WO2006054425A1 - 三次元計測装置および三次元計測方法並びに三次元計測プログラム - Google Patents

三次元計測装置および三次元計測方法並びに三次元計測プログラム Download PDF

Info

Publication number
WO2006054425A1
WO2006054425A1 PCT/JP2005/019511 JP2005019511W WO2006054425A1 WO 2006054425 A1 WO2006054425 A1 WO 2006054425A1 JP 2005019511 W JP2005019511 W JP 2005019511W WO 2006054425 A1 WO2006054425 A1 WO 2006054425A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
pattern light
measurement
light
dimensional
Prior art date
Application number
PCT/JP2005/019511
Other languages
English (en)
French (fr)
Inventor
Cunwei Lu
Original Assignee
School Juridical Person Of Fukuoka Kogyo Daigaku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by School Juridical Person Of Fukuoka Kogyo Daigaku filed Critical School Juridical Person Of Fukuoka Kogyo Daigaku
Priority to US11/667,767 priority Critical patent/US7583391B2/en
Priority to CN2005800395109A priority patent/CN101061367B/zh
Publication of WO2006054425A1 publication Critical patent/WO2006054425A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition

Definitions

  • 3D measuring device 3D measuring method, and 3D measuring program
  • the present invention relates to a three-dimensional measurement apparatus, a three-dimensional measurement method, and a three-dimensional measurement program that project a predetermined pattern of light onto an object and measure three-dimensional information without contact.
  • the three-dimensional measurement methods include a passive type that performs measurement without irradiating the measurement target with specific light or radio waves that assist measurement, and light, sound waves, radio waves, or the like. It is divided into the active type that performs measurement using the information.
  • Patent Document 1 describes an improved three-dimensional measurement method that reduces the laser light intensity as much as possible.
  • the imaging time must be increased accordingly.
  • the total amount of laser light increases as a result. Therefore, it is desirable to establish a 3D measurement method for the human body without using a laser.
  • Non-Patent Document 1 describes an example of a human body shape measurement apparatus using an active three-dimensional measurement method that does not use laser light.
  • This human body shape measurement device uses the time-series spatial code method, and projects seven types of code pattern light (gray code pattern) created by the stripe-shaped light shirt pattern onto the measurement object. Dividing the object engineeringly, the coordinate value of the measurement object is calculated by the principle of triangulation.
  • the human body shape measurement apparatus described in Non-Patent Document 1 requires multiple projections in one measurement. Therefore, a powerful number of projections is required to perform highly accurate measurement. Become. For example, in the time-series space coding method used in the human body shape measurement apparatus of Non-Patent Document 1, at least 7 projections are required to improve the measurement accuracy in the depth direction by 1%. In human anthropometry, it is difficult to have the subject maintain a stationary state for a long time during measurement, and it is desirable to reduce the number of projections as much as possible to shorten the time required for three-dimensional measurement.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-11430
  • Non-Patent Document 1 Susumu Shibata, Koichiro Yamauchi, Hiroshi Nishio, Takashi Futagawa, Yukio Sato, Proceedings of the 10th Image Sensing Symposium, Image Sensing Technology Study Group, Jun. 9, 2004, p. 253-258
  • Non-Patent Document 2 Genki Cho, Jin Wei, “Improvement of 3D image measurement efficiency by pattern light projection by combining MPCA and OIMP technology”, Proceedings of the 10th Image Sensing Symposium, Image Sensing Technology Study Group, 2004 9 June, p. 53- 58
  • the black-and-white projection color analysis method of Non-Patent Document 2 can detect pattern light having a large number of individual pattern lights in a single projection, and is therefore faster and more accurate than the time-series space coding method. Good 3D measurement is possible. However, in the black-and-white projection color analysis method of Non-Patent Document 2, only the three-dimensional information of the measurement point that is the maximum value of the individual no-turn light can be obtained in the intensity distribution of the projection pattern light in the calculation image. The information between the non-turned light and the adjacent individual pattern light becomes three-dimensional information lost.
  • the present invention provides a three-dimensional measurement apparatus, a three-dimensional measurement method, and a tertiary that can obtain a large amount of non-turn light information by one projection, and can obtain high-speed and high-precision three-dimensional information.
  • the purpose is to provide a former measurement program.
  • the three-dimensional measurement apparatus of the present invention includes a pattern forming unit that forms a pattern of light to be projected onto a measurement object, and light of a pattern formed by the pattern formation unit on the measurement object (hereinafter referred to as “pattern light”).
  • Projection means for projecting, imaging means for obtaining an image by imaging a measurement object onto which pattern light is projected, and pattern light projected from the image (hereinafter referred to as “projection pattern light”).
  • the pattern light formed by the pattern forming unit is projected onto the measurement target by the projection unit, and an image of the measurement target on which the pattern light is projected is captured. Since the projected pattern light is detected by the captured image and the projected pattern light detecting means, it is possible to detect the projected pattern light having many individual pattern lights in one projection. it can. That is, a lot of projection pattern light information can be obtained by one projection.
  • the direction angle of each individual pattern light of the projection pattern light is calculated by the direction angle calculation means, and the projection pattern light is divided for each period by the division means, and each of the individual pattern light, which is the divided projection pattern light, is divided.
  • the phase value at the measurement point is calculated by the phase value calculation means.
  • the calculated phase value of each measurement point is converted into the depth distance of each measurement point, one measurement point where the intensity distribution has a maximum value among the individual pattern lights of the projected pattern light Alone
  • the three-dimensional information of each measurement point of the individual pattern light can be obtained, and the three-dimensional information can be obtained with high accuracy.
  • the pattern light and the projection pattern light are aggregates of individual pattern lights.
  • the three-dimensional measurement method of the present invention uses a pattern formation step for forming a light pattern to be projected onto a measurement object, and a pattern light formed by the projection means in the pattern formation step on the measurement object.
  • a direction angle calculation step for calculating the direction angle of the projection pattern light by comparing the projection pattern light with the original pattern light, a division step for dividing the projection pattern light for each period, and a split projection pattern light from the divided projection pattern light
  • the three-dimensional measurement program of the present invention includes a pattern forming unit that forms a light pattern to be projected onto a measurement object by a computer, and a measurement in which the pattern light formed by the pattern forming unit is projected.
  • a projection pattern light detection unit that detects pattern light projected from an image of an object captured;
  • a direction angle calculation unit that calculates a direction angle of the projection pattern light by comparing the projection pattern light with the original pattern light;
  • the dividing means for dividing the projection pattern light for each period, the phase value calculating means for calculating the phase value of the measurement point from the divided projection pattern light power, and the depth distance of the measurement point is calculated from the calculated phase value.
  • a distance calculation means for performing the calculation, and a three-dimensional information calculation means for calculating the three-dimensional information of the measurement object using the calculated depth distance of the measurement point.
  • the no-turn forming means of the three-dimensional measuring apparatus of the present invention optimizes the intensity distribution of the pattern light to form the optimum intensity combination pattern.
  • the optimum pattern forming means optimizes the intensity distribution of the pattern light and the optimum intensity combination pattern.
  • the optimum intensity combination pattern having a large intensity distribution that maximizes the intensity difference between the local maximum values of the individual pattern of interest and the adjacent individual pattern is created.
  • the light of this optimum intensity combination pattern is projected onto the measurement object, even in the projection pattern light obtained from the image of the measurement object imaged by the imaging means, the individual pattern light of interest and the individual pattern light adjacent thereto The intensity difference between each local maximum is the maximum. Therefore, the calculation accuracy of the direction angle of each individual pattern light of the projection pattern light can be improved, and the division of the projection pattern light for each period can be performed with high accuracy, further improving the accuracy of the three-dimensional measurement. be able to.
  • the three-dimensional measurement apparatus of the present invention includes an intensity value correcting unit that corrects the intensity value of the projection pattern light detected by the projection pattern light detecting unit.
  • the intensity value correction means corrects the intensity value of the projection pattern light detected by the projection pattern light detection means, so highly accurate three-dimensional measurement is possible even for measurement objects with unclear color distribution and surface reflection characteristics. It can be performed. In other words, highly accurate three-dimensional measurement can be performed in a short time even for an object that is colored with various colors just like a human body having a substantially uniform color distribution.
  • the three-dimensional measurement apparatus of the present invention preferably includes a position correction unit that corrects the position of the measurement object in the image acquired by the imaging unit. Since the position of the measurement object in the image acquired by the imaging unit is corrected by the position correction unit, highly accurate three-dimensional measurement can be performed even on a measurement object that is not a stationary object. In other words, it is difficult to stop completely during measurement, and highly accurate three-dimensional measurement can be performed in a short time on humans and animals.
  • the three-dimensional information calculation means of the three-dimensional measurement apparatus of the present invention calculates a spatial coordinate, distance, angle, area or volume of the measurement object. Since the three-dimensional information calculation means calculates the spatial coordinates, distance, angle, area or volume of the measurement object, various information of the measurement object can be obtained by using the three-dimensional measurement apparatus of the present invention. .
  • the pattern used in the three-dimensional measuring apparatus of the present invention is formed in a striped pattern. Since noturn is formed in stripes, this pattern light is projected The intensity distribution of the projection pattern light used for the analysis obtained in this way can be easily analyzed as a sine wave. Further, in this case, the individual pattern light indicates each stripe that forms the pattern light and the projection pattern light.
  • the pattern light formed by the pattern forming means is projected onto the measurement object by the projection means, and the image of the measurement object onto which the non-turn light is projected is picked up by the image pickup means. Since the projection pattern light is detected by the pattern light detection means, a lot of projection pattern light information can be obtained by one projection. Further, the direction angle of each individual pattern light of the projection pattern light is calculated by the direction angle calculation means, and the projection pattern light is divided for each period by the division means, and each of the individual pattern light which is the divided projection pattern light is obtained.
  • the phase value at the measurement point is calculated by the phase value calculation means, and the calculated phase value at each measurement point is converted into the depth distance of each measurement point, the intensity distribution of each individual pattern light of the projection pattern light is It is possible to obtain 3D information at each measurement point of individual pattern light with high accuracy and 3D information.
  • the optimum intensity combination pattern created by the optimum pattern forming means includes an intensity distribution that maximizes an intensity difference between each local maximum value of an individual pattern of interest and an individual pattern adjacent thereto, pattern light, Therefore, when the light of this optimum intensity combination pattern is projected onto the measurement object, even in the projection pattern light obtained from the image of the measurement object imaged by the imaging means, the individual pattern light of interest and the adjacent adjacent pattern light The maximum difference in the intensity of each individual pattern light can be maximized, improving the calculation accuracy of the direction angle of the individual pattern light, and accurately dividing the projection pattern light by period. . Therefore, the accuracy of the three-dimensional measurement can be further improved.
  • the position correction means Since the position of the measurement object in the image acquired by the image pickup means is corrected by the position correction means, the measurement object that is not a stationary object can be corrected in a short time with high accuracy. Dimensional measurements can be performed.
  • the three-dimensional information calculation means calculates the spatial coordinates, distance, angle, area, or volume of the measurement object, various information on the measurement object can be obtained.
  • FIG. 1 is a diagram showing an overall configuration of a three-dimensional measurement apparatus in the present embodiment.
  • FIG. 2 is a block diagram showing a detailed configuration of the three-dimensional measuring apparatus in the present embodiment.
  • FIG. 3 is a diagram showing a geometric relationship of the three-dimensional measuring apparatus of the present embodiment.
  • FIG. 4 is a diagram showing a flow of three-dimensional measurement using the three-dimensional measurement apparatus of the present embodiment.
  • FIG. 5A is a diagram showing an example of an optimal intensity combination pattern light pattern.
  • FIG. 5B is a diagram showing the spatial distribution of the pattern light intensity in FIG. 5A.
  • FIG. 6 is a diagram showing an intensity distribution of projection pattern light.
  • FIG. 7 is a diagram showing another embodiment of the present invention.
  • FIG. 8 is a diagram showing another embodiment of the present invention.
  • FIG. 9A is an image obtained by projecting an initial pattern light.
  • FIG. 9B is a diagram showing an optimum intensity combination pattern.
  • FIG. 9C is an image obtained by projecting optimum intensity combination pattern light.
  • FIG. 9D An image after intensity value correction.
  • FIG. 9E is an image showing the result of calculating the depth distance.
  • FIG. 9F This is a graphic representation of 3D information.
  • FIG. 1 is a diagram showing the overall configuration of the three-dimensional measuring apparatus according to this embodiment.
  • FIG. 2 is a block diagram showing a detailed configuration of the three-dimensional measuring apparatus of FIG.
  • the three-dimensional measurement apparatus of the present embodiment includes a pattern projector 1 as a projection unit that projects pattern light onto a measurement object A, and a measurement object A onto which pattern light is projected. And a computer 3 that processes data of an image captured by the camera 2.
  • the pattern projector 1 and the computer 3, and the camera 2 and the computer 3 are connected by a transmission cable 4 capable of transmitting each data.
  • the pattern projector 1 functions as a device that converts pattern data formed by the computer 3 into pattern light and projects it onto the measurement object A.
  • a commercially available simple device such as a liquid crystal projector or a DLP (Digital Light Processing, Trademark) projector can be used.
  • Camera 2 is a digital camera.
  • the camera 2 may be any digital camera such as an 8-bit or 12-bit camera, 3CCD, or 1CCD.
  • the computer 3 By executing a three-dimensional measurement program (not shown), the computer 3 records the image data transmitted from the camera 2 and the results calculated by each means to be described later, as shown in FIG.
  • Storage means 10 for storing, extraction means 13 for acquiring the image from the storage means 10 and extracting the measuring object A, and projection pattern light detection for acquiring the image from the storage means 10 and detecting the projection pattern light
  • the correction means 15 compares the projected pattern light with the projection pattern light whose intensity value has been corrected by the correction means 15 to calculate the direction angle of each individual pattern light of the projected pattern light 16 And a dividing means 17 that divides the projected pattern light for each period, and an individual pattern light force that is the projected pattern light divided by the dividing means 17, and a phase value calculating means 18 that calculates a phase value at each measurement point.
  • the distance calculation means 19 for calculating the depth distance of the measurement point from the phase value calculated by the phase value calculation means 18 and the three-dimensional information of the measuring object A from the depth distance of the measurement point calculated by the distance calculation means 19
  • the three-dimensional information calculation means 20 for calculating and the output means 21 for outputting the three-dimensional information calculated by the three-dimensional information calculation means 20 function.
  • the computer 3 executes the above-mentioned three-dimensional measurement program, and the pattern light intensity distribution as an initial pattern forming means 11 and a pattern forming means for forming a light pattern to be projected onto the measurement target A It functions as the optimum pattern forming means 12 that optimizes the pattern and forms the optimum intensity combination pattern.
  • the initial pattern forming unit 11 and the optimum pattern forming unit 12 store the formed initial pattern in the storage unit 10.
  • the extraction means 13, the projection pattern light detection means 14, the correction means 15, the direction angle calculation means 16, the division means 17, the phase value calculation means 18, the distance calculation means 19, and the three-dimensional information calculation means 20 are necessary information. Is obtained from the storage means 10 and the result is stored in the storage means 10.
  • the output means 21 outputs the three-dimensional information acquired from the storage means 10.
  • the initial pattern forming means 11 forms a pattern for full-surface projection with no stripes and uniform intensity.
  • the optimum pattern forming means 12 optimizes the intensity distribution of the projected pattern light by maximizing the intensity difference between the local maximum value of the target individual pattern and the adjacent individual pattern, and forms the optimal intensity combination pattern. To do.
  • the extraction unit 13 stores an image obtained by imaging the measurement object A onto which the pattern light is projected. 10 to obtain the measurement object A.
  • the projection pattern light detection means 14 acquires an image obtained by imaging the measurement object A onto which the pattern light is projected from the storage means 10, and detects the intensity distribution of the projection pattern light.
  • the correction unit 15 acquires an image obtained by imaging the measurement object A on which the initial pattern light is projected and an image of the measurement object A on which the optimum intensity combination pattern light is projected from the storage unit 10, and these The position of measurement object A between each image is corrected by comparing the images.
  • the correction means 15 is configured to detect the intensity distribution of the projection pattern light of the measurement object A onto which the optimum intensity combination pattern light formed by the optimum pattern formation means 12 is projected and the uniform intensity formed by the initial pattern formation means 11.
  • the intensity distribution of the projection pattern light of the measurement object A onto which the initial pattern light is projected is used to correct the intensity value of the projection pattern light to obtain an intensity distribution excluding the color distribution information of the measurement object.
  • the direction angle calculation means 16 includes the maximum value of each individual pattern intensity distribution of the optimum intensity combination pattern light projected onto the measurement object A and each individual pattern intensity of the projection pattern light whose intensity value has been corrected by the correction means 15. Each pattern light is obtained by comparing the maximum value of the distribution and determining the certainty of whether the individual pattern light of interest in the projected pattern light is the estimated individual pattern light of the optimum intensity combination pattern light. The direction angle of is calculated.
  • the dividing unit 17 divides the projection pattern light for each period based on the maximum value and the minimum value of the intensity value obtained from the intensity distribution of the projection pattern light. Further, the phase value calculating means 18 calculates the phase value of the measurement point using the intensity value of the individual pattern light that is the projection pattern light divided by the dividing means 17. Further, the distance calculation means 19 calculates the depth distance of each measurement point from the phase value of each measurement point calculated by the phase value calculation means 18.
  • the three-dimensional information calculation unit 20 calculates the three-dimensional information of the measurement object A from the depth distance of each measurement point calculated by the distance calculation unit 19.
  • This three-dimensional information includes the spatial coordinates, distance, angle, area, volume, and the like of the measurement object A.
  • the output means 21 displays the spatial coordinates, distance, angle, area or volume of the measurement object A calculated by the three-dimensional information calculation means 20 on a display connected to the computer 3 or text Print as a file or drawing file.
  • FIG. 3 is a diagram showing the geometric relationship of the three-dimensional measuring apparatus of this embodiment.
  • FIG. 4 is a diagram showing the flow of 3D measurement using the 3D measurement apparatus of this embodiment.
  • FIG. 5A is a diagram showing an example of the optimum intensity combination pattern light pattern.
  • FIG. 5B is a diagram showing a spatial distribution of the nonturn light intensity of FIG. 5A.
  • Fig. 6 shows the intensity distribution of the projection pattern light.
  • the pattern projector 1 and the camera 2 are spaced apart from each other by a certain distance so as to have a geometrical relationship as shown in FIG.
  • Pattern light to be projected has an important role in determining the measurement speed and accuracy of three-dimensional measurement.
  • vertically striped monochrome pattern light is used.
  • the direction angles representing the projection direction of the stripes are set at equal intervals, and the position of each direction angle is referred to as the stripe address.
  • the pattern light used in this embodiment has N stripes, and the addresses of each stripe are 1, 2, 3,.
  • the direction angle of each stripe is ⁇ , a, a,. i-th
  • the intensity value of the stripe is i ;
  • an initial pattern is formed by the initial pattern forming means 11 of the computer 3.
  • the formed initial pattern is stored in the storage means 10 and sent to the pattern projector 1 as initial pattern data by the transmission cable 4.
  • the initial pattern data sent to the pattern projector 1 is projected onto the measurement object A as initial pattern light.
  • the initial pattern light is a full-surface projection pattern with uniform intensity and no stripes. (Step S101, see FIG. 4 below.)
  • the pattern formed by the initial pattern forming means 11 is the same as the light pattern of uniform intensity used in normal image capturing.
  • the initial pattern light projected onto the measurement object A by the Noturn projector 1 is imaged by the camera 2.
  • the captured image is sent to the computer 3 through the transmission cable 4 and stored in the storage means 10 (step S102).
  • the extraction means 13 uses the background subtraction method to calculate the measurement object using the background-only image that has been acquired in advance and the image of the measurement object A onto which the initial pattern light has been projected. A is extracted (step S103).
  • the optimum pattern forming means 12 optimizes the intensity distribution of the projection pattern, An optimum intensity combination pattern as shown in FIG. 5B is formed (step S104).
  • Equation (1) In order to form an optimum intensity combination pattern, first, an evaluation function d as shown in Equation (1) is used.
  • (I, I, ⁇ , I) is the intensity distribution of the fringes of the projected light pattern, and k is a weighting factor.
  • N is the total number of stripes in the pattern to be projected
  • M is the width of the filter that covers the evaluation function.
  • the optimum pattern forming means 12 maximizes the value of the evaluation function d (I 1, I 1,..., I 1).
  • the combination is the optimum combination, and the pattern using this combination is the optimum intensity combination pattern.
  • This optimum intensity combination pattern is stored in the storage means 10 and transmitted to the pattern projector 1 via the transmission cable 4. If it is difficult to find the optimal combination, a combination that increases the value of d (l, I, ..., I) sufficiently
  • the optimum pattern forming means 12 of this embodiment includes this sub-optimal combination.
  • the optimum intensity combination pattern light projected onto the measurement object A by the pattern projector 1 is imaged by the camera 2.
  • the captured image is sent to the computer 3 through the transmission cable 4 and stored in the storage means 10 (step S105).
  • the correction unit 15 acquires from the storage unit 10 the image of the measurement object A onto which the initial pattern light is projected and the image of the measurement object A onto which the optimum intensity combination pattern light has been projected. At the same time, these images are compared and the position of the measuring object A is corrected using the least square method. (Step S106).
  • the projection pattern light detection unit 14 detects the intensity distribution of the projection pattern light as shown in FIG. 6 from the image stored in the storage unit 10 (step S107).
  • the correcting means 15 corrects the intensity value of the detected projection pattern light by the following equation (2) (step S 108).
  • Projection light intensity value of the projection pattern light of the measurement target A, I is the initial pattern light projection
  • M (n) is the intensity modulation function of the projected pattern light
  • n is the fringe order of the pattern light
  • O (x, y) is the surface reflectance of the object
  • k ′ and k are the modulation coefficients.
  • 0 is the intensity value of the initial pattern light.
  • the address ⁇ (1 ⁇ i ⁇ ⁇ ) of each stripe that is the position of the direction angle is calculated as follows (step S 108).
  • Step 1 To calculate the address O (1 ⁇ i ⁇ n) of each fringe, first, the intensity of the target fringe of the projected pattern light of the measurement object A projected with the optimum intensity combined pattern light
  • I — I ⁇ j ⁇ , 2 ⁇ , ⁇ ⁇ (3)
  • A is a constant, and in this embodiment, takes a value 2 to 5 times the minimum value of the intensity difference between stripes.
  • Step 2 Next, the probability L (k) that the address of the i-th target stripe is k (kEG) is calculated using Equation (4).
  • Li (k) l- ⁇ shi---, (4)
  • Step 3 Next, the address of the i th stripe is obtained using Equation (5) and Equation (6).
  • Step 4 The intensity of the target fringe of the projection pattern light of the measurement object A onto which the optimal intensity combination pattern light is projected
  • the dividing unit 17 divides the projection pattern light for each period based on the maximum value and the minimum value of the intensity value from which the intensity distribution force of the projection pattern light as shown in FIG. 6 is also obtained.
  • the depth of the measuring object ⁇ is divided into several depth regions Q (step S110).
  • the dividing means 17 uses the maximum value of the intensity value of the Q-th stripe whose intensity value obtained in step S107 is I (Q) as the center position T (Q) of the Q-th stripe, and this positional force is also applied to both sides of the stripe.
  • Find B (Q— 1) and B (Q + 1) which are the minimum values of the intensity values at.
  • the region from B (Q-l) force to B (Q + 1) is the depth region Q of the Q-th stripe. This operation is performed on all the extracted stripes, and the entire measurement object A is divided into several depth regions.
  • phase value calculating means 18 uses the phase value i8 (i, i, (i, j) is calculated (step S111).
  • the distance calculating means 19 calculates the depth distance Z (i, j) of the measuring object A in each depth region by 10) (Step S112).
  • Z (Q) is the minimum depth value of region Q
  • k is a constant.
  • the three-dimensional information calculation means 20 uses the values obtained by the calculations in steps S107 to S112 for each pixel that is each measurement point of each stripe of the projection pattern light, and uses the values obtained by the calculation of the entire measurement object A. Calculate the three-dimensional spatial coordinates of the body.
  • This three-dimensional information includes spatial coordinates, distance, angle, area or volume.
  • the body shape can also be calculated (step S113).
  • Step S114 All measurement results are displayed on the screen using output means 21 such as a display connected to the computer 3, or output as text files or drawing files by another output means 21 such as a printer.
  • one Noturn projector 1 and one camera 2 are used.
  • the local area cameras 2a and 2b are used.
  • 2c ... may be added several units.
  • a non-turn projector 1 and a camera 2 are set as one set, and a plurality of sets are installed around the measurement object A.
  • measurement can be performed without placing a burden on the subject.
  • the pattern light to be projected has a vertical stripe shape.
  • the pattern light is not limited to this, and is formed with a linear stripe such as a horizontal stripe shape or an oblique stripe shape.
  • circular patterns such as concentric circles, circles, and ellipses with different sizes, polygonal square patterns, and patterns with complicated patterns such as a lattice may be used.
  • step S106 by the correcting means 15 can be omitted.
  • the three-dimensional information of the measuring object A can be obtained in a shorter time.
  • FIGS. 9A to 9F the results of the three-dimensional measurement of the human body using the three-dimensional measurement apparatus of the present invention are shown in FIGS. 9A to 9F.
  • Fig. 9A is an image obtained by projecting the initial pattern light
  • Fig. 9B is an optimum intensity stitch pattern
  • Fig. 9C is an image obtained by projecting the optimum intensity combination pattern light
  • Fig. 9D is an image obtained by correcting the intensity value
  • Fig. 9F is a graphic representation of the 3D information.
  • the three-dimensional measurement accuracy of the present invention depends on the calibration of the measurement system.
  • the recognition rate of the direction angle of each stripe is 100%, so the measurement accuracy in the depth direction (Z direction) Is over 98.3%.
  • the measurement between the fringes is performed by intensity phase analysis, and the measurement accuracy in the depth direction will be 99.4% or more if measurement accuracy of 3 gradations or more can be secured.
  • the measurement accuracy in the X and Y directions varies depending on the resolution of the camera used, but it is possible to guarantee measurement accuracy in the Z direction or higher.
  • the present invention is useful as a three-dimensional measuring apparatus because it can obtain pattern light having many individual patterns in one projection, and can obtain high-speed and highly accurate three-dimensional information.
  • highly accurate 3D information can be obtained by a single projection and measurement can be performed in a short time, it is also useful as a 3D measuring device for the human body. It can be used in areas such as maintenance.
  • body shape can be measured from the 3D information of the human body, so it can be used in fields such as health management and dieting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

 一回の投影で多くのパターン光情報を得ることができ、高速かつ高精度の三次元情報を得ることができる三次元計測装置および三次元計測方法ならびに三次元計測プログラムを提供する。本発明の三次元計測装置は、計測対象物Aにパターン光を投影する投影手段としてのパターン投影機(1)と、パターン光が投影された計測対象物(A)を撮像して画像を撮像する撮像手段としてのカメラ(2)と、このカメラ(2)により撮像した画像のデータを処理するコンピュータ(3)とから構成される。コンピュータ(3)により、撮像された画像から検出された投影パターン光の強度値から投影パターン光を形成している個別パターン光の方向角が算出されるとともに強度分布が分割され、分割されたパターンの各計測点における位相値から奥行き距離が算出されるので、精度の高い三次元情報を得ることができる。

Description

明 細 書
三次元計測装置および三次元計測方法並びに三次元計測プログラム 技術分野
[0001] 本発明は、物体に所定パターンの光を投影し非接触で三次元情報を計測する三 次元計測装置、三次元計測方法および三次元計測プログラムに関する。
背景技術
[0002] 近年、医療や美容、衣服を初め靴、眼鏡、帽子など服飾の設計、また、ダイエット管 理ゃ健康管理などの様々な分野においては、胴体のみならず顔や頭、手足などの 人体全身の三次元形状データの取得が要求されており、非接触かつ高速な三次元 形状計測装置の開発が期待されている。
[0003] 三次元計測の手法としては、計測対象物に計測の補助となる特定の光や電波等を 照射することなく計測を行う受動型のものと、光、音波、電波などを計測対象物に照 射し、その情報を利用して計測を行う能動型のものとに分けられる。
[0004] これまでに、レーザを用いたパターン光を計測対象物に投影して三次元計測を行う 方法が多数提案されており実用化が図られている。しかしながら、レーザ光は人体に 悪影響を及ぼす可能性があるため、これらの方法を人体に応用することは難しい。レ 一ザ光の強度をできる限り小さくするなどの改良化がなされた三次元計測方法が、例 えば特許文献 1などに記載されているが、レーザ光を弱くするとその分撮影時間を長 くしなければならず、レーザ総光量は結果的に大きくなつてしまう。従って、レーザを 使わない人体の三次元計測方法が確立されることが望まれる。
[0005] レーザ光を使わない能動型の三次元計測方法による人体形状計測装置の一例が 非特許文献 1に記載されている。この人体形状計測装置では、時系列空間コードィ匕 法を利用しており、ストライプ状の光シャツタ列によって作られた 7種のコードィ匕パター ン光 (グレイコードパターン)を計測対象物に投影し、工学的に物体を分割して三角 測量の原理で計測対象物の座標値を算出する。
[0006] しかしながら、非特許文献 1に記載の人体形状計測装置では、 1回の計測で複数 回の投影が必要となる。従って、高精度の計測を行うには力なりの投影回数が必要と なる。例えば、非特許文献 1の人体形状計測装置に用いられている時系列空間コー ド化法では、 1%の奥行き方向計測精度を向上させるために、少なくとも 7回の投影 が必要となる。人体計測においては、被験者に計測の最中に長時間の静止状態を 維持してもらうことは難しぐできる限り投影回数を減らして三次元計測にかかる時間 を短くすることが望まれる。
[0007] そこで、上記の問題を解決するために、白黒投影カラー解析手法による三次元計 測方法が本発明者らによって考案されている (非特許文献 2参照。 ) 0この白黒投影 カラー解析手法では、まず、計測対象物に対して白黒系のパターン光を投影する。 そして、その反射光強度情報をより多く得るために、デジタル式カメラを用いて投影( 観測)されたパターンの光を撮影する。得られたカラー投影パターン光画像の各画素 の色チャンネルを解析し、最も強 、反射の得られた色チャンネルを該当画素の計測 チャンネルとして、強度分布の大きい計算用画像を合成する。この計算用画像から 検出された投影パターン光を形成する一つ一つの個別パターン (縞)の強度分布か ら投影パターン光の方向角を求めて、計測対象物の三次元情報を算出する。
[0008] 特許文献 1 :特開 2003— 11430号公報
非特許文献 1 :柴田 進、山内航一郎、西尾裕志、二川貴志、佐藤幸男,第 10回画 像センシングシンポジウム講演論文集,画像センシング技術研究会, 2004年 6月 9 曰, p. 253- 258
非特許文献 2 :長 元気、盧 存偉, " MPCAと OIMP技術の融合によるパターン光 投影 3次元画像計測の効率向上",第 10回画像センシングシンポジウム講演論文集 ,画像センシング技術研究会, 2004年 6月 9日, p. 53- 58
発明の開示
発明が解決しょうとする課題
[0009] 非特許文献 2の白黒投影カラー解析手法は、一回の投影で多くの個別パターン光 を持つパターン光を検出することができるため、時系列空間コード化法よりも短時間 で精度のよい三次元計測が可能となる。しかしながら、非特許文献 2の白黒投影カラ 一解析手法では、計算用画像における投影パターン光の強度分布において、個別 ノターン光の極大値となる計測点の三次元情報しか求めることができないため、個別 ノターン光と隣接する個別パターン光の間の情報が失われた三次元情報となってし まう。
[0010] そこで、本発明は、一回の投影で多くのノターン光情報を得ることができ、高速か つ高精度の三次元情報を得ることができる三次元計測装置および三次元計測方法 並びに三次元計測プログラムを提供することを目的とする。
課題を解決するための手段
[0011] 本発明の三次元計測装置は、計測対象物に投影する光のパターンを形成するパ ターン形成手段と、計測対象物にパターン形成手段により形成されたパターンの光( 以下、「パターン光」と称す。)を投影する投影手段と、パターン光が投影された計測 対象物を撮像して画像を取得する撮像手段と、画像から投影されたパターン光 (以 下、「投影パターン光」と称す。)を検出する投影パターン光検出手段と、投影パター ン光と元のパターン光とを比較して投影パターン光の方向角を算出する方向角算出 手段と、投影パターン光を周期ごとに分割する分割手段と、分割された投影パターン 光力 計測点の位相値を算出する位相値算出手段と、算出された位相値より計測点 の奥行き距離を算出する距離算出手段と、算出された計測点の奥行き距離を用いて 計測対象物の三次元情報を算出する三次元情報算出手段とを備えることを特徴とす る。
[0012] 本発明の三次元計測装置によれば、パターン形成手段によって形成されたパター ンの光が投影手段により計測対象物に投影され、このパターン光が投影された計測 対象物の画像が撮像手段により撮像され、この撮像された画像カゝら投影パターン光 検出手段によって投影パターン光が検出されるので、一回の投影で多くの個別バタ 一ン光を持つ投影パターン光を検出することができる。つまり、一回の投影で多くの 投影パターン光情報を得ることができる。また、方向角算出手段により投影パターン 光の各個別パターン光の方向角が算出されるとともに分割手段によって投影パター ン光が周期ごとに分割され、分割された投影パターン光である個別パターン光の各 計測点における位相値が位相値算出手段によって算出される。そして、算出された 各計測点の位相値が各計測点の奥行き距離に変換して算出されるので、投影バタ ーン光の各個別パターン光のうち強度分布が極大値となる計測点 1箇所だけでなぐ 個別パターン光の各計測点の三次元情報を得ることができ、精度の高!、三次元情報 とすることができる。なお、パターン光および投影パターン光は、一つ一つの個別パ ターン光の集合体である。
[0013] また、本発明の三次元計測方法は、計測対象物に投影する光パターンを形成する ノ ターン形成ステップと、投影手段によりパターン形成ステップで形成されたパター ンの光を計測対象物に投影するパターン光投影ステップと、撮像手段によりパターン 光が投影された計測対象物を撮像して画像を取得する撮像ステップと、画像力ゝら投 影されたパターン光を検出する投影パターン光検出ステップと、投影パターン光と元 のパターン光と比較して投影パターン光の方向角を算出する方向角算出ステップと、 投影パターン光を周期ごとに分割する分割ステップと、分割された投影パターン光か ら計測点の位相値を算出する位相値算出ステップと、算出された位相値より計測点 の奥行き距離を算出する距離算出ステップと、算出された計測点の奥行き距離を用 いて計測対象物の三次元情報を算出する三次元情報算出ステップとを含むことを特 徴とする。
[0014] さらに、本発明の三次元計測プログラムは、コンピュータを、計測対象物に投影する 光のパターンを形成するパターン形成手段と、パターン形成手段により形成されたパ ターンの光が投影された計測対象物が撮像された画像から投影されたパターン光を 検出する投影パターン光検出手段と、投影パターン光と元のパターン光とを比較して 投影パターン光の方向角を算出する方向角算出手段と、投影パターン光を周期ごと に分割する分割手段と、分割された投影パターン光力ゝら計測点の位相値を算出する 位相値算出手段と、算出された位相値より計測点の奥行き距離を算出する距離算出 手段と、算出された計測点の奥行き距離を用いて計測対象物の三次元情報を算出 する三次元情報算出手段として機能させることを特徴とする。
[0015] 本発明の三次元計測方法および三次元計測プログラムによれば、上記本発明の 三次元計測装置と同様の作用効果を得ることができる。
[0016] 本発明の三次元計測装置のノターン形成手段は、パターン光の強度分布を最適 化して最適強度組み合わせパターンを形成するものである方が望まし 、。最適バタ ーン形成手段がパターン光の強度分布を最適化して最適強度組み合わせパターン を形成することによって、注目する個別パターンとこれに隣接する個別パターンの各 極大値の強度差を最大にする強度分布の大きい最適強度組み合わせパターンが作 成される。この最適強度組み合わせパターンの光を計測対象物に投影すると、撮像 手段により撮像された計測対象物の画像カゝら得られる投影パターン光においても、 注目する個別パターン光とこれに隣接する個別パターン光の各極大値の強度差が 最大となる。従って、投影パターン光の各個別パターン光の方向角の算出精度を向 上させることができるとともに、投影パターン光の周期ごとの分割も精度よく行うことが でき、三次元計測の精度をさらに向上させることができる。
[0017] また、本発明の三次元計測装置は、投影パターン光検出手段により検出された投 影パターン光の強度値を補正する強度値補正手段を備えることが望ま ヽ。強度値 補正手段によって、投影パターン光検出手段により検出された投影パターン光の強 度値が補正されるので、色分布や表面反射特性が明確でない計測対象物に対して も高精度な三次元計測を行うことができる。つまり、ほぼ均一の色分布を持つ人体な どだけでなぐ様々な色で着色されているような物体であっても短時間で高精度の三 次元計測を行うことができる。
[0018] また、本発明の三次元計測装置は、撮像手段により取得された画像内の計測対象 物の位置を補正する位置補正手段を備えることが望ましい。位置補正手段によって、 撮像手段により取得された画像内の計測対象物の位置が補正されるので、静止物体 ではない計測対象物に対しても高精度な三次元計測を行うことができる。つまり、計 測中に完全に静止することは難 、人や動物などに対して短時間で高精度の三次 元計測を行うことができる。
[0019] また、本発明の三次元計測装置の三次元情報算出手段は、計測対象物の空間座 標、距離、角度、面積または体積を算出するものであることが望ましい。三次元情報 算出手段が、計測対象物の空間座標、距離、角度、面積または体積を算出するので 、本発明の三次元計測装置を用いることによって、計測対象物の様々な情報を得る ことができる。
[0020] さらに、本発明の三次元計測装置で用いられるパターンは縞状に形成されたもの であることが望ましい。ノターンが縞状に形成されているので、このパターン光を投影 して得られた解析に用いる投影パターン光の強度分布をサイン波として容易に解析 することができる。また、この場合、個別パターン光はパターン光および投影パターン 光を形成して ヽる一つ一つの縞を示す。
発明の効果
[0021] (1)パターン形成手段によって形成されたパターン光が計測対象物に投影手段によ り投影され、ノターン光が投影された計測対象物の画像が撮像手段により撮像され、 この画像力 投影パターン光検出手段によって投影パターン光が検出されるので、 一回の投影で多くの投影パターン光情報を得ることができる。また、方向角算出手段 により投影パターン光の各個別パターン光の方向角が算出されるとともに分割手段 によって投影パターン光が周期ごとに分割され、分割された投影パターン光である個 別パターン光の各計測点における位相値が位相値算出手段によって算出され、この 算出された各計測点の位相値が各計測点の奥行き距離に変換されるので、投影パ ターン光の各個別パターン光の強度分布が極大値となる計測点 1箇所だけでなぐ 個別パターン光の各計測点の三次元情報を得ることができ、精度の高!、三次元情報 とすることができる。
[0022] (2)最適パターン形成手段により作成された最適強度組み合わせパターンは、注目 する個別パターンとこれに隣接する個別パターンの各極大値の強度差を最大とする 強度分布の大き 、パターン光となって 、るので、この最適強度組み合わせパターン の光を計測対象物に投影すると、撮像手段により撮像された計測対象物の画像から 得られる投影パターン光においても、注目する個別パターン光とこれに隣接する個 別パターン光の各極大値の強度差が最大となり、個別パターン光の方向角の算出精 度を向上させることができるとともに、投影パターン光の周期ごとの分割も精度よく行 うことができる。従って、三次元計測の精度をさらに向上させることができる。
[0023] (3)強度値補正手段によって、投影パターン光検出手段により検出された投影バタ ーン光の強度値が補正されるので、色分布や表面反射特性が明確でな 、計測対象 物についても短時間で高精度な三次元計測を行うことができる。
[0024] (4)位置補正手段によって、撮像手段により取得された画像内の計測対象物の位置 が補正されるので、静止物体ではない計測対象物に対しても短時間で高精度な三 次元計測を行うことができる。
[0025] (5)三次元情報算出手段が、計測対象物の空間座標、距離、角度、面積または体積 を算出するので、計測対象物の様々な情報を得ることができる。
[0026] (6)本発明の三次元計測装置に用いられるパターンが縞状に形成されたものである ので、解析に用いる投影パターン光の強度分布をサイン波として容易に解析すること ができる。
図面の簡単な説明
[0027] [図 1]本実施形態における三次元計測装置の全体構成を示す図である。
[図 2]本実施形態における三次元計測装置の詳細な構成を示すブロック図である。
[図 3]本実施形態の三次元計測装置の幾何関係を示す図である。
[図 4]本実施形態の三次元計測装置を用いた三次元計測の流れを示す図である。
[図 5A]最適強度組み合わせパターン光のパターンの一例を示す図である。
[図 5B]図 5Aのパターン光強度の空間分布を示す図である。
[図 6]投影パターン光の強度分布を示す図である。
[図 7]本発明の他の実施形態を示す図である。
[図 8]本発明の他の実施形態を示す図である。
[図 9A]初期パターン光を投影した画像である。
[図 9B]最適強度組み合わせパターンを示す図である。
[図 9C]最適強度組み合わせパターン光を投影した画像である。
[図 9D]強度値補正を行った画像である。
[図 9E]奥行き距離を算出した結果を示す画像である。
[図 9F]三次元情報をグラフィック表現した画像である。
符号の説明
[0028] 1 パターン投影機
2, 2a, 2b, 2c カメラ
3 コンピュータ
4 伝送ケープノレ
10 記憶手段 11 初期パターン形成手段
12 最適パターン形成手段
13 抽出手段
14 投影パターン光検出手段
15 補正手段
16 方向角算出手段
17 分割手段
18 位相値算出手段
19 距離算出手段
20 三次元情報算出手段
21 出力手段
発明を実施するための最良の形態
[0029] 以下、本発明の実施の形態における三次元計測装置を、図を用いて説明する。図 1は本実施形態における三次元計測装置の全体構成を示す図である。図 2は図 1の 三次元計測装置の詳細な構成を示すブロック図である。
[0030] 図 1に示すように、本実施形態の三次元計測装置は、計測対象物 Aにパターン光 を投影する投影手段としてのパターン投影機 1と、パターン光が投影された計測対象 物 Aを撮像して画像を撮像する撮像手段としてのカメラ 2と、このカメラ 2により撮像し た画像のデータを処理するコンピュータ 3とから構成される。パターン投影機 1とコン ピュータ 3、カメラ 2とコンピュータ 3は、各データを伝送することができる伝送ケーブル 4によって接続されている。
[0031] パターン投影機 1は、コンピュータ 3により形成されたパターンデータをパターン光 に変換し、計測対象物 Aに投影する装置として機能する。例えば、液晶プロジェクタ や DLP (デジタルライトプロセッシング、商標)プロジェクタなど市販の簡単な装置を 用いることができる。カメラ 2はデジタル式カメラである。なお、カメラ 2はデジタル式力 メラであれば 8ビット、 12ビットのものや、 3CCD、 1CCD等のどのようなものでもよい。
[0032] コンピュータ 3は、図示しない三次元計測プログラムの実行により、図 2に示すように 、カメラ 2から伝送された画像のデータや後述する各手段により算出された結果を記 憶する記憶手段 10と、記憶手段 10から画像を取得して計測対象物 Aを抽出する抽 出手段 13と、記憶手段 10から画像を取得して投影パターン光を検出する投影バタ ーン光検出手段 14と、抽出手段 13により画像力も抽出された計測対象物 Aの位置 や、投影パターン光検出手段 14により検出された投影パターン光の強度値を補正 する位置補正手段および強度値補正手段としての補正手段 15と、投影したパターン 光と補正手段 15により強度値が補正された投影パターン光とを比較して、投影バタ ーン光の各個別パターン光の方向角を算出する方向角算出手段 16と、投影パター ン光を周期ごとに分割する分割手段 17と、分割手段 17により分割された投影パター ン光である個別パターン光力 各計測点における位相値を算出する位相値算出手 段 18と、位相値算出手段 18により算出された位相値より計測点の奥行き距離を算出 する距離算出手段 19と、距離算出手段 19により算出された計測点の奥行き距離か ら計測対象物 Aの三次元情報を算出する三次元情報算出手段 20と、三次元情報算 出手段 20により算出された三次元情報を出力する出力手段 21として機能する。
[0033] また、コンピュータ 3は、前述の三次元計測プログラムの実行により、初期パターン 形成手段 11と、計測対象物 Aに投影する光のパターンを形成するパターン形成手 段として、パターン光の強度分布を最適化して最適強度組み合わせパターンを形成 する最適パターン形成手段 12として機能する。
[0034] 初期パターン形成手段 11および最適パターン形成手段 12は形成した初期パター ンを記憶手段 10に記憶する。また、抽出手段 13、投影パターン光検出手段 14、補 正手段 15、方向角算出手段 16、分割手段 17、位相値算出手段 18、距離算出手段 19、三次元情報算出手段 20は、必要な情報を記憶手段 10から取得するとともに、 結果を記憶手段 10に記憶する。出力手段 21は記憶手段 10から取得した三次元情 報を出力する。
[0035] 初期パターン形成手段 11は、縞がない強度均一の全面投影用のパターンを形成 する。最適パターン形成手段 12は、注目する個別パターンとこれに隣接する個別パ ターンの各極大値の強度差を最大にすることによって投影するパターン光の強度分 布を最適化して最適強度組み合わせパターンを形成する。
[0036] 抽出手段 13は、パターン光が投影された計測対象物 Aを撮像した画像を記憶手段 10から取得して、計測対象物 Aを抽出する。投影パターン光検出手段 14は、パター ン光が投影された計測対象物 Aを撮像した画像を記憶手段 10から取得して、投影パ ターン光の強度分布を検出する。また、補正手段 15は、初期パターン光が投影され た計測対象物 Aを撮像した画像と最適強度組み合わせパターン光が投影された計 測対象物 Aの画像とを記憶手段 10から取得するとともに、これらの画像を比較して各 画像間の計測対象物 Aの位置を補正する。さらに、補正手段 15は、最適パターン形 成手段 12により形成された最適強度組み合わせパターン光を投影した計測対象物 Aの投影パターン光の強度分布と初期パターン形成手段 11により形成された均一強 度の初期パターン光を投影した計測対象物 Aの投影パターン光の強度分布を用い て、投影パターン光の強度値を補正し、計測対象物の色分布情報を除いた強度分 布とする。
[0037] 方向角算出手段 16は、計測対象物 Aに投影した最適強度組み合わせパターン光 の各個別パターン強度分布の極大値と補正手段 15により強度値が補正された投影 ノターン光の各個別パターン強度分布の極大値とを比較し、投影パターン光のうち の注目する個別パターン光が、最適強度組み合わせパターン光のうちの推定される 個別パターン光であるかどうかの確信度を求めることによって各パターン光の方向角 を算出する。
[0038] 分割手段 17は、投影パターン光の強度分布から得られる強度値の極大値および 極小値により投影パターン光を周期ごとに分割する。また、位相値算出手段 18は、 分割手段 17により分割された投影パターン光である個別パターン光の強度値を用い て計測点の位相値を算出する。さらに、距離算出手段 19は、位相値算出手段 18に より算出された各計測点の位相値より各計測点の奥行き距離を算出する。
[0039] 三次元情報算出手段 20は、距離算出手段 19により算出された各計測点の奥行き 距離から計測対象物 Aの三次元情報を算出する。この三次元情報には、計測対象 物 Aの空間座標、距離、角度、面積、および体積などが含まれる。
[0040] 出力手段 21は、三次元情報算出手段 20により算出された計測対象物 Aの空間座 標、距離、角度、面積または体積などをコンピュータ 3に接続されたディスプレイ上に 表示したり、テキストファイルや図面ファイルとして印刷したりする。 [0041] 次に、本実施形態の三次元計測装置の計測の流れを図 3〜図 6に基づいて説明 する。図 3は本実施形態の三次元計測装置の幾何関係を示す図である。図 4は本実 施形態の三次元計測装置を用いた三次元計測の流れを示す図である。図 5Aは最 適強度組み合わせパターン光のパターンの一例を示す図である。図 5Bは、図 5Aの ノターン光強度の空間分布を示す図である。図 6は投影パターン光の強度分布を示 す図である。
[0042] まず、図 3に示すような幾何関係になるように、パターン投影機 1とカメラ 2を一定の 距離だけ離して配置する。
[0043] 投影するパターン光は三次元計測の計測速度および精度を左右する重要な役割 を有す。本実施形態では縦縞状の白黒パターン光を用いる。ここで、縞の投影方向 を表す方向角は等間隔に設定し、各方向角の位置を縞のアドレスと称する。本実施 形態で用いるパターン光は N本の縞を持ち、各縞のアドレスは、それぞれ、 1, 2, 3, · · · · , Nとする。また、各縞の方向角はそれぞれ α , a , a , · · · , a とする。 i番目
1 2 3 N
の縞の強度値は i;とする。
[0044] まず、コンピュータ 3の初期パターン形成手段 11により初期パターンを形成する。
形成された初期パターンは記憶手段 10に記憶されるとともに伝送ケーブル 4により初 期パターンデータとしてパターン投影機 1に送られる。パターン投影機 1に送られた 初期パターンデータは初期パターン光として計測対象物 Aに投影される。初期バタ 一ン光は縞がない強度均一の全面投影パターンである。(ステップ S 101,以下、図 4 参照。)この初期パターン形成手段 11で形成されるパターンは、通常の画像撮影で 用いられる強度均一の光パターンと同じものである。
[0045] ノターン投影機 1によって計測対象物 Aに投影された初期パターン光をカメラ 2によ り撮像する。撮像された画像は、伝送ケーブル 4を通じて、コンピュータ 3に送られ、 記憶手段 10に記憶される(ステップ S102)。
[0046] 次に、抽出手段 13は、あら力じめ取得しておいた背景のみの画像と初期パターン 光が投影された計測対象物 Aの画像とを用いて、背景差分法により計測対象物 Aを 抽出する (ステップ S 103)。
[0047] 最適パターン形成手段 12は、投影パターンの強度分布を最適化して図 5Aおよび 図 5Bに示すような最適強度組み合わせパターンを形成する (ステップ S 104)。
[0048] 最適強度組み合わせパターンを形成するためには、まず式(1)のような評価関数 d
(Ι , Ι , · ' · , Ι )
1 2 Νを定義する。
[数 1]
Ν Μ
(/い /2,..., )= ∑ ∑ kj | /; - · · · ( 1 )
ί= + 1 j=l
ただし、(I, I, · · ·, I )は投影光パターンの縞の強度分布、 kは重み係数である。ま
1 2 N j
た、 Nは投影するパターンにある縞の総本数であり、 Mは評価関数をカゝけるフィルタ の幅である。
[0049] 最適パターン形成手段 12は、上記の評価関数 d (I , I , · · · , I )の値を最大にする
1 2 N
組み合わせを最適組み合わせとし、この組み合わせを用いたパターンを最適強度組 み合わせパターンとする。この最適強度組み合わせパターンは、記憶手段 10に記憶 されるとともに伝送ケーブル 4によりパターン投影機 1に伝送される。なお、最適組み 合わせを求めることが困難な場合では、 d (l , I , · · · , I )の値を十分に大きくする組
1 2 N
み合わせである準最適組み合わせを用いても構わな!/、。本実施形態の最適パター ン形成手段 12は、この準最適組み合わせを含むものとする。
[0050] パターン投影機 1によって計測対象物 Aに投影された最適強度組み合わせパター ン光をカメラ 2により撮像する。撮像された画像は、伝送ケーブル 4を通じて、コンビュ ータ 3に送られ、記憶手段 10に記憶される(ステップ S105)。
[0051] ここで、補正手段 15は、初期パターン光が投影された計測対象物 Aの画像と、最 適強度組み合わせパターン光が投影された計測対象物 Aの画像とを記憶手段 10か ら取得するとともにこれらの画像を比較し、最小二乗法を用いて計測対象物 Aの位置 を補正する。(ステップ S 106)。
[0052] 次に、投影パターン光検出手段 14は、記憶手段 10に記憶された画像から図 6に示 すような投影パターン光の強度分布を検出する (ステップ S107)。
[0053] ここで、補正手段 15は、検出された投影パターン光の強度値を以下の式(2)により 補正する(ステップ S 108)。
[数 2] ゾ) ^ )… (2) ここで、 (i, j)は計測点の座標、 I'は最適強度組み合わせパターン光を投影した計測 対象物 Aの投影パターン光の補正後の強度値、 Iは最適強度組み合わせパターン
1
光を投影した計測対象物 Aの投影パターン光の強度値、 Iは初期パターン光を投影
0
した計測対象物 Aの投影パターン光の強度値である。 M(n)は投影パターン光の強 度変調関数、 nはパターン光の縞次数、 O (x、 y)は物体の表面反射率、 k' , kは調 節係数である。また、 P
0は初期パターン光の強度値である。
[0054] 観測された n本 (n≤N)の縞の強度分布を = (ム,/2,· · - N)
とし、そのアドレスを S =(0 , Ο , ···, Ο )とする。方向角算出手段 15は、各縞の
1 2 Ν
方向角の位置である各縞のアドレス Ο ( 1≤ i≤ η)を下記のように計算する(ステップ S 108)。
[0055] Step 1:各縞のアドレス O (1≤i≤n)を計算するために、まず、最適強度組み合わ せパターン光を投影した計測対象物 Aの投影パターン光のうち注目する縞の強度
I、
と最適強度組み合わせパターン光の強度 I
J 0 = 1, 2, ···, N)を比較し、式(3)を満 たす jを注目する縞の候補アドレスとして抽出し、その集合を Gとする。
[数 3]
I — Iく j = \,2Χ,Ν · · · (3) ここで、 Aは定数であり、本実施形態では縞間強度差の最小値の 2〜5倍の値を取つ ている。
[0056] Step2:次に、式 (4)を用いて i番目の注目する縞のアドレスが k(kEG)である確率 L(k)を計算する。
Li(k) = l-< し - · , (4)
Figure imgf000015_0001
ここで、 w , w , wは定数、また N≤M, N≤M, S = |I -I |である。
1 2 3 1 2 max min
[0057] Step 3:次に、式(5) ,式(6)を用いて i番目の縞のアドレスを求める。
[数 5]
Li(t) = max {L^k)} ' · · (5)
[数 6]
Ot = t, when Ι^(ή>Β · - - (6) ここで、 Βは定数である。
[0058] Step4:最適強度組み合わせパターン光を投影した計測対象物 Aの投影バタ 光のうち注目する縞の強度
I、
と最適強度組み合わせパターン光の強度 Iとの差が閾値 cより大きい場合
Figure imgf000016_0001
、もしくは計算された確率 L (t)が小さく式 (6)を満たさない場合には縞の欠損がある と判断される。この場合、ここからて本の縞欠損があると想定し、縞欠損を考慮した最 適強度組み合わせパターン光の強度 Iと最適強度組み合わせパターン光を投影した 計測対象物 Aの投影パターン光のうち注目する縞の強度
I、
との比較を行い、縞アドレスを判定する。具体的には、式 (4)の kを式(7)に修正して 、再度 Step3を実行し、各縞のアドレス力も方向角を算出する (ステップ S109)。
[数 7] k =k + i ■ ■ ■ (7)
[数 8]
Figure imgf000017_0001
ただし、 τの記号は、 +が注目する縞の下方、一が上方に縞の欠損があることを示 す。閾値 Cの値は補正手段 15が行う補正により適宜設定する。
[0059] 次に、分割手段 17によって、図 6に示すような投影パターン光の強度分布力も得ら れた強度値の極大値および極小値により、投影パターン光を周期ごとに分割する。こ れにより、計測対象物 Αの奥行きはいくつかの奥行き領域 Qに分割される (ステップ S 110)。分割手段 17は、ステップ S107により得られた強度値が I(Q)である Q本目の 縞の強度値の極大値を Q本目の縞の中心位置 T(Q)とし、この位置力も縞の両側に ある強度値の極小値である B (Q— 1)と B (Q + 1)を探す。 B(Q-l)力ら B (Q + 1)ま での領域は Q本目の縞の奥行き領域 Qとなる。抽出されたすベての縞に対しこのよう な操作を行 ヽ、計測対象物 A全体を ヽくつかの奥行き領域に分割する。
[0060] そして、位相値算出手段 18は、数 (9)を用いて分割手段 17により分割して得られ た各奥行き領域で、投影パターン光の縞の強度値によりその位相値 i8 (i, j)を算出 する(ステップ S 111)。
[数 9]
2 ( J)-I(Q)
arc cos - B(i )=l
O)
- arccos
0,
ここで、走査方向に縞の強度が増加する場合には、 B(i, j) =0、減少する場合には B(i, j)=lとなる。
[0061] 位相値算出手段 18によって算出された位相値 j8 (i, j)を用いて、距離算出手段 19 は各奥行き領域で、計測対象物 Aの奥行き距離 Z(i, j)を式 (10)により算出する (ス テツプ S 112)。
[数 10] Z (i , J) = Z {Q ) + kfi {i, j ) · · · ( 1 0 )
ここで、 Z (Q)は領域 Qの奥行き最小値であり、 kは定数である。
[0062] 三次元情報算出手段 20は、投影パターン光の各縞の各計測点である画素ごとに ステップ S 107〜ステップ S 112の計算により得られた値を用 、て、計測対象物 A全 体の三次元空間座標を算出する。この三次元情報には空間座標、距離、角度、面積 または体積などが含まれる。特に計測対象物 Aが人体の場合には、体型なども算出 することができる(ステップ S 113)。
[0063] すべての計測結果は、コンピュータ 3に接続されたディスプレイなどの出力手段 21 を用いて画面上に表示したり、プリンタなどの別の出力手段 21によって、テキストファ ィルゃ図面ファイルとして出力したりすることができる(ステップ S114)。
[0064] なお、本実施形態では、ノターン投影機 1とカメラ 2をそれぞれ 1台ずつ用いたが、 計測精度をさらに向上させるために、図 7に示すように、局所領域用のカメラ 2a, 2b, 2c…を数台増設してもよい。これにより、局所領域の細かい画像を用いて、計測対 象物 Aの高解像度画像を合成することができ、この画像を用いることにより、より高精 度の三次元情報を算出することができる。また、図 8に示すように、ノターン投影機 1 とカメラ 2とを 1セットとし、計測対象物 Aの周辺に複数セットを設置してもよい。これに より、より短時間で広範囲の計測を実現することができ、計測対象物 Aの三次元情報 を全周に渡って短時間で高精度に得ることもできるので、特に人体などを計測する際 には被験者に負担をかけることなく計測を行うことができる。
[0065] なお、本実施形態では、投影するパターン光は縦縞状のものを用いたが、これに限 らず、横縞状、斜めに形成された縞状のものなど直線状の縞で形成されたパターン や、大きさの異なる同心円状、円形状、楕円状などの模様による円形パターンおよび 多角形による角形パターンや、格子状などの複雑な模様によるパターンを用いてもよ い。
[0066] また、静止物体を計測する場合には補正手段 15によるステップ S106を省略するこ とができる。これにより、計測対象物 Aの三次元情報をより短時間で得ることができる 実施例 [0067] 以下に、本発明の三次元計測装置を用いて人体の三次元計測を行った結果を図 9A〜図 9Fに示す。図 9Aは初期パターン光を投影した画像、図 9Bは最適強度糸且み 合わせパターン、図 9Cは最適強度組み合わせパターン光を投影した画像、図 9Dは 強度値補正を行った画像、図 9Eは奥行き距離を算出した結果を示す画像、図 9Fは 三次元情報をグラフィック表現した画像である。
[0068] 図 9A〜図 9Fに示すように、本発明の三次元計測装置を用いた人体の三次元計 測では、良好な結果を得ることができた。本発明の三次元計測精度は、計測システム のキャリブレーションにも依存する力 縞本数が 60の場合、各縞の方向角の認識率 力 100%であるので、奥行き方向(Z方向)の計測精度は 98. 3%以上である。また、 各縞の間の部分の計測は強度'位相解析により行い、 3階調以上の計測精度を確保 できれば、奥行き方向の計測精度は 99. 4%以上になる。また、 Xと Y方向の計測精 度は使用されたカメラの解像度などにより変わるが、 Z方向以上の計測精度を保証す ることがでさる。
産業上の利用可能性
[0069] 本発明は、一回の投影で多くの個別パターンを有するパターン光を得ることができ 、高速かつ高精度の三次元情報を得ることができるので三次元計測装置として有用 である。特に、精度の高い三次元情報が一回の投影で得られ、短時間で計測を行う ことができることから、人体の三次元計測装置としても有用であるので、特に医療、衣 服設計、生活環境整備など分野での利用が可能となる。また、人体の三次元情報か ら体型の計測などもできるので、健康管理、ダイエットなど分野にも利用することがで きる。

Claims

請求の範囲
[1] 計測対象物に投影する光のパターンを形成するパターン形成手段と、
前記計測対象物に前記パターン形成手段により形成されたパターンの光 (以下、「 パターン光」と称す。)を投影する投影手段と、
前記パターン光が投影された計測対象物を撮像して画像を取得する撮像手段と、 前記画像から前記投影されたパターン光 (以下、「投影パターン光」と称す。)を検 出する投影パターン光検出手段と、
前記投影パターン光と元のパターン光とを比較して前記投影パターン光の方向角 を算出する方向角算出手段と、
前記投影パターン光を周期ごとに分割する分割手段と、
前記分割された投影パターン光力 計測点の位相値を算出する位相値算出手段と 前記算出された位相値より計測点の奥行き距離を算出する距離算出手段と、 前記算出された計測点の奥行き距離を用いて前記計測対象物の三次元情報を算 出する三次元情報算出手段と
を備える三次元計測装置。
[2] 前記パターン形成手段は、パターン光の強度分布を最適化して最適強度組み合 わせパターンを形成するものである請求項 1記載の三次元計測装置。
[3] 前記投影パターン光検出手段により検出された投影パターン光の強度値を補正す る強度値補正手段を備えた請求項 1記載の三次元計測装置。
[4] 前記投影パターン光検出手段により検出された投影パターン光の強度値を補正す る強度値補正手段を備えた請求項 2記載の三次元計測装置。
[5] 前記撮像手段により取得された画像内の計測対象物の位置を補正する位置補正 手段を備えた請求項 1または 2に記載の三次元計測装置。
[6] 前記撮像手段により取得された画像内の計測対象物の位置を補正する位置補正 手段を備えた請求項 3または 4に記載の三次元計測装置。
[7] 前記三次元情報算出手段は、前記計測対象物の空間座標、距離、角度、面積ま たは体積を算出するものである請求項 1または 2に記載の三次元計測装置。
[8] 前記三次元情報算出手段は、前記計測対象物の空間座標、距離、角度、面積ま たは体積を算出するものである請求項 3または 4に記載の三次元計測装置。
[9] 前記三次元情報算出手段は、前記計測対象物の空間座標、距離、角度、面積ま たは体積を算出するものである請求項 5記載の三次元計測装置。
[10] 前記三次元情報算出手段は、前記計測対象物の空間座標、距離、角度、面積ま たは体積を算出するものである請求項 6記載の三次元計測装置。
[11] 前記パターンは縞状に形成されたものである請求項 1または 2に記載の三次元計 測装置。
[12] 前記パターンは縞状に形成されたものである請求項 3または 4に記載の三次元計 測装置。
[13] 前記パターンは縞状に形成されたものである請求項 5記載の三次元計測装置。
[14] 前記パターンは縞状に形成されたものである請求項 6記載の三次元計測装置。
[15] 前記パターンは縞状に形成されたものである請求項 7記載の三次元計測装置。
[16] 前記パターンは縞状に形成されたものである請求項 8記載の三次元計測装置。
[17] 前記パターンは縞状に形成されたものである請求項 9または 10に記載の三次元計 測装置。
[18] 計測対象物に投影する光パターンを形成するパターン形成ステップと、
投影手段により前記パターン形成ステップで形成されたパターンの光を前記計測 対象物に投影するパターン光投影ステップと、
撮像手段により前記パターン光が投影された計測対象物を撮像して画像を取得す る撮像ステップと、
前記画像カゝら前記投影されたパターン光を検出する投影パターン光検出ステップ と、
前記投影パターン光と元のパターン光と比較して前記投影パターン光の方向角を 算出する方向角算出ステップと、
前記投影パターン光を周期ごとに分割する分割ステップと、
前記分割された投影パターン光力 計測点の位相値を算出する位相値算出ステツ プと、 前記算出された位相値より計測点の奥行き距離を算出する距離算出ステップと、 前記算出された計測点の奥行き距離を用いて前記計測対象物の三次元情報を算 出する三次元情報算出ステップと
を含む三次元計測方法。
コンピュータを、
計測対象物に投影する光のパターンを形成するパターン形成手段と、
前記パターン形成手段により形成されたパターンの光が投影された計測対象物が 撮像された画像カゝら前記投影されたパターン光を検出する投影パターン光検出手段 と、
前記投影パターン光と元のパターン光とを比較して前記投影パターン光の方向角 を算出する方向角算出手段と、
前記投影パターン光を周期ごとに分割する分割手段と、
前記分割された投影パターン光力 計測点の位相値を算出する位相値算出手段と 前記算出された位相値より計測点の奥行き距離を算出する距離算出手段と、 前記算出された計測点の奥行き距離を用いて前記計測対象物の三次元情報を算 出する三次元情報算出手段と
して機能させるための三次元計測プログラム。
PCT/JP2005/019511 2004-11-19 2005-10-24 三次元計測装置および三次元計測方法並びに三次元計測プログラム WO2006054425A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/667,767 US7583391B2 (en) 2004-11-19 2005-10-24 Three-dimensional measuring apparatus, three-dimensional measuring method, and three-dimensional measuring program
CN2005800395109A CN101061367B (zh) 2004-11-19 2005-10-24 三维测量装置、三维测量方法以及三维测量程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-336554 2004-11-19
JP2004336554A JP4883517B2 (ja) 2004-11-19 2004-11-19 三次元計測装置および三次元計測方法並びに三次元計測プログラム

Publications (1)

Publication Number Publication Date
WO2006054425A1 true WO2006054425A1 (ja) 2006-05-26

Family

ID=36406970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019511 WO2006054425A1 (ja) 2004-11-19 2005-10-24 三次元計測装置および三次元計測方法並びに三次元計測プログラム

Country Status (4)

Country Link
US (1) US7583391B2 (ja)
JP (1) JP4883517B2 (ja)
CN (1) CN101061367B (ja)
WO (1) WO2006054425A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281778A (ja) * 2009-06-08 2010-12-16 Myuu Skynet:Kk 三次元形状計測装置
CN101646919B (zh) * 2007-03-29 2011-04-20 学校法人福冈工业大学 非静止物体的三维图像测量装置,三维图像测量方法以及三维图像测量程序
CN106441161A (zh) * 2016-11-01 2017-02-22 哈尔滨工程大学 一种基于周期编码的快速相位解缠方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8243123B1 (en) * 2005-02-02 2012-08-14 Geshwind David M Three-dimensional camera adjunct
DE102006048234A1 (de) * 2006-10-11 2008-04-17 Steinbichler Optotechnik Gmbh Verfahren und Vorrichtung zur Bestimmung der 3D-Koordinaten eines Objekts
KR20090130003A (ko) * 2007-03-02 2009-12-17 오가닉 모션 삼차원 물체를 트래킹하기 위한 시스템 및 방법
JP5032943B2 (ja) * 2007-11-06 2012-09-26 パナソニック株式会社 3次元形状計測装置及び3次元形状計測方法
JP5016520B2 (ja) * 2008-02-26 2012-09-05 パナソニック株式会社 3次元形状計測方法および装置
EP2146327A1 (en) * 2008-07-17 2010-01-20 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO An electromagnetic body scanning system, a method and a computer program product
US8760510B2 (en) * 2008-11-26 2014-06-24 Robert T. Aloe Apparatus and methods for three-dimensional imaging using a static light screen
JP5224288B2 (ja) * 2009-02-13 2013-07-03 学校法人福岡工業大学 表面検査装置および表面検査方法
WO2010098954A2 (en) * 2009-02-27 2010-09-02 Body Surface Translations, Inc. Estimating physical parameters using three dimensional representations
US8169596B2 (en) * 2009-08-17 2012-05-01 Seegrid Corporation System and method using a multi-plane curtain
JP5633719B2 (ja) * 2009-09-18 2014-12-03 学校法人福岡工業大学 三次元情報計測装置および三次元情報計測方法
EP2522203B1 (en) * 2010-01-06 2020-04-01 Signify Holding B.V. Adaptable lighting system
US9041796B2 (en) * 2010-08-01 2015-05-26 Francis Ruben Malka Method, tool, and device for determining the coordinates of points on a surface by means of an accelerometer and a camera
US8704890B2 (en) * 2010-08-19 2014-04-22 Olympus Corporation Inspection apparatus and measuring method
JP5116826B2 (ja) * 2010-10-26 2013-01-09 株式会社マリネックス 身体測定装置
US20130176399A1 (en) * 2010-11-29 2013-07-11 Hewlett-Packard Development Company, L.P. System and method for creating a three-dimensional image file
KR101816170B1 (ko) * 2010-12-22 2018-01-09 한국전자통신연구원 3차원 깊이 정보 획득 장치 및 그 방법
RU2580788C2 (ru) * 2011-01-06 2016-04-10 Конинклейке Филипс Электроникс Н.В. Устройство для сканирования штрихкода для определения физиологического параметра пациента
CN102859321A (zh) * 2011-04-25 2013-01-02 三洋电机株式会社 物体检测装置以及信息取得装置
US9182221B2 (en) 2011-06-13 2015-11-10 Canon Kabushiki Kaisha Information processing apparatus and information processing method
JP5864950B2 (ja) 2011-08-15 2016-02-17 キヤノン株式会社 三次元計測装置、三次元計測方法およびプログラム
JP6099115B2 (ja) * 2011-10-26 2017-03-22 学校法人福岡工業大学 三次元表面検査装置および三次元表面検査方法
CN102538707B (zh) * 2011-12-13 2013-06-12 中科中涵激光设备(福建)股份有限公司 一种对工件进行三维定位的装置及方法
JP6112769B2 (ja) * 2012-03-05 2017-04-12 キヤノン株式会社 情報処理装置、情報処理方法
CN103376071B (zh) * 2012-04-20 2017-06-30 德律科技股份有限公司 三维测量***与三维测量方法
CN102645183A (zh) * 2012-05-04 2012-08-22 苏州福拓信息技术有限公司 三维图像测量方法
US8787621B2 (en) * 2012-06-04 2014-07-22 Clicrweight, LLC Methods and systems for determining and displaying animal metrics
DE102013212409A1 (de) * 2012-06-29 2014-03-13 Inb Vision Ag Verfahren zur Bilderfassung einer vorzugsweise strukturierten Oberfläche eines Objekts und Vorrichtung zur Bilderfassung
JP6054094B2 (ja) * 2012-08-17 2016-12-27 東芝メディカルシステムズ株式会社 超音波診断装置
JP6071363B2 (ja) * 2012-09-19 2017-02-01 キヤノン株式会社 距離計測装置及び方法
US9857166B2 (en) 2012-09-19 2018-01-02 Canon Kabushiki Kaisha Information processing apparatus and method for measuring a target object
US8995008B2 (en) * 2013-03-13 2015-03-31 Konica Minolta Laboratory U.S.A. System and method for adjusting an image to be printed on a medium that will be embossed
WO2014153383A1 (en) * 2013-03-21 2014-09-25 International Electronic Machines Corporation Noncontact measuring device
US20140307055A1 (en) * 2013-04-15 2014-10-16 Microsoft Corporation Intensity-modulated light pattern for active stereo
US9774833B2 (en) * 2013-07-16 2017-09-26 Texas Instruments Incorporated Projector auto-focus correction with the aid of a camera
CN103750822A (zh) * 2014-01-06 2014-04-30 上海金灯台信息科技有限公司 一种用于中医望诊的激光三维图像采集装置
JP6434788B2 (ja) * 2014-03-06 2018-12-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 計測システム、計測方法およびビジョンチップ
CN104019768B (zh) * 2014-06-06 2017-02-15 天津大学 用于条纹投射三维形貌测量的ccd同步图像采集方法
US9664507B2 (en) * 2014-09-17 2017-05-30 Canon Kabushiki Kaisha Depth value measurement using illumination by pixels
DE102015201317A1 (de) * 2015-01-27 2016-07-28 Bayerische Motoren Werke Aktiengesellschaft Vermessen einer Abmessung auf einer Oberfläche
CN104778718B (zh) * 2015-05-07 2017-11-21 西安电子科技大学 基于3d模型的单幅图像卡车体积测量方法
US10121249B2 (en) * 2016-04-01 2018-11-06 Baja Education, Inc. Enhanced visualization of areas of interest in image data
DE102016115705B4 (de) * 2016-08-24 2018-07-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren für die Erfassung von Objekten in der Umgebung eines Fahrzeugs
CN106969706A (zh) * 2017-04-02 2017-07-21 聊城大学 基于双目立体视觉的工件检测与三维测量***及检测方法
KR101947372B1 (ko) * 2017-09-04 2019-05-08 주식회사 그루크리에이티브랩 Hmd에 위치 보정 영상을 제공하는 방법 및 hmd에 위치 보정 영상을 표시하는 방법, 그리고 이를 이용한 위치 보정 영상을 표시하는 hmd
CN109751969A (zh) * 2017-11-01 2019-05-14 天津微深科技有限公司 一种利用正反格雷码线移光栅的三维非接触扫描方法
US11474254B2 (en) 2017-11-07 2022-10-18 Piaggio Fast Forward Inc. Multi-axes scanning system from single-axis scanner
CN108680142A (zh) * 2018-05-29 2018-10-19 北京航空航天大学 一种基于高速三角波条纹投射原理的三维视觉测量***
CN109540039B (zh) * 2018-12-28 2019-12-03 四川大学 一种基于循环互补格雷码的三维面形测量方法
JP2020148510A (ja) * 2019-03-11 2020-09-17 ソニーセミコンダクタソリューションズ株式会社 測距装置
JP7456736B2 (ja) * 2019-06-28 2024-03-27 株式会社サキコーポレーション 形状測定装置、形状測定装置の形状測定方法および形状測定装置の形状測定プログラム
US11415409B1 (en) * 2019-08-22 2022-08-16 Charles S. Powers Apparatuses and methods for measuring parameters of an object
CN114812438B (zh) * 2022-04-07 2023-03-14 四川大学 一种时间复用的结构光编解码方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289505A (ja) * 1990-04-06 1991-12-19 Nippondenso Co Ltd 3次元形状測定装置
JP2004077290A (ja) * 2002-08-19 2004-03-11 Fuji Xerox Co Ltd 3次元形状計測装置および方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4030830A (en) * 1976-01-05 1977-06-21 Atlantic Research Corporation Process and apparatus for sensing defects on a smooth surface
CA1313040C (en) * 1988-03-31 1993-01-26 Mitsuaki Uesugi Method and apparatus for measuring a three-dimensional curved surface shape
EP0585620B1 (en) * 1992-07-31 1998-09-30 Fuji Photo Film Co., Ltd. Method and apparatus for obtaining three-dimensional information of samples
US6141105A (en) * 1995-11-17 2000-10-31 Minolta Co., Ltd. Three-dimensional measuring device and three-dimensional measuring method
US6373963B1 (en) * 1998-02-05 2002-04-16 Textile/Clothing Technology Corporation Systems, methods and computer program for measuring the surface contour of an object
JP3417377B2 (ja) * 1999-04-30 2003-06-16 日本電気株式会社 三次元形状計測方法及び装置並びに記録媒体
US6988660B2 (en) * 1999-06-07 2006-01-24 Metrologic Instruments, Inc. Planar laser illumination and imaging (PLIIM) based camera system for producing high-resolution 3-D images of moving 3-D objects
US6100990A (en) * 1999-06-14 2000-08-08 Ford Motor Company Method and apparatus for determining reflective optical quality using gray-scale patterns
US6377353B1 (en) * 2000-03-07 2002-04-23 Pheno Imaging, Inc. Three-dimensional measuring system for animals using structured light
JP3575679B2 (ja) * 2000-03-31 2004-10-13 日本電気株式会社 顔照合方法と該照合方法を格納した記録媒体と顔照合装置
US6813440B1 (en) * 2000-10-10 2004-11-02 The Hong Kong Polytechnic University Body scanner
US20030067537A1 (en) * 2001-10-04 2003-04-10 Myers Kenneth J. System and method for three-dimensional data acquisition
JP3851189B2 (ja) * 2002-03-05 2006-11-29 シチズン時計株式会社 液晶格子を用いた格子パタン投影装置
JP2003269928A (ja) * 2002-03-12 2003-09-25 Nec Corp 3次元形状計測方法および装置ならびにプログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289505A (ja) * 1990-04-06 1991-12-19 Nippondenso Co Ltd 3次元形状測定装置
JP2004077290A (ja) * 2002-08-19 2004-03-11 Fuji Xerox Co Ltd 3次元形状計測装置および方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646919B (zh) * 2007-03-29 2011-04-20 学校法人福冈工业大学 非静止物体的三维图像测量装置,三维图像测量方法以及三维图像测量程序
JP2010281778A (ja) * 2009-06-08 2010-12-16 Myuu Skynet:Kk 三次元形状計測装置
CN106441161A (zh) * 2016-11-01 2017-02-22 哈尔滨工程大学 一种基于周期编码的快速相位解缠方法

Also Published As

Publication number Publication date
JP2006145405A (ja) 2006-06-08
CN101061367A (zh) 2007-10-24
US7583391B2 (en) 2009-09-01
CN101061367B (zh) 2010-09-08
JP4883517B2 (ja) 2012-02-22
US20080130015A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
WO2006054425A1 (ja) 三次元計測装置および三次元計測方法並びに三次元計測プログラム
JP4986679B2 (ja) 非静止物体の三次元画像計測装置、三次元画像計測方法および三次元画像計測プログラム
CN107480613B (zh) 人脸识别方法、装置、移动终端和计算机可读存储介质
JP3624353B2 (ja) 3次元形状計測方法およびその装置
JP5882264B2 (ja) 三次元ビデオスキャナ
JP6566768B2 (ja) 情報処理装置、情報処理方法、プログラム
CN107592449B (zh) 三维模型建立方法、装置和移动终端
CN105147311B (zh) 用于ct***中的可视化设备辅助扫描定位方法和***
US10973581B2 (en) Systems and methods for obtaining a structured light reconstruction of a 3D surface
US20100310176A1 (en) Apparatus and Method for Measuring Depth and Method for Computing Image Defocus and Blur Status
RU2528140C1 (ru) Cпособ автоматического распознавания объектов на изображении
WO2016145582A1 (zh) 相位偏移校准方法、3d形状检测的方法、***及投影***
CN111047650B (zh) 一种用于飞行时间相机的参数标定方法
GB2504711A (en) Pose-dependent generation of 3d subject models
KR100943218B1 (ko) 컬러 교정을 이용한 3차원 모델 생성 방법
JP5652883B2 (ja) 被写体の形態観察に用いる等高線画像生成方法,及びこれを用いる側弯症スクリーニングシステム
JP6452361B2 (ja) 情報処理装置、情報処理方法、プログラム
CN113749646A (zh) 基于单目视觉的人体身高测量方法、装置及电子设备
JP3919722B2 (ja) 肌形状計測方法及び肌形状計測装置
JP4507571B2 (ja) 人体姿勢計測装置
CN107515844B (zh) 字体设置方法、装置及移动设备
JP2016205963A (ja) タイヤ解析装置及びタイヤ解析方法
JP6867766B2 (ja) 情報処理装置およびその制御方法、プログラム
JP2011033428A (ja) パンタグラフ高さ測定装置
JPH08136222A (ja) 三次元計測方法およびその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11667767

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580039510.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795911

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11667767

Country of ref document: US