及び調整も同時に行う ことが要求される。 The optical system distortion can be measured by using a reference wafer and calculating the difference between the target wafer position and the actual irradiation position during scanning in the deflection area. As for the alignment of the optical system distortion, as shown in Fig. 5 (b), a reference point where the mark positions are arranged uniformly is used to measure the position of a predetermined position on the minimum 9 points of the wafer. Then, a coordinate conversion equation such as Equation 1 shown in FIG. 8 is obtained, which shows the correspondence between the control target position and the actual beam position in the entire deflection control area. Equation 1 is a coordinate transformation equation expressed by a cubic equation that performs a projection process for correcting the distortion of the optical system to make the plane isotropic. The distortion of the above optical system is represented by a cubic equation approximation, as represented by barrel-type and pincushion-type distortion. The correction can be performed by performing the calculation of the above-mentioned conversion formula 1 which is represented by a target conversion formula and makes the target position correspond to the control value to the deflector. The mark used at this time measures the relative relationship between the line position and the mark on the wafer, and as shown in Fig. 5 (b), to reduce the influence of the deflection scanning position shift. A cross shape is mainly used. The deflection area 76 before deflection distortion correction shown on the left side of FIG. 5 (a) is a diagram that visually shows the deflection distortion and statically sets the target position of the square area in the deflection area. An example of the actual beam irradiation area when directly applied to the deflector is shown. By performing the deflection distortion correction shown in Expression 1, a square area which is the target position is obtained as shown in the deflection area 77 after the deflection distortion correction shown on the right side of FIG. 5 (a). At this time, as shown in the figure, the distortion of the line 72 before the deflection distortion correction is substantially linear, as shown in the line 73 after the deflection distortion correction, in one line of the deflection scanning. However, the displacement caused by the dynamic factor due to the deflection scanning operation has not been corrected yet. Therefore, if the line 73 is enlarged and the center position of the pixel is schematically indicated by a black circle, it is as shown in the line 74 before the deflection scanning position shift correction in FIG. 5 (c). A deflection scanning position shift such as the line 74 shows the same shift regardless of the position in the deflection area 77. This is measured according to the present invention, and by performing deflection scanning position correction, the pixel interval becomes uniform as in line 75. In order to accurately correct the deflection scanning position shift, it is necessary to simultaneously correct and adjust focus and astigmatism in addition to the deflection distortion correction.
(測定方法)  (Measuring method)
第 6 図に本発明の実施例における偏向走査位置も し く は位置ずれの測 定方法を示す。 第 6 図 ( a ) はビームスポッ ト 7 8が円形状の場合のゥ ェハ上に描かれたパター ンの境界 7 9 を横切る時の検出器出力 8 0 を示 す。 描かれた図形の物理的特徴も し く は段差の深さによって検出器出力 8 0の濃淡差 8 1 は異なる。 そのため、 本発明にて偏向走査位置の測定 に用いる図形は、 濃淡差異なるプロ セスを複数用い、 立体的な描画技術 を用いても よい。 ビームスポッ トが前記境界上に位置する時、 その濃淡 度に依つて境界との重な り度合いが分かるため、 正確な位置測定が可能 となる。 本発明では所定の画素のビームスポッ トの一部がバタ一ン境界 を含む場合にその位置を正確に測定する。 前記濃淡差の最大値は、 バタ — ン境界を通過する前と後とで測定され、 その中間値は、 図に示すよ う に、 ビームスポッ トの中心が境界中心上にあるこ とを示す。 偏向位置に 対して濃淡度は図に示すよ う な曲線で対応が取れる力?、 基準となるバタ ー ン境界のエツ ジ自体が偏向位置に対して滑らかに変化する場合があり この場合は事前にパター ン境界付近の偏向位置と濃淡度の対応を測定す べきである。 これを避けるためには、 基準となるパターン境界のエッ ジ は、 鋭く なるよ う に加工すべきである。 また、 ビームスポッ トの径の大 き さや形状によ り濃淡度の最大値と最小値の差や、 前記曲線形状が異な るため、 パターン境界からビ一ムスポッ ト中心 (画素中心) までの距離 と濃淡度の対応はビーム条件によ り設定する必要がある。 第 6図 ( a ) 右図は、 ビ一ム スポッ ト 7 8がパター ン境界 7 9 に対してある程度の角 度をもって横切る場合の検出器出力を示す。 パター ン境界からのビーム 位置前記角度があらかじめ分かっている場合は、 後述するパター ン境界 が偏向走査方向とある傾斜を持つ場合においても、 ビームスポッ ト と境 界の重な り による生じる濃淡度によって偏向位置が正確に測定できる。 前記傾斜が十分な精度で分かっていない場合も し く は全く分かっていな い場合でも、 パターンが直線であれば、 複数の画素による前記境界の計 測によつて統計的手法によ り前記傾斜角度が算出できる。 さ らに計測さ れる各画素の濃淡度から、 算出された直線からの距離が分かるこ とによ り各画素位置の測定を行う ことが可能である。 FIG. 6 shows a method for measuring the deflection scanning position or the displacement in the embodiment of the present invention. FIG. 6 (a) shows the detector output 80 when the beam spot 78 crosses the pattern boundary 79 drawn on the wafer when the beam spot 78 is circular. The density difference 81 of the detector output 80 differs depending on the physical characteristics of the drawn figure or the depth of the step. Therefore, the present invention measures the deflection scanning position. The figure used for the image processing may use a plurality of processes with different shadings, and may use a three-dimensional drawing technique. When the beam spot is located on the boundary, the degree of overlap with the boundary can be determined based on the density, so that accurate position measurement can be performed. In the present invention, when a part of a beam spot of a predetermined pixel includes a buttery boundary, the position is accurately measured. The maximum value of the gray level difference is measured before and after passing through the pattern boundary, and an intermediate value indicates that the center of the beam spot is located on the boundary center as shown in the figure. Is the intensity that can be handled by the curve as shown in the figure for the deflection position? However, the edge of the reference pattern boundary may itself change smoothly with respect to the deflection position. In such a case, the correspondence between the deflection position near the pattern boundary and the shading should be measured in advance. To avoid this, the edge of the reference pattern boundary should be sharpened. Also, the difference between the maximum value and the minimum value of the shading depending on the size and shape of the beam spot diameter and the shape of the curved line differ, so that the distance from the pattern boundary to the center of the beam spot (pixel center) is reduced. Shading must be set according to beam conditions. Fig. 6 (a) The right figure shows the detector output when the beam spot 78 crosses the pattern boundary 79 at a certain angle. Beam position from pattern boundary If the angle is known in advance, even when the pattern boundary described later has a certain inclination with the deflection scanning direction, the beam is deflected by the shading caused by the overlap between the beam spot and the boundary. Position can be measured accurately. Even if the slope is not known with sufficient accuracy or not known at all, if the pattern is a straight line, the slope is determined by a statistical method by measuring the boundary with a plurality of pixels. The angle can be calculated. Further, it is possible to measure the position of each pixel by knowing the distance from the calculated straight line from the density of each pixel measured.
第 6図 ( b ) は偏向走査方向に垂直に移動してパター ン画像を得る場 合の、 偏向走査方向に垂直なパターン境界 8 3 の意義を示している。 図 は測定原理を説明するための説明図である。 図の黒丸は画素の中心位置 を示し、 実際のビームスポッ ト径とは対応していない。 前記パター ン境 界 8 3 によ り 、 同期信号の揺ら ぎ等で、 ラィ ン全体の揺ら ぎ誤差 8 2 を 偏向走査位置ずれから分離して高精度に測定するこ とが可能となる。 図 に示す揺ら ぎ誤差がある場合、 パターン境界 8 3 は、 取得画像境界 8 9 と して表示される。 画像データ も し く は表示画像においては各画素位置 が均等に配置されている と仮定されているので、 境界 8 9 を境界 8 3 に 対して線対称に反転したデ一タが各画素の位置と して算出される。 偏向 走査方向に垂直方向のラ イ ン全体の揺れは、 本方式と、 後述する偏向走 査方向に対して大きな傾き を持ったパター ン境界を用いて画像の取得を 行い、 1 つの画素が複数回登録バタ一—ンと重なる方法にて測定できる。 本測定によ り得られるライ ン全体の揺れは、 前述のステ一ジ移動方式が ステ ッ プア ン ドリ ピ一 トである場合は、 偏向制御装置の位置決め精度に 起因する もので、 ステージ連続移動方式の場合は、 基本的に走査を行う 偏向位置は常に同じであるためステージ精度に起因する ものとなる。 但 し、 偏向制御起因のラ イ ン全体の揺ら ぎによる位置ずれは、 偏向走査位 置ずれの各画素のずれに比べて無視できる程度に非常に小さい場合が多 い Fig. 6 (b) shows the case where a pattern image is obtained by moving vertically to the deflection scanning direction. In this case, the significance of the pattern boundary 83 perpendicular to the deflection scanning direction is shown. Figure is an explanatory diagram for explaining the measurement principle. The black circle in the figure indicates the center position of the pixel, and does not correspond to the actual beam spot diameter. The pattern boundary 83 makes it possible to measure the fluctuation error 82 of the entire line due to the fluctuation of the synchronizing signal and the like from the deviation of the deflection scanning position and to measure it with high accuracy. When there is a fluctuation error shown in the figure, the pattern boundary 83 is displayed as the acquired image boundary 89. In the image data or the display image, it is assumed that the pixel positions are evenly arranged.Therefore, the data obtained by inverting the boundary 89 with a line symmetry with respect to the boundary 83 is the position of each pixel. It is calculated as The deflection of the entire line in the direction perpendicular to the deflection scanning direction is obtained by acquiring an image using this method and a pattern boundary that has a large inclination with respect to the deflection scanning direction described later. It can be measured by a method that overlaps the time registration pattern. The swing of the entire line obtained by this measurement is caused by the positioning accuracy of the deflection control device when the above-mentioned stage movement method is step-and-repeat. In the case of the method, the deflection position at which scanning is performed is always the same, and this is due to the stage accuracy. However, the positional deviation due to the fluctuation of the entire line due to the deflection control is often extremely small to a negligible degree compared to the deviation of each pixel in the deflection scanning positional deviation.
第 6図 ( c ) は偏向走査方向に平行な図形境界 8 5の意義を示してい る。 これによ り 、 偏向走査方向とは垂直方向の偏向走査位置ずれが測定 できる。 偏向走査方向とそれに垂直な方向の偏向制御信号は、 それぞれ 独立した回路を用いて発生させる場合が多いので、 それぞれ独立に偏向 走査位置も しく は位置ずれが検出できるこ とは意義が大きい。図の場合、 図形境界 8 5 は、 取得画像境界 9 0 と して表示される。各画素の位置は、 図形境界 8 5 に对して線対称と して反転したデータ となる。 補正メ モ リ などの補正手段がある場合は、 図の画素 8 4 の様に、 ある位置の画素を 故意にずら して測定するこ と によ り、 メ モリ ア ドレスなどの補正手段の 補正位置と偏向位置との相対関係が形成できる。 本手法及び前述した登 録パター ンの傾き算出手法などを組み合わせる と、 登録パタ一ンの正確 な位置や傾き を把握していな く と も偏向走査位置も し く は位置ずれの測 定及び補正が可能となる。 図上部はパターン境界とラ イ ンの位置関係を 2通り示してお り、 上側は 1 ラィ ンの殆どの画素がバタ一ン境界と重な る場合で、 下側は、 2 ラ イ ンに渡らないとすべての画素がパター ン境界 と重ならない場合を示す。 ラ イ ン間隔は通常ビームスポッ ト径とほぼ一 致も し く はそれ以下で使用される場合が多く 、 図に示すよ う に複数のラ ィ ンに渡って測定を行えば画素とパター ン境界が重ならないこ とはない, 第 6図 ( d ) に示すよ う に、 パタ ー ン境界が偏向走査方向とある傾斜を 持つこ とで、 各画素において精度良く偏向走査位置ずれが測定できる。 図に示すよ う に、 ノ、。ターン境界 8 6 よ り も傾斜の大きなパター ン境界 8 7の方が、 同一画素が複数回渡って測定されるため、 平均化処理によ り、 上述したパターン境界のエッ ジの影響やエッ ジの傾き誤差、 ライ ン全体 の揺れなどの影響が低減でき、 測定精度が高い。 ラ イ ン間隔は通常ビー ムスポッ ト径とほぼ一致している場合で、 1 画素以下の測定精度であれ ば、 傾斜は、 偏向走査方向と 4 5度の角度を持っていれば十分である力?、 要求精度に応じた傾斜を持つパターンを用いて偏向走査位置ずれを測定 するべきである。 バタ一ン境界 8 6 の取得画像境界 8 8 の曲線は、 前述 したラ イ ン全体の偏向走査方向のずれと垂直方向の偏向走査位置ずれの 影響も含んでいるため、 同時に偏向走査方向と垂直方向の偏向走査位置 ずれを測定し、 演算に依ってそのずれ分をキャ ンセルするこ とで偏向走 査方向のみの偏向走査位置ずれを算出するこ とが可能である。この場合、 登録パターンは、 偏向走査方向の直線と、 それに垂直方向及び所定の大 きな傾斜を持つ直線を組み合わせたものとするこ とが理想である。但し、 ラ イ ン全体の揺れが無視できる場合は、前記垂直方向の直線を省いても、 傾斜が小さな直線を用いても、それぞれ独立して配置されていても よレ、。 位置ずれは、 図の右側に示すよ う に、 理想の偏向方向 ( X方向) 及び、 その垂直方向 ( y方向) の偏向位置に対しての、 前述したパター ン境界 と ビ一ムスポッ ト の重な りから算出される。 取得画像境界 8 8 と して表 示される濃淡データの値は、 ある画素が偏向方向にずれているこ とに依 つて生じる、 各画素のパター ンエッ ジからの距離を表す。 このデータ と、 与えられるかも し く は算出 したパター ンの傾斜度と、 各ライ ンの偏向位 置 yの位置によ り偏向方向の偏向走査位置および位置ずれが算出される , 第 6図 ( e ) は上記パター ン境界を組み合わせた既知図形の例を示した。 位置ずれは、 前述によ り 、 基本的に偏向方向とその垂直方向に平行な辺 を持つ直角三角形によつて測定可能であるが、 複数のパター ン境界を持 たせるこ とは、 誤差を低減させ、 精度を向上させる。 1 ラ イ ン中に複数 のパター ン境界を横切らせる方法と、 複数のパター ンを連続配置して連 続走査する方法がある。 図の左側のよ う に組み合わせた図形を描く こ と で、 一度のシーケンスにて精度良く偏向走査位置ずれが測定できる。 FIG. 6 (c) shows the significance of the figure boundary 85 parallel to the deflection scanning direction. Thereby, the deflection scanning position deviation in the direction perpendicular to the deflection scanning direction can be measured. Since the deflection control signal in the deflection scanning direction and the deflection control signal in the direction perpendicular to the deflection scanning direction are often generated using independent circuits, it is significant that the deflection scanning position or the displacement can be detected independently. In the case of the figure, the figure boundary 85 is displayed as the acquired image boundary 90. The position of each pixel is data that is inverted in line symmetry with respect to the figure boundary 85. Correction memory When there is a correction means such as a pixel, the pixel at a certain position is deliberately shifted as shown in pixel 84 in the figure, and the correction position and the deflection position of the correction means such as a memory address are measured. Can be formed. When this method is combined with the above-mentioned method for calculating the inclination of the registered pattern, it is not necessary to know the exact position and inclination of the registered pattern, and to measure and correct the deflection scanning position or positional deviation. Becomes possible. The upper part of the figure shows the positional relationship between the pattern boundary and the line in two ways. The upper part shows the case where most of the pixels on one line overlap the butter line boundary, and the lower part shows the two lines. If not, all pixels do not overlap the pattern boundary. In many cases, the line spacing is almost equal to or smaller than the beam spot diameter, and as shown in the figure, if measurement is performed over multiple lines, the pixel and pattern boundary As shown in Fig. 6 (d), the pattern boundary has a certain inclination with the deflection scanning direction, so that the deviation of the deflection scanning position can be accurately measured for each pixel. As shown in the figure. Since the same pixel is measured more than once on the pattern boundary 87, which has a larger slope than the turn boundary 86, the averaging process can be used to determine the effect of the edge on the pattern boundary and the edge described above. Influences such as tilt error of the line and swing of the whole line can be reduced, and measurement accuracy is high. The line interval is almost the same as the beam spot diameter, and if the measurement accuracy is 1 pixel or less, the inclination is sufficient if an angle of 45 degrees with the deflection scanning direction is sufficient. ? However, the deflection scanning position deviation should be measured using a pattern having a slope corresponding to the required accuracy. Since the curve of the image boundary 88 obtained from the pattern boundary 86 includes the influence of the above-described deviation in the deflection scanning direction of the entire line and the deviation of the deflection scanning position in the vertical direction, the curve at the same time is perpendicular to the deflection scanning direction. It is possible to calculate the deflection scanning position deviation only in the deflection scanning direction by measuring the deflection scanning position deviation in the direction and canceling the deviation by calculation. In this case, the registration pattern consists of a straight line in the deflection scanning direction, a direction perpendicular thereto, and a predetermined size. It is ideal to combine straight lines with different slopes. However, if the fluctuation of the entire line can be neglected, the vertical straight line may be omitted, a straight line having a small inclination may be used, or the lines may be independently arranged. As shown on the right side of the figure, the misalignment is caused by the overlap of the pattern boundary and beam spot described above with respect to the ideal deflection direction (X direction) and its vertical (y direction) deflection position. It is calculated from the following. The value of the grayscale data displayed as the acquired image boundary 88 represents the distance of each pixel from the pattern edge caused by the fact that a certain pixel is shifted in the deflection direction. The deflection scanning position and displacement in the deflection direction are calculated based on this data, the inclination of the pattern that may be given or calculated, and the position of the deflection position y of each line. e) shows an example of a known figure combining the above pattern boundaries. As described above, displacement can be measured by a right-angled triangle having sides parallel to the deflection direction and its vertical direction, but having multiple pattern boundaries reduces errors. And improve accuracy. There are two methods: one is to cross multiple pattern boundaries in one line, and the other is to continuously arrange multiple patterns and scan continuously. By drawing the combined figure as shown on the left side of the figure, the deflection scanning position deviation can be measured accurately with a single sequence.
また、 バタ一ン境界が偏向方向に傾斜を直接持たな く ても、 大まかな 偏向位置の測定は可能である。 大まかに偏向走査の位置ずれを測定する 図形パター ンの一例を第 6 図 ( f ) に示す。 図左側に示す例では、 直接 傾斜は持たないが、 偏向方向にライ ン全体をずら してゆ く こ とで、 等価 的にパター ンを斜めに横切る走査を行っている。 この場合の測定精度は 偏向走査精度、 ステージを移動する場合はステージ精度、 ラ イ ン全体の 位置精度に依存するため、 前述した測定方法よ り は測定精度が劣る。 本発明では、 上述のよ う に登録されたパタ ー ンの画像情報を実際に測 定するこ とによ り偏向走査位置ずれを測定するこ とが目的であ り、 登録 されたパター ンの構成はその目的に適した形態を持たせるこ とが望ま し レ、。 以上のよ う な方法にて偏向走査位置または位置ずれを精度良く測定 するこ とが可能となる。 In addition, even if the boundary of the butterfly does not have a direct inclination in the deflection direction, it is possible to roughly measure the deflection position. Figure 6 (f) shows an example of a figure pattern that roughly measures the deflection scan position shift. In the example shown on the left side of the figure, there is no direct tilt, but scanning is performed across the pattern equivalently by shifting the entire line in the deflection direction. In this case, the measurement accuracy depends on the deflection scanning accuracy, when moving the stage, the stage accuracy, and the position accuracy of the entire line. Therefore, the measurement accuracy is inferior to the measurement method described above. An object of the present invention is to measure the deflection scanning position shift by actually measuring the image information of the pattern registered as described above. It is hoped that the composition of the pattern provided will have a form suitable for the purpose. The deflection scanning position or the displacement can be accurately measured by the method described above.
(補正方法)  (Correction method)
第 7図は、 本発明で測定した偏向走査位置ずれを補正する方法の概略 を説明する図である。 本部分は第 1 図において偏向位置補正手段 1 7 と して示されている。 前述したよ う に偏向走査位置ずれは、 動的にビーム を偏向する こ と によ り生じる。 したがって、 偏向走査位置ずれは、 第 5 図において示唆したよ う に、 1 ラ イ ン中の位置に対応させるこ とができ る。 よって、 第 7図 ( a ) の偏向走査位置ずれ補正手段 9 2 の偏向走査 位置ずれ補正手段入力信号 9 5は、 ラ イ ン中のある基準位置からの相対 位置を表す信号であるこ とが適当である。 偏向走査位置ずれ補正手段入 力信号 9 5 は、 例えば、 画素の位置を示す信号と して画素番号を基にし たデータあるいは、 1 ライ ン中のある基準位置からの偏向距離を示す信 号と して偏向走査位置も し く は偏向制御信号を基に算出したデータなど が使用できる。  FIG. 7 is a diagram for explaining an outline of a method of correcting a deflection scanning position shift measured in the present invention. This part is shown as deflection position correcting means 17 in FIG. As described above, the deflection scanning position shift is caused by dynamically deflecting the beam. Therefore, the deflection scanning position shift can correspond to a position in one line, as suggested in FIG. Therefore, it is appropriate that the deflection scanning position deviation correcting means input signal 95 of the deflection scanning position deviation correcting means 92 in FIG. 7 (a) is a signal representing a relative position from a certain reference position in the line. It is. The deflection scanning position shift correction means input signal 95 is, for example, data based on a pixel number as a signal indicating a pixel position or a signal indicating a deflection distance from a certain reference position in one line. Then, the deflection scanning position or data calculated based on the deflection control signal can be used.
偏向走査位置ずれ補正手段 9 2 の実現方法の 1 例と して偏向走査位置 ずれ補正手段 9 2 にルッ クアツプテ一ブル方式のメモリ を使用する場合 は、 その偏向走査位置ずれ補正手段入力信号 9 5は前記メモリのァ ドレ スに対応する信号となる。 本方式の分解能および補正精度は、 それぞれ メモリ ア ドレス信号のビッ ト数および補正データのビッ ト数によ り決定 される。 本方式は、 メ モリ に格納されている値が補正値となるため、 局 所的な位置ずれがある場合でも補正可能であり、 最も有効な補正手段で ある。 一般にメ モ リ回路は、 制御信号を発生する個所、 すなわち X軸方 向 (走査方向) の位置ずれを補正する ものと、 Y軸方向の位置ずれを補 正する ものを用意する力?、 精度との関係によって X軸方向 (走査方向) の位置ずれを補正する もののみを使用しても、 また、 その他の制御回路 に補正用のメモ リ回路を複数用意しても良い。 また偏向走査位置も し く は偏向制御信号を利用する場合のメ モ リ のア ドレス指定方法は、 X座標 も し く は Y座標のいずれかの位置のみに対応させる方法と、 Xと Y座標 の両方の 2次元位置に対応させる方法がある。 As an example of the method of realizing the deflection scanning position deviation correcting means 92, when a look-up table type memory is used for the deflection scanning position deviation correcting means 92, the deflection scanning position deviation correcting means input signal 95 Is a signal corresponding to the address of the memory. The resolution and correction accuracy of this method are determined by the number of bits of the memory address signal and the number of bits of the correction data, respectively. In this method, since the value stored in the memory is the correction value, it can be corrected even if there is a local displacement, and is the most effective correction means. In general, the memory circuit needs to prepare a control signal generation part, that is, one that corrects the displacement in the X-axis direction (scanning direction) and one that corrects the displacement in the Y-axis direction? X-axis direction (scanning direction) depending on the relationship with the accuracy Only one that corrects the positional deviation may be used, or a plurality of memory circuits for correction may be prepared in another control circuit. When the deflection scanning position or the deflection control signal is used, the address of the memory can be specified by a method corresponding to only one of the X coordinate or the Y coordinate, and the X and Y coordinates. There is a method to correspond to both two-dimensional positions.
偏向走査位置ずれ補正手段 9 2 の実現方法の 1例と して、 位置ずれが 所定の関数に近似できる場合は、 偏向走査位置ずれ補正手段 9 2 に、 近 似座標変換演算回路を使用するこ と もできる。 関数の形態は、 Xも し く は Y座標の 1 変数を使用するのか、 X Y座標の 2変数を利用するの力、、 また何次式であるのかによつて異なる。 第 1 0図に示す式 3 は、 偏向走 査位置ずれ補正関数の係数を偏向歪補正式の係数に変換する方法の例を 示す式であり、 2変数かつ 3次式の場合を示した。 この場合の偏向走査 位置ずれ補正関数は、 たまたま式 1 に示した偏向歪の補正関数と同じ形 態を している力 異なる種類の演算を行う。 具体的には入力変数が異な り、 偏向歪などの静的な歪の場合の入力変数は、 偏向領域座標すなわち 偏向位置 ( x 0、 y 0) であったのに対し、 偏向走査位置ずれ補正の場合 の入力変数は、 ラ イ ン中の基準位置からの相対位置 ( X s 、 y s ) であ る  As an example of a method of realizing the deflection scanning position deviation correcting means 92, when the position deviation can be approximated to a predetermined function, a near coordinate conversion operation circuit is used for the deflection scanning position deviation correcting means 92. You can also. The form of the function depends on whether it uses one variable on the X or Y coordinate, the power of using two variables on the X and Y coordinates, and the order of the equation. Equation 3 shown in FIG. 10 is an equation showing an example of a method of converting the coefficient of the deflection scan position deviation correction function into the coefficient of the deflection distortion correction equation, and shows a case of a two-variable and cubic equation. In this case, the deflection scanning position shift correction function happens to have the same form as the deflection distortion correction function shown in Equation 1 and performs different types of calculations. Specifically, the input variables are different, and in the case of static distortion such as deflection distortion, the input variable was the deflection area coordinates, that is, the deflection position (x0, y0), whereas the deflection scanning position deviation correction In this case, the input variable is the relative position (Xs, ys) from the reference position in the line.
位置ずれ測定結果の補正手段への反映は、 メ モリ方式の場合、 上位制 御系である偏向走査位置ずれ測定および補正データ生成手段 9 6力 偏 向走査位置ずれ補正手段 9 2 への偏向走査位置ずれ補正手段入力信号 9 5 に対応した補正量を表すデータ を作成し、 前記入力信号をア ドレス と し前記補正量を表すデータを補正データ 9 7 と してメ モ リ に書き こむこ とで行う。 近似座標変換演算方式の場合、 上位制御系である偏向走査位 置ずれ測定および補正データ生成手段 9 6 は、位置ずれ量を統計処理し、 式 3 に示すよ う な予め指定された近似式の係数を求め、 前記係数を補正 データ 9 7 と して偏向走査位置ずれ補正手段 9 2 にあらかじめ与えるこ とで、 位置ずれ測定結果を補正手段に反映する。 In the case of the memory system, the result of the displacement measurement is reflected in the correction means.In the case of the memory system, the deflection scanning position displacement measurement and correction data generation means, which is the upper control system, 96 Data representing the amount of correction corresponding to the input signal 95 of the displacement correction means is created, and the input signal is used as an address, and the data representing the amount of correction is written into memory as correction data 97. Do with. In the case of the approximate coordinate conversion operation method, the deflection scanning position deviation measurement and correction data generation means 96, which is a higher-level control system, statistically processes the position deviation amount and calculates a predetermined approximate expression as shown in Expression 3. Find the coefficient and correct the coefficient By giving the data 97 to the deflection scanning position shift correcting means 92 in advance, the position shift measurement result is reflected on the correcting means.
偏向走査位置ずれ補正手段 9 2 を、 補正信号波形を作成するためのフ ア ンク シ ョ ンジェネレータ回路も し く はフ ィ ルタ回路の組み合わせ回路 などのアナログ回路で構成するこ と もできる。 この場合の偏向走査位置 ずれ補正手段入力信号 9 5 は、 ラ イ ンの開始信号であ り 、 また、 上位制 御系である偏向走査位置ずれ測定および補正デ—タ生成手段 9 6 は、 前 記回路のシ ミ ュ レ一シ ョ ンモデルを使用 し、 前記回路の設定パラメ 一タ を算出 して前記回路の補正データ 9 7 を設定する。  The deflection scanning position shift correcting means 92 may be constituted by an analog circuit such as a function generator circuit for creating a correction signal waveform or a combination circuit of filter circuits. In this case, the deflection scanning position shift correction means input signal 95 is a line start signal, and the higher-level control system, the deflection scanning position shift measurement and correction data generation means 96, Using the simulation model of the circuit, the setting parameters of the circuit are calculated, and the correction data 97 of the circuit is set.
偏向走査位置ずれ補正手段 9 2 によ り 出力されるデータは、 位置ずれ 分の補正情報を表しており、 偏向制御信号 9 1 とデジタ ルも し く はアナ 口グ的に加算回路 9 3 で加算するこ とで、 偏向走査位置ずれが補正され た走査信号 9 4 を得ることができる。 ここで偏向制御信号 9 1 は、 も し 偏向歪等の補正を行わない場合は偏向位置信号に対応する。 前述したよ う に、 偏向走査位置ずれ補正手段 9 2 は、 ラ イ ン中の相対位置をその入 力に用いるため、 偏向制御信号 9 1 とは個別に演算を行い最終段にて加 算を行う必要がある。 またデジタル的に加算する場合は、 回路規模の増 大が低減される力 後段のアナログ回路によ り さ らに誤差が混入する問 題がある。 したがって精度を重視する場合は、 回路規模の増大は避けら れないがアナログ信号にて偏向回路の最終段にて加算する方が、 補正す ベき電圧値が補正値と して加算できるため有利である。  The data output by the deflection scanning position shift correcting means 92 represents the correction information for the position shift, and the deflection control signal 91 and the digital or analog signals are added to the adder circuit 93 in an analogous manner. By performing the addition, a scanning signal 94 in which the deflection scanning position deviation is corrected can be obtained. Here, the deflection control signal 91 corresponds to a deflection position signal if the deflection distortion or the like is not corrected. As described above, since the deflection scanning position deviation correcting means 92 uses the relative position in the line for its input, the deflection scanning position deviation correction means 92 performs an operation separately from the deflection control signal 91 and performs addition in the final stage. There is a need to do. In addition, in the case of digital addition, there is a problem that the error is further mixed in by an analog circuit at a later stage in which an increase in circuit scale is reduced. Therefore, when importance is placed on accuracy, it is unavoidable to increase the circuit scale, but it is more advantageous to add analog signals at the final stage of the deflection circuit because the voltage to be corrected can be added as a correction value. It is.
第 7図 ( c ) は、 上述した近似座標変換演算方式の実現手段の変形と して、 偏向走査位置ずれ補正手段を全偏向位置に対して実時間で演算を 行う 回路と して用意しないで、 偏向歪等の補正演算回路 9 9の係数を変 更するだけで偏向走査位置ずれ補正を実現する方法を示している。 第 9 図に、 偏向走査位置ずれ係数の偏向歪補正係数への変換演算 1 0 0の内 容の例を式 2 にと して示した。 式 2 は、 偏向走査位置ずれ補正関数の次 数が 3次の場合の式である。 式 2上側に示す関数は、 前述した数 3の関 数形態を基本と し、 1 変数かつ 3次式の補正を行う場合の係数を示す。 上述したよ う に、 この関数の入力値は、 ラ イ ンの走査開始位置からの相 対位置 ( X s 、 y s ) であり 、 ライ ンの走査開始位置と前記相対位置の 加算が、 式 1 に示す偏向歪補正関数の入力である偏向位置 ( X 0 、 y 0 ) に対応するこ とから、 式 2下側に示すよ う に、 偏向走査位置ずれ係数を、 走査開始位置を変数に持つ偏向歪補正係数へ変換できる。 こ こで式 2下 側の関数では Y方向は省略した。 したがって、 第 7図 ( b ) の偏向走査 位置ずれ係数の偏向歪補正係数への変換演算手段 1 0 0 は、 偏向走査開 始位置信号 1 0 2 の入力を受ける。 変換演算手段 1 0 0の出力である変 換された係数データは、 偏向歪係数データ と加算され、 偏向歪等の補正 演算手段 9 9 に入力される。 こ こでの偏向歪等の補正演算手段 9 9 は、 偏向走査位置信号 9 8の入力を受け、 偏向歪等の静的な歪みの補正に加 え、 偏向走査位置ずれの補正も同時に行った走査信号 9 4 を出力するこ とが可能となる。 走査位置ずれ偏向歪係数変換演算 1 0 0 は、 1 ラ イ ン 単位で行えば良く 、 専用演算回路で構成しな く と も、 プロセッサにて行 う こ とが可能であ り 、 偏向歪補正手段のみを有する装置において、 偏向 係数演算を行う プロセッサにて同時に演算を行う ことによ り、 偏向走査 位置の補正が可能となる。 この場合、 偏向歪補正回路を搭載されている 回路においては、 回路の改造を伴う こ とな く 、 本発明の実施例における 偏向走査位置ずれ補正を行う こ とができる。 FIG. 7 (c) shows a modification of the above-described means for realizing the approximate coordinate conversion operation method, in which the deflection scanning position deviation correction means is not prepared as a circuit for performing an operation for all deflection positions in real time. In this figure, there is shown a method for realizing the deflection scanning position deviation correction only by changing the coefficient of the correction operation circuit 99 for the deflection distortion or the like. FIG. 9 shows the conversion operation of the deflection scanning position shift coefficient into the deflection distortion correction coefficient. An example of this is shown in Equation 2. Equation 2 is an equation when the order of the deflection scanning position shift correction function is the third order. The function shown in the upper part of Equation 2 is based on the function form of Equation 3 described above, and represents a coefficient when one variable and cubic equation are corrected. As described above, the input value of this function is the relative position (Xs, ys) from the line scanning start position, and the addition of the line scanning start position and the relative position is expressed by the following equation (1). Since it corresponds to the deflection position (X 0, y 0) which is the input of the deflection distortion correction function shown in (2), as shown in the lower side of Equation 2, the deflection scanning position deviation coefficient and the scanning start position are variables. It can be converted to a deflection distortion correction coefficient. Here, the Y direction is omitted in the function in the lower part of Equation 2. Therefore, the conversion operation means 100 for converting the deflection scanning position shift coefficient into the deflection distortion correction coefficient shown in FIG. 7 (b) receives the deflection scanning start position signal 102. The converted coefficient data output from the conversion operation means 100 is added to the deflection distortion coefficient data and input to the correction operation means 99 for deflection distortion and the like. Here, the deflection calculating means for correcting the deflection distortion etc. 99 receives the input of the deflection scanning position signal 98, and in addition to correcting the static distortion such as the deflection distortion, also performs the deflection scanning position deviation correction at the same time. The scanning signal 94 can be output. The scanning position deviation deflection distortion coefficient conversion operation 100 may be performed in units of one line, and can be performed by a processor without using a dedicated arithmetic circuit. In a device having only means, by performing the calculation simultaneously by the processor that performs the deflection coefficient calculation, the deflection scanning position can be corrected. In this case, the circuit equipped with the deflection distortion correction circuit can perform the deflection scanning position shift correction in the embodiment of the present invention without modifying the circuit.
さ らに、 前記検査装置の場合、 偏向走査位置の位置ずれを補正する手 段と して、 その位置ずれ情報を画像処理系装置に対して転送するこ とに よ り 、 画像比較時、 位置ずれ情報を基に補間法などを用いて取得データ の修正を行う こ とが可能とな り 、 前記欠陥の誤検出を低減できる。 以上よ り 、 偏向走査位置ずれ測定手段によ り測定された結果を補正手 段に反映するこ とが可能とな り、 偏向位置精度の向上または欠陥の誤検 出の低減が実現できる。 Further, in the case of the inspection apparatus, as a means of correcting the positional deviation of the deflection scanning position, the positional deviation information is transferred to the image processing system, so that the position can be compared at the time of image comparison. It is possible to correct the acquired data using an interpolation method or the like based on the displacement information, and it is possible to reduce false detection of the defect. As described above, it is possible to reflect the result measured by the deflection scanning position deviation measuring means to the correction means, and it is possible to improve the deflection position accuracy or reduce the erroneous detection of a defect.
(操作パネル)  (control panel)
偏向走査位置ずれは、 走査状態に依存するので、 偏向走査位置ずれの測 定と補正デ—タ設定は、 走査状態変更時、 ゥェハ等の被検査物の交換時、 例えば 1 画素を 0. 1 / mから 0. 05 ," mに変更するなどの比較検査の精 度設定の変更時に行う こ とが望ま しい。 この場合、 全てを自動で短時間 に行う こ とが望ま しい。 Since the deflection scanning position shift depends on the scanning state, the measurement of the deflection scanning position shift and the setting of the correction data are performed when the scanning state is changed, when the inspection object such as a wafer is replaced, for example, when one pixel is set to 0.1. It is desirable to perform this at the time of changing the accuracy setting of the comparative inspection, such as changing from / m to 0.05, "m. In this case, it is desirable to perform everything automatically and in a short time.
上述の測定も し く は補正時に発生する作業は、 システム制御部に対し走 査を行う登録パタ一ンの位置ゃパタ一ン境界のデ一タのロー ドゃ、 登録 パタ一ンが描かれている試料の試料室へのロー ド (既にロー ドされてい る場合やステージに備え付けられている場合は必要ない) 、 走査条件の 入力、 測定実行入力、 システム制御部から偏向制御部への補正デ一夕 の 転送などである。 自動実行は、 上記走査条件が変更された時に、 実行確 認が提示され、 実行を選択するなど、 操作パネルの指示に従って、 登録 パター ンが描かれている試料の試料室への口一 ド等を行う。 この場合、 走査を行う登録パタ一ンの位置ゃパタ一ン境界のデ一タの口一 ドは、 あ らかじめシステム制御部に登録を行う こ とが必要である。 ステージ上に 既に試料を取り付けておき、 各補正ァライ メ ン ト時やキヤ リ ブレ一シ ョ ン時に自動実行しても よい。 このと きシステム制御部は、 測定結果の視 覚的表示、 履歴データ と しての記録、 画像処理も し く は偏向制御装置に て実施する補正手段にデータ を与えるなどの自動動作を行う。 The operations that occur during the above-mentioned measurement or correction include the position of the registered pattern for scanning the system control unit, the loading of data at the pattern boundary, and the registered pattern. Loading of the loaded sample into the sample chamber (not necessary if it is already loaded or mounted on the stage), input of scanning conditions, input of measurement execution, correction from system control unit to deflection control unit For example, a transfer of data overnight. In the automatic execution, when the above scanning conditions are changed, an execution confirmation is presented, and the execution is selected. I do. In this case, it is necessary to register the position of the registration pattern to be scanned and the data of the data at the boundary of the pattern in the system control unit in advance. The sample may be already mounted on the stage, and it may be automatically executed at the time of each correction alignment or calibration. At this time, the system control unit performs automatic operations such as visually displaying the measurement results, recording the data as history data, and providing data to correction means implemented by image processing or the deflection control device.
以上のよ う に、 自動に行う ことで、 ユーザに要求する手間を低減しか つ、検査装置を常に高精度に保たれた状態に管理するこ とが可能となる。 以上、 本発明の実施の形態においての効果は以下の通りである。 画像データを用いて偏向走査位置も し く は位置ずれを測定するこ とに よ り 、 次の効果が得られる。 As described above, by performing the operation automatically, the labor required for the user can be reduced, and the inspection apparatus can be managed in a state where it is always maintained with high accuracy. The effects of the embodiment of the present invention are as follows. The following effects can be obtained by measuring the deflection scanning position or the displacement using the image data.
( 1 ) 連続した画素の画素位置が高精度に測定できる。  (1) The pixel positions of consecutive pixels can be measured with high accuracy.
( 2 ) 実際の走査状態における偏向走査位置も し く は位置ずれが測定で 2>る。  (2) The deflection scanning position or displacement in the actual scanning state is more than 2 in the measurement.
( 3 ) 特定画素の局所的な位置ずれに対しても測定可能である。  (3) It is possible to measure even a local displacement of a specific pixel.
登録パタ一ンの配置および走査方法によ り次の効果が得られる。  The following effects can be obtained depending on the arrangement of the registered patterns and the scanning method.
( 4 ) 偏向走査位置も し く は位置ずれが、 走査方向成分とそれに垂直な 方向成分とで独立して測定できる。  (4) The deflection scanning position or displacement can be measured independently for the scanning direction component and the direction component perpendicular thereto.
( 5 ) 走査位置全体 (ラ イ ン) の位置変動が、 走査方向成分とそれに垂 直な方向成分とで独立して測定できる。  (5) Position fluctuation of the entire scanning position (line) can be measured independently for the scanning direction component and the component perpendicular to the scanning direction.
偏向走査位置補正手段や自動検査操作手段を備えることによ り次の効 果が得られる。  The following effects can be obtained by providing the deflection scanning position correction means and the automatic inspection operation means.
( 6 ) 荷電粒子ビーム走査がなさている経過点においても、 ビーム位置 を高精度に制御することが可能になる。  (6) The beam position can be controlled with high accuracy even at the point where the charged particle beam scanning is being performed.
( 7 ) 利用者が装置の校正状態を把握するこ とが容易にな り、 さ らに装 置を常に高精度に校正された状態に保つこ とが可能になる。  (7) It is easy for the user to grasp the calibration state of the device, and it is also possible to keep the device constantly calibrated with high accuracy.
検査装置において特に次の効果が得られる。  The following effects are particularly obtained in the inspection apparatus.
( 8 ) 実際の検査時における検出画素位置の位置ずれを、 取得画像を利 用して測定することによ り、 短時間に検査装置の要求精度以上の優れた 精度で測定するこ とが可能となる。  (8) By using the acquired image to measure the displacement of the detected pixel position during the actual inspection, it is possible to measure in a short time with an accuracy higher than the required accuracy of the inspection equipment Becomes
( 9 ) 画像処理、 偏向制御装置の補正機能に位置ずれデータを供給する こ とで、 高感度な比較検査に必要な正確なバタ一ン情報を得るこ とが可 能にな り、 正常な個所を欠陥である と判定する虚報を低減させるこ とが 可能となる。  (9) By supplying positional deviation data to the correction function of the image processing and deflection control device, it is possible to obtain accurate pattern information necessary for high-sensitivity comparison inspections, It is possible to reduce false reports that a part is determined to be defective.
( 1 0 ) 偏向動作状態を変化させても、 前記状態変化起因の虚報が生じ るこ とな く 、 高感度な比較検査に必要な正確なパター ン情報を得るこ と が可能となる。 (10) Even if the deflection operation state is changed, false information due to the state change occurs. In addition, it is possible to obtain accurate pattern information necessary for high-sensitivity comparative inspection.
( 1 1 ) 検査装置と して備えられた機能を使用するため、 低コス ト で容 易に実現可能である。  (11) Since the function provided as an inspection device is used, it can be easily realized at low cost.

Claims

請 求 の 範 囲 The scope of the claims
1 . 荷電粒子ビームを所定の位置に照射する荷電粒子ビーム走査式装置 において、 物理的性質または構造の境界によ り 1 つも しく は複数の登録 されたパター ンが描かれた試料上にビームを照射するこ とによ り生じる 生成物を取り込み、 前記登録パタ ー ンの画像情報を得、 前記画像情報か ら算出した画像上のパター ンの境界位置情報と前記登録パター ンの境界 位置情報との差異を検出し、 ビーム照射の位置も し く はビーム照射の位 置ずれを測定するこ と を特徴と した荷電粒子ビーム位置測定方法。 1. In a charged particle beam scanning device that irradiates a charged particle beam to a predetermined position, the beam is placed on a sample on which one or more registered patterns are drawn depending on physical properties or structural boundaries. The product generated by the irradiation is taken in, the image information of the registered pattern is obtained, and the boundary position information of the pattern on the image calculated from the image information and the boundary position information of the registered pattern are obtained. A charged particle beam position measuring method characterized by detecting a difference between the positions and measuring a beam irradiation position or a beam irradiation position shift.
2 . 荷電粒子ビームを所定の位置に偏向する荷電粒子ビーム走査式装置 において、 物理的性質または構造の境界によ り 1 つも し く は複数の登録 されたバタ一ンが描かれた試料と、 ビームを試料上の所望の位置に偏向 するための制御を行う偏向制御手段と、 前記試料上にビームを照射する こ と によ り生じる生成物を前記偏向制御手段から入力されるビーム照射 タ イ ミ ング信号を基に取り込み画素データ を生成し、 前記画素データ を 前記試料上の所定の領域について取得するこ とによ り試料画像情報を取 得する画像取得手段と、前記登録パターンを含む試料の画像情報を基に、 画像上の境界位置を算出 して取得された各画素の位置も しく は各画素の 位置ずれを測定する位置ずれ測定手段とを具備したことを特徴とする荷 電粒子ビーム走査式装置。 2. A charged particle beam scanning device that deflects the charged particle beam to a predetermined position, where one or more registered butterflies are drawn due to physical or structural boundaries; Deflection control means for performing control for deflecting the beam to a desired position on the sample, and a beam irradiation timer for inputting a product generated by irradiating the beam on the sample with the deflection control means Image acquisition means for acquiring sample image information by acquiring captured pixel data based on a mining signal and acquiring the pixel data for a predetermined area on the sample; A charged particle, comprising: a position of each pixel obtained by calculating a boundary position on the image based on the image information; or a position shift measuring means for measuring a position shift of each pixel. Beam scanning device.
3 . 請求項 2記載の画像取得手段において、 前記試料上にビームを照射 する こ と によ り生じる生成物を取り込み、 前記生成物の量を反映したァ ナログ電気信号に変換する生成物取り込み手段と、 前記偏向制御手段か ら所望のビーム照射位置の照射タ ィ ミ ングを示す同期信号と前記アナ口 グ電気信号から、 前記所望の照射位置での前記生成物の量を表した画素 データを生成する画素データ生成手段と、 前記偏向制御手段から得られ るビーム照射位置情報と前記画素デ一夕 とを関連付けるこ とによ り画像 情報を生成する画像情報生成手段とを具備し、 前記生成した画像情報か ら前記試料上の物理的性質や構造などの境界位置が測定可能な画像情報 が取得でき るこ と を特徴とする荷電粒子ビーム走査式装置。 3. The image capturing unit according to claim 2, wherein a product generated by irradiating the sample with a beam is captured, and the product capturing unit converts the product into an analog electric signal reflecting the amount of the product. Pixel data representing the amount of the product at the desired irradiation position from the synchronization signal indicating the irradiation timing of the desired beam irradiation position and the analog electric signal from the deflection control means. Pixel data generating means for generating, and the deflection control means. Image information generating means for generating image information by associating the beam irradiation position information with the pixel data and the physical properties and structure on the sample from the generated image information. A charged particle beam scanning device capable of acquiring image information capable of measuring a boundary position of an object.
4 . 請求項 2記載の前記位置ずれ測定手段において、 前記試料上に、 あ る境界を境に物理的性質や構造が異なることによる前記生成物の量が異 なる少な く と も 2つの領域があり、 所定の面積を持つビームの照射が前 記境界を含む位置の集合に含まれるある位置に対して行われた場合に生 じる生成物の量が、 前記位置での照射領域内の前記少な く と も 2つの領 域における各領域の単位面積あた りの生成物の量と照射面積の積の総和 によって定ま り、 前記境界からの距離も し く は位置によって定まるこ と を利用し、 前記画像取得手段から得られる前記生成物の量を所定の多階 調値に変換した画素データ よ り、 ビーム照射領域の中心位置から前記境 界位置への相対位置を、 前記照射領域の大き さ と前記多階調値の分解能 に依存する精度で算出する境界位置算出手段と、 前記境界位置算出手段 によ り算出される前記相対位置と取得画像情報の有する画素位置情報の 組を複数用い、 取得画像上の境界パター ン位置を算出する境界パター ン 算出手段と、 前記境界パター ン位置と登録された境界情報を基に、 各取 得画素の所望の位置からのずれ量を算出するずれ量算出手段を具備し、 画像情報を基にビーム偏向位置も し く は画素位置のずれ量を測定するこ と を特徴とする荷電粒子ビーム走査式装置。 4. The displacement measuring means according to claim 2, wherein at least at least two regions on the sample, which differ in the amount of the product due to a difference in physical properties or structure from a certain boundary. The amount of the product generated when the irradiation of the beam having the predetermined area is performed on a certain position included in the set of positions including the boundary is determined by the amount of the product within the irradiation area at the position. It is determined by the sum of the product of the irradiation area and the amount of product per unit area of each area in at least two areas, and is determined by the distance from the boundary or the position. Then, based on pixel data obtained by converting the amount of the product obtained from the image acquisition unit into a predetermined multi-tone value, the relative position from the center position of the beam irradiation region to the boundary position is determined. Depends on size and resolution of the multi-tone values A plurality of pairs of the relative position calculated by the boundary position calculating means and the pixel position information of the obtained image information, and calculating the boundary pattern position on the obtained image. A boundary pattern calculating unit that calculates a shift amount of each acquired pixel from a desired position based on the boundary pattern position and the registered boundary information. A charged particle beam scanning apparatus characterized by measuring a beam deflection position or a pixel position shift amount.
5 . 測定を行う所定の位置に前記登録パタ ー ンの境界を配置し、 実際に 前記装置が駆動する動作または近い動作を行う ことで、 実際の装置駆動 動作状態における ビーム照射の位置も し く は位置ずれを測定するこ と を 特徴と した請求の範囲第 2項記載の荷電粒子ビーム走査式装置。  5. By arranging the boundary of the registration pattern at a predetermined position where the measurement is performed, and by actually performing or near-driving the device, the beam irradiation position in the actual device driving operation state is also reduced. 3. The charged particle beam scanning device according to claim 2, wherein the displacement is measured.
6 . 所定方向のビーム走査も し く はスリ ッ ト状のビーム照射によ り線画 像を取得し、 これを前記線画像の長手方向とは垂直の方向にずら して複 数回にわた り前記線画像取得を実施する偏向動作を行う こ とで、 前記画 像情報を基に前記長手方向の各画素位置の位置ずれと前記垂直方向の各 画素位置の位置ずれを、 独立して少な く と も どちらか一方を測定するこ と を特徴と した請求の範囲第 2項記載の荷電粒子ビーム走査式装置。 6. Line drawing by scanning the beam in a predetermined direction or irradiating a slit beam An image is acquired, and this is shifted in a direction perpendicular to the longitudinal direction of the line image, and a deflection operation for performing the line image acquisition is performed a plurality of times, thereby obtaining the image based on the image information. 3. The method according to claim 2, wherein at least one of the displacement of each pixel position in the longitudinal direction and the displacement of each pixel position in the vertical direction is independently measured. Charged particle beam scanning device.
7 . ビーム走査動作に起因する位置ずれ以外の要因である偏向歪補正が 為された状態も し く は偏向歪の影響が少ない状態において測定するこ と によ り 、 ビーム走査動作に起因する ビーム照射の位置も し く は位置ずれ を測定すること を特徴と した請求の範囲第 2項記載の荷電粒子ビーム走 査式装置。 7. By measuring in a state in which deflection distortion, which is a factor other than the displacement caused by the beam scanning operation, has been corrected or in a state in which deflection distortion is small, the beam caused by the beam scanning operation can be measured. 3. The charged particle beam scanning type apparatus according to claim 2, wherein the irradiation position or the displacement is measured.
8 . 前記登録パター ンにおいて、 パター ン境界が、 前記単一方向に対し て位置ずれ測定精度に応じた所定の傾斜を有する直線を 1 つも しく は複 数持つこ と を特徴と した請求の範囲第 2項記載の荷電粒子ビーム走査式 装置。  8. The registered pattern, wherein the pattern boundary has one or more straight lines having a predetermined inclination according to the displacement measurement accuracy with respect to the single direction. 3. The charged particle beam scanning device according to claim 2.
9 . 前記登録パター ンにおいて、 パター ン境界が、 前記単一方向に対し て所定の垂直度を持つ直線を 1 つも し く は複数持つことを特徴と した請 求の範囲第 2項記載の荷電粒子ビーム走査式装置。 9. The charging method according to claim 2, wherein, in the registration pattern, the pattern boundary has one or more straight lines having a predetermined perpendicularity with respect to the single direction. Particle beam scanning device.
1 0 . 前記登録パタ ー ンにおいて、 パター ン境界が、 前記単一方向に対 して所定の平行度を持つ直線を 1 つも しく は複数持つこ と を特徴と した 請求の範囲第 2項記載の荷電粒子ビーム走査式装置。  10. The method according to claim 2, wherein in the registration pattern, the pattern boundary has one or more straight lines having a predetermined parallelism in the single direction. Charged particle beam scanning device.
1 1 . 前記位置ずれの情報から、 偏向走査位置または偏向走査位置に対 して偏向歪補正を行った偏向制御位置または画素番号または偏向走査開 始時刻からの時間に対応する走査位置ずれ補正データを作成する前記測 定手段と、 前記補正データを予め受け取り、 偏向走査位置または前記偏 向制御位置または画素番号または偏向走査開始信号の入力を受け、 位置 ずれ分の補正情報を生成する偏向走査位置ずれ補正手段と、 前記偏向走 査補正手段によ り生成された偏向走査補正情報と前記偏向制御手段にお いて生成される偏向走査位置情報も しく は前記偏向制御位置情報をデジ タ ルも し く はアナログ的に加算する加算手段と を具備し、 前記測定され た位置ずれの補正を可能とするこ と を特徴と した請求の範囲第 2項記載 の荷電粒子ビーム走査式装置。 11 1. From the information on the positional deviation, the deflection scanning position or the scanning position deviation correction data corresponding to the deflection control position or the pixel number where the deflection distortion correction has been performed for the deflection scanning position or the time from the deflection scanning start time. And a deflection scanning position for receiving the correction data in advance, receiving a deflection scanning position or the deflection control position, a pixel number, or a deflection scanning start signal, and generating correction information for the positional deviation. Deviation correction means, and the deflection run Adding the deflection scanning correction information generated by the scanning correction means and the deflection scanning position information generated by the deflection control means or the deflection control position information digitally or in an analog manner. 3. The charged particle beam scanning device according to claim 2, further comprising: means for correcting the measured positional deviation.
1 2 . 所定の関数に基づき偏向歪補正を行う偏向歪補正手段と、 偏向走 査位置に対応する位置ずれを補正する位置ずれ補正係数データ作成手段 と を具備し、 偏向歪補正の前記関数の係数データ と前記位置ずれ補正係 数デ一タ作成手段によ り算出される係数デ一タを加算した補正係数デー タ を前記関数の形態を決める係数と して偏向歪補正手段に与えるこ とに よ り、 前記測定された偏向走査位置ずれの補正を可能とすることを特徴 と した請求の範囲第 2項記載の荷電粒子ビーム走査式装置。  12. Deflection distortion correcting means for performing deflection distortion correction based on a predetermined function, and position deviation correction coefficient data creating means for correcting a position deviation corresponding to the deflection scanning position, wherein: Correction coefficient data obtained by adding the coefficient data and the coefficient data calculated by the displacement correction coefficient data creating means is provided to the deflection distortion correcting means as a coefficient for determining the form of the function. 3. The charged particle beam scanning apparatus according to claim 2, wherein correction of the measured deflection scanning position shift is enabled by the method.
1 3 . 前記位置ずれ測定の実行を行う所定の作業に対する操作手段を具 備し、 前記登録パターンが描かれた試料の供給および登録バタ一ン情報 の入力を自動も し く は手動操作にて行う こ とで測定準備を行い、 前記操 作手段によ り逐次測定パラメ ータ も し く は開始の指定を行う ことで位置 ずれ測定または測定と測定結果の表示または測定と測定結果の補正手段 への反映を行う こと を特徴とする請求の範囲第 2項記載の荷電粒子ビ一 ム走査式装置。  1 3. Provide an operation means for the predetermined work for performing the displacement measurement, and automatically or manually operate the supply of the sample on which the registration pattern is drawn and the input of the registration pattern information. By doing so, measurement preparation is made, and by specifying the measurement parameter or start sequentially by the above-mentioned operation means, position deviation measurement or measurement and display of measurement result or measurement and correction means of measurement result 3. The charged particle beam scanning device according to claim 2, wherein the charged particle beam is reflected on the device.
1 4 。 前記装置が、 試料上に荷電粒子ビームを照射するこ とで所定の位 置における試料の情報を取り込み、 前記情報の処理を行う ことで試料の 検査を行う荷電粒子ビーム走査式検査装置であるこ と を特徴とする請求 の範囲第 2項記載の荷電粒子ビーム走査式装置。  14 . The apparatus is a charged particle beam scanning inspection apparatus that irradiates a charged particle beam onto a sample to capture information of the sample at a predetermined position, and processes the information to inspect the sample. The charged particle beam scanning device according to claim 2, characterized in that:
1 5 . 試料上に荷電粒子ビームを照射し、 所定の位置における試料の情 報を取り込み、 試料上の離れた位置に形成された第 1 のパターンと第 2 のパタ ー ンの比較を行う こ と でパタ一ン欠陥を検査する荷電粒子ビーム 走査式検査装置において、 前記位置ずれの測定を検査条件の変更時に行 い、 その結果を偏向走査位置ずれ補正手段も しく は比較検査を実行する 画像処理手段も し く はその両方へ与えるこ とによ り補正を実施するこ と で、 正確なパター ン情報による高感度な比較を可能と し、 欠陥の誤検出 も し く は欠陥の見逃しを低減させるこ と を特徴と した請求の範囲第 1 4 項記載の荷電粒子ビーム走査式検査装置。 15 5. Irradiate the sample with a charged particle beam, capture information of the sample at a predetermined position, and compare the first pattern and the second pattern formed at remote positions on the sample. Charged particle beam to inspect pattern defects with and In the scanning type inspection apparatus, the position deviation is measured when the inspection condition is changed, and the result is given to the deflection scanning position deviation correction means or the image processing means or both for performing the comparison inspection. Claims characterized in that, by performing the correction according to, a highly sensitive comparison based on accurate pattern information can be performed, and erroneous detection of defects or omission of defects can be reduced. 14. The charged particle beam scanning inspection apparatus according to item 14.
1 6 . 荷電粒子ビームを所定の位置に偏向する荷電粒子ビーム走査式検 査装置において、 物理的性質または構造の境界によ り 1 つも しく は複数 の登録されたパター ンが描かれた試料と、 ビームを試料上の所望の位置 に偏向するための制御を行う偏向制御手段と、 前記偏向制御手段から入 力される ビーム照射タィ ミ ング信号を基に前記試料上にビームを照射す るこ と によ り生じる生成物を取り込み、 取り込んだ前記生成物を検出し た結果から画素デ一タを生成し、 前記画素デ一タによ り試料画像情報を 取得する画像取得手段と、 前記登録パタ一ンを含む試料の画像情報を基 に、 画像上の境界位置を算出して取得された各画素の位置も し く は各画 素の位置ずれを測定する位置ずれ測定手段と、 その測定結果に基づき画 像デー タの補正を行う画像情報処理手段と、 からなる荷電粒子ビーム走 査式検査装置。  16. A charged particle beam scanning inspection system that deflects a charged particle beam to a predetermined position, using a sample on which one or more registered patterns are drawn depending on physical properties or structural boundaries. Deflection control means for performing control for deflecting the beam to a desired position on the sample; and irradiating the beam onto the sample based on a beam irradiation timing signal input from the deflection control means. An image acquisition unit that captures a product generated by the above, generates pixel data from a result of detecting the captured product, and obtains sample image information by the pixel data; Displacement measurement means for measuring the displacement of each pixel or the displacement of each pixel obtained by calculating the boundary position on the image based on the image information of the sample including the pattern, and the measurement thereof Image data based on the results An image processing means for performing the correction, the charged particle beam run 査式 inspection apparatus comprising a.
PCT/JP2000/001503 2000-03-13 2000-03-13 Charged particle beam scanning device WO2001069643A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/001503 WO2001069643A1 (en) 2000-03-13 2000-03-13 Charged particle beam scanning device
JP2001567610A JP4186464B2 (en) 2000-03-13 2000-03-13 Charged particle beam scanning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001503 WO2001069643A1 (en) 2000-03-13 2000-03-13 Charged particle beam scanning device

Publications (1)

Publication Number Publication Date
WO2001069643A1 true WO2001069643A1 (en) 2001-09-20

Family

ID=11735787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001503 WO2001069643A1 (en) 2000-03-13 2000-03-13 Charged particle beam scanning device

Country Status (2)

Country Link
JP (1) JP4186464B2 (en)
WO (1) WO2001069643A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006082714A1 (en) * 2005-02-02 2006-08-10 Shimadzu Corporation Scan beam irradiation device
JP2009037772A (en) * 2007-07-31 2009-02-19 Hitachi High-Technologies Corp Deflection control circuit and electron beam scanning device
WO2010143266A1 (en) 2009-06-09 2010-12-16 三菱電機株式会社 Particle beam radiation device
JP2010284513A (en) * 2010-04-27 2010-12-24 Mitsubishi Electric Corp Particle beam irradiation apparatus
JP2012000232A (en) * 2010-06-16 2012-01-05 Mitsubishi Electric Corp Particle therapy apparatus, and method for adjustment of the same
WO2012014373A1 (en) * 2010-07-28 2012-02-02 株式会社 日立ハイテクノロジーズ Charged particle beam device
US8212223B2 (en) 2009-06-09 2012-07-03 Mitsubishi Electric Corporation Particle beam irradiation apparatus
JP2012221594A (en) * 2011-04-04 2012-11-12 Shimadzu Corp Array inspection device and array inspection method
US8907303B2 (en) 2011-06-09 2014-12-09 Hitachi High-Technologies Corporation Stage device and control method for stage device
CN111598771A (en) * 2020-01-15 2020-08-28 电子科技大学 PCB (printed Circuit Board) defect detection system and method based on CCD (Charge coupled device) camera
CN113341656A (en) * 2020-02-18 2021-09-03 纽富来科技股份有限公司 Multi-beam drawing method and multi-beam drawing device
JP7299206B2 (en) 2017-02-16 2023-06-27 株式会社荏原製作所 Electron Beam Irradiation Area Adjustment Method and Adjustment System, Electron Beam Irradiation Area Correction Method, and Electron Beam Irradiation Device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145549A (en) * 1985-07-12 1986-03-05 Hitachi Ltd Charged particle ray device
JPS62110247A (en) * 1985-11-07 1987-05-21 Univ Osaka High precision positioning method for electron probe and device thereof
JPH04269614A (en) * 1991-02-25 1992-09-25 Nippon Telegr & Teleph Corp <Ntt> Pattern-position detecting method and executing apparatus thereof
US5777327A (en) * 1995-12-28 1998-07-07 Hitachi, Ltd. Pattern shape inspection apparatus for forming specimen image on display apparatus
JPH11149895A (en) * 1997-08-11 1999-06-02 Hitachi Ltd Electron beam inspection or measuring apparatus and its method, height detection apparatus, and electron beam drawing apparatus
JPH11160054A (en) * 1997-12-02 1999-06-18 Jeol Ltd Pattern length measurement method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145549A (en) * 1985-07-12 1986-03-05 Hitachi Ltd Charged particle ray device
JPS62110247A (en) * 1985-11-07 1987-05-21 Univ Osaka High precision positioning method for electron probe and device thereof
JPH04269614A (en) * 1991-02-25 1992-09-25 Nippon Telegr & Teleph Corp <Ntt> Pattern-position detecting method and executing apparatus thereof
US5777327A (en) * 1995-12-28 1998-07-07 Hitachi, Ltd. Pattern shape inspection apparatus for forming specimen image on display apparatus
JPH11149895A (en) * 1997-08-11 1999-06-02 Hitachi Ltd Electron beam inspection or measuring apparatus and its method, height detection apparatus, and electron beam drawing apparatus
JPH11160054A (en) * 1997-12-02 1999-06-18 Jeol Ltd Pattern length measurement method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006082714A1 (en) * 2005-02-02 2008-08-07 株式会社島津製作所 Scanning beam irradiation device
JP4555909B2 (en) * 2005-02-02 2010-10-06 株式会社島津製作所 Scanning beam irradiation device
WO2006082714A1 (en) * 2005-02-02 2006-08-10 Shimadzu Corporation Scan beam irradiation device
JP2009037772A (en) * 2007-07-31 2009-02-19 Hitachi High-Technologies Corp Deflection control circuit and electron beam scanning device
EP2471579A2 (en) 2009-06-09 2012-07-04 Mitsubishi Electric Corporation Particle beam irradiation apparatus
WO2010143266A1 (en) 2009-06-09 2010-12-16 三菱電機株式会社 Particle beam radiation device
US8217364B2 (en) 2009-06-09 2012-07-10 Mitsubishi Electric Corporation Particle beam irradiation apparatus
US8212223B2 (en) 2009-06-09 2012-07-03 Mitsubishi Electric Corporation Particle beam irradiation apparatus
JP2010284513A (en) * 2010-04-27 2010-12-24 Mitsubishi Electric Corp Particle beam irradiation apparatus
JP2012000232A (en) * 2010-06-16 2012-01-05 Mitsubishi Electric Corp Particle therapy apparatus, and method for adjustment of the same
JP2012028279A (en) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp Charged particle beam apparatus
WO2012014373A1 (en) * 2010-07-28 2012-02-02 株式会社 日立ハイテクノロジーズ Charged particle beam device
US8653458B2 (en) 2010-07-28 2014-02-18 Hitachi High-Technologies Corporation Charged particle beam device
JP2012221594A (en) * 2011-04-04 2012-11-12 Shimadzu Corp Array inspection device and array inspection method
US8907303B2 (en) 2011-06-09 2014-12-09 Hitachi High-Technologies Corporation Stage device and control method for stage device
JP7299206B2 (en) 2017-02-16 2023-06-27 株式会社荏原製作所 Electron Beam Irradiation Area Adjustment Method and Adjustment System, Electron Beam Irradiation Area Correction Method, and Electron Beam Irradiation Device
CN111598771A (en) * 2020-01-15 2020-08-28 电子科技大学 PCB (printed Circuit Board) defect detection system and method based on CCD (Charge coupled device) camera
CN113341656A (en) * 2020-02-18 2021-09-03 纽富来科技股份有限公司 Multi-beam drawing method and multi-beam drawing device

Also Published As

Publication number Publication date
JP4186464B2 (en) 2008-11-26

Similar Documents

Publication Publication Date Title
US6580075B2 (en) Charged particle beam scanning type automatic inspecting apparatus
KR102430355B1 (en) Particle beam system and method for operating a particle optical unit
US8338781B2 (en) Charged particle beam scanning method and charged particle beam apparatus
WO2013129148A1 (en) Pattern dimension measurement device, charged particle beam device, and computer program
US20030006371A1 (en) Charged-particle beam apparatus and method for automatically correcting astigmatism of charged-particle beam apparatus
CN109298001B (en) Electron beam imaging module, electron beam detection equipment and image acquisition method thereof
WO2001069643A1 (en) Charged particle beam scanning device
JP5777967B2 (en) Charged particle beam apparatus and measurement method
US7423274B2 (en) Electron beam writing system and electron beam writing method
TWI661279B (en) Multi-charged particle beam drawing device and multi-charged particle beam drawing method
JP5475634B2 (en) Multi-column electron beam drawing apparatus and its electron beam trajectory adjustment method
US6624430B2 (en) Method of measuring and calibrating inclination of electron beam in electron beam proximity exposure apparatus, and electron beam proximity exposure apparatus
KR20110090956A (en) Image formation method and image formation device
US6809319B2 (en) Electron beam writing equipment and electron beam writing method
JP2012033336A (en) Charged particle beam device, and method of controlling the same
US6941006B1 (en) Method and system for calibrating the scan amplitude of an electron beam lithography instrument
JP6662654B2 (en) Image acquisition method and electron beam inspection / length measuring device
JPH0794401A (en) Charged particle beam lithography device
JP2013183017A (en) Drawing apparatus, reference element, and article manufacturing method
TWI843354B (en) Charged particle beam device and inspection method using the same
JP2786660B2 (en) Charged beam drawing method
JP2786662B2 (en) Charged beam drawing method
JP2005340345A (en) Electron beam apparatus, method for measuring distortion in deflection position of electron beam, method for correcting deflection position of electron beam
JP2009301812A (en) Apparatus for inspecting sample, and method for inspecting sample
JP2006100049A (en) Inspection device using electron beam and operation method of the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 567610

Kind code of ref document: A

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase