WO2006054716A1 - プロピレン系樹脂押出発泡体 - Google Patents

プロピレン系樹脂押出発泡体 Download PDF

Info

Publication number
WO2006054716A1
WO2006054716A1 PCT/JP2005/021283 JP2005021283W WO2006054716A1 WO 2006054716 A1 WO2006054716 A1 WO 2006054716A1 JP 2005021283 W JP2005021283 W JP 2005021283W WO 2006054716 A1 WO2006054716 A1 WO 2006054716A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
extruded foam
based resin
polymer
extruded
Prior art date
Application number
PCT/JP2005/021283
Other languages
English (en)
French (fr)
Inventor
Minoru Sugawara
Yasuhiko Otsuki
Motoki Yamada
Ryoichi Tsunori
Original Assignee
Prime Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co., Ltd. filed Critical Prime Polymer Co., Ltd.
Priority to JP2006545177A priority Critical patent/JPWO2006054716A1/ja
Publication of WO2006054716A1 publication Critical patent/WO2006054716A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to a propylene-based resin extruded foam having both heat insulation performance and vibration damping performance.
  • Extruded foams obtained by extrusion foaming of thermoplastic resin and extrusion of these thermoplastic resin from a die having a large number of small holes are bundled into a strip of extruded resin.
  • Extruded foam strips formed by so-called strand extrusion, in which the outer surfaces are fused and foamed, are lightweight and excellent in mechanical properties, so they are structural materials in the fields of construction, civil engineering, automobiles, etc. It is widely used as a thermal insulation material.
  • an extruded foam of thermoplastic resin an extruded foam made of polyurethane-based resin or polystyrene-based resin is known.
  • polyurethane-based resin is a material that does not necessarily have excellent recycling characteristics, so it is fully compatible with the Building Recycling Law (the Law Concerning Recycling of Materials Related to Construction Work). There was a problem that I could not do it.
  • polystyrene resins are inferior in heat resistance and chemical resistance, it has been desired to provide extruded foams using thermoplastic resins instead of these.
  • polypropylene-based resin is excellent in mechanical properties, heat resistance, chemical resistance, electrical properties, etc., and is a low-cost material, and is therefore widely used in various molding fields.
  • Extruded foams based on rosin resin are also expected to be highly industrially useful.
  • polypropylene which is a straight chain resin, causes a sudden drop in viscosity when melted, resulting in a decrease in strength. It was difficult to obtain an extruded foam having a high closed cell ratio and a high expansion ratio equivalent to the thermoplastic rosin used. In order to improve the moldability, it is difficult to make the average cell diameter of the foamed cells (bubbles) of the extruded product obtained uniform.
  • vibration damping performance is also required.
  • vibration board surfaces such as automobile door panels, fender panels, ceiling panels, or trunk crates.
  • an extruded foam can be applied, it is possible to achieve light weight.
  • the heat insulation performance when an extruded foam is used as a heat insulating material depends on the expansion ratio and the cell diameter at a certain expansion ratio (for example, 10 times or more).
  • the expansion ratio the heat transfer becomes smaller as the material wall in the extruded foam becomes thinner, so that the higher the expansion ratio, the better the heat insulation performance.
  • the cell diameter is reduced at the same expansion ratio, the number of cell walls that block radiant heat increases, making it difficult to transfer heat and improving heat insulation. Therefore, the cell diameter is small!
  • the expansion ratio is increased and the average cell diameter is reduced to improve the heat insulation performance, the thickness of the molded product can be reduced, resulting in cost reduction.
  • Patent Document 1 JP-A-9 25354
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-1384
  • the conventional propylene-based resin-extruded foam as disclosed in the above-mentioned patent document can achieve an improvement in the expansion ratio to some extent, the average cell diameter can be reduced to 400 m or less. It was difficult to further improve the heat insulation performance because it was difficult.
  • the vibration-damping performance has not been sufficient, so the propylene-based resin having both heat insulation performance and vibration damping performance. It has been desired to provide an extruded foam.
  • an object of the present invention is to provide a propylene-based resin-extruded foam having excellent heat insulation performance and good vibration damping performance because the average cell diameter can be reduced in a state where the expansion ratio is increased. It is to provide. Means for solving the problem
  • the propylene-based resin-extruded foam of the present invention is a propylene-based resin-extruded foam obtained by extruding and propylene-based resin, and constitutes an extruded foam.
  • Propylene-based resin contains olefin-based polymer whose loss tangent (tan ⁇ ) at a temperature of 298K and frequency of 10Hz is 0.04 ⁇ : LOO, foaming ratio is more than 10 times, and average cell diameter is It is less than m.
  • the propylene-based resin-extruded foam of the present invention has a foaming ratio of 10 times or more and an average cell diameter (bubble diameter) of less than 400 ⁇ m, and therefore has a large number of cell walls in the extruded foam. Therefore, it is possible to efficiently block radiant heat from the outside. As a result, an extruded foam excellent in heat insulation performance can be provided.
  • the propylene-based resin extruded foam of the present invention has a loss tangent (tan ⁇ ) at a temperature of 298 K and a frequency of 10 Hz of 0.04 to LOO or less with respect to the propylene-based resin as a constituent material.
  • the olefin-based polymer (hereinafter sometimes referred to as “specific olefin-based polymer”) is added.
  • This particular olefinic polymer does not bind to the constituent propylene resin, so it is excluded from the crystal of polypropylene, which is a crystalline polymer, and as a result, the surface of the foam cell of the extruded foam is viscous.
  • the specific olefin-based polymer that is a substance is uniformly present.
  • propylene-based resin which is a rigid part, has a property of propagating energy, while a substance having a viscosity near room temperature (a specific olefin-based polymer) uses vibration energy as a molecular molecule inside. Because it is used as thermal energy for movement, it has the property of absorbing vibration energy.
  • the specific olefin-based polymer having a molecular structure close to that of the polypropylene-based resin which is a vibration surface in which it is desirable to uniformly disperse the adhesive material on the vibration surface, Since it has a certain degree of compatibility with polypropylene-based resin, it can be uniformly dispersed on the surface of the cell wall to efficiently absorb vibration, and an extruded foam excellent in vibration damping performance can be provided. it can.
  • the present invention can suitably provide a propylene-based resin foam foam having both heat insulation performance and vibration damping performance.
  • the propylene-based resin which is a constituent material, is excellent in recycling performance, and has good chemical resistance, heat resistance, and the like. The various performances (recycling performance, chemical resistance, heat resistance, etc.) will be enjoyed.
  • propylene-based resin which is a low-cost material, an extruded foam having the above-described effects can be provided at a low cost.
  • the propylene-based resin extruded foam of the present invention preferably has a weight ratio (aZb) force of lZl00 to 80Zl00 between the specific polyolefin polymer (a) and the propylene-based resin (b). Good.
  • the foamed cell of the polypropylene-based resin has a foam cell.
  • the olefin-based polymer is appropriately dispersed on the wall surface, so that the vibration damping performance can be improved.
  • the propylene-based resin-extruded foam of the present invention preferably uses the 1-butene-based copolymer of the following first or second aspect as the olefin-based polymer.
  • a 1-butene polymer By using a 1-butene polymer, vibration damping performance can be reliably imparted to the extruded foam.
  • Stereoregularity index ⁇ (mmmm) / (mmrr + rmmr) ⁇ is 30 or less
  • Second aspect A 1-butene polymer comprising the following (1), (2) and (3 ').
  • the extruded foam of the propylene-based resin of the present invention preferably has a closed cell ratio of 40% or more.
  • the independent foaming rate of the propylene-based resin-extruded foam is 40% or more, a large number of independent air bubbles make it difficult to conduct heat, so that the heat insulation performance is further improved and the impact strength, etc.
  • the extruded foam has excellent mechanical strength and moisture resistance.
  • the average cell diameter is preferably 200 ⁇ m or less.
  • the average cell diameter of the propylene-based resin-extruded foam is as small as 200 ⁇ m or less, it is possible to form more bubble walls in the extruded foam, thereby further improving the heat insulation performance. Excellent extruded foam.
  • the propylene-based resin-extruded foam of the present invention is preferably an extruded foam-strip bundling body in which a large number of extruded foams are bundled.
  • the propylene-based resin-extruded foam has an extruded foam-strip converging body force in which a large number of strip-like extruded foams are concentrated, so that the expansion ratio of the extruded foam is increased.
  • a foamed molded article having a sufficient foaming ratio and a sufficient thickness can be easily molded in various shapes.
  • the propylene-based resin constituting the foam is preferably a propylene-based multistage polymer having the following (A) and (B) forces.
  • This propylene-based multistage polymer comprises a component (i), that is, an ultrahigh molecular weight propylene-based heavy polymer.
  • the ratio of closed cells in the extruded foam can be increased, and for example, the closed cell ratio can be reliably set to 40% or more.
  • the propylene-based resin-extruded foam of the present invention has the following relationship between the melt flow rate (MFR) at 230 ° C and the melt tension (MT) at 230 ° C of the propylene-based multistage polymer: It is preferable to have (I).
  • the relationship between the melt flow rate (MFR) at 230 ° C and the melt tension (MT) at 230 ° C includes the formula (I). Molding becomes easy, and an extruded foam with an expansion ratio of 10 times or more can be obtained easily and reliably.
  • FIG. 1 is a schematic diagram showing a morphology in which component (b) is selectively layered around bubbles in Example 2 of the present invention.
  • FIG. 2 is a schematic diagram showing a morphology in which component (b) is dispersed in component (a) in Example 2.
  • FIG. 3 is an image of a cross section of the foam of Example 2 taken by magnifying a wall portion between bubbles by a transmission electron microscope (TEM) at a magnification of 13000 times.
  • TEM transmission electron microscope
  • the propylene-based resin extruded foam (hereinafter referred to as extruded foam) of the present invention has a loss tangent (tan ⁇ ) at a temperature of 298K and a frequency of 10Hz of propylene-based resin as a constituent material of 0.04 to 1.
  • 00 is an olefin polymer (specific olefin polymer), and this specific olefin It is made by extrusion foaming of propylene-based resin containing in-series resin, and the expansion ratio is
  • the average cell diameter is 10 times or more and less than OO / z m.
  • the independent foaming ratio of the extruded foam is 40% or more, preferably 60% or more, a large number of independent bubbles transmit heat, so that the heat insulation performance is further improved and the impact strength is improved.
  • the mechanical strength and moisture resistance such as are excellent.
  • the propylene-based resin forming the extruded foam of the present invention having such a structure includes a propylene-based resin having a high melt tension at the time of melting, such as JP-A-10-279632 and JP-A-2000.
  • a propylene-based resin having a high melt tension at the time of melting such as JP-A-10-279632 and JP-A-2000.
  • Propylene-based resins described in 309670, JP-A 2000-336198, JP-A 2002-12717, JP 2002-542360, JP 2002-509575, and the like can be used.
  • the propylene-based resin a resin material having excellent viscoelastic properties that is desired to increase the melt tension at the time of melting is used. It is preferable to use it.
  • propylene-based resin having excellent viscoelastic properties examples include a propylene-based multistage polymer having the following component (A) and component (B) power as the propylene-based resin constituting the foam.
  • A component
  • B component
  • This propylene-based multistage polymer achieves high melt tension by adding component (i), that is, an ultra-high molecular weight propylene polymer, and the viscoelastic properties are adjusted by adjusting the molecular weight distribution. It is a straight-chain propylene polymer.
  • the foaming ratio is 10 times or more and the average cell diameter is smaller than 00 ⁇ m (preferably 200 ⁇ m or less), and a propylene-based resin-extruded foam having a closed cell ratio of 60% or more can be obtained with certainty.
  • the melt tension may be insufficient and the desired foaming performance may not be obtained, while if the mass fraction exceeds 20% by mass.
  • melt fracture may become intense, which may cause rough skin of the extruded foam and reduce the product quality.
  • the intrinsic viscosity of component (A) is preferably more than lOdLZg as described above,
  • the mass fraction of component (A) is preferably in the range of 8 to 18% by mass, particularly preferably in the range of 10 to 16% by mass.
  • the melt tension may be insufficient and the desired foaming performance may not be obtained.
  • OdLZg the viscosity will be high. In some cases, suitable extrusion cannot be performed.
  • the mass fraction of component (B) is less than 80% by mass, it may be difficult to carry out suitable extrusion molding. If the mass fraction exceeds 95% by mass, the melt tension will be low, This may also make it difficult to perform suitable extrusion.
  • the intrinsic viscosity of component (B) is preferably in the range of 0.5 to 3. OdLZg as described above, but is preferably in the range of 0.8 to 2. OdLZg. It is particularly preferably within the range of 1.0 to 1.5 dLZg.
  • the mass fraction of the component (B) is preferably in the range of 82 to 92% by mass, particularly preferably in the range of 84 to 90% by mass.
  • This propylene-based multistage polymer has an oc of 2 to 8 carbon atoms constituting the copolymer component.
  • olefins examples include ethylene, 1-butene and the like, which are olefins other than propylene. Among these, it is preferable to use ethylene.
  • Propylene-based multistage polymers have a melt flow rate (MFR) force at 230 ° C of 10
  • MFR melt flow rate
  • the OgZlO content or less is preferred.
  • the 20gZlO content or less is particularly preferred. If MFR exceeds lOOgZlO, the melt tension and viscosity of the multistage polymer will be low, and molding may be difficult.
  • the relationship between the melt flow rate (MFR) at 230 ° C and the melt tension (MT) at 230 ° C preferably includes the following formula (I).
  • melt flow rate (MFR) at 230 ° C and the melt tension (MT) at 230 ° C does not satisfy the formula (I)
  • high-magnification foaming It may be difficult to perform molding, and an extruded foam with an expansion ratio of 10 times or more may not be obtained.
  • the above-mentioned constant (1.2) is preferably 1.3 or more, particularly preferably 1.4 or more.
  • the component (A) should be contained in an amount of 5% by mass.
  • the propylene-based multistage polymer has a dynamic viscoelasticity in the molten state (angular frequency ⁇ and storage modulus G
  • the slope of the storage elastic modulus on the high frequency side is a certain amount or more.
  • the storage elastic modulus G when the angular frequency is lOmdZs (10 )
  • G '(10) / G' (1) which is the ratio of the storage elastic modulus G '(1) when the angular frequency is IradZs, is preferably 2.5 or more. It is particularly preferred that If the ratio G ′ (10) ZG ′ (1) is less than 2.0, the stability of the extruded foam when an external change such as stretching is applied may decrease.
  • the propylene-based multistage polymer preferably has a storage elastic modulus slope on the low frequency side of a certain amount or less as a dynamic viscoelasticity in a molten state.
  • '(0. 1) / G' (0. 01) is 6.0 or less.
  • Particularly preferable is 4.0 or less. If the ratio G ′ (0.1) / G ′ (0.01) exceeds 6.0, it may be difficult to increase the expansion ratio of the extruded foam. is there.
  • Such a propylene-based multistage polymer uses an olefin polymerization catalyst comprising the following components (a) and (b), or the following components (a), (b) and (c), and has two or more stages.
  • the polymerization step it can be produced by polymerizing propylene or copolymerizing propylene and a-olefin having 2 to 8 carbon atoms.
  • Solid catalyst component obtained by treating trisalt-titanium obtained by reducing tetrasalt-titanium with an organoaluminum compound with an ether compound and an electron acceptor.
  • a solid catalyst component obtained by treating trisalt titania obtained by reducing tetrasalt titanate with an organoaluminum compound with an ether compound and an electron acceptor (hereinafter, Simply “(a) Solid catalyst component”)!
  • organic aluminum compounds that reduce titanium tetrachloride include (i) alkylaluminum dinos, rides, such as methylaluminum dichloride, ethylaluminum dichloride, and n-propylaluminum.
  • alkyl is lower alkyl such as methyl, ethyl, propyl, butyl and the like.
  • the “halide” is chloride or bromide, and the former is particularly common.
  • the reduction reaction with an organoaluminum compound to obtain trisalt-titanium is usually carried out in a temperature range of -60 to 60 ° C, preferably 30 to 30 ° C. If the temperature in the reductive reaction is lower than 60 ° C, a long time is required for the reductive reaction. On the other hand, if the temperature in the reductive reaction exceeds 60 ° C, partial reduction may occur.
  • the reduction reaction is performed using an inert hydrocarbon solvent such as pentane, heptane, octane and decane. I prefer to carry out!
  • the titanium trichloride obtained by the reduction reaction of tetrachloride-titanium with an organoaluminum compound to ether treatment and electron acceptor treatment.
  • the preferred Eterui ⁇ product to be used in processing for example, Jeffrey Chino Les ether Honoré, di n - propyl Honoré ether Honoré, di -n- butyl Honoré ether Honoré, diisoamyl ether, di-neopentyl ether, di-n hexyl ether Ether compounds in which each hydrocarbon residue is a chain hydrocarbon having 2 to 8 carbon atoms, such as di-octyl ether, di-2-ethylhexyl ether, methyl-n-butyl ether, and ethyl isobutyl ether.
  • di-n-butyl ether it is particularly preferable to use di-n-butyl ether.
  • halogen compounds of Group III to Group IV and Group VIII elements of the periodic table Titanium tetrachloride, tetrachloride-caine, boron trifluoride, trichloride-boron, pentachloride-antimony, gallium trichloride, iron trichloride, tellurium dichloride, tin tetrachloride, trichloride Examples thereof include phosphorus chloride, phosphorus pentachloride, tetrasalt / vanadium and tetrasalt / zirconium.
  • the treatment of titanium trichloride with the ether compound and the electron acceptor may be performed using a mixture of both treatment agents, or with one treatment agent. After the treatment, the treatment with the other treatment agent may be performed. Of these, it is more preferable to perform the treatment with an electron acceptor after the ether treatment, which is preferred by the latter.
  • the ether treatment with the above-mentioned trisalt / titanium is performed by bringing titanium trichloride into contact with the ethery compound, and the treatment of the trisalt / titanium with the ethery compound is performed in the presence of a diluent. It is advantageous to do this by bringing them into contact. For such diluents, it is preferred to use inert hydrocarbon compounds such as hexane, heptane, octane, decane, benzene and toluene.
  • the treatment temperature in the ether treatment is preferably 0 to 100 ° C.
  • the processing time Although it is not particularly limited, it is usually performed in the range of 20 minutes to 5 hours.
  • the amount of the ether compound used may generally be in the range of 0.05 to 3.0 moles, preferably 0.5 to 1.5 moles per mole of titanium trichloride.
  • the amount of the ether compound used is less than 0.05 mol, the stereoregularity of the produced polymer cannot be sufficiently improved, which is not preferable.
  • the amount of the ether compound used exceeds 3.0 mol, the stereoregularity of the polymer produced is improved, but the yield is lowered.
  • the trisalt-titanium treated with an organoaluminum compound or an etheric compound is a composition mainly composed of trisalt-titanium.
  • Solvay-type trisalt-titanium can be preferably used as such a solid catalyst component (a).
  • organoaluminum compound (b) the same organoaluminum compound as described above may be used.
  • Examples of the cyclic ester compound (C) include ⁇ -latathon, ⁇ -latathon, £ -latathon, etc., and it is preferable to use ⁇ -latathon.
  • the olefin polymerization catalyst used for producing the propylene-based multistage polymer can be obtained by mixing the components (a) to (c) described above.
  • propylene-based multistage polymer among the two-stage polymerization methods, it is preferable to polymerize propylene or copolymerize propylene and a-olefin having 2 to 8 carbon atoms in the absence of hydrogen.
  • “in the absence of hydrogen” means substantially in the absence of hydrogen, and includes cases in which a trace amount of hydrogen is present only when no hydrogen is present (for example, about 10 mol ppm). .
  • an ultrahigh molecular weight propylene polymer that is, a component of the propylene multistage polymer ( ⁇ ) can be manufactured.
  • Ingredient ( ⁇ ) is, in the absence of hydrogen, the raw material monomer as the polymerization temperature, preferably 20 to 80 ° C, more preferably 40 to 70 ° C, and the polymerization pressure is generally normal pressure to 1.47 MPa. Preferably 0.39 ⁇ : under the condition of L 18MPa It is preferable to manufacture by slurry polymerization.
  • component (B) of the propylene-based multistage polymer is produced in the second and subsequent stages.
  • the production conditions for component (B) are not particularly limited except that the above-mentioned catalyst for olefin polymerization is used, but the raw material monomer is preferably used at a polymerization temperature of 20 to 80 ° C, more preferably 60. ⁇ 70 ° C, polymerization pressure is generally normal pressure ⁇ 1.47 MPa, preferably 0.19-1.18 MPa, preferably polymerized under the presence of hydrogen as a molecular weight regulator, .
  • preliminary polymerization may be performed before the main polymerization.
  • the powder morphology can be maintained well.
  • the prepolymerization generally has a polymerization temperature of preferably 0 to 80 ° C, more preferably 10 to 60 ° C, and a polymerization amount.
  • a polymerization temperature preferably 0 to 80 ° C, more preferably 10 to 60 ° C
  • a polymerization amount As an example, it is preferable to polymerize 0.01 to 100 g, more preferably 0.1 to 10 g of propylene or copolymerize propylene and ⁇ -talin having 2 to 8 carbon atoms per lg of the solid catalyst component.
  • propylene-based resin which is a constituent material of the extruded foam, is used as a propylene-based resin composition, and the above-mentioned propylene-based multistage polymer and a melt flow rate (MFR) force at 230 ° C ⁇ OgZlO And the ratio between the weight average molecular weight (M) and the number average molecular weight (M).
  • a propylene polymer having M / M of 5.0 or less may be included. Said pro w n
  • the extruded foam has excellent viscoelastic properties with high melt tension.
  • the extruded foam has a high foaming ratio, good surface appearance, and stretching during sheet formation. When cutting is prevented, an effect can be imparted.
  • the weight ratio of the propylene polymer to the propylene multistage polymer is 6 times or more, more preferably 10 times or more. If the weight ratio is less than 8 times, the surface appearance of the extruded foam may be poor.
  • the melt flow rate (MFR) of the propylene-based polymer is preferably 30 gZlO or less, more preferably 15 gZlO or less, and even more preferably lOgZlO or less. If the MFR exceeds 30gZlO, molding failure of the extruded foam may occur. is there.
  • the M / M of the propylene-based polymer is preferably 5.0 or less, and 4.5 or less.
  • the propylene-based polymer can be produced by a polymerization method using a known catalyst such as a Ziegler-Natta catalyst or a metamouth catalyst.
  • This rosin composition has a dynamic elastic viscoelasticity in a molten state (relation between angular frequency ⁇ and storage elastic modulus G '), and the slope of the storage elastic modulus on the high frequency side is larger than a certain amount. In addition, it is preferable that the slope of the storage elastic modulus on the low frequency side is a certain amount or less.
  • G '(10) / G is the ratio of the storage elastic modulus G' (10) when the angular frequency is lOradZs and the storage elastic modulus G '(1) when the angular frequency is 1 radZs.
  • '(1) is preferably 5.0 or more, particularly preferably 5.5 or more. If G '(10) ZG' (1), which is a strong ratio, is less than 5.0, stability may be reduced when an extrudate foam is subjected to external changes such as stretching.
  • G ′ (10) ZG ′ (1) is 5.0 or more in the above-described rosin composition.
  • a certain degree of strain hardening is required for bubble breakage at the final stage of bubble growth and for bubble breakage caused by high-speed elongation deformation in the vicinity of the die lip in extrusion foam molding.
  • An appropriate amount of high molecular weight component in the time domain is required, and for this purpose, the storage elastic modulus G ′ in the low frequency domain must be large to some extent. Therefore, as an index, the storage elastic modulus G ′ (0.1) when the angular frequency ⁇ is 0.1 IradZs, and the storage elastic modulus G, (0.01) when the angular frequency is 0.
  • G, (0. 1) / G '(0. 01) is set, the foaming ratio will decrease significantly due to bubble breakage. Was found to be. Therefore, it is preferable that G, (0.1) / G, (0.01) be 14.0 or less in the above-described rosin composition.
  • the propylene-based resin constituting the extruded foam of the present invention may contain an antioxidant, a medium as long as it does not interfere with the effects of the present invention, if necessary.
  • Stabilizers or cross-linking agents such as neutralizers, crystal nucleating agents, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal stalagmites, antacid absorbers, chain transfer
  • Additives such as additives, nucleating agents, lubricants, plasticizers, fillers, reinforcing agents, pigments, dyes, flame retardants and antistatic agents can be added. The addition amount of these additives may be appropriately determined according to various properties and molding conditions required for the extruded foam to be molded.
  • the propylene-based multistage polymer having excellent melt viscoelasticity is used as the propylene-based resin, it is known in advance in a state where the above-mentioned additives are added as necessary. It is also possible to form a desired extruded foam after melt-kneading using a melt-kneader to form a pellet.
  • the propylene-based resin extruded foam of the present invention has a propylene-based resin, which is a constituent material, having a loss tangent (tan ⁇ ) at a temperature of 298K and a frequency of 10Hz of 0.04 to LOO. It is characterized by containing a polymer (specific olefin polymer).
  • a specific olefin polymer By adding such a specific olefinic polymer as a constituent material to propylene-based resin, a specific olefin-based weight which is a viscous substance is applied to the wall surface of the foamed cell of the extruded foam composed of propylene-based resin. Since the coalescence is uniformly dispersed, the extruded foam has excellent vibration damping performance.
  • a specific olefin-based polymer has a loss tangent (ta 11 3) is from 0.04: It is particularly preferable that the force is 0.04 to 10 as LOO. If the loss tangent is from 0.04 to L00, it exhibits a viscous behavior and can exhibit excellent vibration damping performance when it is included in a propylene-based resin to form an extruded foam. On the other hand, if the loss tangent is less than 0.04, sufficient vibration damping performance cannot be obtained, and if the loss tangent is greater than 100, it exhibits solid properties, does not absorb energy inside, and is a rigid propylene-based resin. Since it vibrates with fat, it cannot exhibit vibration control performance.
  • the loss tangent can be measured with, for example, a commercially available solid viscoelasticity measuring device (for example, DMS 6100, manufactured by Seiko Instruments Inc.)! ,.
  • a commercially available solid viscoelasticity measuring device for example, DMS 6100, manufactured by Seiko Instruments Inc.
  • such a specific olefin polymer (a) is preferably added to the polypropylene resin (b) so that the weight ratio (aZb) is 1Z100 to 80Z100. It is particularly preferable to add such that it is 5, 100 to 60 to 100.
  • the polyolefin polymer is appropriately dispersed on the wall surface of the foam cell in the foamed molded article made of polypropylene resin, and the Vibration performance can be improved.
  • this specific olefin-based polymer for example, a resin material disclosed in WO 03-070788 and WO 03-070790, a resin material disclosed in Japanese Patent No. 3255697, and the like can be used.
  • Specific examples include high-flow 1-butene copolymers disclosed in WO 03-070788 or similar 1-butene polymers.
  • the 1-butene copolymer specifically, those shown in the following first embodiment or second embodiment can be used. By using these, it is possible to reliably impart vibration damping performance to the extruded foam.
  • Stereoregularity index ⁇ (mmmm) / (mmrr + rmmr) ⁇ is 30 or less [0070]
  • the 1-butene polymer comprises the following (1 '), (2) and (3') as the second form.
  • the 1-butene polymer of the first embodiment has an intrinsic viscosity [7?] Measured in a tetralin solvent at 135 ° C of 0.01 to 0.5dLZg, and this intrinsic viscosity [7? ] Is preferably 0.1 to 0.5 dL. If the intrinsic viscosity [7?] Is less than 0. OldLZg, the physical properties (strength) may decrease. On the other hand, if it exceeds 0.5 dL, the fluidity may deteriorate.
  • the 1-butene polymer of the second embodiment has an intrinsic viscosity [r?] Of 0.25-0. 5dLZg measured in a tetralin solvent at 135 ° C, and this intrinsic viscosity [7? ] Is preferably 0.3 to 0.5 dLZg.
  • the intrinsic viscosity [7?] is smaller than 0.25dLZg, the molecules that connect the crystals are insufficient and the toughness (tensile elongation at break) decreases, and if it exceeds 0.5dLZg, the viscosity increases too much, causing fluidity. The moldability may be deteriorated and molding defects may occur.
  • the 1-butene-based polymer of the first and second embodiments described above must be a crystalline rosin having a melting point (TD) that is soft and has a point strength of 0 to 100 ° C. using a differential scanning calorimeter (DSC).
  • the temperature is preferably 0 to 80 ° C.
  • the melting point (T-D) is determined by DSC (abbreviation for Differential Scanning Calorimetry). In other words, using a differential scanning calorimeter (DSC-7: manufactured by Perkin 'Elma Ichi), 10 mg of the sample was held in a nitrogen atmosphere at 10 ° C for 5 minutes and then heated at 10 ° CZ for 5 minutes. This is the peak top 1S melting point (TD) of the peak observed on the highest temperature side of the melting point endothermic curve.
  • the “crystalline resin” in the present specification means a resin in which this TD is observed.
  • the stereoregularity index ⁇ (mm mm) Z (mmrr + rmmr) ⁇ is 30 or less, preferably 20 or less, more preferably 15 or less. If this stereoregularity index exceeds 30, the flexibility of the viscous material may decrease and the vibration absorption effect may decrease.
  • the mesopentad fraction (mmmm) is preferably 90% or less, more preferably 85%, and even more preferably 80% or less.
  • the mesopentad fraction (mmm m) exceeds 90%, the flexibility and the secondary cache property may be reduced.
  • the 1-butene polymer of the second embodiment has a mesopentad fraction (mmmm) of 73% or less.
  • mmmm mesopentad fraction
  • the 13 C nuclear magnetic resonance spectrum may be measured by the following equipment and conditions: Equipment: JEOL (Building) S ⁇ NM- EX400 type 13C-NMR equipment
  • Solvent 1, 2, 4 90:10 (volume ratio) mixed solvent of triclonal benzene and heavy benzene Temperature: 130 ° C
  • Pulse repetition time 4 seconds
  • the stereoregularity index ⁇ (mmmm) / (mmrr + rmmr) ⁇ of such a 1-butene-based polymer can be expressed as (mmmm), (mmrr) and ( rmmr) What is necessary is just to calculate the value power.
  • the 1-butene-based polymer of the first and second embodiments has a weight average molecular tatami (M) measured by the GPC method of 10,000 to 100,000. Is preferred
  • RI detector for liquid chromatogram WATERS 1500C measurement conditions [0081] (50C measurement conditions)
  • the 1-butene polymer of the first embodiment preferably has a tensile modulus of 300 MPa or less, preferably 500 MPa or less, as measured by a tensile test in accordance with JIS K7113. If the tensile modulus exceeds 500 MPa, sufficient softness may not be obtained.
  • the 1-butene polymer is a copolymer, it is preferably a random copolymer. Further, the structural unit from which 1-buteneca is obtained is preferably 50% mol or more, more preferably 70 mol% or more. If the structural unit derived from 1-butene is smaller than 50 mol%, there is a possibility that a secondary cache property will be adversely affected.
  • the randomness index R obtained by V is preferably 1 or less.
  • [ ⁇ ⁇ ] is the ⁇ -olefin chain fraction
  • [ ⁇ ⁇ ] is the butene chain fraction
  • [ ⁇ ⁇ ] is the one-year-old lefin-butene chain fraction.
  • R is an index representing randomness, and the smaller R is, the higher the isolation of a-olefin (comonomer), and the more uniform the composition.
  • This R is preferably 0.5 or less, and more preferably 0.2 or less.
  • butene content and R when the 1-butene polymer is a propylene'-butene copolymer may be measured as follows.
  • butene content and R were calculated by the following method by measuring 13 C-NMR spectrum under the following measurement conditions using JNM-—400 type NMR equipment manufactured by JEOL Ltd. do it.
  • Pulse repetition time 10 seconds
  • PP, PB, and BB chains conform to the method proposed in JC Randall, Macromolecules, 197 8, 11, 592, and the 13 C-nuclear magnetic resonance spectrum of So; The signal was measured to determine the PP, PB, and BB diamond chain fractions in the copolymer molecular chain.
  • the butene content and R when the 1-butene polymer is a octyne 'butene copolymer may be measured as follows. Specifically, the butene content and R can be calculated by the following method by measuring a 13 C-NMR spectrum under the following measurement conditions using a JNM-EX400 type NMR apparatus manufactured by JEOL Ltd. Good.
  • Pulse repetition time 10 seconds
  • the butene content and randomness index R were determined from the following formula chain fractions (mol%) from the following formulas (Y) and (Z).
  • [O O] represents the octene chain fraction
  • [B B] represents the butene chain fraction
  • [O B] represents the octene butene chain fraction
  • the 1-butene copolymer can be easily obtained by the method for producing a 1-butene copolymer disclosed in WO 03Z070788.
  • the extruded foam of the present invention can be obtained by extrusion foaming a mixed material of the above-described propylene-based resin and a specific olefin-based polymer.
  • a known extrusion foaming apparatus that can be heated to a state, kneaded while applying an appropriate shear stress, and foam-extruded can be used.
  • the extruder constituting the production apparatus either a single screw extruder or a twin screw extruder can be adopted.
  • a tandem type extrusion foam molding apparatus disclosed in JP-A-2004-237729, to which two extruders are connected, may be used.
  • foaming means for foaming the molded body physical foaming in which a fluid (gas) is injected into the molten resin material at the time of molding or chemical foaming in which a foaming agent is mixed with the resin material is employed. be able to.
  • the fluid to be injected includes an inert gas, such as carbon dioxide (carbon dioxide gas), nitrogen gas, or the like.
  • an inert gas such as carbon dioxide (carbon dioxide gas), nitrogen gas, or the like.
  • usable foaming agents include, for example, azodicarbonamide, azobisisobutyric-tolyl and the like.
  • the average cell diameter is less than OO / zm, Preferably, it is preferable to form a large number of fine foam cells of 200 ⁇ m or less because it can be surely performed.
  • the supercritical state refers to a state where the density of the gas and the liquid becomes equal and the two layers cannot be distinguished by exceeding the limit temperature and pressure at which the gas and the liquid can coexist.
  • the fluid generated in is called a supercritical fluid.
  • the temperature and pressure in the supercritical state are the supercritical temperature and the supercritical pressure.
  • carbon dioxide gas and nitrogen gas in a supercritical state are, for example, a resin material If about 4 to 15% by mass is injected, the molten resin material can be injected into the cylinder.
  • the shape of the extruded foam may be a known shape as a structural material that is not particularly limited, for example, a known shape such as a plate shape, a cylindrical shape, or a rectangular shape, and may be a cylindrical shape, a rectangular shape, a convex shape, or the like.
  • a known shape such as a shape or a concave shape can be employed.
  • the extruded foam is formed by, for example, extruding and foaming a large number of strips with a die force for extrusion in which a plurality of extrusion holes are formed. It is good also as an extrusion foaming strip bundling body. In this way, by forming an extruded foam strip converging body in which a large number of strip extruded foams are converging, the foaming ratio of the extruded foam can be increased, and a sufficient thickness for increasing the foaming ratio can be obtained.
  • the foamed molded product can be easily molded in various shapes.
  • the shape of the strips constituting such an extruded foamed strip converging body depends on the shape of the extrusion holes formed in the extrusion die, and the shape of the extrusion holes is circular, rhombus, or slit shape. It can be made into arbitrary shapes, such as. In molding, it is preferable that the pressure loss at the outlet of the extrusion die be 3 MPa to 50 MPa! /.
  • the shape of the extrusion holes formed in the extrusion die may be the same shape, or multiple types of extrusion holes may be formed in one extrusion die.
  • the foaming magnification force S is 10 times or more and the average cell diameter is less than 00 m, so the cell walls in the extruded foam Therefore, it is possible to efficiently block the radiant heat of the external force, and it is possible to provide an extruded foam excellent in heat insulation performance.
  • the average cell diameter of the propylene-based resin-extruded foam is preferably 200 ⁇ m or less. If the average cell diameter is further reduced to 200 m or less, more cell walls are formed in the extruded foam. Propylene-based extrusion with better thermal insulation performance It becomes a foam.
  • the loss tangent (tan ⁇ ) at a temperature of 298K and a frequency of 10Hz is 0.04 to the propylene-based resin that is a constituent material, it is made to contain an olefin-based polymer that is LOO. Since the olefin-based polymer, which is a viscous material, is present in a uniformly dispersed state on the wall surface of the foam cell that constitutes the molded body, vibrations are efficiently absorbed and vibration suppression is performed. An extruded foam having excellent performance can be provided.
  • the present invention can suitably provide a propylene-based resin foam foam having both heat insulation performance and vibration damping performance.
  • the propylene-based resin extruded foam of the present invention is a constituent material of which the propylene-based resin is excellent in recycling performance and also has good chemical resistance and heat resistance.
  • the bright propylene-based resin-extruded foam also enjoys these performances (recycling performance, chemical resistance, heat resistance). Furthermore, by using propylene-based resin, which is a low-cost material, an extruded foam having the above-described effects can be provided at low cost.
  • the extruded foam of the present invention has both excellent heat insulation performance and vibration control performance, so it can be used for structural materials in the automotive field (components such as ceilings, doors, floors, cowls, etc.), construction, and civil engineering. It can be applied to structural materials (building materials, etc.) in the field.
  • the extruded foam of the present invention has a small average cell diameter of less than 00 ⁇ m (preferably less than 200 ⁇ m), it has excellent heat insulation performance and the same heat insulation performance.
  • the thickness can be made thinner than the conventional one. Therefore, for example, when it is applied to the above-described fields, the secondary effect that the living space can be made larger than that of the conventional heat insulating material can be suitably achieved.
  • the measurement was performed using Capillograph 1C (manufactured by Toyo Seiki Co., Ltd.) at a measurement temperature of 230 ° C., an extrusion speed of 10 mm Zmin, and a take-up temperature of 3. lmZ.
  • Capillograph 1C manufactured by Toyo Seiki Co., Ltd.
  • a talented face with a length of 8 mm and a diameter of 2.095 mm was used.
  • the measurement was performed with an apparatus having the following specifications.
  • the storage elastic modulus G ′ can be obtained from the real part of the complex elastic modulus.
  • a stainless steel autoclave with a stirrer with an internal volume of 10 liters was thoroughly dried and replaced with nitrogen gas, 6 liters of dehydrated heptane was added, and nitrogen in the system was replaced with propylene. Thereafter, propylene was introduced while stirring to stabilize the inside of the system at an internal temperature of 60 ° C and a total pressure of 0.78 MPa, and then the prepolymerized catalyst component obtained in (i) above was converted to a solid catalyst equivalent of 0.75.
  • the polymerization was started by adding 50 ml of heptane slurry containing gram. When propylene was continuously fed for 35 minutes, the amount of propylene flow rate obtained was also found to be 151 g. As a result of sampling and analyzing a part of the polymer, the intrinsic viscosity was 14. Id LZg. Thereafter, the internal temperature was lowered to 40 ° C or lower, the stirring was loosened, and the pressure was released.
  • the internal temperature was again set to 60 ° C, and propylene was introduced with stirring while adding 0.15 MPa of hydrogen. While propylene was continuously supplied at a total pressure of 0.78 MPa, polymerization was carried out at 60 ° C for 2.8 hours. At this time, as a result of sampling and analyzing a part of the polymer, the intrinsic viscosity was 1.16 dL / g.
  • the polymerization weight ratio of the first stage and the second stage was 12. 2 / 87.8, and the intrinsic viscosity of the propylene polymer component produced in the second stage was determined to be 1.08dLZg. .
  • Irganox 1010 manufactured by Tinoku Specialty Chemicals Co., Ltd.
  • calcium stearate is 500 ppm as a neutralizer.
  • the mixture was mixed and melt-kneaded at a temperature of 230 ° C. with a lab plast mill single screw extruder (manufactured by Toyo Seiki Co., Ltd., ⁇ 20 mm) to prepare propylene polymer pellets.
  • Table 1 shows the physical properties and oil properties of the resulting propylene-based multistage polymer.
  • the 1-butene copolymer (a) disclosed in Example 1 of WO 03Z070788 is added to the pellet-shaped propylene-based multistage polymer (b) obtained in Production Example 1 described above in a weight ratio (a / b) was mixed as 15Z85 (85% by mass of a propylene-based multistage polymer and 15% by mass of a 1-butene copolymer) to obtain a molding material.
  • Measurement methods shall be in accordance with those described in WO 03/070788, except for loss tangent measurement.
  • This molding material was applied to two tandem extrusion foaming molding machines disclosed in JP-A-2004-237729 (a single-screw extruder with a screw diameter of ⁇ 50 mm and a single-screw extruder with a screw diameter of ⁇ 35). Equipped with a single-screw extruder), and a die having a large number of circular extrusion holes (circular tube die) assembled together, and a number of extruded foam strips are collected by the following method. A propylene-based resin-extruded foam, which is a plate-like extruded foam bundle, was produced.
  • Foaming is performed by injecting a CO supercritical fluid with a ⁇ 50mm single screw extruder.
  • the body is injected and the fluid is sufficiently dissolved in the molten molding material to be uniform. Thereafter, the extruded foam was molded from the connected ⁇ 35 mm single screw extruder so that the temperature of the resin at the die outlet in the ⁇ 35 mm single screw extruder was S180 ° C. Details of the manufacturing conditions are given below.
  • the resin temperature at the die outlet of the ⁇ 35mm single screw extruder is measured with a thermocouple thermometer, and this resin temperature can be considered as the temperature of the molten resin extruded while foaming.
  • Foaming ratio The density was determined and calculated by dividing the weight of the obtained foamed molded article by the volume determined using the water casting method.
  • Average cell diameter Measured according to ASTM D3576—3577.
  • Foaming agent CO supercritical fluid
  • the extruded foam of this example was evaluated for heat insulation capacity and vibration suppression performance using a conventional method, and both of them were able to obtain good evaluation results, and the extruded foam of the present invention had excellent heat insulation performance and It has been confirmed that it has vibration control performance.
  • the tangent loss tan ⁇ of solid viscoelasticity is a measure of vibration damping, that is, a measure of damping performance!
  • the elastic tan ⁇ was evaluated as an index of the damping performance of the foam. As tan ⁇ increases, the vibration absorption capacity improves.
  • the extruded foam of Example 1 showed a large increase in tan ⁇ as compared with the extruded foam of the propylene-based multistage polymer (b) obtained in Production Example 1. It was confirmed that the bright extruded foam showed excellent vibration damping performance.
  • Morphology in the foam varies depending on the compatibility and molecular weight of component (b) with component (a), but when component (b) tends to bleed at the bubble interface or bubbles are preferentially generated from component (b).
  • the morphology is such that the component (b) is selectively layered around the bubbles as shown in FIG.
  • the morphology is such that component (b) is dispersed in component (a) as shown in FIG.
  • the component (b) vibrates in the same way with the vibration of the component (a), so that the vibration damping performance of the component (b) improves the damping performance.
  • a more effective vibration damping effect is exhibited by increasing the magnitude of the generated strain according to the vibration of the bubble wall surface.
  • FIG. 3 shows a transmission electron microscope showing the wall portion between the bubbles in the cross section of the foam of Example 2.
  • TEM shows the result of shooting at 13000 times magnification.
  • the foam is dyed with ruthenium tetrachloride, so that the portion made of component (a) is blackened.
  • component (a) with damping effect can effectively block the propagation of vibration through component (b)! / You can see how you speak.
  • the propylene-based resin-extruded foam of the present invention is, for example, in the fields of architecture, civil engineering, and automobiles. Can be advantageously used for structural materials that require heat insulation performance and vibration control performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 発泡倍率を高くさせた状態で平均セル径を小さくすることができるため断熱性能に優れるとともに、制振性能も良好なプロピレン系樹脂押出発泡体を提供する。本発明のプロピレン系樹脂押出発泡体は、プロピレン系樹脂を押出発泡させてなり、かかる押出発泡体を構成するプロピレン系樹脂が度298K、周波数10Hzにおける損失正接(tanδ)が0.04~100であるオレフィン系重合体を含み、発泡倍率が10倍以上であり、平均セル径が400μm未満である。このような構成を採用することにより、優れた断熱性能と制振性能を兼ね備えたプロピレン系樹脂押出発泡体となる。

Description

明 細 書
プロピレン系樹脂押出発泡体
技術分野
[0001] 本発明は、断熱性能と制振性能を兼ね備えたプロピレン系榭脂押出発泡体に関す る。
背景技術
[0002] 熱可塑性榭脂を押出発泡成形した押出発泡体や、多数の小孔を有するダイからこ れらの熱可塑性榭脂を押し出し、押し出された榭脂の細条^^束してその外面を融 着させて発泡させる、いわゆるストランド押出により成形された押出発泡細条集束体 は、軽量でありながら機械的特性に優れることから、建築 ·土木分野や自動車分野等 の各分野における構造材料として幅広く利用されており、特に、断熱材料として適用 されている。このような熱可塑性榭脂の押出発泡体としては、ポリウレタン系榭脂、ポ リスチレン系榭脂からなる押出発泡体が知られている。
[0003] しかし、ポリウレタン系榭脂ゃポリスチレン榭脂は、リサイクル特性には必ずしも優れ ない材料であるため、建築リサイクル法 (建設工事に係る資材の再資源化等に関す る法律)に十分に対応することができないといった問題があった。カロえて、ポリスチレ ン系榭脂は、耐熱性ゃ耐薬品性に劣ることから、これらに代わる熱可塑性榭脂による 押出発泡体の提供が望まれていた。
[0004] 一方、ポリプロピレン系榭脂は、機械的特性、耐熱性、耐薬品性、電気特性などに 優れ、更には低コスト材料であることから、各成形分野に広く用いられており、ポリプ ロピレン系榭脂の押出発泡体も、その工業的有用性が高く期待できるものである。し かし、直鎖状の榭脂であるポリプロピレンは、溶融時にあっては急激な粘度の低下を 起こして強度が低下してしまい、発泡した気泡を保持できずに破泡されやすいため、 従来使用していた熱可塑性榭脂と同等の、独立気泡率が高く発泡倍率の高い押出 発泡体を得ることは困難であった。カロえて、得られる押出成形体の発泡セル (気泡) の平均セル径の大きさを均一かつ緻密にすることも難しぐ成形性の向上が望まれて [0005] 更には、建築 ·土木分野や自動車分野等にあっては、断熱性能のほか、制振性能 も要求され、例えば、自動車のドアパネル、フェンダーパネル、天井パネルあるいはト ランクリツドなどの振動基板面に対して押出発泡体を適用できれば、軽量ィ匕を図るこ ともできて好都合である。
[0006] ここで、押出発泡体を断熱材料として使用する場合における断熱性能は、ある程度 の発泡倍率 (例えば 10倍以上)にあっては、発泡倍率とセル径に依存する。すなわ ち、発泡倍率は、押出発泡体における材料壁が薄くなれば伝熱量が小さくなることよ り、発泡倍率が高い方が断熱性能は良好となる。同様に、同じ発泡倍率でセル径が 小さくなると、輻射熱を遮断する気泡壁数が多くなつて伝熱しにくくなり、断熱性が向 上するため、セル径は小さ!/、方が好まし 、。このように発泡倍率を高くさせた状態で、 平均セル径を小さくさせて断熱性能が向上すると成形体の厚さを薄くでき、コスト削 減となるという派生効果もあるため、プロピレン系榭脂押出発泡体においても、前記し た成形性の困難さが存在する一方で、ポリプロピレン系榭脂押出発泡体について、 発泡倍率を向上させ、かつ、セル径を小さくする検討が実施されていた (例えば、特 許文献 1及び特許文献 2)。
[0007] 特許文献 1 :特開平 9 25354号公報
特許文献 2:特開 2001— 1384号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、前記した特許文献に開示されるような従来のプロピレン系榭脂押出 発泡体は、発泡倍率の向上はある程度達成できるものの、平均セル径を 400 m り小さくすることが困難であるため、断熱性能を更に向上させることへの妨げとなって いた。そして、断熱性能を向上させようとしたこれらのプロピレン系榭脂押出発泡体に ついては、制振性能は十分なものではなカゝつたため、断熱性能と制振性能を併せ持 つたプロピレン系榭脂押出発泡体の提供が望まれていた。
[0009] 従って、本発明の目的は、発泡倍率を高くさせた状態で平均セル径を小さくするこ とができるため断熱性能に優れるとともに、制振性能も良好なプロピレン系榭脂押出 発泡体を提供することにある。 課題を解決するための手段
[0010] 前記した目的を達するために、本発明のプロピレン系榭脂押出発泡体は、プロピレ ン系榭脂を押出発泡させてなるプロピレン系榭脂押出発泡体であって、押出発泡体 を構成するプロピレン系榭脂が、温度 298K、周波数 10Hzにおける損失正接 (tan δ )が 0. 04〜: LOOであるォレフィン系重合体を含み、発泡倍率が 10倍以上であり、 平均セル径カ 00 μ m未満であることを特徴とする。
[0011] この本発明のプロピレン系榭脂押出発泡体は、発泡倍率が 10倍以上であり、平均 セル径 (気泡径)が 400 μ m未満であるため、押出発泡体中における気泡壁を多数 形成することができ、外部からの輻射熱を効率よく遮断することが可能となる。この結 果、断熱性能に優れた押出発泡体を提供することができる。
[0012] 更に、本発明のプロピレン系榭脂押出発泡体は、構成材料であるプロピレン系榭 脂に対して、温度 298K、周波数 10Hzにおける損失正接 (tan δ )が 0. 04〜: LOO以 下であるォレフィン系重合体 (以下、「特定のォレフィン系重合体」とする場合もある) を添加するようにしている。
この特定のォレフィン系重合体は構成材料であるプロピレン系榭脂とは結合しない ため、結晶性高分子であるポリプロピレンの結晶から排除されて、その結果、押出発 泡体の気泡セルの表面に粘性物質である当該特定のォレフィン系重合体を一様に 存在させることとなる。
[0013] すなわち、剛直部分であるプロピレン系榭脂は、エネルギーを伝搬する性質を有す る一方、室温付近で粘性を有する物質 (特定のォレフィン系重合体)は、振動エネル ギーを内部の分子運動の熱エネルギーとして使用するため、振動エネルギーを吸収 する性質を有する。また、振動を吸収するためには、振動面に一様に粘着性物質を 分散させることが望ましぐ振動面であるポリプロピレン系榭脂と分子構造が近い前記 の特定のォレフィン系重合体は、ポリプロピレン系榭脂とある程度の相溶性を有する ため、セルの壁面の表面に一様に分散して、効率よく振動を吸収することになり、制 振性能に優れた押出発泡体を提供することができる。
このように、本発明は、断熱性能と制振性能を兼ね備えたプロピレン系榭脂押出発 泡体を好適に提供できるものである。 [0014] また、構成材料であるプロピレン系榭脂は、リサイクル性能にも優れ、また、耐薬品 性や耐熱性等も良好であることから、本発明のプロピレン系榭脂押出発泡体も、これ らの諸性能 (リサイクル性能、耐薬品性、耐熱性等)を享受することになる。更には、 低コスト材料であるプロピレン系榭脂を使用することにより、前記した効果を有する押 出発泡体を低コストで提供することが可能となる。
[0015] 本発明のプロピレン系榭脂押出発泡体は、前記特定のォレフィン系重合体 (a)と前 記プロピレン系榭脂 (b)の重量比(aZb)力 lZl00〜80Zl00であることが好まし い。
この本発明によれば、構成材料に対して、重量比(aZb)が 1Z100〜80Z100と なるように特定のォレフィン系重合体を含むことにより、ポリプロピレン系榭脂からなる 発泡成形体において発泡セルの壁面にォレフィン系重合体が適度に分散されて、制 振性能を向上させることができる。
[0016] また、本発明のプロピレン系榭脂押出発泡体は、前記ォレフィン系重合体として、 下記の第 1態様または第 2態様の 1ーブテン系共重合体を使用することが好ましぐこ のような 1ーブテン系重合体を使用することにより、押出発泡体に制振性能を確実に 付与することができる。
[0017] 第 1態様:下記の(1)〜(3)の要件を具備する 1ーブテン系重合体。
(1) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 01〜0. 5dL/g
(2)示差走査型熱量計 (DSC)を用い、試料を窒素雰囲気下 10°Cで 5分間保持し た後、 10°CZ分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に 観測されるピークのピークトップとして定義される融点 (T — D)が 0〜: LOO°Cの結晶 性樹脂
(3)立体規則性指数 { (mmmm) / (mmrr+rmmr) }が 30以下
[0018] 第 2態様:下記の(1)、(2)及び (3 ' )を具備する 1ーブテン系重合体。
(1 ' ) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 25〜0. 5dL/g (2)示差走査型熱量計 (DSC)を用い、試料を窒素雰囲気下 10°Cで 5分間保持し た後、 10°CZ分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に 観測されるピークのピークトップとして定義される融点 (T — D)が 0〜: LOO°Cの結晶 性樹脂
(3 ' ) 13C—核磁気共鳴 (NMR)スペクトルから求めたメソペンタッド分率 (mmmm)が 73%以下
[0019] 本発明のプロピレン系榭脂押出発泡体は、独立気泡率が 40%以上であることが好 ましい。
この本発明によれば、プロピレン系榭脂押出発泡体の独立発泡率が 40%以上で あるので、独立した多数の気泡が熱を伝えにくくするため、断熱性能が更に向上する とともに、衝撃強度等の機械的強度や耐湿性が優れた押出発泡体となる。
[0020] 本発明のプロピレン系榭脂押出発泡体において、前記平均セル径が 200 μ m以下 であることが好ましい。
この本発明によれば、プロピレン系榭脂押出発泡体の平均セル径が 200 μ m以下 と更に小さいので、押出発泡体中における気泡壁を更に多く形成することができるた め、断熱性能により一層優れた押出発泡体となる。
[0021] 本発明のプロピレン系榭脂押出発泡体は、押出発泡された細条が多数集束された 押出発泡細条集束体であることが好まし 、。
この本発明によれば、プロピレン系榭脂押出発泡体が、細条の押出発泡体が多数 集束された押出発泡細条集束体力 なるようにしているので、押出発泡体の発泡倍 率を高くすることができ、発泡倍率が高ぐ十分な厚みを有する発泡成形体を、種々 の形状で容易に成形することができることとなる。
[0022] 本発明のプロピレン系榭脂押出発泡体は、発泡体を構成するプロピレン系榭脂が 下記 (A)及び (B)力もなるプロピレン系多段重合体であることが好ま U、。
(A) 135°C、テトラリン溶媒中で測定した極限粘度 [ 7? ]が lOdLZg超のプロピレン単 独重合体成分またはプロピレンと炭素数が 2〜8の aーォレフインとの共重合体成分 を、全重合体中に 5〜20質量%含有する
(B) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 5〜3. OdLZgのプロピ レン単独重合体成分またはプロピレンと炭素数が 2〜8の α—ォレフインとの共重合 体成分を、全重合体中に 80〜95質量%含有する
[0023] このプロピレン系多段重合体は、成分 (Α)、すなわち、超高分子量プロピレン系重 合体の付与により、高溶融張力化を達成し、また、分子量分布の調整により粘弾性 特性が調整され、優れた粘弾性特性を備えた直鎖状のプロピレン系重合体である。 従って、かかる粘弾性特性に優れたプロピレン系多段重合体を構成材料とすること により、発泡倍率が 10倍以上、平均セル径カ 00 mより小さい(好ましくは 200 m以下)プロピレン系榭脂押出発泡体を確実に得ることができる。また、かかるプロピ レン系多段重合体によれば、押出発泡体中の独立気泡の割合を高めることもでき、 例えば、独立気泡率を 40%以上とすることも確実に実施することができる。
[0024] 本発明のプロピレン系榭脂押出発泡体は、前記プロピレン系多段重合体の 230°C におけるメルトフローレート(MFR)と、 230°Cにおける溶融張力(MT)との関係が、 下記式 (I)を具備することが好まし 、。
[0025] [数 1]
1 o g (M T ) > - 1 . 3 3 1 o g (M F R) + 1 . 2 …… ( I )
[0026] この本発明によれば、 230°Cにおけるメルトフローレート(MFR)と、 230°Cにおける 溶融張力(MT)との関係が、前記式 (I)を具備するので、高倍率の発泡成形の実施 が容易となり、発泡倍率を 10倍以上とした押出発泡体を容易かつ確実に得ることが できる。
図面の簡単な説明
[0027] [図 1]本発明の実施例 2において、気泡の周りに選択的に成分 (b)が層状に構成され たモルフォロジ一を示す模式図である。
[図 2]前記実施例 2にお 、て、成分 (a)の中に成分 (b)が分散するモルフォロジ一を 示す模式図である。
[図 3]前記実施例 2の発泡体の断面について、気泡間の壁部を透過型電子顕微鏡( TEM)により 13000倍に拡大して撮影した画像である。
発明を実施するための最良の形態
[0028] 本発明のプロピレン系榭脂押出発泡体 (以下、押出発泡体)は、構成材料であるプ ロピレン系榭脂が温度 298K、周波数 10Hzにおける損失正接 (tan δ )が 0. 04〜1 00であるォレフィン系重合体 (特定のォレフィン系重合体)を含み、この特定のォレフ イン系榭脂を含んだプロピレン系榭脂を押出発泡させてなるものであり、発泡倍率が
10倍以上、平均セル径カ OO /z m未満とされている。このような構成により、優れた 断熱性能と制振性能を併せ持った押出発泡体を提供することができる。
[0029] また、押出発泡体の独立発泡率を 40%以上、好ましくは 60%以上とすれば、独立 した多数の気泡が熱を伝えに《するため、断熱性能が更に向上するとともに、衝撃 強度等の機械的強度や耐湿性が優れるものとなる。
[0030] このような構成を有する本発明の押出発泡体を形成するプロピレン系榭脂としては 、溶融時の溶融張力を高くしたプロピレン系榭脂、例えば、特開平 10— 279632号、 特開 2000— 309670、特開 2000— 336198、特開 2002— 12717、特表 2002— 542360、特表 2002— 509575等に記載のプロピレン系榭脂を使用することができ る。
[0031] また、本発明の押出発泡体を得るには、前記したように、プロピレン系榭脂として、 溶融時の溶融張力を高くすることが望ましぐ粘弾性特性に優れた榭脂材料を使用 することが好ましい。
このような粘弾性特性に優れたプロピレン系榭脂としては、例えば、発泡体を構成 するプロピレン系榭脂として、下記成分 (A)及び成分 (B)力もなるプロピレン系多段 重合体であることが好ま 、。
(A) 135°C、テトラリン溶媒中で測定した極限粘度 [ 7? ]が lOdLZg超のプロピレン単 独重合体成分またはプロピレンと炭素数が 2〜8の aーォレフインとの共重合体成分 を、全重合体中に 5〜20質量%含有する
(B) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 5〜3. OdLZgのプロピ レン単独重合体成分またはプロピレンと炭素数が 2〜8の α—ォレフインとの共重合 体成分を、全重合体中に 80〜95質量%含有する
[0032] このプロピレン系多段重合体は、成分 (Α)、すなわち、超高分子量プロピレン系重 合体の付与により、高溶融張力化を達成し、また、分子量分布の調整により粘弾性 特性が調整された直鎖状のプロピレン系重合体である。このような粘弾性特性に優 れたプロピレン系多段重合体を構成材料として使用することにより、前記した本発明 の要件 (発泡倍率が 10倍以上、平均セル径カ 00 μ mより小さい (好ましくは 200 μ m以下)、独立気泡率を 60%以上)を具備したプロピレン系榭脂押出発泡体を確実 に得ることができるので好まし 、。
[0033] ここで、成分 (A)の極限粘度が lOdLZg以下では、溶融張力が不十分となり、所望 の発泡性能を得ることができな 、場合がある。
また、成分 (A)の質量分率が 5質量%より小さいと、溶融張力が不十分となり、所望 の発泡性能を得ることができない場合があり、一方、質量分率が 20質量%を超えると
、いわゆるメルトフラクチャ一が激しくなる場合があり、押出発泡体の肌荒れ等の原因 となり、製品品質が低下する。
[0034] 成分 (A)の極限粘度は、前記したように lOdLZg超であることが好ましいが、 12〜
20dLZgの範囲内であることがより好ましく、 13〜 18dLZgの範囲内であることが特 に好ましい。
また、成分 (A)の質量分率は、 8〜18質量%の範囲内であることが好ましぐ 10〜 16質量%の範囲内であることが特に好ましい。
[0035] 成分 (B)の極限粘度が 0. 5dLZgより小さいと、溶融張力が不十分となり、所望の 発泡性能を得ることができない場合があり、一方、 3. OdLZgを超えると、粘度が高 すぎ、好適な押出成形を実施することができない場合がある。
また、成分 (B)の質量分率が 80質量%より小さいと、好適な押出成形の実施が困 難となる場合があり、質量分率が 95質量%を超えると、溶融張力が低くなり、これも好 適な押出成形の実施が困難となる場合がある。
[0036] 成分 (B)の極限粘度は、前記したように 0. 5〜3. OdLZgの範囲内であることが好 ましいが、 0. 8〜2. OdLZgの範囲内であることが好ましぐ 1. 0〜1. 5dLZgの範 囲内であることが特に好ましい。
また、成分 (B)の質量分率は、 82〜92質量%の範囲内であることが好ましぐ 84〜 90質量%の範囲内であることが特に好ましい。
[0037] このプロピレン系多段重合体にぉ 、て、共重合体成分を構成する炭素数 2〜8の oc
ーォレフインとしては、例えば、プロピレン以外の aーォレフインであるエチレン、 1 ブテン等が挙げられる。このうち、エチレンを使用することが好ましい。
また、プロピレン系多段重合体は、 230°Cにおけるメルトフローレート(MFR)力 10 OgZlO分以下であることが好ましぐ 20gZlO分以下であることが特に好ましい。 M FRが lOOgZlO分を超えると、多段重合体の溶融張力及び粘度が低くなり、成形が 困難となる場合がある。
[0038] プロピレン系多段重合体は、 230°Cにおけるメルトフローレート(MFR)と、 230°C における溶融張力(MT)との関係が、下記式 (I)を具備することが好ましい。
[0039] [数 2]
1 o g (MT) > - 1. 3 3 1 o g (MF R) + 1. 2 …… ( I )
[0040] ここで、 230°Cにおけるメルトフローレート(MFR)と、 230°Cにおける溶融張力(M T)との関係が、前記式 (I)を具備しない場合にあっては、高倍率の発泡成形の実施 が困難となり、発泡倍率が 10倍以上とした押出発泡体を得ることができない場合があ る。前記した定数(1. 2)は、 1. 3以上とすることが好ましぐ 1. 4以上とすることが特 に好ましい。
なお、プロピレン系多段重合体が前記した式 (I)の関係を具備するようにするには、 成分 (A)を 5質量%含有させるようにすればょ 、。
[0041] プロピレン系多段重合体は、溶融状態の動的粘弾性 (角周波数 ωと貯蔵弾性率 G
'との関係)として、高周波数側での貯蔵弾性率の傾きが一定量以上の大きさである ことが好ましぐ具体的には、角周波数が lOmdZsの場合の貯蔵弾性率 G' (10)と、 角周波数が IradZsの場合の貯蔵弾性率 G' (1)との比である G' (10)/G' (1)が 2 . 0以上であることが好ましぐ 2. 5以上であることが特に好ましい。かかる比 G' (10) ZG' (1)が 2. 0より小さいと、押出発泡体に延伸等の外的変化を加えた際の安定性 が低下する場合がある。
[0042] 同様に、プロピレン系多段重合体は、溶融状態の動的粘弾性として、低周波数側 での貯蔵弾性率の傾きが、一定量以下の大きさであることが好ましぐ具体的には、 角周波数が 0. IradZsの場合の貯蔵弾性率 G' (0. 1)と、角周波数が 0. 01rad/s の場合の貯蔵弾性率 G' (0. 01)との比である G' (0. 1)/G' (0. 01)が 6. 0以下で あることが好ましぐ 4. 0以下であることが特に好ましい。かかる比 G' (0. 1)/G' (0 . 01)が 6. 0を越えると、押出発泡体の発泡倍率を高くすることが困難となる場合が ある。
[0043] このようなプロピレン系多段重合体は、下記成分 (a)及び (b)、または下記成分 (a) 、(b)及び (c)からなるォレフィン重合用触媒を用い、 2段階以上の重合工程で、プロ ピレンを重合またはプロピレンと炭素数 2〜8の aーォレフインとを共重合させて製造 することができる。
(a)四塩ィ匕チタンを有機アルミニウム化合物で還元して得られる三塩ィ匕チタンを、ェ 一テル化合物及び電子受容体で処理して得られる固体触媒成分
(b)有機アルミニウム化合物
(c)環状エステルイ匕合物
[0044] ここで、(a)四塩ィ匕チタンを有機アルミニウム化合物で還元して得られる三塩ィ匕チタ ンを、エーテル化合物及び電子受容体で処理して得られる固体触媒成分 (以下、単 に「 (a)固体触媒成分」とする場合もある)にお!ヽて、四塩化チタンを還元する有機ァ ルミ-ゥム化合物としては、例えば、(ィ)アルキルアルミニウムジノ、ライド、具体的に は、メチルアルミニウムジクロライド、ェチルアルミニウムジクロライド、及び n—プロピ ルアルミニウムジクロライド、(口)アルキルアルミニウムセスキハライド、具体的には、 ェチルアルミニウムセスキク口ライド、(ハ)ジアルキルアルミニウムハライド、具体的に は、ジメチルアルミニウムクロライド、ジェチルアルミニウムクロライド、ジ—n—プロピ ルアルミニウムクロライド、及びジェチルアルミニウムブロマイド、(二)トリアルキルアル ミニゥム、具体的には、トリメチルアルミニウム、トリェチルアルミニウム、及びトリイソブ チルアルミニウム、(ホ)ジアルキルアルミニウムハイドライド、具体的には、ジェチルァ ルミ-ゥムノ、イドライド等を挙げることができる。ここで、「アルキル」とは、メチル、ェチ ル、プロピル、ブチル等の低級アルキルである。また、「ハライド」とは、クロライドまた はブロマイドであり、特に前者が通常である。
[0045] また、三塩ィ匕チタンを得るための、有機アルミニウム化合物による還元反応は、ー6 0〜60°C、好ましくは 30〜30°Cの温度範囲で実施することが通常である。還元反 応における温度が 60°Cより低いと、還元反応に長時間が必要となり、一方、還元 反応における温度が 60°Cを超えると、部分的に過還元が生じる場合があり好ましくな い。還元反応は、ペンタン、ヘプタン、オクタン及びデカン等の不活性炭化水素溶媒 下にお!/、て実施することが好ま 、。
[0046] なお、四塩ィ匕チタンの有機アルミニウム化合物による還元反応によって得られた三 塩化チタンに対して、更にエーテル処理及び電子受容体処理を施すことが好ま ヽ 前記三塩ィ匕チタンのエーテル処理で好ましく用いられるエーテルィ匕合物としては、 例えば、ジェチノレエーテノレ、ジー n—プロピノレエーテノレ、ジ—n—ブチノレエーテノレ、 ジイソアミルエーテル、ジネオペンチルエーテル、ジー n キシルエーテル、ジー n ーォクチルエーテル、ジー 2—ェチルへキシルエーテル、メチルー n—ブチルエーテ ル及びェチルーイソブチルエーテル等の各炭化水素残基が炭素数 2〜8の鎖状炭 化水素であるエーテル化合物が挙げられ、これらの中でも特に、ジー n—ブチルエー テルを用いることが好適である。
[0047] 三塩ィ匕チタンの処理で用いられる電子受容体としては、周期律表第 III族〜第 IV族 及び第 VIII族の元素のハロゲンィ匕合物を使用することが好ましぐ具体的には、四塩 化チタン、四塩ィ匕ケィ素、三フッ化ホウ素、三塩ィ匕ホウ素、五塩ィ匕アンチモン、三塩 化ガリウム、三塩化鉄、二塩化テルル、四塩化スズ、三塩化リン、五塩化リン、四塩ィ匕 バナジウム及び四塩ィ匕ジルコニウム等を挙げることができる。
[0048] 固体触媒成分 (a)を調製する際に、三塩化チタンのエーテル化合物及び電子受容 体による処理は、両処理剤の混合物を用いて行ってもよぐまた、一方の処理剤によ る処理後に、他方の処理剤による処理を行うようにしてもよい。なお、これらのうちで は、後者が好ましぐエーテル処理後に電子受容体で処理を行うことが更に好ましい
[0049] エーテルィ匕合物及び電子受容体による処理の前に、三塩ィ匕チタンを炭化水素で 洗浄することが好ましい。前記した三塩ィ匕チタンによりエーテル処理は、三塩化チタ ンとエーテルィ匕合物を接触させることによって行われ、また、エーテルィ匕合物による 三塩ィ匕チタンの処理は、希釈剤の存在下で両者を接触させることによって行うのが有 利である。このような希釈剤には、へキサン、ヘプタン、オクタン、デカン、ベンゼン及 びトルエン等の不活性炭化水素化合物を使用することが好適である。なお、エーテ ル処理における処理温度は、 0〜100°Cであることが好ましい。また、処理時間につ いては特に制限されないが、通常 20分〜 5時間の範囲で行われる。
[0050] エーテル化合物の使用量は、三塩化チタン 1モルあたり、一般に 0. 05〜3. 0モル 、好ましくは 0. 5〜1. 5モルの範囲とすればよい。エーテル化合物の使用量が 0. 05 モルより小さいと、生成される重合体の立体規則性を十分に向上させることができなく なるので好ましくない。一方、エーテルィ匕合物の使用量が 3. 0モルを越えると、生成 される重合体の立体規則性は向上するものの、収率が低下することとなるので好まし くない。なお、有機アルミニウム化合物やエーテルィ匕合物で処理した三塩ィ匕チタンは 、厳密に言えば、三塩ィ匕チタンを主成分とする組成物である。
なお、このような固体触媒成分 (a)としては、 Solvay型三塩ィ匕チタンを好適に用い ることがでさる。
[0051] 有機アルミニウム化合物 (b)としては、前記した有機アルミニウム化合物と同様なも のを使用すればよい。
環状エステルイ匕合物(C)としては、例えば、 γ—ラタトン、 δ—ラタトン、 £—ラタトン 等が挙げられるが、 ε—ラタトンを使用することが好ましい。
また、プロピレン系多段重合体を製造するために用いられるォレフィン重合用触媒 は、前記した成分 (a)〜(c)を混合することにより得ることができる。
[0052] プロピレン系多段重合体を得るには、 2段階の重合方法のうち、水素不存在下でプ ロピレンを重合またはプロピレンと炭素数 2〜8の a—ォレフインを共重合させること が好ましい。ここで、「水素不存在下」とは、実質的に水素不存在下という意味であり 、水素が全く存在しない場合だけでなぐ水素が極微量存在する場合 (例えば、 10m olppm程度)も含まれる。要は、 135°Cテトラリン溶媒中で測定した、 1段階目のプロ ピレン系重合体またはプロピレン系共重合体の極限粘度 [ 7? ]が lOdLZg以下となら ない程度に水素を含む場合でも、「水素不存在下」の意味には含まれる。
[0053] このような水素不存在下でプロピレンの重合またはプロピレンと α—ォレフインとの 共重合体を行うことにより、超高分子量プロピレン系重合体、すなわち、プロピレン系 多段重合体の成分 (Α)を製造することができる。成分 (Α)は、水素不存在下で、原 料モノマーを重合温度として、好ましくは 20〜80°C、より好ましくは 40〜70°C、重合 圧力として、一般に、常圧〜 1. 47MPa、好ましくは 0. 39〜: L 18MPaの条件下で スラリー重合して製造することが好ま 、。
[0054] また、この製造方法では、プロピレン系多段重合体の成分 (B)を、 2段階目以降に 製造することが好ましい。成分 (B)の製造条件としては、前記したォレフィン重合用触 媒を使用すること以外は特に制限はないが、原料モノマーを、重合温度として、好ま しくは 20〜80°C、より好ましくは 60〜70°C、重合圧力として、一般に、常圧〜 1. 47 MPa、好ましくは 0. 19-1. 18MPa、分子量調整剤としての水素が存在する条件 下で重合して製造することが好ま 、。
[0055] なお、前記した製造方法では、本重合を実施する前に、予備重合を行うようにして もよい。予備重合を実施すると、パウダーモルフォロジ一を良好に維持することができ る、予備重合は、一般的に、重合温度として、好ましくは 0〜80°C、より好ましくは 10 〜60°C、重合量として、固体触媒成分 lgあたり、好ましくは 0. 001〜100g、より好ま しくは 0. l〜10gのプロピレンを重合またはプロピレンと炭素数 2〜8の α—才レフィ ンを共重合させることが好まし 、。
[0056] また、押出発泡体の構成材料であるプロピレン系榭脂をプロピレン系榭脂組成物と して、前記したプロピレン系多段重合体と、 230°Cにおけるメルトフローレート(MFR) 力^ OgZlO分以下、かつ、重量平均分子量 (M )と数平均分子量 (M )との比であ
w n
る M /Mが 5. 0以下のプロピレン系重合体を含むようにしてもよい。前記したプロ w n
ピレン系多段重合体と他の材料をブレンドして榭脂組成物とすることにより、押出発 泡体の成形性改善と高機能化、低コストィ匕等を図ることができる。
この榭脂組成物を使用することにより、押出発泡体は、溶融張力が高ぐ優れた粘 弾性特性を有することとなり、押出発泡体に高発泡倍率、良好な表面外観、シート成 形時の延伸切れを防止するといつた効果を付与することができる。
[0057] この榭脂組成物は、プロピレン系多段重合体に対する、プロピレン系重合体の重量 比が 6倍以上、より好ましくは 10倍以上である。重量比が 8倍より小さいと、押出発泡 体の表面外観が不良となる場合がある。
プロピレン系重合体のメルトフローレート(MFR)は、 30gZlO分以下であることが 好ましぐ 15gZlO分以下であることがより好ましぐ lOgZlO分以下であることが特 に好ましい。 MFRが 30gZlO分を超えると、押出発泡体の成形不良が生じる場合が ある。
[0058] プロピレン系重合体の M /Mは、 5. 0以下であることが好ましぐ 4. 5以下である
w n
ことが特に好ましい。 M /Mが 5. 0を超えると、押出発泡体の表面外観が悪くなる
w n
場合がある。
なお、プロピレン系重合体は、チーグラー ·ナッタ触媒や、メタ口セン触媒等の公知 の触媒を用いた重合方法により製造することができる。
[0059] この榭脂組成物は、溶融状態の動的粘弾性 (角周波数 ωと貯蔵弾性率 G'との関 係)として、高周波数側での貯蔵弾性率の傾きが一定量以上の大きさであることが好 ましぐまた、低周波数側での貯蔵弾性率の傾きが、一定量以下の大きさであること が好ましい。
具体的には、角周波数が lOradZsの場合の貯蔵弾性率 G' (10)と、角周波数が 1 radZsの場合の貯蔵弾性率 G' (1)との比である G' (10) /G' (1)が 5. 0以上であ ることが好ましぐ 5. 5以上であることが特に好ましい。力かる比である G' (10) ZG' ( 1)が 5. 0より小さいと、押出発泡体に延伸等の外的変化を加えた際の安定性が低下 する場合がある。
[0060] また、角周波数が 0. IradZsの場合の貯蔵弾性率 G ' (0. 1)と、角周波数が 0. 01 radZsの場合の貯蔵弾性率 G, (0. 01)との比である G, (0. 1) /G' (0. 01)が 14. 0以下であることが好ましぐ 12. 0以下であることが特に好ましい。かかる比 G' (0. 1 ) /G' (0. 01)が 14. 0を越えると、押出発泡体の発泡倍率を高くすることが困難と なる場合がある。
[0061] ここで、押出発泡体が延伸される場合では、緩和時間が l〜10sの範囲における成 分が、押出発泡体の延伸特性の悪ィ匕をもたらすのが一般的である。この領域の緩和 時間の寄与が大きいほど、角周波数 ωが IradZs付近での貯蔵弾性率 G' (1)の傾 きが小さくなる。そこで、この傾きの指標として、角周波数 ωが lOmdZsのときの貯蔵 弾性率 G,(10)との比である G,(10) ZG,(1)を設けると、数値シミュレーション及び 実験解析の結果から、この値が小さいほど、押出発泡における延伸時の破気が大き くなることが見出された。従って、前記した榭脂組成物では、 G' (10) ZG' (1)を 5. 0 以上とすることが好ましい。 [0062] また、気泡成長の最終段階での破泡や、押出発泡成形におけるダイリップ近傍で の高速伸長変形に伴う破泡に対しては、ある程度の歪み硬化性が要求されるため、 適切な緩和時間領域での適量な高分子量成分が必要となり、そのためには、低周波 数領域での貯蔵弾性率 G'がある程度大きくなければならない。そこで、その指標とし て、角周波数 ωが 0. IradZsの場合の貯蔵弾性率 G' (0. 1)と、角周波数が 0. Olr adZsの場合の貯蔵弾性率 G, (0. 01)との比である G, (0. 1) /G' (0. 01)を設け ると、数値シミュレーション及び実験解析の結果から、この値が大きくなると、破泡によ る発泡倍率の低下が顕著になることが見出された。よって、前記した榭脂組成物では 、 G, (0. 1) /G, (0. 01)を 14. 0以下とすることが好ましい。
[0063] なお、この榭脂組成物を含め、本発明の押出発泡体を構成するプロピレン系榭脂 には、必要に応じて、本発明の効果を妨げない範囲内で、酸化防止剤、中和剤、結 晶核剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増 白剤、金属石鹼、制酸吸収剤などの安定剤または架橋剤、連鎖移動剤、核剤、滑剤 、可塑剤、充填剤、強化剤、顔料、染料、難燃剤、帯電防止剤などの添加剤を添カロ することができる。これらの添加剤の添加量は、成形する押出発泡体に要求される諸 特性や成形条件に応じて、適宜決定すればよい。
[0064] また、プロピレン系榭脂として、前記した溶融粘弾性に優れたプロピレン系多段重 合体を使用する場合にあっては、必要により前記した添加剤を添加した状態で、前も つて公知の溶融混練機を用いて溶融混練してペレット形状とした後に、所望の押出 発泡体を成形するようにしてもょ ヽ。
[0065] そして、本発明のプロピレン系榭脂押出発泡体は、構成材料であるプロピレン系榭 脂が、温度 298K、周波数 10Hzにおける損失正接 (tan δ )が 0. 04〜: LOOであ るォレフイン系重合体 (特定のォレフィン系重合体)を含むことを特徴とする。かかる 特定のォレフィン系重合体を構成材料としてプロピレン系榭脂に添加することにより、 プロピレン系榭脂で構成された押出発泡体の発泡セルの壁面に対して、粘性物質で ある特定のォレフィン系重合体を一様に分散して存在させることになるので、制振性 能に優れた押出発泡体となる。
[0066] 特定のォレフィン系重合体は、温度 298K、周波数 10Hzにおける損失正接 (ta 11 3 )が0. 04〜: LOOである力 0. 04〜10であることが特に好ましい。当該損失正接 が 0. 04〜: L00であれば、粘性挙動を示し、プロピレン系榭脂に含ませて押出発泡 体とした場合にあっては優れた制振性能を発揮することができる。一方、損失正接が 0. 04より小さいと、十分な制振性能を得ることができず、損失正接が 100より大きい と、固体的性質を示し、内部にエネルギー吸収されず、剛直なプロピレン系榭脂と一 緒に振動してしまうため、これも制振性能を発揮することができない。
なお、力かる損失正接は、例えば、市販されている固体粘弾性測定装置 (例えば、 DMS 6100:セイコーインスツルメンッ (株)製など)により測定すればよ!、。
[0067] また、このような特定のォレフィン系重合体 (a)は、ポリプロピレン系榭脂 (b)に対し て、重量比(aZb)が、 1Z100〜80Z100となるように添加すること力好ましく、 5, 100〜60Ζ100となるように添加すること力特に好ましい。重量比が 1/100〜80/ 100となるようにォレフィン系重合体を含むことにより、ポリプロピレン系榭脂からなる 発泡成形体において発泡セルの壁面にォレフィン系重合体が適度に分散されて、制 振性能を向上させることができる。
[0068] この特定のォレフィン系重合体としては、例えば、 WO 03Ζ070788や WO 03 Ζ070790に開示される榭脂材料や、特許 3255697号等に開示される榭脂材料等 を使用することができる。また、具体的には、 WO 03Ζ070788〖こ開示される高流 動 1ーブテン系共重合体、またはそれに類した 1ーブテン系重合体が挙げられる。
[0069] この 1ーブテン系共重合体は、具体的には、下記の第 1態様または第 2態様に示す ものを使用することができる。これらを使用することにより、押出発泡体に制振性能を 確実に付与することができる。
まず、第 1態様として、下記の(1)〜(3)の要件を具備するものである。
(1) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 01〜0. 5dL/g
(2)示差走査型熱量計 (DSC)を用い、試料を窒素雰囲気下 10°Cで 5分間保持し た後、 10°CZ分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に 観測されるピークのピークトップとして定義される融点 (T — D)が 0〜: L00°Cの結晶 性樹脂
(3)立体規則性指数 { (mmmm) / (mmrr+rmmr) }が 30以下 [0070] また、この 1ーブテン重合体は、第 2形態として、下記の(1 ' )、(2)及び(3' )を具備 するものである。
(1 ' ) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 25〜0. 5dL/g (2)示差走査型熱量計 (DSC)を用い、試料を窒素雰囲気下— 10°Cで 5分間保持し た後、 10°CZ分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に 観測されるピークのピークトップとして定義される融点 (T — D)が 0〜: LOO°Cの結晶 性樹脂
(3 ' ) 13C 核磁気共鳴 (NMR)スペクトルから求めたメソペンタッド分率 (mmmm)が 73%以下
[0071] このうち、第 1態様の 1ーブテン系重合体は、 135°C、テトラリン溶媒中で測定した 極限粘度 [ 7? ]が 0. 01-0. 5dLZgであり、この極限粘度 [ 7? ]は、好ましくは 0. 1〜 0. 5dLである。極限粘度 [ 7? ]が 0. OldLZgより小さいと、物性 (強度)が低下する場 合があり、一方、 0. 5dLを超えると、流動性が悪くなる場合がある。
[0072] また、第 2態様の 1—ブテン系重合体は、 135°C、テトラリン溶媒中で測定した極限 粘度 [ r? ]が 0. 25-0. 5dLZgであり、この極限粘度 [ 7? ]は、好ましくは 0. 3〜0. 5 dLZgである。
極限粘度 [ 7? ]が 0. 25dLZgより小さいと、結晶間を結びつける分子が不足して靭 性(引張り破断伸び)が低下し、 0. 5dLZgを超えると、粘度が上昇しすぎるため、流 動性が低下して成形不良が発生する場合がある。
前記した第 1態様及び第 2態様の 1ーブテン系重合体は、融点 (T D)が軟質性 の点力も示差走査熱量計 (DSC)で 0〜100°Cの結晶性榭脂であることを必要とする ものであり、好ましくは 0〜80°Cである。
[0073] なお、融点(T -D)は、 DSC (Differential Scanning Calorimetryの略)測定により 求められる。すなわち、示差走査熱量計 (DSC— 7:パーキン 'エルマ一社製)を用い 、試料 10mgを窒素雰囲気下— 10°Cで 5分間保持した後、 10°CZ分で昇温させるこ とにより得られた融点吸熱カーブのもっとも高温側に観測されるピークのピークトップ 1S 測定対象の融点 (T D)となる。ここで、本明細書における「結晶性榭脂」とは、 この T —Dが観測される榭脂のことをいう。 [0074] また、このような第 1態様の 1—ブテン系重合体において、立体規則性指数 { (mm mm) Z (mmrr+rmmr) }が 30以下であり、好ましくは 20以下、更に好ましくは 15以 下である。この立体規則性指数が 30を超えると、粘性物質の柔軟性が低下したり、 振動吸収効果が低下する場合がある。
ここで、メソペンタッド分率 (mmmm)は 90%以下であることが好ましぐ 85%である ことが更に好ましぐ 80%以下であることが特に好ましい。メソペンタッド分率 (mmm m)が 90%を超えると、柔軟性の低下や二次カ卩ェ性の低下が生じる場合がある。
[0075] 第 2態様の 1ーブテン系重合体は、メソペンタッド分率 (mmmm)が 73%以下であ る。メソペンタッド分率 (mmmm)が 73%を超えると、物理的架橋点が過剰になりすぎ るため、柔軟性が低下する場合がある。
[0076] なお、このような 1ーブテン系重合体において、メソペンタッド分率(mmmm)は、朝 倉らにより報告された「Polymer Journal, 16、 717 (1984)」、 J. Randallらにより 報告された「Macromol. Chem. Phys. , C29, 201 (1989)」及び V. Busicoらに より報告された「Marcomol. Chem. Phys. , 198, 1257 (1997)」で提案された方 法に準拠して求めた。すなわち、 13c—核磁気共鳴スペクトルを用いてメチレン基、メ チン基のシグナルを測定し、ポリ(1—ブテン)分子中のメソペンタッド分率を求めた。
[0077] なお、 13C 核磁気共鳴スペクトルの測定は、下記の装置及び条件にて行えばよい 装置:日本電子(棟) S^NM— EX400型 13C— NMR装置
方法:プロトン完全デカツプリング法
濃度: 230mgZミリリットル
溶媒: 1, 2, 4 トリクロ口ベンゼンと重ベンゼンの 90 : 10 (容量比)混合溶媒 温度: 130°C
パノレス幅:45°
パルス繰り返し時間: 4秒
演算: 10000回
[0078] また、このような 1 ブテン系重合体にぉ 、て、立体規則性指数 { (mmmm) / (m mrr+rmmr) }は、前記した方法により、 (mmmm) , (mmrr)及び(rmmr)を測定し た値力も算出すればよい。
[0079] また、第 1態様及び第 2態様の 1ーブテン系重合体は、前記の要件の他に、 GPC 法により測定した重量平均分子畳(M )が 10, 000-100, 000であることが好まし
w
い。 M 力 000未満では、物性(強度)が低下することがある。一方、 M 力 S100,
000を超えると、流動性が低下するため加工性が不良となることがある。
なお、前記した M /Mは、 GPC法により、下記の装置及び条件で測定した、ポリ
w n
スチレン換算の質量平均分子量 (M )及び数平均分子量 (M )より算出した値であ
w n
る。
[0080] (GPC測定装置)
カラム : TOSO GMHHR— H (S) HT
検出器 :液体クロマトグラム用 RI検出器 WATERS 1500C測定条件 [0081] (50C測定条件)
溶媒 :1, 2, 4 トリクロ口ベンゼン
測定温度 : 145°C
流速 :1. 0ミリリットル Z分
試料濃度 :2. 2mgZミリリットル
注入量 :160マイクロリットル
検量線 : Universal Calibration
解析プログラム: HT— GPC (Ver. 1. 0)
[0082] 第 1態様の 1ーブテン系重合体は、 JIS K7113に準拠した引張試験により測定し た引張弾性率が 500MPa以下であることが好ましぐ 300MPa以下であることが更に 好ましい。引張弾性率が 500MPaを超えると、十分な軟質性が得られない場合があ る。
[0083] 1ーブテン系重合体が共重合体である場合には、ランダム共重合体であることが好 ましい。また、 1—ブテンカも得られる構造単位は 50%モル以上であることが好ましく 、より好ましくは 70モル%以上である。このような 1—ブテンに由来する構造単位が 5 0モル%より小さ 、と、二次カ卩ェ性の悪ィ匕が生じる可能性がある。
また、 1ーブテン系重合体が共重合体である場合、 α—ォレフィン連鎖より下記式( V)により得られるランダム性指数 Rが 1以下であることが好ましい。
[0084] [数 3]
R = 4 [ α a ] [ B B ] / [ α B ] 2 -"… (V)
( [ α α ] は α—ォレフィン連鎖分率、 [ Β Β ] はブテン連鎖分率、 [ α Β ] はひ一才レフイン一ブテン連鎖分率、 をそれぞれ示す)
[0085] ここで、 Rはランダム性を表す指標であって、 Rが小さいほど aーォレフイン(コモノ マー)の孤立性が高ぐ組成が均一になる。この Rは 0. 5以下が好ましぐ 0. 2以下 が更に好ましい。
なお、 Rが 0の場合には、 連鎖はなくなり、 α—ォレフィン連鎖は完全に孤立 連鎖のみになる。
[0086] なお、 1ーブテン系重合体がプロピレン'ブテン共重合体である場合のブテン含有 量、及び Rは下記のようにして測定すればよい。
具体的には、ブテン含有量及び Rは、 日本電子 (株)製の JNM— ΕΧ400型 NMR 装置を用いて、下記の測定条件で13 C— NMRスペクトルを測定し、下記の方法によ り算出すればよい。
[0087] (測定条件)
試料濃度: 220mg/NMR溶液 3ミリリットル
NMR溶液: 1, 2, 4—トリクロ口ベンゼン Zベンゼン一 d6 (90Zl〇vol%) 測定温度: 130°C
パノレス幅:45°
パルス繰り返し時間: 10秒
積算回数: 4000回
[0088] 前記測定条件で、 PP、 PB、 BB連鎖は、 J. C. Randall, Macromolecules, 197 8, 11, 592で提案された方法に準拠し、13 C—核磁気共鳴スペクトルの S o; a炭素 のシグナルを測定し、共重合体分子鎖中の PP、 PB、 BBダイアツド連鎖分率を求め た。
得られた各ダイアツド連鎖分率 (モル%)より、下記の式 (W)、式 (X)よりブテン含有 量及びランダム性指数 Rを求めた。 [0089] [数 4] プテン含有量 (モル%) = [BB] + [P B] /2 …… (W) [0090] [数 5] ランダム性指数 R = 4 [P P] [B B] / [PB] 2 …… (X) (式 (W)、 式 (X) 中、 [P P] はプロピレン連鎖分率、 [B B] はブテン 連鎖分率、 [P B] はプロピレンーブテン連鎖分率を表す)
[0091] また、 1ーブテン系重合体がォクチン'ブテン共重合体である場合のブテン含有量 及び Rは下記のようにして測定すればよい。具体的には、ブテン含有量及び Rは、 日本電子 (株)製の JNM— EX400型 NMR装置を用いて、下記の測定条件で13 C— NMRスペクトルを測定し、下記の方法により算出すればよい。
[0092] (測定条件)
試料濃度: 220mg/NMR溶液 3ミリリットル
NMR溶液: 1, 2, 4—トリクロ口ベンゼン Zベンゼン一 d6(90Zl〇vol%) 測定温度: 130°C
パノレス幅:45°
パルス繰り返し時間: 10秒
積算回数: 4000回
[0093] 前記測定条件で、 13C—核磁気共鳴スペクトルの S a a炭素のシグナルを測定し、 40. 8〜40. Oppm【こ観 ¾Jされる BB連鎖、 41. 3〜40. 8ppm【こ観 ¾Jされる OB連鎖 、42. 5〜41. 3ppmに観測される OO連鎖由来のピーク強度力も共重合分子鎖中 の 00、 OB、 BBダイアツド連鎖分率を求めた。
得られた各ダイアツド連鎖分率 (モル%)より、下記の式 (Y)、式 (Z)よりブテン含有 量及びランダム性指数 Rを求めた。
[0094] [数 6] ブテン含有量 (モル。/。) = [BB] + [OB] /2 …… (Y)
[0095] [数 7] ランダム性指数 R = 4 [O O] [ B B ] / [O B ] 2 …… (Z )
(式 (Y)、 式 (Ζ ) 中、 [O O] はォクテン連鎖分率、 [ B B ] はブテン連 鎖分率、 [O B ] はォクテンーブテン連鎖分率を表す)
[0096] なお、前記の 1ーブテン系共重合体は、 WO 03Z070788に開示される 1ーブテ ン系共重合体の製造方法により、簡便に得ることができる。
[0097] 本発明の押出発泡体は、前記したプロピレン系榭脂及び特定のォレフィン系重合 体の混合材料を押出発泡することにより得ることができる力 製造装置としては、プロ ピレン系榭脂を溶融状態に加熱し、適度のせん断応力を付与しながら混練し、発泡 押出することができる公知の押出発泡成形装置を使用することができる。また、製造 装置を構成する押出機も、単軸押出機または二軸押出機のいずれのものも採用する ことができる。このような押出発泡成形装置としては、例えば、特開 2004— 237729 に開示された、 2台の押出機が接続されたタンデム型押出発泡成形装置を使用する ようにしてもよい。
[0098] また、成形体を発泡させる発泡手段としては、成形時に溶融状態の榭脂材料に流 体 (ガス)を注入する物理発泡や、榭脂材料に発泡剤を混合させる化学発泡を採用 することができる。
物理発泡としては、注入する流体としては、不活性ガス、例えば、二酸化炭素 (炭酸 ガス)、窒素ガス等が挙げられる。また、化学発泡としては、使用できる発泡剤として は、例えば、ァゾジカルボンアミド、ァゾビスイソブチ口-トリル等が挙げられる。
[0099] なお、前記した物理発泡にあっては、溶融状態の榭脂材料に対して、超臨界状態 の炭酸ガスや窒素ガスを注入するようにすれば、平均セル径カ OO /z m未満、好まし くは 200 μ m以下の微細な発泡セルを多数形成させることが確実に実施することが できるので好ましい。
ここで、超臨界状態とは、気体と液体が共存できる限界の温度及び圧力を超えるこ とによって、気体と液体の密度が等しくなり 2層が区別できなくなった状態をいい、こ の超臨界状態で生じる流体を超臨界流体という。また、超臨界状態における温度及 び圧力が超臨界温度及び超臨界圧力であり、例えば、炭酸ガスでは、例えば、 31°C 、 7. 4MPaである。また、超臨界状態の炭酸ガスや窒素ガスは、例えば、榭脂材料 に対して 4〜 15質量%程度注入するようにすればよぐシリンダ内において、溶融状 態の榭脂材料に対して注入することができる。
[0100] 押出発泡体の形状は、特に制限はなぐ構造材料として公知の形状、例えば、板状 、円柱状、矩形状等の公知の形状を採用することができ、円柱状、矩形状、凸状、凹 状等の公知の形状を採用することができる。
[0101] また、押出発泡体は、例えば、複数個の押出孔が形成された押出用ダイ力 多数 の細条を押出発泡させ、この細条を長手方向に相互に融着させて多数集束してなる 押出発泡細条集束体としてもよい。このようにして、細条の押出発泡体を多数集束し た押出発泡細条集束体とすることにより、押出発泡体の発泡倍率を高くすることがで き、発泡倍率が高ぐ十分な厚みを有する発泡成形体を、種々の形状で容易に成形 することができる。
なお、このような押出発泡細条集束体の製造は、例えば、前記した特許文献 1及び 特許文献 2のほか、特開昭 53— 1262号公報等によっても公知である。
[0102] このような押出発泡細条集束体を構成する細条の形状は、押出用ダイに形成され た押出孔の形状に左右されるが、押出孔の形状は、円形、菱形、スリット状等の任意 の形状とすることができる。なお、成形にあたっては、押出用ダイの出口部における 圧力損失が 3MPaから 50MPaとなるようにすることが好まし!/、。
また、押出用ダイに形成される押出孔の形状は、全てを同じ形状としてもよいし、一 つの押出用ダイ中に多種類の形状の押出孔を形成するようにしてもょ 、。
更には、例えば、円形の押出孔とする場合であっても、その径の大きさとして複数の 種類とし、径の異なる円形状の押出孔を多数形成するようにしてもょ 、。
[0103] このようにして得られる本発明のプロピレン系榭脂押出発泡体によれば、発泡倍率 力 S10倍以上であり、平均セル径カ 00 m未満であるため、押出発泡体中における 気泡壁を多数形成することができるため、外部力 の輻射熱を効率よく遮断すること が可能となり、断熱性能に優れた押出発泡体を提供することができる。
なお、プロピレン系榭脂押出発泡体の平均セル径は 200 μ m以下とすることが好ま しぐ平均セル径を 200 m以下と更に小さくすれば、押出発泡体中における気泡壁 を更に多く形成することができるため、断熱性能により一層優れたプロピレン系押出 発泡体となる。
[0104] また、構成材料であるプロピレン系榭脂に対して温度 298K、周波数 10Hzにおけ る損失正接 (tan δ )が 0. 04〜: LOOであるォレフィン系重合体を含むようにしている ので、発泡成形体を構成する発泡セルの壁面には、粘性物質である当該ォレフィン 系重合体が一様に分散された状態で存在することとなるため、効率よく振動を吸収す ることになり、制振性能に優れた押出発泡体を提供することができる。
このように、本発明は、断熱性能と制振性能を兼ね備えたプロピレン系榭脂押出発 泡体を好適に提供できるものである。
[0105] そして、本発明のプロピレン系榭脂押出発泡体は、構成材料であるプロピレン系榭 脂は、リサイクル性能にも優れ、また、耐薬品性や耐熱性も良好であることから、本発 明のプロピレン系榭脂押出発泡体も、これらの諸性能 (リサイクル性能、耐薬品性、 耐熱性)を享受することになる。更には、低コスト材料であるプロピレン系榭脂を使用 することにより、前記した効果を有する押出発泡体を低コストで提供することが可能と なる。
本発明の押出発泡体は、このようにして、優れた断熱性能及び制振性能を併せ持 つので、自動車分野の構造材料 (天井、ドア、フロア、カウル等の構成部材)や、建築 •土木分野の構造材料 (建材等)等に適用することができる。
[0106] なお、本発明の押出発泡体は、平均セル径カ 00 μ m未満 (好ましくは 200 μ m以 下)と小さいため、優れた断熱性能とともに、同じ断熱性能とした場合であれば、従来 のものよりも厚さを薄くすることができる。そのため、例えば、前記した分野等に適用し た場合にあっては、従来の断熱材料より居住空間を大きくとることができるといった副 次的な効果も好適に奏することができる。
[0107] なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前 記した実施形態に限定されるものではなぐ本発明の構成を備え、目的及び効果を 達成できる範囲内での変形や改良力 本発明の内容に含まれるものであることはいう までもない。また、本発明を実施する際における具体的な構造及び形状等は、本発 明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題は ない。 実施例
[0108] 以下、実施例及び製造例を挙げて、本発明をより具体的に説明するが、本発明は 実施例等の内容に何ら限定されるものではない。
なお、下記の製造例、実施例における物性値等は、下記の方法で測定した。
[0109] ( 1) 1段階目のプロピレン重合体成分 (成分 1)及び二段階目のプロピレン重合体成 分 (成分 2)の質量分率:
重合時に連続的に供給されるプロピレンの流量計積算値を用いた物質収支力 求 めた。
(2)極限粘度 [ τ? ]:
135°Cのテトラリン溶媒中で測定した。なお、成分 2の極限粘度 [ 7? ]は、下記式 (II
2
)により計算した。
[0110] [数 8]
[ η 2 ] = ( [ TJ total] X I 0 0— ί J XWJ /W2…… (II) [ r? ] :プロピレン
total 重合体全体の極限粘度 (dLZg)
[ r? ] :成分 1の極限粘度 (dLZg)
W :成分 1の質量分率 (質量%)
W :成分 2の質量分率 (質量%)
2
[0111] (3)メルトフローレート(MFR):
JIS K7210に準拠し、温度を 230°C、加重を 2. 16kgfとして測定した。 (4)溶融張力 (MT) :
キヤピログラフ 1C (東洋精機 (株)製)を使用し、測定温度 230°C、押出速度 10mm Zmin、引き取り温度 3. lmZ分で測定した。なお、測定には、長さが 8mm、直径が 2. 095mmの才リフィスを使用した。
[0112] (5)粘弾性測定:
下記の仕様の装置で測定した。なお、貯蔵弾性率 G 'は、複素弾性率の実数部分 により求めることができるものである。
装置 : RMS— 800 (レオメトリックス社製) 温度 : 190°C
歪み : 30%
周波数 : 100radZs〜0. 01rad/s
[0113] [製造例 1]
プロピレン系多段重合体の製造:
(i)予備重合触媒成分の調製:
内容積 5リットルの攪拌機付き三つ口フラスコを十分に乾燥させ、窒素ガスで置換し た後、脱水処理したヘプタンを 4リットル、ジェチルアルミニウムクロライド 140グラムを 加え、市販品の Solvay型三塩ィ匕チタン触媒 (東ソ一 ·ファインケム (株)製) 20gをカロ えた。これを攪拌しながら 20°Cに保持した状態で、プロピレンを連続的に導入した。 80分後、攪拌を停止し、三塩ィ匕チタン触媒 lgあたり 0. 8gのプロピレンが重合した予 備触媒成分を得た。
[0114] (ii)プロピレンの重合(1段階目):
内容積 10リットルの攪拌機付きステンレス製オートクレープを十分乾燥させ、窒素 ガスで置換させた後、脱水処理したヘプタン 6リットルを加え、系内の窒素をプロピレ ンで置換した。その後、攪拌しながらプロピレンを導入して、系内を内温 60°C、全圧 0 . 78MPaに安定させた後、前記 (i)で得た予備重合触媒成分を固体触媒換算で 0. 75グラム含んだヘプタンスラリー 50ミリリットルを加えて重合開始とした。プロピレンを 35分間連続的に供給した場合におけるプロピレン流量積算値力も求めた重合体生 成量は 151gであり、その一部をサンプリングして分析した結果、極限粘度は 14. Id LZgであった。その後、内温を 40°C以下に降温させ、攪拌を緩め、脱圧した。
[0115] (iii)プロピレンの重合 (2段階目):
脱圧後、再び内温を 60°Cとして、水素を 0. 15MPaカ卩えて攪拌しながらプロピレン を導入した。全圧 0. 78MPaでプロピレンを連続的に供給しながら、 60°Cで 2. 8時 間重合を行った。この際、重合体の一部をサンプリングして分析した結果、極限粘度 は 1. 16dL/gであった。
[0116] 重合終了後、 50ミリリットルのメタノールを添加し、降温、脱圧した。内容物を全量フ ィルター付きろ過槽へ移し、 1—ブタノールを 100ミリリットルカ卩え、 85°Cで 1時間攪拌 した後に固液分離した。更に、 85°Cのヘプタン 6リットルで固体部を 2回洗浄し、真空 乾燥してプロピレン重合体 3. 1kgを得た。
[0117] 以上の結果から、 1段階目と 2段階目の重合重量比は 12. 2/87. 8であり、 2段階 目で生成したプロピレン重合成分の極限粘度は 1. 08dLZgと求められた。
そして、得られたプロピレン系多段重合体粉末 100重量部に対して、酸化防止剤と してィルガノックス 1010 (チノく'スペシャルティー ·ケミカルズ (株)製)を 600ppm、中 和剤としてステアリン酸カルシウムを 500ppm加えて混合し、ラブプラストミル単軸押 出機 (東洋精機 (株)製、 φ 20mm)で温度を 230°Cとして溶融混練してプロピレン重 合体ペレットを調製した。
得られたプロピレン系多段重合体の物性及び榭脂特性を表 1に示す。
[0118] (プロピレン系多段重合体の物性及び榭脂特性)
[表 1]
Figure imgf000029_0001
[実施例 1]
ポリプロピレン押出発泡成形体 (押出発泡細条集束体)の製造:
前記した製造例 1で得たペレット状のプロピレン系多段重合体 (b)に対して、 WO 03Z070788の実施例 1に開示される 1 -ブテン系共重合体 (a)を、重量比(a/b) を 15Z85 (プロピレン系多段重合体を 85質量%、 1—ブテン系共重合体を 15質量 %)として混合して成形材料とした。 1—ブテン系共重合体物性値及び榭脂特性を表 2に示す。
なお、表 2の測定項目については、温度 298K、周波数 10Hzにおける損失正接 (t an δ )につ!/、ては、固体粘弾性測定装置(DMS 6100:セイコーインスッノレメンッ( 株)製)により測定し、それ以外の項目は、 WO 03Ζ70788に記載された方法に準 拠して測定した。
[0120] (1ーブテン系共重合体の物性値及び榭脂特性)
[表 2]
Figure imgf000030_0001
(注 1)温度 298K、周波数 10Hzにおける損失正接 (tan S )
(注 2) {mmmm/ (mrnrr + rmmr; }
•測定方法は、損失正接の測定以外は WO 03/070788の記載に準ずる。
[0121] この成形材料を、特開 2004— 237729に開示されるタンデム型押出発泡成形装 置 (スクリュ径が φ 50mmの単軸押出機と、スクリュ径が φ 35単軸押出機の 2台の単 軸押出機を備える)を用いて、また、ダイとして、多数の円形押出孔(円管ダイ)が集 合したものを用いて、下記の方法により、押出発泡された細条が多数集束された板 状の押出発泡細条集束体であるプロピレン系榭脂押出発泡体を製造した。
なお、発泡は、 φ 50mm単軸押出機にて、 CO超臨界流体を注入することにより行
2
つた o
[0122] すなわち、 φ 50mm単軸押出機により、成形材料を溶融させながら、 CO超臨界流
2
体を注入して、当該流体を溶融状態の成形材料中に均一になるように十分溶解させ た後、連接された φ 35mm単軸押出機から、 φ 35mm単軸押出機におけるダイ出口 の榭脂温度力 S180°Cとなるようにして押し出し、押出発泡体を成形した。製造条件の 詳細を下記に示した。
なお、 φ 35mm単軸押出機のダイ出口における榭脂温度は、熱電対温度計により 測定するものであり、この榭脂温度が、発泡しながら押し出された溶融樹脂の温度と 考えることができる。
[0123] (製造条件)
CO超臨界流体 : 7質量%
2
押出量 : 8kgZhr
ダイ上流部榭脂圧力 : 8MPa
ダイ出口での押出温度 : 180°C
このようにして得られたプロピレン系榭脂押出発泡体の発泡倍率、平均セル径、独 立気泡率を下記の条件に従って測定したところ、順に、 28倍、 120 m、 50%であ つた o
[0124] (測定条件)
発泡倍率 : 得られた発泡成形体の重量を水投法を用いて求めた体積により除す ることにより密度を求め、算出した。
平均セル径: ASTM D3576— 3577に準拠して測定した。
独立気泡率: ASTM D 2856に準拠して測定した。
さらに、実施例 1の押出発泡体について、常法を用いて断熱性能及び制振性能を 評価したところ、いずれも良好な結果を得ることができ、本発明の押出発泡体が優れ た耐熱性能及び制振性能を兼ね備えることが確認できた。
[0125] [実施例 2, 3]
MuCell射出成形機による評価
(成形方法)
前述した成分 (a)および成分 (b)を表 1の実施例 2, 3および比較例 1, 2となるよう に配合し、以下の射出成形機から単純に押出発泡させ、その成形体からテストピー スを切り出すことにより、その発泡特性の評価及び制振性の評価を実施した。 成形機 : 日本製鋼製、 J180EL— MuCell
射出時間 : 5秒
射出榭脂量 : lOOg
シリンダー設定温度 : 180°C
発泡剤 : CO超臨界流体
2
ガス量 : 5wt%
なお、前記実施例 1のタンデム型押出成形装置による発泡成形性と、本実施例の 射出成形機からの単純押出による発泡成形性には相関が確認でき、本実施例の結 果は一般の押出発泡成形における発泡成形性を表しているものと判断できる。
[表 3]
実施例 1 実施例 2 比較例 1 比較例 2
W003/070788 W003/070790 W003/070788 成分 ( a ) に開示される に開示される ― に開示される 樹脂材料 樹脂材料 樹脂材料 製造例 1の 製造例 1の 製造例 1の 製造例 1の 使
成分 (b ) プロピレン系 プロピレン系 プロピレン系 プロピレン系 用
多段重合体 多段重合体 多段重合体 多段重合体 材
成分 ( a )
の損失正接 0. 35 0. 50 ― 0. 35
(tan δ )
15/85 5/95 0/100 100/100
( a / b )
発泡倍率 30倍 29倍 32倍 ― 平均セル径
100 110 80 ―
( β m)
発泡体の
損失正接 0. 070 0. 063 0. 053 一 (tan 6 )
原料供給部で 溶解によるつま 成形性 - ― ―
りが発生し、 成形不可
(発泡体の制振 ¾能)
本実施例の押出発泡体について、常法を用いて断熱制能および制振性能を評価 したところ、いずれも良好な評価結果を得ることができ、本発明の押出発泡体が優れ た断熱性能および制振性能を兼ね備えることが確認できた。
表 3に示すように、固体粘弾性の正接損失 tan δは振動の減衰を表す尺度、即ち 制振性能を表す尺度であることは一般的に知られて!/、るため、ここでは固体粘弾性 の tan δを発泡体の制振性能の指標として評価した。 tan δが大きくなるほど、振動 吸収制能も向上する。実施例 1の押出発泡体は、製造例 1で得たプロピレン系多段 重合体 (b)単体による押出発泡体と比較して tan δの大きな増加が認められ、本発 明の押出発泡体が優れた制振性能を示すことが確認できた。
[0128] (モルフォロジ一と制振性能の関係について)
プロピレン系榭脂(a)に温度 298°C、周波数 10Hzにおける損失正接 (tan δ )が 0 . 04〜 100であるォレフィン系重合体(b)を混合して発泡させたときのモルフォロジ 一 (結晶形態)につ!、て検討した。
発泡体におけるモルフォロジ一は、成分 (b)の成分 (a)に対する相溶性や分子量に より異なるが、成分 (b)が気泡界面にブリードし易い場合、または成分 (b)から優先的 に気泡生成が発生する場合にぉ 、ては、図 1のように気泡の周りに選択的に成分 (b )が層状に構成されるようなモルフォロジ一となると考えられる。一方、上記と異なる場 合にぉ 、ては、図 2のように成分 (a)の中に成分 (b)が分散するようなモルフォロジ一 となると考えられる。何れの場合においても、成分 (a)の振動に伴い成分 (b)が同様 に振動することになるため、成分 (b)の振動減衰効果により制振性能の向上が達成さ れるが、成分 (a)のようなモルフォロジ一の場合は気泡壁面の振動に応じた発生歪の 大きさがより大きくなることにより、より効果的な制振効果が発現されると考えられる。
[0129] 図 3には、実施例 2の発泡体の断面について、気泡間の壁部を透過型電子顕微鏡
(TEM)により 13000倍に拡大して撮影した結果を示す。この画像においては、発泡 体を四塩化ルテニウムにより染色することにより、成分 (a)からなる部分が黒くなつて いる。このように、制振効果を持つ成分 (a)により、成分 (b)を通しての振動の伝播を 効果的に遮断できて!/ヽる様相が確認できる。
[0130] (配合比による変化)
上記 (b)成分に対する上記 (a)成分の配合比を増加させるに従 、制振特性は向上 するものの、重量比(aZb)が 80Z100を超えると同一条件での成形が困難となる。 表 1の比較例 2に重量比(aZb)が 100Z100のときの結果を示力 この場合、低融 点材料である (a)成分の割合が多すぎるため、原料供給部 (ホッパー)力も射出スクリ ユーに至るまでの過程で (a)成分の溶解によるつまりが発生し、成形が不可能となつ た。
産業上の利用可能性
[0131] 本発明のプロピレン系榭脂押出発泡体は、例えば、建築や土木分野、自動車分野 において断熱性能や制振性能を必要とされる構造材料について有利に使用できる。

Claims

請求の範囲 [1] プロピレン系榭脂を押出発泡させてなるプロピレン系榭脂押出発泡体であって、 押出発泡体を構成するプロピレン系榭脂が、温度 298K、周波数 10Hzにおける損 失正接 (tan δ )が 0. 04〜: LOOであるォレフィン系重合体を含み、 発泡倍率が 10倍以上であり、 平均セル径が 400 μ m未満であることを特徴とするプロピレン系榭脂押出発泡体。 [2] 請求項 1に記載のプロピレン系榭脂押出発泡体にぉ 、て、 前記ォレフィン系重合体 (a)と前記プロピレン系榭脂 (b)の重量比(aZb)が 1Z10 0〜80/100であることを特徴とするプロピレン系榭脂押出発泡体。 [3] 請求項 1または請求項 2に記載のプロピレン系榭脂押出発泡体にぉ 、て、 前記ォレフィン系重合体が、下記(1)、(2)及び (3)を具備する 1—ブテン系重合体 であることを特徴とするプロピレン系榭脂押出発泡体。
(1) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 01〜0. 5dL/g
(2)示差走査型熱量計 (DSC)を用い、試料を窒素雰囲気下 10°Cで 5分間保持し た後、 10°CZ分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に 観測されるピークのピークトップとして定義される融点 (T — D)が 0〜: L00°Cの結晶 性樹脂
(3)立体規則性指数 { (mmmm) / (mmrr+rmmr) }が 30以下
[4] 請求項 1または請求項 2に記載のプロピレン系榭脂押出発泡体にぉ 、て、
前記ォレフィン系重合体が、下記(1 ' )、(2)及び (3' )を具備する 1ーブテン系重合 体であることを特徴とするプロピレン系榭脂押出発泡体。
(1 ' ) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 25〜0. 5dL/g (2)示差走査型熱量計 (DSC)を用い、試料を窒素雰囲気下 10°Cで 5分間保持し た後、 10°CZ分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に 観測されるピークのピークトップとして定義される融点 (T — D)が 0〜: L00°Cの結晶 性樹脂
(3 ' ) 13C 核磁気共鳴 (NMR)スペクトルから求めたメソペンタッド分率 (mmmm)が 73%以下
[5] 請求項 1な 、し請求項 4の 、ずれかに記載のプロピレン系榭脂押出発泡体にお!、 て、
独立気泡率が 40%以上であることを特徴とするプロピレン系榭脂押出発泡体。
[6] 請求項 1な 、し請求項 5の 、ずれかに記載のプロピレン系榭脂押出発泡体にお!、 て、
前記平均セル径が 200 μ m以下であることを特徴とするプロピレン系榭脂押出発泡 体。
[7] 請求項 1な 、し請求項 6の 、ずれかに記載のプロピレン系榭脂押出発泡体にお!、 て、
押出発泡された細条が多数集束された押出発泡細条集束体であることを特徴とす るプロピレン系榭脂押出発泡体。
[8] 請求項 1な 、し請求項 7の 、ずれかに記載のプロピレン系榭脂押出発泡体にお!、 て、
押出発泡体を構成するプロピレン系榭脂が下記 (A)及び (B)力もなるプロピレン系 多段重合体であることを特徴とするプロピレン系榭脂押出発泡体。
(A) 135°C、テトラリン溶媒中で測定した極限粘度 [ 7? ]が lOdLZg超のプロピレン単 独重合体成分またはプロピレンと炭素数が 2〜8の aーォレフインとの共重合体成分 を、全重合体中に 5〜15質量%含有する
(B) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 5〜3. OdLZgのプロピ レン単独重合体成分またはプロピレンと炭素数が 2〜8の α—ォレフインとの共重合 体成分を、全重合体中に 85〜95質量%含有する
[9] 請求項 8に記載のプロピレン系榭脂押出発泡体にぉ 、て、
前記プロピレン系多段重合体の 230°Cにおけるメルトフローレート(MFR)と、 230 °Cにおける溶融張力(MT)との関係が、下記式 (I)を具備することを特徴とするプロ ピレン系榭脂押出発泡体。
[数 1]
1 o g (M T ) > - 1 . 3 3 1 o g (M F R ) + 1 . 2 …… ( I )
[10] 請求項 1な!、し請求項 7の 、ずれかに記載のプロピレン系榭脂押出発泡体にお!、 て、
押出発泡体を構成するプロピレン系榭脂が下記 (A)及び (B)力もなるプロピレン系 多段重合体であることを特徴とするプロピレン系榭脂押出発泡体。
(A) 135°C、テトラリン溶媒中で測定した極限粘度 [ 7? ]が lOdLZg超のプロピレン単 独重合体成分またはプロピレンと炭素数が 2〜8の aーォレフインとの共重合体成分 を、全重合体中に 5〜20質量%含有する
(B) 135°C、テトラリン溶媒中で測定した極限粘度 [ r? ]が 0. 5〜3. OdLZgのプロピ レン単独重合体成分またはプロピレンと炭素数が 2〜8の α—ォレフインとの共重合 体成分を、全重合体中に 80〜95質量%含有する
[11] 請求項 10に記載のプロピレン系榭脂押出発泡体において、
前記プロピレン系多段重合体の 230°Cにおけるメルトフローレート(MFR)と、 230 °Cにおける溶融張力(MT)との関係が、下記式 (I)を具備することを特徴とするプロ ピレン系榭脂押出発泡体。
[数 2]
1 o g (M T ) > - 1 . 3 3 1 o g (M F R ) + 1 . 2 …"- ( I )
PCT/JP2005/021283 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体 WO2006054716A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006545177A JPWO2006054716A1 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004336681 2004-11-19
JP2004-336681 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006054716A1 true WO2006054716A1 (ja) 2006-05-26

Family

ID=36407252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021283 WO2006054716A1 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体

Country Status (2)

Country Link
JP (1) JPWO2006054716A1 (ja)
WO (1) WO2006054716A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302678A (ja) * 2007-06-11 2008-12-18 Asahi Fiber Glass Co Ltd 熱可塑性樹脂発泡体およびその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292147A (ja) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡体の製造方法
JPH0925354A (ja) * 1995-07-07 1997-01-28 Asahi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体及びその製造方法
JP2001001384A (ja) * 1999-04-23 2001-01-09 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体の製造方法
JP2002105256A (ja) * 2000-09-28 2002-04-10 Grand Polymer Co Ltd ポリプロピレン樹脂組成物およびそれから得られる発泡体
JP2003094504A (ja) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法
JP2004217755A (ja) * 2003-01-14 2004-08-05 Mitsui Chemicals Inc 発泡体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH115860A (ja) * 1997-06-19 1999-01-12 Jsp Corp 無架橋ポリプロピレン系樹脂発泡シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292147A (ja) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡体の製造方法
JPH0925354A (ja) * 1995-07-07 1997-01-28 Asahi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体及びその製造方法
JP2001001384A (ja) * 1999-04-23 2001-01-09 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体の製造方法
JP2002105256A (ja) * 2000-09-28 2002-04-10 Grand Polymer Co Ltd ポリプロピレン樹脂組成物およびそれから得られる発泡体
JP2003094504A (ja) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法
JP2004217755A (ja) * 2003-01-14 2004-08-05 Mitsui Chemicals Inc 発泡体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302678A (ja) * 2007-06-11 2008-12-18 Asahi Fiber Glass Co Ltd 熱可塑性樹脂発泡体およびその製造方法

Also Published As

Publication number Publication date
JPWO2006054716A1 (ja) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2006054715A1 (ja) プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法
JP5280680B2 (ja) プロピレン系樹脂押出発泡複合体
EP1899415B1 (en) Propylene polymers having broad molecular weight distribution
KR102112981B1 (ko) 용융 강도 안정성이 증가한 장쇄 분지형 폴리프로필렌 조성물
JP4999462B2 (ja) プロピレン系樹脂押出発泡体
KR20190079656A (ko) 폴리올레핀 필름 조성물의 제조 방법 및 그로부터 제조된 필름
JP5202942B2 (ja) プロピレン系樹脂押出発泡体の製造方法
KR20190077520A (ko) 발포 용도의 폴리프로필렌 조성물
JP2018503731A (ja) 半結晶性ポリオレフィンおよびスルホニルアジドを含む組成物、結果的に得られるフォーム、およびそれを製造する方法
JP5203587B2 (ja) プロピレン系重合体及び発泡成形体
JP5123659B2 (ja) プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法
WO2006054716A1 (ja) プロピレン系樹脂押出発泡体
JP2008143147A (ja) プロピレン系樹脂押出発泡体およびその製造方法
JP2011162731A (ja) 発泡用abs樹脂組成物および発泡成形体
KR20080023304A (ko) 넓은 분자량 분포를 갖는 프로필렌 중합체
JP2009299056A (ja) ポリプロピレン系射出発泡体、および、その製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006545177

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05806880

Country of ref document: EP

Kind code of ref document: A1