WO2006075716A1 - 医薬物運搬用器具とその製造方法 - Google Patents

医薬物運搬用器具とその製造方法 Download PDF

Info

Publication number
WO2006075716A1
WO2006075716A1 PCT/JP2006/300398 JP2006300398W WO2006075716A1 WO 2006075716 A1 WO2006075716 A1 WO 2006075716A1 JP 2006300398 W JP2006300398 W JP 2006300398W WO 2006075716 A1 WO2006075716 A1 WO 2006075716A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
shape
convex portion
base
drug delivery
Prior art date
Application number
PCT/JP2006/300398
Other languages
English (en)
French (fr)
Inventor
Koji Omichi
Kensuke Shima
Munehisa Fujimaki
Seiji Tokumoto
Hirotoshi Adachi
Original Assignee
Fujikura Ltd.
Hisamitsu Pharmaceutical Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd., Hisamitsu Pharmaceutical Co., Inc. filed Critical Fujikura Ltd.
Priority to JP2006552996A priority Critical patent/JP5053645B2/ja
Publication of WO2006075716A1 publication Critical patent/WO2006075716A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • A61B5/150282Manufacture or production processes or steps for blood sampling devices for piercing elements, e.g. blade, lancet, canula, needle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150977Arrays of piercing elements for simultaneous piercing
    • A61B5/150984Microneedles or microblades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • A61B5/14514Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/003Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles having a lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • the present invention relates to a drug delivery device for use in a drug delivery system such as administration of a drug to a living body or aspiration extraction of blood from a living body, and is particularly painless and can be inserted under the skin.
  • the present invention relates to a device for transporting a pharmaceutical product capable of providing a wide range of effective pharmaceutical products.
  • DDS Drug delivery systems
  • TTS transdermal therapeutic system
  • a technique which is generically called a transdermal therapeutic system (TTS)
  • TTS transdermal therapeutic system
  • pharmaceuticals that can be applied to TTS have been limited to those with high skin permeability, such as -troglycerin, isosorbide nitrate, and clozine.
  • drug delivery devices have been proposed.
  • Non-Patent Document 1 describes that the surface of Si, which is the base, is dry-etched with a mixed gas of SF and O. Disclosed is a device for transporting a pharmaceutical product obtained by forming an array of needles having a height of about 100 m (which is described as “micro mouth-one dollar” in Non-Patent Document 1). ing.
  • This Non-Patent Document 1 discloses puncturing the skin using this array of needle-like bodies, transporting a pharmaceutical product from the needle-like body and transporting it to the human body (see Non-Patent Document 1).
  • Patent Documents 1 to 3 disclose a technique for forming an array of needle-like bodies (in Patent Document 1, described as microneedles V). Furthermore, in Patent Document 1, a through-hole passage penetrating from the back surface of the base portion to the surface is formed at the center of the needle-shaped body to form a hollow needle-shaped body (described as a hollow microneedle in Patent Document 1). Is disclosed.
  • Non-Patent Document 1 DV McAllister et al, "MICRO FABRICATED MICRONEEDLES: AN OVEL APPROACH TO TRANSDERMALDRUG DELIVERY", Proceed. Int'l. Symp. Control. Rel. Bioact. Mater., 25 ( 1998) Controlled Release Society. Inc.
  • Patent Document 1 Pamphlet of International Publication No. 99Z64580
  • Patent Document 2 Pamphlet of International Publication No. 00Z05166
  • Patent Document 3 Patent No. 3696513
  • Non-Patent Document 1 the structure of the arrayed needle-like body disclosed in Non-Patent Document 1 that actually transports a pharmaceutical product has been clarified.
  • the hollow needle-like bodies disclosed in Patent Documents 1 to 3 disclose means for transporting pharmaceuticals and blood through the through-holes, but the present technology has a small opening diameter (in the examples) The diameter is limited to 15 m). Since ordinary medicines and blood have a very high viscosity, there is a problem that they do not flow in a through-hole having such a small opening diameter. Increasing the opening diameter (for example, 50 m in diameter) can be easily performed with this technology, but in this technology, it means that the tip diameter of the needle-like body also increases, making it impossible to puncture the skin. End up. In these conventional technologies, there are two further problems in reducing the needle tip diameter. That is, the mechanical strength of the needle-like body is weak because the thickness of the needle-like portion is limited, and the allowable range of the position accuracy of the through hole is reduced due to the limitation of the thickness, and the yield is reduced. Mari is a very bad point.
  • the present invention has been made in view of the above circumstances, and "controlled release of a pharmaceutical product" in which a pharmaceutical product is regulated and released at a constant rate over a certain period of time, and the pharmaceutical product is selectively transported to the affected area.
  • the purpose of the present invention is to provide a drug delivery device that can perform drug administration or blood suction extraction efficiently, while being able to be ⁇ targeted for pharmaceutical products '' and being able to be inserted under the skin without pain. To do.
  • the present invention provides a substantially columnar shape, a substantially cylindrical shape, a base portion, a first angle with respect to the surface thereof, and a second angle different from the first angle.
  • a device for transporting a pharmaceutical product characterized by having a convex portion having a shape selected from the group consisting of a frustum shape and a substantially frustum shape.
  • the present invention includes a base and a convex portion having a shape selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially frustum shape standing at a first angle with respect to the surface thereof. And a convex portion having an inclined surface having a second angle different from the first angle.
  • the second angle is preferably smaller than the first angle.
  • the first angle is preferably 70 degrees to 90 degrees, and the second angle is preferably 50 degrees to 80 degrees.
  • a through-hole that penetrates from the back of the base to the tip of the convex is formed.
  • the opening area of the through hole is preferably 2 ⁇ 10_3 mm 2 or more.
  • the convex part and the base part are made of a silicon material! /.
  • the present invention includes a step of forming a convex portion having a shape selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially frustum-like shape standing at a first angle with respect to the surface of the base portion. And a step of forming an inclined surface having a second angle different from the first angle on the convex portion. [0011] Further, the present invention provides a step of forming an opening serving as a through hole path penetrating from the rear surface of the base portion to the tip of the convex portion, and standing on the surface of the substrate at a first angle with respect to the surface.
  • a method for producing a drug delivery device is provided.
  • the step of forming the inclined surface having the second angle is preferably performed by selectively irradiating the base material surface with ionized gas.
  • the convex portion and the base portion are preferably made of a polylactic acid material among the thermoplastic polymers which may be made of a thermoplastic polymer.
  • a mold having pores for forming a convex portion and a base material are disposed to face each other, and at least one of the mold and the base material is heated and then applied to the base material.
  • a method for producing a pharmaceutical product transporting device characterized by comprising a step of applying pressure to transfer the shape of a mold to a substrate and a step of cooling to release the substrate.
  • the drug delivery device of the present invention is a substantially columnar, substantially frustum that is erected with a base, a first angle with respect to the surface thereof, and a second angle different from the first angle. And a convex portion having a shape selected from the group consisting of substantially conical shapes, the tip of the convex portion can be sharply formed, and the puncture property to the skin can be improved.
  • a through-hole having a large opening diameter can be formed on the convex portion having a shape selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially frustum shape without impairing the puncture property to the skin.
  • a shape selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially frustum shape without impairing the puncture property to the skin.
  • the types of pharmaceutical products that can be applied also increase.
  • the puncture property can be maintained regardless of the thickness of the convex portion formed at this time.
  • the convex portion having a shape selected from the group consisting of a substantially columnar shape, a substantially frustum shape, and a substantially conical shape is formed with an inclined surface having a second angle, the thickness of the bottom bottom portion of the convex portion Increases the mechanical strength.
  • FIG. 1A is a plan view of an array of painless needles according to a first embodiment of the present invention.
  • FIG. 1B is a cross-sectional view taken along the line A-B in FIG. 1A.
  • 1C is an enlarged perspective view of the convex portion of FIG. 1A.
  • FIG. 2 is a diagram showing each part a to e and angles 0 1, 0 2 of the array of painless needles of the first embodiment.
  • FIG. 3 is a cross-sectional view sequentially illustrating manufacturing steps of the array of painless needles of the first embodiment.
  • FIG. 4 is a configuration diagram showing an example of a dry etching apparatus used in step C in FIG. 3.
  • FIG. 5A is a plan view of an array of painless needles according to a second embodiment of the present invention.
  • FIG. 5B is a cross-sectional view taken along the line A-B in FIG. 5A.
  • FIG. 5C is an enlarged perspective view of the convex portion of FIG. 5A.
  • FIG. 6 is a diagram showing each part f ⁇ ; j and angles 0 1, 0 2 of the arrayed painless needle of the second embodiment.
  • FIG. 7 is a cross-sectional view sequentially showing manufacturing steps of the array of painless needles of the second embodiment.
  • FIG. 8 is a configuration diagram showing an example of a focused ion beam etching apparatus used in FIG. 7.
  • FIG. 9A is a plan view of an array of painless needles according to a third embodiment of the present invention.
  • FIG. 9B is a cross-sectional view taken along the line A-B in FIG. 9A.
  • FIG. 9C is an enlarged perspective view of the convex portion of FIG. 9A.
  • FIG. 10 is a diagram showing each part k to p and angles 0 1 and 0 2 of the arrayed painless needle of the third embodiment.
  • FIG. 11 is a cross-sectional view sequentially showing manufacturing steps of the array of painless needles of the third embodiment.
  • FIG. 12A is a cross-sectional view sequentially illustrating manufacturing steps of the array of painless needles of the fourth embodiment.
  • FIG. 12B is a cross-sectional view sequentially illustrating manufacturing steps of the array of painless needles of the fourth embodiment.
  • FIG. 12C is a cross-sectional view sequentially illustrating manufacturing steps of the arrayed painless needle of the fourth embodiment.
  • FIG. 1A to 1C are views showing a first embodiment of the present invention, in which FIG. 1A is a plan view, FIG. 1B is a cross-sectional view between A and B in FIG. 1A, and FIG. 1C is an enlarged perspective view of a convex portion in FIG. FIG.
  • an array of painless needles is illustrated as an example of the drug delivery device of the present invention.
  • reference numeral 1 denotes an array of painless needles
  • 2 denotes a base material
  • 3 denotes a convex portion
  • 3A denotes an inclined surface.
  • the array of painless needles 1 has a base 2 and a first angle ⁇ 1 with respect to the surface thereof and a second angle ⁇ 2 different from the first angle ⁇ 1. It has a configuration having a protruding portion 3 having a substantially conical shape standing upright.
  • the first angle ⁇ 1 is substantially perpendicular to the surface of the base 2, and a second angle ⁇ 2 different from ⁇ 1 is appropriately set on a part of the convex portion 3 so that the inclined surface 3A By forming this, the tip of the convex part 3 is sharply formed.
  • each part in Fig. 2 can be set within the following range, for example.
  • (a) is a cross-sectional view of the main part of the array of painless needles 1
  • (b) is a perspective view of the convex part 3.
  • the size of the device is limited in particular, and the size can be changed in any way by the initial design and the manufacturing process thereof.
  • the first angle ⁇ 1 is about 90 degrees and the second angle ⁇ 2 is about 70 degrees.
  • these angles ⁇ 1 and ⁇ 2 have a relationship of first angle ⁇ 1> second angle ⁇ 2.
  • the first angle ⁇ 1 is 70 degrees to More preferably, it is in the range of 90 degrees
  • the second angle ⁇ 2 is 50 degrees to 80 degrees.
  • FIG. 3 is a cross-sectional view showing an example of a method for manufacturing the array of painless needles 1 in the order of steps.
  • the array of painless needles 1 includes a step B of forming a substantially columnar convex portion 8 erected at a first angle ⁇ 1 with respect to the surface of the Si base material 4; On the convex part 8, the first Forming a tilted surface 3 mm having a second angle ⁇ 2 different from the angle ⁇ 1 and covering the convex portion 3 having a sharp tip as shown in FIG. ing.
  • step (b) a Si substrate is prepared, (b) a Cr layer is formed on the surface, and (c) a photoresist is formed on the Cr layer by a photolithography technique to form a convex pattern. (D) The Cr layer is wet-etched using this photoresist as a mask to form a Cr pattern, and (e) a substantially columnar protrusion is formed using the Cr pattern as a mask.
  • This Manufacturing Example 1 is merely an example, and the present invention It is not intended to limit this.
  • the base material indicates a material for forming the convex portion and the base portion, and the definition is different from the base portion that is one constituent portion of the drug delivery device.
  • FIG. 3 (a) shows a 1000 m thick single crystal silicon (Si) wafer (hereinafter referred to as Si substrate 4) used as a substrate in Production Example 1 and mirror-polished on one side.
  • Si substrate 4 a 1000 m thick single crystal silicon (Si) wafer
  • the mirror-polished surface is referred to as the surface.
  • FIG. 3 (b) shows the formation of a Cr layer 5 serving as an etching mask on the surface of the Si substrate 4.
  • a Cr layer 5 of about 1 ⁇ m is formed on the surface of the Si substrate 4 by sputtering.
  • Fig. 3 (c) shows the formation of a photoresist pattern on the convex portion.
  • a photoresist pattern on the convex portion By one photolithography technique, a negative pattern of the convex portion on the surface of the Si substrate 4, that is, a photoresist on the convex portion. 6 is left and a pattern is formed by removing the non-convex photoresist.
  • the diameter of the photoresist 6 was set to 50 ⁇ m.
  • FIG. 3 (d) shows the formation of a Cr pattern, and the Cr layer 5 disposed under the photoresist 6 is etched using the photoresist 6 formed in the step (c) as a mask. Cr pattern 7 is formed. Etching of Cr was performed by wet etching using an aqueous solution mainly composed of ceric nitrate and perchloric acid.
  • Fig. 3 (e) shows the formation of the convex portion, and the substantially patterned columnar convex portion 8 is formed on the surface of the Si base 4 using the Cr pattern 7 formed in the step (d) as a mask. To do.
  • the convex portion 8 is formed by a dry etching process. Si substrate 4 with Cr pattern 7 formed on dry etching equipment Installed in the chamber, evacuated, then mixed SF and O as etching gas
  • Etching was performed using 6 2 gas.
  • the etching time was set to 25 minutes.
  • a convex part 8 with an etching depth (convex part height) of about 150 m could be formed.
  • the Cr layer as a mask had a thickness of 0.7 / zm or more.
  • the etching rate ratio (selection ratio) between Si and Cr is 500: 1 or more.
  • the shape of the convex portion 8 can be changed to a substantially cylindrical force to a substantially conical shape depending on the etching conditions at this time (for example, the process pressure, the flow rate of the etching gas, and the amount of electric power applied to the high frequency).
  • the convex portion 8 was formed in a substantially cylindrical shape having a diameter of 50 m.
  • Cr pattern 7 remaining on the Si surface was removed by wet etching using an aqueous solution mainly composed of ceric nitrate and perchloric acid.
  • FIG. 3 (f) shows the completion of the tool (arrayed painless needle 1) from the convex processing, and this (f) convex processing step is performed by ionizing Si substrate 4 with convex 8 formed.
  • the etching was performed by placing the film at an arbitrary angle with respect to the gas flow and performing dry etching.
  • FIG. 4 is a configuration diagram showing an outline of the dry etching apparatus.
  • reference numeral 9 is a chamber of the dry etching apparatus, 10 is a high-frequency power source, and 11 is a jig for tilting at an arbitrary angle.
  • This chamber 9 is connected to an evacuation system, and the inside can be evacuated.
  • the chamber 9 is provided with an Ar gas supply pipe through which argon (Ar) gas, which is an ion gas source, flows between the electrodes.
  • Ar argon
  • the Si base material 4 on which the convex portions 8 are formed is disposed at an arbitrary angle with respect to the electrodes in the chamber 19 of the dry etching apparatus.
  • the jig 11 for tilting the Si substrate 4 at an arbitrary angle may be any one as long as it is made of a conductive material such as aluminum (A1).
  • a Si base material 4 having a substantially cylindrical convex portion 8 formed thereon was placed on the jig 11, the chamber 9 was evacuated, and etching was performed using Ar gas as an etching gas.
  • the array of painless needles 1 of the present embodiment has a substantially conical shape erected with a base 2 and a first angle ⁇ 1 and a smaller second angle ⁇ 2 relative to the surface thereof. Therefore, by appropriately setting the first angle ⁇ and the second angle ⁇ 2, the tip of the convex portion 3 can be sharply formed, and the puncture property to the skin is improved. be able to.
  • FIGS. 5A to 5C are views showing a second embodiment of the present invention
  • FIG. 5A is a plan view
  • FIG. 5B is a cross-sectional view between A and B in FIG. 5A
  • FIG. 5C is a convex portion of FIG. FIG.
  • an array of painless needles is illustrated as an example of the drug delivery device of the present invention.
  • reference numeral 12 denotes an array of painless needles
  • 13 denotes a base
  • 14 denotes a convex portion
  • 14A denotes an inclined surface.
  • the array of painless needles 12 includes a base portion 13 and a group of substantially columnar, substantially frustum, and substantially conical shapes that are erected with a first angle ⁇ 1 with respect to the surface thereof. And a convex portion 14 having a selected shape, and an inclined surface 14A having a second angle ⁇ 2 different from the first angle ⁇ 1 is formed on the convex portion.
  • each part in FIG. 6 can be set within the following range, for example.
  • (a) is a cross-sectional view of the main part of the array of painless needles 12, and (b) is a perspective view of the convex part 14.
  • Base thickness f 200-1000 ⁇ m.
  • the size of the device is limited in particular, and the size can be changed in any way by the initial design and the manufacturing process thereof.
  • the first angle ⁇ 1 is about 90 degrees and the second angle ⁇ 2 is about 70 degrees.
  • these angles ⁇ 1 and ⁇ 2 are defined as the first angle ⁇ 1> the first
  • the first angle ⁇ 1 is preferably in the range of 70 degrees to 90 degrees
  • the second angle ⁇ 2 is in the range of 50 degrees to 80 degrees. Is more preferable.
  • FIG. 7 is a cross-sectional view showing an example of a method for manufacturing the array of painless needles 12 in the order of steps.
  • FIG. 7 (a) shows the process of forming a substantially cylindrical convex portion 8 on the surface of the Si substrate 4, and the convex portion 8 is formed in the same manner as in the steps of FIGS. 3 (a) to (e). The details can be omitted.
  • 3A to 3E which are the same as in the case of Manufacturing Example 1, the substantially cylindrical convex portion 8 erected with the first angle ⁇ 1 with respect to the surface of the Si base 4 is formed. It is formed.
  • FIG. 7 (b) shows the completion of the convex part processing force instrument (array-shaped painless needle 12), and this process is performed by a focused ion beam (FIB) etching apparatus schematically shown in FIG. To do.
  • FIB focused ion beam
  • an XYZ (three-dimensional) precision stage 16 is provided in a chamber 15 that can be evacuated, and the Si substrate 4 is tilted at an arbitrary angle on the XYZ precision stage 16.
  • a jig 17 for placement is provided.
  • an ion gun shutter 18 is provided at a Ga ion introduction part connected to the chamber 19 so that the introduction part can be opened and closed. As shown in FIG.
  • a Si substrate 4 having a substantially cylindrical convex portion 8 is disposed in a chamber 115 of a FIB etching apparatus provided with an ion gun and an XYZ precision stage 16.
  • the Si substrate 4 is tilted at an arbitrary angle with respect to the ion gun using the jig 11.
  • This jig 11 can be made of any material as long as it is made of a conductive material such as A1! /.
  • the ion ion microscope (Scanning Ion Microscope: SIM) and XYZ precision stage 16 provided in the device are moved so that the part (projection tip) where you want to selectively irradiate ions comes to a predetermined position. Irradiate gallium (Ga) ions from a gun.
  • Ga gallium
  • the array of painless needles 12 according to the second embodiment has a second column that is smaller than the first angle ⁇ 1 and has a substantially columnar convex portion 14 erected on the base at a first angle ⁇ 1. Since the inclined surface 14A with an angle ⁇ 2 is formed, it is possible to form a needle-like part with a thick bottom bottom part that does not impair the ability to puncture the skin, thus improving the mechanical strength of the instrument. Can be made.
  • FIGS. 9A to 9C are views showing a third embodiment of the present invention
  • FIG. 9A is a plan view
  • FIG. 9B is a cross-sectional view between A and B in FIG. 9A
  • FIG. 9C is a convex portion of FIG. FIG.
  • an array of painless needles is illustrated as an example of the drug delivery device of the present invention.
  • reference numeral 19 denotes an array of painless needles
  • 20 denotes a base
  • 21 denotes a convex portion
  • 21A denotes an inclined surface
  • 22 denotes a through hole.
  • the array of painless needles 19 stands with a base 20 and a first angle ⁇ 1 and a second angle ⁇ 2 different from the first angle ⁇ 1 with respect to the surface thereof.
  • the projection has a substantially cone-shaped projection 21 and a through-hole path 22 penetrating from the back surface of the base 20 to the tip of the projection 21.
  • This through-hole path 22 is used for the purpose of supplying a medicine from the back surface of the base 20 and transporting the medicine into the living body or taking out body fluid such as blood aspirated and extracted from the living body from the back surface of the base 20. be able to.
  • each part in FIG. 10 can be set within the following range, for example.
  • (a) is a cross-sectional view of the main part of the array of painless needles 19, and (b) is a perspective view of the convex part 21.
  • Base thickness k 200-1000 ⁇ m.
  • the size of the device is limited in particular, and the size can be changed in any way by the initial design and the manufacturing process thereof.
  • the first angle ⁇ 1 is about 90 degrees and the second angle ⁇ 2 is about 70 degrees.
  • these angles ⁇ 1 and ⁇ 2 have the relationship of first angle ⁇ 1> second angle ⁇ 2.
  • the first angle ⁇ 1 is 70 degrees to More preferably, it is in the range of 90 degrees
  • the second angle ⁇ 2 is 50 degrees to 80 degrees.
  • the opening area of the through-hole path 22 is preferably 2 ⁇ 10_3 mm 2 or more. If the opening area of the through-hole path 22 is 2 ⁇ 10_3 mm 2 or more, it is possible to efficiently administer a pharmaceutical product or perform blood suction extraction through the through-hole path 22.
  • FIG. 11 is a cross-sectional view showing an example of a method for manufacturing the array of painless needles 19 in the order of steps.
  • An example of manufacturing the arrayed painless needle 19 of the third embodiment according to FIG. 11 will be described in detail in the following Manufacturing Example 3.
  • This Manufacturing Example 3 is merely an example and is intended to limit the present invention. Absent. Note that the description of the same parts as those in Production Example 1 is omitted.
  • the method of manufacturing the arrayed painless needles 19 having the through-hole paths 22 is selected from the group of the step A for forming the opening portions 24 to be the through-hole paths 22, the substantially columnar shape, the substantially frustum shape, and the substantially conical shape. Forming a convex portion 25 and then forming the opening 24 as a through-hole path 22 and a step C forming an inclined surface 21A having a second angle on one surface of the convex portion 25. .
  • FIG. 11 (a) is a Si wafer having a thickness of 500 m (hereinafter referred to as Si base material 23) having both surfaces mirror-polished for use as a base material in Production Example 3.
  • Si base material 23 having both surfaces mirror-polished for use as a base material in Production Example 3.
  • both sides of the Si base material 23 are distinguished as a surface A and a surface B.
  • FIG. 11 (b) shows the formation of the opening 24 that becomes the through-hole path 22, and this formation of the opening 24 is performed using the photolithography technique and the dry etching process described in Production Example 1.
  • the opening 24 to be the through-hole path 22 is formed on the surface B of the Si base material 23 (see Step B in FIG. 3).
  • the etching technique for forming this opening 24 is the Bocsh process.
  • Alternately known etching gas (e.g. SF) and deposition gas (e.g. CF) Therefore, a process in which plasma is generated and an etching process and a deposition process are repeated is preferable.
  • the Cr mask described in Process B of Production Example 1 is not necessary, and the opening 24 can be formed using the resist as a mask.
  • openings 24 having an opening diameter of 50 ⁇ m, a depth of 470 ⁇ m, and a pitch of 500 ⁇ m were formed on the Si surface B.
  • FIG. 11 (c) shows the formation of the convex portion, and after passing through the same process as Process B of Production Example 1 described above, Table A of Si base material 23 [this diameter is 80 ⁇ m, Protrusions with a height of 150 ⁇ m and a pitch of 500 ⁇ m were formed. At this time, the ⁇ and ⁇ double-sided patterns of the Si base material 23 were aligned at the same time of photolithography, and the center of the opening 24 and the center of the convex part 25 were aligned.
  • FIG. 11 (d) shows the formation of the through-hole path 22.
  • the A surface of the Si base material 23 is etched again by a dry etching process, thereby opening the opening.
  • the portion 24 becomes a through-hole path 22 penetrating from the back surface of the base material to the tip of the convex portion.
  • FIG. 11 (e) shows the completion of the tool (array-shaped painless needle 19) from the convex processing, and the back surface of the base 20 is obtained by performing the same process as in Step C of Production Example 1 described above.
  • An array-shaped hollow painless needle 19 having a through-hole path 22 penetrating to the tip of the convex portion 21 is obtained.
  • the array of hollow painless needles 19 can also be obtained by using the step C ′ described in Production Example 2 described above.
  • the tip of the convex portion 21 can be sharpened even if the diameter of the through-hole path 22 is increased (that is, the opening area is increased). Therefore, the fluidity of the pharmaceutical product is high and the through-hole path can be formed while maintaining the puncture property to the skin.
  • the opening area of the through-hole passage 22 that can sufficiently secure the fluidity of the drug is usually about 2 X 10 _3 mm 2 although it depends on the viscosity of the drug product. For roads, a diameter of about 50 ⁇ m is sufficient.
  • the diameter of the convex portion 21 is set to be different from the diameter of the through-hole path 22 in the present invention. Since it can be increased, the tolerance of positional accuracy is increased and the yield is improved.
  • FIGS. 12A to 12C are cross-sectional views showing an example of a method for producing an array of painless needles made of a thermoplastic polymer material according to the fourth embodiment of the present invention in the order of steps.
  • a mold having pores for forming convex portions and a thermoplastic polymer base material that becomes the array of painless needles are arranged to face each other ( Fig. 12A) Heats at least one of the mold and the thermoplastic polymer substrate, holds the thermoplastic polymer substrate under pressure (Fig. 12B), cools after molding, then cools the thermoplastic polymer substrate This is done by the process of releasing the material ( Figure 12C).
  • a mold having pores for forming convex portions used for molding is produced by the following method.
  • the pharmaceutical product transportation device exemplified in Production Example 1 is a master type, and then the surface of the master type is made conductive by sputtering a metal such as Ni, and then the shape of the master type is formed by Ni electroplating. Transcript.
  • FIG. 12A shows a Ni electroplating mold 30 having pores for forming convex portions used as molds in Production Example 4 and a plate-shaped polylactic acid having a thickness of 1000 m (hereinafter referred to as polylactic acid substrate 31). is there. Note that the array-shaped painless needle 1 exemplified in Production Example 1 was used as the master mold used for the manufacture of the Ni electric mold 30.
  • FIG. 12B shows a process of transferring the shape of the Ni electroplating mold 30 to the polylactic acid substrate 31.
  • the polylactic acid substrate 31 is pressed from above the Ni electromolding mold 30 with a pressure of about lOMPa. By holding for 10 minutes in the pressed state, the shape of the Ni electroplating mold 30 is transferred to the polylactic acid substrate 31 almost accurately.
  • FIG. 12C shows a process of releasing the polylactic acid base material. After cooling the Ni electric mold 30 and the polylactic acid substrate to 50 ° C, the polylactic acid substrate is released. [0058] Through the above steps, an array of painless needles 32 made of a polylactic acid material can be formed. Although not described in detail, this array-shaped painless needle is substantially the same shape as the shape of the array-shaped painless needle 1, which is a master type. And base 3 3.
  • the substrate used in this production example may be basically any thermoplastic polymer, but polylactic acid is non-toxic to living organisms and is bioabsorbable. For example, even if the convex portion 34 of the array of painless needles 32 is broken and remains in the body, it is preferable because it is decomposed in the body.
  • the shape of the convex portion is not limited to the examples of the above-described embodiments, and any shape may be used as long as the shape and size can be punctured without pain on the skin or the like.
  • Other examples of the shape of the convex portion include a substantially cylindrical shape, a substantially truncated cone shape, a substantially prismatic shape (triangular pyramid, quadrangular pyramid, etc.), a substantially truncated pyramid shape, and a substantially truncated pyramid shape. These can be changed in any way depending on the convex pattern of temporary photolithography and dry etching conditions when forming the convex.
  • the through hole formed in the array of hollow painless needles is not limited to a circular shape, and may have a square shape (triangle, square, etc.). This can also be changed in any manner by the opening pattern of temporary photolithography.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dermatology (AREA)
  • Anesthesiology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

 効率よく医薬物投与または血液吸引抽出を行うことができる医薬物運搬用器具の提供。基部と、その表面に対して第一の角度と該第一の角度とは異なる第二の角度とをもって立設された略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部とを有することを特徴とする医薬物運搬用器具。基部の表面に対して第一の角度をもって立設された略柱状、略錐台状、略錐状の群から選択される形状をなす凸部を形成する工程と、該凸部に、前記第一の角度と異なる第二の角度をもつ傾斜面を形成する工程とを有することを特徴とする医薬物運搬用器具の製造方法。

Description

医薬物運搬用器具とその製造方法
技術分野
[0001] 本発明は、生体への医薬物の投与、または生体からの血液の吸引抽出等の医薬 物運搬システムに使用する医薬物運搬用器具に係わり、特に無痛で皮膚下に挿通 可能とするとともに、効果的な医薬物供与を広範囲に渡って行うことができる医薬物 運搬用器具に関する。
本願は、 2005年 1月 14日に出願された特願 2005— 7327号に対し優先権を主張 し、その内容をここに援用する。
背景技術
[0002] 近年、医薬物の過剰投与および副作用を抑制せしめて、より安全に、効果的に医 薬物を投与するために、「必要最小限の医薬物を、必要な場所に、必要なときに供給 する」ことを命題としたドラッグデリバリーシステム(Drug Delivery System:以下、 DDS)の研究が活発に行われている。そして、この DDSには、(1)医薬物を一定期 間にわたって一定速度で放出する、いわゆる「医薬物の徐放化」、(2)医薬物を目的 とする患部に選択的に輸送する、いわゆる「ターゲッティング」の大きな 2つの目標命 題を有している。
[0003] ところで、これらの目標命題を達成して実用化するには、医薬物の改良だけでは困 難であり、医薬物を担持、搬送する運搬用器具類の開発が不可欠である。
例えば、経皮吸収治療システム (Transdermal Therapeutic System:TTS)と 総称される、皮膚力 医薬物を投与し、体内の一部もしくは全身に前記医薬物の作 用発現を実現させる技術がある。従来、この TTSに適用できる医薬物は-トログリセリ ン、硝酸イソソルビド、クロ-ジン等に代表される皮膚透過性の高いものに限られてい た。し力しながら近年、前記皮膚透過性の高い医薬物をより効果的に体内に吸収さ せたり、皮膚透過性が低い医薬物を TTSに適用させる要求が高まっており、これらを 実現するための医薬物運搬器具が提案されている。
非特許文献 1には、基部となる Siの表面を SFと Oの混合ガスによるドライエツチン グプロセスにて加工し、高さ 100 m程度のアレイ状針状体 (非特許文献 1では、マ イク口-一ドルと記載されている)を形成して得られる医薬物運搬用器具が開示され ている。この非特許文献 1には、このアレイ状針状体を用いて皮膚を穿刺し、針状体 より医薬物を運搬し人体に輸送することが開示されている (非特許文献 1参照)。
[0004] また、特許文献 1〜3には、アレイ状針状体 (特許文献 1では、微小針と記載されて V、る)を形成する技術が開示されて!、る。さらに特許文献 1には前記針状体の中心に 基部裏面より表面へ貫通する貫通孔路を形成し、中空状針状体 (特許文献 1では、 中空微小針と記載されている)とする技術が開示されている。(特許文献 1〜3参照) 非特許文献 1 : D.V. McAllister et al, "MICRO FABRICATED MICRONEEDLES: A N OVEL APPROACH TO TRANSDERMALDRUG DELIVERY", Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. , 25(1998) Controlled Release Society.Inc.
特許文献 1:国際公開第 99Z64580号パンフレット
特許文献 2 :国際公開第 00Z05166号パンフレット
特許文献 3:特許第 3696513号
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、非特許文献 1に開示されているアレイ状針状体は、実際に医薬物を 運搬する構造が明らかにされて 、な 、。
また、特許文献 1〜3に開示されている中空状針状体では、貫通孔路を通して医薬 物や血液を運搬する手段を開示しているが、本技術では開口径が小さい(実施例で は直径 15 m)ものに限られている。通常の医薬物や血液は非常に粘度が高いため 、このように開口径が小さな貫通孔路では流動しないという問題がある。開口径を大 きくする(例えば直径 50 m)ことは本技術でも容易に行えるが、本技術の場合、針 状体先端径も大きくなることを意味し、皮膚を穿刺することが不可能となってしまう。 これらの従来技術において、針状体先端径を小さくするためには、さらに 2つの問 題点がある。即ち、針状部の肉厚が制限されるために針状体の機械的強度が弱い点 、前記肉厚の制限のため貫通孔路の位置精度の許容範囲が小さくなつてしまい歩留 まりが非常に悪い点、である。
[0006] 本発明は前記事情に鑑みてなされ、医薬物を一定期間にわたって一定速度に調 節して放出する「医薬物の徐放化」と、医薬物を目的とする患部に選択的に輸送する 「医薬物のターゲッティング」とを可能にし、特に無痛で皮膚下に挿通可能とするとと もに、効率よく医薬物投与または血液吸引抽出を行うことができる医薬物運搬用器具 の提供を目的とする。
課題を解決するための手段
[0007] 前記目的を達成するため、本発明は、基部と、その表面に対して第一の角度と、該 第一の角度とは異なる第二の角度とをもって立設された略柱状、略錐台状、略錐状 からなる群から選択される形状をなす凸部とを有することを特徴とする医薬物運搬用 器具を提供する。
[0008] また本発明は、基部と、その表面に対して第一の角度をもって立設された略柱状、 略錐台状、略錐状からなる群から選択される形状をなす凸部とを有し、該凸部に、前 記第一の角度と異なる第二の角度をもつ傾斜面が形成されたことを特徴とする医薬 物運搬用器具を提供する。
[0009] 本発明の医薬物運搬用器具において、前記第二の角度は、前記第一の角度よりも 小さいことが好ましい。
また、前記第一の角度は 70度〜 90度であり、前記第二の角度は 50度〜 80度であ ることが好ましい。
本発明の医薬物運搬用器具において、基部裏面より凸部先端へ貫通する貫通孔 路が形成されて ヽることが好ま 、。
前記貫通孔路の開口面積は 2 X 10_3mm2以上であることが好ましい。 本発明の医薬物運搬用器具において、前記凸部及び基部はシリコン素材により構 成されて!/、ることが好まし!/、。
[0010] また本発明は、基部の表面に対して第一の角度をもって立設された略柱状、略錐 台状、略錐状の群から選択される形状をなす凸部を形成する工程と、該凸部に、前 記第一の角度と異なる第二の角度をもつ傾斜面を形成する工程とを有することを特 徴とする医薬物運搬用器具の製造方法を提供する。 [0011] また本発明は、基部裏面より凸部先端へ貫通する貫通孔路となる開口部を形成す る工程と、該基材の表面に、その表面に対して第一の角度をもって立設された略柱 状、略錐台状、略錐状からなる群から選択される形状をなす凸部を形成する工程と、 該凸部に、前記第一の角度と異なる第二の角度をもつ傾斜面を形成する工程とを有 することを特徴とする医薬物運搬用器具の製造方法を提供する。
[0012] 本発明の製造方法において、前記第二の角度をもつ傾斜面を形成する工程は、基 材表面にイオンィ匕したガスを選択的に照射することによって行うことが好ましい。
[0013] 本発明の医薬物運搬用器具において、前記凸部及び基部は熱可塑性ポリマで構 成しても良ぐ前記熱可塑性ポリマのなかでも、ポリ乳酸素材であることが好ましい。
[0014] また本発明は、凸部を形成するための細孔を有する型と基材とを対向して配置し、 該型と該基材の少なくともいずれか一方を加熱したうえで基材に圧力を加えて型の 形状を基材に転写させる工程と、冷却して基材を離型する工程とを有することを特徴 とする医薬物運搬用器具の製造方法を提供する。
発明の効果
[0015] 本発明の医薬物運搬用器具は、基部と、その表面に対して第一の角度と該第一の 角度とは異なる第二の角度とをもって立設された略柱状、略錐台状、略錐状からなる 群から選択される形状をなす凸部とを有する構成としたので、凸部先端を鋭く形成で き、皮膚への穿刺性を向上させることができる。
また、略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部に、皮 膚への穿刺性を損なうことなく大きな開口径を備えた貫通孔路を形成できるため、医 薬物を体内に効果的に運搬できる。また、適用できる医薬物の種類も増加する。さら に、この時形成する凸部の肉厚によらず、穿刺性を維持することができる。
また、略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸部に、第 二の角度をもつ傾斜面が形成された構成としたので、凸部下底部の肉厚が厚くなり、 機械的強度がより向上する。
図面の簡単な説明
[0016] [図 1A]本発明の第 1実施形態に係るアレイ状無痛針の平面図である。
[図 1B]図 1A中の A— B間断面図である。 [図 1C]図 1Aの凸部の拡大斜視図である。
[図 2]第 1実施形態のアレイ状無痛針の各部 a〜e及び角度 0 1, 0 2を示す図である
[図 3]第 1実施形態のアレイ状無痛針の製造工程を順に示す断面図である。
[図 4]図 3中の工程 Cに用いるドライエッチング装置の一例を示す構成図である。
[図 5A]本発明の第 2実施形態に係るアレイ状無痛針の平面図である。
[図 5B]図 5A中の A— B間断面図である。
[図 5C]図 5Aの凸部の拡大斜視図である。
[図 6]第 2実施形態のアレイ状無痛針の各部 f〜; j及び角度 0 1, 0 2を示す図である。
[図 7]第 2実施形態のアレイ状無痛針の製造工程を順に示す断面図である。
[図 8]図 7中の工程 こ用いる集束イオンビームエッチング装置の一例を示す構成 図である。
[図 9A]本発明の第 3実施形態に係るアレイ状無痛針の平面図である。
[図 9B]図 9A中の A— B間断面図である。
[図 9C]図 9Aの凸部の拡大斜視図である。
[図 10]第 3実施形態のアレイ状無痛針の各部 k〜p及び角度 0 1, 0 2を示す図であ る。
[図 11]第 3実施形態のアレイ状無痛針の製造工程を順に示す断面図である。
[図 12A]第 4実施形態のアレイ状無痛針の製造工程を順に示す断面図である。
[図 12B]第 4実施形態のアレイ状無痛針の製造工程を順に示す断面図である。
[図 12C]第 4実施形態のアレイ状無痛針の製造工程を順に示す断面図である。
符号の説明
[0017] 1, 12, 19, 32· ··アレイ状無痛針(医薬物用運搬器具)、 2, 13, 20, 33…基部、 3 , 14, 21, 34· ··凸部、 3A, 14A, 21A, 34Α· ··傾斜面、 22· ··貫通孔路、 θ 1· ··第 一の角度、 0 2…第二の角度。
発明を実施するための最良の形態
[0018] 以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は以下の各 実施例に限定されるものではなぐ例えばこれら実施例の構成要素同士を適宜組み 合わせてもよい。
図 1A〜Cは、本発明の第 1実施形態を示す図であり、図 1Aは平面図、図 1Bは図 1A中の A— B間断面図、図 1Cは図 1Aの凸部の拡大斜視図である。本実施形態で は、本発明の医薬物運搬用器具の一例として、アレイ状無痛針を例示している。図 1 A〜C中、符号 1はアレイ状無痛針、 2は基材、 3は凸部、 3Aは傾斜面である。
[0019] 本実施形態において、アレイ状無痛針 1は、基部 2と、その表面に対して第一の角 度 θ 1と該第一の角度 θ 1とは異なる第二の角度 Θ 2とをもって立設された略錐状を なす凸部 3とを有する構成になっている。本例示において、第一の角度 θ 1は基部 2 表面に対してほぼ直角であり、凸部 3の一部にこの θ 1と異なる第二の角度 Θ 2を適 当に設定して傾斜面 3Aを形成することにより、凸部 3の先端を鋭利に形成している。
[0020] このアレイ状無痛針 1において、図 2中の各部の寸法 a〜eは、例えば次の範囲に 設定することができる。図 2中、(a)はこのアレイ状無痛針 1の要部断面図、(b)は凸 部 3の斜視図である。
,基部厚さ& : 200〜1000 111。
•凸部高さ b: 50〜500 μ m。
'凸部の形成ピッチ。:30〜1000 1!1(伹し、 c>dである。 )。
-凸部下底1: φ 20〜100 πι。
'凸部上底6 : () 3 111以下。
なお、本発明においては特に器具の寸法に関して制限される部分は少なぐ最初 の設計及びその製造プロセスにより如何様にも寸法を変更することが可能である。
[0021] また、図 2 (b)に示す凸部 3の例示にあっては、第一の角度 θ 1が約 90度、第二の 角度 Θ 2が約 70度としているが、これらの角度は一例に過ぎず、本発明は本例示に 限定されない。本発明において、これらの角度 θ 1, Θ 2は、第一の角度 Θ 1 >第二 の角度 Θ 2の関係を有していることが好ましぐさらに第一の角度 θ 1は 70度〜 90度 の範囲であり、第二の角度 Θ 2は 50度〜 80度であることがより好ましい。
[0022] 図 3は、前記アレイ状無痛針 1の製造方法の一例を工程順に示す断面図である。こ の図 3に示す通り、前記アレイ状無痛針 1は、 Si基材 4の表面に対して第一の角度 Θ 1をもって立設された略柱状の凸部 8を形成する工程 Bと、該凸部 8に、前記第一の 角度 θ 1と異なる第二の角度 Θ 2をもつ傾斜面 3Αを形成し、図 1 (c)に示すように先 端が尖った形状の凸部 3にカ卩ェする工程 Cとを有している。
さらに前記工程 Βは、(a) Si基材を用意し、(b)その表面に Cr層を形成し、(c) Cr層 上にフォトリソグラフィー技術によってフォトレジストを形成して凸部パターユングを行 い、(d)このフォトレジストをマスクとして Cr層をウエットエッチングして Crパターンを形 成し、 (e) Crパターンをマスクとして略柱状の凸部を形成する各工程により行われる。 この図 3 (a)〜 (f)に従って第 1実施形態のアレイ状無痛針 1を製造する一例を、次 の製造例 1に詳述するが、この製造例 1は単なる例示であり、本発明を限定するため のものではない。
なお、以降の実施形態の例示において、基材とは凸部と基部を構成するための素 材であることを示し、医薬物運搬用器具の一構成部である基部とは、定義が異なる。
[0023] (製造例 1)
図 3 (a)は、製造例 1で基材として使用する、片面をミラー研磨した厚さ 1000 mの 単結晶シリコン (Si)ゥ ーハ(以下、 Si基材 4と記す。)である。以下、ミラー研磨され た面を表面と称する。
[0024] 図 3 (b)は、 Si基材 4の表面に、エッチングマスクとなる Cr層 5の形成を表したもので ある。スパッタリング法により、 Si基材 4の表面に約 1 μ mの Cr層 5を形成する。
[0025] 図 3 (c)は、凸部のフォトレジストパターンの形成を表したもので、フォトリソグラフィ 一技術により、 Si基材 4の表面に凸部のネガパターン、即ち、凸部にフォトレジスト 6 を残し、非凸部のフォトレジストを除去したパターンを形成する。この製造例 1におい ては、フォトレジスト 6の直径を 50 μ mとした。
[0026] 図 3 (d)は、 Crパターンの形成を表したもので、前記(c)工程で形成したフォトレジ スト 6をマスクとし、フォトレジスト 6下部に配置された Cr層 5をエッチングし、 Crパター ン 7を形成する。 Crのエッチングは、硝酸第二セリウム塩と過塩素酸を主成分とする 水溶液を用いたウエットエッチングにより行った。
[0027] 図 3 (e)は、凸部形成を表したもので、前記 (d)工程で形成した Crパターン 7をマス クとし、 Si基材 4の表面に略柱状の凸部 8を形成する。この凸部 8の形成はドライエツ チングプロセスにより行う。 Crパターン 7を形成した Si基材 4をドライエッチング装置の チャンバ一内に設置し、真空排気を行った後、エッチングガスとして SFと Oの混合
6 2 ガスを用いてエッチングを行った。
Siエッチング速度は約 6 μ mZminであることを鑑みてエッチング時間を 25分とし た結果、エッチング深さ(凸部高さ)約 150 mの凸部 8を形成できた。なお、約 150 /z mエッチングした後でも、マスクである Cr層は 0. 7 /z m以上の厚さがあった。 Siと C rのエッチング速度の比 (選択比)は、 500 : 1以上ということになる。
なお、この時のエッチング条件(例えば、プロセス圧力、エッチングガス流量、高周 波への投入電力量)により、凸部 8の形状を略円柱状力 略円錐状まで変化させるこ とができる。本製造例 1においては、凸部 8を直径 50 mの略円柱状に形成した。 最後に硝酸第二セリウム塩と過塩素酸を主成分とする水溶液を用いたウエットエツ チングにより Si表面に残存する Crパターン 7を除去した。
図 3 (f)は、凸部加工から器具 (アレイ状無痛針 1)完成を表したものであり、この (f) 凸部加工の工程は、凸部 8を形成した Si基材 4をイオンガス流に対して任意角度傾 けた状態で配置してドライエッチングすることにより行った。図 4は、そのドライエッチ ング装置の概要を示す構成図であり、図 4中、符号 9はドライエッチング装置のチャン バー、 10は高周波電源、 11は任意角度傾けるための治具である。このチャンバ一 9 は真空排気系に接続され、内部を真空排気することが可能である。またチャンバ一 9 には、イオンガス源であるアルゴン (Ar)ガスを電極間に流入する Arガス供給配管が 設けられている。図 4に示すように、ドライエッチング装置のチャンバ一 9内に、凸部 8 を形成した Si基材 4を電極に対して任意角度傾けて配置する。この Si基材 4を任意 角度傾けるための治具 11としては、アルミニウム (A1)等の導電性材料で構成されて いれば、如何なるものでも構わない。
治具 11に略円柱状の凸部 8を形成した Si基材 4を設置し、該チャンバ一 9を真空排 気した後、エッチングガスとして Arガスを用いてエッチングを行った。
Arイオンは化学的に不活性のため、 Arイオンが Si基材 4の表面に衝突する際の物 理的エネルギーでのみエッチングされる。 Arイオンは電極に対して垂直にイオン入 射するため、 Si基材 4を傾けることにより選択的に前記凸部の一面をエッチングする ことができる。 [0029] 以上の工程を経て、基部 2の表面に対して、第一の角度 θ 1 (例えば、約 90度)とそ れよりも小さい第二の角度 Θ 2 (例えば、約 70度)とをもって立設された略錐状をなす 凸部 3を有するアレイ状無痛針 1が形成できる。
[0030] 本実施形態のアレイ状無痛針 1は、基部 2と、その表面に対して第一の角度 θ 1と それよりも小さい第二の角度 Θ 2とをもって立設された略錐状をなす凸部 3とを有する 構成としたので、第一の角度 Θと第二の角度 Θ 2を適宜設定することで、凸部 3の先 端を鋭く形成でき、皮膚への穿刺性を向上させることができる。
[0031] 図 5A〜Cは、本発明の第 2実施形態を示す図であり、図 5Aは平面図、図 5Bは図 5A中の A— B間断面図、図 5Cは図 5Aの凸部の拡大斜視図である。本実施形態で は、本発明の医薬物運搬用器具の一例として、アレイ状無痛針を例示している。図 5 A〜C中、符号 12はアレイ状無痛針、 13は基部、 14は凸部、 14Aは傾斜面である。
[0032] 本実施形態において、アレイ状無痛針 12は、基部 13と、その表面に対して第一の 角度 Θ 1をもって立設された略柱状、略錐台状、略錐状からなる群から選択される形 状をなす凸部 14とを有し、該凸部に、前記第一の角度 θ 1と異なる第二の角度 Θ 2 をもつ傾斜面 14Aが形成された構成になっている。
[0033] このアレイ状無痛針 12において、図 6中の各部の寸法 f〜; jは、例えば次の範囲に 設定することができる。図 6中、(a)はこのアレイ状無痛針 12の要部断面図、(b)は凸 部 14の斜視図である。
•基部厚さ f: 200〜 1000 μ m。
•凸部高さ g: 50〜500 μ m。
'凸部の形成ピッチ11: 30〜1000 111(伹し、 h>jである。 )。
'凸部下底 i: φ 20〜100 πι。
'凸部上底 j : φ 3 /ζ πι以下。
なお、本発明においては特に器具の寸法に関して制限される部分は少なぐ最初 の設計及びその製造プロセスにより如何様にも寸法を変更することが可能である。
[0034] また、図 6 (b)に示す凸部 14の例示にあっては、第一の角度 θ 1が約 90度、第二 の角度 Θ 2が約 70度としているが、これらの角度は一例に過ぎず、本発明は本例示 に限定されない。本発明において、これらの角度 θ 1, Θ 2は、第一の角度 Θ 1 >第 二の角度 θ 2の関係を有していることが好ましぐさらに第一の角度 θ 1は 70度〜 90 度の範囲であり、第二の角度 Θ 2は 50度〜 80度であることがより好ましい。
[0035] 図 7は、前記アレイ状無痛針 12の製造方法の一例を工程順に示す断面図である。
この図 7に従って第 2実施形態のアレイ状無痛針 12を製造する一例を、次の製造例 2に詳述するが、この製造例 2は単なる例示であり、本発明を限定するためのもので はない。なお、前述した製造例 1と重複する部分については説明を割愛する。
[0036] (製造例 2)
図 7 (a)は、 Si基材 4の表面に略円柱状の凸部 8を形成する工程を表すもので、図 3 (a)〜(e)の各工程と同様にして凸部 8を形成することができ、詳細は省略する。製造 例 1の場合と同じぐ図 3 (a)〜(e)の各工程によって、 Si基材 4の表面に対して第一 の角度 θ 1をもって立設された略円柱状の凸部 8が形成される。
[0037] 図 7 (b)は、凸部加工力 器具 (アレイ状無痛針 12)完成を表すもので、この工程は 、図 8に概要を示す集束イオンビーム(Focused Ion Beam: FIB)エッチング装置 を用いて行う。図 8のエッチング装置は、真空排気が可能なチャンバ一 15内に、 XY Z (三次元)精密ステージ 16が設けられ、この XYZ精密ステージ 16上に Si基材 4を任 意の角度で傾けて配置するための治具 17が設けられている。またチャンバ一 9に接 続された Gaイオンの導入部には、イオン銃シャッター 18が該導入部を開閉可能に設 けられている。図 8に示すように、イオン銃と XYZ精密ステージ 16とを備えた FIBエツ チング装置のチャンバ一 15内に、略円柱状の凸部 8を形成した Si基材 4を配置する 。このとき、 Si基材 4は、治具 11を用いてイオン銃に対して任意角度傾けている。この 治具 11は、 A1等の導電性素材で構成させて 、れば如何なるものでも構わな!/、。 次いで、装置内に設けてある走査型イオン顕微鏡(Scanning Ion Microscope : SIM)と XYZ精密ステージ 16により、選択的にイオン照射したい部分(凸部先端)が 所定の位置に来るように移動させ、イオン銃よりガリウム (Ga)イオンを照射する。
Gaイオンは化学的に不活性のため、 Gaイオンが凸部先端に衝突する際の物理的 エネルギーでのみエッチングされる。 Gaイオンはイオン銃に対して平行に入射するた め、 Si基材 4を傾けることにより前記凸部の先端部を選択的にエッチングすることがで きる。 以降、 XYZ精密ステージ 16による移動と、 FIB選択エッチングを繰り返す。すべて の凸部 8の先端部をエッチングすることにより、略円柱状凸部 8の先端部に、第一の 角度 θ 1より小さい第二の角度 Θ 2をもつ傾斜面 14Aが形成され、先端が尖った凸 部 14を有するアレイ状無痛針 12が製造される。
[0038] この第 2実施形態のアレイ状無痛針 12は、第一の角度 θ 1をもって基部に立設され た略柱状をなす凸部 14に、第一の角度 θ 1よりも小さい第二の角度 Θ 2をもつ傾斜 面 14Aが形成された構成としたので、皮膚への穿刺性を損なうことなぐ凸部下底部 の肉厚が厚い針状部を形成できるため、器具の機械的強度をより向上させることがで きる。
[0039] 図 9A〜Cは、本発明の第 3実施形態を示す図であり、図 9Aは平面図、図 9Bは図 9A中の A— B間断面図、図 9Cは図 9Aの凸部の拡大斜視図である。本実施形態で は、本発明の医薬物運搬用器具の一例として、アレイ状無痛針を例示している。図 9 A〜C中、符号 19はアレイ状無痛針、 20は基部、 21は凸部、 21Aは傾斜面、 22は 貫通孔路である。
[0040] 本実施形態において、アレイ状無痛針 19は、基部 20と、その表面に対して第一の 角度 θ 1と該第一の角度 θ 1とは異なる第二の角度 Θ 2とをもって立設された略錐状 をなす凸部 21と、基部 20の裏面より凸部 21先端へ貫通する貫通孔路 22とを有する 構成になっている。この貫通孔路 22は、基部 20裏面より医薬物を供給し、該医薬物 を生体内へ運搬する、あるいは、生体内より吸引抽出した血液等の体液を基部 20裏 面より取り出す目的に使用することができる。
[0041] このアレイ状無痛針 19において、図 10中の各部の寸法 k〜pは、例えば次の範囲 に設定することができる。図 10中、(a)はこのアレイ状無痛針 19の要部断面図、(b) は凸部 21の斜視図である。
•基部厚さ k: 200〜 1000 μ m。
'凸部高さ1: 50〜500 111。
'凸部の形成ピッチ111: 30〜1000 111(伹し、 m>nである。 )。
'凸部下底 η: φ 50〜: ί00 πι。
•貫通孔路径 ο: φ 50〜80 μ m。 -凸部上底 :0 3 1!1以下。
なお、本発明においては特に器具の寸法に関して制限される部分は少なぐ最初 の設計及びその製造プロセスにより如何様にも寸法を変更することが可能である。
[0042] また、図 10 (b)に示す凸部 21の例示にあっては、第一の角度 θ 1が約 90度、第二 の角度 Θ 2が約 70度としているが、これらの角度は一例に過ぎず、本発明は本例示 に限定されない。本発明において、これらの角度 θ 1, Θ 2は、第一の角度 Θ 1 >第 二の角度 Θ 2の関係を有していることが好ましぐさらに第一の角度 θ 1は 70度〜 90 度の範囲であり、第二の角度 Θ 2は 50度〜 80度であることがより好ましい。
さらに、前記貫通孔路 22の開口面積は 2 X 10_3mm2以上であることが好ましい。 貫通孔路 22の開口面積が 2 X 10_3mm2以上あれば、その貫通孔路 22を通して効 率よく医薬物投与または血液吸引抽出を行うことができる。
[0043] 図 11は、前記アレイ状無痛針 19の製造方法の一例を工程順に示す断面図である 。この図 11に従って第 3実施形態のアレイ状無痛針 19を製造する一例を、次の製造 例 3に詳述するが、この製造例 3は単なる例示であり、本発明を限定するためのもの ではない。なお、前述した製造例 1と重複する部分については説明を割愛する。
[0044] (製造例 3)
貫通孔路 22を有する前記アレイ状無痛針 19の製造方法は、貫通孔路 22となる開 口部 24を形成する工程 Aと、略柱状、略錐台状、略錐状の群から選択される凸部 25 を形成し、次いで前記開口部 24を貫通孔路 22とする工程 B' と、前記凸部 25の一 面に第二の角度をもつ傾斜面 21Aを形成する工程 Cとからなる。
[0045] 図 11 (a)は、本製造例 3で、基材として使用する両面をミラー研磨した厚さ 500 m の Siゥエーハ(以下、 Si基材 23と記す。)である。以下 Si基材 23の両面を表面 A、表 面 Bとして区別する。
[0046] 図 11 (b)は、貫通孔路 22となる開口部 24の形成を表したもので、この開口部 24の 形成は、製造例 1において説明したフォトリソグラフィー技術とドライエッチングプロセ スを用いて、 Si基材 23の表面 Bに貫通孔路 22となる開口部 24を形成する(図 3中、 工程 B参照。 ) oこの開口部 24を形成するエッチング技術としては、 Bocshプロセスと して知られるエッチングガス (例えば SF )と堆積ガス (例えば C F )を交互に導入し てプラズマ化させ、エッチング工程と堆積工程とを繰り返すプロセスが好適である。ま た、このとき、製造例 1の工程 Bで説明した Crマスクは不要となり、レジストをマスクとし て開口部 24を形成することが可能である。
以上の工程を経て、 Si表面 Bに開口径 50 μ m、深さ 470 μ m、ピッチ 500 μ mの開 口部 24を形成した。
[0047] 図 11 (c)は、凸部の形成を表したもので、前述した製造例 1の工程 Bと同様の工程 を経て、 Si基材 23の表 ®A【こ直径 80 μ m、高さ 150 μ m、ピッチ 500 μ mの凸咅 を形成した。このとき、フォトリソグラフィ一時に Si基材 23の Α·Β両面パターンの位置 合せを行い、開口部 24の中心と凸部 25の中心が一致するように配置した。
[0048] 図 11 (d)は、貫通孔路 22の形成を表したもので、 Crマスクを除去した後、再度ドラ ィエッチングプロセスにて Si基材 23の A面をエッチングすることにより、開口部 24が 基材裏面より凸部先端へ貫通する貫通孔路 22となる。
[0049] 図 11 (e)は、凸部加工から器具 (アレイ状無痛針 19)完成を表したもので、前述し た製造例 1の工程 Cと同様の処理を行って、基部 20の裏面より凸部 21先端へ貫通 する貫通孔路 22が設けられたアレイ状中空無痛針 19が得られる。勿論、前述した製 造例 2に記載した工程 C' を用いてもアレイ状中空無痛針 19を得ることができる。
[0050] 上記工程を経て作製したアレイ状中空無痛針 19では、貫通孔路 22の径を大きく( 即ち、開口面積を大きく)しても、凸部 21先端を尖鋭ィ匕することが可能なため、皮膚 への穿刺性を維持したまま、医薬物の流動性が高 、貫通孔路を形成することができ る。
医薬品の流動性を充分確保できる貫通孔路 22の開口面積は、医薬物の粘度にも よるが、通常 2 X 10_3mm2程度であればよぐ本実施形態のように円形状の貫通孔 路であれば直径 50 μ m程度でよいことになる。
また、貫通孔路 22の径に対して凸部 21の径を大きくしても皮膚への穿刺性は変ら ないので、中空の凸部 21の肉厚を大きくすることができ、機械的強度が向上する。 また、フォトリソグラフィ一時に Si基材 23の Α·Β両面パターンの位置合わせを行い、 開口部 24の中心と凸部 25の中心とを正確に配置する精度は高いとは言えず、歩留 まりを低下させる要因となるが、本発明では貫通孔路 22の径に対して凸部 21の径を 大きくできるため、位置精度の許容が大きくなり、歩留まりが向上する。
[0051] 図 12A〜Cは、本発明の第 4実施形態である、熱可塑性ポリマ素材で構成されるァ レイ状無痛針の製造方法の一例を工程順に示す断面図である。
この図 12A〜Cに示す通り、アレイ状無痛針は、凸部を形成するための細孔を有す る型と、アレイ状無痛針となる熱可塑性ポリマ基材とを対向して配置し(図 12A)、型と 熱可塑性ポリマ基材の少なくともいずれか一方を加熱した上で熱可塑性ポリマ基材 に圧力をかけた状態で保持し(図 12B)、成形後冷却し、次いで熱可塑性ポリマ基材 を離型する(図 12C)工程により行われる。
[0052] 成形に用いる凸部を形成するための細孔を有する型は、以下の方法で作製する。
即ち、製造例 1で例示した医薬物運搬用器具をマスタ型とし、次いで Ni等の金属を スパッタすることでマスタ型表面を導電ィ匕し、然る後に Ni電铸によってマスタ型の形 状を転写する。
[0053] 転写後、マスタ型を選択的に除去することによって、凸部を形成するための細孔を 有する型を作製することができる。
[0054] この図 12A〜Cに従って、第 4の実施形態である熱可塑性ポリマ素材で構成される アレイ状無痛針を製造する一例を、次の製造例 4に詳述するが、この製造例 4は単な る例示であり、本発明を限定するためのものではない。
[0055] (製造例 4)
図 12Aは、製造例 4で型として使用する凸部を形成するための細孔を有する Ni電 铸型 30と厚さ 1000 mの板状ポリ乳酸 (以下、ポリ乳酸基材 31と記す)である。なお 、 Ni電铸型 30の作製に用いたマスタ型には、製造例 1で例示したアレイ状無痛針 1 を用いた。
[0056] 図 12Bは、 Ni電铸型 30の形状をポリ乳酸基材 31に転写する工程を示す。 Ni電铸 型 30とポリ乳酸基材 31を 100°Cに加熱した後、 Ni電铸型 30上部よりポリ乳酸基材 3 1を lOMPa程度の圧力で押圧する。押圧した状態で 10分間保持することにより、 Ni 電铸型 30の形状がほぼ正確にポリ乳酸基材 31に転写される。
[0057] 図 12Cは、ポリ乳酸基材を離型する工程を示す。 Ni電铸型 30とポリ乳酸基材を 50 °Cに冷却した後、ポリ乳酸基材を離型する。 [0058] 以上の工程を経て、ポリ乳酸素材で構成されたアレイ状無痛針 32が形成できる。 詳細は省略するが、このアレイ状無痛針は、マスタ型であるアレイ状無痛針 1の形状 と略同形状であり、アレイ状無痛針 1と同様に、傾斜面 34Aを備えた凸部 34と基部 3 3とを有する。
[0059] 本製造例に用いる基材は、熱可塑性ポリマであれば基本的に 、かなるものでも構 わないが、ポリ乳酸は、生体に対して無毒であり、且つ生体吸収性があるため、例え ばアレイ状無痛針 32の凸部 34が折れて体内に残留したとしても、いずれ体内で分 解するため、好適である。
[0060] なお、前述した各実施形態は本発明の例示に過ぎず、本発明はこれらの実施形態 に限定されるものではなぐ種々の変更が可能である。
例えば、凸部の形状は前述した各実施形態の例示に限らず、皮膚等に無痛で穿 刺できる形状、寸法であれば、如何なるものでも構わない。凸部の形状の他の例とし ては、略円柱状、略円錐台状、略角柱 (三角錐、四角錐等)状、略角錐台状、略角錐 状が挙げられる。これらはフォトリソグラフィ一時の凸部パターンと、凸部形成時のドラ ィエッチング条件により如何様にも変更可能である。
また、アレイ状中空無痛針に形成する貫通孔路も円状に限らず、角(三角、四角等 )状であっても構わない。これも、フォトリソグラフィ一時の開口部パターンにより如何 様にも変更可能である。

Claims

請求の範囲
[1] 基部と、その表面に対して第一の角度と、該第一の角度とは異なる第二の角度とを もって立設された略柱状、略錐台状、略錐状からなる群から選択される形状をなす凸 部とを有することを特徴とする医薬物運搬用器具。
[2] 基部と、その表面に対して第一の角度をもって立設された略柱状、略錐台状、略錐 状からなる群から選択される形状をなす凸部とを有し、該凸部に、前記第一の角度と 異なる第二の角度をもつ傾斜面が形成されたことを特徴とする医薬物運搬用器具。
[3] 前記第二の角度は、前記第一の角度よりも小さいことを特徴とする請求項 1又は 2 に記載の医薬物運搬用器具。
[4] 前記第一の角度は 70度〜 90度であり、前記第二の角度は 50度〜 80度であること を特徴とする請求項 1〜3のいずれかに記載の医薬物運搬用器具。
[5] 基部裏面より凸部先端へ貫通する貫通孔路が形成されていることを特徴とする請 求項 1〜4のいずれかに記載の医薬物運搬用器具。
[6] 前記貫通孔路の開口面積が 2 X 10_3mm2以上であることを特徴とする請求項 5に 記載の医薬物運搬用器具。
[7] 前記基部及び前記凸部がシリコン素材により構成されていることを特徴とする請求 項 1〜6のいずれかに記載の医薬物運搬用器具。
[8] 基部の表面に対して第一の角度をもって立設された略柱状、略錐台状、略錐状の 群から選択される形状をなす凸部を形成する工程と、該凸部に、前記第一の角度と 異なる第二の角度をもつ傾斜面を形成する工程とを有することを特徴とする請求項 1 〜4及び請求項 7に記載の医薬物運搬用器具の製造方法。
[9] 基部裏面より凸部先端へ貫通する貫通孔路となる開口部を形成する工程と、該基 部の表面に、その表面に対して第一の角度をもって立設された略柱状、略錐台状、 略錐状からなる群から選択される形状をなす凸部を形成する工程と、該凸部に、前 記第一の角度と異なる第二の角度をもつ傾斜面を形成する工程とを有することを特 徴とする請求項 5〜7に記載の医薬物運搬用器具の製造方法。
[10] 前記第二の角度をもつ傾斜面を形成する工程は、凸部にイオンィ匕したガスを選択 的に照射することによって行うことを特徴とする請求項 8又は 9に記載の医薬物運搬 用器具の製造方法。
[11] 前記基部及び前記凸部が熱可塑性ポリマ素材により構成されていることを特徴とす る請求項 1〜6のいずれかに記載の医薬物運搬用器具。
[12] 前記基部及び前記凸部がポリ乳酸素材により構成されていることを特徴とする請求 項 11に記載の医薬物運搬用器具。
[13] 前記凸部を形成するための細孔を有する型と基材とを対向して配置し、前記型と前 記基材の少なくともいずれか一方を加熱したうえで基材に圧力を加えて前記型の形 状を前記基材に転写させる工程と、冷却して前記基材を離型する工程とを有すること を特徴とする請求項 11又は 12に記載の医薬物運搬用器具の製造方法。
PCT/JP2006/300398 2005-01-14 2006-01-13 医薬物運搬用器具とその製造方法 WO2006075716A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006552996A JP5053645B2 (ja) 2005-01-14 2006-01-13 医薬物運搬用器具とその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-007327 2005-01-14
JP2005007327 2005-01-14

Publications (1)

Publication Number Publication Date
WO2006075716A1 true WO2006075716A1 (ja) 2006-07-20

Family

ID=36677739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300398 WO2006075716A1 (ja) 2005-01-14 2006-01-13 医薬物運搬用器具とその製造方法

Country Status (2)

Country Link
JP (1) JP5053645B2 (ja)
WO (1) WO2006075716A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035874A (ja) * 2006-08-01 2008-02-21 Toppan Printing Co Ltd 針状体の製造方法
JP2008079915A (ja) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd 針状体およびその製造方法
JP2008212588A (ja) * 2007-03-08 2008-09-18 Toppan Printing Co Ltd 針状体、針状体製造方法および薬物輸送デバイス
JP2008212458A (ja) * 2007-03-06 2008-09-18 Toppan Printing Co Ltd 針状体および針状体製造方法
JP2009072271A (ja) * 2007-09-19 2009-04-09 Toppan Printing Co Ltd 針状体および針状体の製造方法
JP2009142465A (ja) * 2007-12-14 2009-07-02 Fujikura Ltd 医薬物運搬用器具とその製造方法及び金型とその製造方法
JP2009225987A (ja) * 2008-03-21 2009-10-08 Toppan Printing Co Ltd 針状体
JP2011143098A (ja) * 2010-01-15 2011-07-28 Toppan Printing Co Ltd マイクロニードル製造方法およびマイクロニードル
JP2013090837A (ja) * 2011-10-26 2013-05-16 Toppan Printing Co Ltd 針状体の製造方法および針状体
US8696638B2 (en) 2009-07-23 2014-04-15 Hisamitsu Pharmaceutical Co., Inc. Microneedle array
US8911422B2 (en) 2010-02-24 2014-12-16 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
US9028463B2 (en) 2008-06-30 2015-05-12 Hisamitsu Pharmaceutical Co., Inc. Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle device
JP2020131021A (ja) * 2019-02-12 2020-08-31 近畿精工株式会社 マイクロニードル

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005478A (ko) * 2017-07-07 2019-01-16 경상대학교산학협력단 마이크로니들 디바이스

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517300A (ja) * 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション 微小針デバイスおよび製造方法ならびにそれらの使用
WO2004035105A2 (en) * 2002-10-13 2004-04-29 Nano Pass Technologies Ltd. Polymer microneedles
JP2004148519A (ja) * 2002-10-28 2004-05-27 Kuraray Co Ltd 樹脂成形品の製造方法、型用金属構造体の製造方法及び樹脂成形品
JP2004524172A (ja) * 2001-02-05 2004-08-12 ベクトン・ディキンソン・アンド・カンパニー マイクロ突起物アレイおよびマイクロ突起物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749792B2 (en) * 2001-07-09 2004-06-15 Lifescan, Inc. Micro-needles and methods of manufacture and use thereof
US6808518B2 (en) * 2001-09-28 2004-10-26 Ethicon, Inc. Methods and devices for treating diseased blood vessels
EP1490147A2 (en) * 2002-03-04 2004-12-29 Nano Pass Technologies Ltd. Devices and methods for transporting fluid across a biological barrier
KR100563330B1 (ko) * 2003-01-16 2006-03-22 포스트마이크로 주식회사 Liga공정을 이용한 폴리머 재질의 미세 바늘 어레이제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517300A (ja) * 1998-06-10 2002-06-18 ジョージア テック リサーチ コーポレイション 微小針デバイスおよび製造方法ならびにそれらの使用
JP2004524172A (ja) * 2001-02-05 2004-08-12 ベクトン・ディキンソン・アンド・カンパニー マイクロ突起物アレイおよびマイクロ突起物の製造方法
WO2004035105A2 (en) * 2002-10-13 2004-04-29 Nano Pass Technologies Ltd. Polymer microneedles
JP2004148519A (ja) * 2002-10-28 2004-05-27 Kuraray Co Ltd 樹脂成形品の製造方法、型用金属構造体の製造方法及び樹脂成形品

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035874A (ja) * 2006-08-01 2008-02-21 Toppan Printing Co Ltd 針状体の製造方法
JP2008079915A (ja) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd 針状体およびその製造方法
JP2008212458A (ja) * 2007-03-06 2008-09-18 Toppan Printing Co Ltd 針状体および針状体製造方法
JP2008212588A (ja) * 2007-03-08 2008-09-18 Toppan Printing Co Ltd 針状体、針状体製造方法および薬物輸送デバイス
JP2009072271A (ja) * 2007-09-19 2009-04-09 Toppan Printing Co Ltd 針状体および針状体の製造方法
JP2009142465A (ja) * 2007-12-14 2009-07-02 Fujikura Ltd 医薬物運搬用器具とその製造方法及び金型とその製造方法
JP2009225987A (ja) * 2008-03-21 2009-10-08 Toppan Printing Co Ltd 針状体
US9028463B2 (en) 2008-06-30 2015-05-12 Hisamitsu Pharmaceutical Co., Inc. Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle device
US8696638B2 (en) 2009-07-23 2014-04-15 Hisamitsu Pharmaceutical Co., Inc. Microneedle array
JP2011143098A (ja) * 2010-01-15 2011-07-28 Toppan Printing Co Ltd マイクロニードル製造方法およびマイクロニードル
US8911422B2 (en) 2010-02-24 2014-12-16 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
JP2013090837A (ja) * 2011-10-26 2013-05-16 Toppan Printing Co Ltd 針状体の製造方法および針状体
JP2020131021A (ja) * 2019-02-12 2020-08-31 近畿精工株式会社 マイクロニードル

Also Published As

Publication number Publication date
JP5053645B2 (ja) 2012-10-17
JPWO2006075716A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006075716A1 (ja) 医薬物運搬用器具とその製造方法
WO2006075689A1 (ja) 医薬物運搬用器具とその製造方法
US10105524B2 (en) Article with hollow microneedles and method of making
JP5020080B2 (ja) 医薬物運搬用器具の製造方法
JP4908893B2 (ja) 医薬物運搬用器具とその製造方法及び医薬物運搬用器具製造用金型の製造方法
US9283365B2 (en) Patch production
JP2006341089A (ja) 医薬物運搬用器具およびその製造方法
US9545507B2 (en) Injection molded microneedle array and method for forming the microneedle array
US8137736B2 (en) Fabrication method for hollow microneedles for drug delivery
WO2008004597A1 (fr) Procédé de fabrication d'une micro-aiguille
JP2011072695A (ja) マイクロニードルアレイの製造方法とマイクロニードルアレイ構造体
JP5285943B2 (ja) 針状体アレイおよび針状体アレイ製造方法
JP4888011B2 (ja) 針状体およびその製造方法
CN114748779A (zh) 一种微针及其制造工艺
JP2010068840A (ja) 針状体および針状体製造方法
KR100943157B1 (ko) 미세바늘 어레이 제조용 금형과 이 금형의 제조방법 및, 이금형을 이용한 미세바늘 어레이
JP2008046507A (ja) 原版及びマイクロニードルのパッチの製造方法、並びにマイクロニードルのパッチ
JP5412045B2 (ja) 針状体アレイおよびそのアレイ製造方法
JP2018038508A (ja) 針状アレイシートの製造方法
JP2013106831A (ja) 針状体の製造方法および針状体の転写版
JP5173332B2 (ja) マイクロニードルおよびマイクロニードル製造方法
JP2011078654A (ja) マイクロニードルアレイとマイクロニードルアレイの製造方法
JP5568234B2 (ja) 針状体および針状体製造方法
JP5216312B2 (ja) 医薬物運搬用器具の製造方法
JP2009078074A (ja) マイクロニードル製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006552996

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711683

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711683

Country of ref document: EP