JP4999462B2 - プロピレン系樹脂押出発泡体 - Google Patents

プロピレン系樹脂押出発泡体 Download PDF

Info

Publication number
JP4999462B2
JP4999462B2 JP2006545175A JP2006545175A JP4999462B2 JP 4999462 B2 JP4999462 B2 JP 4999462B2 JP 2006545175 A JP2006545175 A JP 2006545175A JP 2006545175 A JP2006545175 A JP 2006545175A JP 4999462 B2 JP4999462 B2 JP 4999462B2
Authority
JP
Japan
Prior art keywords
propylene
extruded foam
based resin
component
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006545175A
Other languages
English (en)
Other versions
JPWO2006054714A1 (ja
Inventor
稔 菅原
安彦 大槻
良一 津乗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP2006545175A priority Critical patent/JP4999462B2/ja
Publication of JPWO2006054714A1 publication Critical patent/JPWO2006054714A1/ja
Application granted granted Critical
Publication of JP4999462B2 publication Critical patent/JP4999462B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/08Supercritical fluid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、発泡倍率が高く、かつ、平均セル径が小さいため、断熱性能に優れたプロピレン系樹脂押出発泡体に関する。
熱可塑性樹脂を押出発泡成形した押出発泡体や、多数の小孔を有するダイからこれらの熱可塑性樹脂を押し出し、押し出された樹脂の細条を集束してその外面を融着させて発泡させる、いわゆるストランド押出により成形された押出発泡細条集束体は、軽量でありながら機械的特性に優れることから、建築・土木分野や自動車分野等の各分野における構造材料として幅広く利用されており、特に、断熱材料として適用されている。このような熱可塑性樹脂の押出発泡体としては、ポリウレタン系樹脂、ポリスチレン系樹脂からなる押出発泡体が知られている。
しかし、ポリウレタン系樹脂やポリスチレン樹脂は、リサイクル特性には必ずしも優れない材料であるため、建築リサイクル法(建設工事に係る資材の再資源化等に関する法律)に十分に対応することができないといった問題があった。加えて、ポリスチレン系樹脂は、耐熱性や耐薬品性に劣ることから、これらに代わる熱可塑性樹脂による押出発泡体の提供が望まれていた。
一方、ポリプロピレン系樹脂は、機械的特性、耐熱性、耐薬品性、電気特性などに優れ、更には低コスト材料であることから、各成形分野に広く用いられており、ポリプロピレン 系樹脂の押出発泡体も、その工業的有用性が高く期待できるものである。しかし、直鎖状の樹脂であるポリプロピレンは、溶融時にあっては急激な粘度の低下を起こして強度が低下してしまい、発泡した気泡を保持できずに破泡されやすいため、従来使用していた熱可塑性樹脂と同等の、独立気泡率が高く発泡倍率の高い押出発泡体を得ることは困難であった。加えて、得られる押出成形体の発泡セル(気泡)の平均セル径の大きさを均一かつ緻密にすることも難しく、成形性の向上が望まれていた。
ここで、押出発泡体を断熱材料として使用する場合における断熱性能は、ある程度の発泡倍率(例えば10倍以上)にあっては、発泡倍率とセル径に依存する。すなわち、発泡倍率は、押出発泡体における材料壁が薄くなれば伝熱量が小さくなることより、発泡倍率が高い方が断熱性能は良好となる。同様に、同じ発泡倍率でセル径が小さくなると、輻射熱を遮断する気泡壁数が多くなって伝熱しにくくなり、断熱性が向上するため、セル径は小さい方が好ましい。このように発泡倍率を高くさせた状態で、平均セル径を小さくさせて断熱性能が向上すると成形体の厚さを薄くでき、コスト削減となるという派生効果もあるため、プロピレン系樹脂押出発泡体においても、前記した成形性の困難さが存在する一方で、発泡倍率向上とセル径を小さくすることが求められていた。
このような状況より、ポリプロピレン系樹脂押出発泡体について、発泡倍率を向上させ、かつ、セル径を小さくする検討が実施されており、例えば、構成材料であるポリプロピレン系樹脂の2軸伸長歪0.2に於ける2軸伸長粘度が3×10ポイズ以上であり、2軸歪硬化率を0.25以上としたポリプロピレン系樹脂押出発泡細条集束体が提供されている(例えば、特許文献1参照)。また、所定のポリプロピレン系樹脂と発泡剤からなる混合物を押出機中で溶融混練し、発泡に適した温度に調温させたのち、多数の小孔を有する押出用ダイから細条を低温低圧下に押出発泡させ、その発泡細条が軟化している間に筒型装置内に導入し発泡細条を集束融着させて得られる押出発泡細条集束体が提供されている(例えば、特許文献2参照)。
特開平9−25354号公報 特開2001−1384号公報
しかしながら、前記した特許文献に開示されるような従来のプロピレン系樹脂押出発泡体は、発泡倍率の向上はある程度達成できるものの、平均セル径を400μmより小さくすることが困難であるため、断熱性能を更に向上させることへの妨げとなっていた。
従って、本発明の目的は、発泡倍率を高くさせた状態で、平均セル径を小さくすることができ、断熱性能に優れたプロピレン系樹脂押出発泡体を提供することにある。
前記した目的を達するために、本発明のプロピレン系樹脂押出発泡体は、プロピレン系樹脂を押出発泡させてなるプロピレン系樹脂押出発泡体であって、発泡倍率が10倍以上であり、平均セル径が200μm以下であり、独立気泡率が40%以上であり、押出発泡体を構成するプロピレン系樹脂が下記(A)及び(B)からなるプロピレン系多段重合体であることを特徴とする。
(A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜15質量%含有する
(B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に85〜95質量%含有する
この本発明のプロピレン系樹脂押出発泡体は、発泡倍率が10倍以上であり、平均セル径(気泡径)が400μm未満であるため、押出発泡体中における気泡壁を多数形成することができ、外部からの輻射熱を効率よく遮断することが可能となる。この結果、断熱性能に優れた押出発泡体を提供することができる。
また、構成材料であるプロピレン系樹脂は、リサイクル性能にも優れ、また、耐薬品性や耐熱性等も良好であることから、本発明のプロピレン系樹脂押出発泡体も、これらの諸性能(リサイクル性能、耐薬品性、耐熱性等)を享受することになる。更には、低コスト材料であるプロピレン系樹脂を使用することにより、前記した効果を有する押出発泡体を低コストで提供することが可能となる。
本発明のプロピレン系樹脂押出発泡体は、独立気泡率が40%以上であることが好ましい。
この本発明によれば、プロピレン系樹脂押出発泡体の独立気泡率が40%以上であるので、独立した多数の気泡が熱を伝えにくくするため、断熱性能が更に向上するとともに、衝撃強度等の機械的強度や耐湿性が優れた押出発泡体となる。
本発明のプロピレン系樹脂押出発泡体において、前記平均セル径が200μm以下であることが好ましい。
この本発明によれば、プロピレン系樹脂押出発泡体の平均セル径が200μm以下と更に小さいので、押出発泡体中における気泡壁を更に多く形成することができるため、断熱性能により一層優れた押出発泡体となる。
本発明のプロピレン系樹脂押出発泡体は、押出発泡された細条が多数集束された押出発泡細条集束体であることが好ましい。
この本発明によれば、プロピレン系樹脂押出発泡体が、細条の押出発泡体が多数集束された押出発泡細条集束体からなるようにしているので、押出発泡体の発泡倍率を高くすることができ、発泡倍率が高く、十分な厚みを有する発泡成形体を、種々の形状で容易に成形することができる。
本発明のプロピレン系樹脂押出発泡体は、発泡体を構成するプロピレン系樹脂が下記(A)及び(B)からなるプロピレン系多段重合体であることが好ましい。(A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜20質量%含有する
(B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に80〜95質量%含有する
このプロピレン系多段重合体は、成分(A)、すなわち、超高分子量プロピレン系重合体の付与により、高溶融張力化を達成し、また、分子量分布の調整により粘弾性特性が調整され、優れた粘弾性特性を備えた直鎖状のプロピレン系重合体である。
従って、かかる粘弾性特性に優れたプロピレン系多段重合体を構成材料とすることにより、発泡倍率が10倍以上、平均セル径が400μmより小さい(好ましくは200μm以下)プロピレン系樹脂押出発泡体を確実に得ることができる。また、かかるプロピレン系多段重合体によれば、押出発泡体中の独立気泡の割合を高めることもでき、例えば、独立気泡率を40%以上とすることも確実に実施することができる。
本発明のプロピレン系樹脂押出発泡体は、前記プロピレン系多段重合体の230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することが好ましい。
この本発明によれば、230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、前記式(I)を具備するので、高倍率の発泡成形の実施が容易となり、発泡倍率が10倍以上とした押出発泡体を容易かつ確実に得ることができる。
本発明のプロピレン系樹脂押出発泡体(以下、押出発泡体)は、プロピレン系樹脂を押出発泡させてなるものであり、発泡倍率が10倍以上であり、平均セル径が400μm未満とされている。このような構成により、断熱性能に優れた押出発泡体を提供することができる。
また、押出発泡体の独立気泡率を40%以上、好ましくは60%以上とすれば、独立した多数の気泡が熱を伝えにくくするため、断熱性能が更に向上するとともに、衝撃強度等の機械的強度や耐湿性が優れるものとなる。
このような構成を有する本発明の押出発泡体を形成するプロピレン系樹脂としては、溶融時の溶融張力を高くしたプロピレン系樹脂、例えば、特開平10−279632号、特開2000−309670、特開2000−336198、特開2002−12717、特表2002−542360、特表2002−509575等に記載のプロピレン系樹脂を使用することができる。
また、本発明の押出発泡体を得るには、前記したように、プロピレン系樹脂として、溶融時の溶融張力を高くすることが望ましく、粘弾性特性に優れた樹脂材料を使用することが好ましい。
このような粘弾性特性に優れたプロピレン系樹脂としては、例えば、発泡体を構成するプロピレン系樹脂として、下記成分(A)及び成分(B)からなるプロピレン系多段重合体であることが好ましい。
(A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜20質量%含有する
(B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に80〜95質量%含有する
このプロピレン系多段重合体は、成分(A)、すなわち、超高分子量プロピレン系重合体の付与により、高溶融張力化を達成し、また、分子量分布の調整により粘弾性特性が調整された直鎖状のプロピレン系重合体である。このような粘弾性特性に優れたプロピレン系多段重合体を構成材料として使用することにより、前記した本発明の要件(発泡倍率が10倍以上、平均セル径が400μmより小さい(好ましくは200μm以下)、独立気泡率を40%以上)を具備したプロピレン系樹脂押出発泡体を確実に得ることができるので好ましい。
ここで、成分(A)の極限粘度が10dL/g以下では、溶融張力が不十分となり、所望の発泡性能を得ることができない場合がある。
また、成分(A)の質量分率が5質量%より小さいと、溶融張力が不十分となり、所望の発泡性能を得ることができない場合があり、一方、質量分率が20質量%を超えると、いわゆるメルトフラクチャーが激しくなる場合があり、押出発泡体の肌荒れ等の原因となり、製品品質が低下する。
成分(A)の極限粘度は、前記したように10dL/g超であることが好ましいが、12〜20dL/gの範囲内であることがより好ましく、13〜18dL/gの範囲内であることが特に好ましい。
また、成分(A)の質量分率は、8〜18質量%の範囲内であることが好ましく、10〜16質量%の範囲内であることが特に好ましい。
成分(B)の極限粘度が0.5dL/gより小さいと、溶融張力が不十分となり、所望の発泡性能を得ることができない場合があり、一方、3.0dL/gを超えると、粘度が高すぎ、好適な押出成形を実施することができない場合がある。
また、成分(B)の質量分率が80質量%より小さいと、好適な押出成形の実施が困難となる場合があり、質量分率が95質量%を超えると、溶融張力が低くなり、これも好適な押出成形の実施が困難となる場合がある。
成分(B)の極限粘度は、前記したように0.5〜3.0dL/gの範囲内であることが好ましいが、0.8〜2.0dL/gの範囲内であることが好ましく、1.0〜1.5dL/gの範囲内であることが特に好ましい。
また、成分(B)の質量分率は、82〜92質量%の範囲内であることが好ましく、84〜90質量%の範囲内であることが特に好ましい。
このプロピレン系多段重合体において、共重合体成分を構成する炭素数2〜8のα−オレフィンとしては、例えば、プロピレン以外のα−オレフィンであるエチレン、1−ブテン等が挙げられる。このうち、エチレンを使用することが好ましい。
また、プロピレン系多段重合体は、230℃におけるメルトフローレート(MFR)が100g/10分以下であることが好ましく、20g/10分以下であることが特に好ましい。MFRが100g/10分を超えると、多段重合体の溶融張力及び粘度が低くなり、成形が困難となる場合がある。
プロピレン系多段重合体は、230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することが好ましい。
ここで、230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、前記式(I)を具備しない場合にあっては、高倍率の発泡成形の実施が困難となり、発泡倍率が10倍以上とした押出発泡体を得ることができない場合がある。前記した定数(1.2)は、1.3以上とすることが好ましく、1.4以上とすることが特に好ましい。
なお、プロピレン系多段重合体が前記した式(I)の関係を具備するようにするには、成分(A)を5質量%含有させるようにすればよい。
プロピレン系多段重合体は、溶融状態の動的粘弾性(角周波数ωと貯蔵弾性率G’との関係)として、高周波数側での貯蔵弾性率の傾きが一定量以上の大きさであることが好ましく、具体的には、角周波数が10rad/sの場合の貯蔵弾性率G’(10)と、角周波数が1rad/sの場合の貯蔵弾性率G’(1)との比であるG’(10)/G’(1)が2.0以上であることが好ましく、2.5以上であることが特に好ましい。かかる比G’(10)/G’(1)が2.0より小さいと、押出発泡体に延伸等の外的変化を加えた際の安定性が低下する場合がある。
同様に、プロピレン系多段重合体は、溶融状態の動的粘弾性として、低周波数側での貯蔵弾性率の傾きが、一定量以下の大きさであることが好ましく、具体的には、角周波数が0.1rad/sの場合の貯蔵弾性率G’(0.1)と、角周波数が0.01rad/sの場合の貯蔵弾性率G’(0.01)との比であるG’(0.1)/G’(0.01)が6.0以下であることが好ましく、4.0以下であることが特に好ましい。かかる比G’(0.1)/G’(0.01)が6.0を超えると、押出発泡体の発泡倍率を高くすることが困難となる場合がある。
このようなプロピレン系多段重合体は、下記成分(a)及び(b)、または下記成分(a)、(b)及び(c)からなるオレフィン重合用触媒を用い、2段階以上の重合工程で、プロピレンを重合またはプロピレンと炭素数2〜8のα−オレフィンとを共重合させて製造することができる。
(a)四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタンを、エーテル化合物及び電子受容体で処理して得られる固体触媒成分
(b)有機アルミニウム化合物
(c)環状エステル化合物
ここで、(a)四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタンを、エーテル化合物及び電子受容体で処理して得られる固体触媒成分(以下、単に「(a)固体触媒成分」とする場合もある)において、四塩化チタンを還元する有機アルミニウム化合物としては、例えば、(イ)アルキルアルミニウムジハライド、具体的には、メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、及びn−プロピルアルミニウムジクロライド、(ロ)アルキルアルミニウムセスキハライド、具体的には、エチルアルミニウムセスキクロライド、(ハ)ジアルキルアルミニウムハライド、具体的には、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジ−n−プロピルアルミニウムクロライド、及びジエチルアルミニウムブロマイド、(ニ)トリアルキルアルミニウム、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、及びトリイソブチルアルミニウム、(ホ)ジアルキルアルミニウムハイドライド、具体的には、ジエチルアルミニウムハイドライド等をあげることができる。ここで、「アルキル」とは、メチル、エチル、プロピル、ブチル等の低級アルキルである。また、「ハライド」とは、クロライドまたはブロマイドであり、特に前者が通常である。
また、三塩化チタンを得るための、有機アルミニウム化合物による還元反応は、−60〜60℃、好ましくは−30〜30℃の温度範囲で実施することが通常である。還元反応における温度が−60℃より低いと、還元反応に長時間が必要となり、一方、還元反応における温度が60℃を超えると、部分的に過還元が生じる場合があり好ましくない。還元反応は、ペンタン、ヘプタン、オクタン及びデカン等の不活性炭化水素溶媒下において実施することが好ましい。
なお、四塩化チタンの有機アルミニウム化合物による還元反応によって得られた三塩化チタンに対して、更にエーテル処理及び電子受容体処理を施すことが好ましい。
前記三塩化チタンのエーテル処理で好ましく用いられるエーテル化合物としては、例えば、ジエチルエーテル、ジ−n−プロピルエーテル、ジ−n−ブチルエーテル、ジイソアミルエーテル、ジネオペンチルエーテル、ジ−n−ヘキシルエーテル、ジ−n−オクチルエーテル、ジ−2−エチルヘキシルエーテル、メチル−n−ブチルエーテル及びエチル−イソブチルエーテル等の各炭化水素残基が炭素数2〜8の鎖状炭化水素であるエーテル化合物が挙げられ、これらの中でも特に、ジ−n−ブチルエーテルを用いることが好適である。
三塩化チタンの処理で用いられる電子受容体としては、周期律表第III族〜第IV族及び第VIII族の元素のハロゲン化合物を使用することが好ましく、具体的には、四塩化チタン、四塩化ケイ素、三フッ化ホウ素、三塩化ホウ素、五塩化アンチモン、三塩化ガリウム、三塩化鉄、二塩化テルル、四塩化スズ、三塩化リン、五塩化リン、四塩化バナジウム及び四塩化ジルコニウム等を挙げることができる。
固体触媒成分(a)を調製する際に、三塩化チタンのエーテル化合物及び電子受容体による処理は、両処理剤の混合物を用いて行ってもよく、また、一方の処理剤による処理後に、他方の処理剤による処理を行うようにしてもよい。なお、これらのうちでは、後者が好ましく、エーテル処理後に電子受容体で処理を行うことが更に好ましい。
エーテル化合物及び電子受容体による処理の前に、三塩化チタンを炭化水素で洗浄することが好ましい。前記した三塩化チタンエーテル処理は、三塩化チタンとエーテル化合物を接触させることによって行われ、また、エーテル化合物による三塩化チタンの処理は、希釈剤の存在下で両者を接触させることによって行うのが有利である。このような希釈剤には、ヘキサン、ヘプタン、オクタン、デカン、ベンゼン及びトルエン等の不活性炭化水素化合物を使用することが好適である。なお、エーテル処理における処理温度は、0〜100℃であることが好ましい。また、処理時間については特に制限されないが、通常20分〜5時間の範囲で行われる。
エーテル化合物の使用量は、三塩化チタン1モルあたり、一般に0.05〜3.0モル、好ましくは0.5〜1.5モルの範囲とすればよい。エーテル化合物の使用量が0.05モルより小さいと、生成される重合体の立体規則性を十分に向上させることができなくなるので好ましくない。一方、エーテル化合物の使用量が3.0モルを超えると、生成される重合体の立体規則性は向上するものの、収率が低下することとなるので好ましくない。なお、有機アルミニウム化合物やエーテル化合物で処理した三塩化チタンは、厳密に言えば、三塩化チタンを主成分とする組成物である。
なお、このような固体触媒成分(a)としては、Solvay型三塩化チタンを好適に用いることができる。
有機アルミニウム化合物(b)としては、前記した有機アルミニウム化合物と同様なものを使用すればよい。
環状エステル化合物(c)としては、例えば、γ−ラクトン、δ−ラクトン、ε−ラクトン等が挙げられるが、ε−ラクトンを使用することが好ましい。
また、プロピレン系多段重合体を製造するために用いられるオレフィン重合用触媒は、前記した成分(a)〜(c)を混合することにより得ることができる。
プロピレン系多段重合体を得るには、2段階の重合方法のうち、水素不存在下でプロピレンを重合またはプロピレンと炭素数2〜8のα−オレフィンを共重合させることが好ましい。ここで、「水素不存在下」とは、実質的に水素不存在下という意味であり、水素が全く存在しない場合だけでなく、水素が極微量存在する場合(例えば、10molppm程度)も含まれる。要は、135℃テトラリン溶媒中で測定した、1段階目のプロピレン系重合体またはプロピレン系共重合体の極限粘度[η]が10dL/g以下とならない程度に水素を含む場合でも、「水素不存在下」の意味には含まれる。
このような水素不存在下でプロピレンの重合またはプロピレンとα−オレフィンとの共重合体を行うことにより、超高分子量プロピレン系重合体、すなわち、プロピレン系多段重合体の成分(A)を製造することができる。成分(A)は、水素不存在下で、原料モノマーを重合温度として、好ましくは20〜80℃、より好ましくは40〜70℃、重合圧力として、一般に、常圧〜1.47MPa、好ましくは0.39〜1.18MPaの条件下でスラリー重合して製造することが好ましい。
また、この製造方法では、プロピレン系多段重合体の成分(B)を、2段階目以降に製造することが好ましい。成分(B)の製造条件としては、前記したオレフィン重合用触媒を使用すること以外は特に制限はないが、原料モノマーを、重合温度として、好ましくは20〜80℃、より好ましくは60〜70℃、重合圧力として、一般に、常圧〜1.47MPa、好ましくは0.19〜1.18MPa、分子量調整剤としての水素が存在する条件下で重合して製造することが好ましい。
なお、前記した製造方法では、本重合を実施する前に、予備重合を行うようにしてもよい。予備重合を実施すると、パウダーモルフォロジーを良好に維持することができる、予備重合は、一般的に、重合温度として、好ましくは0〜80℃、より好ましくは10〜60℃、重合量として、固体触媒成分1gあたり、好ましくは0.001〜100g、より好ましくは0.1〜10gのプロピレンを重合またはプロピレンと炭素数2〜8のα−オレフィンを共重合させることが好ましい。
また、押出発泡体の構成材料であるプロピレン系樹脂をプロピレン系樹脂組成物として、前記したプロピレン系多段重合体と、230℃におけるメルトフローレート(MFR)が30g/10分以下、かつ、重量平均分子量(M)と数平均分子量(M)との比であるM/Mが5.0以下のプロピレン系重合体を含むようにしてもよい。前記したプロピレン系多段重合体と他の材料をブレンドして樹脂組成物とすることにより、押出発泡体の成形性改善と高機能化、低コスト化等を図ることができる。
この樹脂組成物を使用することにより、押出発泡体は、溶融張力が高く、優れた粘弾性特性を有することとなり、押出発泡体に高発泡倍率、良好な表面外観、シート成形時の延伸切れを防止するといった効果を付与することができる。
この樹脂組成物は、プロピレン系多段重合体に対する、プロピレン系重合体の重量比が6倍以上、より好ましくは10倍以上である。重量比が8倍より小さいと、押出発泡体の表面外観が不良となる場合がある。
プロピレン系重合体のメルトフローレート(MFR)は、30g/10分以下であることが好ましく、15g/10分以下であることがより好ましく、10g/10分以下であることが特に好ましい。MFRが30g/10分を超えると、押出発泡体の成形不良が生じる場合がある。
プロピレン系重合体のM/Mは、5.0以下であることが好ましく、4.5以下であることが特に好ましい。M/Mが5.0を超えると、押出発泡体の表面外観が悪くなる場合がある。
なお、プロピレン系重合体は、チーグラー・ナッタ触媒や、メタロセン触媒等の公知の触媒を用いた重合方法により製造することができる。
この樹脂組成物は、溶融状態の動的粘弾性(角周波数ωと貯蔵弾性率G’との関係)として、高周波数側での貯蔵弾性率の傾きが一定量以上の大きさであることが好ましく、また、低周波数側での貯蔵弾性率の傾きが、一定量以下の大きさであることが好ましい。
具体的には、角周波数が10rad/sの場合の貯蔵弾性率G’(10)と、角周波数が1rad/sの場合の貯蔵弾性率G’(1)との比であるG’(10)/G’(1)が5.0以上であることが好ましく、5.5以上であることが特に好ましい。かかる比であるG’(10)/G’(1)が5.0より小さいと、押出発泡体に延伸等の外的変化を加えた際の安定性が低下する場合がある。
また、角周波数が0.1rad/sの場合の貯蔵弾性率G‘(0.1)と、角周波数が0.01rad/sの場合の貯蔵弾性率G’(0.01)との比であるG’(0.1)/G’(0.01)が14.0以下であることが好ましく、12.0以下であることが特に好ましい。かかる比G’(0.1)/G’(0.01)が14.0を超えると、押出発泡体の発泡倍率を高くすることが困難となる場合がある。
ここで、押出発泡体が延伸される場合では、緩和時間が1〜10sの範囲における成分が、押出発泡体の延伸特性の悪化をもたらすのが一般的である。この領域の緩和時間の寄与が大きいほど、角周波数ωが1rad/s付近での貯蔵弾性率G’(1)の傾きが小さくなる。そこで、この傾きの指標として、角周波数ωが10rad/sのときの貯蔵弾性率G’(10)との比であるG’(10)/G’(1)を設けると、数値シミュレーション及び実験解析の結果から、この値が小さいほど、押出発泡における延伸時の破気が大きくなることが見出された。従って、前記した樹脂組成物では、G’(10)/G’(1)を5.0以上とすることが好ましい。
また、気泡成長の最終段階での破泡や、押出発泡成形におけるダイリップ近傍での高速伸長変形に伴う破泡に対しては、ある程度の歪み硬化性が要求されるため、適切な緩和時間領域での適量な高分子量成分が必要となり、そのためには、低周波数領域での貯蔵弾性率G’がある程度大きくなければならない。そこで、その指標として、角周波数ωが0.1rad/sの場合の貯蔵弾性率G’(0.1)と、角周波数が0.01rad/sの場合の貯蔵弾性率G’(0.01)との比であるG’(0.1)/G’(0.01)を設けると、数値シミュレーション及び実験解析の結果から、この値が大きくなると、破泡による発泡倍率の低下が顕著になることが見出された。よって、前記した樹脂組成物では、G’(0.1)/G’(0.01)を14.0以下とすることが好ましい。
なお、この樹脂組成物を含め、本発明の押出発泡体を構成するプロピレン系樹脂には、必要に応じて、本発明の効果を妨げない範囲内で、酸化防止剤、中和剤、結晶核剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸収剤などの安定剤または架橋剤、連鎖移動剤、核剤、滑剤、可塑剤、充填剤、強化剤、顔料、染料、難燃剤、帯電防止剤などの添加剤を添加することができる。これらの添加剤の添加量は、成形する押出発泡体に要求される諸特性や成形条件に応じて、適宜決定すればよい。
また、プロピレン系樹脂として、前記した溶融粘弾性に優れたプロピレン系多段重合体を使用する場合にあっては、必要により前記した添加剤を添加した状態で、前もって公知の溶融混練機を用いて溶融混練してペレット形状とした後に、所望の押出発泡体を成形するようにしてもよい。
本発明の押出発泡体は、前記したプロピレン系樹脂を押出発泡することにより得ることができるが、製造装置としては、プロピレン系樹脂を溶融状態に加熱し、適度のせん断応力を付与しながら混練し、発泡押出することができる公知の押出発泡成形装置を使用することができる。また、製造装置を構成する押出機も、単軸押出機または二軸押出機のいずれのものも採用することができる。このような押出発泡成形装置としては、例えば、特開2004−237729号に開示された、2台の押出機が接続されたタンデム型押出発泡成形装置を使用するようにしてもよい。
また、成形体を発泡させる発泡手段としては、成形時に溶融状態の樹脂材料に流体(ガス)を注入する物理発泡や、樹脂材料に発泡剤を混合させる化学発泡を採用することができる。
物理発泡としては、注入する流体としては、不活性ガス、例えば、二酸化炭素(炭酸ガス)、窒素ガス等が挙げられる。また、化学発泡としては、使用できる発泡剤としては、例えば、アゾジカルボンアミド、アゾビスイソブチロニトリル等が挙げられる。
なお、前記した物理発泡にあっては、溶融状態の樹脂材料に対して、超臨界状態の炭酸ガスや窒素ガスを注入するようにすれば、平均セル径が400μm未満、好ましくは200μm以下の微細な発泡セルを多数形成させることが確実に実施することができるので好ましい。
ここで、超臨界状態とは、気体と液体が共存できる限界の温度及び圧力を超えることによって、気体と液体の密度が等しくなり2層が区別できなくなった状態をいい、この超臨界状態で生じる流体を超臨界流体という。また、超臨界状態における温度及び圧力が超臨界温度及び超臨界圧力であり、例えば、炭酸ガスでは、例えば、31℃、7.4MPaである。また、超臨界状態の炭酸ガスや窒素ガスは、樹脂材料に対して4〜15質量%程度注入するようにすればよく、シリンダ内において、溶融状態の樹脂材料に対して注入することができる。
押出発泡体の形状は、特に制限はなく、構造材料として公知の形状、例えば、板状、円柱状、矩形状、凸状、凹状等の公知の形状を採用することができる。
また、押出発泡体は、例えば、複数個の押出孔が形成された押出用ダイから多数の細条を押出発泡させ、この細条を長手方向に相互に融着させて多数集束してなる押出発泡細条集束体としてもよい。このようにして、細条の押出発泡体を多数集束した押出発泡細条集束体とすることにより、押出発泡体の発泡倍率を高くすることができ、発泡倍率が高く、十分な厚みを有する発泡成形体を、種々の形状で容易に成形することができる。
なお、このような押出発泡細条集束体の製造は、例えば、前記した特許文献1及び特許文献2のほか、特開昭53−1262号公報等によっても公知である。
このような押出発泡細条集束体を構成する細条の形状は、押出用ダイに形成された押出孔の形状に左右されるが、押出孔の形状は、円形、菱形、スリット状等の任意の形状とすることができる。なお、成形にあたっては、押出用ダイの出口部における圧力損失が3MPaから50MPaとなるようにすることが好ましい。
また、押出用ダイに形成される押出孔の形状は、全てを同じ形状としてもよいし、一つの押出用ダイ中に多種類の形状の押出孔を形成するようにしてもよい。
更には、例えば、円形の押出孔とする場合であっても、その径の大きさとして複数の種類とし、径の異なる円形状の押出孔を多数形成するようにしてもよい。
このようにして得られる本発明のプロピレン系樹脂押出発泡体によれば、発泡倍率が10倍以上であり、平均セル径が400μm未満であるため、押出発泡体中における気泡壁を多数形成することができるため、外部からの輻射熱を効率よく遮断することが可能となり、断熱性能に優れた押出発泡体を提供することができる。
なお、プロピレン系樹脂押出発泡体の平均セル径は200μm以下とすることが好ましく、平均セル径を200μm以下と更に小さくすれば、押出発泡体中における気泡壁を更に多く形成することができるため、断熱性能により一層優れたプロピレン系押出発泡体となる。
本発明のプロピレン系樹脂押出発泡体は、構成材料であるプロピレン系樹脂は、リサイクル性能にも優れ、また、耐薬品性や耐熱性も良好であることから、本発明のプロピレン系樹脂押出発泡体も、これらの諸性能(リサイクル性能、耐薬品性、耐熱性)を享受することになる。更には、低コスト材料であるプロピレン系樹脂を使用することにより、前記した効果を有する押出発泡体を低コストで提供することが可能となる。
本発明の押出発泡体は、このようにして断熱性能に優れるので、自動車分野の構造材料(天井、ドア、フロア、カウル等の構成部材)や、建築・土木分野の構造材料(建材等)等に適用することができる。
なお、本発明の押出発泡体は、平均セル径が400μm未満(好ましくは200μm以下)と小さいため、優れた断熱性能とともに、同じ断熱性能とした場合であれば、従来のものよりも厚さを薄くすることができる。そのため、例えば、前記した分野等に適用した場合にあっては、従来の断熱材料より居住空間を大きくとることができるといった副次的な効果も好適に奏することができる。
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。
実施例1で得られたプロピレン系樹脂押出発泡体(押出発泡細条集束体)の断面の電子顕微鏡写真である(倍率 50倍)。
以下、実施例及び製造例を挙げて、本発明をより具体的に説明するが、本発明は実施例等の内容に何ら限定されるものではない。
なお、下記の製造例、実施例における物性値等は、下記の方法で測定した。
(1)1段階目のプロピレン重合体成分(成分1)及び二段階目のプロピレン重合体成分(成分2)の質量分率:
重合時に連続的に供給されるプロピレンの流量計積算値を用いた物質収支から求めた。
(2)極限粘度[η]:
135℃のテトラリン溶媒中で測定した。なお、成分2の極限粘度[η]は、下記式(II)により計算した。
[ηtotal] :プロピレン重合体全体の極限粘度(dL/g)
[η] :成分1の極限粘度(dL/g)
:成分1の質量分率(質量%)
:成分2の質量分率(質量%)
(3)メルトフローレート(MFR):
JIS K7210に準拠し、温度を230℃、加重を2.16kgfとして測定した。
(4)溶融張力(MT):
キャピログラフ1C(東洋精機(株)製)を使用し、測定温度230℃、押出速度10mm/min、引き取り温度3.1m/分で測定した。なお、測定には、長さが8mm、直径が2.095mmのオリフィスを使用した。
(5)粘弾性測定:
下記の仕様の装置で測定した。なお、貯蔵弾性率G’は、複素弾性率の実数部分により求めることができるものである。
装置 : RMS−800(レオメトリックス社製)
温度 : 190℃
歪み : 30%
周波数 : 100rad/s〜0.01rad/s
[製造例1]
プロピレン系多段重合体の製造:
(i)予備重合触媒成分の調製:
内容積5リットルの攪拌機付き三つ口フラスコを十分に乾燥させ、窒素ガスで置換した後、脱水処理したヘプタンを4リットル、ジエチルアルミニウムクロライド140グラムを加え、市販品のSolvay型三塩化チタン触媒(東ソー・ファインケム(株)製)20gを加えた。これを攪拌しながら20℃に保持した状態で、プロピレンを連続的に導入した。80分後、攪拌を停止し、三塩化チタン触媒1gあたり0.8gのプロピレンが重合した予備触媒成分を得た。
(ii)プロピレンの重合(1段階目):
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥させ、窒素ガスで置換させた後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、攪拌しながらプロピレンを導入して、系内を内温60℃、全圧0.78MPaに安定させた後、前記(i)で得た予備重合触媒成分を固体触媒換算で0.75グラム含んだヘプタンスラリー50ミリリットルを加えて重合開始とした。プロピレンを35分間連続的に供給した場合におけるプロピレン流量積算値から求めた重合体生成量は151gであり、その一部をサンプリングして分析した結果、極限粘度は14.1dL/gであった。その後、内温を40℃以下に降温させ、攪拌を緩め、脱圧した。
(iii)プロピレンの重合(2段階目):
脱圧後、再び内温を60℃として、水素を0.15MPa加えて攪拌しながらプロピレンを導入した。全圧0.78MPaでプロピレンを連続的に供給しながら、60℃で2.8時間重合を行った。この際、重合体の一部をサンプリングして分析した結果、極限粘度は1.16dL/gであった。
重合終了後、50ミリリットルのメタノールを添加し、降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し、1−ブタノールを100ミリリットル加え、85℃で1時間攪拌した後に固液分離した。更に、85℃のヘプタン6リットルで固体部を2回洗浄し、真空乾燥してプロピレン重合体3.1kgを得た。
以上の結果から、1段階目と2段階目の重合重量比は12.2/87.8であり、2段階目で生成したプロピレン重合成分の極限粘度は1.08dL/gと求められた。
そして、得られたプロピレン系多段重合体粉末100重量部に対して、酸化防止剤としてイルガノックス1010(チバ・スペシャルティー・ケミカルズ(株)製)を600ppm、中和剤としてステアリン酸カルシウムを500ppm加えて混合し、ラブプラストミル単軸押出機(東洋精機(株)製、φ20mm)で温度を230℃として溶融混練してプロピレン重合体ペレットを調製した。
得られたプロピレン系多段重合体の物性及び樹脂特性を表1に示す。
(プロピレン系多段重合体の物性及び樹脂特性)
[製造例2〜6]
前述した製造例1と同様な手順により、各部分の極限粘度および重量分率が異なる製造例2〜6を製造した。
また、比較のため、一段目および二段目を含まない従来品1(押出用一般銘柄 E−105GM)、従来品2(発泡成形用銘柄 pf−814)を用いた。
前述した製造例からプロピレン系押出発泡成形体(押出発泡細条集束体)の製造を行った。製造方法としては、タンデム型押出発泡成型機を用いる方法(製造方法1)と、MuCell射出成型機を用いる方法(製造方法2)との各々を利用した。
[製造方法1](実施例1〜3/比較例1〜2)
前記した製造例1〜5で得たペレット状のプロピレン系多段重合体を成形材料として、特開2004−237729号公報に開示されるタンデム型押出発泡成形装置(スクリュ径がφ50mmの単軸押出機と、スクリュ径がφ35単軸押出機の2台の単軸押出機を備える)を用いて、また、ダイとして、多数の円形押出孔(円管ダイ)が集合したものを用いて、下記の方法により、押出発泡された細条が多数集束された板状の押出発泡細条集束体であるプロピレン系樹脂押出発泡体を製造した。
なお、発泡は、φ50mm単軸押出機にて、CO超臨界流体を注入することにより行った。
すなわち、φ50mm単軸押出機により、成形材料を溶融させながら、CO超臨界流体を注入して、当該流体を溶融状態の成形材料中に均一になるように十分溶解させた後、連接されたφ35mm単軸押出機から、φ35mm単軸押出機におけるダイ出口の樹脂温度が180℃となるようにして押し出し、押出発泡体を成形した。製造条件の詳細を下記に示した。
なお、φ35mm単軸押出機のダイ出口における樹脂温度は、例えば、熱電対温度計により測定した値を採用すればよく、この樹脂温度が、発泡しながら押し出された溶融樹脂の温度と考えることができる。
(製造条件)
CO超臨界流体 : 7質量%
押出量 : 8kg/hr
ダイ上流部樹脂圧力 : 8MPa
ダイ出口での押出温度 : 180℃
このようにして得られたプロピレン系樹脂押出発泡体の発泡倍率、平均セル径、独立気泡率を下記の条件に従って測定したところ、順に、31倍、110μm、60%であった。
(測定条件)
発泡倍率 : 得られた発泡成形体の重量を水投法を用いて求めた体積により除することにより密度を求め、算出した。
平均セル径: ASTM D3576−3577に準拠して測定した。
独立気泡率: ASTM D 2856に準拠して測定した。
熱伝導率 : JISA1412に準拠して熱伝導率を評価した。
(試験結果)
図1は実施例1で得られたプロピレン系樹脂押出発泡体の断面の電子顕微鏡写真である(倍率 50倍)。
図1より、実施例1で得られたプロピレン系樹脂押出発泡体は、平均セル径が400μm未満の発泡セルが無数にかつ均一に並んでいることが確認できる。
気泡の状態については表3の結果が得られた。
製造例1〜3を用いた成形品は十分な独立気泡率が得られ、本発明の実施例1〜3とすることができた。しかし、製造例4,5を用いた成形品は十分な独立気泡率が得られなかったため、比較例1,2とした。
熱伝導率については、0.036W/mKを得ることができ、本発明の押出発泡体が優れた断熱性あるいは耐熱性能を備えることが確認できた。
[製造方法2](実施例4〜5/比較例3〜6)
前記した製造例1〜4、同6、従来品1〜2のプロピレン系多段重合体を成形材料として、MuCell射出成型機を用いて単純発泡させ、その成形体からテストピースを切り出すことにより実施した。
(製造条件)
成形機:日本製鋼製、J180EL−MuCell
射出時間:5秒
射出樹脂量:100g
シリンダー設定温度:180℃
発泡剤:CO2超臨界流体
ガス量:5wt%
(試験結果)
気泡の状態については表4の結果が得られた。
製造例2〜3を用いた成形品は十分な独立気泡率が得られ、本発明の実施例4〜5とすることができた。しかし、製造例4,6および従来品1,2を用いた成形品は十分な独立気泡率が得られなかったため、比較例3〜6とした。
発泡成形性については、次のように評価した。
押出し細状発泡体の成型時において、突出が安定し、かつ、セル径と発泡倍率の変動が小さい、と認められる場合には安定している(○印)と判定。
同じく、安定していると認められない場合には安定せず(×印)と判定。
[製造方法1と製造方法2の結果の相関]
前述した製造方法2によれば、少量のサンプル(2〜3Kg)による評価が可能であるため、製造方法2の実験結果と実際の押出発泡テストの結果に相関が認められれば、この製造方法2を用いて少量サンプルにより押出発泡特性の評価が可能となる。そこで、前記タンデム型押出成形装置(製造方法1)により評価した発泡成形性と、製造方法2により評価した発泡成形性の相関を確認した。
製造例2〜4については、製造方法1と製造方法2の両方の実験を実施した。その結果、製造方法1で発泡特性が良好(高発泡倍率、微細セル)であれば、製造方法2においても発泡特性が良好であることが確認でき、製造方法2によって一般の押出発泡成形における発泡成形性を評価できることを確認した。
本発明のプロピレン系樹脂押出発泡体は、例えば、建築や土木分野、自動車分野において断熱性能を必要とされる構造材料について有利に使用できる。

Claims (5)

  1. プロピレン系樹脂を押出発泡させてなるプロピレン系樹脂押出発泡体であって、
    発泡倍率が10倍以上であり、
    平均セル径が200μm以下であり、
    独立気泡率が40%以上であり、
    押出発泡体を構成するプロピレン系樹脂が下記(A)及び(B)からなるプロピレン系多段重合体であることを特徴とするプロピレン系樹脂押出発泡体。
    (A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜15質量%含有する
    (B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に85〜95質量%含有する
  2. 請求項1に記載のプロピレン系樹脂押出発泡体において、
    押出発泡された細条が多数集束された押出発泡細条集束体であることを特徴とするプロピレン系樹脂押出発泡体。
  3. 請求項に記載のプロピレン系樹脂押出発泡体において、
    前記プロピレン系多段重合体の230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することを特徴とするプロピレン系樹脂押出発泡体。
  4. プロピレン系樹脂を押出発泡させてなるプロピレン系樹脂押出発泡体であって、
    発泡倍率が10倍以上であり、
    平均セル径が200μm以下であり、
    独立気泡率が40%以上であり、
    押出発泡体を構成するプロピレン系樹脂が下記(A)及び(B)からなるプロピレン系多段重合体であることを特徴とするプロピレン系樹脂押出発泡体。
    (A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜20質量%含有する
    (B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に80〜95質量%含有する
  5. 請求項に記載のプロピレン系樹脂押出発泡体において、
    前記プロピレン系多段重合体の230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することを特徴とするプロピレン系樹脂押出発泡体。
JP2006545175A 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体 Active JP4999462B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006545175A JP4999462B2 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004336679 2004-11-19
JP2004336679 2004-11-19
PCT/JP2005/021281 WO2006054714A1 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体
JP2006545175A JP4999462B2 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体

Publications (2)

Publication Number Publication Date
JPWO2006054714A1 JPWO2006054714A1 (ja) 2008-06-05
JP4999462B2 true JP4999462B2 (ja) 2012-08-15

Family

ID=36407250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006545175A Active JP4999462B2 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体

Country Status (7)

Country Link
US (1) US7855239B2 (ja)
EP (1) EP1813643B1 (ja)
JP (1) JP4999462B2 (ja)
KR (1) KR20070088707A (ja)
CN (1) CN101090934B (ja)
DE (1) DE602005023202D1 (ja)
WO (1) WO2006054714A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770691B2 (en) * 2004-08-18 2010-08-10 Schabel Polymer Technology, Llc Lightweight pelletized materials
JP5002364B2 (ja) * 2007-08-03 2012-08-15 日立アプライアンス株式会社 真空断熱材及びこれを備えた冷蔵庫
JP2009067948A (ja) 2007-09-14 2009-04-02 Asahi Fiber Glass Co Ltd ポリプロピレン系樹脂押出発泡体及びその製造方法
JP2009275150A (ja) * 2008-05-15 2009-11-26 Prime Polymer Co Ltd ポリプロピレン系押出発泡体、および、その製造方法
US9222254B2 (en) 2012-03-13 2015-12-29 Schabel Polymer Technology, Llc Structural assembly insulation
US10301446B2 (en) * 2013-09-19 2019-05-28 Dart Container Corporation Method for generating a microstructure in a material that includes thermoplastic polymer molecules, and related systems
EP3985035A4 (en) * 2019-06-17 2023-06-14 Sunallomer Ltd POLYPROPYLENE BASED RESIN COMPOSITION CONTAINING A VERY HIGH MOLECULAR WEIGHT PROPYLENE (CO)POLYMER
US11787882B2 (en) 2019-06-17 2023-10-17 Resonac Corporation Ultrahigh molecular weight propylene (co)polymer
JP7410666B2 (ja) * 2019-08-08 2024-01-10 株式会社プライムポリマー 射出成形体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292147A (ja) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡体の製造方法
JP2001001384A (ja) * 1999-04-23 2001-01-09 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体の製造方法
JP2003094504A (ja) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4115532A (en) * 1974-07-31 1978-09-19 Mitsubishi Chemical Industries, Ltd. Preparation of solid titanium trichloride
JPS531262A (en) 1976-06-26 1978-01-09 Sekisui Plastics Process for manufacture of thermoplastic resin foam
US5527573A (en) * 1991-06-17 1996-06-18 The Dow Chemical Company Extruded closed-cell polypropylene foam
KR0169075B1 (ko) 1994-01-31 1999-03-20 유미꾸라 레이이찌 프로필렌 중합체 수지 압출 발포체
JPH0925354A (ja) 1995-07-07 1997-01-28 Asahi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体及びその製造方法
JP3569362B2 (ja) 1995-07-25 2004-09-22 鐘淵化学工業株式会社 改質ポリプロピレン系樹脂からなる板状発泡体およびその製法
JP3734061B2 (ja) 1997-04-02 2006-01-11 チッソ株式会社 改質オレフィン(共)重合体組成物とその製造方法及び改質オレフィン(共)重合体組成物成形品
AR016093A1 (es) 1997-06-27 2001-06-20 Dow Chemical Co Metodo para absorber la energia de impacto, articulos absorbentes de la energia de impactos de aplicacion en dicho metodo y automoviles que incluyendichos articulos absorbentes de impactos
TW504515B (en) 1997-08-07 2002-10-01 Chisso Corp Olefin (co)polymer composition
JP3870523B2 (ja) * 1997-12-22 2007-01-17 チッソ株式会社 ポリプロピレン発泡中空成形品
JP2000143858A (ja) 1998-11-11 2000-05-26 Chisso Corp 押出発泡体、成形体及び押出発泡体の製造方法
US6225411B1 (en) 1999-04-19 2001-05-01 Montell Technology Company Bv Soft propylene polymer blend with high melt strength
JP2000309670A (ja) 1999-04-26 2000-11-07 Nippon Polyolefin Kk ポリプロピレン系樹脂組成物
JP2000336198A (ja) 1999-05-25 2000-12-05 Nippon Polyolefin Kk 押出発泡成形用樹脂組成物
JP2002012717A (ja) 2000-04-10 2002-01-15 Sunallomer Ltd ポリプロピレン系樹脂組成物、その製造方法および成形体
JP4916055B2 (ja) 2000-08-22 2012-04-11 出光興産株式会社 1−ブテン系重合体及び該重合体からなる成形体
JP2002105256A (ja) * 2000-09-28 2002-04-10 Grand Polymer Co Ltd ポリプロピレン樹脂組成物およびそれから得られる発泡体
JP4257826B2 (ja) * 2002-09-30 2009-04-22 株式会社ジェイエスピー ポリプロピレン系樹脂発泡成形体の製造方法
JP2004217755A (ja) * 2003-01-14 2004-08-05 Mitsui Chemicals Inc 発泡体
JP2004237729A (ja) 2003-01-15 2004-08-26 Kawata Mfg Co Ltd 押出発泡成形装置
KR101140043B1 (ko) 2004-03-31 2012-05-02 가부시키가이샤 프라임 폴리머 프로필렌계 다단 중합체 및 그의 제조 방법, 및 프로필렌계수지 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292147A (ja) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡体の製造方法
JP2001001384A (ja) * 1999-04-23 2001-01-09 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体の製造方法
JP2003094504A (ja) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法

Also Published As

Publication number Publication date
CN101090934A (zh) 2007-12-19
US7855239B2 (en) 2010-12-21
CN101090934B (zh) 2011-09-07
EP1813643B1 (en) 2010-08-25
WO2006054714A1 (ja) 2006-05-26
DE602005023202D1 (de) 2010-10-07
EP1813643A4 (en) 2008-12-31
EP1813643A1 (en) 2007-08-01
JPWO2006054714A1 (ja) 2008-06-05
US20080176971A1 (en) 2008-07-24
KR20070088707A (ko) 2007-08-29

Similar Documents

Publication Publication Date Title
JP4999463B2 (ja) プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法
JP4999462B2 (ja) プロピレン系樹脂押出発泡体
JP4889483B2 (ja) プロピレン系多段重合体及びその製造方法、並びにプロピレン系樹脂組成物
EP1899415B1 (en) Propylene polymers having broad molecular weight distribution
JP5202942B2 (ja) プロピレン系樹脂押出発泡体の製造方法
KR20190079656A (ko) 폴리올레핀 필름 조성물의 제조 방법 및 그로부터 제조된 필름
JP5280680B2 (ja) プロピレン系樹脂押出発泡複合体
US8507608B2 (en) Propylene polymer resin composition
JP5203587B2 (ja) プロピレン系重合体及び発泡成形体
JP5123659B2 (ja) プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法
EP4001325A1 (en) Polyethylene resin for secondary battery separator, method for manufacturing the same, and separator to which the same is applied
JP2008143147A (ja) プロピレン系樹脂押出発泡体およびその製造方法
JPWO2006054716A1 (ja) プロピレン系樹脂押出発泡体
JP4085673B2 (ja) プロピレン重合体組成物およびこれを用いて得られた発泡成形体
JP2009221473A (ja) ポリプロピレン系押出発泡体およびその製造方法
KR20080023304A (ko) 넓은 분자량 분포를 갖는 프로필렌 중합체
US6710130B2 (en) Propylene polymer composition and its foam moldings
JP2009299056A (ja) ポリプロピレン系射出発泡体、および、その製造方法
JP2009241517A (ja) ポリプロピレン系押出発泡成形体およびその製造方法
JP2009275150A (ja) ポリプロピレン系押出発泡体、および、その製造方法
JP2014083771A (ja) 発泡ブロー成形用樹脂組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250