WO2006051846A1 - 計測方法及び移動情報装置 - Google Patents

計測方法及び移動情報装置 Download PDF

Info

Publication number
WO2006051846A1
WO2006051846A1 PCT/JP2005/020594 JP2005020594W WO2006051846A1 WO 2006051846 A1 WO2006051846 A1 WO 2006051846A1 JP 2005020594 W JP2005020594 W JP 2005020594W WO 2006051846 A1 WO2006051846 A1 WO 2006051846A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
unit
magnetic flux
sensor
flux density
Prior art date
Application number
PCT/JP2005/020594
Other languages
English (en)
French (fr)
Inventor
Hirohisa Kusuda
Daisuke Tsujino
Jun Yamazaki
Yasuhiro Nishide
Hideyuki Ikeda
Original Assignee
Vodafone K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vodafone K.K. filed Critical Vodafone K.K.
Priority to JP2006527206A priority Critical patent/JP4398981B2/ja
Priority to EP05806008.8A priority patent/EP1811267B1/en
Publication of WO2006051846A1 publication Critical patent/WO2006051846A1/ja
Priority to US11/797,771 priority patent/US7368903B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/38Testing, calibrating, or compensating of compasses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72448User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions
    • H04M1/72454User interfaces specially adapted for cordless or mobile telephones with means for adapting the functionality of the device according to specific conditions according to context-related or environment-related conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Definitions

  • the present invention relates to a measurement method and a movement information device, and more specifically, a measurement method for measuring magnetic flux density derived from geomagnetism using a sensor mounted on the movement information device, and the measurement method.
  • the present invention relates to a mobile information device that uses.
  • a technology has been proposed in which magnetic flux density derived from geomagnetism is detected by a sensor mounted on the mobile information device, and the detection result is used to provide useful information for the user.
  • a mobile phone device that detects a magnetic flux density by a three-axis magnetic sensor, obtains an azimuth at the current position based on the detected magnetic flux density, and notifies the user (see Patent Document 1 below) This is called “Conventional Example 1”).
  • the magnetic flux density is detected by the two-axis magnetic sensor, the tilt angle is detected by the two-axis tilt sensor, and the direction at the current position is obtained based on the detected magnetic flux density and tilt angle, to the user.
  • a mobile phone device for notification has been proposed (see Patent Document 2; hereinafter referred to as “Conventional Example 2”).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-196055
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-90725
  • the quality of the geomagnetic measurement environment cannot be determined by the perception of the user of the mobile information device because the magnetism cannot be recognized by the human senses. For this reason, when a user of a mobile information device tries to execute an application that uses a measurement result of magnetic flux density derived from geomagnetism using a sensor mounted on the mobile information device, the application can be executed effectively. I can't judge whether it is in the environment. As a result, when the application was executed, an abnormal value with an unknown cause occurred.
  • the present invention has been made in view of the above circumstances, and a measurement method capable of performing geomagnetism measurement after evaluating a geomagnetism measurement environment using a magnetic sensor mounted on a mobile information device.
  • the purpose is to provide.
  • Another object of the present invention is to provide a mobile information device capable of performing geomagnetism measurement after evaluating a geomagnetism measurement environment using a mounted magnetic sensor.
  • the present invention provides a measurement method for measuring a magnetic flux density derived from geomagnetism using a sensor mounted on a mobile information device, the calibrated characteristic value of the sensor.
  • a magnetic flux density calculating step for calculating a magnetic flux density corresponding to a detection result by the sensor; a measurement environment evaluation step for evaluating a geomagnetic measurement environment based on a calculation result in the magnetic flux density calculating step; Is a measuring method.
  • the magnetic flux density corresponding to the detection result by the sensor is calculated using the calibrated characteristic value of the sensor.
  • the “sensor characteristic value” means an offset value of the sensor output, a gain value of the sensor, or the like.
  • the gain value is determined by the characteristics of the sensor, does not depend on the geomagnetic measurement environment around the sensor, and requires a special magnetic field environment and a standard magnetic field generator to set the gain value. For this reason, generally, as the calibrated gain value, the result of gain calibration performed at the time of factory shipment of the mobile information device is continuously used.
  • the offset value depends on the geomagnetic measurement environment around the mobile information device. For this reason, as a calibrated offset value, generally, the result of offset calibration performed when the mobile information device was shipped to the market is used until a new offset calibration is performed. It is updated based on the result of offset calibration measurement for updating the offset value according to the update command.
  • the magnetic flux density calculation step when the magnetic flux density corresponding to the detection result by the sensor at that time is calculated using the calibrated characteristic value, in the measurement environment evaluation step, at least one calculated magnetic flux density Based on this, the geomagnetic measurement environment is evaluated. This evaluation is performed, for example, from the viewpoint of whether or not it is estimated that the magnetic flux density derived from geomagnetism can be measured with acceptable accuracy at that time.
  • the geomagnetic measurement environment can be evaluated using the magnetic sensor mounted on the mobile information device, and then the geomagnetic measurement can be performed using the magnetic sensor. it can.
  • an out-of-range occurrence rate that is a rate of occurrence of a detection result in which a difference in average value force between the plurality of detection results is outside a predetermined range is calculated in the plurality of detection results by the sensor.
  • An out-of-range occurrence rate calculation step is further provided, and in the measurement environment evaluation step, the geomagnetic measurement environment is evaluated based on a calculation result in the magnetic flux density calculation step and the out-of-range occurrence rate. it can.
  • out-of-range occurrence is the occurrence rate of the detection result in which the difference from the average value of the plurality of detection results is outside the predetermined range in the plurality of detection results by the sensor. Calculate the percentage.
  • the measurement environment evaluation process Based on the calculation results in the bundle density calculation process and the out-of-range occurrence rate, the geomagnetic measurement environment is evaluated.
  • the magnetic field derived from the noise magnetism is estimated to be a stationary magnetic field.
  • the offset value for the sensor is updated, it can be determined that there is a possibility that the magnetic flux density derived from the geomagnetism can be measured with an acceptable accuracy.
  • the measurement method of the present invention may further include an evaluation result display step of displaying an evaluation result in the measurement environment evaluation step on a display unit of the mobile information device.
  • the user can refer to the evaluation results in the measurement environment evaluation process, so the user, when using the sensor, (i) gives up using the sensor, (ii) updated the offset value. It is possible to appropriately take measures such as using a sensor above.
  • the measurement data and the evaluation in the measurement environment evaluation step are performed in response to a request for measurement data corresponding to a detection result by the sensor from an application operating on the mobile information device.
  • a measurement data reporting process for reporting the results may be further provided.
  • the evaluation results in the measurement environment evaluation process are reported together with the geomagnetic measurement data, so the application must judge the reliability of the reported measurement data and perform appropriate processing according to the evaluation results. it can.
  • the sensor can detect a magnetic flux density along three axis directions orthogonal to each other that are uniquely defined in the movement information device. In this case, the magnetic flux density can be detected three-dimensionally and the geomagnetic measurement environment can be accurately performed.
  • a sensor for detecting a magnetic flux density; and a magnetic flux density corresponding to a new detection result by the sensor by using a calibrated characteristic value for the sensor.
  • a moving information apparatus comprising: a magnetic flux density calculating means for calculating; and a measurement environment evaluating means for evaluating a geomagnetic measurement environment based on a calculation result obtained by the magnetic flux density calculating means.
  • the magnetic flux density calculation means calculates the magnetic flux density corresponding to the detection result by the sensor using the calibrated characteristic value for the sensor. Subsequently, the measurement environment evaluation means evaluates the geomagnetic measurement environment based on at least one calculated magnetic flux density. That is, the mobile information device of the present invention can measure the magnetic flux density derived from geomagnetism using the measurement method of the present invention described above.
  • the geomagnetic measurement environment can be evaluated using the magnetic sensor, and further, the geomagnetic measurement can be performed using the magnetic sensor.
  • out-of-range occurrence ratio which is an occurrence ratio of detection results in which a difference in average power of the plurality of detection results is outside a predetermined range in the plurality of detection results by the sensor.
  • an out-of-range occurrence ratio calculating means for calculating the geomagnetic measurement environment based on the calculation result obtained by the magnetic flux density calculating means and the out-of-range occurrence ratio. Can be.
  • the out-of-range occurrence rate calculating means calculates the average value force of the plurality of detection results in the plurality of detection results by the sensor.
  • the out-of-range occurrence rate which is the occurrence rate of detection results where the difference is outside the predetermined range, is calculated.
  • the measurement environment evaluation means evaluates the geomagnetic measurement environment based on the calculation result obtained by the magnetic flux density calculation means and the out-of-range occurrence rate.
  • the calculation obtained by the magnetic flux density calculation means It is possible to perform a more accurate evaluation than the evaluation of the geomagnetic measurement environment from the results alone
  • the mobile information device of the present invention further includes a display unit for notifying the user of information; and an evaluation result display unit for displaying the evaluation result by the measurement environment evaluation unit on the display unit.
  • the evaluation result display means displays the evaluation result by the measurement environment evaluation means on the display unit, and the user refers to the evaluation result. For this reason, when using the sensor, the user can take appropriate measures such as (i) giving up using the sensor or (i) using the sensor after updating the offset value.
  • the measurement data reporting means reports the evaluation result by the measurement environment evaluation means together with the geomagnetic measurement data to the application. Therefore, the reliability of the measurement data reported by the application can be judged, and appropriate processing according to the evaluation result can be performed.
  • the sensor can detect a magnetic flux density along three axial directions orthogonal to each other.
  • the magnetic flux density can be detected three-dimensionally and the geomagnetic measurement environment can be accurately performed.
  • the mobile information device of the present invention may further include a radio communication unit for performing radio communication with a base station of a mobile communication network. That is, the mobile information device of the present invention can be a mobile communication terminal device.
  • the measurement method of the present invention has the effect of being able to perform geomagnetism measurement after evaluating the geomagnetism measurement environment using the magnetic sensor mounted on the mobile information device. .
  • the mobile information device of the present invention has an effect that it is possible to perform geomagnetism measurement after evaluating the geomagnetism measurement environment using the mounted magnetic sensor.
  • FIG. 1A is a diagram schematically showing a front appearance of a mobile phone device according to an embodiment of the present invention.
  • FIG. 1B is a view schematically showing the rear appearance of the mobile phone device according to one embodiment of the present invention.
  • FIG. 2 is a functional block diagram for explaining the configuration of the mobile phone device of FIG. 1.
  • FIG. 3 is a diagram for explaining the configuration of software executed by the control unit in FIG. 2.
  • FIG. 4 is a functional block diagram for explaining a configuration of a measurement data processing unit in FIG. 3.
  • FIG. 5A is a diagram for explaining display of a geomagnetic environment evaluation result on the display unit of FIG.
  • FIG. 5B is a diagram for explaining the evaluation result symbol graphic of FIG. 5A.
  • FIG. 6A is a diagram for explaining the configuration of the temporary storage unit in FIG. 2.
  • FIG. 6A is a diagram for explaining the configuration of the temporary storage unit in FIG. 2.
  • FIG. 6B is a diagram for explaining the configuration of the measurement data area in FIG. 6A.
  • FIG. 7 is a flowchart for explaining the evaluation process of the geomagnetic measurement environment in the measurement environment evaluation unit of FIG.
  • FIG. 8 is a diagram for explaining the result of calibration measurement by the calibration unit of FIG.
  • FIGS. In these drawings, the same or equivalent elements are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 1A and FIG. 1B schematically show the external configuration of a mobile phone device 10 that is a mobile information device.
  • FIG. 1A shows a front view of the appearance of the mobile phone device 10
  • FIG. 1B shows a rear view of the appearance of the mobile phone device 10.
  • the mobile phone device 10 includes (a) a mobile phone body 11 and (b) a numeric keypad for inputting a telephone number and an operation mode.
  • An operation unit 12 having function keys for inputting various commands such as switching to a control unit 21 (see Fig. 2) to be described later, and (c) a liquid crystal display for displaying operation guidance, operation status, received message, and the like.
  • a display unit 13 having a device.
  • the mobile phone device 10 includes (d) a call speaker 14 that reproduces an audio signal sent from a communication partner during a call, and ( e ) a sound during sound collection.
  • the mobile phone main body 11 includes (i) a control unit 21 that performs overall control of the overall operation of the mobile phone device 10 and (ii) a base station via an antenna 17. (Iii) Read-only memory (ROM) element or random access memory (RAM) element for storing programs executed by the control unit 21 and various data. And a storage unit 23 having The mobile phone body 11 includes a sensor unit 25 for detecting (iv) the magnetic flux density at the current position of the mobile phone device 10 and the acceleration acting on the mobile phone device 10.
  • the storage unit 23 includes therein a temporary storage area 24 for temporarily storing the collected measurement data.
  • the sensor unit 25 detects the attitude angle of the mobile phone device 10 and the acceleration acting on the mobile phone device 10, and outputs the voltage value of the voltage signal from the sensor unit 26 that outputs as an analog voltage signal. And an analog-to-digital (A / D) converter 27 for converting values. Then, the digital data output from the A / D converter 27 is notified to the control unit 21 as a detection result. Further, the sensor unit 25 starts to operate in response to a detection start command from the control unit 21 and stops operating in response to a detection stop command from the control unit 21.
  • the sensor unit 26 has the row direction in the matrix key arrangement of the operation unit 12 as the X axis s direction, the column direction as the Y axis direction, and the vertical direction of the key arrangement surface as the Z axis direction.
  • the magnetic flux density in the X-axis direction (B), the magnetic flux density in the Y-axis direction (B), and the magnetic flux density in the axial direction ( ⁇ ) are detected.
  • the voltage value (V) (q X, Y), which is the detection result of Y, ⁇ ) and acceleration, is made into one set and notified to the control unit 21 as detection raw data.
  • the gain value (G) in the equation (1) is adjusted at the time of shipment from the factory so as to be as common as possible in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the gain value (G) is difficult to change depending on the environmental conditions of magnetic measurement, and calibration equipment such as a standard magnetic generator is required for adjustment.
  • the calibration value at the time is continuously used as the calibration value for the gain value (G).
  • the offset value (V) varies depending on the environmental conditions of magnetic measurement, it corresponds to the environmental conditions of magnetic measurement at that time and changes over time of the sensor unit when the user desires.
  • the new offset value can be updated by measuring for calibration in each of the X-axis direction, Y-axis direction, and z-axis direction. New offset value calibration measurement and offset value calibration value update will be described later.
  • the gain value (G) and the offset value (V) in the equation (2) are adjusted at the time of shipment from the factory so as to be a common value in the X axis direction and the Y axis direction.
  • the gain value (G a ) and the offset value (V) are difficult to change depending on the environmental conditions of magnetic measurement, and calibration equipment such as a standard acceleration generator is required for adjustment. Therefore, it is used as the calibration value of the gain value (G) and offset value (V) continuously.
  • the gain value (G) and offset value (V) for measuring the magnetic flux density and the calibration value of the gain value (G) and offset value (V) for measuring acceleration are stored in the storage unit 23. It is stored. And gain value (G), offset value (V), gain value (G) and offset value
  • the calibration value of (V) can be referred to by a measurement physical quantity calculation unit 41 (see FIG. 4) described later.
  • the control unit 21 includes a central processing unit (CPU), a digital signal processing unit (DSP), and the like, and performs various data processing in order to realize a general mobile phone function. Operation control of other components is performed.
  • the configuration of software such as a program executed in the control unit 21 is as shown in FIG.
  • the software in the control unit 21 includes a basic processing unit 31 and an application 33.
  • the basic processing unit 31 realizes a telephone function, a mail function, and a character input function, which are basic functions as a mobile phone device, and controls various hardware resources described above.
  • the application 33 is assumed to be an application that uses the measurement result of the sensor unit 25.
  • the basic processing unit 31 includes a measurement data processing unit 35. As shown in FIG. 4, the measurement data processing unit 35 (i) processes a command from the application 33, controls the measurement operation of the sensor unit 25, and controls the entire measurement data processing unit 35. Collecting control unit 49 and (ii) receiving the detection raw data from sensor unit 25, and using the calibration value group stored in storage unit 23, the magnetic flux according to the above formulas (1) and (2) And a measurement physical quantity calculation unit 41 for calculating density and acceleration.
  • the measurement data processing unit 35 includes (iii) a measurement environment evaluation unit 42 that evaluates the geomagnetic measurement environment based on the magnetic flux density calculation result notified from the measurement physical quantity calculation unit 41, and (iv) An evaluation result display unit 43 for displaying the evaluation result in the environmental measurement evaluation unit 42 on the display unit 13 is provided.
  • the display area of the display unit 13 includes system display areas SRI and S R2 that can be displayed only by the basic processing unit 31, and the basic processing unit 31. And a common area CR that can be displayed by both applications 33. Then, the evaluation result display unit 43 displays the evaluation result as an evaluation result symbol figure MCE in the system display area SR1.
  • the evaluation result symbol figure MCE has a green area MCG, a yellow area MCY, and a red area MCR, like the traffic signal.
  • the evaluation result display unit 43 issues a display command for painting the green region MCG in green. Also newly calibrated If the measurement environment evaluation unit 42 estimates that there is a possibility that geomagnetism measurement can be performed with acceptable accuracy if the calibration value is updated by performing measurement for the measurement, the evaluation result display unit 43 displays the yellow region MCY. Give a display command to fill in yellow.
  • the evaluation result display unit 43 Command to display area MCR in red.
  • the evaluation result display unit 43 is displayed in the green area. MCG, yellow area MCY and red area MCR are turned off.
  • the measurement data processing unit 35 receives the magnetic flux density component and the acceleration component calculated by the measurement physical quantity calculation unit 41 from the measurement environment evaluation unit 42 and the measurement environment evaluation result.
  • a notification data calculation unit 44 that calculates notification data for notification to 33, and (vi) a data notification unit 45 that transmits the notification data to the application 33.
  • the notification data calculation unit 44 has the above-described XYZ coordinate system that is uniquely defined in the mobile phone device 10 because the key arrangement surface of the operation unit 12 is horizontal.
  • the reference posture is the + Y direction that is true south. And when the standard posture
  • the notification data calculation unit 44 uses the XYZ coordinate system as a reference coordinate system (XYZ coordinate system)
  • the data calculation unit 44 calculates and detects acceleration in the X direction) and acceleration in the Y direction (
  • ⁇ direction acceleration is used as measurement data for notification, and the measurement environment at that time is
  • This temporary storage area 24 has measurement data areas MDR, MDR,... As shown in FIG. And that
  • the measurement data processing unit 35 includes (vii) a calibration unit 46 that calibrates the offset value (V) described above.
  • the calibration unit 46 performs the calibration operation of the offset value (V) when receiving a calibration command of a calibration request issued from the collection control unit 49 in response to a calibration request from the operation unit 12 by the user. Then, the calibration unit 46 stores the calibration result in the storage unit 23.
  • the sensor unit 25 has started a detection operation and outputs detection raw data in a digital format periodically (for example, every 20 msec). Such detection operation of the sensor unit 25 is started when the collection control unit 49 sends a detection operation start command to the sensor unit in response to a request from the user via the operation unit 12 or the like.
  • the measurement physical quantity calculation unit 41 of the measurement data processing unit 35 performs a gain value (G), which is a calibrated characteristic value of the sensor unit 25 in the storage unit 23, and an offset value ( Using V), gain value (G), and offset value (V), the magnetic flux density component and acceleration component corresponding to the detected raw data are calculated according to the above-described equations (1) and (2).
  • G gain value
  • V offset value
  • the sensor unit 25 When the sensor unit 25 exceeds the detection allowable range (overflows) for each of the five types of detection results, the sensor unit 25 notifies the fact.
  • the measurement physical quantity calculation unit 41 When receiving the notification of the overflow, the measurement physical quantity calculation unit 41 sends the fact to the measurement environment evaluation unit 42 as it is.
  • the calculation result by the measured physical quantity calculation unit 41 and the occurrence of overflow are collectively referred to as “notification result”.
  • the measurement environment evaluation unit 42 Upon receiving the notification result from the measurement physical quantity calculation unit 41, the measurement environment evaluation unit 42 overflows the latest predetermined number (for example, 50) of notification results in step S11 of FIG. The power of whether or not is included is determined. If this determination result is affirmative, the process proceeds to step S19. In this step S19, the measurement environment evaluation unit 42 immediately determines that the current measurement environment is not an environment where the magnetic flux density derived from the geomagnetism can be measured with an acceptable accuracy (hereinafter also referred to as “red level environment”). evaluate. Then, the evaluation process of the measurement environment evaluation unit 42 in the measurement environment evaluation process ends.
  • the latest predetermined number for example, 50
  • red level environment an acceptable accuracy
  • step S 11 the process proceeds to step S 12.
  • step S13 the measurement environment evaluation unit 42 calculates an out-of-range occurrence rate R.
  • the measurement environment evaluation unit 42 calculates an average value B of magnitudes of magnetic flux densities of a predetermined number (for example, 50) calculated recently.
  • the measurement environment evaluation unit 42 determines a predetermined number of magnetic flux densities used for calculating the average value B.
  • the predetermined range is determined in advance in consideration of the detection accuracy of the magnetic flux density of the sensor unit 25 and the allowable accuracy of the magnetic flux density measurement derived from the above-mentioned geomagnetism.
  • step S14 the measurement environment evaluation unit 42 determines whether or not the out-of-range occurrence rate R is equal to or less than the allowable maximum rate R. If this decision is negative
  • step S19 the measurement environment evaluation unit 42 evaluates that the current measurement environment is a red level environment. Then, the evaluation process of the measurement environment evaluation unit 42 in the measurement environment evaluation process ends.
  • step S14 If the determination result in step S14 is affirmative, that is, if the noise magnetism is estimated to be steady even if the noise magnetism exists, the process proceeds to step S15. Transition.
  • step S15 the measurement environment evaluation unit 42 calculates the measurement physical quantity. The difference from the average value B of the magnetic flux density calculation results obtained by the part 41 is the above-mentioned predetermined range.
  • step S18 the measurement environment evaluation unit 42 measures the magnetic flux density derived from the geomagnetism with acceptable accuracy if the current measurement environment uses the current calibrated characteristic values (gain value and offset value). Is not possible, but a new offset value V (p
  • step S 15 the process proceeds to step S 16.
  • step S16 the measurement environment evaluation unit 42 calculates a difference value ⁇ ⁇ between the calculated magnetic flux density magnitude B and the standard magnetic flux density magnitude B derived solely from geomagnetism.
  • the value B depends on the latitude of the mobile phone device 10, but the mobile phone device 1
  • the value B to be used at that time is determined based on the positioning result.
  • the mobile phone device 10 has a positioning function for the current position.
  • the value B to be used at that time is determined based on the input result of the current current position by the user made earlier or the factory setting.
  • the measurement environment evaluation unit 42 calculates a value ( ⁇ ⁇ / ⁇ ) between the value ⁇ ⁇ and the value B. So
  • step S18 the measurement environment evaluation unit 42 evaluates that the current measurement environment is a yellow level environment. Then, the evaluation process of the measurement environment evaluation unit 42 in the measurement environment evaluation process ends.
  • step S16 If the determination result in step S16 is affirmative, the process proceeds to step S17.
  • step S17 the measurement environment evaluation unit 42 evaluates that the current measurement environment is an environment in which the magnetic flux density derived from the geomagnetism can be measured with an acceptable accuracy (hereinafter referred to as “green level environment”). Then, the evaluation process of the measurement environment evaluation unit 42 in the measurement environment evaluation process ends.
  • the measurement environment evaluation unit 42 notifies the evaluation result display unit 43 of the evaluation result.
  • the evaluation result display unit 43 sends display data corresponding to the evaluation result to the display unit 13. That is, when the received evaluation result is a green level environment, display data for lighting only the green region MCG of the evaluation result symbol figure MCE in the display unit 13 is sent to the display unit 13. If the received evaluation result is a yellow level environment, display data for lighting only the yellow area MCG of the evaluation result symbol figure MCE is sent to the display unit 13. If the received evaluation result is a red level environment, display data for lighting only the red area MCR of the evaluation result symbol figure MCE is sent to the display unit 13. As a result, a display corresponding to the evaluation result of the geomagnetic measurement environment is made on the display unit 13, and the evaluation result is notified to the user.
  • the evaluation of the geomagnetic measurement environment in the measurement data processing unit 35 described above is started when the operation of the sensor unit 25 is started, and the first evaluation result is obtained after receiving the predetermined number of sets of detection raw data. It is done. Thereafter, the measurement data processing unit 35 repeats the evaluation of the geomagnetic measurement environment every time the detection raw data is received from the sensor unit 25.
  • the normal processing is executed when the user inputs a calibration command from the operation unit 12 or the like.
  • the collection control unit 49 of the measurement data processing unit 35 receives the calibration command. Receiving the calibration command, the collection control unit 49 sends an operation stop command to the measurement physical quantity calculation unit 41 and sends a calibration processing start command to the calibration unit 46. In response to this command, the calibration unit 46 prepares for calibration measurement. Then, when the measurement preparation is completed, the calibration unit 46 sends a message to that effect to the collection control unit 49.
  • the collection controller 49 slowly rotates the mobile phone device 10 360 degrees around each of at least two axes intersecting each other, and then Then, the display unit 13 displays that the calibration measurement stop should be input from the operation unit 12.
  • two axes intersecting each other for example, two of the X, Y, and Z axes are
  • the collection control unit 49 receives the calibration measurement start command and notifies the calibration unit 46 accordingly. Receiving this notification, the calibration unit 46 starts taking in the detection raw data from the sensor unit 25. Thereafter, the calibration unit 46 collects the detection raw data from the sensor unit 25 until the measurement stop command for calibration is given by the user.
  • ⁇ ⁇ The detection raw data collected by the calibration unit 46 when the IJ user slowly rotates the mobile phone device 10 360 degrees around each of at least two axes intersecting each other according to the instructions for calibration measurement.
  • V (V) Distributed along the surface of a specific elliptical sphere SPH determined by a set of gain values [(G), (G), (G)] in the coordinate system.
  • gain values (G), (G), (G) are all the same, the elliptic sphere SPH is a sphere.
  • gain values (G), (G) are all the same, the elliptic sphere SPH is a sphere.
  • the calibration unit 46 sets a set of detected voltage values from the start to the end of calibration measurement [(V),
  • the calibration unit 46 notifies the collection control unit 49 of this determination result. Upon receiving this notification, the collection control unit 49 displays the notification content on the display unit 13 and notifies the user. Thus, the calibration process ends.
  • the calibration unit 46 When the set of detected voltage values [(V), (V), (V)] is a distribution along the circumference of a specific sphere SPH, the calibration unit 46 first determines the center coordinates of the sphere SPH. [(V), (V), (V)] and the radius r are calculated. Subsequently, the calibration unit 46 determines whether or not the radius r corresponds to the length corresponding to the standard magnitude B of the magnetic flux density derived only from the geomagnetism within the allowable accuracy.
  • the diameters of the ellipsoidal SPH in the X-axis, Y-axis, and Z-axis directions are limited to geomagnetism only. Determine the length corresponding to the standard size B of the magnetic flux density from which it is derived and whether it is within the allowable accuracy.
  • the collection control unit 49 displays the notification content on the display unit 13 and notifies the user.
  • the calibration process ends.
  • the calibration unit 46 detects the detected voltage value (V).
  • the values (V), (V), (V) are adopted as new offset values of, (V), (V).
  • the calibration unit 46 stores the values (V), (V), and (V) in the storage unit 23 as calibrated offset values of the detected voltage values (V), (V), and (V).
  • the calibration unit 46 notifies the collection control unit 49 that the offset values of the detected voltage values (V), (V), and (V) have been calibrated.
  • the collection control unit 49 displays the notification content on the display unit 13 and notifies the user.
  • the calibration process ends.
  • the measurement environment evaluation unit 42 calculates the evaluation result and the magnetic flux density calculated by the measurement physical quantity calculation unit 41 immediately before the evaluation.
  • the component and the acceleration component are sent to the notification data calculation unit 44.
  • the notification data calculation unit 44 calculates the pitch angle ⁇ , roll angle ⁇ , angle ⁇ , X-direction acceleration and Y-direction acceleration based on the received data from the measurement environment evaluation unit 42.
  • the notification data calculation unit 44 uses the temporary storage area 24 as a ring buffer, and sequentially determines the measurement environment evaluation results, the pitch angle ⁇ , the roll angle ⁇ , the angle ⁇ , the X direction acceleration, and the Y direction.
  • the notification data calculation unit 44 then stores the stored measurement data for each storage in the measurement data area MDR.
  • the address information of the data area MDR is notified to the collection control unit 49.
  • the collection control unit 49 issues the measurement data request. receive.
  • the collection control unit 49 notifies the data notification unit 45 of the address of the temporary storage area 24 in which the measurement data to be notified is stored and the number of measurement data to be notified.
  • the data notification unit 45 refers to the notified address in the temporary storage area 24, and the measurement environment evaluation result, the pitch angle ⁇ , the roll angle ⁇ , the single angle ⁇ , X, which is data for notification.
  • the application 33 performs a predetermined operation using the measurement environment evaluation result and measurement data received from the data notification unit 45.
  • the application 33 refers to the measurement environment evaluation result and determines whether or not measurement data is available. If it is determined that the measurement data is not usable, the fact is displayed in the common area CR of the display unit 13.
  • the measured physical quantity calculation unit 41 1S corresponds to the detection result by the sensor unit 25 using the calibrated characteristic value for the sensor unit 25. Calculate the magnetic flux density. Subsequently, the measurement environment evaluation unit 42 evaluates the geomagnetic measurement environment based on the calculation result by the measurement physical quantity calculation unit 41. Therefore, according to the mobile phone device 10 of the present embodiment, the geomagnetic measurement environment can be evaluated using the sensor unit 25, and further, the geomagnetic measurement can be performed using the sensor unit 25.
  • the measurement environment evaluation unit 42 detects that the difference between the average value forces of the plurality of detection results is out of the predetermined range in the plurality of detection results by the sensor unit 25.
  • the out-of-range occurrence rate that is the occurrence rate of is calculated.
  • the measurement environment evaluation unit 42 evaluates the geomagnetic measurement environment based on the calculation result obtained by the measurement physical quantity calculation unit 41 and the out-of-range occurrence rate. Therefore, it is possible to evaluate the geomagnetic measurement environment with high accuracy.
  • the sensor unit from the application 33 is used.
  • the data notification unit 45 reports the evaluation result by the measurement environment evaluation unit 42 to the application 33 together with the measurement data. Therefore, the application 33 can judge the reliability of the reported measurement data and perform appropriate processing according to the evaluation results.
  • the geomagnetic measurement environment is evaluated in three stages, but it can be evaluated in two stages or four or more stages.
  • the evaluation is performed in two stages, for example, the evaluation of the blue level environment of the present embodiment and the other two stages of evaluation can be performed.
  • the evaluation is performed in four or more stages, for example, the allowable measurement accuracy is set in multiple stages, and the evaluation of the green level environment of the present embodiment is divided into a plurality according to the stage of the allowable measurement accuracy. can do.
  • the user's confirmation can be obtained for the difference in which the calibration result by the calibration unit 46 is registered in the storage unit 23.
  • the specific procedure in this case is as follows.
  • the calibration unit 46 sends a message to that effect to the collection control unit 49.
  • the collection control unit 49 confirms whether or not to register a new calibration result
  • the display unit 13 Is displayed.
  • the collection control unit 49 notifies the calibration unit 46 of that fact.
  • the calibration unit 46 registers a new calibration result in the storage unit 23, and ends the calibration process.
  • the calibration unit 46 when a non-registration command is issued in which the user does not register a new calibration result, the calibration unit 46 notifies the fact to the calibration unit 46 via the collection control unit 49. The calibration process is terminated without registering a new calibration result in the storage unit 23.
  • the sensor unit 25 is a so-called 5-axis sensor that detects the magnetic flux density in the three-axis direction and detects the acceleration in the two-axis direction.
  • the force acceleration is the same as the magnetic flux density.
  • It can be a so-called 6-axis sensor that detects in the 3-axis direction.
  • the geomagnetic measurement environment can be evaluated in three stages as in the case of the above embodiment.
  • the sensor unit 25 is mounted inside the mobile phone device 10. On the other hand, the sensor unit 25 is arranged outside the mobile phone device 10, and the sensor unit 25 is connected via an interface port (not shown) for connecting the external device of the mobile phone device 10. And the mobile phone device 10 may be connected.
  • the sensor unit 25 may be disposed on the operation unit side. However, it can be arranged on the display side. In addition, the axial direction serving as a reference for measurement in the sensor unit 25 can be determined according to the arrangement position of the sensor unit 25 and the model of the mobile phone.
  • the present invention is applied to the mobile phone device.
  • mobile information devices such as a portable game machine, a car navigation device, a PDA (Personal Digital Assistance), etc.
  • PDA Personal Digital Assistance
  • the present invention can also be applied to the above.
  • the measurement method of the present invention can be applied to geomagnetism measurement using a magnetic sensor mounted on a mobile information device. Further, the mobile information device of the present invention can be applied to a mobile information device that performs geomagnetism measurement using an on-board magnetic sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

 計測物理量算出部41が、センサユニット25用の較正値を利用して、センサユニット25による検出結果を補正した検出結果補正値を算出する。引き続き、計測環境評価部42が、少なくとも1つの検出結果補正値に基づいて、地磁気計測環境の評価を行う。この評価の結果は、評価結果表示部43により、表示部13に表示される。こうして地磁気計測環境の評価が行われた後に、センサユニット25を利用した地磁気計測が行われる。この結果、地磁気計測環境を評価したうえで、移動情報装置に搭載された磁気センサを用いた地磁気計測を行うことができる。

Description

明 細 書
計測方法及び移動情報装置
技術分野
[0001] 本発明は、計測方法及び移動情報装置に係り、より詳しくは、移動情報装置に搭 載されたセンサを用いて、地磁気に由来する磁束密度を計測する計測方法、及び、 当該計測方法を使用する移動情報装置に関するものである。
背景技術
[0002] 従来から、携帯電話装置を代表とする移動しつつ動作可能な移動情報装置が、広 く普及している。力かる移動情報装置、特に携帯電話装置に関する技術の進歩は目 覚しいものがあり、必須機能である移動通信網を介した通信機能に加えて、様々な 種類のゲーム等のアプリケーションも実装されるようになっている。
[0003] こうした移動情報装置においては、地磁気に由来する磁束密度を移動情報装置に 搭載されたセンサにより検出し、その検出結果を用いて、利用者にとって有用な情報 を提供する技術が提案されている。例えば、 3軸磁気センサにより磁束密度を検出し 、検出された磁束密度に基づいて、現在位置における方位を求めて、利用者へ通知 する携帯電話装置が提案されている (特許文献 1参照;以下、「従来例 1」と呼ぶ)。ま た、 2軸磁気センサにより磁束密度を検出するとともに、 2軸傾斜センサにより傾斜角 を検出し、検出された磁束密度及び傾斜角に基づいて、現在位置における方位を求 めて、利用者へ通知する携帯電話装置が提案されている (特許文献 2参照;以下、「 従来例 2」と呼ぶ)。
[0004] 特許文献 1 :特開 2002— 196055号公報
特許文献 2 :特開 2003— 90725号公報
発明の開示
発明が解決しょうとする課題
[0005] 上述した従来例 1や従来例 2の技術は、磁極点近傍を除く地球上の各位置におけ る地磁気に由来する磁束密度の一意性を利用するものである。このため、磁気セン サにおいては、地磁気に由来する磁束密度を許容精度で検出することが必要である 。このため、地磁気に由来する磁束密度は、計測環境が良好な状態で行うことが必 要であった。
[0006] すなわち、磁気センサによる磁束密度の検出の際に、移動情報装置の近辺に大き な磁力源が存在したり、地磁気が効率良く遮蔽された空間内に移動情報装置が存 在したりしているような場合には、地磁気に由来する磁束密度を許容精度で検出す ることはできなレ、。ここで、移動情報装置の近辺に大きな磁力源が存在する場合とし ては、例えば地下鉄における列車の発着時に大電流が生じた場合や、移動情報装 置を強力な磁石等に近づけたことがあったために、磁気センサの近傍の部品が磁化 してしまっている場合等がある。また、地磁気が効率良く遮蔽された空間としては、例 えば、鉄板で覆われた部屋等がある。
[0007] こうした地磁気の計測環境の良否は、磁気が人間の五感では認識することができな レ、ものであるため、移動情報装置の利用者の知覚によっては判断することができない 。このため、移動情報装置の利用者が、移動情報装置に搭載されたセンサを用いた 地磁気に由来する磁束密度の計測結果を利用するアプリケーションを実行しようとし た場合に、当該アプリケーションを有効に実行できる環境にあるか否かが判断できな レ、。この結果、当該アプリケーションを実行してみたが、原因不明の異常値が発生す るという事態を招くこととなっていた。
[0008] 本発明は、上記の事情を鑑みてなされたものであり、移動情報装置に搭載された 磁気センサを用い、地磁気計測環境を評価したうえで、地磁気計測を行うことができ る計測方法を提供することを目的とする。
[0009] また、本発明は、搭載された磁気センサを用いて、地磁気計測環境を評価したうえ で、地磁気計測を行うことができる移動情報装置を提供することを目的とする。
課題を解決するための手段
[0010] 本発明は、第 1の観点からすると、移動情報装置に搭載されたセンサを用いて、地 磁気に由来する磁束密度を計測する計測方法であって、前記センサの較正された 特性値を利用して、前記センサによる検出結果に対応する磁束密度を算出する磁束 密度算出工程と;前記磁束密度算出工程における算出結果に基づいて、地磁気計 測環境の評価を行う計測環境評価工程と;を備える計測方法である。 [0011] この計測方法では、まず、磁束密度算出工程において、センサの較正された特性 値を利用して、センサによる検出結果に対応する磁束密度が算出される。ここで、「セ ンサの特性値」とは、センサ出力のオフセット値、センサのゲイン値等をいう。なお、ゲ イン値は、センサの特性によって定まるものであり、センサの周囲の地磁気計測環境 に依存せず、かつ、ゲイン値の設定には特別な磁界環境と標準磁界発生器を要する 。このため、較正されたゲイン値としては、一般に、移動情報装置の工場出荷に際し て行われたゲイン較正の結果が継続して使用される。これに対して、オフセット値は、 移動情報装置の周囲の地磁気計測環境に依存する。このため、較正されたオフセッ ト値としては、一般に、新たにオフセット較正が行われるまでは、移動情報装置のェ 場出荷に際して行われたオフセット較正の結果が使用され、その後における利用者 によるオフセット値更新指令に応じたオフセット値更新のためのオフセット較正用計 測の結果に基づレ、て更新されるようになってレ、る。
[0012] 磁束密度算出工程において、その時点におけるセンサによる検出結果に対応する 磁束密度が、較正された特性値を用いて算出されると、計測環境評価工程において 、少なくとも 1つの算出された磁束密度に基づいて、地磁気計測環境の評価が行わ れる。この評価は、例えば、その時点において、地磁気に由来する磁束密度を許容 精度で計測できると推定されるか否かの観点から行われる。
[0013] したがって、本発明の計測方法によれば、移動情報装置に搭載された磁気センサ を用い、地磁気計測環境を評価することができ、そのうえで、当該磁気センサを用い て地磁気計測を行うことができる。
[0014] 本発明の計測方法では、前記センサによる複数の検出結果において、前記複数の 検出結果の平均値力 の差が所定範囲外となる検出結果の発生割合である範囲外 発生割合を算出する範囲外発生割合算出工程を更に備え、前記計測環境評価ェ 程では、前記磁束密度算出工程における算出結果及び前記範囲外発生割合に基 づいて、前記地磁気計測環境の評価を行うこととすることができる。
[0015] この場合には、範囲外発生割合算出工程において、センサによる複数の検出結果 において、複数の検出結果の平均値からの差が所定範囲外となる検出結果の発生 割合である範囲外発生割合を算出する。引き続き、計測環境評価工程において、磁 束密度算出工程における算出結果及び前記範囲外発生割合に基づいて、地磁気 計測環境の評価を行う。
[0016] ところで、センサによる磁束密度の検出結果が、センサの計測可能範囲であり、か つ、この範囲外発生割合が小さい場合には、地磁気以外の強力なノイズ磁気が存在 していても、そのノイズ磁気に由来する磁界は定常的な磁界であると推定される。こ の場合には、計測環境評価工程においては、センサ用のオフセット値を更新すれば 、許容精度で地磁気に由来する磁束密度を計測できる可能性があると判定すること ができる。
[0017] 一方、範囲外発生割合が大きな場合には、地磁気以外の強力なノイズ磁気が存在 し、かつ、ノイズ磁気が非定常的であると推定される。この場合には、オフセット値を 有効に更新することができないので、計測環境評価工程においては、有効な地磁気 に由来する磁束密度の計測ができないと判定することができる。
[0018] したがって、計測環境評価工程において、磁束密度算出工程における算出結果及 び範囲外発生割合に基づいて地磁気計測環境の評価を行う場合には、磁束密度算 出工程における算出結果のみから地磁気計測環境の評価を行うよりも精度の良い評 価を行うことができる。
[0019] また、本発明の計測方法では、前記計測環境評価工程における評価結果を前記 移動情報装置の表示部に表示する評価結果表示工程を更に備えることとすることが できる。この場合には、利用者が計測環境評価工程における評価結果を参照するこ とができるので、利用者は、センサの利用に際して、(i)センサの利用を諦める、 (ii) オフセット値を更新した上でセンサを利用する等の対処を適切に行うことができる。
[0020] また、本発明の計測方法では、前記移動情報装置で動作するアプリケーションから の前記センサによる検出結果に対応する計測データの要求に応答して、前記計測 データ及び前記計測環境評価工程における評価結果を報告する計測データ報告ェ 程を更に備えることとすることができる。この場合には、計測環境評価工程における 評価結果が地磁気の計測データとともに報告されるので、アプリケーションが報告さ れた計測データの信頼性を判断し、評価結果に応じた適切な処理をすることができ る。 [0021] また、本発明の計測方法では、前記センサが、前記移動情報装置において固有に 定義される互いに直交する 3軸方向に沿った磁束密度を検出することとすることがで きる。この場合には、磁束密度の 3次元的な検出ができるとともに、地磁気計測環境 を精度良く行うことができる。
[0022] 本発明は、第 2の観点からすると、磁束密度を検出するセンサと;前記センサ用の 較正された特性値を利用して、前記センサによる新たな検出結果に対応する磁束密 度を算出する磁束密度算出手段と;前記磁束密度算出手段により得られたる算出結 果に基づレ、て、地磁気計測環境の評価を行う計測環境評価手段と;を備える移動情 報装置である。
[0023] この移動情報装置では、磁束密度算出手段が、センサ用の較正された特性値を利 用して、センサによる検出結果に対応する磁束密度を算出する。引き続き、計測環境 評価手段が、少なくとも 1つの算出された磁束密度に基づいて、地磁気計測環境の 評価を行う。すなわち、本発明の移動情報装置では、上述した本発明の計測方法を 使用して、地磁気に由来する磁束密度を計測することができる。
[0024] したがって、本発明の移動情報装置によれば、磁気センサを用いて地磁気計測環 境を評価することができ、そのうえで、当該磁気センサを用いて地磁気計測を行うこと ができる。
[0025] 本発明の移動情報装置では、前記センサによる複数の検出結果において、前記複 数の検出結果の平均値力 の差が所定範囲外となる検出結果の発生割合である範 囲外発生割合を算出する範囲外発生割合算出手段を更に備えるとともに、前記計測 環境評価手段が、前記磁束密度算出手段により得られた算出結果及び前記範囲外 発生割合に基づいて、前記地磁気計測環境の評価を行うようにすることができる。
[0026] この場合には、上述の磁束密度算出手段の動作と並行して又は独立して、範囲外 発生割合算出手段が、センサによる複数の検出結果において、複数の検出結果の 平均値力 の差が所定範囲外となる検出結果の発生割合である範囲外発生割合を 算出する。引き続き、計測環境評価手段が、磁束密度算出手段にょリ得られた算出 結果及び範囲外発生割合に基づレ、て、地磁気計測環境の評価を行う。
[0027] したがって、計測環境評価手段において、磁束密度算出手段により得られた算出 結果のみから地磁気計測環境の評価を行うよりも精度の良い評価を行うことができる
[0028] また、本発明の移動情報装置では、利用者に情報を通知するための表示部と;前 記計測環境評価手段による評価結果を前記表示部に表示させる評価結果表示手段 を更に備えるようにすることができる。この場合には、評価結果表示手段が、計測環 境評価手段による評価結果を表示部に表示するので、利用者が評価結果を参照す る。このため、利用者は、センサの利用に際して、 (i)センサの利用を諦める、(Π)オフ セット値を更新した上でセンサを利用する等の対処を適切に行うことができる。
[0029] また、本発明の移動情報装置では、アプリケーション力 発行された、前記センサ による検出結果に対応する計測データの要求に応答して、前記計測データ及び前 記計測環境評価手段による評価結果を報告する計測データ報告手段を更に備える ようにすることができる。この場合には、計測データ報告手段が、計測環境評価手段 による評価結果を地磁気の計測データとともにアプリケーションへ報告する。このため 、アプリケーションが報告された計測データの信頼性を判断し、評価結果に応じた適 切な処理をすることができる。
[0030] また、本発明の移動情報装置では、前記センサが、互いに直交する 3軸方向に沿 つた磁束密度を検出するようにすることができる。この場合には、磁束密度の 3次元 的な検出ができるとともに、地磁気計測環境を精度良く行うことができる。
[0031] また、本発明の移動情報装置では、移動通信網の基地局と無線通信を行うための 無線通信部を更に備えるようにすることができる。すなわち、本発明の移動情報装置 を移動通信端末装置とすることができる。
発明の効果
[0032] 以上説明したように、本発明の計測方法は、移動情報装置に搭載された磁気セン サを用い、地磁気計測環境を評価したうえで、地磁気計測を行うことができるという効 果を奏する。
[0033] また、本発明の移動情報装置は、搭載された磁気センサを用いて、地磁気計測環 境を評価したうえで、地磁気計測を行うことができるという効果を奏する。
図面の簡単な説明 [0034] [図 1A]本発明の一実施形態に係る携帯電話装置の正面外観を概略的に示す図で ある。
[図 1B]本発明の一実施形態に係る携帯電話装置の背面外観を概略的に示す図で ある。
[図 2]図 1の携帯電話装置の構成を説明するための機能ブロック図である。
[図 3]図 2の制御部で実行されるソフトウェアの構成を説明するための図である。
[図 4]図 3の計測データ処理部の構成を説明するための機能ブロック図である。
[図 5A]図 1の表示部における地磁気環境評価結果の表示を説明するための図であ る。
[図 5B]図 5Aの評価結果シンボル図形を説明するための図である。
[図 6A]図 2の一時記憶部の構成を説明するための図である。
[図 6B]図 6Aの計測データ領域の構成を説明するための図である。
[図 7]図 4の計測環境評価部における地磁気計測環境の評価処理を説明するための フローチャートである。
[図 8]図 4の較正部による較正用計測の結果を説明するための図である。
発明を実施するための最良の形態
[0035] 以下、本発明の一実施形態を、図 1〜図 8を参照しつつ説明する。なお、これらの 図においては、同一又は同等の要素には同一の符号を付し、重複する説明を省略 する。
[0036] 図 1A及び図 1Bには、移動情報装置である携帯電話装置 10の外観構成が概略的 に示されている。ここで、図 1Aには、携帯電話装置 10の外観の正面図が示され、図 1Bには、携帯電話装置 10の外観の背面図が示されている。
[0037] 図 1A及び図 1Bに総合的に示されるように、携帯電話装置 10は、 (a)携帯電話本 体 11と、(b)電話番号を入力するためのテンキー、及び、動作モードの切替等の各 種指令を、後述する制御部 21 (図 2参照)に入力するためのファンクションキーを有 する操作部 12と、 (c)操作案内、動作状況、受信メッセージ等を表示する液晶表示 装置を有する表示部 13とを備えている。また、携帯電話装置 10は、(d)通話時に通 信相手から送られてきた音声信号を再生する通話用スピーカ 14と、(e)集音時に音 を入力したり、通話時に音声を入力したりするためのマイクロフォン 15と、(f)着信音 や案内音を発生するための案内用スピーカ 16と、(g)基地局との間で無線信号を授 受するためのアンテナ 17とを備えてレ、る。
[0038] 携帯電話本体 11の内部には、図 2に示されるように、(i)携帯電話装置 10全体の 動作を統括制御する制御部 21と、(ii)アンテナ 17を介して、基地局との間で無線信 号の送受信を行う送受信部 22と、 (iii)制御部 21で実行されるプログラムや各種デー タを格納する、読出専用メモリ(ROM)素子やランダムアクセスメモリ(RAM)素子を 有する記憶部 23とを備えている。また、携帯電話本体 11の内部には、(iv)携帯電話 装置 10の現在位置における磁束密度及び携帯電話装置 10に作用する加速度を検 出するためのセンサユニット 25を備えている。
[0039] 記憶部 23は、その内部に、収集した計測データを一時的に記憶する一時記憶領 域 24を含んでいる。
[0040] センサユニット 25は、携帯電話装置 10の姿勢角及び携帯電話装置 10に作用する 加速度を検知し、アナログ電圧信号として出力するセンサ部 26と、センサ部 26から 電圧信号の電圧値をデジタル値に変換するアナログデジタル (A/D)変換器 27とを 備えている。そして、 A/D変換器 27から出力されるデジタルデータが、検出結果と して制御部 21へ通知される。また、センサユニット 25は、制御部 21からの検出開始 指令により動作を開始し、制御部 21からの検出停止指令により動作を停止するように なっている。
[0041] ここで、センサ部 26は、操作部 12のマトリクス状のキー配列における行方向を X軸 s 方向とし、列方向を Y軸方向とし、キー配列面の垂直方向を Z軸方向として、 X軸方 向磁束密度(B )、Y軸方向磁束密度(B )及び Ζ軸方向磁束密度(Β )を検出す る。また、センサ部 26は、 X軸方向加速度(ひ )及び Υ軸方向加速度(ひ )を検出 する。そして、センサ部 26からは、磁束密度の検出結果である電圧値 (V ) (ρ=Χ ,
Y, Ζ )及び加速度の検出結果である電圧値 (V ) (q=X, Y )を 1組にして、検出 生データとして制御部 21へ通知するようになっている。
[0042] なお、センサ部 26から出力される電圧値 (V )と磁束密度 Bとの関係は、ゲイン値を
(G )とし、オフセット値を (V )として、次の(1)式で表されるようになつている。 B =(G ) ' [(V )— (V ) ] - (1)
[0043] この(1)式におけるゲイン値 (G )は、 X軸方向、 Y軸方向及び Z軸方向において 極力共通の値となるように、工場出荷時に調整される。ここで、ゲイン値 (G )は、磁気 計測の環境条件によって変化しにくいものであること、及び、調整のためには標準磁 気発生器等の較正用機器が必要となることから、工場出荷時の較正値が、継続して ゲイン値 (G )の較正値して使用される。一方、オフセット値 (V )は、磁気計測の環 境条件によって、様々に変化するものであることから、利用者が所望の時に、その時 点における磁気計測の環境条件やセンサ部の経時変化に対応した新たなオフセット 値を X軸方向、 Y軸方向及び z軸方向のそれぞれについて、較正用の計測をして 更新することができるようになつている。新たなオフセット値の較正用計測及びオフセ ット値の較正値の更新にっレ、ては後述する。
[0044] また、センサ部 26から出力される電圧値 (V )と加速度ひ との関係は、ゲイン値を(
G )とし、オフセット値を (V )として、次の(2)式で表されるようになつている。
a =(G ) - [(V ) -(V ) ] … )
[0045] この(2)式におけるゲイン値(G )及びオフセット値 (V )は、 X軸方向及び Y軸 方向において共通の値となるように、工場出荷時に調整される。ここで、ゲイン値 (Ga )及びオフセット値 (V )は、磁気計測の環境条件によって変化しにくいものであるこ と、及び、調整のためには標準加速度発生器等の較正用機器が必要となることから、 工場出荷時の較正値力 継続してゲイン値 (G )及びオフセット値 (V ) の較正値と して使用される。
[0046] 上記の磁束密度計測のためのゲイン値 (G )及びオフセット値 (V )、並びに加速 度計測のためのゲイン値 (G )及びオフセット値 (V )の較正値は、記憶部 23に格 納される。そして、ゲイン値 (G )、オフセット値 (V )、ゲイン値 (G )及びオフセット値
(V )の較正値は、後述する計測物理量算出部 41 (図 4参照)により参照可能となつ ている。
[0047] なお、以下の説明においては、記憶部 23に格納されたゲイン値 (G )、オフセット値
(V )、ゲイン値 (G )及びオフセット値 (V )の較正値のそれぞれを、単にゲイン値 ( 〇
G )、オフセット値 (V )、ゲイン値 (G )及びオフセット値 (V )と表記するものとする [0048] 制御部 21は、中央処理装置(CPU)、デジタル信号処理装置(DSP)等を備えて おり、一般的な携帯電話機能を実現するために、様々なデータ処理を行うとともに、 上述した他の構成要素の動作制御を行うようになっている。この制御部 21において 実行されるプログラム等のソフトウェアの構成は、図 3に示されるようになつている。
[0049] すなわち、制御部 21におけるソフトウェアは、基本処理部 31と、アプリケーション 3 3とを備えている。ここで、基本処理部 31は、携帯電話装置としての基本機能である 通話機能、メール機能、文字入力機能を実現するとともに、上述した各種のハードウ エア資源の制御を行う。なお、アプリケーション 33は、センサユニット 25による計測結 果を利用するアプリケーションであるものとする。
[0050] 基本処理部 31は、計測データ処理部 35を備えている。この計測データ処理部 35 は、図 4に示されるように、(i)アプリケーション 33からのコマンドを処理するとともに、 センサユニット 25の計測動作の制御、並びに計測データ処理部 35全体の制御を行 う収集制御部 49と、(ii)センサユニット 25からの検出生データを受信し、記憶部 23に 格納されている較正値群を利用して、上述した(1)式及び(2)式により磁束密度及び 加速度を算出する計測物理量算出部 41とを備えている。
[0051] また、計測データ処理部 35は、(iii)計測物理量算出部 41から通知された磁束密度 算出結果に基づいて、地磁気の計測環境を評価する計測環境評価部 42と、(iv)計 測環境評価部 42における評価結果を表示部 13へ表示する評価結果表示部 43とを 備えている。ここで、本実施形態においては、表示部 13の表示領域は、図 5Aに示さ れるように、基本処理部 31のみが表示をすることができるシステム表示領域 SRI , S R2と、基本処理部 31及びアプリケーション 33の双方が表示を行うことができる共通 領域 CRとを含んでいる。そして、評価結果表示部 43は、評価結果をシステム表示領 域 SR1中に評価結果シンボル図形 MCEとして表示させる。
[0052] 評価結果シンボル図形 MCEは、図 5Bに示されるように、交通信号機と同様に、緑 領域 MCG、黄領域 MCY及び赤領域 MCRを有している。そして、許容精度で地磁 気計測が可能であると計測環境評価部 42によって推定された場合には、評価結果 表示部 43は、緑領域 MCGを緑色で塗りつぶす表示指令を行う。また、新たに較正 用計測を行って較正値を更新すれば、許容精度で地磁気計測ができる可能性があ ると、計測環境評価部 42によって推定された場合には、評価結果表示部 43は、黄 領域 MCYを黄色で塗りつぶす表示指令を行う。また、新たに較正用計測を行ったと しても、許容精度で地磁気計測をすることができるようにはならないと計測環境評価 部 42によって推定された場合には、評価結果表示部 43は、赤領域 MCRを赤色で 塗りつぶす表示指令を行う。なお、センサユニット 25が動作停止状態にある場合、及 び、センサユニット 25の動作開始後、計測環境評価部 42により最初の評価結果が導 出されるまでは、評価結果表示部 43は、緑領域 MCG、黄領域 MCY及び赤領域 M CRを消灯表示させるようになつている。
[0053] 図 4に戻り、計測データ処理部 35は、(V)計測環境評価部 42から計測物理量算出 部 41により算出された磁束密度成分及び加速度成分、並びに計測環境評価結果を 受けて、アプリケーション 33へ通知するための通知用データを算出する通知用デー タ算出部 44と、 (vi)通知用データをアプリケーション 33へ送るデータ通知部 45とを 備えている。
[0054] なお、本実施形態では、通知用データ算出部 44は、操作部 12におけるキー配列 面が水平であり、携帯電話装置 10において固有に定義される上述の X Y Z座標系
S S S
の +Y方向が真南方向である姿勢を基準姿勢としている。そして、基準姿勢時にお
S
ける X Y Z座標系を基準座標系(XYZ座標系)として、通知用データ算出部 44は、
S S S
当該基準姿勢からの X軸回りの回転角(ピッチ角 Θ )、 Y軸回りの回転角(ロール角
X
Θ )及び鉛直方向に平行な Z軸回りの回転角(ョ一角 Θ )を算出する。また、通知用
Y Z
データ算出部 44は、 X方向の加速度 )及び Y方向の加速度( を算出検知す
X α )
Υ
る。そして、算出されたピッチ角 Θ 、ロール角 Θ 、 ョ一角 θ 、 χ方向加速度ひ 及び
X Υ Ζ X
Υ方向加速度ひ を通知用データである計測データとして、その時点における計測環
Υ
境評価結果とともに、一時記憶領域 24に格納する。この一時記憶領域 24は、図 6Α に示されるように、計測データ領域 MDR , MDR ,…を有している。そして、それぞ
1 2
れの計測データ領域 MDR (j = l, 2,■·■)には、図 6Bに示されるように、 1組の計測
J
環境評価結果、ピッチ角 Θ 、ロール角 Θ 、ョ一角 Θ 、 X方向加速度ひ 及び Y方向
X Y Z X
加速度ひ が格納されるようになっている。 [0055] 図 4に戻り、計測データ処理部 35は、(vii)上述したオフセット値 (V )を較正する 較正部 46を備えている。この較正部 46は、利用者による操作部 12からの較正要求 に応じて収集制御部 49から発行された較正要求の較正指令を受けた場合に、オフ セット値 (V )の較正動作行う。そして、較正部 46は、較正結果を記憶部 23へ格納 する。
[0056] 次に、以上のように構成された携帯電話装置 10におけるセンサユニット 25を利用し た計測動作について説明する。
[0057] なお、前提として、センサユニット 25は、検出動作を開始しており、デジタル形式で 検出生データを定期的に(例えば、 20msecごとに)出力しているものとする。こうした センサユニット 25の検出動作は、利用者からの操作部 12を介した要求等に応じて、 収集制御部 49が、検出動作開始指令をセンサユニットへ向けて送ることにより開始さ れる。
[0058] <計測環境評価処理 >
センサユニット 25からの検出生データを受信すると、計測データ処理部 35の計測 物理量算出部 41が、記憶部 23内におけるセンサユニット 25の較正された特性値で あるゲイン値 (G )、オフセット値 (V )、ゲイン値 (G )及びオフセット値 (V )を使用 して、上述の(1)式及び(2)式により、検出生データに対応する磁束密度成分及び 加速度成分を算出する。この結果、センサユニット 25による検出結果に対応した磁 束密度 B (ρ = Χ , Υ , Z )と加速度 a (q = X , Υ )とが算出される。計測物理量算 出部 41は、こうして算出された磁束密度 B (p = X, Υ , Z )と加速度 a (q = X , Υ ) とを、計測環境評価部 42へ送る。
[0059] なお、センサユニット 25において 5種の検出結果の 1種ごとに、検出許容範囲を超 えた(オーバーフローした)場合には、センサユニット 25からは、その旨が通知される 。このオーバーフローの通知を受けた場合には、計測物理量算出部 41は、その旨を そのまま計測環境評価部 42へ送る。以下、計測物理量算出部 41による算出結果及 びオーバーフロー発生の旨を総称して「通知結果」と呼ぶものとする。
[0060] 計測物理量算出部 41からの通知結果を受けた計測環境評価部 42では、図 7のス テツプ S 11において、最近の所定数 (例えば、 50個)の通知結果に、オーバーフロー の旨が含まれているか否力を判定する。この判定結果が肯定的であった場合には、 処理はステップ S 19へ移行する。このステップ S 19では、計測環境評価部 42が、現 在の計測環境は地磁気に由来する磁束密度を許容精度で計測できる環境にはない (以下、「赤レベル環境」ともいう)と、直ちに、評価する。そして、計測環境評価処理 における計測環境評価部 42の評価処理が終了する。
[0061] ステップ S 11における判定結果が否定的であった場合には、処理はステップ S 12 へ移行する。このステップ S12では、計測環境評価部 42が、新たに受信した磁束密 度成分の算出結果から、磁束密度 B (ρ = Χ , Υ , Z )から磁束密度の大きさ Bを、次 p S S S
の(3)式により算出する。
B= (B 2 + B 2 + B 2) 1/2 - - - (3)
XS YS zs
[0062] 次に、ステップ S13において、計測環境評価部 42は、範囲外発生割合 Rを算出す る。この範囲外発生割合 Rの算出に際しては、まず、計測環境評価部 42は、最近に 算出された所定個数 (例えば、 50個)の磁束密度の大きさの平均値 Bを算出する。
A
引き続き、計測環境評価部 42は、平均値 Bの算出に利用した所定個数の磁束密度
A
の大きさにおいて、平均値 Bとの差異が所定範囲にないものの比率である範囲外発
A
生割合 Rを求める。ここで、当該所定範囲は、センサユニット 25の磁束密度の検出精 度及び上述の地磁気に由来する磁束密度計測の許容精度を考慮して、予め定めら れている。
[0063] 次いで、ステップ S14において、計測環境評価部 42は、範囲外発生割合 Rが許容 最大比率 R 以下であるか否力を判定する。この判定結果が否定的であった場合
MAX
には、すなわち、地磁気以外の大きく変動しているノイズ磁気が存在している計測環 境にあると推定された場合には、処理はステップ S19へ移行する。そして、ステップ S 19において、計測環境評価部 42が、現在の計測環境は赤レベル環境であると評価 する。そして、計測環境評価処理における計測環境評価部 42の評価処理が終了す る。
[0064] ステップ S14における判定結果が肯定的であった場合、すなわち、ノイズ磁気が存 在していても、当該ノイズ磁気は定常的であると推定される場合には、処理はステツ プ S15へ移行する。このステップ S15では、計測環境評価部 42が、計測物理量算出 部 41により得られた磁束密度算出結果の平均値 Bからの差異が、上述した所定範
A
囲内にあるか否かを判定する。この判定結果が否定的であった場合には、処理はス テツプ S18へ移行する。このステップ S18では、計測環境評価部 42が、現在の計測 環境は、現在の較正された特性値 (ゲイン値及びオフセット値)を使用したのでは、地 磁気に由来する磁束密度を許容精度で計測できないが、新たにオフセット値 V (p
BOp
=χ , Y , z )の較正を行うことにより許容精度で計測できるようになる可能性がある
S S S
環境 (以下、「黄レベル環境」ともいう)であると評価する。そして、計測環境評価処理 における計測環境評価部 42の評価処理が終了する。
[0065] ステップ S 15における判定結果が肯定的であった場合には、処理はステップ S 16 へ移行する。このステップ S16では、計測環境評価部 42が、算出された磁束密度の 大きさ Bと、地磁気のみに由来する磁束密度の標準的な大きさ Bとの差異値 Δ Βを
E
算出する。ここで、値 Bは、携帯電話装置 10の緯度に依存するが、携帯電話装置 1
E
0に現在位置の測位機能がある場合には、その測位結果に基づいて、その時点にお いて使用すべき値 Bを決定する。また、携帯電話装置 10に現在位置の測位機能が
E
ない場合には、先になされた利用者による大ま力な現在位置の入力結果又は工場 出荷時の設定に基づいて、その時点において使用すべき値 Bを決定する。
E
[0066] 引き続き、計測環境評価部 42は、値 Δ Βと値 Bと比の値(Δ Β/Β )を算出する。そ
E E
して、比の値(Δ Β/Β )が許容範囲内にあるか否かが判定される。この判定が否定
E
的であった場合には、処理はステップ S 18へ移行し、計測環境評価部 42が、現在の 計測環境は、黄レベル環境であると評価する。そして、計測環境評価処理における 計測環境評価部 42の評価処理が終了する。
[0067] ステップ S16における判定結果が肯定的であった場合には、処理はステップ S17 へ移行する。このステップ S17では、計測環境評価部 42が、現在の計測環境は、許 容精度で地磁気に由来する磁束密度を計測できる環境 (以下、「緑レベル環境」)に あると評価する。そして、計測環境評価処理における計測環境評価部 42の評価処理 が終了する。
[0068] こうして、地磁気計測環境の評価を終了すると、計測環境評価部 42は、評価結果 を評価結果表示部 43へ通知する。 [0069] 評価結果を受けた評価結果表示部 43は、その評価結果に対応する表示用データ を表示部 13へ送る。すなわち、受信した評価結果が緑レベル環境であった場合には 、表示部 13における評価結果シンボル図形 MCEの緑領域 MCGのみを点灯させる 表示用データを表示部 13へ送る。また、受信した評価結果が黄レベル環境であった 場合には、評価結果シンボル図形 MCEの黄領域 MCGのみを点灯させる表示用デ ータを表示部 13へ送る。また、受信した評価結果が赤レベル環境であった場合には 、評価結果シンボル図形 MCEの赤領域 MCRのみを点灯させる表示用データを表 示部 13へ送る。この結果、表示部 13には、地磁気計測環境の評価結果に対応する 表示がなされ、当該評価結果が利用者へ通知される。
[0070] 以上の計測データ処理部 35における地磁気計測環境の評価は、センサユニット 2 5の動作開始とともに開始され、上述した所定個数の組の検出生データを受信した 後に、最初の評価結果が得られる。以後、計測データ処理部 35では、センサユニット 25から検出生データを受信する度に、地磁気計測環境の評価を繰り返す。
[0071] <較正処理 >
次に、オフセット値 (V ) (ρ = Χ , Υ , Z )の較正処理について説明する。かかる較
BO p S S S
正処理は、利用者が操作部 12から較正指令を入力した場合等に実行される。
[0072] 利用者が操作部 12から較正指令を入力すると、計測データ処理部 35の収集制御 部 49が、当該較正指令を受ける。較正指令を受けた収集制御部 49は、計測物理量 算出部 41へ動作停止指令を送るとともに、較正部 46へ較正処理の開始指令を送る 。この指令を受けた較正部 46では、較正用計測のための準備を行う。そして、較正 部 46は、計測準備が完了するとその旨を収集制御部 49へ送る。
[0073] 較正用計測の準備完了の旨を受けた収集制御部 49は、利用者に対して、互いに 交差する少なくとも 2軸のそれぞれ回りでゆっくりと携帯電話装置 10を 360度回転さ せ、その後に較正用計測停止を操作部 12から入力すべき旨を表示部 13に表示させ る。ここで、互いに交差する 2軸としては、例えば、 X軸、 Y軸及び Z軸の内の 2軸を
S S S
選択することもできるし、 X軸、 Y軸及び Z軸の 3軸を選択することもできる。なお、本
S S S
実施形態では、 X軸、 Y軸及び Z軸の 3軸のそれぞれ回りで 360度回転させることと
S S S
している。 [0074] これに応じて、利用者が、較正用計測開始指令を入力すると、収集制御部 49は較 正用計測開始指令を受け、その旨を較正部 46へ通知する。この通知を受けた較正 部 46は、センサユニット 25からの検出生データの取り込みを開始する。この後、較正 部 46は、利用者の較正用計測停止指令がなされるまで、センサユニット 25からの検 出生データを収集する。
[0075] 禾 IJ用者が、較正用計測に際しての指示に従って携帯電話装置 10を互いに交差す る少なくとも 2軸のそれぞれ回りでゆっくりと 360度回転させると、較正部 46が収集す る検出生データの内の X軸方向磁束密度(B )、Y軸方向磁束密度(B )及び Ζ軸 方向磁束密度(Β )に対応する検出電圧値の組 [(V ) , (V ) , (V ) ]は、ノイズ磁 気がない、又は、ノイズ磁気が定常的である場合には、図 8に示されるように、 (V ) (
V ) (V ) 座標系におけるゲイン値の組 [(G ) , (G ) ,(G ) ]、により定まる特定 の楕円球 SPHの表面に沿って分布する。なお、ゲイン値 (G ) ,(G ) , (G ) の全 てが互いに同一の場合には、楕円球 SPHは球となる。以下、ゲイン値 (G ) , (G )
, (G ) が全て同一であるものとして説明する。
[0076] 一方、ノイズ磁気が X軸方向、 Υ軸方向又は Ζ軸方向で時間的に大きく変動して レヽると、検出電圧値の組 [(V ) , (V ) , (V ) ]は、(V ) (V ) (V ) 座標系におけ る特定の球 SPHの表面に沿った分布とはならない。
[0077] そこで、較正部 46は、較正用計測の開始から終了までの検出電圧値の組 [(V ) ,
(V ) , (V ) ]が特定の球 SPHの周に沿った分布ではない場合には、ノイズ磁気とし て時間的に大きく変動するものがあるために、検出電圧値 (V ) , (V ) , (V ) のォ フセット値の較正ができないと判断する。そして、較正部 46は、この判断結果を収集 制御部 49へ通知する。この通知を受けた収集制御部 49は、通知内容を表示部 13 に表示し、利用者へ通知する。こうして、較正処理が終了する。
[0078] 検出電圧値の組 [(V ) , (V ) , (V ) ]が特定の球 SPHの周に沿った分布である 場合には、較正部 46は、まず、球 SPHの中心座標 [(V ) , (V ) , (V ) ]及び半 径 rを算出する。引き続き、較正部 46は、半径 rが、地磁気のみに由来する磁束密度 の標準的な大きさ Bに対応する長さと、許容精度内で対応しているか否力 ^判定す る。 [0079] なお、ゲイン値 (G ) , (G ) , (G ) の全てが互いに同一ではない場合には、楕円 球 SPHの X軸、 Y軸及び Z軸方向それぞれの径が、地磁気のみに由来する磁束 密度の標準的な大きさ Bに対応する長さと、許容精度内で対応しているか否力を判 定する。
[0080] この判定結果が否定的であった場合には、ノイズ磁気として、定常的ではあるが、 地磁気計測を許容精度で計測するに際して妨げとなるものがあるために、検出電圧 値 (V ) , (V ) , (V ) のオフセット値の較正ができないと判断する。そして、較正部
46は、この判断結果を収集制御部 49へ通知する。この通知を受けた収集制御部 49 は、通知内容を表示部 13に表示し、利用者へ通知する。こうして、較正処理が終了 する。
[0081] 一方、当該判定結果が肯定的であった場合には、較正部 46は、検出電圧値 (V )
, (V ) , (V ) の新たなオフセット値として値 (V ) , (V ) , (V ) を採用する。引き 続き、較正部 46は、値 (V ) ,(V ) ,(V ) を検出電圧値 (V ) ,(V ) ,(V ) の 較正されたオフセット値として、記憶部 23に格納する。そして、較正部 46は、検出電 圧値 (V ) , (V ) , (V ) のオフセット値が較正された旨を収集制御部 49へ通知す る。この通知を受けた収集制御部 49は、通知内容を表示部 13に表示し、利用者へ 通知する。こうして、較正処理が終了する。
[0082] <計測データ収集処理及び計測データ通知処理 >
次に、計測データ処理部 35における計測データ収集処理について説明する。
[0083] 計測環境評価部 42は、上述した評価結果表示部 43への評価結果の通知と並行し て、当該評価結果、及び、当該評価の直前の計測物理量算出部 41により算出され た磁束密度成分及び加速度成分を通知用データ算出部 44へ送る。これらを受けた 通知用データ算出部 44は、計測環境評価部 42からの受信データに基づいて、ピッ チ角 Θ 、ロール角 Θ 、ョ一角 Θ 、 X方向加速度ひ 及び Y方向加速度ひ を算出す る。引き続き、通知用データ算出部 44は、一時記憶領域 24をリングバッファとして使 用しながら、順次、計測環境評価結果、ピッチ角 Θ 、ロール角 Θ 、ョ一角 Θ 、 X方 向加速度ひ 及び Y方向加速度ひ を計測データ領域 MDRに格納する。そして、通 知用データ算出部 44は、計測データ領域 MDRへの格納ごとに、格納した計測デー タ領域 MDRのアドレス情報を収集制御部 49へ通知する。
[0084] こうして、計測データ処理部 35が計測データを収集している場合に、アプリケーショ ン 33が、計測データ要求を発行すると、計測データ処理部 35では、収集制御部 49 が当該計測データ要求を受ける。計測データ要求を受けた収集制御部 49は、通知 すべき計測データが格納されている一時記憶領域 24のアドレス及び通知すべき計 測データの数をデータ通知部 45へ通知する。この通知を受けたデータ通知部 45は 、一時記憶領域 24の通知されたアドレスを参照して、通知用のデータである計測環 境評価結果、ピッチ角 Θ 、ロール角 Θ 、ョ一角 Θ 、 X方向加速度ひ 及び Y方向加
X Y Z X
速度ひ を読み出して、アプリケーション 33へ送る。
Y
[0085] アプリケーション 33は、データ通知部 45から受信した計測環境評価結果及び計測 データ利用して、所定の動作を行う。なお、本実施形態では、アプリケーション 33は、 計測環境評価結果を参照して、計測データが利用可能か否かを判断している。そし て、計測データが利用可能ではないと判断した場合には、その旨を表示部 13の共用 領域 CRに表示することとしている。
[0086] 以上説明したように、本実施形態の携帯電話装置 10では、計測物理量算出部 41 1S センサユニット 25用の較正された特性値を利用して、センサユニット 25による検 出結果に対応した磁束密度を算出する。引き続き、計測環境評価部 42が、計測物 理量算出部 41による算出結果に基づいて、地磁気計測環境の評価を行う。したがつ て、本実施形態の携帯電話装置 10によれば、センサユニット 25を用いて地磁気計 測環境を評価することができ、そのうえで、センサユニット 25を用いて地磁気計測を 行うことができる。
[0087] また、本実施形態の携帯電話装置 10では、計測環境評価部 42が、センサユニット 25による複数の検出結果において、複数の検出結果の平均値力 の差が所定範囲 外となる検出結果の発生割合である範囲外発生割合を算出する。そして、計測環境 評価部 42が、計測物理量算出部 41により得られた算出結果及び範囲外発生割合 に基づいて、地磁気計測環境の評価を行う。したがって、精度の良い地磁気計測環 境の評価を行うことができる。
[0088] また、本実施形態の携帯電話装置 10では、アプリケーション 33からのセンサュニッ ト 25による検出結果に対応する計測データの要求に応答して、データ通知部 45が、 計測環境評価部 42による評価結果を計測データとともにアプリケーション 33へ報告 する。このため、アプリケーション 33が報告された計測データの信頼性を判断し、評 価結果に応じた適切な処理をすることができる。
[0089] なお、本実施形態においては、地磁気計測環境を 3段階で評価したが、 2段階又 は 4段階以上で評価することもできる。ここで、 2段階で評価する場合には、例えば、 本実施形態の青レベル環境の評価と、それ以外という 2段階の評価とすることができ る。また、 4段階以上で評価する場合には、例えば、多段階で許容計測精度を設定 するとともに、本実施形態の緑レベル環境の評価を、許容計測精度の段階に応じて 複数に分割することとすることができる。
[0090] また、較正部 46による較正結果を記憶部 23に登録する差異に、利用者の確認を 得ることとすることができる。この場合の具体的な手順は、以下の通りとなる。新たな 較正結果の算出を終了すると、その旨を較正部 46が収集制御部 49へ送ると、収集 制御部 49が、新たな較正結果の登録を行うか否力を確認する画面を表示部 13に表 示する。この表示を見た利用者が、操作部 12のキーを操作して、登録指令を行うと、 その旨を収集制御部 49が較正部 46へ通知する。この通知を受けた較正部 46は、新 たな較正結果を記憶部 23に登録し、較正処理を終了する。一方、利用者が新たな 較正結果を登録しない不登録指令が行われた場合には、その旨が、収集制御部 49 を経由して、較正部 46へ通知されると、較正部 46は、新たな較正結果を記憶部 23 に登録せずに、較正処理を終了する。
[0091] また、上記の実施形態では、センサユニット 25を、磁束密度を 3軸方向で検出する とともに、加速度を 2軸方向で検出するいわゆる 5軸センサとした力 加速度も磁束密 度と同様に 3軸方向で検出するいわゆる 6軸センサとすることができる。この場合にも 、上記の実施形態の場合と同様にして、地磁気計測環境を 3段階で評価することが できる。
[0092] また、上記の実施形態では、センサユニット 25を携帯電話装置 10の内部に実装し た。これに対して、センサユニット 25を携帯電話装置 10の外部に配置し、携帯電話 装置 10の不図示の外部機器接続用インタフェースポートを介して、センサユニット 25 と携帯電話装置 10とを接続するようにしてもよい。
[0093] また、上記の実施形態では、キーが配列された操作部 12と表示部 13との位置関係 が固定的ないわゆるストレート型の携帯電話装置とした。これに対して、いわゆるクラ ムシエル型ゃレボルバ型のように、操作部と表示部との位置関係が可変な携帯電話 装置の場合には、センサユニット 25を操作部側に配設してもよいし、表示部側に配 設してもよレ、。また、センサユニット 25における計測の基準となる軸方向は、センサュ ニット 25の配設位置や、携帯電話の機種に対応して決めることができる。
[0094] また、上記の実施形態では、携帯電話装置に対して本発明を適用したが、携帯型 ゲーム機、カーナビゲーシヨン装置、 PDA (Personal Digital Assistance)等の他の種 類の移動情報装置に対しても本発明が適用できるのは、勿論である。
産業上の利用可能性
[0095] 以上説明したように、本発明の計測方法は、移動情報装置に搭載された磁気セン サを用いる地磁気計測に適用することができる。また、本発明の移動情報装置は、搭 載された磁気センサを用いて地磁気計測を行う移動情報装置に適用することができ る。

Claims

請求の範囲
[1] 移動情報装置に搭載されたセンサを用いて、地磁気に由来する磁束密度を計測 する計測方法であって、
前記センサの較正された特性値を利用して、前記センサによる検出結果に対応す る磁束密度を算出する磁束密度算出工程と;
前記磁束密度算出工程における算出結果に基づいて、地磁気計測環境の評価を 行う計測環境評価工程と;を備える計測方法。
[2] 前記センサによる複数の検出結果において、前記複数の検出結果の平均値からの 差が所定範囲外となる検出結果の発生割合である範囲外発生割合を算出する範囲 外発生割合算出工程を更に備え、
前記計測環境評価工程では、前記磁束密度算出工程における算出結果及び前記 範囲外発生割合に基づいて、前記地磁気計測環境の評価を行う、ことを特徴とする 請求項 1に記載の計測方法。
[3] 前記計測環境評価工程における評価結果を前記移動情報装置の表示部に表示 する評価結果表示工程を更に備える、ことを特徴とする請求項 1に記載の計測方法。
[4] 前記移動情報装置で動作するアプリケーション力 の前記センサによる検出結果 に対応する計測データの要求に応答して、前記計測データ及び前記計測環境評価 工程における評価結果を報告する計測データ報告工程を更に備える、ことを特徴と する請求項 1に記載の計測方法。
[5] 前記センサでは、前記移動情報装置において固有に定義される互いに直交する 3 軸方向に沿った磁束密度を検出する、ことを特徴とする請求項 1に記載の計測方法
[6] 磁束密度を検出するセンサと;
前記センサの較正された特性値を利用して、前記センサによる新たな検出結果に 対応する磁束密度を算出する磁束密度算出手段と;
前記磁束密度算出手段により得られた算出結果に基づいて、地磁気計測環境の 評価を行う計測環境評価手段と;を備える移動情報装置。
[7] 前記センサによる複数の検出結果において、前記複数の検出結果の平均値からの 差が所定範囲外となる検出結果の発生割合である範囲外発生割合を算出する範囲 外発生割合算出手段と;を更に備え、
前記計測環境評価手段は、前記磁束密度算出手段により得られた算出結果及び 前記範囲外発生割合に基づいて、前記地磁気計測環境の評価を行う、ことを特徴と する請求項 6に記載の移動情報装置。
[8] 利用者に情報を通知するための表示部と;
前記計測環境評価手段による評価結果を前記表示部に表示させる評価結果表示 手段を更に備える、ことを特徴とする請求項 6に記載の移動情報装置。
[9] アプリケーション力 発行された、前記センサによる検出結果に対応する計測デー タの要求に応答して、前記計測データ及び前記計測環境評価手段による評価結果 を報告する計測データ報告手段を更に備える、ことを特徴とする請求項 6に記載の移 動情報装置。
[10] 前記センサは、互いに直交する 3軸方向に沿った磁束密度を検出する、ことを特徴 とする請求項 6に記載の移動情報装置。
[11] 移動通信網の基地局と無線通信を行うための無線通信部を更に備える、ことを特 徴とする請求項 6に記載の移動情報装置。
PCT/JP2005/020594 2004-11-11 2005-11-10 計測方法及び移動情報装置 WO2006051846A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006527206A JP4398981B2 (ja) 2004-11-11 2005-11-10 計測方法及び移動情報装置
EP05806008.8A EP1811267B1 (en) 2004-11-11 2005-11-10 Measurement method and mobile information device
US11/797,771 US7368903B2 (en) 2004-11-11 2007-05-07 Measurement method and mobile information device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004327341 2004-11-11
JP2004-327341 2004-11-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/797,771 Continuation US7368903B2 (en) 2004-11-11 2007-05-07 Measurement method and mobile information device

Publications (1)

Publication Number Publication Date
WO2006051846A1 true WO2006051846A1 (ja) 2006-05-18

Family

ID=36336523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/020594 WO2006051846A1 (ja) 2004-11-11 2005-11-10 計測方法及び移動情報装置

Country Status (4)

Country Link
US (1) US7368903B2 (ja)
EP (1) EP1811267B1 (ja)
JP (2) JP4398981B2 (ja)
WO (1) WO2006051846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076374A (ja) * 2006-08-22 2008-04-03 Sony Corp 位置検出装置、位置検出方法、位置検出プログラム及びナビゲーション装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100702055B1 (ko) * 2005-03-09 2007-04-02 인피닉스 주식회사 디지털 수평 측정기구
KR100877490B1 (ko) * 2006-11-03 2009-01-12 삼성전기주식회사 휴대단말 및 상기 휴대단말을 제어하는 방법
FR2937415B1 (fr) * 2008-10-17 2010-11-19 Thales Sa Instrument combine de secours et procede de calibration de l'instrument combine de secours
JP2016109540A (ja) * 2014-12-05 2016-06-20 株式会社デンソー 無線測位システム、無線測位端末、及び地点情報送信装置
CN104597512A (zh) * 2014-12-29 2015-05-06 中国航天时代电子公司 一种基于移动通信终端平台的便携式高精度地磁场探测设备
CN110044321B (zh) * 2019-03-22 2021-01-29 北京理工大学 利用地磁信息和角速率陀螺解算飞行器姿态的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599675A (ja) * 1991-10-14 1993-04-23 Matsushita Electric Ind Co Ltd 地磁気方位センサの着磁補正方法
JPH07151842A (ja) * 1993-11-30 1995-06-16 Tokin Corp 磁気検出方式及びその装置
JPH10185608A (ja) * 1996-12-19 1998-07-14 A Plus:Kk 姿勢検出装置
JP2002071771A (ja) * 2000-09-04 2002-03-12 Mitsubishi Electric Corp 磁力計
JP2002196055A (ja) * 2000-10-16 2002-07-10 Ap One System Co Ltd 3軸磁気センサ、全方位磁気センサおよびそれらを用いた方位測定方法
EP1275933A2 (en) 2001-07-10 2003-01-15 Yamaha Corporation Portable electronic apparatus with azimuth measuring function, magnetic sensor suitable for the apparatus, and azimuth measuring method for the apparatus
JP2003156549A (ja) * 2001-11-22 2003-05-30 Yamaha Corp 電子装置
EP1519148A1 (en) 2002-07-01 2005-03-30 Asahi Kasei EMD Corporation Azimuth measuring device and azimuth measuring method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513252B1 (en) * 1999-04-08 2003-02-04 Donnelly Corporation Vehicle compass compensation
JP3872262B2 (ja) * 2000-01-25 2007-01-24 セイコーインスツル株式会社 電子方位計及び電子方位計付電子時計
US6536123B2 (en) 2000-10-16 2003-03-25 Sensation, Inc. Three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measuring method using the same
JP4122834B2 (ja) 2001-07-10 2008-07-23 ヤマハ株式会社 方位測定機能を有する携帯型電子装置
EP1314961B1 (en) 2001-11-22 2009-07-15 Yamaha Corporation Electronic apparatus
EP1795864A4 (en) * 2004-09-29 2011-11-02 Amosense Co Ltd MAGNETIC SENSOR CONTROL METHOD, MAGNETIC SENSOR CONTROL MODULE, AND PORTABLE TERMINAL DEVICE

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0599675A (ja) * 1991-10-14 1993-04-23 Matsushita Electric Ind Co Ltd 地磁気方位センサの着磁補正方法
JPH07151842A (ja) * 1993-11-30 1995-06-16 Tokin Corp 磁気検出方式及びその装置
JPH10185608A (ja) * 1996-12-19 1998-07-14 A Plus:Kk 姿勢検出装置
JP2002071771A (ja) * 2000-09-04 2002-03-12 Mitsubishi Electric Corp 磁力計
JP2002196055A (ja) * 2000-10-16 2002-07-10 Ap One System Co Ltd 3軸磁気センサ、全方位磁気センサおよびそれらを用いた方位測定方法
EP1275933A2 (en) 2001-07-10 2003-01-15 Yamaha Corporation Portable electronic apparatus with azimuth measuring function, magnetic sensor suitable for the apparatus, and azimuth measuring method for the apparatus
JP2003156549A (ja) * 2001-11-22 2003-05-30 Yamaha Corp 電子装置
EP1519148A1 (en) 2002-07-01 2005-03-30 Asahi Kasei EMD Corporation Azimuth measuring device and azimuth measuring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811267A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076374A (ja) * 2006-08-22 2008-04-03 Sony Corp 位置検出装置、位置検出方法、位置検出プログラム及びナビゲーション装置

Also Published As

Publication number Publication date
JPWO2006051846A1 (ja) 2008-05-29
US20070241744A1 (en) 2007-10-18
EP1811267B1 (en) 2013-07-17
US7368903B2 (en) 2008-05-06
EP1811267A1 (en) 2007-07-25
JP2009175160A (ja) 2009-08-06
JP5059052B2 (ja) 2012-10-24
JP4398981B2 (ja) 2010-01-13
EP1811267A4 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP5059052B2 (ja) 計測方法及び移動情報装置
US9201469B2 (en) Mobile communication terminal and application program
US9554253B2 (en) Locating method, drive test terminal and hand-held terminal
JPWO2006028013A1 (ja) 加速度推定方法、加速度推定装置及び移動端末装置
WO2013125306A1 (ja) 無線通信装置、無線通信システム、及び位置推定方法
JP4377863B2 (ja) 運動軌跡情報処理方法及び携帯情報装置
CN107830859A (zh) 一种定位方法、装置及计算机可读存储介质
JPWO2006057237A1 (ja) 情報処理方法、情報処理装置及び情報処理プログラム
US9253307B2 (en) Mobile terminal receiving a television broadcast signal by calculating a best azimuth direction
JP4643716B2 (ja) 電子コンパス
JP4763507B2 (ja) センサデータ補正方法及び移動情報装置
JP4319618B2 (ja) 移動ロボット装置
JP3975781B2 (ja) 携帯端末装置
JP4657742B2 (ja) 携帯端末装置
WO2017206037A1 (zh) 定位方法和装置
JPH11313373A (ja) 移動通信端末装置及びその制御方法
CN113630712B (zh) 一种定位方法、装置及设备
JP4673250B2 (ja) センサデータ収集方法及び移動情報装置
JP2006157127A (ja) 状態表示方法及び移動端末装置
JP3772895B2 (ja) 携帯情報端末及び該携帯情報端末において実行されるゲームソフトによる制御方法
JP4463737B2 (ja) プログラム開発システム
JP2003156335A (ja) 電子装置
JP4845356B2 (ja) 計測データ処理方法、計測データ処理装置及び移動端末装置
JPH0836044A (ja) 携帯電話システムを利用したgps装置
CN113411885B (zh) 一种适用于室内复杂环境的定位方法和定位服务器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006527206

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11797771

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005806008

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005806008

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11797771

Country of ref document: US