WO2006057348A1 - 表面処理された銀含有粉末の製造方法、及び表面処理された銀含有粉末を用いた銀ペースト - Google Patents

表面処理された銀含有粉末の製造方法、及び表面処理された銀含有粉末を用いた銀ペースト Download PDF

Info

Publication number
WO2006057348A1
WO2006057348A1 PCT/JP2005/021707 JP2005021707W WO2006057348A1 WO 2006057348 A1 WO2006057348 A1 WO 2006057348A1 JP 2005021707 W JP2005021707 W JP 2005021707W WO 2006057348 A1 WO2006057348 A1 WO 2006057348A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
particles
surfactant
treated
dispersion
Prior art date
Application number
PCT/JP2005/021707
Other languages
English (en)
French (fr)
Inventor
Wataru Suenaga
Youji Nakaya
Original Assignee
Dainippon Ink And Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink And Chemicals, Inc. filed Critical Dainippon Ink And Chemicals, Inc.
Priority to US11/719,602 priority Critical patent/US7771625B2/en
Priority to EP05809753A priority patent/EP1825940B1/en
Priority to JP2006547865A priority patent/JP4706637B2/ja
Publication of WO2006057348A1 publication Critical patent/WO2006057348A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to a method for producing a surface-treated silver-containing powder that can be used for printed wiring used in electronic equipment and the like and is used for a silver paste having excellent conductivity and printing accuracy. More specifically, the present invention relates to a silver paste containing the surface-treated silver-containing powder as a conductive powder component.
  • surface-treated silver-containing powder includes “surface-treated silver powder” and “surface-treated silver compound powder”.
  • a conductive paste is a paste containing conductive fine particles in a solid content.
  • metals such as gold, platinum, silver, and palladium that do not oxidize in air are used as the conductive particles.
  • conductive pastes can be broadly divided into: (1) high conductivity by the fusion of silver particles, but high-temperature firing type conductive base where the base material is limited to ceramics, etc. (2) Although the power of glass and epoxy printed circuit boards can be widely applied to films, the electrical resistance is relatively high to obtain conduction through contact between metal particles due to heat shrinkage during binder curing, and polymer-type conductivity There is a paste.
  • a conductive circuit is formed on a flexible printed circuit board support using a polymer-type conductive paste
  • the polymer-type conductive paste is screen printed on a plastic film such as polyethylene terephthalate or polyimide.
  • a conductive circuit pattern is formed, and the binder in the formed pattern coating film is cured by heating to improve conductivity and durability, and to ensure adhesion on the film.
  • polymer-type conductive pastes using silver or silver-based compounds are easy to achieve stable conductivity and have good heat conduction characteristics, and therefore various wiring inside or between electronic components. It is used to form electronic circuit patterns.
  • the printing accuracy increases with the miniaturization of circuits. Force required to increase as much as possible The accuracy is limited by the average particle size of the conductive particles. For this reason, in order to obtain good printing accuracy, the conductive particles in the conductive paste are dispersed to the primary particles, and the primary particles are completely covered with the resin, that is, highly dispersed. It is required to be in the state that has been made.
  • the particles become more active as the particle diameter becomes more vigorous, so the particles in the conductive paste may aggregate, If the viscosity increases with time or is extremely extreme, gelling may occur.
  • the amount of the resin used for dispersion and covering the surface of the conductive particles is preferably the minimum required, and the amount of the resin is less than the required amount, and the dispersibility of the conductive particles, the adhesion of the conductive paste to the substrate, It is preferable that the film formability is good.
  • Nonionic dispersants such as ester compounds, ethylene oxide of polyhydric alcohols such as sorbitan, or ether compounds with propylene oxide, ethylene oxide of alkylbenzene, or propylene oxide adducts, alkylbenzene Sulfonic acid alkali salts, higher alcohol sulfate alkaline salts, phosphoric acid ester compounds, higher fatty acids, higher fatty acid ethylene oxides, or sulfone alkali salts of propylene oxide adducts, ionic dispersants, quaternary ammonia -Various dispersants are used, such as cationic dispersants such as um salt type. Being
  • Patent Document 1 In order to deal with such problems, for example, an attempt is made to obtain good dispersibility and stability over time by using a cationic surfactant having an organic vehicle and an alkyl group-containing sulfosuccinate. (See Patent Document 1).
  • Patent Document 1 the use of the method described in Patent Document 1 is insufficient to improve the redispersibility of the settled particles.
  • the line width of the conductive circuit was narrow, it was insufficient to print the wiring pattern with high accuracy.
  • the amount of grease used for dispersion was not reduced to the minimum necessary. But it was insufficient.
  • a vacuum freeze-drying method is used.
  • tantalum powder is used in the production of a tantalum powder coating material for producing an anode element for an electrolytic capacitor.
  • a dispersant are mixed in a solvent and vacuum freeze-dried to adsorb the dispersant onto the surface of the tantalum particles (see Patent Document 2).
  • polymer-type conductive pastes are made of spherical or flakes by adding a binder such as acrylic resin, epoxy resin, polyurethane resin, polyester resin, organic solvent, curing agent, catalyst, etc.
  • a binder such as acrylic resin, epoxy resin, polyurethane resin, polyester resin, organic solvent, curing agent, catalyst, etc.
  • the conductive particles were dispersed and mixed, and the conductivity was obtained by contact between the conductive particles due to curing shrinkage when the binder was cured. For this reason, the electrical resistance becomes relatively high, and the cohesive force of the cured resin changes due to a temperature change or the like, and accordingly, a conductive circuit or the like formed using a polymer-type conductive paste is used.
  • the electrical resistance is likely to fluctuate and has a drawback.
  • the low-temperature firing type silver paste compensates for these drawbacks.
  • a conductive circuit having good conductivity can be formed on a plastic film such as PET. can do.
  • the finely divided submicron silver fine particles and particulate silver compounds used in low-temperature fired silver pastes are highly reactive and are difficult to handle in a dry powder state.
  • the particulate silver compound has a very fast reduction reaction, and therefore has the power to be stored in a solution such as water or a solvent having low reducibility.
  • a solution such as water or a solvent having low reducibility.
  • an alcohol solvent or the like is used as a dispersion solvent, reduction proceeds during dispersion of the silver paste, and fusion between silver particles may occur contrary to dispersion. For this reason, it is further required to disperse these silver and silver compound particles to primary particles to coat and stabilize the surface of each particle.
  • the silver particles in the silver paste must be well dispersed while maintaining a high silver content. It is necessary to perform the stabilization with fat, make the coating thickness on the surface of the particles as thin as possible, and make it easy to fuse adjacent particles by low-temperature firing. If the film formed on the surface of the silver and silver compound particles is too thick, adjacent particles are difficult to fuse with each other, and the filling degree of silver or silver compound is also reduced. The inherent advantages of these low-temperature fired silver pastes that give a high temperature are not exhibited.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-231828
  • Patent Document 2 JP 2004-006502 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-309337
  • An object of the present invention is to provide a conductive circuit having a good conductive property with a narrow line width in which fine particles of silver or silver-containing compound are well dispersed and there is no change over time in physical properties such as an increase in viscosity. It is to provide a silver paste that can be formed.
  • a further object of the present invention is to provide a method for producing a silver-containing powder that has undergone a surface treatment that is indispensable for the production of the silver paste.
  • a further object of the present invention is to provide a silver base that can be fired at a low temperature and can form a coating film having high conductivity after firing, by using particles of silver or a silver compound having a low sinterable temperature. Is to provide.
  • the present invention provides a particle force of silver or a silver compound, an alkylamine-based or alkylamine salt-based surfactant, or a phosphate ester-based surfactant having a phosphorus content of 0.5 to 10% by mass.
  • a method for producing a surface-treated silver-containing powder characterized by having a drying step of freeze-drying a dispersion dispersed in a dispersing solvent together with an agent.
  • the present invention provides a silver paste containing the surface-treated silver-containing powder and greaves.
  • particles of silver or a silver compound are dispersed as fine particles, and a surfactant is present on the surface of each particle of silver or a silver compound. Adsorbed and the particle surface is well coated.
  • silver particles such as silver which have a large specific gravity, are easily settled by ordinary processing methods. Since the concentration distribution is likely to occur in the disperser, it is difficult to perform a uniform treatment, but by dispersing in a solvent containing a surfactant and then performing freeze-drying in a vacuum using the method of the present invention, The surface of silver or silver composite particles can be processed under uniform processing conditions. Furthermore, in the present invention, surface treatment is performed using an alkylamine-based or alkylamine salt-based surfactant or a phosphate ester-based surfactant having a phosphorus content of 0.5 to 10% by mass. Therefore, the surfactant is very well adsorbed on the particle surfaces of silver and silver compounds, and the dispersibility is improved.
  • a silver paste having a wide range of viscosities can be obtained only by mixing or stirring with a solvent or a mixture of a resin and a solvent or a simple dispersion operation. Can be made. Since the surface of the particles made of silver or silver compound is already surface-treated with a surfactant, the particles having silver or silver compound can be well dispersed in the silver paste. Moreover, the addition amount of the resin as a dispersant can be suppressed to a small amount as compared with the case where the untreated metal particles are dispersed. Further, since the amount of the resin coating on the particle surface is not increased, the conductivity when the conductive paste is formed is not reduced.
  • the base viscosity after completion of the dispersion is usually readjusted to the optimum viscosity according to each printing method. For example, in order to set a high viscosity that is optimal for the screen printing method, it was sometimes necessary to reduce the amount of solvent by evaporating the solvent of the paste after dispersion.
  • a paste is formed simply by mixing and stirring with the solvent and resin for forming the paste. be able to.
  • a silver paste of the present invention can be stored for a long period of time because it can be easily stabilized by redispersion with a stirring degree even if the standing period after the paste is produced is long. Also manufactured by the manufacturing method of the present invention It can be stored in the state of the surface-treated silver-containing powder, and only the necessary amount of silver paste can be produced as required.
  • FIG. 1 is an explanatory view schematically illustrating a surface treatment method of silver powder with a surfactant according to the present invention.
  • FIG. 2 is a diagram showing an example of measurement results of DSC analysis of silver powder after surface treatment according to the present invention.
  • FIG. 3 is a view showing the particle size distribution of the surface-treated silver powder prepared in Example 1 and Comparative Example 1 on a volume basis.
  • FIG. 4 The resistivity of the dried coating film with the conductive paste prepared in Example 1 and Comparative Example 1
  • FIG. 5 is a view showing the particle size distribution of the surface-treated silver powder prepared in Example 4 on a volume basis.
  • FIG. 6 is a graph showing the particle size distribution of the silver powder after the surface treatment produced in Example 5.
  • FIG. 7 is a view showing a profile of a fine line pattern produced by screen printing using the silver paste produced in Example 5.
  • FIG. 8 is a graph showing the relationship between the heating time (firing time) and the volume resistivity of the fine line pattern when the fine line pattern produced with the silver paste of Example 5 was baked at 160 ° C. or 250 ° C. It is.
  • “sintering of silver or silver compound particles” means that a substance containing silver or silver compound particles (for example, powder or paste) is heated to produce silver or silver compound. This refers to melting and fusing particles of a product.
  • “baking of silver paste” refers to a portion in which adjacent silver or silver compound particles are brought into contact with each other or are brought into contact with each other by heating the silver paste to cure and shrink the contained resin. It refers to fusing the minutes.
  • “Dispersion” refers to a phenomenon in which other phases are dispersed in the form of fine particles in a continuous phase.
  • a silver paste having excellent dispersibility and good conductivity can be produced.
  • particles of silver or silver compounds having a low sintering temperature such as ultrafine fine particles of silver or silver compounds, silver or silver compounds having low crystallinity (small crystallite diameter)
  • silver oxide-treated silver particles it can be fired at a much lower temperature (lower firing temperature) than conventional high-temperature firing type conductive paste, and has good conductivity after firing.
  • the silver paste which can form the wiring pattern which has can be obtained.
  • the silver particles used in the present invention pure silver particles, metal particles surface-coated with silver, or a mixture thereof can be used.
  • the silver particles particles having an arbitrary shape such as a spherical shape, a scale shape, a needle shape, or a dendritic shape can be used.
  • the method for producing silver particles is not particularly limited, and may be any method such as a mechanical pulverization method, a reduction method, an electrolysis method, or a gas phase method.
  • the metal particle surface-coated with silver is obtained by forming a silver coating layer on the surface of a particle having a metal force other than silver by a method such as plating.
  • the surface of copper particles coated with silver is commercially available.
  • spherical silver particles and scaly silver particles made of only silver are preferred in view of conductivity and cost.
  • the volume average particle diameter of the spherical silver particles is preferably 0.05 to 10 / ⁇ ⁇ , more preferably about 0.05 to 5 ⁇ m.
  • the major axis of the flaky surface is preferably in the range of 0.05-100 ⁇ m.
  • the silver particles combine two or more types of particles with different volume average particle diameters to improve the packing density of the silver particles, thereby improving the conductivity of the conductive film.
  • silver composite particles silver oxide, particles of silver-containing organic compounds such as aliphatic carboxylic acid silver, alicyclic carboxylic acid silver, aromatic carboxylic acid silver and the like can be used.
  • these silver compound particles particles (particulate silver compound), those produced industrially can be used, and those obtained by a reaction from an aqueous solution containing a silver compound may be used.
  • the use of silver compound particles having an average particle size of 0.5 m or less is preferable because the reduction reaction rate is increased. Yes.
  • Silver compound particles having an average particle size of 0.5 m or less are produced by the reaction of a silver compound with another compound, for example, an aqueous alkaline solution such as sodium hydroxide or sodium hydroxide is added dropwise to an aqueous silver nitrate solution with stirring. It can be produced by a method of reacting to obtain acid silver particles.
  • an aqueous alkaline solution such as sodium hydroxide or sodium hydroxide is added dropwise to an aqueous silver nitrate solution with stirring. It can be produced by a method of reacting to obtain acid silver particles.
  • a silver paste when a silver paste is produced, particles of silver or a silver compound capable of setting the firing temperature at which the silver particles are fused by heating the silver paste to 300 ° C or less. Is preferred to use.
  • a low firing temperature and a low-temperature firing type silver paste for example, a wiring pattern formed on a polyimide film or a PET film can be fired as it is.
  • the more finely conductive particles are dispersed in the conductive paste the lower the heat capacity of the conductive paste and the firing temperature of the conductive paste becomes the intrinsic sintering temperature of the conductive particles themselves. Get closer.
  • the packing density improves as the conductive particles are finely dispersed, generally the higher the dispersion, the better the conductivity after firing.
  • the silver paste using the surface-treated silver-containing powder by the production method of the present invention can reduce the resin component, and the film thickness of the resin covering the particles of silver or silver compounds can be reduced. Since it is thin, adjacent silver or silver composite particles are easily fused after firing. For this reason, low-temperature sintering type silver or silver compound particles having a sintering temperature of 300 ° C or less are used as silver or silver compound particles subjected to surface treatment with a surfactant. If used, a low temperature firing type silver paste can be obtained even after the surface treatment with a surfactant, and the low temperature sintering type silver paste can be obtained sufficiently. A favorable wiring pattern can be obtained.
  • silver particles having a low sintering temperature silver particles having a volume average particle diameter of 0.05 to 10 m can be used. It is preferable that the silver particles have a volume average particle diameter of 0.05 to 5 / ⁇ ⁇ .
  • the silver or silver compound particles can be surface-treated in the presence of a surfactant while being dispersed in the liquid phase when the particles are produced. Therefore, it is easy to process, and the original characteristics of these particles with low sintering temperature are sufficient. Can be demonstrated.
  • methods for producing silver fine particles include gas evaporation (JP-A-3-34211) and reduction precipitation using an amine compound for reduction (JP-A-11-319538).
  • silver particles having a low crystallinity can be used as the silver particles having a low sintering temperature.
  • the crystallite size is usually small. Therefore, by reducing the crystallite diameter, the fusion temperature (sintering temperature) between silver particles can be remarkably lowered.
  • the crystallite diameter is preferably 0.1 to 20 nm, more preferably 0.1 to LOnm.
  • the sintering temperature is low!
  • silver particles in which some of the particles have been subjected to acid-silver treatment can be used.
  • the silver oxide-treated silver particle has a layer of oxidized silver on the surface of the silver particle. It can be obtained by a method of forming a coating.
  • the silver on the particle surface is oxidized into first silver oxide, second silver oxide, and the like.
  • the silver oxide on the surface of the particle may be in a mixed state of first silver oxide, second silver oxide, and the like.
  • the silver oxide on the surface layer becomes silver by a reduction reaction in the absence of a reducing agent or in the presence of a reducing agent, and adjacent particles are fused at a low temperature.
  • Silver particles having a surface subjected to silver oxide treatment can be appropriately selected from those having different compositions and shapes according to the reduction reaction conditions; heating temperature, presence / absence of a reducing agent, reducing power of the reducing agent, and the like.
  • the silver oxide-treated silver particles have a volume average particle size of preferably about 0.05 to 10 111, more preferably about 0.05 to 5 / ⁇ ⁇ .
  • the use of particles having an average particle diameter of 0.05 to 0.5 m is preferable because the reduction reaction rate is increased.
  • the silver oxide content of silver particles surface-treated with silver oxide is preferably 1% by mass or more (silver content 99% or less), and the silver oxide content is 5% or more (silver content 95% by mass). % Or less) is particularly preferred. Further, from the viewpoint of facilitating the fusion of silver particles, it is necessary to have a certain amount of metallic silver inside the particles.
  • the preferred silver oxide content is 30% by mass or less (silver content is 70% by mass or more), and the preferred silver oxide content is 20% by mass or less (silver content 80% by mass or more).
  • a preferable range of the silver oxide content of the silver particles surface-treated with silver oxide is 1 to 30% by mass, and a more preferable range is 5 to 20% by mass.
  • the firing temperature having good conductivity and low temperature is achieved.
  • these particles which are very easy to reduce when dried, can be stored stably.
  • silver particles are stably dispersed as fine particles (primary particles) even in the silver paste, it is possible to prevent unnecessary agglomerates from being generated due to the fusion of particles during reduction, and in fine printing. There is no problem.
  • an alkylamine-based or alkylamine salt-based surfactant examples thereof include phosphate ester-based surfactants having a mass%.
  • alkylamines and alkylamine salts can be suitably used.
  • Alkylamine-based nonionic surfactants and alkylamine salt-based cationic surfactants are effective even when used alone. Especially when used in combination, the dispersibility becomes better and the effect is remarkable. is there.
  • alkylamine-based surfactant a polyoxyethylenealkylamine-type surfactant is more preferred, and a polyoxyalkylenealkylamine-type surfactant is more preferred. Of these, those having the following general formula (1) are more preferred.
  • alkylamine salt surfactants are preferably alkylamine acetates, more preferably those having the following general formula (2).
  • R represents an alkyl group having 8 to 20 carbon atoms or an alkylaryl group.
  • the alkyl group having 8 to 20 carbon atoms may be a linear alkyl group or a branched alkyl group, for example, an octyl group, a nonyl group, a decyl group, Examples include undecyl, dodecyl, lauryl, tetradecyl, myristyl, hexadecyl, cetyl, octadecyl, stearyl, and eicosyl groups.
  • alkylaryl group having 8 to 20 carbon atoms examples include alkylfuryl groups such as octylphenyl group, nourphehl group and dodecylphenyl group.
  • the alkyl part of the alkylaryl group may be a straight chain alkyl group or a branched alkyl group! /.
  • the total amount of the surfactant with respect to the silver or silver compound particles is as follows: It is necessary to adjust appropriately depending on the type of particles of silver or silver compound, but, for example, 0.01 to 3,000 parts by mass is preferable with respect to 100 parts by mass of silver or silver compound particles.
  • 05-: L is more preferably 50 parts by mass.
  • the total amount of the surfactant is 0.01 parts by mass or more, sufficient dispersibility tends to be easily obtained.
  • the amount is less than 3.00 parts by mass, the surface of the silver or silver compound particles is thinly coated with the organic component of the surfactant, making it easy to obtain contact between the particles after drying. Tend to improve.
  • the mixing ratio of the alkylamine salt to the alkylamine salt salt is in the range of 1:20 to 1: 5. preferable.
  • the phosphate ester-based surfactant used in the present invention is a surfactant mainly composed of phosphate monoester or phosphate diester, and has a phosphorus content of 0.5 to 10 mass. % Is used.
  • Phosphate ester surfactants are polyoxyalkylene The following general formula (3) which is preferably a phosphoric ester of rualkyl ether
  • R represents an alkyl or alkylaryl group having 1 to 20 carbon atoms, n is an integer of 1 to 20, and X is an integer of 1 or 2) It is even more preferable to have
  • the alkyl group having 1 to 20 carbon atoms may be a linear alkyl group or a branched alkyl group, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group.
  • alkylaryl group having 20 or less carbon atoms examples include alkylfuryl groups such as octylphenyl group, nourphehl group, dodecylphenol group and the like.
  • the alkyl part of the alkylaryl group may be a straight chain alkyl group or a branched alkyl group! /.
  • the carbon number of R is 1 to 10
  • n is 1 to 10
  • the sum of the carbon number of R and n is 7 to 15.
  • the weight average molecular weight of the phosphate ester surfactant is preferably from 100 to 10,000, and more preferably from 150 to 5,000.
  • the content of P (phosphorus) is preferably 0.5 to 10% by mass, more preferably 1 to 7% by mass, and particularly preferably 2 to 6% by mass. More preferably, it is 2 to 5% by mass.
  • the phosphate ester surfactant used in the production method of the present invention the ability to use HLB (hy drophile-lipophile balance) of 10 or more, or adding a basic compound to neutralize the acid value. It is preferable to use it.
  • HLB hy drophile-lipophile balance
  • the type and blending amount of the phosphate ester-based surfactant can be appropriately selected depending on the type of silver or silver compound particles.
  • the amount of the phosphate ester-based surfactant needs to be adjusted as appropriate depending on the type of silver or silver compound particles. 01 to 3,000 mass repulsive force S is preferable, and 0.05 to 0.50 mass repulsive force is more preferable. If the surfactant is 0.01 parts by mass or more, sufficient dispersibility is easily obtained. Tend. On the other hand, at less than 3.00 parts by mass, the surface of the silver or silver compound particles is thinly coated with the organic component of the surfactant, making it easier to obtain contact between the particles after drying, and the conductivity tends to be improved. .
  • silver or silver compound particles have an alkylamine-based or alkylamine salt-based surfactant or a phosphorus content of 0.5-10.
  • a dispersion liquid is prepared which is dispersed in a dispersion solvent together with a phosphate ester-based surfactant having a mass%.
  • the dispersion solvent (dispersion medium) used for dispersing the silver or silver compound particles is not particularly limited as long as it is suitable for dissolving the surfactant.
  • the surfactant for example, water; And lower alcohols such as isopropyl alcohol; propylene oxide adducts of alkyl alcohols such as propylene glycol propyl ethers and the like with ethylene alcohols such as ethylene glycol hexyl ether and diethylene glycol butyl ether.
  • water is preferred.
  • dispersing solvents are not limited to those listed here, but can be used alone or in admixture of two or more (for example, as an aqueous solution or a mixed solvent).
  • a method of preparing a dispersion liquid in which silver or silver compound particles are dispersed together with the surfactant silver or silver compound particles and a surfactant are added to a dispersion solvent, and the mixture is stirred. And a method of crushing the particles of silver or silver-containing compound into fine particles (primary particles) and mixing with the surfactant using a machine or a dispersing machine.
  • silver particles, a dispersion solvent, and a surfactant are mixed at a desired ratio, and the silver particles are pulverized into primary particles by a disperser or the like and dispersed in the dispersion solvent.
  • a dispersion of silver particles can be obtained.
  • silver or silver used as a raw material when added to the solvent for dispersion If the compound particles are silver or silver compound powder (dry powder), it is easy to optimize the amount of particles such as silver, and it is possible to prevent mixing of undesired ingredients in the dispersion process. There are advantages and favors.
  • Useable stirrers or dispersers can be appropriately selected from the known stirrers or dispersers described below.
  • a surfactant or the like may be added to the dispersion solvent and sufficiently dissolved, and then the silver or silver compound powder may be added.
  • the solubility of the surfactant in the dispersion solvent can be increased by neutralization of the surfactant (for example, in the case of a phosphate ester surfactant, formation of a phosphate ester salt with an alkali or the like). it can.
  • secondary particles (aggregated particles) in the silver powder or silver composite powder are crushed into primary particles, and the surfactant and silver or silver Adsorption equilibrium with the primary particles of the compound.
  • Another method for preparing a dispersion is to synthesize silver or silver composite particles (hereinafter sometimes referred to as "silver particles") in a liquid phase, and then use a mother liquor. Force Filter silver particles, etc., wash the silver particles, and disperse them in the solvent for dispersion. In this method, it is desirable not to dry particles such as silver, and the presence or absence of a treatment such as filtration or washing can be appropriately set.
  • a mother liquor solvent for example, water obtained by synthesizing particles such as silver can be used as a dispersion solvent in the dispersion as it is. In this case, the process of separating particles such as silver by mother liquid filtration can be omitted.
  • a necessary amount of a surfactant is added to the dispersion liquid in which particles such as silver are dispersed, and then subjected to lyophilization treatment. If a suitable surfactant has already been added to the mother liquor, it can be used for lyophilization treatment, or a surfactant may be added.
  • particles such as silver produced in the liquid phase are primary particles, it is possible to obtain a dispersion liquid in which particles such as silver are dispersed together with a surfactant while suppressing aggregation of particles such as silver. Can do. In this case, it is not necessary to use a stirrer or a disperser to disintegrate secondary particles such as silver into primary particles. Can be dispersed as a primary particle in a solvent for dispersion to achieve a desirable dispersion state. wear.
  • the dispersion of particles of silver or the like containing a surfactant produced by the dispersion production method exemplified above is subjected to freeze-drying in the next step.
  • the range of the solid content concentration in the dispersion liquid of particles such as silver when freeze-drying is preferably 0.5 to 80% by mass, particularly preferably 1 to 50% by mass.
  • the dispersion liquid when a phosphate ester-based surfactant is used, it is preferable that the dispersion liquid has an acidic condition (for example, ⁇ 1 to 3) as a result of use, and an alkylamine or alkylamine salt-based interface is preferred.
  • an activator when used, it is preferable that the dispersion is in an alkaline condition (for example, pH 12-14). As a result, an interfacial electric double layer is formed on the surface of particles such as silver via the surfactant, and dispersion stability is obtained.
  • the particle since the charge when the hydrophilic group portion is ionized is opposite, depending on the sign of the surface charge of the particle such as silver, the particle It is preferable to select a surfactant so that repulsive force works.
  • an alkylamine or an alkylamine salt-based surfactant is preferred.
  • an alkylamine or an alkylamine salt-based surfactant is preferred.
  • phosphoric acid ester-based surfactants are preferred. It has the feature of being excellent.
  • the dispersion solvent is removed from the dispersion by a vacuum freeze-drying method.
  • vacuum freeze-drying since vacuum freeze-drying is used as a drying method, it is preferable to select and use a solvent that is easily frozen from the power of the solvent. Considering that the cooling capacity of generally available equipment is up to about 40 ° C for vacuum freeze-drying, select a dispersion solvent with a freezing point of 40 ° C or higher. This is preferable because the implementation cost can be reduced.
  • the end of the hydrophobic group faces the outside of the particle. This improves the affinity with the binder resin and improves the dispersibility of the surface-treated silver or silver compound particles c. Further, aggregation between particles can be suppressed, and the state of being dispersed in primary particles can be maintained. Freeze-vacuum drying is performed by, for example, pre-freezing the dispersion liquid below the freezing point of the dispersing solvent at atmospheric pressure.
  • a dispersion using water as a dispersion solvent a dispersion containing silver or silver compound particles, water, and a surfactant
  • prefreeze to 0 ° C or lower at atmospheric pressure.
  • it is preferable to increase the temperature to the melting point (freezing point) at the vapor pressure below lmmHg ( 133.32 Pa).
  • the solvent for dispersion is sublimated and evaporated in vacuum to dry the particles, so that the shrinkage due to drying is slight, and the structure and structure are not easily destroyed.
  • low-temperature drying is performed in a frozen state of a solid that does not move due to drying of liquid components such as water in the sample at high temperatures, so partial component concentration, partial component change, deformation There is almost no preferable.
  • the surface-treated silver-containing powder (silver or silver compound powder) is used. Then, a solvent or binder resin and a solvent are mixed, and silver or a silver compound powder is dispersed using an appropriate dispersing machine.
  • Solvents used in the production of the silver paste of the present invention are alcohols such as methanol, ethanol, n-propanol, benzyl alcohol, terpineol (Terpineol); acetone, methyl ethyl ketone, cyclohexanone, isophorone, Ketones such as cetylacetone; Amides such as N, N-dimethylformamide and N, N-dimethylacetamide; Ethers such as tetrahydrofuran, dioxane, methylcelesolve, diglyme and butylcarbitol; Acetic acid Esters such as methyl, ethyl acetate, jetyl carbonate, quinone (1-isopropyl-2,2-dimethyltrimethylenediisobutyrate), carbitol acetate, butyl carbitol acetate; sulfoxides and sulfones such as dimethyl sulfoxide, s
  • solvents are not limited to those listed here, but can be used alone or in admixture of two or more.
  • the silver or silver compound powder surface-treated by the method of the present invention may be used as a silver paste applied on a substrate in a state of being dispersed in the solvent, but further binding. It is preferable to add an agent resin to improve the dispersion stability of the silver or silver compound, and to improve the adhesion to the substrate and use it as a silver paste.
  • binder resin examples include acrylic resin and petital resin. Fatty, Polybulal Alcohol, Acetal, Phenolic, Urea Resin, Belleiliaacetate, Polyurethane, Polyester, Polyacetate, Epoxy, Melamine, Alkyd It is possible to use cocoa butter, nitrocellulose cocoa and natural rosin alone or in combination of two or more.
  • the amount of binder resin used is preferably in the range of 0.01 to 30 parts by mass per 100 parts by mass of the surface-treated silver-containing powder, and particularly preferably in the range of 0.01 to 10 parts by mass. .
  • the amount of solvent used varies depending on the coating method and printing method, and the amount used may be selected as appropriate.
  • the surface-treated silver-containing powder of the present invention is used as a raw material, a simple dispersion treatment such as stirring is performed using a solvent or a solvent and a binder resin when a silver paste is required. Only then can the silver paste be produced quickly. In other words, a good silver paste can be obtained by performing a simple stirring operation of the additive solvent or the additive solvent and the additive binder immediately before printing. Do not need. However, in order to perform the dispersion more reliably, the dispersion process may be performed using the following dispersion means.
  • Examples of dispersing means that can be used include two rolls, three rolls, a ball mill, a sand mill, a pebble mill, a tron mill, a sand grinder, a seg barrier striker, a high speed inverter disperser, a high speed stone mill, Examples thereof include a high-speed impact mill, an adader, a homogenizer, and an ultrasonic disperser. By using these, kneading and dispersing can be performed.
  • the silver paste which has been kneaded and dispersed, is generally printed as a paste-like composition on an insulating film or an insulating substrate by a commonly known application method or printing method, and this is heated.
  • a conductive circuit can be formed.
  • the silver paste of the present invention can form a coating by various coating methods.
  • known roll coating methods such as air doctor coat, blade coat, rod coat, extrusion coat, air knife coat, squeeze coat, impregnated coat, river slow coat coat, transfer roll coat coat
  • the coated product can be formed on the substrate by gravure coating, kiss coating, cast coating, spray coating or the like.
  • Various printing methods can also be applied.
  • the printing method also has an optimum viscosity area as in intaglio printing. There are those in a relatively low viscosity region and those in a high viscosity region such as screen printing.
  • the coating material can be printed in a predetermined size on the substrate using a stencil printing method, an intaglio printing method, a lithographic printing method, or the like.
  • Examples of the material of the substrate during coating or printing include polyethylene terephthalate film (PET film), polyimide film (PI film), and green sheet (inorganic substrate). Silver paste may be printed on these films in a predetermined pattern, and the printed material may be dried and then heat-cured.
  • PET film polyethylene terephthalate film
  • PI film polyimide film
  • green sheet inorganic substrate. Silver paste may be printed on these films in a predetermined pattern, and the printed material may be dried and then heat-cured.
  • the thickness of the printed material varies depending on the printing method.
  • the thickness of the printed material is preferably in the range of 1 to 30 m, particularly preferably 1 to 15 m.
  • the substrate may be pressed or calendered to such an extent that the substrate is not markedly deformed.
  • the coated material thus obtained is dried at, for example, about 160 ° C for about 5 minutes, and then the binder resin is cured by a heat treatment step of about 250 ° C. Thereby, conductive circuits for various electronic circuit boards are obtained.
  • the heat treatment reduces the silver oxide to silver as it is cured and is released along with the reduction reaction.
  • Oxygen can be used to oxidize the surrounding surfactant and rosin, and generate heat.
  • the silver particles in which the silver oxide has been reduced can be fused by a heat treatment at a lower temperature (for example, 160 to 200 ° C.) than when pure silver particles are used. Therefore, silver paste using acid silver particles or silver particles treated with acid silver can reduce the requirement for heat resistance of the substrate material during coating or printing, so PET, PI, and others It is particularly suitable for a substrate having a force such as plastic.
  • Fig. 2 shows a silver powder after surface treatment with a surfactant prepared using silver powder that is sintered at low temperature (silver powder with a small crystallite diameter), and silver powder that is subjected to silver oxide treatment at low temperature (silver oxide treatment).
  • DSC analysis differential thermal analysis
  • results of DSC analysis of the silver powder after the surface treatment of the present invention produced using silver oxide-treated silver powder show an endothermic peak indicating melting of the silver powder of 215 ° C. And an exothermic peak at 134 ° C. This exothermic peak is considered to be because the silver oxide of the silver powder was decomposed and oxygen was released, and the carbon component of the surface surfactant was oxidized and a heat generation reaction occurred.
  • the present invention will be described more specifically by way of examples. However, the present invention is not limited to the scope of these examples.
  • the measuring methods such as a physical property, are as follows.
  • Film thickness The film thickness was measured using a film thickness meter K402B (manufactured by Anritsu).
  • volume resistivity was measured with a low resistivity meter Lorester EP (manufactured by Mitsubishi Chemical Corporation) using a four-terminal measurement method. The volume resistivity was determined from the film thickness of the conductive film of the test piece. The volume resistivity was expressed by, for example, a method of describing 8.8 ⁇ 10 ⁇ 6 ⁇ ′cm as “8.8E ⁇ 06 ⁇ ′cm”.
  • surfactants A and B used in this example are as follows.
  • a surfactant Disperbyk-111 (produced by Big Chemie Co., Ltd.) having a phosphoric acid monoester having a P (phosphorus) content value of 2.7 mass% as a main component and a weight average molecular weight of 2800
  • the surfactant was neutralized with potassium hydroxide in such an amount that the acid component was completely neutralized to prepare a 10% by mass surfactant aqueous solution.
  • a surfactant having a P (phosphorus) content value of 4.4 mass% and having a weight average molecular weight of 1750 and HLB of 12 is used.
  • This silver powder dispersion (al) was transferred to a flat tray having a bottom dimension of 200 mmL x 150 mmW, pre-lyophilized, and then freeze-dried.
  • a freeze vacuum dryer “DFM-05AS” manufactured by Nippon Vacuum Co., Ltd. was used.
  • Pre-frozen silver powder dispersion (al) is placed on a shelf that has been cooled to about 40 ° C in advance, and the degree of vacuum is 7 ⁇ : After freeze-drying for 20 hours at LOPa, the surface of the silver powder as a bulky sponge-like dried product 50 g of a processed product (bl) was obtained.
  • the particle size distribution of the silver particles at this time is shown in Fig. 3 on a volume basis.
  • the volume average particle size was 0.6 m.
  • the silver paste was stable without causing viscosity increase or aggregation with time.
  • a 50 mm x 80 mm size printing pattern was formed on the PI film with a line width of 50 m to obtain a screen-printed coating film with a thickness of 10 m.
  • the printed coating was dried at 150 ° C for 5 minutes. After that, it was baked in an oven at 160 ° C and 250 ° C for 60 minutes, and when the state of printing was observed with a microscope, a good conductive circuit pattern without defects was formed. Further, a solid print having a thickness of 50 m was printed, and the volume resistance of the dried coating film after drying and firing was measured in the same manner.
  • volume resistances after placing in an oven at 160 ° C and 250 ° C for 60 minutes showed 2.9 ⁇ -03 ⁇ 'cm and 6.7E-06 ⁇ 'cm, respectively.
  • volume resistance of the dried coating film in the oven decreased with time. Volume resistance when the oven temperature is 250 ° C Figure 4 shows the decrease.
  • Example 1 Except that the surfactant in Example 1 was changed to Surfactant B, 105 g of the silver powder dispersion (a2) and 50 g of the surface treated product of silver powder (b2) were obtained in the same manner as in Example 1. It was. The average volume particle size of this surface-treated product was 0. The same particle size distribution as in Example 1 was exhibited. Next, 58.3 g of silver paste B-2 was obtained in the same manner as in Example 1. The silver paste was stable without causing viscosity increase or aggregation with time. A printed film was obtained in the same manner as in Example 1 by screen printing using a mask film on which a printed pattern of a conductive circuit having a line width of 50 m was formed.
  • Example 1 solid printing with a film thickness of 50 m was performed, and after drying, the volume resistance after placing in an oven at 160 ° C and 250 ° C for 60 minutes was measured. 02 ⁇ 'cm and 1.5E—05 ⁇ ' cm.
  • Example 2 In the same manner as in Example 2, except that the silver powder FHD in Example 2 was changed to silver powder AgC-G manufactured by Fukuda Metal Foil Powder Co., Ltd. 105 g of the silver powder dispersion (a3) and the surface treatment of the silver powder 50 g of product (b3) was obtained. The volume average particle size of the silver particles at this time was 0.2 m, indicating a narrow particle size distribution.
  • Example 2 58.3 g of silver paste B-3 was obtained in the same manner as in Example 1.
  • the silver paste was stable without causing a viscosity increase or aggregation with time.
  • a printed film was obtained by screen printing using a mask film on which a printing pattern was formed in the same manner as in Example 1. Further, as in Example 1, solid printing with a film thickness of 50 m was performed, and after drying, the volume resistance after placing in a 160 ° C and 250 ° C oven for 60 minutes was measured. 5E—05 ⁇ 'cm, 2. 5E—05 ⁇ ' cm.
  • the silver powder FHD in Example 2 was changed to silver powder Ag O'FHD whose surface was treated with 10% acid silver.
  • Example 2 In the same manner as in Example 2, 105 g of a silver oxide-treated silver powder dispersion (a4) and 50 g of a silver oxide-treated silver powder surface-treated product (b4) were obtained in the same manner as in Example 2. The particle size distribution of the silver particles at this time is shown in Fig. 5 on a volume basis. The volume average particle size was 0.7 m, indicating a narrow particle size distribution. Next, 58.3 g of silver paste B-4 was obtained in the same manner as in Example 1. The silver paste was stable without causing a viscosity increase over time. A printed film was obtained by screen printing using a mask film in which a printed pattern was formed in the same manner as in Example 1.
  • Example 2 a solid printing with a film thickness of 50 m was carried out in the same manner as in Example 1, and the printed coating film was dried at 150 ° C. for 5 minutes. Thereafter, the volume resistance of the dried coating film in an oven at 160 ° C. and 250 ° C. was measured. After drying, the volume resistance after placing in an oven at 160 ° C and 250 ° C for 60 minutes showed 9.8 cm—05 ⁇ 'cm and 1.5E—05 ⁇ 'cm, respectively.
  • the rectangular printed coating film was dried at 150 ° C for 5 minutes. After drying, the volume resistivity after being placed in an oven at 160 ° C and 250 ° C for 60 minutes showed 3.7 ⁇ -05 ⁇ cm and 7.5E-06 ⁇ 'cm, respectively. . In the oven, the volume resistivity of the dried coating decreases with time. Figure 8 shows the decrease in volume resistivity when the oven temperature is 160 ° C and 250 ° C.
  • a6 a silver powder dispersion
  • b6 a surface-treated silver powder
  • Example 2 In the same manner as in Example 1, except that 0.5 g of NO, Itenol NF 13 (Daiichi Kogyo Seiyaku Co., Ltd.) was used as a high-purity emulsifying dispersant in place of the surfactant in Example 1. As a result, 105 g of the silver powder dispersion (a6) and 50 g of the surface treated silver powder (b6) were obtained. This surface treatment The volume average particle size of the product was 1.5 ⁇ m, and the particle size distribution was such that the maximum particle size was 35 ⁇ m. Next, screen printing was performed using a mask film in which a print pattern was formed using silver paste B6 produced in the same manner as in Example 1. As a result, clogging occurred in a part of the mask, and it was impossible to print fine lines.
  • a silver powder was prepared in the same manner as in Example 1 except that 0.5 g of Boise 520 (manufactured by Kao Corporation) was used as a special carboxylic acid type polymer surfactant in place of the surfactant in Example 1. 105 g of the dispersion liquid (a7) and 50 g of the surface-treated silver powder (b7) were obtained. This surface-treated product had a volume average particle size of 0.9 ⁇ m and a particle size distribution with a maximum particle size of 24 ⁇ m. Next, screen printing was performed using a mask film in which a print pattern was formed using silver paste B7 produced in the same manner as in Example 1. As a result, clogging occurred in a part of the mask, and it was difficult to print fine lines.
  • Boise 520 manufactured by Kao Corporation
  • Table 1 summarizes the values of volume resistivity, screen printing accuracy, and screen printing suitability when baked at 1 60 ° C and 250 ° C for 60 minutes.
  • ⁇ and X were judged based on whether or not a conductive circuit pattern with a line width of 50 ⁇ m could be printed with screen printing.
  • ⁇ and X were judged based on whether printing was possible without clogging by screen printing using a 400 mesh screen with a wire diameter of 18 / zm.
  • fine-sized silver or silver-containing compound particles are well dispersed, and a conductive circuit having a good conductivity with a narrow line width is formed in which physical properties such as increase in viscosity are not changed over time. Since a possible silver paste can be provided, it is industrially useful.

Abstract

 本発明の表面処理された銀含有粉末の製造方法は、銀または銀化合物の粒子aが、アルキルアミン系もしくはアルキルアミン塩系、またはリン含有率が0.5~10質量%であるリン酸エステル系の界面活性剤bとともに溶剤中に分散してなる分散液を真空凍結乾燥させることにより、前記界面活性剤bを銀または銀化合物の粒子aの表面に吸着させ、界面活性剤bにより表面処理された銀含有粉末cを製造する。また、本発明の銀ペーストは、前記表面処理された銀含有粉末cを、溶剤、または溶剤及び樹脂中に分散させることにより、製造される。

Description

明 細 書
表面処理された銀含有粉末の製造方法、及び表面処理された銀含有粉 末を用いた銀ペースト
技術分野
[0001] 本発明は、電子機器などに用いられるプリント配線に利用でき、導電性、印刷精度 に優れた銀ペーストに用いられる表面処理された銀含有粉末の製造方法に関する。 更に詳しくは導電性粉末成分として前記表面処理された銀含有粉末を含有する銀 ペーストに関する。
なお、本発明において、「表面処理された銀含有粉末」とは、「表面処理された銀粉 末」及び「表面処理された銀化合物粉末」を包括して言うものである。
背景技術
[0002] 導電性ペーストは固形分に導電性微粒子を含有するペーストであり、一般に、導電 性粒子としては空気中で酸ィ匕しない金、白金、銀、パラジウムなどの金属が用いられ ている。導電性ペーストには、従来より、大きく分けて、(1)銀粒子同士の融着により 良好な導電性を実現できるが、基材がセラミック等に限られる高温焼成型導電性べ 一ストと、(2)ガラス、エポキシ製プリント基板力もフィルムにまで広く適用できるが、バ インダー硬化時の熱収縮による金属粒子同士の接触により導通を得るために、電気 抵抗が比較的高!、ポリマー型導電性ペーストがある。
ポリマー型導電性ペーストを用いて、例えばフレキシブルなプリント基板用支持体 上に導電回路を形成する場合には、前記ポリマー型導電ペーストをポリエチレンテレ フタレート、ポリイミドなどのプラスチックフィルム上にスクリーン印刷等を利用して導電 回路パターン形成し、形成されたパターン塗膜中のバインダーを加熱硬化して導電 性、耐久性を向上させ、かつフィルム上への接着性を確保している。
[0003] 特に銀または銀ィ匕合物を用いたポリマー型導電性ペーストは、安定した導電性を 実現し易ぐまた熱伝導特性も良好なため、電子部品内部または電子部品間の種々 の配線、電子回路パターンの形成に用いられている。
導電回路用パターンの印刷工程においては、回路の微細化に伴い印刷精度をで きるだけ上げることが要求されている力 その精度は導電性粒子の平均粒子径によ つて制限される。このため良好な印刷精度を得るためには、導電性ペースト中の導電 性粒子が 1次粒子にまで分散し、さらに該 1次粒子が榭脂等により完全に被覆された 状態、すなわち高分散化された状態にあることが求められる。
もし高分散化した 1次粒子の周囲にある榭脂等の被覆が不十分であると、粒子は粒 径が細力べなるほど活性が増すため、該導電性ペースト中の粒子が凝集したり、経時 的に粘度が上昇しやすぐ極端な場合はゲルイ匕することもあった。
[0004] このように、微細な配線パターンが精度良く安定して形成されるためには、導電性 粒子が 1次粒子にまで安定分散された上で各粒子が榭脂被覆される必要がある。一 方で導電性粒子の周囲の榭脂被覆が厚すぎると、粒子間に残存した榭脂成分が粒 子間の電気伝導を阻害するため良好な伝導度が得られなくなる傾向があり、使用す る導電性粒子の粒径力 、さくなればなるほどその傾向は顕著となる。
従って、分散に使用され、導電性粒子の表面を被覆する榭脂量は必要最低限が好 ましぐより少ない榭脂量で、導電性粒子の分散性、導電性ペーストの基体への付着 性や成膜性が良好となることが好ましい。
[0005] 従来、導電性粒子を榭脂中に分散してペーストを作製するにあたり、その分散性を 向上させるため、高級脂肪酸のエチレンォキシド、又はプロピレンォキシド付加エス テル化合物、ソルビタンと脂肪酸のエステル化合物、ソルビタン等の多価アルコール のエチレンォキシド、又はプロピレンォキシド付カ卩エーテル化合物、アルキルべンゼ ンのエチレンォキシド、又はプロピレンォキシド付加物等の非イオン性分散剤、アル キルベンゼンスルフォン酸アルカリ塩、高級アルコール硫酸エステルアルカリ塩、リン 酸エステル化合物、高級脂肪酸、高級脂肪酸のエチレンォキシド、又はプロピレンォ キシド付加物のサルフアートアルカリ塩等のァ-オン系分散剤、 4級アンモ-ゥム塩タ イブ等のカチオン系分散剤など、様々な分散剤が用いられて 、る。
[0006] しかし、これら分散剤を使用しても、従来の例えば、分散機や混練機を用いて榭脂 中に導電性粒子を分散させる方法では、導電性粒子の分散性を充分に向上させ、 かつ導電性ペーストの導電性を良好に保つことができな力つた。
特に、導電性粒子として銀粒子を用いた銀ペーストの場合、銀粒子の真比重が 10 . 5であり、銀粒子が沈降しやすく再凝集性が大きいため、長期保存後の利用に際し て再分散工程に手間と時間が必要となる問題があった。従って、長期保存安定性と ともに良好な再分散性が求められていた。
[0007] このような課題に対して、例えば有機ビヒクルとアルキル基を含むスルホコハク酸塩 力もなるァ-オン性界面活性剤を用いることによって、良好な分散性と経時安定性を 得る試みが行われている(特許文献 1参照)。しかし、特許文献 1に記載された方法を 用いただけでは、沈降した粒子の再分散性を向上させるには不充分であった。さらに 導電回路の線幅が狭い場合、精度良く配線パターンを印刷するには不十分であった また分散に使用される榭脂量についても必要最低限にまで減少させてはおらず、 導電性の点でも不十分であった。
[0008] 一方、金属粒子を用いた分散液の製造においては、真空凍結乾燥法が用いられ ており、例えば電解コンデンサ用陽極素子を作製するためのタンタル粉塗料の製造 にお ヽて、タンタル粉と分散剤を溶剤中に混合し真空凍結乾燥を行ってタンタル粒 子の表面に分散剤を吸着させる方法が知られている(特許文献 2参照)。
しかし、同じ金属分散液であっても、用途も求められる特性も大きく異なる導電性べ 一ストの製造に真空凍結乾燥を適用した例は無ぐ分散性と導電性の関係について も示唆されては ヽな ヽ。ましてや良好な導電性を発現させるための分散剤の選択に っ ヽても全く開示されて 、な 、。
以上のように、従来のポリマー型導電性ペーストの特性を充分に引き出すためには 、最適な分散方法の適用とともに該分散方法にあった分散剤の選定が重要であって 、良好な導電性ペーストの導電性を実現する分散剤、分散方法が求められていた。
[0009] 特に、近年、導電性ペーストより形成される導電回路の電気抵抗を下げるため、銀 粒子の粒子径を非常に微細化したり、粒子状の酸化銀や三級脂肪酸銀を含む粒子 状銀ィ匕合物を用いたりして、低温焼成を可能とした銀ペーストを用いることが検討さ れている。この低温焼成型の銀ペーストにおいては、微粒子化された銀粒子の場合 は、 300°C以下の加熱によって隣接する粒子同士が融着し、導電回路の電気抵抗を 低下させる。また粒子状銀ィ匕合物の場合は、 300°C以下の加熱、あるいは還元剤の 存在下での加熱によって銀化合物が還元されて金属銀となり、隣接する銀粒子同士 が融着して導電回路の電気抵抗を低下させる (例えば、特許文献 3参照)。
[0010] 従来、ポリマー型導電性ペーストは、アクリル榭脂、エポキシ榭脂、ポリウレタン榭脂 、ポリエステル榭脂などカゝらなるバインダ、有機溶剤、硬化剤、触媒などを添加し、球 状またはフレーク状の導電性粒子を分散、混合したものであって、導電性はバインダ 一が硬化する際の硬化収縮による導電性粒子同士の接触により得られるものであつ た。このため、電気抵抗は比較的高いものになり、また、温度変化等により硬化榭脂 の凝集力が変化するため、それに伴って、ポリマー型導電性ペーストを用いて形成さ れた導電回路などの電気抵抗が変動しやす 、と 、う欠点を有するものであった。
[0011] 前記低温焼成型の銀ペーストはこれら欠点を補うものであって、この銀ペーストを用 V、ることにより、 PET等のブラスティックフィルム上にも導電性の良好な導電回路を形 成することができる。
しかし、低温焼成型の銀ペーストに用いられる微粒子化されたサブミクロン以下の 銀微粒子や粒子状銀化合物は、反応性が高ぐいずれも乾燥した粉末状態での扱 いが難しい。特に粒子状銀ィ匕合物は、還元反応の速度が非常に速いため、水あるい は還元性が低 ヽ溶媒などの溶液中で保存せねばならな力つた。特に分散溶媒にァ ルコール系溶剤等を用いると、銀ペーストの分散中に還元が進んでしまい、分散とは 逆に銀粒子間の融着が生じる場合がある。このためこれら銀および銀ィ匕合物の粒子 を一次粒子にまで分散して各粒子表面を被覆、安定ィ匕することがより一層求められ ている。
さらに、これら銀ペーストにおいて本来の高い電気伝導度を得るためには、銀ぺー スト中の銀粒子が銀の高い含有量を維持しつつ良好に分散する必要があり、加えて 必要最低限の榭脂により前記安定化を行い、粒子表面の被覆膜厚を可能な限り薄く して、低温焼成によって隣接する粒子同士を融着しやすくする必要がある。銀及び 銀化合物の粒子表面に形成された被膜が厚すぎると、隣接する粒子同士が融着し 難くなり、銀または銀ィ匕合物の充填度も低下するため、低温焼成でも良好な導電性 を与えるこれら低温焼成型の銀ペーストの本来の長所が発揮されなくなってしまう。 このため、これら低温焼成型の銀ペーストに対しては、個々の銀または銀ィ匕合物の 粒子の被覆による安定ィヒと、分散性の向上と、低温焼成による導電性の向上とを同 時に満たす分散剤の選定、製造方法がより一層重要であった。
特許文献 1 :特開 2000— 231828号公報
特許文献 2:特開 2004 - 006502号公報
特許文献 3:特開 2003 - 309337号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明の目的は、微小粒径の銀または銀ィ匕合物の粒子が良好に分散され、粘度 上昇等の物性の経時的変化がなぐ線幅の狭い導電性の良好な導電回路を形成可 能な銀ペーストを提供することである。
さらに本発明の目的は、該銀ペーストの製造に欠かせない表面処理を施した銀含 有粉末の製造方法を提供することである。
さらに本発明の目的は、焼結可能温度の低い銀または銀ィ匕合物の粒子を用いるこ とにより低温焼成可能でかつ焼成後に高い導電性を有する塗膜が形成可能な銀べ 一ストを提供することである。
課題を解決するための手段
[0013] 本発明は、銀または銀ィ匕合物の粒子力 アルキルアミン系もしくはアルキルアミン塩 系界面活性剤、またはリン含有率が 0. 5〜 10質量%であるリン酸エステル系界面活 性剤とともに分散用溶剤中に分散した分散液を真空凍結乾燥させる乾燥工程を有 することを特徴とする表面処理された銀含有粉末の製造方法を提供する。
さらに本発明は、前記表面処理された銀含有粉末と榭脂とを含有する銀ペーストを 提供する。
発明の効果
[0014] 本発明の表面処理された銀含有粉末の製造方法を用いることにより、銀または銀 化合物の粒子は微細粒子となって分散され、銀または銀化合物の各粒子の表面に 界面活性剤が吸着されて、該粒子表面は良好に被覆される。
通常、比重の大きい銀のような金属の粒子は、通常の処理方法では、沈降し易ぐ 分散機内で濃度分布が発生し易いため、一様な処理を行いにくいが、本発明の方 法を用いて、界面活性剤を含有する溶剤中で分散後、真空凍結乾燥を行うことにより 、より一様な処理条件で銀または銀ィ匕合物の粒子表面を処理することができる。 さらに、本発明においては、アルキルアミン系もしくはアルキルアミン塩系の界面活 性剤、またはリン含有率が 0. 5〜10質量%であるリン酸エステル系の界面活性剤を 用いて表面処理を行うので、当該界面活性剤が極めて良好に銀および銀ィ匕合物の 粒子表面に吸着し、分散性が向上する。
[0015] このような粒子の表面が界面活性剤で処理された銀含有粉末を用いると、溶剤もし くは榭脂と溶剤を加えた混合撹拌あるいは簡単な分散操作のみで広範囲の粘度の 銀ペーストが作製可能である。し力も銀または銀ィ匕合物からなる粒子の表面が既に 界面活性剤で表面処理されているため、銀または銀ィ匕合物力 なる粒子を銀ペース ト中に良好に分散させることができる。また、分散剤としての榭脂の添加量を、未処理 の金属粒子を分散させるときに比べて少量に抑えることができる。また、粒子表面の 榭脂被覆量を増加させないため、導電性ペーストを形成したときの導電性を低下さ せることがない。また、結果的に銀または銀ィ匕合物の粒子の配合比率を向上させるこ とが出来るので導電性の向上にも効果的である。また、銀または銀ィ匕合物の粒子が 結着剤榭脂とともに溶剤中に良好に微分散するため、特性の優れた銀ペーストを作 製することができる。
[0016] ペースト粘度が使用分散機で規定されてしまう従来方法では、分散終了後のベー スト粘度をそれぞれの印刷方法に合わせた最適粘度に再調整を行うのが常である。 例えばスクリーン印刷法に最適な高粘度に設定するために、分散後のペーストの溶 剤を揮散させるなどして溶剤量を少なくしなければならないこともあった。
しかし、アルキルアミン系ゃリン酸エステル系などの界面活性剤を用いて上記のよう な銀粒子の表面処理を行うと、ペースト形成用の溶剤及び樹脂と混合、撹拌させるだ けでペーストを形成することができる。その結果、導電回路の作製に用いる印刷手段 に最も適した銀粉含有量と粘度を有する銀ペーストを容易に作製することができる。 本発明の銀ペーストは、ペースト製造後の放置期間が長くとも容易に撹拌程度の 再分散で安定するため、長期の保存が可能である。また、本発明の製造方法で製造 された表面処理された銀含有粉末の状態で保存しておき、必要に応じて必要量のみ の銀ペーストを作製することもできる。
図面の簡単な説明
[0017] [図 1]本発明にかかる界面活性剤による銀粉末の表面処理方法を模式的に説明する 説明図である。
[図 2]本発明にかかる表面処理後の銀粉末の DSC分析の測定結果の一例を表す図 である。
[図 3]実施例 1及び比較例 1で作製した表面処理後の銀粉末の粒度分布を体積基準 で示した図である。
[図 4]実施例 1及び比較例 1で作製した導電性ペーストによる乾燥塗膜の抵抗率を、
250°Cにおける焼成時間を変化させて測定した結果を表す図である。
[図 5]実施例 4で作製した表面処理後の銀粉末の粒度分布を体積基準で示した図で ある。
[図 6]実施例 5で作製した表面処理後の銀粉末の粒度分布を示す図である。
[図 7]実施例 5で製造した銀ペーストを用いて、スクリーン印刷により作製した細線パ ターンのプロフィールを表す図である。
[図 8]実施例 5の銀ペーストで作製した細線パターンを 160°Cまたは 250°Cで焼成し た時の、加熱時間(焼成時間)と、細線パターンの体積抵抗率との関係を示す図であ る。
符号の説明
[0018] a…銀または銀ィ匕合物の粉末 (粒子)、 b…界面活性剤 (分子)、 c…表面処理された 銀含有粉末 (粒子)
発明を実施するための最良の形態
[0019] 以下本発明をさらに詳細に説明する。なお本発明において、「銀または銀ィ匕合物の 粒子の焼結」とは、銀または銀化合物の粒子を含有する物質 (例えば粉末やペースト )を加熱することにより、銀または銀ィ匕合物の粒子同士を溶融し融着させることをいう 。また「銀ペーストの焼成」とは、銀ペーストを加熱して含有榭脂を硬化'収縮させるこ とによって、隣接する銀または銀ィ匕合物の粒子同士を接触させあるいは接触した部 分を融着させることをいう。また「分散」とは、連続相の中に他の相が微粒子状になつ て散在する現象をいう。
[0020] 本発明によって銀または銀化合物の粒子を表面処理した銀含有粉末を用いること により、分散性に優れかつ導電性の良好な銀ペーストを製造することができる。特に 、焼結温度の低い銀または銀ィ匕合物の粒子、例えば超微細な微小粒径の銀または 銀化合物の粒子、結晶性の低い (結晶子径の小さな)銀または銀ィ匕合物の粒子、酸 化銀処理した銀粒子を適用した場合には、従来の高温焼成型の導電性ペーストより はるかに低温で焼成可能で (焼成可能温度が低く)、かつ焼成後に良好な導電性を 有する配線パターンを形成することが可能な銀ペーストを得ることができる。
[0021] 本発明で使用する銀粒子としては、純銀粒子、銀で表面被覆された金属粒子、ま たはこれらの混合物を用いることができる。銀粒子としては、粒子形状が、球状、鱗片 状、針状、樹枝状など任意の形状のものを用いることができる。銀粒子の製造方法も 特に制限されず、機械的粉砕法、還元法、電解法、気相法など任意である。銀で表 面被覆された金属粒子は、銀以外の金属力もなる粒子の表面に、めっきなどの方法 により銀の被覆層を形成したものである。例えば、銅粒子の表面を銀で被覆したもの などが市販されている。銀粒子としては、導電性とコスト面力も見て、銀のみからなる 球状銀粒子及び鱗片状銀粒子が好まし!/ヽ。
球状銀粒子の体積平均粒径は、好ましくは 0. 05〜10 /ζ πι、より好ましくは 0. 05〜 5 μ m程度である。鱗片状銀粒子の場合は、鱗片の面の長径が 0. 05-100 μ mの 範囲が好ましい。
銀粒子として、体積平均粒径が異なる大小 2種類またはそれ以上の粒子を組み合 わせて、銀粒子の充填密度を向上させることにより、導電性膜の導電性を向上させて ちょい。
[0022] 銀ィ匕合物粒子としては、酸化銀や、脂肪族カルボン酸銀、脂環式カルボン酸銀、芳 香族カルボン酸銀等の含銀有機化合物の粒子等を使用することができる。これらの 銀化合物粒子 (粒子状銀化合物)は、工業生産されたものを用いることができるほか 、銀ィ匕合物を含む水溶液からの反応によって得られたものを用いてもよい。特に、平 均粒径が 0. 5 m以下の銀ィ匕合物粒子を用いると還元反応の速度が速くなり好まし い。平均粒径が 0. 5 m以下の銀化合物粒子は、銀化合物と他の化合物との反応 によって生成したもの、例えば硝酸銀水溶液に水酸ィ匕ナトリウムなどのアルカリ水溶 液を撹拌下に滴下し、反応させて酸ィ匕銀粒子を得る方法によって製造することがで きる。
[0023] 本発明の製造方法においては、銀ペーストを作製したときに、該銀ペーストの加熱 によって銀粒子が融着する焼成温度を 300°C以下にし得る銀または銀ィ匕合物の粒 子を用いることが好まし 、。焼成温度がこのように低 、低温焼成型の銀ペーストは、 例えばポリイミドフィルムや PETフィルム上に形成された配線パターンをそのまま焼成 することが可能となる。一般に導電性ペースト中に導電性粒子が微細に分散されて いればされているほど、導電性ペーストの熱容量が低下して、導電性ペーストの焼成 温度が導電性粒子自体の固有の焼結温度に近くなる。さらに導電性粒子が微細に 分散されるに従ってその充填密度が向上するため、一般に高分散であるほど焼成後 の導電'性が良好となる。
[0024] しかも、本発明の製造方法による表面処理された銀含有粉末を用いた銀ペースト は、榭脂成分を低減でき、銀または銀ィ匕合物の粒子を被覆する榭脂の膜厚が薄いた め、焼成後に隣接する銀または銀ィ匕合物の粒子同士が容易に融合しやすい。このた め、界面活性剤による表面処理に供される銀または銀ィ匕合物の粒子として、焼結温 度が 300°C以下の低温焼結タイプの銀または銀ィ匕合物の粒子を用いると、界面活性 剤による表面処理の後においても、その本来の低温焼結性を充分に発揮させて低 温焼成型の銀ペーストを得ることができ、また銀ペーストとして焼成後に導電性の良 好な配線パターンを得ることができる。
[0025] 焼結温度の低い銀粒子としては、体積平均粒径が 0. 05〜10 mの銀粒子を用い ることができる。銀粒子の体積平均粒径は 0. 05〜5 /ζ πιのものを使用することが一 層好ましい。本発明にかかる表面処理方法では、液相中で銀粒子または銀ィ匕合物 粒子を製造した場合に、これら体積平均粒径が小さく活性の高い粒子を効果的に表 面処理することができ、し力も、それら粒子が製造されたときの液相中に分散したまま の状態で、界面活性剤の存在下で銀または銀ィ匕合物の粒子を表面処理することが できる。そのため、処理が容易であり、これら焼結温度の低い粒子本来の特性を充分 に発揮させることができる。銀の微粒子の製造方法としては例えば、ガス中蒸発法( 特開平 3— 34211号公報)や、還元にァミン化合物を用いる還元析出法 (特開平 11 — 319538号公報)力ある。
[0026] さらに、焼結温度の低い銀粒子としては、結晶化度の低い銀粒子を用いることがで きる。銀粒子の結晶化度が低いと通常結晶子径は小さくなる。そのため、結晶子径を 小さくすることで、銀粒子間の融着温度 (焼結温度)を著しく低下させることができる。 銀ペーストの焼成可能温度を 300°C以下に低下させるには、結晶子径は 0. l〜20n mとすることが好ましぐ 0. 1〜: LOnmとすることが一層好ましい。
[0027] また、焼結温度の低!、銀または銀ィ匕合物の粒子として、粒子の一部が酸ィ匕銀処理 された銀粒子を用いることができる。酸化銀処理された銀粒子は、銀粒子の表面の 部分的な酸化処理により銀粒子の表面を銀から酸化銀へと酸化する方法のほか、銀 粒子の表面上に酸ィ匕銀の層を被覆形成する方法などによって得ることができる。
[0028] 銀粒子表面の酸化処理により、粒子表面の銀は酸化第 1銀、酸化第 2銀、などに酸 ィ匕される。粒子表面が酸ィ匕銀で被覆された銀粒子において、粒子表面の酸化銀は、 酸化第 1銀、酸化第 2銀、などが混合した状態にあってもよい。これら粒子表面が酸 化銀で被覆された銀粒子は、還元剤不存在下または還元剤存在下の還元反応で表 層の酸化銀が銀となり、低温度で隣接する粒子同士が融着する。表面が酸化銀処理 された銀粒子は、還元反応条件;加熱温度、還元剤の有無、還元剤の還元力などに 応じて、組成、形状の異なったものを適宜選択することができる。酸化銀処理された 銀粒子の体積平均粒径は、好ましくは 0. 05〜10 111、ょり好ましくは0. 05〜5 /ζ πι 程度である。特に、平均粒径が 0. 05〜0. 5 mの粒子を用いると還元反応の速度 が速くなり好ましい。
[0029] 酸化銀で表面処理された銀粒子を用いると、酸ィ匕銀力 銀への還元に伴って放出 された酸素により粒子の周囲の有機物が酸化され、発熱が得られるため、銀粉及び 銀ペーストの見掛けの焼成温度を下げる効果が得られる。そこで、酸化銀で表面処 理された銀粒子の酸化銀含有率は 1質量%以上 (銀含有率 99質量%以下)が好ま しぐ酸化銀含有率は 5質量%以上 (銀含有率 95質量%以下)が特に好ましい。また 、銀粒子の融着を容易にする観点からは、粒子の内部に一定量の金属銀を有するこ とが望ましぐ酸化銀含有率は 30質量%以下 (銀含有率は 70質量%以上)が好まし ぐ酸化銀含有率は 20質量%以下 (銀含有率 80質量%以上)が特に好ましい。酸化 銀で表面処理された銀粒子の酸化銀含有率の好ましい範囲は 1〜30質量%、より好 ましい範囲は 5〜20質量%である。
[0030] これらの酸ィ匕銀処理された銀粒子に対して、本発明に力かる真空凍結乾燥を特徴 とする表面処理方法を適用することによって、良好な導電性を有する焼成温度の低 い銀ペーストを製造出来ることに加え、乾燥時には非常に還元しやすい性質を持つ これら粒子を安定に保存できる。また、銀ペースト中でも銀粒子が微細な粒子(1次 粒子)で安定に分散されているので、還元時における粒子同士の融着で不要な凝集 体が発生することを防止でき、精細印刷上の問題が発生することがない。
[0031] (界面活性剤)
本発明において、銀または銀ィ匕合物の粒子の表面処理に使用する界面活性剤とし ては、アルキルアミン系もしくはアルキルアミン塩系の界面活性剤、及びリン含有率が 0. 5〜: LO質量%であるリン酸エステル系の界面活性剤が挙げられる。
[0032] (アルキルァミンおよびアルキルアミン塩の界面活性剤)
本発明で使用される界面活性剤としては、アルキルァミンおよびアルキルアミン塩 を好適に用いることができる。アルキルアミン系の非イオン性界面活性剤、およびァ ルキルアミン塩系の陽イオン性界面活性剤はそれぞれ単独で使用しても有効である 力 特に併用することによって分散性がより良好となり効果が顕著である。
アルキルアミン系の界面活性剤としてはポリオキシアルキレンアルキルアミン型の界 面活性剤が好ましぐポリオキシエチレンアルキルアミン型の界面活性剤がさらに好 ま 、。中でも以下の一般式(1)を有するものがさらに好ま 、。
[0033] [化 1]
Figure imgf000013_0001
[0034] (a, bはそれぞれ 1〜20の整数であり、 Rは炭素数 8〜20のアルキル基またはアルキ ルァリール基を表す。 ) 一方アルキルアミン塩系の界面活性剤としては、アルキルァミンの酢酸塩が好まし く、中でも以下の一般式(2)を有するものがさらに好ま 、。
[0035] [化 2]
(R- NH3 +XCH3CO〇-) (2)
[0036] (Rは炭素数 8〜20のアルキル基またはアルキルァリール基を表す。)
[0037] 一般式(1)及び一般式(2)において、炭素数 8〜20のアルキル基としては、直鎖ァ ルキル基でも分枝アルキル基でもよぐ例えばォクチル基、ノニル基、デシル基、ゥン デシル基、ドデシル基、ラウリル基、テトラデシル基、ミリスチル基、へキサデシル基、 セチル基、ォクタデシル基、ステアリル基、エイコシル基などが挙げられる。炭素数 8 〜20のアルキルァリール基としては、例えばォクチルフエ-ル基、ノユルフェ-ル基、 ドデシルフヱ-ル基などのアルキルフ -ル基が挙げられる。アルキルァリール基の アルキル部分は、直鎖アルキル基でも分枝アルキル基でもよ!/、。
[0038] アルキルアミン系界面活性剤およびアルキルアミン塩系である陽イオン性界面活性 剤を単独、または混合して使用するときの、銀または銀化合物の粒子に対する界面 活性剤の全配合量は、銀または銀ィ匕合物の粒子の種類により適宜調整する必要が あるが、例えば銀または銀ィ匕合物の粒子 100質量部に対して 0. 01〜3. 00質量部 が好ましぐ 0. 05〜: L 50質量部が更に好ましい。界面活性剤の全配合量が 0. 01 質量部以上であると、充分な分散性が得易くなる傾向がある。一方、 3. 00質量部以 下であると、銀または銀ィ匕合物の粒子の表面が薄く界面活性剤の有機成分に被覆さ れ、乾燥後の粒子同士の接触が得易くなり、導電性が向上する傾向がある。
アルキルアミン系の界面活性剤とアルキルアミン塩系である陽イオン性界面活性剤 とを併用する場合は、アルキルアミン系とアルキルアミン塩系との混合比率は 1: 20〜 1 : 5の範囲が好ましい。
[0039] (リン酸エステル系界面活性剤)
本発明にお ヽて使用されるリン酸エステル系界面活性剤は、リン酸モノエステルあ るいはリン酸ジエステル等を主成分とする界面活性剤であり、リン含有率が 0. 5〜10 質量%であるものを用いる。リン酸エステル系界面活性剤は、ポリオキシアルキレンァ ルキルエーテルのリン酸エステルであることが好ましぐ以下の一般式(3)
[0040] [化 3]
[R- 0- (G2H40)n]3— P=0
I (3)
(0H)X
[0041] (一般式(3)中、 Rは炭素数 1〜20のアルキルまたはアルキルァリール基を表し、 n は 1〜20の整数、 Xは 1または 2の整数)で表される化学構造を有することがさらに好 ましい。
[0042] 式(3)にお 、て、炭素数 1〜20のアルキル基としては、直鎖アルキル基でも分枝ァ ルキル基でもよぐ例えばメチル基、ェチル基、プロピル基、イソプロピル基、ブチル 基、ペンチル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ゥンデ シル基、ドデシル基、ラウリル基、テトラデシル基、ミリスチル基、へキサデシル基、セ チル基、ォクタデシル基、ステアリル基、エイコシル基などが挙げられる。炭素数 20 以下のアルキルァリール基としては、例えばォクチルフエ-ル基、ノユルフェ-ル基、 ドデシルフヱ-ル基などのアルキルフ -ル基が挙げられる。アルキルァリール基の アルキル部分は、直鎖アルキル基でも分枝アルキル基でもよ!/、。
[0043] なお Rの炭素数は 1〜10、 nは 1〜10、ならびに、 Rの炭素数と nの和が 7〜15であ ることが好ましい。リン酸エステル系界面活性剤の重量平均分子量は、 100〜1万で あることが好ましぐ 150〜5000であることが更に好ましい。 P (リン)の含有量は 0. 5 〜10質量%が好ましぐ 1〜7質量%がより好ましぐ 2〜6質量%が特に好ましい。さ らに好ましくは 2〜5質量%である。
さらに本発明の製造方法に用いるリン酸エステル系界面活性剤としては、 HLB (hy drophile-lipophile balance)が 10以上のものを用いる力、または塩基性化合物を添カロ して酸価を中和して用いることが好まし 、。
[0044] リン酸エステル系界面活性剤の種類と配合量は、銀または銀ィ匕合物粒子の種類に より適宜選択することができる。リン酸エステル系界面活性剤の配合量は、銀または 銀ィ匕合物の粒子の種類により適宜調整する必要があるが、例えば銀または銀ィ匕合物 の粒子 100質量咅に対して 0. 01〜3. 00質量咅力 S好ましく、 0. 05〜0. 50質量咅 が更に好ましい。界面活性剤が 0. 01質量部以上では、充分な分散性が得易くなる 傾向がある。一方 3. 00質量部以下では、銀または銀化合物の粒子の表面が薄く界 面活性剤の有機成分に被覆され、乾燥後の粒子同士の接触が得易くなり、導電性が 向上する傾向がある。
[0045] (1)分散液調製工程
本発明の表面処理された銀含有粉末の製造方法においては、まず、銀または銀化 合物の粒子が、アルキルアミン系もしくはアルキルアミン塩系界面活性剤、またはリン 含有率が 0. 5〜10質量%であるリン酸エステル系界面活性剤とともに分散用溶剤中 に分散した分散液を調製する。
[0046] (分散用溶剤)
ここで銀または銀ィ匕合物の粒子の分散に用いる分散用溶剤 (分散媒)としては、前 記界面活性剤の溶解に適したものであれば特に限定されないが、例えば、水;ェタノ ール、イソプロピルアルコールなどの低級アルコール;エチレングリコールへキシルェ 一テル、ジエチレングリコールブチルエーテルなどのアルキルアルコールのエチレン ォキシド付カ卩物ゃプロピレングリコールプロピルエーテルなどのアルキルアルコール のプロピレンォキシド付加物などが挙げられる。これらの分散用溶剤の中では、水が 好ましい。
これら分散用溶剤はここに挙げたものに限定されるものではなぐその使用に際し ては単独、或いは 2種類以上混合して (例えば水溶液や混合溶媒として)用いること ができる。
[0047] (分散液の調製方法)
銀または銀化合物の粒子が前記界面活性剤とともに分散してなる分散液の調製方 法としては、銀または銀ィ匕合物の粒子と界面活性剤とを分散用溶剤中に添加し、攪 拌機または分散機にかけて、銀または銀ィ匕合物の粒子の微細粒子(1次粒子)への 解砕ならびに前記界面活性剤との混合を行う方法が挙げられる。この場合、例えば 銀粒子と、分散用溶剤と、界面活性剤とを所望の割合で混合して、分散機等により銀 粒子を 1次粒子へと解砕させつつ、分散用溶剤に分散させることで、銀粒子の分散 液を得ることができる。銀粒子の代わりに、銀化合物粒子または酸化銀処理された銀 粒子を用いた場合も同様である。分散用溶剤に添加するとき、原料となる銀または銀 化合物の粒子は、銀または銀化合物の粉末 (乾燥粉末)とすると、銀等の粒子の使 用量の最適化が容易となり、また分散工程において望ましくない成分が原料力 混 入することを予防できるなどの利点があり、好まし 、。
使用可能な攪拌機または分散機としては、後述の公知の攪拌機または分散機の中 力 適宜選択して使用することができる。
[0048] 前記銀または銀化合物の粉末を分散用溶剤中に分散させる場合、前記分散用溶 剤に界面活性剤を配合して十分溶解させた後に、銀または銀化合物粉末を配合す ることが好ましい。必要に応じて、界面活性剤の中和(例えばリン酸エステル系界面 活性剤の場合は、アルカリ等によるリン酸エステル塩の生成)により分散用溶剤への 該界面活性剤の溶解度を上げることができる。配合後 0. 5〜4. 0時間分散すると、 銀粉末または銀ィ匕合物粉末中の 2次粒子 (凝集した粒子)が 1次粒子へと解砕すると ともに、界面活性剤と銀または銀ィ匕合物の 1次粒子とが吸着平衡に達する。
[0049] また、別の分散液調製方法としては、銀または銀ィ匕合物の粒子 (以下、「銀等の粒 子」という場合がある。)を液相中で合成した後、母液力 銀等の粒子をろ過し、銀等 の粒子を洗浄後、分散用溶剤に分散させる。この方法では銀等の粒子を乾燥させな いことが望ましいのであって、ろ過や洗浄などの処理の有無は、適宜設定できる。 また、銀等の粒子を合成した母液の溶媒 (例えば水)をそのまま分散液における分 散用溶剤として利用することもできる。この場合は銀等の粒子を母液力 ろ過で分離 する処理を省略することができる。また、母液中に不要な成分が共存している場合、 必要に応じて、当該不要な成分を除去する処理を行う。そして、銀等の粒子が分散し た分散液に対して界面活性剤を必要量添加した後、凍結乾燥処理に供する。母液 中に適当な界面活性剤がすでに添加されている場合には、これを凍結乾燥処理にも 利用することができるし、さらに界面活性剤を加えても良い。
この方法によれば、液相中に生成した銀等の粒子は一次粒子であるので、銀等の 粒子の凝集を抑制しつつ、界面活性剤とともに銀等の粒子が分散した分散液を得る ことができる。この場合、銀等の 2次粒子を 1次粒子へと解砕するための攪拌機また は分散機を用いた処理は不要であり、撹拌 '混合の程度が穏やかであっても、銀等 の粒子が 1次粒子として分散用溶剤中に分散した、望ましい分散状態とすることがで きる。
[0050] 以上に例示した分散液製造方法によって製造された、界面活性剤を含有する銀等 の粒子の分散液は、次工程で凍結乾燥処理にかけられる。凍結乾燥を行うときの銀 等の粒子の分散液中の固形分濃度の範囲は、 0. 5〜80質量%が好ましぐ特に、 1 〜 50質量%が好ましい。
[0051] 本発明において、リン酸エステル系界面活性剤を用いる場合は、用いた結果として 分散液が酸性条件 (例えば ρΗ1〜3)となることが好ましぐアルキルアミンまたはアル キルアミン塩系の界面活性剤を用いる場合は、分散液がアルカリ性条件 (例えば pH 12-14)となることが好ましい。これにより、界面活性剤を介して、銀等の粒子の表面 に界面電気 2重層が生じ、分散安定性が得られる。また、リン酸エステル系と、アルキ ルァミンまたはアルキルアミン塩系とでは、親水基部分がイオンィ匕したときの電荷が 反対であるので、銀等の粒子の表面電荷の符号に応じて、粒子間に斥力が働くよう に、界面活性剤を 、ずれか選択して用いることが好ま 、。
[0052] 例えば、表面が酸化銀処理された銀粒子の場合は、アルキルアミンまたはアルキル アミン塩系の界面活性剤が好ましぐこの組み合わせによる銀ペーストには、チキソト 口ピー性に優れ、盛り量が大きいという特長がある。また、純銀粒子 (表面が酸化銀 処理されていない銀粒子)の場合は、リン酸エステル系の界面活性剤が好ましぐこ の組み合わせによる銀ペーストには、結着剤榭脂中の分散性に優れるという特長が ある。
[0053] (2)乾燥工程
前記分散用溶媒中で、銀または銀ィ匕合物の粒子が界面活性剤存在下で充分に分 散したのち、該分散液から真空凍結乾燥法により分散用溶媒の除去を行う。
本発明の製造方法においては、乾燥法として真空凍結乾燥を使用するため、上記 溶剤のな力から凍結し易い溶剤を選択して使用することが好ましい。真空凍結乾燥 を行うため、一般的に入手可能な装置の冷却能力は— 40°C程度までであることを考 慮すれば、分散用溶媒としてその凝固点が 40°C以上であるものを選択することが 、実施のコストを削減できるため、好ましい。
[0054] 本発明の製造方法において使用する真空凍結乾燥法においては、基本的に低温 状態で凍結した分散液から、前記分散用溶剤のみが昇華除去される。この過程では 界面活性剤が分散用溶剤中に溶出して失われることがないため、添加した界面活性 剤のほとんど全てが処理後の銀または銀化合物粉末中に残留する。図 1に示すよう に、分散液中で界面活性剤 bは銀または銀ィ匕合物の粒子 aの表面付近に局在してお り、分散用溶剤のみが除去される真空凍結乾燥の実施時に、該界面活性剤 bが銀ま たは銀ィ匕合物の粒子 aの表面に一様に吸着した状態で取り出せる可能性が高ぐし 力も、真空凍結乾燥以外の通常の方法にて溶剤を除去する時のように、除去時に銀 または銀ィ匕合物の粒子 aや表面処理された粒子 c同士が凝集することがなぐ極めて 効率的な処理方法といえる。このように、分散液中に使用した界面活性剤 b全てが、 真空凍結乾燥後においても銀または銀ィ匕合物の粒子 aの表面に残留して、界面活 性剤 bで表面処理された銀または銀ィ匕合物の粒子 cを収率良く与えるため、界面活 性剤の効果と使用量の関係を把握し易い。また、使用量に対する最適化が行いやす Vヽため、界面活性剤の添加量が過剰となることを防止できる。
界面活性剤 bの分子は、親水基側の末端で銀または銀ィ匕合物の粒子 aの表面に吸 着するため、疎水基側の末端が粒子の外側を向く。これにより、結着剤榭脂との親和 性が向上し、表面処理された銀または銀化合物の粒子 cの分散性が改善される。ま た、粒子同士の凝集が抑制され、 1次粒子に分散された状態を持続することができる 凍結真空乾燥は、例えば、前記分散液を大気圧で分散用溶剤の凝固点以下に予 備凍結し、さらに凝固点における分散用溶剤の蒸気圧より低い圧力で真空度をコント ロールして行う方法を用いることができ、これにより、理論上は、凍結状態の固体混合 物中から分散用溶剤の分子を昇華させることができる。
例えば、分散用溶剤として水を用いた分散液 (銀または銀ィ匕合物の粒子と、水、及 び界面活性剤を含む分散液)の場合は、大気圧で 0°C以下に予備凍結し、理論上は 0°Cにおける水の蒸気圧 4. 5mmHg ( = 600Pa)を越えな!/、よう真空度をコントロー ルすれば良い。乾燥速度、コントロールのやり易さを加味すれば lmmHg ( = 133. 3 2Pa)以下にして、その蒸気圧での融点 (凝固点)まで、温度を上げることが好ましい このように真空凍結乾燥による乾燥方法では、真空中で分散用溶剤を昇華蒸発さ せ、粒子を乾燥するため、乾燥による収縮がわずかであり、組織や構造を破壊しにく い。また、熱風乾燥のように、高温で試料内での例えば水などの液体成分の乾燥に よる移動がなぐ固体の凍った状態で低温乾燥をするため、部分的成分濃縮、部分 的成分変化、変形がほとんど無く好ましい。
[0056] (3)銀ペーストの製造
本発明の製造方法によって製造された、表面処理された銀含有粉末を用いて導電 性ペースト (銀ペースト)を製造するためには、前記表面処理済みの銀含有粉末 (銀 または銀化合物の粉末)と、溶剤もしくは結着剤榭脂と溶剤とを混合して、適当な分 散機を用いて銀または銀化合物の粉末を分散させる。
[0057] 本発明の銀ペーストの製造において使用する溶剤は、メタノール、エタノール、 n— プロパノール、ベンジルアルコール、テルピネオール (Terpineol)等のアルコール類; アセトン、メチルェチルケトン、シクロへキサノン、イソホロン、ァセチルアセトン等のケ トン類; N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド等のアミド類;テトラ ヒドロフラン、ジォキサン、メチルセ口ソルブ、ジグライム、ブチルカルビトール等のェ 一テル類;酢酸メチル、酢酸ェチル、炭酸ジェチル、丁¾ (1ーィソプロピルー2, 2 ージメチルトリメチレンジイソブチレート)、酢酸カルビトール、酢酸ブチルカルビトー ル等のエステル類;ジメチルスルホキシド、スルホラン等のスルホキシド及びスルホン 類;塩化メチレン、クロ口ホルム、四塩化炭素、 1, 1, 2—トリクロロェタン等の脂肪族 ハロゲン化炭化水素;ベンゼン、トルエン、 o—キシレン、 p—キシレン、 m—キシレン、 モノクロ口ベンゼン、ジクロロベンゼン等の芳香族類等が挙げられる。
これらの溶剤はここに挙げたものに限定されるものではなぐその使用に際しては単 独、或いは 2種類以上混合して用いることができる。
[0058] 本発明の方法で表面処理された銀または銀化合物の粉末は、前記溶剤中に分散 された状態で、基材上に塗布される銀ペーストとして使用されてもよいが、さらに結着 剤榭脂を添加して銀または銀ィ匕合物の分散安定性を向上させ、また基体への接着 性を向上させて銀ペーストとして使用することが好ましい。
[0059] 本発明の銀ペーストに使用しうる結着剤榭脂としては、アクリル榭脂、プチラール榭 脂、ポリビュルアルコール榭脂、ァセタール榭脂、フエノール榭脂、尿素樹脂、酢酸 ビュルェマルジヨン、ポリウレタン榭脂、ポリエステル榭脂、ポリ酢酸ビュル榭脂、ェポ キシ榭脂、メラミン榭脂、アルキド榭脂、ニトロセルロース榭脂、天然榭脂を単独、ある いは 2種以上混合して利用することができる。
[0060] 前記結着剤榭脂の使用量は、表面処理された銀含有粉末 100質量部あたり 0. 01 〜30質量部の範囲が好ましぐ 0. 01〜10質量部の範囲が特に好ましい。
また、溶剤の使用量は塗布方法、印刷方法により異なり、適宜使用量を選択すれ ばよい。
[0061] 本発明の表面処理された銀含有粉末を原料とすれば、銀ペーストが必要となったと きに、溶剤もしくは溶剤と結着剤榭脂とを用いて攪拌等の簡単な分散処理をするだ けで、迅速に銀ペーストを製造することができる。すなわち、印刷直前に添加溶剤、も しくは添加溶剤と添加結着剤との簡単な撹拌操作を行うことで、良好な銀ペーストが 得られるため、印刷装置に付随の設備としてペースト調整用に多くを必要としない。 しかしより分散を確実に行うために以下の分散手段を用いて分散処理を行っても良 い。
[0062] 使用しうる分散手段としては、例えば、二本ロール、三本ロール、ボールミル、サン ドミル、ぺブルミル、トロンミル、サンドグラインダー、セグバリアトライター、高速インべ ラー分散機、高速ストーンミル、高速度衝撃ミル、エーダー、ホモジナイザー、超音波 分散機等が挙げられ、これらを用いること〖こより、混練、分散することができる。
[0063] 混練及び分散が完了した銀ペーストは、ペースト状の組成物として一般的には公 知慣用の塗布方法、または印刷法によって絶縁フィルム上または絶縁基板上に印刷 し、これを加熱して導電回路を形成することができる。
本発明の銀ペーストは、種々の塗布方法により塗布物を形成することができる。例 えば、公知のロール塗布方法等、具体的には、エアードクターコート、ブレードコート 、ロッドコート、押し出しコート、エアーナイフコート、スクイズコート、含侵コート、リバ一 スローノレコート、トランスファーローノレコート、グラビアコート、キスコート、キャストコート 、スプレイコート等により基体上に塗布物を形成することができる。また、各種印刷方 法を適用することも可能である。印刷法にはまた、凹版印刷のように最適粘度領域が 比較的低粘度領域にあるものと、スクリーン印刷のように高粘度領域にあるものとが 存在する。具体的には、孔版印刷方法、凹版印刷方法、平版印刷方法などを用いて 基体上に所定の大きさに塗布物を印刷することができる。
[0064] 塗布もしくは印刷時の基体の材料としては、例えば、ポリエチレンテレフタレートフィ ルム(PETフィルム)、ポリイミドフィルム(PIフィルム)、あるいはグリーンシート(無機質 基板)が挙げられる。これらのフィルム上に銀ペーストを所定のパターンに印刷し、印 刷物の乾燥後、加熱硬化処理しても良い。
また、印刷物の厚さは、印刷法によって異なる力 印刷物の乾燥時厚さが 1〜30 mの範囲が好ましぐ特に 1〜 15 mの厚さが好ましい。印刷物の乾燥後、単位体積 当たりの電気抵抗 (体積抵抗)を上げるために、基体の著し 、変形を生じな ヽ程度に 、プレスあるいはカレンダー処理をしてもよい。
[0065] このようにして得られた塗布物を、例えば、約 160°Cで約 5分乾燥し、次いで約 250 °Cの熱処理工程によって結着剤榭脂の硬化を行う。これにより、各種電子回路基板 用の導電回路が得られる。
特に酸化銀微粒子または表面が酸化銀処理された銀粒子を銀または銀化合物の 粒子として用いた場合には、前記熱処理によって硬化とともに酸化銀から銀へ還元さ せ、還元反応に伴って放出された酸素により周囲の界面活性剤や榭脂を酸化させ、 発熱を得ることができる。この結果、酸化銀が還元された銀粒子同士を、純銀粒子を 用いた場合に比べて、より低温 (例えば 160〜200°C)の熱処理で融着させることが できる。したがって、酸ィ匕銀粒子または酸ィ匕銀処理された銀粒子を用いた銀ペースト は、塗布もしくは印刷時の基体の材料の耐熱性に対する要求を低くすることができる ので、 PETや PI、その他のプラスチックなど力もなる基体に対して特に好適である。
[0066] 図 2に、低温焼結する銀粉 (結晶子径の小さな銀粉)を用いて作製した界面活性剤 による表面処理後の銀粉末と、酸化銀処理した低温焼結する銀粉 (酸化銀処理され た結晶子径の小さな銀粉)を用いて作製した界面活性剤による表面処理後の銀粉末 の示差熱分析 (DSC分析)の結果を示す。
結晶子径の小さい銀粉を用いて作製した、本発明の表面処理後の銀粉末の DSC 分析の結果(図 2に破線で示す。)では、銀粉の溶融を示す吸熱ピークが 215°Cに現 れた。これは、銀粉の結晶子径が小さいため、従来よりも低い温度で溶融することを 表す。
また、酸化銀処理した銀粉を用いて作製した、本発明の表面処理後の銀粉末の D SC分析の結果(図 2に実線で示す。)では、銀粉の溶融を示す吸熱ピークが 215°C に現れるとともに、 134°Cに発熱ピークが現れた。この発熱ピークは、該銀粉末の酸 化銀が分解して酸素が放出され、表面の界面活性剤のカーボン成分を酸化して発 熱反応が起こったためと考えられる。
以上の結果力も明らかなように、本発明の表面処理後の銀粉末によれば、従来より も低い温度で焼成が可能な銀ペーストを製造することができる。
実施例
[0067] 以下、実施例として、本発明を更に具体的に説明するが、本発明はこれら実施例の 範囲に限定されるものではない。なお物性等の測定方法は、以下の通りである。
( 1)膜厚:膜厚は、膜厚計 K402B (アンリツ製)を用いて測定した。
(2)体積抵抗率:体積抵抗率は、四端子測定法の低抵抗率計ロレスター EP (三菱化 学 (株)製)にて測定した。試験片の導電性膜の膜厚カゝら体積抵抗率を求めた。なお 、体積抵抗率は、例えば、 8. 8 X 10—6 Ω 'cmを「8. 8E— 06 Ω 'cm」と記載する方 法により示した。
[0068] また、本実施例にお!、て用いた界面活性剤 A及び Bは以下のものである。
(界面活性剤お
P (リン)含有量値が 2. 7質量%のリン酸モノエステルが主成分であり、重量平均分 子量が 2800である界面活性剤 Disperbyk— 111 (ビックケミー (株)製)を用いて、前 記界面活性剤を、その酸成分が完全に中和される量の水酸ィ匕カリウムにより中和し、 10質量%界面活性剤水溶液を作製した。
(界面活性剤お
P (リン)含有量値が 4. 4質量%のポリオキシアルキレンアルキルエーテル 'リン酸ェ ステルであり、重量平均分子量が 1750、 HLBが 12である界面活性剤を用いて、前 記界面活性剤を、その酸成分が完全に中和される量の水酸ィ匕カリウムにより中和し、 10質量%界面活性剤水溶液を作製した。 (界面活性剤 c)
アルキルアミン塩の陽イオン性界面活性剤としてココナットァミンアセテートの 10質 量0 /0水溶液を 5g、アルキルァミンの界面活性剤としてポリオキシエチレンココナットァ ルキルアミンエーテルの 10質量%水溶液を 0. 5gの比率で混合して用いた。
[0069] (実施例 1)
中心粒径 0. 3 μ mの三井金属 (株)製銀粉末 FHD (結晶子径く 10nm) 50g、界面 活性剤として界面活性剤 Aの 10質量%水溶液を 2. 5g、溶媒である水 50g、及び 2m m径のジルコ -ァビーズ 400gを 250ccのポリ瓶に入れて混合し、回転機(ボールミ ル)を用いて 4時間練肉して、銀粉の分散液 (al)を得た。
[0070] この銀粉の分散液(al)を底面の寸法 200mmL X 150mmWの平型トレイに lOOg 移し、予備凍結乾燥した後、凍結真空乾燥を行った。凍結真空乾燥機は日本真空( 株)製の「DFM— 05AS」を用いた。予備凍結した銀粉の分散液 (al)を、あらかじめ 約 40°Cに冷却した棚にのせて、真空度 7〜: LOPaで 20時間の凍結真空乾燥後、 嵩高のスポンジ状乾燥物として銀粉の表面処理物 (bl) 50gを得た。このときの銀粒 子の粒度分布を体積基準で図 3に示した。体積平均粒径は 0. 6 mであった。次に 、銀粉の表面処理物 (bl) 50g、バインダー榭脂としてアクリル榭脂「# 15— 78」(東 栄化成 (株)製) 5. 6g (固形分 = 2. 5g)、および酢酸カルビトール 2. 7gを 250ccの ポリ瓶に入れて混合し、振とう機 (ペイントコンディショナー)を用いて 0. 5時間混合攪 拌して、銀ペースト B— 1を得た。該銀ペーストは経時的な粘度上昇や凝集を起こす ことなく安定であった。このペースト B— 1で PIフィルム上に 50mmX 80mmの大きさ の印刷パターンを線幅 50 mで形成し、厚さ 10 mのスクリーン印刷塗膜を得た。 この印刷塗膜を 150°Cで 5分間乾燥した。その後、 160°Cおよび 250°Cのオーブン 中に 60分入れ焼成し、印刷の状況を顕微鏡で観察したところ、欠損のない良好な導 電回路パターンが形成できていた。さらに厚さ 50 mのベタの印刷を行い同様に乾 燥、焼成を行った後の乾燥塗膜の体積抵抗を測定した。
乾燥後、 160°Cおよび 250°Cのオーブン中に 60分入れた後の体積抵抗は、それ ぞれ 2. 9Ε— 03 Ω 'cmおよび 6. 7E— 06 Ω 'cmを示した。また、オーブン内で乾燥 塗膜の体積抵抗は時間とともに低下した。オーブン温度が 250°Cのときの体積抵抗 の減少を図 4に示す。
[0071] (実施例 2)
実施例 1での界面活性剤を界面活性剤 Bにした以外は、実施例 1と同様の方法に て、銀粉の分散液 (a2)を 105g、及び銀粉の表面処理物 (b2)を 50g得た。この表面 処理物の平均体積粒径は 0. であり、実施例 1と同様な粒径分布を示した。 次に、実施例 1と同様にして銀ペースト B— 2の 58. 3gを得た。該銀ペーストは経時 的な粘度上昇や凝集を起こすことなく安定であった。線幅 50 mの導電回路の印刷 パターンを形成したマスクフィルムを用いて、スクリーン印刷して、実施例 1と同様に 印刷塗膜を得た。さらに実施例 1と同様に 50 mの膜厚のベタ印刷を行い、乾燥後 、 160°Cおよび 250°Cのオーブン中に 60分入れた後の体積抵抗を測定したところ、 それぞれ 1. 7E— 02 Ω 'cmおよび 1. 5E— 05 Ω 'cmを示した。
[0072] (実施例 3)
実施例 2での銀粉 FHDを福田金属箔粉 (株)製銀粉 AgC— Gにした以外は、実施 例 2と同様の方法にて、銀粉の分散液 (a3)を 105g、及び銀粉の表面処理物 (b3)を 50gを得た。このときの銀粒子の体積平均粒径は 0. 2 mであり、分布幅の狭い粒 度分布を示した。
次に、実施例 1と同様の方法で銀ペースト B— 3を 58. 3g得た。該銀ペーストは経 時的な粘度上昇や凝集を起こすことなく安定であった。実施例 1と同様に印刷パター ンを形成したマスクフィルムを用いて、スクリーン印刷して、印刷塗膜を得た。さらに実 施例 1と同様に 50 mの膜厚のベタ印刷を行い、乾燥後、 160°C及び 250°Cのォー ブン中に 60分入れた後の体積抵抗を測定したところ、それぞれ 4. 5E— 05 Ω 'cm、 2. 5E— 05 Ω 'cmを示した。
[0073] (実施例 4)
実施例 2での銀粉 FHDをその表面を 10%酸ィ匕銀処理した銀粉 Ag O'FHDにし
2
た以外は、実施例 2と同様の方法にて、酸化銀処理の銀粉の分散液 (a4)を 105g、 及び酸化銀処理の銀粉の表面処理物 (b4)を 50gを得た。このときの銀粒子の粒度 分布を体積基準で図 5に示した。体積平均粒径は 0. 7 mで分布幅の狭い粒度分 布を示した。 次に、実施例 1と同様の方法で銀ペースト B— 4を 58. 3g得た。該銀ペーストは経 時的な粘度上昇を起こすことなく安定であった。実施例 1と同様に印刷パターンを形 成したマスクフィルムを用いて、スクリーン印刷して、印刷塗膜を得た。さらに実施例 1 と同様に 50 mの膜厚のベタ印刷を行い、この印刷塗膜を 150°Cで 5分間乾燥した 。その後、 160°Cおよび 250°Cのオーブン中での乾燥塗膜の体積抵抗を測定した。 乾燥後、 160°Cおよび 250°Cのオーブン中に 60分入れた後の体積抵抗は、それ ぞれ 9. 8Ε— 05 Ω 'cmおよび 1. 5E— 05 Ω 'cmを示した。
[0074] (実施例 5)
中心粒径 0. 3 μ mの三井金属 (株)製の 10%酸化銀処理した銀粉 FHD (結晶子 径く lOnm) 50g、界面活性剤 C (アルキルアミン塩の陽イオン性界面活性剤としてコ コナットァミンアセテートの 10質量0 /0水溶液を 5g、アルキルァミンの界面活性剤とし てポリオキシエチレンココナットアルキルアミンエーテルの 10質量%水溶液を 0. 5g) 、溶媒である水 50g、及び 2mm径のジルコユアビーズ 400gを 250ccのポリ瓶に入れ て混合し、回転機 (ボールミル)を用いて 4時間練肉して、銀ペースト(a5)を得た。
[0075] この銀粉の分散液(a5)を底面の寸法 200mmL X 150mmWの平型トレイに 100g 移し、予備凍結乾燥した後、凍結真空乾燥を行った。凍結真空乾燥機は日本真空( 株)製の「DFM— 05AS」を用いた。予備凍結した銀粉の分散液 (a5)を、あらかじめ 約 40°Cに冷却した棚にのせて、真空度 7〜: LOPaで 20時間の凍結真空乾燥後、 嵩高のスポンジ状乾燥物として銀粉の表面処理物 (b5) 50gを得た。このときの表面 処理された銀粒子の粒度分布を図 6に示した。
[0076] 次に、銀粉の表面処理物(b5) 50g、ポリオール成分として「バーノック DE— 140— 70」(大日本インキ化学工業 (株)製)および「バーノック DB980」(大日本インキ化学 工業 (株)製)、イソシァヌレートプレボリマー成分として「バーノック DB980K」(大日 本インキ化学工業 (株)製)の混合物の溶剤成分を酢酸カルビトールに置換したバイ ンダー榭脂 4. 17g (固形分 = 2. 5g)、および酢酸カルビトール 4. 2gを 250ccのポリ 瓶に入れて混合し、振とう機 (ペイントコンディショナー)を用いて 0. 5時間混合攪拌 して、銀ペースト B— 5を得た。この銀ペースト B— 5を PIフィルム上に 50mmX 80m mの長方形および LineZSpace=40 μ m/40 μ mの印刷パターンを形成し、スクリ ーン印刷塗膜を得た。長方形の印刷塗膜の平均厚さは 12 mであった。一方印刷 パターンでの厚さの分布をレーザー顕微鏡 (VK— 9500キーエンス社製)で測定し た。そのプロフィールを図 7に示す。ここで、スクリーン版の仕様は 640メッシュ、線径 15 m、カレンダー厚 22 μ m、乳剤厚 10 μ mである。印刷パターンのピーク高さの 平均値は 11. 9 mであった。
[0077] 長方形の印刷塗膜を 150°Cで 5分間乾燥した。乾燥後、 160°Cおよび 250°Cのォ ーブン中に 60分入れた後の体積抵抗率を測定したところ、それぞれ 3. 7Ε-05 Ω · cmおよび 7. 5E— 06 Ω 'cmを示した。オーブン内で乾燥塗膜の体積抵抗率は時間 とともに低下する。オーブン温度が 160°Cおよび 250°Cのときの体積抵抗率の減少 を図 8に示した。
[0078] (比較例 1)
実施例 1での界面活性剤の代わりに、 P含有量値が 0. 4質量%のリン酸ジエステル を成分に有する重量平均分子量 2500であるアクリル系界面活性剤 Disperbyk— 2 001 (ビックケミー (株)製) 0. 5gを用いる以外は、実施例 1と同様の方法にて、銀粉 の分散液 (a6)を 105g、及び銀粉の表面処理物 (b6)を 50gを得た。この表面処理 物の粒径分布を体積基準で図 3に示した。次に銀ペースト B6を用いて実施例 1と同 様な印刷パターンを形成したマスクフィルムを用いて、スクリーン印刷したところ、マス クー部に目詰まりを起こし細線の印刷ができな力つた。さらに実施例 1と同様に 50 mの膜厚のベタ印刷を行い、この印刷塗膜を 150°Cで 5分間乾燥した。その後、 160 °Cおよび 250°Cのオーブン中に 60分入れた後の乾燥塗膜の体積抵抗を測定した。 乾燥後、 160°Cおよび 250°Cのオーブン中に 60分入れた後の体積抵抗は、それ ぞれ 2. 5Ε + 01 Ω 'cmおよび 2. 2E— 05 Ω 'cmを示した。また、オーブン内で乾燥 塗膜の体積抵抗は時間とともに低下した。オーブン温度が 250°Cのときの体積抵抗 の減少を図 4に示す。
[0079] (比較例 2)
実施例 1での界面活性剤の代わりに、高純度の乳化分散剤としてノ、ィテノール NF 13 (第一工業製薬 (株)製) 0. 5gを用いる以外は、実施例 1と同様の方法にて、銀粉 の分散液 (a6)を 105g、及び銀粉の表面処理物 (b6)を 50gを得た。この表面処理 物の体積平均粒径は 1. 5 μ mであり、最大粒子径が 35 μ mとなる粒径分布を示した 。次に実施例 1と同様に作製した銀ペースト B6を用いて印刷パターンを形成したマス クフィルムを用いて、スクリーン印刷したところ、マスク一部に目詰まりを起こし細線の 印刷ができな力つた。
[0080] (比較例 3)
実施例 1での界面活性剤の代わりに、特殊カルボン酸型高分子界面活性剤として ボイズ 520 (花王 (株)製) 0. 5gを用いる以外は、実施例 1と同様の方法にて、銀粉の 分散液 (a7)を 105g、及び銀粉の表面処理物 (b7)を 50gを得た。この表面処理物 の体積平均粒径は 0. 9 μ mであり、最大粒子径が 24 μ mとなる粒径分布を示した。 次に実施例 1と同様に作製した銀ペースト B7を用いて印刷パターンを形成したマス クフィルムを用いて、スクリーン印刷したところ、マスク一部に目詰まりを起こし細線の 印刷ができな力つた。
[0081] 以上実施例および比較例に用いた銀粉末と界面活性剤を表 1にまとめた。さらに 1 60°Cと 250°Cでそれぞれ 60分間焼成したときの体積抵抗率の値、及びスクリーン印 刷精度、スクリーン印刷適性を表 2にまとめた。
ここでスクリーン印刷精度、スクリーン印刷適性は以下の基準で評価した。 (スクリーン印刷精度)
線幅 50 μ mの導電回路パターンがスクリーン印刷で欠けなく印刷できるかどうかで 〇、 Xを判断した。
(スクリーン印刷適性)
400メッシュ、線径 18 /z mのスクリーンを用いたスクリーン印刷で、 目詰まりなく印刷 できるかどうかで〇、 Xを判断した。
[0082] [表 1] 表 Ί
Figure imgf000029_0001
[0083] [表 2]
表 2
Figure imgf000029_0002
[0084] 表 1、表 2からわ力るようにリン含有率が 0. 5〜10質量0 /0であるリン酸エステル系の 界面活性剤、またはアルキルアミン系とアルキルアミン塩系の界面活性剤混合物を 用いて導電性ペースト (銀ペースト)を作製すると、 30 mの細線を印刷するための マスクに目詰まりを起こすことのない、良好な分散性を有する導電性ペーストが作製 された。また表 2と図 3および図 4に示す銀ペースト中の銀粒子の分散度と体積抵抗 の関係力も明らかな様に、銀ペーストの分散状態は凝集しているものより、分散して いるものの方が最密充填が得られやすぐ導電性が高くなることわかる。
さらに、これら導電性ペーストは表面が酸化銀処理された銀粉末を用いた場合、粒 径の細かい銀粉末を用いたときに低温焼成による配線パターン形成によって、良好 な導電性を実現できることがわかる。
産業上の利用可能性
本発明によれば、微小粒径の銀または銀ィ匕合物の粒子が良好に分散され、粘度上 昇等の物性の経時的変化がなぐ線幅の狭い導電性の良好な導電回路を形成可能 な銀ペーストを提供することができるので、産業上有用である。

Claims

請求の範囲
[1] 銀または銀ィ匕合物の粒子力 アルキルアミン系もしくはアルキルアミン塩系界面活 性剤、またはリン含有率が 0. 5〜 10質量%であるリン酸エステル系界面活性剤ととも に分散用溶剤中に分散した分散液を真空凍結乾燥させる工程を有することを特徴と する表面処理された銀含有粉末の製造方法。
[2] 前記分散液を調製するため、銀または銀ィ匕合物の粒子を、前記界面活性剤存在 下で、前記分散用溶剤中に分散させる工程を有する、請求項 1に記載の表面処理さ れた銀含有粉末の製造方法。
[3] 前記分散液を調製する際、原料となる銀または銀ィ匕合物の粒子が銀または銀ィ匕合 物の粉末である、請求項 2に記載の表面処理された銀含有粉末の製造方法。
[4] 前記分散液を調製するため、液相中で銀または銀ィ匕合物の粒子を合成し、合成し た粒子をろ過により取り出し、該取り出した粒子が乾燥する前に前記分散用溶剤中 に分散させたのち、該分散液中に前記界面活性剤を添加する工程を有する、請求 項 1に記載の表面処理された銀含有粉末の製造方法。
[5] 前記銀または銀ィ匕合物の粒子の体積平均粒径は 0. 05-10 μ mの範囲である請 求項 1に記載の表面処理された銀含有粉末の製造方法。
[6] 前記銀または銀ィ匕合物の粒子は、表面が酸化銀で被覆された銀粒子であり、その 酸化銀含有率が 1〜30質量%である請求項 1に記載の表面処理された銀含有粉末 の製造方法。
[7] 請求項 1〜6のいずれか 1項に記載の表面処理された銀含有粉末の製造方法によ り得られた表面処理された銀含有粉末を、主成分として含有する銀ペースト。
PCT/JP2005/021707 2004-11-29 2005-11-25 表面処理された銀含有粉末の製造方法、及び表面処理された銀含有粉末を用いた銀ペースト WO2006057348A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/719,602 US7771625B2 (en) 2004-11-29 2005-11-25 Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
EP05809753A EP1825940B1 (en) 2004-11-29 2005-11-25 Method for producing surface-treated silver-containing powder
JP2006547865A JP4706637B2 (ja) 2004-11-29 2005-11-25 導電性ペースト、及び導電性ペーストの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-343880 2004-11-29
JP2004343880 2004-11-29
JP2005-257667 2005-09-06
JP2005257667 2005-09-06

Publications (1)

Publication Number Publication Date
WO2006057348A1 true WO2006057348A1 (ja) 2006-06-01

Family

ID=36498081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021707 WO2006057348A1 (ja) 2004-11-29 2005-11-25 表面処理された銀含有粉末の製造方法、及び表面処理された銀含有粉末を用いた銀ペースト

Country Status (5)

Country Link
US (1) US7771625B2 (ja)
EP (1) EP1825940B1 (ja)
JP (1) JP4706637B2 (ja)
KR (1) KR100923696B1 (ja)
WO (1) WO2006057348A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206730A (ja) * 2005-01-27 2006-08-10 Sumitomo Bakelite Co Ltd 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
EP2139007A1 (en) * 2007-03-15 2009-12-30 DIC Corporation Conductive ink for letterpress reverse printing
JP2010087251A (ja) * 2008-09-30 2010-04-15 Dic Corp 太陽電池用導電性ペースト
JP2010159464A (ja) * 2009-01-08 2010-07-22 Tokyo Univ Of Agriculture & Technology ナノ粒子体及びその製造方法
US7789287B2 (en) * 2006-06-05 2010-09-07 Tanaka Kikinzoku Kogyo K.K. Method of bonding
JP2010199034A (ja) * 2009-02-27 2010-09-09 Dic Corp 太陽電池用導電性ペースト及びその製造方法
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same
CN102446575A (zh) * 2010-10-06 2012-05-09 郭昌恕 烧结成型的组成物及烧结成型方法
JP2012176892A (ja) * 2012-06-08 2012-09-13 Dowa Hightech Co Ltd 酸化銀粉末の製造方法
JP2012191238A (ja) * 2012-06-15 2012-10-04 Hitachi Ltd 導電性焼結層形成用組成物、これを用いた導電性被膜形成法および接合法
JP2013207054A (ja) * 2012-03-28 2013-10-07 Kyoto Elex Kk 太陽電池素子の電極形成用導電性ペースト
JP2016115561A (ja) * 2014-12-16 2016-06-23 積水化学工業株式会社 導電性ペースト
KR20170065604A (ko) 2014-09-29 2017-06-13 도와 일렉트로닉스 가부시키가이샤 은 분말, 그 제조방법 및 친수성 도전성 페이스트
JP2017143309A (ja) * 2013-07-23 2017-08-17 旭化成株式会社 銅及び/又は銅酸化物分散体、並びに該分散体を用いて形成された導電膜
CN109256234A (zh) * 2018-11-14 2019-01-22 轻工业部南京电光源材料科学研究所 一种高性能导电银浆及其制备方法
WO2022044737A1 (ja) 2020-08-31 2022-03-03 京セラ株式会社 ペースト組成物及び半導体装置
CN114682787A (zh) * 2020-12-30 2022-07-01 苏州银瑞光电材料科技有限公司 一种适用于电子银浆的球型银粉的制备及表面改性的方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724789B1 (en) * 2004-03-10 2010-12-22 Asahi Glass Company, Limited Metal-containing fine particle, liquid dispersion of metal-containing fine particle, and conductive metal-containing material
EP1950767B1 (en) * 2005-09-21 2012-08-22 Nihon Handa Co., Ltd. Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
US8231808B2 (en) 2008-05-27 2012-07-31 Hong Kong University Of Science And Technology Percolation efficiency of the conductivity of electrically conductive adhesives
JP5611537B2 (ja) * 2009-04-28 2014-10-22 日立化成株式会社 導電性接合材料、それを用いた接合方法、並びにそれによって接合された半導体装置
DE102009040078A1 (de) * 2009-09-04 2011-03-10 W.C. Heraeus Gmbh Metallpaste mit CO-Vorläufern
ES2360649B2 (es) * 2009-11-25 2011-10-17 Universidade De Santiago De Compostela Tintas conductoras obtenidas por combinación de aqcs y nanopartículas metálicas.
CN102740997B (zh) * 2009-11-27 2016-02-24 特线工业株式会社 含有微小金属粒子的组合物
US10544483B2 (en) 2010-03-04 2020-01-28 Lockheed Martin Corporation Scalable processes for forming tin nanoparticles, compositions containing tin nanoparticles, and applications utilizing same
JP6241908B2 (ja) * 2011-02-04 2017-12-06 国立大学法人山形大学 被覆金属微粒子とその製造方法
KR20130139022A (ko) * 2012-06-12 2013-12-20 주식회사 동진쎄미켐 도전성 페이스트 조성물
KR101633013B1 (ko) * 2012-12-31 2016-06-24 주식회사 아모그린텍 연성인쇄회로기판
EP2763141B1 (en) * 2013-02-01 2016-02-03 Heraeus Precious Metals North America Conshohocken LLC Low fire silver paste
US10308856B1 (en) * 2013-03-15 2019-06-04 The Research Foundation For The State University Of New York Pastes for thermal, electrical and mechanical bonding
TW201438027A (zh) * 2013-03-22 2014-10-01 Eturbo Touch Technology Inc 觸控面板用之感光硬化導電膠
JP6137049B2 (ja) * 2014-05-13 2017-05-31 株式会社村田製作所 セラミック電子部品の製造方法
JP2017052668A (ja) * 2015-09-09 2017-03-16 三菱マテリアル株式会社 組成物、接合体の製造方法
KR102007861B1 (ko) * 2016-10-13 2019-08-06 엘에스니꼬동제련 주식회사 태양전지 전극용 은 분말 및 이를 포함하는 도전성 페이스트
JP7156831B2 (ja) * 2017-09-20 2022-10-19 矢崎総業株式会社 導電性組成物及びそれを用いた配線板
KR102061718B1 (ko) * 2017-10-30 2020-01-02 엘에스니꼬동제련 주식회사 표면 처리된 은 분말 및 이의 제조방법
KR102061720B1 (ko) * 2017-10-31 2020-01-02 엘에스니꼬동제련 주식회사 표면 처리된 은 분말 및 이의 제조방법
TW202022063A (zh) * 2018-09-13 2020-06-16 日商昭和電工股份有限公司 導電性墨及碳配線基板
KR102454264B1 (ko) * 2020-03-25 2022-10-14 엘에스니꼬동제련 주식회사 점도 안정성이 향상된 전도성 페이스트용 은 분말 및 이의 제조방법
US20230137716A1 (en) 2020-03-27 2023-05-04 Mitsui Mining & Smelting Co., Ltd. Method for producing bonding composition
CN114141404A (zh) * 2021-11-22 2022-03-04 苏州市贝特利高分子材料股份有限公司 一种高导电高柔性低温银浆

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721001B2 (ja) * 1978-03-14 1982-05-04
US5188660A (en) 1991-10-16 1993-02-23 E. I. Du Pont De Nemours And Company Process for making finely divided particles of silver metals
US5188600A (en) 1989-06-02 1993-02-23 Jullien Robert G Syringe guard apparatus
JP2000231828A (ja) 1999-02-12 2000-08-22 Murata Mfg Co Ltd 導電性ペースト
JP2002167603A (ja) * 2000-11-30 2002-06-11 Dainippon Ink & Chem Inc 焼結体形成用金属粉の表面処理方法。
EP1339073A1 (en) 2000-10-25 2003-08-27 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP2003309337A (ja) 2002-04-16 2003-10-31 Fujikura Ltd プリント回路基板
JP2004006502A (ja) 2002-05-31 2004-01-08 Dainippon Ink & Chem Inc 弁作用電解コンデンサ用陽極素子及びその製造方法
JP2004143563A (ja) * 2002-10-28 2004-05-20 Mitsui Mining & Smelting Co Ltd 複合酸化物コート銀粉及びその複合酸化物コート銀粉の製造方法
JP2004143546A (ja) * 2002-10-25 2004-05-20 Dainippon Ink & Chem Inc 焼結体形成用金属粉の表面処理方法及び該焼結体形成用金属粉
JP2004183009A (ja) * 2002-11-29 2004-07-02 Mitsuboshi Belting Ltd 金属微粒子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59923B2 (ja) * 1980-07-15 1984-01-09 松下電工株式会社 照明灯付支柱
JPH02307202A (ja) 1989-05-23 1990-12-20 Dainippon Ink & Chem Inc 磁性粉末の処理方法
US4979985A (en) * 1990-02-06 1990-12-25 E. I. Du Pont De Nemours And Company Process for making finely divided particles of silver metal
US5372749A (en) * 1992-02-19 1994-12-13 Beijing Technology Of Printing Research Institute Chinese Method for surface treating conductive copper powder with a treating agent and coupler
JP4004675B2 (ja) * 1999-01-29 2007-11-07 株式会社日清製粉グループ本社 酸化物被覆金属微粒子の製造方法
JP4263799B2 (ja) * 1999-02-09 2009-05-13 Dowaエレクトロニクス株式会社 鱗片状銀粉の製造方法
US6686045B2 (en) * 2001-01-31 2004-02-03 Shin-Etsu Chemical Co., Ltd. Composite fine particles, conductive paste, and conductive film
US6994948B2 (en) * 2001-10-12 2006-02-07 E.I. Du Pont De Nemours And Company, Inc. Aqueous developable photoimageable thick film compositions
JP4180420B2 (ja) 2002-03-29 2008-11-12 Dic株式会社 金属粉末分散液、これを用いた電解コンデンサ陽極素子用成形体と電解コンデンサ陽極素子及びそれらの製造方法
JP4414145B2 (ja) * 2003-03-06 2010-02-10 ハリマ化成株式会社 導電性ナノ粒子ペースト
JP2005097643A (ja) 2003-09-22 2005-04-14 Dainippon Ink & Chem Inc タンタル金属分散液、及びこれを用いたタンタル電解コンデンサ陽極素子用成形体と電解コンデンサ陽極素子
JP4188195B2 (ja) 2003-10-03 2008-11-26 Dic株式会社 金属粉末分散液、これを用いた電解コンデンサ陽極素子用成形体と電解コンデンサ陽極素子およびそれらの製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721001B2 (ja) * 1978-03-14 1982-05-04
US5188600A (en) 1989-06-02 1993-02-23 Jullien Robert G Syringe guard apparatus
US5188660A (en) 1991-10-16 1993-02-23 E. I. Du Pont De Nemours And Company Process for making finely divided particles of silver metals
JP2000231828A (ja) 1999-02-12 2000-08-22 Murata Mfg Co Ltd 導電性ペースト
EP1339073A1 (en) 2000-10-25 2003-08-27 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP2002167603A (ja) * 2000-11-30 2002-06-11 Dainippon Ink & Chem Inc 焼結体形成用金属粉の表面処理方法。
JP2003309337A (ja) 2002-04-16 2003-10-31 Fujikura Ltd プリント回路基板
JP2004006502A (ja) 2002-05-31 2004-01-08 Dainippon Ink & Chem Inc 弁作用電解コンデンサ用陽極素子及びその製造方法
JP2004143546A (ja) * 2002-10-25 2004-05-20 Dainippon Ink & Chem Inc 焼結体形成用金属粉の表面処理方法及び該焼結体形成用金属粉
JP2004143563A (ja) * 2002-10-28 2004-05-20 Mitsui Mining & Smelting Co Ltd 複合酸化物コート銀粉及びその複合酸化物コート銀粉の製造方法
JP2004183009A (ja) * 2002-11-29 2004-07-02 Mitsuboshi Belting Ltd 金属微粒子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1825940A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206730A (ja) * 2005-01-27 2006-08-10 Sumitomo Bakelite Co Ltd 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
US8067702B2 (en) 2005-06-03 2011-11-29 Gunze Limited Electromagnetic wave shielding material and production process of the same
US7789287B2 (en) * 2006-06-05 2010-09-07 Tanaka Kikinzoku Kogyo K.K. Method of bonding
EP2139007A1 (en) * 2007-03-15 2009-12-30 DIC Corporation Conductive ink for letterpress reverse printing
EP2139007B1 (en) * 2007-03-15 2016-09-21 DIC Corporation Conductive ink for letterpress reverse printing
JP2010087251A (ja) * 2008-09-30 2010-04-15 Dic Corp 太陽電池用導電性ペースト
JP2010159464A (ja) * 2009-01-08 2010-07-22 Tokyo Univ Of Agriculture & Technology ナノ粒子体及びその製造方法
JP2010199034A (ja) * 2009-02-27 2010-09-09 Dic Corp 太陽電池用導電性ペースト及びその製造方法
CN102446575A (zh) * 2010-10-06 2012-05-09 郭昌恕 烧结成型的组成物及烧结成型方法
CN102446575B (zh) * 2010-10-06 2013-10-09 郭昌恕 烧结成型的组成物及烧结成型方法
JP2013207054A (ja) * 2012-03-28 2013-10-07 Kyoto Elex Kk 太陽電池素子の電極形成用導電性ペースト
JP2012176892A (ja) * 2012-06-08 2012-09-13 Dowa Hightech Co Ltd 酸化銀粉末の製造方法
JP2012191238A (ja) * 2012-06-15 2012-10-04 Hitachi Ltd 導電性焼結層形成用組成物、これを用いた導電性被膜形成法および接合法
JP2017143309A (ja) * 2013-07-23 2017-08-17 旭化成株式会社 銅及び/又は銅酸化物分散体、並びに該分散体を用いて形成された導電膜
KR20170065604A (ko) 2014-09-29 2017-06-13 도와 일렉트로닉스 가부시키가이샤 은 분말, 그 제조방법 및 친수성 도전성 페이스트
US10272490B2 (en) 2014-09-29 2019-04-30 Dowa Electronics Materials Co., Ltd. Silver powder, method for producing same, and hydrophilic conductive paste
US10807161B2 (en) 2014-09-29 2020-10-20 Dowa Electronics Materials Co., Ltd. Silver powder, method for producing same, and hydrophilic conductive paste
JP2016115561A (ja) * 2014-12-16 2016-06-23 積水化学工業株式会社 導電性ペースト
CN109256234A (zh) * 2018-11-14 2019-01-22 轻工业部南京电光源材料科学研究所 一种高性能导电银浆及其制备方法
WO2022044737A1 (ja) 2020-08-31 2022-03-03 京セラ株式会社 ペースト組成物及び半導体装置
CN114682787A (zh) * 2020-12-30 2022-07-01 苏州银瑞光电材料科技有限公司 一种适用于电子银浆的球型银粉的制备及表面改性的方法

Also Published As

Publication number Publication date
EP1825940A1 (en) 2007-08-29
EP1825940B1 (en) 2012-06-13
EP1825940A4 (en) 2009-07-29
US20090146117A1 (en) 2009-06-11
JPWO2006057348A1 (ja) 2008-06-05
US7771625B2 (en) 2010-08-10
KR100923696B1 (ko) 2009-10-27
JP4706637B2 (ja) 2011-06-22
KR20070085446A (ko) 2007-08-27

Similar Documents

Publication Publication Date Title
WO2006057348A1 (ja) 表面処理された銀含有粉末の製造方法、及び表面処理された銀含有粉末を用いた銀ペースト
JP5023506B2 (ja) 導電性塗料の製造方法
CN100577328C (zh) 表面处理的含银粉末的制造方法、以及使用表面处理的含银粉末的银糊剂
Lee et al. Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics
JP2007177103A (ja) 導電性塗料および導電性塗料の製造方法
JP5937730B2 (ja) 銅粉の製造方法
US7736693B2 (en) Nano-powder-based coating and ink compositions
JP5068468B2 (ja) 導電性インキ組成物および印刷物
US20050214480A1 (en) Nano-powder-based coating and ink compositions
JP2005507452A (ja) 金属ナノ粒子を含むインクジェットインク
JP2005507452A5 (ja)
WO2003038838A1 (fr) Pate a compose ag
JPWO2018190246A1 (ja) 銅粒子混合物及びその製造方法、銅粒子混合物分散液、銅粒子混合物含有インク、銅粒子混合物の保存方法及び銅粒子混合物の焼結方法
JP5213592B2 (ja) 銅微粉およびその分散液並びに銅微粉製造法
JP2005281781A (ja) 銅ナノ粒子の製造方法
Songping Preparation of ultra fine nickel–copper bimetallic powder for BME-MLCC
CN103702786B (zh) 银微颗粒以及含有该银微颗粒的导电性膏、导电性膜和电子器件
JP5453789B2 (ja) 金属微粒子分散体、金属薄膜の製造方法および金属薄膜
JP2013008907A (ja) 導電性ペースト用酸化銅粉末、導電性ペースト用酸化銅粉末の製造方法、導電性ペースト及びこれを用いて得られる銅配線層
JP7070923B2 (ja) フレキシブル電子部品用ペースト、フレキシブル電子部品用硬化膜、及びフレキシブル電子部品
WO2023210663A1 (ja) 球状銀粉、球状銀粉の製造方法、球状銀粉製造装置、及び導電性ペースト
WO2023210662A1 (ja) 球状銀粉、球状銀粉の製造方法、球状銀粉製造装置、及び導電性ペースト
JP7288133B1 (ja) 銀粉及び銀粉の製造方法ならびに導電性ペースト
WO2024024432A1 (ja) 複合銅ナノ粒子及び複合銅ナノ粒子の製造方法
KR20240048000A (ko) 은분 및 은분의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547865

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11719602

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005809753

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580040489.4

Country of ref document: CN

Ref document number: 1020077011805

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005809753

Country of ref document: EP