WO2006030842A1 - 表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、表示装置 - Google Patents

表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、表示装置 Download PDF

Info

Publication number
WO2006030842A1
WO2006030842A1 PCT/JP2005/016977 JP2005016977W WO2006030842A1 WO 2006030842 A1 WO2006030842 A1 WO 2006030842A1 JP 2005016977 W JP2005016977 W JP 2005016977W WO 2006030842 A1 WO2006030842 A1 WO 2006030842A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
gradation
period
pixel
video
Prior art date
Application number
PCT/JP2005/016977
Other languages
English (en)
French (fr)
Inventor
Makoto Shiomi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2006535180A priority Critical patent/JP4828425B2/ja
Priority to US11/663,079 priority patent/US7903064B2/en
Publication of WO2006030842A1 publication Critical patent/WO2006030842A1/ja

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2044Display of intermediate tones using dithering
    • G09G3/2048Display of intermediate tones using dithering with addition of random noise to an image signal or to a gradation threshold
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0205Simultaneous scanning of several lines in flat panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/061Details of flat display driving waveforms for resetting or blanking
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general

Definitions

  • Display device drive method drive device, program and recording medium thereof, and display device
  • the present invention relates to a display device driving method, a driving device, a program and a recording medium thereof, and a display device that enable high-quality moving image display.
  • liquid crystal display devices have come to be used in a wide range such as personal computers, word processors, amusement devices, television devices, and the like.
  • a liquid crystal display device is different from an impulse display device such as a cathode ray tube in which display light is instantaneous, and is a hold-type display in which the display light changes continuously with time. slow. Therefore, there is a problem that image deterioration such as motion blur occurs especially when displaying moving images. Therefore, in order to obtain a high-quality video display, a method for improving the response characteristics of the display has been studied!
  • a hold-type display device such as a liquid crystal display device has a pseudo impulse-type display characteristic, that is, display light is instantaneously or intermittently like a cathode ray tube. A method to do this is proposed.
  • the display device of publicly known document 1 generates a plurality of scan data that inserts blanking data into image data for one frame period obtained from the image signal source 101.
  • the circuit 102 includes a multiple-time scanning timing generation circuit 103 that generates gate line driving timing, and a display element array 106.
  • the scanning signal generated by this display device is divided into a frame period 301 and divided into a video scanning period 302 and a blanking scanning period 303, that is, one frame period.
  • the gate line is selected twice.
  • the scanning signal is written simultaneously with two lines, with two-line interlaced scanning, that is, G1 and G2 are simultaneously selected and written, then G3 and G4 are simultaneously selected and the next Write the video signal.
  • the blanking data is written in the same two lines at the same time.
  • video display and blanking display are performed in one frame period.
  • the video signal is output during the video writing period 402 of one frame period of the frame period 401, and the video gradation is displayed during the blanking writing period 403.
  • Blanking data closer to the common level than the voltage is written. That is, the video signal shown in the source waveform 406 is written in the selection period in the video writing period 402 shown in the gate drive waveform 405, and the transparency increases as shown in the optical response waveform 409. Then, the erase signal shown in the source waveform 406 is written in the selection period in the blanking writing period 403 shown in the gate drive waveform 405, and the transparency is lowered as shown in the optical response waveform 409.
  • a display as shown in FIG. That is, the original video 801 from the image signal source 101 is compressed in half in the vertical direction by the multiple scan data generation circuit 102, and the invalid video is added to the other half.
  • the multiple scanning timing generation circuit 103 writes the two lines at the same time and writes them at a timing that results in two-line interlaced scanning, within one frame period. Video data and blanking data are displayed, and video response and black response are repeated. Therefore, impulse-type display characteristics can be provided, and thereby image quality deterioration due to moving image blur or the like can be suppressed.
  • publicly known document 1 also describes a method of compressing an original video to 1Z4 and dividing a frame period into four. In this case, apply the high-speed response filter to 1Z4 in the frame period to improve the responsiveness, write the liquid crystal high-speed response video (video that emphasizes the original video), and write the video in the next 1Z4 frame period. Write and block during the remaining 1Z2 frame Even faster response can be achieved by writing ranking data.
  • Japanese Patent Laid-Open No. 2002-149132 (published on May 24, 2002)) writes an erasure signal before each subframe period and outputs an image signal. This discloses that correction is performed in a direction in which the difference from the erase signal level becomes larger, whereby the response speed of the liquid crystal is accelerated and the image quality of the moving image display can be improved.
  • force blanking data can be written that allows a rapid rise of the black level force of the optical response waveform by the liquid crystal response high-speed video.
  • the problem is that the video is not displayed correctly.
  • the liquid crystal transmittance waveform does not reach TO in the erase signal scanning period (becomes TO 'higher than TO) as shown by the dotted line, and in the image signal scanning period 32b.
  • the transmittance Tx is reached, which is higher than the target transmittance Tx.
  • the liquid crystal display device disclosed in the known document 2 also sets the image signal on the assumption that the initial state in the liquid crystal frame period is made uniform by writing the erase signal, and the liquid crystal response is delayed. For this reason, it is not assumed that even if a voltage corresponding to the erase signal is applied, the desired uniform transmittance is not reached. In this way, if the liquid crystal in the initial state deviates from the homogenized state! / Turns on, the applied voltage deviates from the voltage that gives the desired transmittance, and the image faithful to the original image signal is displayed. Not.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a display device capable of displaying a high-quality moving image.
  • a display device driving method is a process that is repeatedly provided to solve the above-described problem, and is used for a video display period corresponding to a video signal indicating a video to be displayed by the display device.
  • An output signal is supplied to the pixel of the display device to control the luminance of the pixel, and a process provided between the video display process and the output signal for the blank period.
  • the luminance of the pixel is set not to be higher than the luminance of the pixel in at least one predetermined video display step performed adjacent to the step, or for dark display in advance.
  • the blanking control process is performed before and after the blanking control process, including a blanking control process for controlling the brightness to a predetermined level.
  • the first luminance force also changes to the second luminance in a predetermined change. If there is, the correction is made in the same direction as the above change in the direction of increasing or decreasing the brightness, compared to the output signal for the blank period when the first and second luminances match. It is characterized by correcting the output signal for the blank period so as to show the brightness.
  • the response speed of the pixel has a speed that can satisfy the following conditions.
  • the pixel regardless of the brightness of the pixel at the start of the blanking control process, the pixel is not fast enough to reach the brightness indicated by the output signal for the blank period at the end of the blanking control process. Even if output signals indicating the same luminance are output as the gradation data for the blank period, the luminance reached by the pixel at the end changes depending on the luminance at the start of the blanking control process.
  • the response speed of the pixel is high enough to satisfy the following conditions.
  • the response speed of the video display process If the pixels are not fast enough to reach the brightness indicated by the output signal for the video display period at the end point, even if output signals showing the same brightness are output as the output signals for the video display period, Depending on the luminance at the start of the video display process, the luminance reached by the pixel at the end also changes.
  • the output signal for the blank period and the output signal for the video display period are alternately output while the value of the output signal for the blank period is set to a constant value. If the value of the output signal for the video display period is set so that the average luminance of the pixels in this case is the luminance corresponding to the video to be displayed on the display device, the luminance of the pixel at the end of the blanking control process is Even if the luminance of the output signal for the blank period is higher than the luminance indicated by the output signal for the blank period and the luminance of the pixel at the end of the video display process is lower than the luminance indicated by the output signal for the video display period, it corresponds to the video. When the brightness is constant, the average brightness of the pixels can be set to a brightness corresponding to the video.
  • the luminance of the pixels at the end of the blanking control process is different from each other when the luminance corresponding to the video is different.
  • the luminance of the pixel at the end point is lower when the luminance corresponding to the video is relatively low than when the luminance corresponding to the video is relatively high. Therefore, the video signal changes, and the output signal in one video display process (first video display process) and the output signal in the next video display process (second video display process) are different from each other.
  • the pixel response in the second video display process is insufficient, and the luminance of the pixel at the end of the second video display process may not reach the desired luminance (the luminance indicated by the video signal). is there.
  • the blanking control step when the change from the first luminance to the second luminance is a predetermined change, the first and second luminances coincide with each other. Compared with the output signal for the blank period in the steady state, the brightness is corrected in the same direction as the above change in the direction of increasing or decreasing the brightness. The output signal for the blank period is corrected. As a result, the luminance of the pixel at the end of the second video display process can be brought close to the desired luminance.
  • the predetermined change is a change that increases the luminance
  • an output signal indicating a higher luminance than the output signal for the blank period in the steady state is output.
  • the brightness of the pixel at the end of the blanking control process can be made higher than the brightness at the end of the blanking control process in the steady state, and the output signal in each video display process is always the second brightness. Can be brought close to the brightness at the end of the blanking control process. Therefore, the luminance of the pixel at the end of the second video display process can be brought close to the desired luminance.
  • the predetermined change is a change that decreases the luminance
  • an output signal indicating a lower luminance than the output signal for the blank period in the steady state is output.
  • the brightness of the pixel at the end of the blanking control process can be made lower than the brightness at the end of the blanking control process in the steady state, and the output signal in each video display process always has the second brightness. Can be brought close to the brightness at the end of the blanking control process. Therefore, the luminance of the pixel at the end of the second video display process can be brought close to the desired luminance.
  • the output signal for the blank period is different from the fixed configuration, and the second video Image quality deterioration due to insufficient response in the display process can be suppressed, and a display device for displaying high-quality moving images can be provided.
  • the output signal for the blank period can be corrected so as to show the luminance corrected in the same direction as the change, an effect can be obtained, but the first luminance and the second luminance can be obtained.
  • the luminance of the pixel at the end of the blanking control process is the same as the luminance at the end of the blanking control process when the output signal in each video display process always shows the second luminance. If the pixel brightness at the end of the second video display process is corrected to the desired value, the image quality deterioration due to insufficient response in the second video display process is further improved. It is possible to provide a display device that can suppress and display a higher quality video.
  • the display device driving method is a process that is repeatedly provided to solve the above-described problem, and is for a video display period corresponding to a video signal indicating a video to be displayed by the display device.
  • the first luminance force also changes to the second luminance in a predetermined change.
  • the output signal for the blank period is corrected based on the first luminance and the second luminance.
  • the output signal for the blank period is the first luminance and the second luminance.
  • the pixel brightness at the end of the blanking control process is indicated, and the output signal in each video display process always indicates the second brightness.
  • the brightness at the end of the blanking control process can be approximated.
  • a display device can be provided.
  • the display device driving method is a process that is repeatedly provided to solve the above-described problem, and is based on input gradation data provided as gradation data to pixels of the display device.
  • the grayscale data for the video display period for the pixel and the grayscale data for the pixel that are not brighter than the grayscale data for the video display period, or for dark display Are generated in the corresponding generation process, and a generation process for generating both of the grayscale data for the blank period indicating a predetermined grayscale and a generation process corresponding to each of the generation processes described above.
  • the grayscale data for the blank period output between the grayscale data for the video display period and the grayscale data for the video display period output in the generation process based on the current input grayscale data
  • the direction of increasing and decreasing directions Output the gradation data corrected in the same direction as the gradation transition. Including a correction step.
  • the above description that is, the description based on the output signal supplied to the pixel will be described again based on the gradation data as follows. That is, when the pixel response speed is not fast enough to satisfy the following conditions, that is, at the end of the blank period, regardless of the brightness of the pixel at the start of the blank period, If it is not fast enough to reach the brightness indicated by the tone data for the blank, even if the same tone data is output as the tone data for the blank period, the blank period depends on the brightness at the start of the blank period. The brightness reached by the pixel at the end also changes. Similarly, the response speed of the pixel is high enough to satisfy the following conditions.
  • the response speed of the video display period If the pixels are not fast enough to reach the brightness of the gradation data for the video display period at the end, even if the same gradation data is output as the gradation data for the video display period, Depending on the luminance at the start of the video display period, the luminance reached by the pixels at the end of the video display period also changes.
  • the gradation data for the blank period is set to a constant value, and the gradation data for the blank period and the gradation data for the video display period are alternately used. If the gradation data value for the video display period is set so that the average brightness of the output pixels is the brightness indicated by the input gradation data, the brightness of the pixels at the end of the blank period will be blank. Even if the brightness of the pixel at the end of the video display period is lower than the brightness indicated by the grayscale data for the video display period, the value of the input grayscale data When is constant, the average luminance of the pixel can be set to the luminance indicated by the input gradation data.
  • the luminance of the pixels at the end of the blank period becomes different from each other when the value of the input gradation data is different.
  • the luminance of the pixel is lower when the luminance indicated by the input gradation data is relatively low than when the luminance indicated by the input gradation data is relatively high. Therefore, the input gradation data changes from the previous value to the current value, and the gradation data for one video display period (first video display period) and the next video display period (second video display period) If the gray scale data for the video display period are different from each other, the pixel response at the end of the second video display period becomes insufficient due to insufficient pixel response in the second video display period.
  • the desired brightness (the brightness indicated by the current input gradation data) may not be reached.
  • the previous input gradation data to the pixels of the display device is displayed. If the gradation transition from the gradation indicated by the data to the gradation indicated by the current input gradation data for the pixel is a predetermined gradation transition, the previous input gradation data indicates Compared to the grayscale data for the blank period when the grayscale and the grayscale indicated by the current input grayscale data are the same (steady state), the grayscale transition of the increase direction and the decrease direction Gradation data corrected in the same direction is output. As a result, the luminance of the pixel at the end of the second video display period can be brought close to a desired value.
  • the gradation data that is increased more than the gradation data for the blank period in the steady state is output.
  • the luminance of the pixel at the end of the blank period can be made higher than the luminance at the end of the blank period in the steady state, and the input gradation data is constant in the current input gradation data. It can approach the brightness at the end of the blank period. Accordingly, the luminance of the pixel at the end of the second video display period can be brought close to a desired value.
  • the predetermined gradation transition is a gradation transition that reduces the gradation
  • gradation data that is smaller than the gradation data for the blank period in the steady state is output. Is done.
  • the luminance of the pixel at the end of the blank period can be made lower than the luminance at the end of the blank period in the steady state, and the blank when the input gradation data is constant at the current input gradation data. It can approach the brightness at the end of the period. Therefore, the luminance of the pixel at the end of the second video display period can be brought close to a desired value.
  • the gradation data for the blank period is different from the constant configuration, and the second It is possible to provide a display device that can suppress deterioration in image quality due to insufficient response during the video display period and can display high-quality moving images.
  • the gradation data corrected in the same direction as the gradation transition can be output.
  • the end of the blank period is based on the previous and present input gradation data.
  • the brightness of the pixel at the time was corrected to the extent that it matches the brightness at the end of the blank period when the input tone data is constant with the current input tone data.
  • the pixel brightness at the end of the second video display period is corrected to the desired value, image quality degradation due to insufficient response in the second video display period can be further suppressed, and more A display device capable of displaying high-quality moving images can be provided.
  • the display device driving method is a process that is repeatedly provided to solve the above-described problem, and is based on input gradation data given as gradation data to pixels of the display device.
  • the grayscale data for the video display period for the pixel and the grayscale data for the pixel that are not brighter than the grayscale data for the video display period, or for dark display Are generated in the corresponding generation process, and a generation process for generating both of the grayscale data for the blank period indicating a predetermined grayscale and a generation process corresponding to each of the generation processes described above.
  • the blank period The grayscale data for use is corrected based on the previous and current grayscale data. Therefore, similar to the driving method of the display device, the luminance of the pixel at the end of the blank period can be brought close to the luminance at the end of the blank period when each input gradation data is always the current gradation data. .
  • the grayscale data for the blank period is constant, it is possible to provide a display device that can suppress image quality deterioration due to insufficient response in the second video display period and can display high-quality moving images. .
  • the display device drive device should display the display device during the video display period repeatedly provided until the next video display period.
  • the output signal for the video display period corresponding to the video signal indicating the video is output from the display device.
  • the display device In addition to controlling the luminance of the pixel by supplying it to the pixel, and supplying a blank period output signal to the pixel during the blank period between each video display period, Before and after the blank period in the drive device of the display device that controls the brightness of the pixel not to be higher than at least one of the adjacent video display periods or the brightness predetermined for dark display.
  • the first luminance force is also predetermined to change to the second luminance.
  • Flip to indicate luminance was Tadashisa auxiliary direction, provided with a blanking control means for correcting the output signal for the blank period, as characterized Rukoto, Ru.
  • the display device driving device is configured to repeatedly display a video to be displayed by the display device until the next video display period.
  • An output signal for a video display period corresponding to the video signal indicating is supplied to the pixel of the display device to control the luminance of the pixel, and in the blank period provided between the video display periods.
  • the luminance of the pixel does not become higher than at least one of the video display periods adjacent to the blank period, or for dark display.
  • the luminance indicated by the output signal for the video display period that is output in the video display period before and after the blank period is the first and
  • the blank period is determined based on the first luminance and the second luminance.
  • a blanking control means for correcting the output signal for use.
  • the drive device for a display device applies to the pixel based on each of the input gradation data to the pixel of the display device repeatedly given.
  • Gradation data for the video display period and gradation data for the pixel a gradation that is not brighter than the gradation data for the video display period, or a gradation that is preset for dark display
  • the driving device of the display device that outputs the gray scale data in a predetermined order, the level indicated by the current input gray scale data for the pixel from the gray scale indicated by the previous input gray scale data for the pixel.
  • the blank when the gradation indicated by the previous input gradation data and the gradation indicated by the current input gradation data are the same Compared with the grayscale data for the period, the grayscale data corrected in the same direction as the grayscale transition among the increasing direction and decreasing direction is generated based on the previous input grayscale data.
  • the display device driving device provides a video display period for the pixel based on each of the input gradation data to the pixel of the display device that is repeatedly given.
  • Gradation data and gradation data for the pixel which are gradations that are not brighter than the gradation data for the image display period, or that are predetermined for dark display.
  • the driving device of the display device that generates both the grayscale data for the blank period and outputs the grayscale data in a predetermined order, the level indicated by the previous input grayscale data to the pixel is displayed.
  • the tone transition from the tone to the tone indicated by the current input tone data for the pixel is a preset tone transition
  • the tone is generated based on the previous input tone data.
  • the gradation data for the video display period and the above The gradation data for the blank period that is output between the gradation data for the video display period generated based on the input gradation data for the first time is based on the previous and current input gradation data! / It is characterized by having blanking control means for correcting.
  • These display device driving devices include blanking control means, and the blanking control means, like any of the above-described display device driving methods, output signals or gradations for the blank period. You can control the data. Therefore, similar to the driving method of each display device described above, it is possible to provide a display device that can suppress image quality deterioration due to insufficient response in the second video display period and can display high-quality moving images.
  • FIG. 1, showing an embodiment of the present invention is a block diagram showing a main configuration of a signal processing unit provided in an image display device.
  • FIG. 2 is a block diagram showing a main configuration of the image display device.
  • FIG. 3 is a circuit diagram illustrating a configuration example of a pixel provided in the image display device.
  • FIG. 4 is a graph showing temporal changes in luminance of the pixels.
  • FIG. 5 is a graph showing temporal changes in the output signal applied to the pixel and the luminance of the pixel in a steady state.
  • FIG. 6 is a diagram for explaining the cause of motion blur that occurs when impulse driving is not performed, and is a diagram showing the luminance of each pixel located on a certain horizontal line in each frame period.
  • FIG. 7 is a drawing in which the above drawing is replaced with the human line of sight as the origin of spatial coordinates.
  • FIG. 8 shows the present embodiment, and is a diagram showing the luminance of each pixel located on a certain horizontal line in each frame period.
  • FIG. 9 This is a drawing in which the above drawing is replaced with the human gaze as the origin of spatial coordinates.
  • FIG. 10 This shows a comparative example, in a configuration where the output signal of the blank period is not changed.
  • FIG. 10 is a graph showing a temporal change in the output signal applied to the pixel and the luminance of the pixel when the luminance of the pixel to be displayed changes during the video display period.
  • FIG. 11 is a graph showing temporal changes in the output signal applied to the pixel and the luminance of the pixel when the luminance of the pixel to be displayed changes during the video display period in the embodiment.
  • FIG. 12 is a diagram illustrating a lookup table provided in the signal processing unit.
  • FIG. 13, showing another embodiment of the present invention, is a diagram for explaining a look-up table provided in a signal processing unit.
  • FIG. 14, showing still another embodiment of the present invention is a block diagram showing a main configuration of a blank period generation circuit provided in a signal processing unit.
  • FIG. 15 is a graph showing changes in pixel luminance during a blank period and a video display period.
  • FIG. 16 is a diagram illustrating another configuration example and explaining a lookup table provided in the signal processing unit.
  • FIG. 17, showing another embodiment of the present invention is a block diagram showing a main configuration of a video display period generating circuit provided in a signal processing unit.
  • FIG. 18 shows a modification of the present invention, and is a block diagram showing a main configuration of a signal processing unit.
  • FIG. 19 is a block diagram showing a main configuration of a gradation conversion unit provided in the signal processing unit.
  • FIG. 20 is a drawing showing a gradation conversion operation by the gradation conversion unit.
  • FIG. 21 is a diagram showing gamma conversion performed in the gradation conversion unit.
  • FIG. 22 is a system block diagram of a conventional liquid crystal display device.
  • FIG. 23 is a gate selection pulse timing chart of a conventional liquid crystal display device.
  • FIG. 24 shows signal line drive waveforms of a conventional liquid crystal display device and optical response waveforms of a display element.
  • FIG. 25 (a) is a conceptual diagram of a video data generation process of a conventional liquid crystal display device.
  • FIG. 25 (b) is a conceptual diagram of a video data generation process of a conventional liquid crystal display device.
  • FIG. 26 is a diagram showing an output signal waveform and an optical response waveform in a conventional liquid crystal display device.
  • the image display device (display device) 1 is an image display device capable of displaying a high-quality moving image by controlling an output signal output to a pixel in a blank period. It can be suitably used as an image display device for a television receiver or a monitor device for displaying a video signal such as a video signal from a computer.
  • a television broadcast received by the television receiver Examples include terrestrial television broadcasting, broadcasting using satellites such as BS (Broadcasting Satellite) digital broadcasting and CS (Communication Satellite) digital broadcasting, or cable television television broadcasting.
  • the panel 11 of the image display device 1 includes a pixel array 2 having pixels PIX (1,1) to PIX (n, m) arranged in a matrix, and a pixel array 2 Are provided with a data signal line driving circuit 3 for driving the data signal lines SL1 to SLn and a scanning signal line driving circuit 4 for driving the scanning signal lines GLl to GLm of the pixel array 2.
  • the image display device 1 includes a control circuit 12 that supplies control signals to both drive circuits 3 and 4, and signal processing including signal processing for inserting a blank period for the input video signal.
  • a signal processing section (driving device) 21 for supplying the processed video signal to the control circuit 12 is provided. Note that these circuits operate by supplying power from the power supply circuit 13.
  • the pixel array 2 includes a plurality (in this case, n) of data signal lines SLl to SLn and a plurality of data signal lines SLl to SLn (in this case, m).
  • Scanning signal lines GLl to GLm where i is an arbitrary integer up to 1 force and n, and j is an arbitrary integer up to 1 force and m, for each combination of data signal line SLi and scanning signal line GLj
  • a pixel PIX (U) is provided.
  • each pixel PIXGJ) is surrounded by two adjacent data signal lines SL (i-1) ′ SLi and two adjacent scanning signal lines GL ( ⁇ 1) ′ GLj. It is arranged in the part that is.
  • the image display device 1 is a liquid crystal display device.
  • the pixel PIX (U) has a gate as a switching element and a gate to the scanning signal line GLj.
  • Field effect transistor SW (i, j) whose drain is connected to data signal line SLi, and pixel capacitance Cp (i, j) whose one electrode is connected to the source of field effect transistor SW (i, j) And.
  • the other end of the pixel capacitance Cp (i, j) is shared by all the pixels PIX. It is connected to the through-electrode line.
  • the pixel capacitor Cp (i, j) is composed of a liquid crystal capacitor CL (i, j) and an auxiliary capacitor Cs (i, j) that is added if necessary! Speak.
  • the field effect transistor SW (i, j) becomes conductive, and the voltage applied to the data signal line SLi becomes the pixel capacitance Cp (i, j).
  • the pixel capacitor Cp (i, j) continues to hold the voltage at the cut-off.
  • the transmittance or reflectance of the liquid crystal varies depending on the voltage applied to the liquid crystal capacitance CL (i, j).
  • the scanning signal line GLj is selected, and the voltage corresponding to the video data D (i, j, k) to the pixel PIX (i, j) is used as the output signal OG, j, k) to the pixel PIXGJ). If applied to the data signal line SLi, the display state of the pixel PIXGJ) can be changed in accordance with the video data D (i, j, k).
  • the liquid crystal cell of the pixel array 2 is a vertical alignment mode liquid crystal cell, that is, when no voltage is applied, the liquid crystal molecules are aligned substantially perpendicular to the substrate, and the pixel PIX ( U) adopts a liquid crystal cell in which the liquid crystal molecules tilt from the vertical alignment state according to the voltage applied to the liquid crystal capacitance CL (i, j), and the liquid crystal cell is normally black mode (when no voltage is applied, Used in black display mode).
  • the scanning signal line drive circuit 4 shown in FIG. 2 outputs a signal indicating whether or not the selection period is valid, such as a voltage signal, to each of the scanning signal lines GL1 to GLm. Further, the scanning signal line drive circuit 4 changes the scanning signal line GLj that outputs a signal indicating the selection period based on timing signals such as a clock signal GCK and a start pulse signal GSP supplied from the control circuit 12, for example. ing. Thus, the scanning signal lines GLl to GLm are sequentially selected at a predetermined timing.
  • the data signal line drive circuit 3 samples the video data D ... to each pixel PIX ... input in time division as the video signal DAT, and extracts each by sampling at a predetermined timing. To do. Further, the data signal line driving circuit 3 sends each data signal line SL l to each pixel PIX (l, j) to PIX (n, j) corresponding to the scanning signal line GLj selected by the scanning signal line driving circuit 4. ⁇ Outputs the output signal corresponding to the video data D 'to each via SLn Note that the data signal line drive circuit 3 determines the output timing of the output signal of the sampling timing based on timing signals such as the clock signal SCK and the start pulse signal SSP input from the control circuit 12. Decide.
  • each of the pixels PIX (l, j) to PIX (n, j) is applied to the data signal lines SLl to SLn corresponding to itself while the scanning signal line GLj corresponding to the pixel PIX (l, j) to PIX (n, j) is selected.
  • the brightness and reflectance are adjusted to determine its own brightness.
  • the scanning signal line drive circuit 4 sequentially selects the scanning signal lines GLl to GLm.
  • all the pixels PIX (1,1) to PIX (n, m) of the pixel array 2 can be set to the luminance indicated by the video data D to the respective pixels, and the image displayed on the pixel array 2 can be updated.
  • the image display device 1 can sequentially change the images displayed on the pixel array 2 based on the video signal DAT.
  • a component data signal line driving circuit that is arranged between the video signal source SO and the pixel array 2 and drives the pixel array 2 based on the video signal from the video signal source SO. 3, the scanning signal line driving circuit 4, the control circuit 12, and a signal processing unit 21 described later in detail) are referred to as a driving unit 14.
  • the drive unit 14 of the image display device 1 repeatedly outputs the output signal O corresponding to the video data D for displaying the video to the pixel array 2 to the pixel PIXGJ).
  • the output signal O for the blank period is output to the pixel PIXGJ).
  • the output signal O for the blank period is set so that the luminance of the pixel PIX (i, j) in the blank period does not become higher than the luminance of the pixel PIXGJ) during the image display or is dark. If it is set to have a predetermined brightness for display, it can be close to impulse-type light emission such as CRT (Cathode-Ray Tube), improving the image quality when displaying video on pixel array 2. However, in the present embodiment, for example, a value for displaying black is set.
  • the former in order to distinguish the output signal O corresponding to the video data D for displaying video on the pixel array 2 and the output signal O for the blank period, the former is referred to as the video display period.
  • Output signal Od and the latter is referred to by the symbol Ob.
  • the output signal Od (i, j, k) for the video period is supplied to the pixel PIX (U)
  • the output signal OG, j, k + l that is next supplied to the pixel PIXGJ) The blank period output signal Ob (i, j, k + l) is supplied.
  • This period is referred to as the video display period Td, and the output signal Ob (i, j, k + 1) for the blank period is supplied to the pixel PIX (U) to the pixel PIXGJ) next.
  • the period up to the point when the output signal Od (i, j, k + 2) for the video display period is supplied as the supplied output signal OG, j, k + 2) is referred to as a blank period Tb.
  • the period T1 is a period in which the video data D (i, j, "-) to the pixel PIX (i, j) exhibits a certain luminance
  • the period T2 is to the pixel PIX (i, j).
  • the video data D (i, j, '-) iS is a period of higher brightness.
  • the drive unit 14 of the image display device 1 is configured such that when the image data D (i, jV ") to the pixel PIXGJ) is a constant value D1, the average luminance of the pixel PIXGJ) Set the output signal Odl (i, j, "') for the video display period and the output signal Obl (i, j, ...) for the blank period Tb so that the value becomes the luminance indicated by the value D1.
  • the driving unit 14 is not able to reduce the response speed of the pixel PIXGJ), even though the blank period is provided between the video display periods when the pixel PIXGJ) is driven.
  • the video data D (i, j, "') to PIX (U) is a constant value D1
  • the pixel PIX (U) can be controlled so as to have a luminance corresponding to the value D1 as a whole.
  • each pixel PIX (i, j) of the pixel array 2 is changed to an Innors-type light emission such as a CRT. It can be moved closer and motion blur can be prevented. As a result, the image quality when displaying a moving image on the pixel array 2 can be improved.
  • the drive unit 14 sets the output signal Ob for the blank period to a value indicating black (V0H or VOL) as shown in FIG.
  • the drive unit 14 stores values that the video data D can take and output signals Od corresponding to the values, respectively,
  • the output signal Od (i, j,) stored according to the value of the input video data D is output.
  • LI (ave) is an average value of luminance, which matches the luminance indicated by D1.
  • the luminance Lid is the luminance at which the pixel PIXGJ) reaches the end point of the video display period by applying the output signal Odl (in FIG. 5, VdlH or VdlL) corresponding to the value D1.
  • the LUT may store the output signal Od corresponding to each video data D corresponding to the video data D, or a representative value of each video data D.
  • Output signal Od corresponding to each representative value is stored in the LUT, and between representative values, the output signal Od corresponding to each representative value is read from the LUT and interpolated.
  • the method of storing the output signal Od corresponding to the value between the representative values may be stored. Further, when there is a calculation formula that can be calculated with sufficient accuracy and sufficient force, the calculation method may be stored.
  • Fig. 6 shows the brightness of each pixel located on a horizontal line in the frame period.
  • the value (average luminance) obtained by averaging the luminance of each pixel over each field period is as shown at the bottom in FIG. 7, and the average luminance near the edge is from white. It will change step by step instead of changing to black. As a result, blur occurs at the edge portion.
  • the average luminance for six frame periods is shown. However, if the moving speed is constant, the average luminance is not limited regardless of the number of frame periods or the number of field periods for calculating the average value. , Become constant.
  • the drive unit 14 when changing the video data D force to the pixel PIX so as to increase the luminance of the pixel PIX, the video display period corresponding to the video data D1 before the increase.
  • the output signal Ob for the blank period that is output between the output signal Odl for output and the output signal Od2 for the video display period corresponding to the increased video data D2 is controlled, and the value of the output signal Ob Higher than the value (black) that is output as the output signal Ob for the blank period when the video data to the pixel PIX does not change, that is, in the steady state.
  • the drive unit 14 may apply a value indicating black to the pixel PlX (iJ) during the blank period Tb.
  • the brightness that can be reached by the pixel PIX (U) at the end of the blank period Tb depends on the brightness Ld at the start of the blank period Tb.If the brightness increases, the brightness at the end of the blank period Tb also increases. Get higher. Further, the luminance Ld at the start of the blank period Tb is determined by the video data D (i, ”,...) As described above.
  • the luminance Lbl that the pixel PIX (i, j) reaches at the end of the blank period Tb indicates that the video data D has a higher luminance than the value D1.
  • the same value (black) as in the period T1 or the period T2 is used for the blank period.
  • the output signal Ob is output.
  • the luminance of the pixel PIX (i, j) at the end time t2 of the blank period Tb is the same value Lbl as in the period T1, and is lower than the value Lb2 in the period T2.
  • the output signal Od2 and the output signal Ob output to the pixel PIXGJ) in the period T2 are set such that the luminance of the pixel PIX (i, j) goes back and forth between the luminance Ld2 and Lb2.
  • the moving picture display is performed by bringing the light emission state of each pixel PIX (U) of the pixel array 2 closer to the impulse light emission.
  • the effect of improving image quality at the time is negated, and it is difficult to sufficiently improve the image quality when displaying moving images.
  • the drive unit 14 is different from the period T1 to T2.
  • an output signal Obl2 having a higher luminance than the value of the output signal for the blank period in the steady state, that is, the value indicating black is output.
  • the luminance at the time t2 is higher than the luminance Lb 1 at the end of the blank period Tb in the period T1, and the luminance at the time t3 is compared with the above comparison. It is closer to the desired value Ld2 than the example.
  • the drive unit 14 indicates the value of the output signal Obl2 based on the video data D1'D2 in each of the periods T1 and T2 as follows:
  • the pixel PIXGJ to which the output signal Ob is applied is set to a value such that the luminance Lb2 that reaches the end point of the blank period Tb in the period T2 and the luminance at the time point t2 match.
  • the luminance at the time t2 is the luminance Lb2 at the end of the blank period Tb in the period T2.
  • the luminance at the time point t3 can be set to a desired value Ld2.
  • the luminance at the time point t2 can be made to follow an instruction to change the luminance in the video signal.
  • the image quality at the time of moving image display can be improved by approaching the impulse-type light emission without causing the image quality deterioration due to the lack of response in the period from the time point t2 to the time point t3.
  • the drive unit 14 increases the value of the output signal Ob output at the start time tl of the blank period Tb when changing from the period T1 to T2, and the blank period
  • the brightness at time t3 is set to the desired value Ld2 by increasing the brightness at the end time t2 of Tb.
  • the brightness of the pixel array 2 is further increased in spite of adopting a configuration in which the brightness of the pixel array 2 is likely to decrease due to the insertion of the blank period. It is possible to improve the response speed of the pixel PIXGJ).
  • the data signal line driving circuit 3 may control the output signal based on the video signal input to the data signal line driving circuit 3, but in the following, as an example, the data signal line driving circuit 3 is arranged between the video signal source SO and the control circuit 12. A configuration in which the signal processing unit 21 thus controlled controls the video signal input to the control circuit 12 to control the output signal Ob for the blank period will be described.
  • the signal processing unit 21 embeds the video data D for the blank period in the video signal DAT from the video signal source SO, generates the video signal DAT2, and generates the video signal DAT2. Output to control circuit 12.
  • the signal processing unit 21 receives the video data Dd (i, j, k), Dd (i, j, k + 2), Dd (i, j, k + 4),.
  • the video data Db (i, j, k + l), Db (i, j, k + 3), Db (i, j, k + 5), etc. for the blank period Tb are inserted.
  • the control circuit 12 extracts each video data D (i, j,) from the video signal DAT2, and controls the data signal line driving circuit 3 and the scanning signal line driving circuit 4 as described above.
  • the corresponding output signals Od (i, j, k), Ob (i, j, k + l), Od (i, j, k + 2) are examples of the video data D (i, j, k + 1), and controls the data signal line driving circuit 3 and the scanning signal line driving circuit 4 as described above.
  • the video signal DAT given from the video signal source SO to the signal processing unit 21 is a frame signal.
  • the frame may be transmitted in units of the entire screen (unit of the entire screen), or one frame may be divided into a plurality of fields and may be transmitted in units of the field.
  • the video signal DAT is transmitted in field units.
  • the video signal DAT given from the video signal source SO to the signal processing unit 21 divides one frame into a plurality of fields (for example, two fields) and is transmitted in units of the field. ing.
  • the video signal source SO transmits all video data for a certain field when transmitting the video signal DAT to the signal processing unit 21 of the image display device 1 via the video signal line VL. After that, the video data for each field is transmitted in a time division manner, for example, by transmitting video data for the next field.
  • the field is composed of a plurality of horizontal lines.
  • the video signal line VL after all video data for a certain horizontal line is transmitted in a certain field, it is transmitted next.
  • the video data for each horizontal line is transmitted in a time-sharing manner, such as by transmitting video data for the horizontal line.
  • one frame is composed of two fields, and in the even field, the video data of the even-numbered horizontal lines among the horizontal lines constituting one frame is transmitted. . In the odd field, the video data of the odd horizontal line is transmitted. Furthermore, the video signal source SO drives the video signal line VL in a time-sharing manner when transmitting video data for one horizontal line, and each video data is sequentially transmitted in a predetermined order. Is transmitted.
  • the signal processing unit 21 extracts video data (input gradation data) for each pixel PIX (i, j) from the video signal DAT, and uses it for the video display period.
  • Video data (gradation data for the video display period)
  • Video data for the blank period to the video display period generation circuit (generation means) 31 and each pixel PIXGJ output as Dd (gradation data for the blank period) )
  • An output circuit 33 for inserting Db and outputting each video data D after insertion to the control circuit 12 is provided.
  • the order in which the video data D is output to the control circuit 12 is the video for the blank period to the pixel PIXGJ) between the video data Dd for the video display period to a certain pixel PIXGJ).
  • the output circuit 33 transmits each video data D in the video signal DAT2 in the following order. ing.
  • the output circuit 33 when transmitting the video signal DAT2 to the control circuit 12 of the image display device 1 via the video signal line VL2, After the video data for all frames is transmitted, the video data for each frame is transmitted in a time-division manner, for example, by transmitting video data for displaying the next frame and for the blank period.
  • the output circuit 33 when transmitting the video data of the frame, the output circuit 33 is divided into a sub-frame having a video data power for a video display period and a sub-frame having a video data power for a blank period, Video data for each subframe is transmitted in a time division manner. Further, the output circuit 33 performs time division transmission of the video data for each subframe for each horizontal line, and time division transmission of the video data for each horizontal line for each video data of the pixels included in the horizontal line. ing.
  • any subframe may be transmitted first, but the output circuit 33 according to the present embodiment transmits the entire video data constituting the subframe for the video display period, and then transmits for the blank period. Transmit the video data that constitutes the subframe.
  • the generation circuit 32 for the blank period includes a frame memory 41 that can store video data D (i, j, k) for each pixel PIXGJ) while the generation circuit 43 to be described later requires.
  • the video data D of the current frame FR (k) output from the video display period generation circuit 31 is written into the frame memory 41 and the video data D of the previous frame FR (k-2) is written from the frame memory 41.
  • Memory control circuit 42 that reads out and outputs the previous frame video signal DATO, video data D of the previous frame FR (k-2) output from the memory control circuit 42, and video data of the current frame FR (k) Based on the video data for the video display period (D (i, j, k) and D (i, j, k-2)) for the same pixel PIX (U) of D, both video display periods Video data Db (i, blank period Tb (kl) inserted between video data for j, kl) is generated.
  • video data Dd (i, j, k-2) for video data display
  • video data Db (i, j, k-1 for blank period) is transmitted.
  • the video data Db (i, j, k-1) includes the video data Dd (i, j, k-2) and the video data D (i, j, k-2). It is determined according to the video data D (i, j, k) for the next video display.
  • the output circuit 33 outputs the previous video data D (i, j, k-2) output from the frame memory 41, and then outputs from the blank period generation circuit 32.
  • the generation circuit 43 for example, as shown in Fig. 12, is a combination of the previous video data D (i, j, k-2) and the current video data D (i, j, k), In each case, when the video data of the combination is input to the blank period generation circuit 32, the data indicating the blank period video data Db to be output by the blank period generation circuit 32 is stored. Table) 51 (recording means).
  • the data stored in the LUT 51 does not store all combinations of values that can be taken by both video data.
  • the data is limited to data corresponding to a predetermined combination.
  • the generation circuit 43 interpolates the data corresponding to each combination stored in the LUT 51 to obtain a combination of actually input video data.
  • An arithmetic circuit 52 (calculation means) is provided for calculating the corresponding data and outputting the calculation result.
  • the blank period generation circuit 32 generates the video data Db indicating black in the case where the video data for the video display period to the same pixel PIX (i, j) does not change. It is outputting. Therefore, in the LUT 51 shown in FIG. 12, the data where the video data for the video display period on the same pixel PIX (U) does not change (data stored corresponding to the same video data combination) Is set to a value (0) indicating
  • the video data Dd to be output by the blank period generation circuit 32 has the following values.
  • the video data Db corresponding to each combination is set to a value (0) indicating black when the video data constituting each combination has the same value.
  • a value indicating higher luminance than the value indicating black corresponding to the combination is set to ⁇ 1.
  • a value (0) indicating black is stored corresponding to the combination.
  • the output signal Odl corresponding to a certain value of video data Ddl is output during the video display period Tdl, and during the blank period Tb,
  • the state in which the operation of outputting the black output signal Ob is repeated is the first steady state.
  • the output signal Od2 corresponding to the video data Dd2 showing brightness higher than the value Ddl is output, and during the blank period Tb, the output signal Ob indicating black is output.
  • the repeated state be the second steady state, and let Lb2 be the luminance reached by the pixel PIXGJ) at the end of each blank period Tb in the second steady state.
  • the video data Db corresponding to the combination of the video data Ddl ′ Dd2 is output from the output signal Ob corresponding to the video data Db in the pixel period PIXGJ in the blank period Tb after the video display period Tdl in the first steady state.
  • the pixel PIX (i, j) is set to a value that can reach the luminance Lb2 at the end of the blank period Tb.
  • the video data Db corresponding to each of the above combinations can be determined as follows, for example. That is, for the video data Dd2 of the current frame FR (k) constituting each combination, the output signal Od2 corresponding to the video data Dd2 and the output signal Ob indicating the black are converted into the pixel PIX (i, j). Is repeatedly applied to measure the luminance L2b at the end of the blank period Tb. On the other hand, for the video data Ddl of the previous frame FR (k-2) that constitutes each combination, the output signal Od2 corresponding to the video data Dd2 and the output signal indicating black are output.
  • the output circuit 33 sends the video data Ddl (i, j, k-2) and video data Dbl2 (i, j, k-1) to the pixel PIX (i, j) as video data D.
  • the video data Dd2 (i, j, k) are sequentially output, and the data signal line driving circuit 3 sends the video data Ddl (i, j, k) to the pixel PIXGJ) during a video display period Td (k-2).
  • the output corresponding to the video data Dbl2 (i, j, k-1) is output during the subsequent blank period Tb (kl).
  • Signal Obl2 (i, j, kl) is output, and the video data is displayed during the video display period Td (k) following the blank period Tb (kl).
  • the signal processing unit 21 inserts the video data Db to be inserted as the video data for the blank period.
  • the video display period Td (k-2) for displaying the video data before the change and the video display period Td (k) for displaying the video data after the change are displayed.
  • the value of the output signal Ob (i, j, kl) output to the pixel PIX (i, j) is changed to show higher brightness than in the steady state.
  • the blank period is provided after the video display period in each frame period has been described, but the blank period may be provided before the video display period. In this case, the storage capacity required for the frame memory 41 can be further reduced.
  • the blank period generation circuit outputs the value (0) indicating black as the image data Db for the blank period in the steady state.
  • the brightness is higher than that of black, and the color is sufficiently determined to be sufficiently dark.
  • the configuration for outputting the measured values will be described.
  • the signal processing unit 21a has substantially the same configuration as the signal processing unit 21 according to the first embodiment as shown in FIG.
  • the blank period generation circuit 32a provided in place of the circuit 32 has a brightness higher than black as the image data Db for the blank period in the steady state, and the force is a value indicating a sufficiently dark brightness in advance. It is configured to output a predetermined value.
  • the above sufficient luminance means the luminance of the pixel PIX (i, j) in the blank period Tb. Even if this brightness is set, black floating (contrast reduction) that does not cause a problem in display does not occur, and the impulsive force does not cause a drop in the impulse effect (image quality deterioration due to motion blur etc. is sufficient)
  • a value indicating a luminance of 1% or less of the luminance indicating white is preferably used.
  • the video data Db corresponding to the brightness is, for example, a value of 32 gradations or less when the video data D is represented by 8 bits and the video data D has a gamma value of 2.2.
  • the contrast is about 250, there is no problem in visual recognition.
  • a liquid crystal cell in a vertical alignment mode is driven in a normally black mode, in a steady mode in which work for enhancing gradation transition is not performed, in general, it is compared with a response of black to gray (1%).
  • the response of ash (1%) ⁇ black is much faster. Therefore, the average black brightness when repeatedly transitioning between black and gray (1%) is much closer to black brightness than the middle 0.5%.
  • the black luminance in this mode is generally set to about 0.1% (at most 0.2%) of the white luminance.
  • the average black luminance is about 0.2% (0.35% at most).
  • the brightness of the blank period is set to 1% or less of the brightness indicating white, the above-described contrast can be sufficiently achieved, and the contrast can be maintained at a level that does not cause a problem in visual recognition. Note that this response relationship does not change even at low temperatures where the response speed of the liquid crystal greatly decreases. Therefore, a constant value (for example, 32 gradations) can be used as it is regardless of changes in the environment.
  • the blank period generating circuit 32a is provided with an LUT 51a shown in FIG. 13 in place of the LUT 51, for example, in order to output the value Dbc.
  • the value Dbc is stored at the location where 0 was stored in the LUT 51, and the blank period generation circuit 32a is in a situation where the blank period generation circuit 32 outputs 0.
  • the value Dbc can be output instead of the value (0) indicating black.
  • the vertical alignment mode liquid crystal cell when used in the normally black mode as the pixel array 2 as in the present embodiment, when the gradation transitions in the direction of increasing the gradation ( In the gradation transition of the rise, the liquid crystal molecules are tilted in a direction tilted from a direction parallel to the substrate of the liquid crystal cell by a tilt electric field formed by a voltage applied to the pixel electrode.
  • the liquid crystal molecules are returned to the vertical direction by the vertical regulating force by the vertical alignment film formed on the substrate. I am letting.
  • the gradation transition in the rise direction determines the falling direction relative to the start of intermediate tone where the falling direction (component in the substrate in the alignment direction) has already been determined.
  • the start response is likely to be extremely slow ⁇
  • 0 black
  • the orientation state of the pixel PIXGJ is black.
  • the state that is, the state in which the liquid crystal molecules are vertically aligned
  • the transition in the rise direction in the next video display period Td is an alignment state other than black (halftone state).
  • the response time of the pixel PIX (i, j) during the video display period Td may be significantly insufficient.
  • the blank period generation circuit 32a uses a predetermined value as a value indicating a sufficiently dark brightness with a higher brightness than black.
  • the drive unit 14a including the blank period generation circuit 32a is supplied to the pixel PIXGJ), and the output signal Ob for the steady state blank period is sufficiently brighter and more powerful than black.
  • a predetermined output signal is applied as a value indicating dark brightness.
  • each liquid crystal molecule need only determine the tilt angle according to the applied voltage.
  • the orientation in which the liquid crystal molecules are tilted is sufficiently controlled. Therefore, it is easier to control the response of the liquid crystal molecules compared to the black display configuration.
  • the luminance of each pixel PIX of the pixel array 2 is controlled to a predetermined luminance for dark display that is not black during the blank period, and therefore, during the video display period Td.
  • the luminance to be displayed on the pixel is close to the luminance for the dark display, the luminance of the pixel in the blank display period Tb cannot be significantly reduced from the luminance of the pixel in the video display period Td. It can even be higher than the brightness of the display period Td.
  • the cause of motion blur is that when the positional relationship between a relatively bright area and a dark area changes, a bright area is a dark area. It is possible to create an intermediate area. Therefore, when displaying images (or areas) with gradations close to the dark display luminance (for example, luminance of 1% or less of white luminance; 32 gradations or less, etc.), motion blur is mostly generated. Even if it occurs, it is difficult to see.
  • luminance for example, luminance of 1% or less of white luminance; 32 gradations or less, etc.
  • the pixel array 2 is normally black, and the gamma value is 2
  • a brief description will be given of how to set the gradation voltage when adjusting to 2.
  • the case where the video data is 8 bits (0 to 255 gradations) and the gradation voltage can be set in increments of 32 gradations will be described as an example.
  • video data Db for blank period (blanking period gradation setting rule) is determined.
  • the brightness when the blank period video data and white are alternately displayed (white brightness) and the brightness when the blank period video data Db is displayed for both the video display period Td and the blank period Tb.
  • the voltage (blanking voltage) applied to the pixel PIX during the blank period Tb is determined so as to have a desired gamma characteristic.
  • the video data Db for the blank period has 32 gradations.
  • the voltage applied to the pixel PIX is V32
  • the voltage applied to the pixel PIX during white display is V255. , V32, V255, V32, ...
  • the brightness when the horses move is L255, V32, V32, V32, ...
  • the voltage Vx applied to the pixel PIX and the blanking are displayed.
  • the brightness Lx when the ranking voltage is applied alternately, and the Vx that achieves the desired ⁇ are determined from the ratio of L32 and L255.
  • video data Db for the blank period when gradation transition occurs is determined and stored in the LUT (51a).
  • the gradation X is displayed in the steady state (the gradation voltage Vx corresponding to the gradation X is applied during the video display period Td, and the blanking voltage is applied during the blank period Tb. Measure the final brightness during the blank period Tb and set the brightness to TDx. Similarly, measure the final brightness of the blank period Tb when the gradation X is displayed in the video display period Td, and let that brightness be TCx. Note that these luminance measurements are performed for each combination of video data for each video display period and video data for a blank period, and the measurement results are recorded, for example, as an oscilloscope waveform. [0143] Further, the luminance TDx and TCx when the gradation transition occurs are also measured, and the video data Db for the blank period to be output when the gradation transition occurs is determined based on the measurement results. To do.
  • the luminance change when the gradation transition occurs is measured by, for example, a photodiode and an oscilloscope, the measurement result is recorded, and the waveform when the gradation transition occurs and the above-described waveform are recorded. Compare with the steady-state waveform.For example, from the waveforms recorded for each of the above combinations, the gradation indicated by the video data Td for the video display period is the same as the gradation before the gradation transition.
  • the signal processing unit 21 (21a) is concerned with the value of the video data Dd for the video display period that is the value that the signal processing unit 21 (21a) outputs as the video data Db for the blank period in the steady state.
  • the value of the video data Dd for the blank period in the steady state is changed according to the value of the video data Dd for the video display period.
  • the signal processing unit 21b has substantially the same configuration as the signal processing unit 21 shown in FIG. 1, but shown in FIG. 14 instead of the blank period generation circuit 32.
  • a blank period generation circuit 32b is provided, which is different in this respect.
  • the blank period generation circuit 32b includes the video data D of the previous frame FR (k-2) output from the memory control circuit 42, and the blank period generation circuit 32b. And video data for the video display period (D (i, j, k) and D (i, j, k-2) among the video data D of the current frame FR (k) to the same pixel PIXGJ) ) Based on the determination circuit 44 (determination means) for determining whether or not the steady state and the video data D (i, j, k) of the current frame FR (k) output from the memory control circuit 42.
  • the steady state generation circuit 45 (steady state generation means) that generates the video data Db for the blank period in the steady state and the determination circuit 44 (blank state)
  • An output circuit 46 (output means) for selecting and outputting one of the output of the generation means) and the output of the steady state generation circuit 45.
  • the video data Db generated by the steady state generation circuit 45 is output, and when the video data for the video display period changes, the video data Db generated by the generation circuit 43 is output. it can.
  • the steady state generation circuit 45 generates the video data Db for the blank period based on the video data D (i, j, k) of the current frame FR (k) is taken as an example.
  • the output of the steady state generating circuit 45 is output in the steady state, that is, the video data D (i, j, k) of the current frame FR (k) and the previous frame FR ( Since the video data D (i, j, k-2) of k-2) is in the same state, the steady-state generation circuit 45 performs the video data D (i, j,
  • the same effect can be obtained by generating the video data Db based on the video data D (i, j, k-2) of the previous frame FR (k-2) instead of k).
  • the steady-state generating circuit 45 is a constant that is determined in advance as a value having a sufficient luminance difference in the video data D (i, j, k) of the current frame FR (k).
  • the video data Db for the blank period in the steady state is generated as the value multiplied by.
  • the lower the brightness indicated by the video data Db for the blank period the closer it is to impulse-type light emission such as CRT, and the image quality when displaying a moving image on the pixel array 2 can be further improved.
  • the lower the brightness indicated by the video data Db for the blank period the lower the average value of the brightness of the pixels PIX (i, j), and thus the brightness of the pixel array 2 becomes lower. Therefore, it is desirable that the above constant be set to a value that can sufficiently improve the image quality when displaying a moving image and that the brightness of the pixel array 2 can be sufficiently maintained.
  • the blank period Tb is sufficiently long and the brightness in the blank period Tb is zero.
  • the response speed of the pixel is slow, as in the case where the pixel is a liquid crystal, it is difficult to completely satisfy both the improvement of the image quality during moving image display and the improvement of the brightness of the pixel array 2. Therefore, in such a case, it is desirable to set the brightness of each pixel in the blank period Tb so that the wrong video is not recognized in the blank period Tb.
  • the video is displayed on the pixel array 2, and a plurality of video blurs of the video displayed at each ratio are displayed.
  • the luminance ratio was 1Z2 or less, the level of motion blur was clearly improved to an acceptable level for practical use. It was also found that if the luminance ratio is 1Z4 or less (especially 1Z5 or less), the level of video blur is further improved, and the image quality improvement effect during video display can be obtained sufficiently.
  • the luminance of the pixel changes in a wave shape as shown in Fig. 15.
  • the blank period is Tbh and the video display period is Tdh.
  • the blank period Tb and the video display period Td are understood as being different from each other.
  • Figure 15 shows the blank period so that the peak luminance is 1 when the luminance ratio is approximately 1/5 (ratio when the gamma value is expressed in the gradation of 2.2).
  • the brightness in Tb and the video display period Td is shown as normal.
  • the luminance ratio (1Z4 or less, especially 1Z5 or less) is about 1Z2 or less when the gamma value is expressed by the gradation of 2.2, and the gradation ratio is set to 1Z2 or less.
  • the constant be set to at least the upper limit value. Furthermore, considering the insufficient response of pixel PIX (i, j) as a more preferable value, the above constant is 1Z20 or less for luminance and 1Z4 or less for gradations with a gamma value of 2.2. It is desirable to set. If it is set below these upper limit values, even if the response speed of the pixel PIX (i, j) is slow, the moving picture response performance can be sufficiently improved. [0157] In addition, the average luminance of the pixel array 2 decreases as the luminance in the blank period Tb decreases.
  • the gamma value is set to 1Z5 or more in the gradation of 2.2 within the above preferable numerical range (gradation of 1Z4 or less), the average brightness of the pixel array 2 is maintained, The moving image response performance can be improved, which is more preferable.
  • the above constant is set to 1Z4 in gradation as the value that can improve the brightness of the pixel array 2 most within the above-mentioned preferable numerical range, and the steady state generation is performed.
  • the circuit 45 outputs a value obtained by multiplying the video data D (i, j, k) of the current frame FR (k) by 1Z4 as the video data Db.
  • the steady-state generation circuit 45 calculates the video data Db for the blank period by multiplying the video data of the current frame FR (k) or the previous frame FR (k-2) by a constant.
  • the video data Db for the blank period is output by multiplying the video data D of the current frame FR (k) or the previous frame FR (k-1) by a constant. If possible, the same effect can be obtained even if the above-described members 44 to 46 are deleted and, for example, a LUT 5 lb is provided instead of the LUT 51 or 51 a shown in FIG.
  • the constant is 1Z2
  • the area where the gradation transition indicates a decrease in luminance stores the value (0) indicating black as in FIG. Illustrated.
  • the signal processing unit 21b responds to the value of the video data Dd for the video display period.
  • the value of the video data Dd for the blank period in the steady state is changed. Therefore, both the image quality improvement effect at the time of moving image display and the brightness improvement effect of the pixel array 2 are higher than the configuration in which the value of the video data Dd for the blank period in the steady state is constant.
  • An image display device lb that can be achieved in a balanced manner at a level.
  • the value of the video data Dd for the blank period should be set to a value that can achieve a good balance between the image quality improvement effect during video display and the brightness improvement effect of the pixel array 2.
  • the brightness of the blank period Tb required to improve the image quality during video display to the same extent is different from that of the video display period Td adjacent to the blank period Tb.
  • the brighter the brightness of the video display period Td the higher the brightness required to improve the image quality.
  • the luminance of the blank period Tb can be improved so that the image quality can be improved during moving image display even in a relatively dark display. It is difficult to improve the brightness of the pixel array 2 sufficiently.
  • the signal processing unit 21b determines the value of the video data Dd for the blank period in the steady state according to the value of the video data Dd for the video display period.
  • the brightness of the video data Dd for the blank period in the steady state is set higher as the brightness indicated by the video data Dd is higher.
  • video data Db for blank period (rule of gradation setting for blanking period) is determined, and further, a voltage corresponding to each gradation is provisionally determined.
  • the repetition is stopped, and finally the gradation voltage is changed.
  • the brightness when the adjusted gradation is displayed is compared with the brightness when white is displayed, and the error from the desired gamma characteristic is evaluated. If the error exceeds the allowable range, change the gradation voltage adjustment method (for example, adjustment amount or adjustment ratio), and change the gradation voltage from the beginning (adjustment processing with white as the first gradation). Repeat the voltage adjustment process. The change of the gradation voltage adjustment method is repeated until the gradation voltage is stabilized (until the error is within the allowable range).
  • the gradation voltage V64 is adjusted by setting the first gradation to 255 gradations. More specifically, the luminance when displaying 255 gradations (luminance when repeatedly applying V255 and V64) and the luminance when displaying 64 gradations (V64 and V16) And adjust the gradation voltage V64 corresponding to 64 gradations so that the gamma characteristic determined from the brightness of both approaches the desired gamma characteristic (2.2).
  • the gradation voltage V16 is adjusted by setting the first gradation to 64 gradations. More specifically, the luminance when displaying 64 gradations (luminance when repeatedly applying V64 and V16) and the luminance when displaying 16 gradations (V16 and V4) The luminance gamma characteristics of both are determined so that the gamma characteristics that determine the luminance power of both approaches the desired gamma characteristics (2.2). Next, the gradation voltage V16 corresponding to 16 gradations is adjusted.
  • the gradation voltage can be adjusted only in increments of 16 gradations.
  • the gradation (4 gradations) is The lower limit value described above, that is, the minimum gradation that can adjust the gradation voltage larger than the black gradation is below. Therefore, the luminance when displaying 16 gray scales (the luminance when V16 and V4 are repeatedly applied) is compared with the luminance when white is displayed, and the desired gamma characteristics are obtained. Evaluate the error.
  • a gradation voltage smaller than V16 is determined from the black voltage and the gradation voltage corresponding to the lower limit value described above. Therefore, the brightness (V32 and V8) is displayed when a gradation (32 gradations) that can be adjusted by the gradation voltage is displayed at least one level higher than the lower limit gradation (16 gradations).
  • the brightness of the repeated display) and the brightness of the white display are compared, and the gradation voltage V32 is adjusted by adjusting the gradation voltage V32 so that it has the desired gamma characteristics. Can be determined.
  • the remaining adjustable gradation voltage can be determined by determining the gradation voltage in order from the lower gradation.
  • video data Db for a blank period when gradation transition occurs is determined and stored in the LUT (51b). To do.
  • the configuration has been described in which the same value as the video data D input to the video display period generation circuit 31 is output as the video data Dd for the video display period.
  • the current video data D (i, j, k) to the pixel PIXGJ) is changed to the previous video data D (i, j, k-2) to the pixel PIXGJ).
  • a configuration will be described in which correction is made accordingly and the corrected value is output as video data Dd (i, j, k) for the video display period.
  • the video display period generation circuit 31c includes a frame memory 61 that stores one frame of video data D to the pixel PIX up to the next frame, and video data of the current frame FR (k).
  • the memory control circuit 62 that reads out and outputs the video data DOG, j, k-2) of the previous frame FR (k-2) from the frame memory 61 and outputs the video data DOG, j, k-2) from the frame memory 61 and the front frame FR (k-2).
  • video data D (i, j, k-2) correct video data D (i, j, k) of the current frame FR (k), and use the corrected video data as a video for correction.
  • a modulation processing unit 63 that outputs the data as Dd (i, j, k).
  • the modulation processing unit 63 for example, combines the previous video data D (i, j, k-2) and the current video data D (i, j, k), for each combination. Is provided with a LUT (Look Up Table) 71 in which data indicating video data Dd (i, j, k) for the video display period to be output by the modulation processing unit 63 is stored. ing.
  • the data stored in the LUT 71 does not store all combinations of values that can be taken by both video data.
  • the data is limited to data corresponding to a predetermined combination, and the modulation processing unit 63 interpolates data corresponding to each combination stored in the LUT 71 to combine the actually input video data.
  • An arithmetic circuit 72 is provided for calculating data corresponding to and outputting the calculation result.
  • the modulation processing unit 63 refers to the video data D (i, j, k_2) of the previous frame FR (k-2) and uses the video display period for the current frame FR (k). Since the video data Dd (i, j, k) is corrected, the video display period generation circuit 31 performs the video data D (i, j, k) of the current frame FR (k) as in the first to third embodiments. j, k) is output as video data D d (i, j, k) for the video display period as it is, but the configuration is more complicated, but the video data D (i, j, k) is used as it is. The response of the pixel PIXGJ) can be controlled more flexibly than the output configuration.
  • the blank period response can be accelerated within a certain range, and the response to the decay response can be improved. .
  • the video display period corresponding to the video data D1 before the increase In the case of steady state by controlling the output signal Ob for the blank period output between the output signal Odl for the interval and the output signal Od2 for the video display period corresponding to the increased video data D2
  • the force described in the configuration for setting the value to be higher than the value output as the output signal Ob for the blank period is not limited to this.
  • the video display period (first video display period) corresponding to the video data D1 before the decrease Output signal Odl for the blank period and the output signal Od2 for the video display period (second video display period) corresponding to the reduced video data D2 are controlled.
  • the value of the output signal Ob may be set to a value indicating a lower luminance than the value output as the output signal Ob for the blank period in the steady state.
  • the luminance at the end of the blank period can be brought close to the luminance at the end of the blank period when the video data D2 after reduction is constantly applied. Insufficient response of pixel PIX during the video display period 2 can be suppressed.
  • the luminance indicated by the output signal Od output to the pixel PIX (i, j) during the video display period Td due to the change in the video data D is the second luminance level.
  • the output signal Ob for the blank period can be corrected, the same effect can be obtained.
  • the correction of the output signal Ob for the blank period in the direction of increasing the luminance of the pixel PIX in the blank period is This is a correction that weakens the change in luminance. Therefore, unlike the case of correcting to emphasize the change in luminance, in the steady state, the output for the emphasized blank period is outside the range of values that can be output as the output signal Ob for the blank period.
  • the output signal Ob for the blank period can be reliably corrected without arranging the value range for outputting the signal Ob.
  • corrected video data Dbb must be set to a value lower than the blank period video data (Dba) in the steady state.
  • the signal processing unit Cannot correctly notify the control circuit 12 of the corrected video data Dbb.
  • the video data Dba is set to a predetermined gradation or set to a constant multiple of the video data of the video display period Td, it is output to the control circuit 12.
  • the video data D to be displayed may not be able to express lower values than the video data Dba by the gradation necessary for correct correction.
  • the video data D output to the control circuit 12 can express 0 to 255 gradations. Furthermore, for example, if the video data Dba has 16 gradations and needs to be set lower by 20 gradations for correct correction, the value to be displayed after correction is -4 gradations. However, this value cannot be expressed by the video data D.
  • the video input to the video display period generation circuit 31 is used as a preferable configuration for correcting the output signal Ob for the blank period even when the luminance is reduced without causing the above-described problem.
  • a configuration for converting the signal DAT so that video data showing a gradation lower than a predetermined gradation does not appear will be described.
  • this configuration can be applied to any of the first to fourth embodiments.
  • a case where the present invention is applied to the first embodiment will be described as a configuration suitable for the above.
  • the signal processing circuit 21d according to the modified example has substantially the same configuration as that in FIG. 1, but, as shown in FIG. 18, the signal processing unit 21d has a stage before the video display period generation circuit 31.
  • a gradation converter 34d is provided.
  • the gradation converter 34d sets the lower limit value of the video data input to the video display period generation circuit 31 to a value larger than the lower limit value (0) of the numerical range that the video data can represent.
  • the tone depth (video data) of the video signal DAT is converted.
  • the bit width when expressing the image) is set to a deeper depth, a depth of gradation (a larger bit width), and the tone-luminance characteristics are set to the desired characteristics.
  • the noise information is added, and the video data after adding the noise information is rounded.
  • the pixel array 2d (see Fig. 2) according to this modification has a y characteristic larger than ⁇ of the video data D ⁇ input to each pixel PIX input to the input terminal T1.
  • the gradation conversion unit 34d is configured to ⁇ -convert the video data D to each pixel PIX input to the input terminal T1 to obtain a display device having a larger ⁇ characteristic.
  • ⁇ conversion circuit 81 that converts the video data D ⁇ to be displayed on the screen and the numerical range that the video data D ⁇ can take are compressed to have the same bit width as the video data D
  • a tone conversion circuit 82 that generates video data D y that is lower than the black level of the video data D ⁇ and can express a value, and noise that is output by adding the noise generated by the noise generation circuit 84 to the video data Attached video circuit 83 and low-order video of each video data output by noise-added circuit 83 ⁇ DE (Bit-Depth Extension) circuit that includes a rounding circuit 85 (rounding means) that reduces the bit width of the video data.
  • Data D is input to the video display period generation circuit 31 as video data of the current frame FR (k).
  • the ⁇ conversion circuit 81 is Then, video data D
  • 8 having the same characteristics as the ⁇ characteristic of the pixel array 2d, that is, video data D ⁇ for display on a display device having the characteristic of ⁇ 2.8 is generated.
  • the eyelid conversion circuit 81 according to this modification converts the video data D into video data D ⁇ having a wider bit width in order to suppress the occurrence of errors due to the ⁇ conversion.
  • an 8-bit video signal for each color is input to the input terminal T1 as a general video signal, and the ⁇ conversion circuit 81 converts the 8-bit video data D ⁇ to 10 bits. Video data D to ⁇ .
  • the gradation conversion circuit 82 compresses the numerical range A1 that the video data D
  • the numerical range A2 that is, the range from gradation L11 to L12, is set so that L10 ⁇ L11 and L12 ⁇ L13 when the video data can express gradations L10 to L13. ing.
  • 8 ⁇ ⁇ ⁇ is 10 bits
  • the noise generation circuit 84 has an average value of 0, and outputs random noise to such an extent that no pseudo contour is generated in the image displayed on the pixel array 2d. Further, if the maximum value of the noise data is too large, the noise pattern may be recognized by the user of the image display device Id. Therefore, the maximum value of the noise is set so that the noise pattern is not recognized.
  • the noise generation circuit 85 may be various arithmetic circuits such as an arithmetic circuit including a linear feedback shift register (such as an M series or a Gold series), but the noise generation circuit according to the present modification example may be used. 85 resets the memory 91 storing noise data for a predetermined block such as 16 X 16 or 32 X 32, the address counter 92 for sequentially reading the noise data from the memory 91, and the address counter 92 Control circuit for generating reset signal for With 93.
  • a predetermined block such as 16 X 16 or 32 X 32
  • the address counter 92 for sequentially reading the noise data from the memory 91
  • the address counter 92 Control circuit for generating reset signal for With 93.
  • the control circuit 93 addresses the video data D (i, j, *) to the same pixel PIX (U) so that noise data having the same value is applied to all the frames.
  • Counter 92 is reset.
  • the control circuit 93 resets the address counter 92 in synchronization with at least one of the horizontal synchronizing signal and the vertical synchronizing signal transmitted together with the video data from the video signal source S 0 shown in FIG.
  • the noise-added circuit 84 can add the same value of noise data to the video data D (i, j, *) to the same pixel PIX (U) over the entire frame. Therefore, when the image display device Id displays a still image on the pixel array 2d, it can display a stable still image free from flicker and noise caused by the time change of the noise data.
  • * indicates an arbitrary value.
  • random noise data is stored in the memory 91, random noise data is added to the video data to the pixel PIX located in the same block in each frame.
  • the pseudo contour does not occur in the image displayed on the pixel array 2d.
  • the rounding processing circuit 85 rounds the lower 2 bits from the 10-bit video data output from the noise generation circuit 84, and outputs the result as 8-bit video data D (i, j, k). Accordingly, in the frame memory 31, the storage area for storing each video data Dl (i, j, k) of the current frame FR (k) is one video data D (i, j, k). ) Is set to 8 bits.
  • the rounding process performed by the rounding circuit 85 may be a round-down process or a round-up process.
  • it is a process of selecting whether to round up or down depending on whether a predetermined threshold is exceeded, such as rounding off for decimal numbers (rounding off to zero for binary numbers). Also good.
  • a predetermined threshold such as rounding off for decimal numbers (rounding off to zero for binary numbers).
  • rounding off for decimal numbers (rounding off to zero for binary numbers).
  • a predetermined threshold such as rounding off for decimal numbers (rounding off to zero for binary numbers).
  • the rounding processing circuit 85 rounds the lower bits by truncation.
  • the added noise depends on the user's use of the image display device Id, how much the observed gradation differs from the surrounding pixels (variation rate), and the target luminance. It is recognized as a force (error) that is different.
  • the allowable limit of the error is about 5% of the white luminance
  • the allowable limit of the variation rate is the display gradation. It is known to be about 5%.
  • the above fluctuation rate is the above allowable limit for most tones if ⁇ is 32 to 48 tones. It was confirmed that it fits in. As a result, in the case of noise of 32 to 48 gradations, it is possible to make the user feel that the display quality is not deteriorated apparently below the allowable limit in most gradations.
  • the above-mentioned fluctuation rate and error should be less than 5% between 2 and 3 pixels (6 to 9 pixels).
  • the gradation conversion unit 34d is provided in the preceding stage of the video display period generation circuit 31, and the video data input to the video display period generation circuit 31 by the gradation conversion unit 34d.
  • the gradation conversion is performed so that D is only a gradation larger than a predetermined gradation (L11). Therefore, the blank period generation circuit 32 can use the gradations (L10 to L11) equal to or lower than the above gradation to adjust the video data Db for the blank period when the gradation transition occurs. As a result, the blank period output signal Ob can be generated without any problem even if the luminance is reduced without causing the above-mentioned problems even though the circuit after the control circuit 12 is not changed. Can be corrected.
  • the pixel array 2d is set to have a larger y characteristic than the video data (D a) input to the input terminal T1, and the video data D a input to the input terminal T1 is
  • 8 having a larger ⁇ characteristic is converted by the ⁇ conversion circuit 81, and further, the video data that can express a value lower than the black level of the video data D
  • the gamma conversion causes more gray scales to be crushed black when the gray scale is displayed.
  • the blank period generation circuit 32 can greatly change the video data D in the direction of decreasing the gradation, compared to the configuration in which the gradation conversion unit 34d is not provided. Therefore, even if there is a gradation transition that significantly reduces the brightness, and the video data Db for the blank period needs to be corrected to a greater extent in order to correct it correctly, there is no problem with the blanking.
  • the video data Db for the period can be adjusted.
  • the noise added to the video data D (i, j, *) by the noise-added circuit 84 is fixed in time series, and the video data to a certain pixel PIXGJ) Even when noise of the same value is always added, the same effect can be obtained even if the noise added by the power noise adding circuit 84 described above is changed in time series.
  • the gradation conversion unit 34d is provided before the video display period generation circuit (31). You may provide between the production
  • the blank period generating circuit outputs the output signal for the blank period in all cases where the video data D to the pixel PIX changes so as to increase or decrease the luminance of the pixel PIX.
  • the output signal Ob for the blank period may be corrected only for changes that require correction.
  • the force described using the case where a liquid crystal cell of vertical alignment mode and normally black mode is used as a display element is not limited thereto. Even if it is modulated and driven to emphasize gradation transitions with slow response speed, In the case of a display element in which a difference occurs between an actual gradation transition and a desired gradation transition in the gradation transition to each time, substantially the same effect can be obtained.
  • the response speed of a liquid crystal cell is often not sufficient to drive with a blank period, so a drive for driving a liquid crystal cell, such as a liquid crystal television receiver or a liquid crystal monitor device.
  • a drive for driving a liquid crystal cell such as a liquid crystal television receiver or a liquid crystal monitor device.
  • the drive units 14 to 14d according to the above embodiments are used as the device, the effect is particularly great.
  • the force described by taking as an example the case where each member constituting the signal processing unit (21 to 21d) is realized only by hardware is not limited to this. You may implement
  • a computer connected to the image display apparatus 1 may realize a signal processing unit as a device driver used when driving the image display apparatus 1.
  • the signal processing unit is realized as a conversion board built in or externally attached to the image display device, and the operation of the circuit that realizes the signal processing unit can be changed by rewriting a program such as firmware, Distributing the recording medium on which the software is recorded, or transmitting the software via a communication path, etc., distributing the software, and causing the hardware to execute the software, so that the hardware May be operated as the signal processing unit of each of the above embodiments.
  • a program such as firmware, Distributing the recording medium on which the software is recorded, or transmitting the software via a communication path, etc.
  • the signal processing unit according to each of the above embodiments can be realized only by causing the hardware to execute the program. .
  • the CPU or hardware that can execute the functions described above is powerful computing means such as program code stored in a storage device such as ROM or RAM.
  • the signal processing unit according to each of the above embodiments can be realized by executing and controlling peripheral circuits such as an input / output circuit (not shown).
  • the program code itself that can be directly executed by the computing means, or a program as data that can generate the program code by a process such as unzipping described later, is stored in the recording medium. And the recording medium is distributed, or the program is transmitted by a communication means for transmitting via a wired or wireless communication path, and is executed by the arithmetic means.
  • each transmission medium constituting the communication path propagates a signal sequence indicating a program, whereby the program is transmitted via the communication path.
  • the transmission device may superimpose the signal sequence on the carrier by modulating the carrier with the signal sequence indicating the program. In this case, the signal sequence is restored by the receiving apparatus demodulating the carrier wave.
  • the transmission device may divide the signal sequence as a digital data sequence and transmit it. In this case, the receiving apparatus concatenates the received packet groups and restores the signal sequence.
  • the transmission device may multiplex and transmit the signal sequence with another signal sequence by a method such as time division Z frequency division Z code division.
  • the receiving apparatus extracts and restores individual signal sequences from the multiplexed signal sequence. In either case, the same effect can be obtained if the program can be transmitted via the communication channel.
  • the recording medium for distributing the program is removable, but it does not matter whether the recording medium after distributing the program is removable.
  • the recording medium may be rewritten (written), volatile, recording method, and shape as long as a program is stored.
  • Examples of recording media include magnetic tapes, force set tapes, etc., floppy disks (registered trademark), magnetic disks, such as node disks, CD-ROMs, magneto-optical disks (MO), and mini disks (MD). And digital video disc (DVD) discs.
  • the recording medium can be a card such as an IC card or optical card, or a mask ROM, EPROM, or EEPROM. Alternatively, it may be a semiconductor memory such as a flash ROM. Alternatively, it may be a memory formed in a calculation means such as a CPU.
  • the program code may be a code for instructing the arithmetic means of all the procedures of the processes, or may be executed by a predetermined procedure to execute a part or all of the processes. If a possible basic program (for example, operating system or library) already exists, replace all or part of the above procedure with code or pointers that instruct the arithmetic means to call the basic program. Otherwise.
  • a possible basic program for example, operating system or library
  • the format for storing the program in the recording medium may be a storage format that can be accessed and executed by the arithmetic means, for example, in a state where the program is stored in the real memory. From the storage format after installation on a local recording medium that is always accessible by the computing means (for example, real memory or a node disk) before being placed in the memory, or from a network or transportable recording medium. It may be the storage format before installing on a local recording medium.
  • the program may be stored as source code that is not limited to the object code after con- taining, or as intermediate code generated during interpretation or compilation.
  • the above calculation is performed by a process such as decompression of compressed information, decoding of encoded information, interpretation, compilation, linking, allocation to real memory, or a combination of processes. If the means can be converted into an executable format, the same effect can be obtained regardless of the format in which the program is stored in the recording medium.
  • the display device driving method is a process that is repeatedly provided, and is used for a video display period corresponding to a video signal indicating a video to be displayed by the display device.
  • An output signal is supplied to the pixel of the display device to control the luminance of the pixel, and a process provided between the video display process and the output signal for the blank period.
  • the luminance of the pixel is set not to be higher than the luminance of the pixel in at least one predetermined video display step performed adjacent to the step, or for dark display in advance.
  • the blanking control process is performed before and after the blanking control process, including a blanking control process for controlling the brightness to a predetermined level.
  • the luminance indicated by the output signal for the video display period in the display process is the first and second luminances, respectively, and the first luminance force is also a predetermined change in the change to the second luminance Is the luminance corrected in the same direction as the above change in the direction of increasing or decreasing the luminance, compared to the output signal for the blank period when the first and second luminances match. As shown, the output signal for the blank period is corrected.
  • the display device driving method is a process that is repeatedly provided to solve the above-described problem, and is for a video display period corresponding to a video signal indicating a video to be displayed by the display device.
  • the first luminance force also changes to the second luminance in a predetermined change.
  • the output signal for the blank period is corrected based on the first luminance and the second luminance.
  • the display device driving method is a process that is repeatedly provided to solve the above-described problem, and is input gradation data that is provided as gradation data to pixels of the display device.
  • each of the generation steps includes the step of inputting the previous input gradation data to the pixels of the display device. From the gray level Of When the gradation transition to the gradation indicated by the current input gradation data is a predetermined gradation transition, the gradation indicated by the previous input gradation data to the pixel of the display device is If the gradation transition to the gradation indicated by the current input gradation data to the pixel is a predetermined gradation transition, the image display output in the generation process based on the previous input gradation data As the grayscale data for the blank period output between the grayscale data for the period and the grayscale data for the video display period output in the generation process based on the current input grayscale data, Compared to the grayscale data for the blank period when the grayscale indicated by the previous input grayscale data and the grayscale indicated by the current input grayscale data are the same, out of the increasing direction and the decreasing direction
  • the display device driving method is a process that is repeatedly provided to solve the above-described problem, and is based on input gradation data provided as gradation data to pixels of the display device.
  • the grayscale data for the video display period for the pixel and the grayscale data for the pixel that are not brighter than the grayscale data for the video display period, or for dark display Are generated in the corresponding generation process, and a generation process for generating both of the grayscale data for the blank period indicating a predetermined grayscale and a generation process corresponding to each of the generation processes described above.
  • the predetermined change or gradation transition indicates an increase in luminance of the pixel
  • the blanking control means if applicable
  • the output signal or gradation data for the blank period may be corrected in a direction to increase the luminance of the pixel during the blank period! /.
  • the blanking control means for correcting the output signal in the case of a predetermined change is a case where the change to the first luminance force and the second luminance is an increase in the luminance of the pixel.
  • the output signal is corrected so as to increase the luminance of the pixel in the blank period.
  • the blanking control means that corrects the gradation data in the case of a predetermined gradation transition, the luminance power indicated by the previous input gradation data is also changed to the gradation indicated by the current input gradation data.
  • the gradation data is corrected in a direction to increase the pixel brightness in the blank period.
  • the change in the luminance of the pixel in the blank period is basically a change that decreases the luminance
  • the output signal or the gradation data of the blank period in the direction of increasing the luminance of the pixel in the blank period.
  • the correction is correction that weakens a change in luminance. Therefore, unlike the case where correction is made so as to emphasize the change in luminance, in the case of the steady state, it is emphasized outside the range of values that can be output as the output signal or the gradation data for the blank period.
  • the output signal or gradation data for the blank period can be reliably corrected without arranging the value range for outputting the output signal or gradation data for the blank period. As a result, it is possible to correct the output signal or gradation data for the blank period without degrading the image quality of the display device in the steady state.
  • generation means for generating the same gradation data as the input gradation data may be provided as the gradation data for the video display period.
  • the generation unit generates the gradation data for the video display period having the same value as the input gradation data, and therefore the generation unit generates the gradation data for the video display period.
  • the configuration can be simplified as compared with a configuration in which a means for correcting the tone is not required and a means for correcting the tone is not necessary.
  • the blanking control means when it is not the predetermined change or gradation transition, the output signal or gradation data for the blank period has a predetermined value. You can control it like this.
  • the blanking control means controls the gradation data
  • the input gradation data indicates any one of 256 gradations
  • the gradation data for the blank period is controlled to be a predetermined value as a value of 32 gradations or more larger than 0 gradation. A little.
  • the display device uses a vertical alignment mode liquid crystal cell in the normally black mode as a display panel including pixels. Unlike the non-black display, the black display state does not control the orientation in which the liquid crystal molecules are tilted, and even if the response speed is significantly reduced, It is possible to respond at a sufficient speed.
  • the blanking control means may adjoin the blank period output signal or gradation data to the blank period when the change is not the predetermined change or gradation transition. It may be controlled so as to be a value according to the output signal or gradation data for the video display period to be performed.
  • the blanking control means for correcting the output signal in the case of a predetermined change is a blank period when the change to the first luminance force and the second luminance is not a predetermined change.
  • the output signal for correction is corrected according to the output signal for the video display period.
  • the blanking control means for correcting the gradation data in the case of a predetermined gradation transition has the luminance power indicated by the previous input gradation data, and the gradation transition to the luminance indicated by the current input gradation data. , For blank periods if not a predetermined gradation transition The gradation data is controlled in accordance with the gradation data for the video display period.
  • data indicating the display gradation of the pixel is input as video data to the pixel to the driving device of the display device, and the blanking control means If the gradation transition is not predetermined, the gradation data for the blank period may be controlled so that the gradation indicated by the video data is a constant multiple.
  • the value of the output signal or gradation data for the blank period in the steady state can be set to a value that can achieve both the image quality improvement effect during moving image display and the screen brightness improvement effect with good tolerance. desired.
  • the output signal for the blank period or the value of the gradation data required to improve the image quality at the time of moving image display to the same extent is different from the brightness of the video display period adjacent to the blank period. If this is the case, the values will differ from each other. The brighter the video display period, the higher the brightness required to improve the image quality to the same extent.
  • the brightness of the blank period is determined so that the image quality can be improved during video display even in a relatively dark display. It is difficult to improve the screen brightness sufficiently.
  • the output signal or gradation data for the blank period is set to a value corresponding to the output signal or gradation data for the video display period adjacent to the blank period. Control.
  • both the image quality improvement effect during video display and the screen brightness improvement effect are higher compared to the configuration in which the output signal or the gradation data value for the blank period in the steady state is constant.
  • a display device that can be achieved in a well-balanced manner can be realized.
  • the predetermined gradation transition indicates a decrease in luminance of the pixel, and the input gradation data is converted into a predetermined gradation. It is also possible to provide gradation conversion means for gradation conversion so that the brightness and gradation only become more powerful. Note that, as the predetermined gradation, gradation data for a blank period is preferably used. [0253] In the above configuration, the input gradation data is gradation-converted by the gradation conversion means so that only the gradation brighter than the predetermined gradation is used. The video data for the period can be adjusted in the direction of decreasing the luminance.
  • the blanking control means does not disturb the luminance of the pixel at the end of the second video display period. Can be brought close to the desired value. As a result, even when the luminance of the pixel decreases, it is possible to provide a display device that can suppress deterioration in image quality due to insufficient response in the second video display period and can display a high-quality moving image.
  • the gradation converting means converts the input gradation data to a deeper depth and outputs the converted gradation data, and the gradation data converted by the gradation converting means.
  • a rounding means for rounding after adding noise information may be provided.
  • the noise information may be a temporally random value or a spatially random value.
  • the rounding process may be a rounding process or a rounding process. In addition, it is a process that selects whether to round up or round off depending on whether or not a predetermined threshold is exceeded, such as rounding off for decimal numbers (rounding off to zero for binary numbers). There may be.
  • the input gradation data is converted to a deeper depth, so that it is possible to suppress the occurrence of calculation errors due to gradation conversion. Further, noise information is added to the input gradation data after gradation conversion, and further rounding is performed. Therefore, unlike the configuration in which a pseudo contour is generated in an image displayed on each pixel as a result of performing the rounding process without adding noise information, the generation of a pseudo contour due to the rounding process can be prevented. As a result, it is possible to provide a display device that can suppress deterioration in image quality due to gradation conversion and rounding processing and display high-quality moving images.
  • the gradation converting means may change the gamma value of the gamma characteristic of the input gradation data to a larger value.
  • the gradation that is crushed black during display is greater than that with a configuration that does not perform gamma conversion. Therefore, the blanking control means that does not reduce the image quality much can secure the gradation for adjusting the video data for the blank period in the direction to reduce the brightness, and display that can display high-quality video Equipment can be provided.
  • the driving device of the display device may be realized by hardware! /, Or may be realized by causing a computer to execute the program.
  • the program according to the present invention is a program that causes a computer to operate as each unit of the driving device of the display device, and the program is recorded on the recording medium according to the present invention.
  • the computer When these programs are executed by a computer, the computer operates as a drive device of the display device. Therefore, similarly to the drive device of the display device, it is possible to provide a display device that can suppress image quality deterioration due to insufficient response in the second video display period and can display a high-quality moving image.
  • the display device according to the present invention is provided with either one of the above drive devices for the display devices. Therefore, similarly to the driving device of the display device, it is possible to suppress image quality deterioration due to insufficient response in the second video display period, and to display high-quality moving images.
  • the display device may be a television broadcast receiver using liquid crystal as the pixel.
  • the display device may be a liquid crystal monitor that uses a liquid crystal as the pixel and displays a video signal.
  • the display device including the display device driving device is a liquid crystal television. It can be particularly suitably used as a receiver or a liquid crystal monitor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

 信号処理部(21)は、繰り返し与えられる画素への映像データのそれぞれに基づいて、当該画素への映像表示期間用の映像データ(Dd)と、当該画素へのブランク期間用の映像データ(Db)との双方を生成し、予め定められた順番で当該両映像データ階調を出力している。さらに、上記信号処理部(21)のブランク期間用生成回路(32)は、上記画素への前回の映像データ(D(i,j,k-2))の示す階調から、当該画素への今回の映像データ(D(i,j,k))の示す階調への階調遷移が輝度の増加を示す階調遷移である場合は、定常状態のブランク期間用の階調データと比較して増加された映像データを、ブランク期間用の映像データ(Db(i,j,k-1))として出力する。その結果、高画質な動画を表示可能な表示装置を提供することができる。

Description

明 細 書
表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並び に、表示装置
技術分野
[0001] 本発明は、高画質な動画表示を可能とする表示装置の駆動方法、駆動装置、その プログラムおよび記録媒体、並びに、表示装置に関するものである。
背景技術
[0002] 近年、液晶表示装置は、例えばパーソナルコンピュータ、ワードプロセッサ、アミュ ーズメント機器、テレビ装置など広範囲に使用されるようになってきた。しかし、液晶 表示装置は、ブラウン管などの表示光が瞬間的であるインパルス型表示装置とは異 なり、表示光が時間により連続的に変化するホールド型ディスプレイであるため、一 般的に応答時間が遅い。したがって、特に動画表示を行う上では動きボャケなどの 画像劣化が生じると言う問題点があった。そこで、高画質の動画表示を得るために、 表示の応答特性を改善する方法が検討されて!ヽる。
[0003] その方法の一つとして、液晶表示装置のようなホールド型の表示装置に、擬似的に インパルス型の表示特性を持たせる、すなわち、表示光をブラウン管のように瞬間的 あるいは間欠的にする方法が提案されて 、る。
[0004] 液晶表示装置にインパルス型の表示特性を持たせるために、公知文献 1 ((日本国 公開特許公報:特開 2003— 66918号公報(2003年 3月 5日公開)(対応米国出願 US20030058229A1) )は、 1フレーム期間分の映像データ同士の間にブランキン グデータを挿入し、 1フレーム期間内に映像データとブランキングデータとを交互に 表示するように駆動する表示装置を開示している。これにより、構造の大型化'複雑 化を抑制しつつ、動画ボャケ等に起因する画質劣化を抑制することが可能となる。
[0005] より詳細には、公知文献 1の表示装置は、図 22に示すように、画像信号源 101から 得られる 1フレーム期間分の画像データにブランキングデータを挿入する複数回走 查データ生成回路 102と、ゲート線の駆動タイミングを生成する複数回走査タイミン グ生成回路 103と、表示素子アレイ 106とを有する。 [0006] この表示装置で生成される走査信号は、図 23に示すように、フレーム周期 301が 2 分割されて映像走査期間 302とブランキング走査期間 303になっており、つまりは、 1 フレーム期間内に 2回ゲート線が選択される。そして、映像走査期間 302では、走査 信号は、 2ライン同時に書き込み、 2ライン飛び越し走査で、すなわち、 G1と G2とを 同時に選択して書き込み、次に G3と G4とを同時に選択してに次の映像信号を書き 込む。その後、ブランキングデータも同様の 2ライン同時に書き込み、 2ライン飛び越 し走査で書き込む。これにより、 1フレーム期間に映像表示とブランキング表示とが行 われる。
[0007] このとき、表示アレイの 1画素については、図 24に示すように、フレーム期間 401の 1フレーム期間のうちの映像書き込み期間 402に映像信号が、ブランキング書き込み 期間 403に映像の階調電圧よりもコモンレベルに近いブランキングデータが書き込ま れる。つまり、ゲート駆動波形 405に示される映像書き込み期間 402中の選択期間 にソース波形 406に示す映像信号が書き込まれ、光学応答波形 409に示すように透 過性があがる。そして、ゲート駆動波形 405に示されるブランキング書き込み期間 40 3中の選択期間にソース波形 406に示す消去信号が書き込まれ、光学応答波形 40 9に示すように透過性が下がる。
[0008] このような駆動方法によれば、図 25 (a)に示すような表示ができる。すなわち、画像 信号源 101からの原映像 801を、複数回走査データ生成回路 102にて垂直方向に 半分に圧縮し、残り半分に無効映像が付加される。この映像を図 25 (b)に示すように 、複数回走査タイミング生成回路 103にて、上記した 2ライン同時に書き込み、 2ライ ン飛び越し走査となるようなタイミングで書き込むめば、 1フレーム期間内に映像デー タとブランキングデータとが表示され、映像応答、黒応答が繰り返されることになる。し たがって、インパルス型の表示特性を持たせることができ、これにより、動画ボャケ等 に起因する画質劣化を抑制することができる。
[0009] また、公知文献 1には、原映像を 1Z4に圧縮し、フレーム周期を 4分割する方法も 記載されている。この場合は、フレーム期間の 1Z4に高速応答化フィルタを適用して 応答性を向上させるベく作成した液晶高速応答化映像 (原映像を強調した映像)を 書き込み、次の 1Z4フレーム期間に映像を書き込み、残りの 1Z2フレーム期間にブ ランキングデータを書き込むことでより一層の高速応答ができる。
[0010] さらに、同様の走査を 1ラインごとの走査で行うときは、 1ラインの書き込み期間を約 半分程度に短くすることも記載されている。
[0011] また、公知文献 2 (日本国公開特許公報:特開 2002— 149132号公報(2002年 5 月 24日公開)は、各サブフレーム期間の前に消去信号を書き込んだうえ、画像信号 を、消去信号レベルからの差が大きくなる方向に補正することを開示している。これに より、液晶の応答速度が加速され、動画表示の画質を高めることができる。
[0012] し力しながら、公知文献 1で開示された表示装置では、液晶応答高速ィ匕映像により 、光学応答波形の黒レベル力 の急速な立ち上がりが可能である力 ブランキングデ ータの書き込みが完全に行われな力つた場合に、正し 、映像が表示されな 、と 、う 問題を生じる。
[0013] 具体的には、ブランクデータの書き込みが完全に行われな力つた場合は、図 26の 上の波形の点線に示すような電圧印加に対して、その下の点線に示す波形のような 光学応答となる。なお、図 26では、画像信号に対応する電圧から消去信号に対応す る VOHへ遷移する時に、極性が反転するものとする(図 26において、透過率 Txに対 応する電圧のうち、 +駆動時の電圧を VxH、 一駆動時の電圧を VxLとする)。
[0014] より詳細には、公知文献 1のようにブランキングデータを表示する表示装置では、画 像信号走査期間 32aにおいて、前回の映像信号に対応する電圧 VaLに反応して液 晶の透過率が Taとなった後、実線に示すように、消去信号走査期間 33aにおいて透 過率 TOの定常状態となることを前提としている。したがって、画像信号走査期間 32b において、今回の映像信号に対応する電圧 VxHが入力された場合、映像書込み期 間内に、液晶が、 TOから映像信号 Vxに対応する透過率 Txに変化するような電圧 V x' Hを印加する。しかし、実際は液晶の応答が遅いため、液晶透過率の波形は、点 線で示すように、消去信号走査期間で TOに達せず (TOより高い TO'となる)、画像信 号走査期間 32bでは目標の透過率である Txより高 、透過率 Tx" に達する。
[0015] さらに、このような場合、消去信号の電圧値 VOが一定 (極性の反転によって、 VOH あるいは VOLが印加される)であっても次の書き込みが始まる時点での液晶の透過 率 TO,の値は、前回のフレーム期間の映像信号 Vaに依存にして様々に変化するの で、前回の映像信号 Vxに応じて透過率 Txを与える電圧 Vx'も変化する。よって、映 像信号 Vxに応じて一定の電圧を与える従来の方法では、入力画像信号の階調を正 しく表示することができず、高画質の動画表示を実現することができなくなってしまう。
[0016] また、公知文献 2で開示された液晶表示装置も、消去信号の書込みにより液晶のフ レーム期間での初期状態が均一化されたものとして画像信号を設定しており、液晶 応答が遅!ヽために、消去信号に対応する電圧を印加しても所望の均一化された透 過率に達していないという場合は想定されていない。このように、初期状態の液晶が 均一化状態からずれて!/ヽると、印加される電圧が所望の透過率を与える電圧からず れてしま 、、元の画像信号に忠実な映像は表示されな 、。
発明の開示
[0017] 本発明は、上記の問題に鑑みてなされたものであり、その目的は、高画質な動画を 表示可能な表示装置を提供することにある。
[0018] 本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返し設け られる工程であって、表示装置が表示すべき映像を示す映像信号に応じた映像表 示期間用の出力信号を、当該表示装置の画素へ供給して、当該画素の輝度を制御 する映像表示工程と、上記各映像表示工程の合間に設けられる工程であって、ブラ ンク期間用の出力信号を上記画素へ供給することによって、当該画素の輝度を、当 該工程に隣接して行われる映像表示工程の少なくとも予め定められた一方における 画素の輝度よりも高くならないように、あるいは、暗表示用に予め定められた輝度にな るように制御するブランキング制御工程とを含む表示装置の駆動方法にぉ 、て、上 記ブランキング制御工程は、当該ブランキング制御工程の前後に実施される映像表 示工程での映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2の 輝度とするとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であった 場合は、第 1および第 2の輝度が一致している場合のブランク期間用の出力信号と比 較して、輝度を増加させる方向および減少させる方向のうち、上記変化と同じ方向に 補正された輝度を示すように、上記ブランク期間用の出力信号を補正することを特徴 としている。
[0019] ここで、画素の応答速度が、以下の条件を満足できる程度の速さを持って 、な 、場 合、すなわち、ブランキング制御工程の開始時点における画素の輝度に拘わらず、 ブランキング制御工程の終了時点において、画素がブランク期間用の出力信号の示 す輝度に到達できる程度には速くない場合は、ブランク期間用の階調データとして、 互いに同じ輝度を示す出力信号を出力したとしても、ブランキング制御工程の開始 時点の輝度によって、終了時に画素が到達する輝度も変化してしまう。
[0020] 同様に、画素の応答速度が、以下の条件を満足できる程度の速さを持って 、な 、 場合、すなわち、映像表示工程の開始時点における画素の輝度に拘わらず、映像 表示工程の終了時点において、画素が映像表示期間用の出力信号の示す輝度に 到達できる程度には速くない場合は、映像表示期間用の出力信号として、互いに同 じ輝度を示す出力信号を出力したとしても、映像表示工程の開始時点の輝度によつ て、終了時に画素が到達する輝度も変化してしまう。
[0021] ここで、従来のように、ブランク期間用の出力信号の値を一定の値に設定すると共 に、ブランク期間用の出力信号と、映像表示期間用の出力信号とを交互に出力した 場合の画素の平均輝度が、表示装置の表示すべき映像に応じた輝度となるように、 映像表示期間用の出力信号の値を設定すると、ブランキング制御工程終了時の画 素の輝度が、ブランク期間用の出力信号の示す輝度よりも高くなり、映像表示工程終 了時の画素の輝度が、映像表示期間用の出力信号の示す輝度よりも低くなつたとし ても、上記映像に応じた輝度が一定の場合には、画素の平均輝度を、当該映像に応 じた輝度に設定できる。
[0022] ところが、この場合、画素の応答速度の不足によって、ブランキング制御工程終了 時点の画素の輝度は、上記映像に応じた輝度が異なると、互いに異なる輝度になつ ており、ブランキング制御工程終了時点の画素の輝度は、上記映像に応じた輝度が 比較的高い場合よりも、上記映像に応じた輝度が比較的低い場合の方が低くなつて いる。したがって、映像信号が変化して、ある映像表示工程 (第 1の映像表示工程)に おける出力信号と、次の映像表示工程 (第 2の映像表示工程)における出力信号とが 互いに異なる値になる場合は、第 2の映像表示工程における画素の応答が不足して 、第 2の映像表示工程の終了時点における画素の輝度が、所望の輝度(映像信号の 示す輝度)に到達できなくなる虞れがある。 [0023] この場合、ブランキング制御工程を設けることによって、動きボャケなどの画質劣化 を抑制しょうとしているにも拘わらず、第 2の映像表示工程における画素の応答不足 によって、動きボャケなどの画質劣化が発生し、全体として動画表示時の画質劣化を 抑制することが難しい。
[0024] これに対して、上記ブランキング制御工程では、第 1の輝度から第 2の輝度への変 化が予め定められた変化であった場合は、第 1および第 2の輝度が一致している場 合 (定常状態)のブランク期間用の出力信号と比較して、輝度を増加させる方向およ び減少させる方向のうち、上記変化と同じ方向に補正された輝度を示すように、上記 ブランク期間用の出力信号を補正する。この結果、第 2の映像表示工程の終了時点 における画素の輝度を上記所望の輝度に近づけることができる。
[0025] 例えば、上記予め定められた変化が輝度を増加させる変化の場合、定常状態にお けるブランク期間用の出力信号よりも高い輝度を示す出力信号が出力される。この結 果、ブランキング制御工程の終了時点における画素の輝度を、定常状態におけるブ ランキング制御工程終了時点の輝度よりも高くすることができ、各映像表示工程での 出力信号が常に第 2の輝度を示している場合におけるブランキング制御工程終了の 輝度に近づけることができる。したがって、第 2の映像表示工程の終了時点における 画素の輝度を上記所望の輝度に近づけることができる。
[0026] また、他の例として、上記予め定められた変化が輝度を減少させる変化の場合、定 常状態におけるブランク期間用の出力信号よりも低い輝度を示す出力信号が出力さ れる。この結果、ブランキング制御工程の終了時点における画素の輝度を、定常状 態におけるブランキング制御工程終了時点の輝度よりも低くすることができ、各映像 表示工程での出力信号が常に第 2の輝度を示している場合におけるブランキング制 御工程終了の輝度に近づけることができる。したがって、第 2の映像表示工程の終了 時点における画素の輝度を上記所望の輝度に近づけることができる。
[0027] このように、第 2の映像表示工程の終了時点における画素の輝度を所望の値に近 づけることができるので、ブランク期間用の出力信号が一定の構成とは異なり、第 2の 映像表示工程における応答不足に起因する画質劣化を抑制でき、高画質な動画表 示の表示装置を提供できる。 [0028] なお、上記変化と同じ方向に補正された輝度を示すように、上記ブランク期間用の 出力信号を補正できれば、効果が得られるが、上記第 1の輝度と上記第 2の輝度とに 基づいて、例えば、ブランキング制御工程の終了時点における画素の輝度を、各映 像表示工程での出力信号が常に第 2の輝度を示している場合におけるブランキング 制御工程終了の輝度と一致する程度に補正するなどして、第 2の映像表示工程の終 了時点における画素の輝度が所望の値に一致する程度に補正すれば、第 2の映像 表示工程における応答不足に起因する画質劣化をさらに抑制でき、より高画質な動 画表示の表示装置を提供できる。
[0029] また、本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返し 設けられる工程であって、表示装置が表示すべき映像を示す映像信号に応じた映像 表示期間用の出力信号を、当該表示装置の画素へ供給して、当該画素の輝度を制 御する映像表示工程と、上記各映像表示工程の合間に設けられる工程であって、ブ ランク期間用の出力信号を上記画素へ供給することによって、当該画素の輝度を、 当該工程に隣接して行われる映像表示工程の少なくとも予め定められた一方におけ る画素の輝度よりも高くならないように、あるいは、暗表示用に予め定められた輝度に なるように制御するブランキング制御工程とを含む表示装置の駆動方法にぉ 、て、 上記ブランキング制御工程は、当該ブランキング制御工程の前後に実施される映像 表示工程での映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2 の輝度とするとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であつ た場合は、上記第 1の輝度と上記第 2の輝度とに基づいて上記ブランク期間用の出 力信号を補正することを特徴として 、る。
[0030] 当該構成では、第 1の輝度力 第 2の輝度への変化が予め定められた変化であつ た場合は、上記ブランク期間用の出力信号は、上記第 1の輝度と上記第 2の輝度とに 基づいて補正されるので、上記表示装置の駆動方法と同様に、ブランキング制御ェ 程の終了時点における画素の輝度を、各映像表示工程での出力信号が常に第 2の 輝度を示している場合におけるブランキング制御工程終了の輝度に近づけることが できる。この結果、ブランク期間用の出力信号が一定の構成とは異なり、第 2の映像 表示工程における応答不足に起因する画質劣化を抑制でき、高画質な動画表示の 表示装置を提供できる。
[0031] また、本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返し 設けられる工程であって、表示装置の画素への階調データとして与えられる入力階 調データに基づいて、当該画素への映像表示期間用の階調データと、当該画素へ の階調データであって、当該映像表示期間用の階調データよりも明るくない階調、あ るいは、暗表示用に予め定められた階調を示すブランク期間用の階調データとの双 方を生成する生成工程と、上記各生成工程に対応して設けられる工程であって、対 応する生成工程にて生成された上記両階調データを、予め定められた順番で出力 する出力工程とを含んで 、る表示装置の駆動方法にぉ 、て、上記各生成工程は、 上記表示装置の画素への前回の入力階調データの示す階調から、当該画素への今 回の入力階調データの示す階調への階調遷移が、予め定められた階調遷移である 場合は、上記表示装置の画素への前回の入力階調データの示す階調から、当該画 素への今回の入力階調データの示す階調への階調遷移が、予め定められた階調遷 移である場合は、上記前回の入力階調データに基づく生成工程で出力される映像 表示期間用の階調データと、上記今回の入力階調データに基づく生成工程で出力 される映像表示期間用の階調データとの間に出力されるブランク期間用の階調デー タとして、上記前回の入力階調データの示す階調と上記今回の入力階調データの示 す階調とが同じ場合のブランク期間用の階調データと比較して、増加する方向およ び減少する方向のうち、当該階調遷移と同じ方向に補正された階調データを出力す る補正工程を含んで 、ることを特徴として 、る。
[0032] ここで、上述の説明、すなわち、画素へ供給される出力信号に基づいた説明を、階 調データを基準にして説明し直すと、以下のようになる。すなわち、画素の応答速度 力 以下の条件を満足できる程度の速さを持っていない場合、すなわち、ブランク期 間の開始時点における画素の輝度に拘わらず、ブランク期間の終了時点において、 画素がブランク期間用の階調データの示す輝度に到達できる程度には速くない場合 は、ブランク期間用の階調データとして、互いに同じ階調データを出力したとしても、 ブランク期間の開始時点の輝度によって、ブランク期間終了時に画素が到達する輝 度も変化してしまう。 [0033] 同様に、画素の応答速度が、以下の条件を満足できる程度の速さを持って 、な 、 場合、すなわち、映像表示期間の開始時点における画素の輝度に拘わらず、映像 表示期間の終了時点において、画素が映像表示期間用の階調データの輝度に到 達できる程度には速くない場合は、映像表示期間用の階調データとして、互いに同 じ階調データを出力したとしても、映像表示期間の開始時点の輝度によって、映像表 示期間終了時に画素が到達する輝度も変化してしまう。
[0034] ここで、従来のように、ブランク期間用の階調データの値を一定の値に設定すると 共に、ブランク期間用の階調データと、映像表示期間用の階調データとを交互に出 力した場合の画素の平均輝度が、入力階調データの示す輝度となるように、映像表 示期間用の階調データの値を設定すると、ブランク期間終了時の画素の輝度が、ブ ランク期間用の階調データの示す輝度よりも高くなり、映像表示期間終了時の画素 の輝度が、映像表示期間用の階調データの示す輝度よりも低くなつたとしても、入力 階調データの値が一定の場合には、画素の平均輝度を、当該入力階調データの示 す輝度に設定できる。
[0035] ところが、この場合、画素の応答速度の不足によって、ブランク期間終了時点の画 素の輝度は、入力階調データの値が異なると、互いに異なる輝度になっており、ブラ ンク期間終了時点の画素の輝度は、入力階調データの示す輝度が比較的高い場合 よりも、入力階調データの示す輝度が比較的低い場合の方が低くなつている。したが つて、入力階調データが前回の値力も今回の値へと変化して、ある映像表示期間( 第 1の映像表示期間)用の階調データと、次の映像表示期間 (第 2の映像表示期間) 用の階調データとが互いに異なる値になる場合は、第 2の映像表示期間における画 素の応答が不足して、第 2の映像表示期間の終了時点における画素の輝度が、所 望の輝度 (今回の入力階調データの示す輝度)に到達しなくなる虞れがある。
[0036] この場合、ブランク期間を設けることによって、動きボャケなどの画質劣化を抑制し ようとしているにも拘わらず、第 2の映像表示期間における画素の応答不足によって、 動きボャケなどの画質劣化が発生し、全体として動画表示時の画質劣化を抑制する ことが難しい。
[0037] これに対して、上記補正工程では、上記表示装置の画素への前回の入力階調デ ータの示す階調から、当該画素への今回の入力階調データの示す階調への階調遷 移が、予め定められた階調遷移である場合、上記前回の入力階調データの示す階 調と上記今回の入力階調データの示す階調とが同じ場合 (定常状態)のブランク期 間用の階調データと比較して、増加する方向および減少する方向のうち、当該階調 遷移と同じ方向に補正された階調データが出力される。この結果、第 2の映像表示期 間の終了時点における画素の輝度を所望の値に近づけることができる。
[0038] 例えば、上記予め定められた階調遷移が階調を増加させる階調遷移の場合、定常 状態におけるブランク期間用の階調データよりも増加された階調データが出力される 。この結果、当該ブランク期間の終了時点における画素の輝度を、定常状態におけ るブランク期間終了時点の輝度よりも高くすることができ、入力階調データが今回の 入力階調データで一定の場合におけるブランク期間終了時点の輝度に近づけること ができる。したがって、第 2の映像表示期間の終了時点における画素の輝度を所望 の値に近づけることができる。
[0039] また、他の例として、上記予め定められた階調遷移が階調を減少させる階調遷移の 場合、定常状態におけるブランク期間用の階調データよりも減少された階調データが 出力される。この結果、当該ブランク期間の終了時点における画素の輝度を、定常状 態におけるブランク期間終了時点の輝度よりも低くすることができ、入力階調データ が今回の入力階調データで一定の場合におけるブランク期間終了時点の輝度に近 づけることができる。したがって、第 2の映像表示期間の終了時点における画素の輝 度を所望の値に近づけることができる。
[0040] このように、第 2の映像表示期間の終了時点における画素の輝度を所望の値に近 づけることができるので、ブランク期間用の階調データが一定の構成とは異なり、第 2 の映像表示期間における応答不足に起因する画質劣化を抑制でき、高画質な動画 を表示可能な表示装置を提供できる。
[0041] なお、上記階調遷移と同じ方向に補正された階調データを出力できれば、効果が 得られるが、上記前回および今回の入力階調データに基づいて、例えば、当該ブラ ンク期間の終了時点における画素の輝度を、入力階調データが今回の入力階調デ ータで一定の場合におけるブランク期間終了時点の輝度と一致する程度に補正した りして、第 2の映像表示期間の終了時点における画素の輝度が所望の値に一致する 程度に補正すれば、第 2の映像表示期間における応答不足に起因する画質劣化を さらに抑制でき、より高画質な動画を表示可能な表示装置を提供できる。
[0042] また、本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返し 設けられる工程であって、表示装置の画素への階調データとして与えられる入力階 調データに基づいて、当該画素への映像表示期間用の階調データと、当該画素へ の階調データであって、当該映像表示期間用の階調データよりも明るくない階調、あ るいは、暗表示用に予め定められた階調を示すブランク期間用の階調データとの双 方を生成する生成工程と、上記各生成工程に対応して設けられる工程であって、対 応する生成工程にて生成された上記両階調データを、予め定められた順番で出力 する出力工程とを含んで 、る表示装置の駆動方法にぉ 、て、上記表示装置の画素 への前回の入力階調データの示す階調から、当該画素への今回の入力階調データ の示す階調への階調遷移が、予め定められた階調遷移である場合は、上記前回の 入力階調データに基づく生成工程で出力される映像表示期間用の階調データと、上 記今回の入力階調データに基づく生成工程で出力される映像表示期間用の階調デ ータとの間に出力されるブランク期間用の階調データを、上記前回および今回の入 力階調データに基づいて補正する補正工程を含んでいることを特徴としている。
[0043] 当該構成では、前回の入力階調データの示す階調力 今回の入力階調データの 示す階調への階調遷移が予め定められた階調遷移であった場合は、上記ブランク 期間用の階調データは、上記前回および今回の階調データに基づいて補正される。 したがって、上記表示装置の駆動方法と同様に、ブランク期間の終了時点における 画素の輝度を、各入力階調データが常に今回の階調データである場合におけるブラ ンク期間終了の輝度に近づけることができる。この結果、ブランク期間用の階調デー タが一定の構成とは異なり、第 2の映像表示期間における応答不足に起因する画質 劣化を抑制でき、高画質な動画を表示可能な表示装置を提供できる。
[0044] 一方、本発明に係る表示装置の駆動装置は、上記課題を解決するために、繰り返 し設けられる映像表示期間には、次の映像表示期間までの間に表示装置が表示す べき映像を示す映像信号に応じた映像表示期間用の出力信号を、当該表示装置の 画素へ供給して、当該画素の輝度を制御すると共に、各映像表示期間の合間に設 けられるブランク期間には、ブランク期間用の出力信号を上記画素へ供給することに よって、当該ブランク期間に隣接する映像表示期間の少なくとも一方よりも、当該画 素の輝度を高くならないように、あるいは、暗表示用に予め定められた輝度になるよう に制御する表示装置の駆動装置において、ブランク期間の前後の映像表示期間に 出力される映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2の輝 度とするとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であった場 合は、第 1および第 2の輝度が一致している場合のブランク期間用の出力信号と比較 して、輝度を増加させる方向および減少させる方向のうち、上記変化と同じ方向に補 正された輝度を示すように、上記ブランク期間用の出力信号を補正するブランキング 制御手段を備えて 、ることを特徴として 、る。
[0045] また、本発明に係る表示装置の駆動装置は、上記課題を解決するために、繰り返し 設けられる映像表示期間には、次の映像表示期間までの間に表示装置が表示すベ き映像を示す映像信号に応じた映像表示期間用の出力信号を、当該表示装置の画 素へ供給して、当該画素の輝度を制御すると共に、各映像表示期間の合間に設けら れるブランク期間には、ブランク期間用の出力信号を上記画素へ供給することによつ て、当該ブランク期間に隣接する映像表示期間の少なくとも一方よりも、当該画素の 輝度を高くならないように、あるいは、暗表示用に予め定められた輝度になるように制 御する表示装置の駆動装置において、ブランク期間の前後の映像表示期間に出力 される映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2の輝度と するとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であった場合は 、上記第 1の輝度と上記第 2の輝度とに基づいて、上記ブランク期間用の出力信号を 補正するブランキング制御手段を備えて 、ることを特徴として 、る。
[0046] さらに、本発明に係る表示装置の駆動装置は、上記課題を解決するために、繰り返 し与えられる表示装置の画素への入力階調データのそれぞれに基づいて、当該画 素への映像表示期間用の階調データと、当該画素への階調データであって、当該 映像表示期間用の階調データよりも明るくない階調、あるいは、暗表示用に予め定 められた階調を示すブランク期間用の階調データとの双方を生成すると共に、予め 定められた順番で当該両階調データを出力する表示装置の駆動装置において、上 記画素への前回の入力階調データの示す階調から、当該画素への今回の入力階調 データの示す階調への階調遷移が、予め定められた階調遷移である場合は、上記 前回の入力階調データの示す階調と上記今回の入力階調データの示す階調とが同 じ場合のブランク期間用の階調データと比較して、増加する方向および減少する方 向のうち、当該階調遷移と同じ方向に補正された階調データを、上記前回の入力階 調データに基づいて生成された映像表示期間用の階調データと、上記今回の入力 階調データに基づいて生成される映像表示期間用の階調データとの間に出力され るブランク期間用の階調データとして出力するブランキング制御手段を備えているこ とを特徴としている。
[0047] また、本発明に係る表示装置の駆動装置は、上記課題を解決するために、繰り返し 与えられる表示装置の画素への入力階調データのそれぞれに基づいて、当該画素 への映像表示期間用の階調データと、当該画素への階調データであって、当該映 像表示期間用の階調データよりも明るくない階調、あるいは、暗表示用に予め定めら れた階調を示すブランク期間用の階調データとの双方を生成すると共に、予め定め られた順番で当該両階調データを出力する表示装置の駆動装置において、上記画 素への前回の入力階調データの示す階調から、当該画素への今回の入力階調デー タの示す階調への階調遷移が、予め定められた階調遷移である場合は、上記前回 の入力階調データに基づいて生成された映像表示期間用の階調データと、上記今 回の入力階調データに基づいて生成される映像表示期間用の階調データとの間に 出力されるブランク期間用の階調データを、上記前回および今回の入力階調データ に基づ!/、て補正するブランキング制御手段を備えて 、ることを特徴として 、る。
[0048] これらの表示装置の駆動装置は、ブランキング制御手段を備えており、当該ブラン キング制御手段は、上述の表示装置の駆動方法のいずれかと同様に、ブランク期間 用の出力信号または階調データを制御できる。したがって、上記各表示装置の駆動 方法と同様に、第 2の映像表示期間における応答不足に起因する画質劣化を抑制 でき、高画質な動画を表示可能な表示装置を提供できる。
[0049] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分わ力るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白にな るであろう。
図面の簡単な説明
[図 1]本発明の実施形態を示すものであり、画像表示装置に設けられた信号処理部 の要部構成を示すブロック図である。
[図 2]上記画像表示装置の要部構成を示すブロック図である。
[図 3]上記画像表示装置に設けられた画素の構成例を示す回路図である。
[図 4]上記画素の輝度の時間変化を示すグラフである。
[図 5]定常状態において、上記画素へ印加される出力信号と、当該画素の輝度との 時間変化を示すグラフである。
[図 6]インパルス駆動しない場合に発生する動きボャケの原因を説明するものであり、 各フレーム期間における、ある水平ラインに位置する各画素の輝度を示す図面であ る。
[図 7]上記図面を人間の視線を空間座標の原点として置き換えた図面である。
[図 8]本実施形態を示すものであり、各フレーム期間における、ある水平ラインに位置 する各画素の輝度を示す図面である。
[図 9]上記図面を人間の視線を空間座標の原点として置き換えた図面である。
[図 10]比較例を示すものであり、ブランク期間の出力信号を変更しない構成において
、映像表示期間に表示すべき画素の輝度が変化した場合に、上記画素へ印加され る出力信号と、当該画素の輝度との時間変化を示すグラフである。
[図 11]上記実施形態において、映像表示期間に表示すべき画素の輝度が変化した 場合に、上記画素へ印加される出力信号と、当該画素の輝度との時間変化を示すグ ラフである。
[図 12]上記信号処理部に設けられるルックアップテーブルを説明する図面である。
[図 13]本発明の他の実施形態を示すものであり、信号処理部に設けられるルックアツ プテーブルを説明する図面である。
[図 14]本発明のさらに他の実施形態を示すものであり、信号処理部に設けられるブラ ンク期間用生成回路の要部構成を示すブロック図である。 [図 15]ブランク期間および映像表示期間における画素の輝度の変化を示すグラフで ある。
[図 16]他の構成例を示すものであり、上記信号処理部に設けられるルックアップテー ブルを説明する図面である。
[図 17]本発明の別の実施形態を示すものであり、信号処理部に設けられる映像表示 期間用生成回路の要部構成を示すブロック図である。
[図 18]本発明の変形例を示すものであり、信号処理部の要部構成を示すブロック図 である。
[図 19]上記信号処理部に設けられた階調変換部の要部構成を示すブロック図である
[図 20]上記階調変換部による階調変換動作を示す図面である。
[図 21]上記階調変換部において行われるガンマ変換を示す図面である。
[図 22]従来技術の液晶表示装置のシステムブロック図である。
[図 23]従来技術の液晶表示装置のゲート選択パルスタイミングチャートである。
[図 24]従来技術の液晶表示装置の各信号線駆動波形と表示素子の光学応答波形 である。
[図 25(a)]従来技術の液晶表示装置の映像データ生成過程の概念図である。
[図 25(b)]従来技術の液晶表示装置の映像データ生成過程の概念図である。
[図 26]従来技術の液晶表示装置における、出力信号波形と、光応答波形とを示す図 面である。
発明を実施するための最良の形態
〔第 1の実施形態〕
本発明の一実施形態について図 1ないし図 12に基づいて説明すると以下の通りで ある。すなわち、本実施形態に係る画像表示装置 (表示装置) 1は、ブランク期間に おいて画素へ出力する出力信号を制御することによって、高画質な動画表示が可能 な画像表示装置であって、例えば、テレビジョン受像機の画像表示装置あるいは、コ ンピュータカもの映像信号などの映像信号を表示するモニタ装置などとして、好適に 使用できる。なお、当該テレビジョン受像機が受像するテレビジョン放送の一例として は、地上波テレビジョン放送、 BS(Broadcasting Satellite)デジタル放送や CS(Commun ication Satellite)デジタル放送などの人工衛星を用いた放送、あるいは、ケーブルテ レビテレビジョン放送などが挙げられる。
[0052] 当該画像表示装置 1のパネル 11は、図 2に示すように、マトリクス状に配された画素 PIX(1,1) 〜PIX(n,m)を有する画素アレイ 2と、画素アレイ 2のデータ信号線 SL1〜S Lnを駆動するデータ信号線駆動回路 3と、画素アレイ 2の走査信号線 GLl〜GLm を駆動する走査信号線駆動回路 4とを備えている。また、画像表示装置 1には、両駆 動回路 3 ·4へ制御信号を供給する制御回路 12と、入力される映像信号に対して、ブ ランク期間を挿入するための信号処理を含む信号処理を行って、処理後の映像信号 を上記制御回路 12へ供給する信号処理部 (駆動装置) 21とが設けられて 、る。なお 、これらの回路は、電源回路 13からの電力供給によって動作している。
[0053] 以下では、信号処理部 21の詳細構成について説明する前に、画像表示装置 1全 体の概略構成および動作を説明する。また、説明の便宜上、例えば、 i番目のデータ 信号線 SLiのように、位置を特定する必要がある場合にのみ、位置を示す数字また は英字を付して参照し、位置を特定する必要がない場合や総称する場合には、位置 を示す文字を省略して参照する。
[0054] 上記画素アレイ 2は、複数 (この場合は、 n本)のデータ信号線 SLl〜SLnと、各デ ータ信号線 SLl〜SLnに、それぞれ交差する複数 (この場合は、 m本)の走査信号 線 GLl〜GLmとを備えており、 1力も nまでの任意の整数を i、 1力も mまでの任意の 整数を jとすると、データ信号線 SLiおよび走査信号線 GLjの組み合わせ毎に、画素 PIX(U)が設けられている。なお、本実施形態の場合、各画素 PIXGJ)は、隣接する 2本のデータ信号線 SL(i- 1) ' SLiと、隣接する 2本の走査信号線 GL (卜 1) 'GLjとで 囲まれた部分に配されて 、る。
[0055] 一例として、画像表示装置 1が液晶表示装置の場合について説明すると、上記画 素 PIX(U)は、例えば、図 3に示すように、スイッチング素子として、ゲートが走査信号 線 GLjへ、ドレインがデータ信号線 SLiに接続された電界効果トランジスタ SW(i,j)と 、当該電界効果トランジスタ SW(i,j)のソースに、一方の電極が接続された画素容量 Cp(i,j)とを備えている。また、画素容量 Cp(i,j)の他端は、全画素 PIX…に共通の共 通電極線に接続されている。上記画素容量 Cp(i,j)は、液晶容量 CL(i,j)と、必要に 応じて付加される補助容量 Cs(i,j)とから構成されて!ヽる。
[0056] 上記画素 PIXGJ)において、走査信号線 GLjが選択されると、電界効果トランジスタ SW(i,j)が導通し、データ信号線 SLiに印加された電圧が画素容量 Cp(i,j)へ印加さ れる。一方、当該走査信号線 GLjの選択期間が終了して、電界効果トランジスタ SW( i,j)が遮断されている間、画素容量 Cp(i,j)は、遮断時の電圧を保持し続ける。ここで 、液晶の透過率あるいは反射率は、液晶容量 CL(i,j)に印加される電圧によって変化 する。したがって、走査信号線 GLjを選択し、当該画素 PIX(i,j)への映像データ D(i,j ,k)に応じた電圧を、画素 PIXGJ)への出力信号 OG,j,k)として、データ信号線 SLiへ 印加すれば、当該画素 PIXGJ)の表示状態を、映像データ D(i,j,k)に合わせて変化 させることがでさる。
[0057] また、本実施形態では、上記画素アレイ 2の液晶セルとして、垂直配向モードの液 晶セル、すなわち、電圧無印加時には、液晶分子が基板に対して略垂直に配向し、 画素 PIX(U)の液晶容量 CL(i,j)への印加電圧に応じて、液晶分子が垂直配向状態 から傾斜する液晶セルを採用しており、当該液晶セルをノーマリブラックモード (電圧 無印加時には、黒表示となるモード)で使用している。
[0058] 上記構成において、図 2に示す走査信号線駆動回路 4は、各走査信号線 GL1〜G Lmへ、例えば、電圧信号など、選択期間カゝ否かを示す信号を出力している。また、 走査信号線駆動回路 4は、選択期間を示す信号を出力する走査信号線 GLjを、例え ば、制御回路 12から与えられるクロック信号 GCKやスタートパルス信号 GSPなどの タイミング信号に基づいて変更している。これにより、各走査信号線 GLl〜GLmは、 予め定められたタイミングで、順次選択される。
[0059] さらに、データ信号線駆動回路 3は、映像信号 DATとして、時分割で入力される各 画素 PIX…への映像データ D…を、所定のタイミングでサンプリングしたりして、それ ぞれ抽出する。さらに、データ信号線駆動回路 3は、走査信号線駆動回路 4が選択 中の走査信号線 GLjに対応する各画素 PIX(l,j)〜PIX(n,j)へ、各データ信号線 SL l〜SLnを介して、それぞれへの映像データ D' · ·に応じた出力信号ひ · ·を出力する [0060] なお、データ信号線駆動回路 3は、制御回路 12から入力される、クロック信号 SCK およびスタートパルス信号 SSPなどのタイミング信号に基づ 、て、上記サンプリングタ イミングゃ出力信号の出力タイミングを決定して 、る。
[0061] 一方、各画素 PIX(l,j)〜PIX(n,j)は、自らに対応する走査信号線 GLjが選択され ている間に、自らに対応するデータ信号線 SLl〜SLnに与えられた出力信号に応じ て、透過率や反射率などを調整して、自らの輝度を決定する。
[0062] ここで、走査信号線駆動回路 4は、走査信号線 GLl〜GLmを順次選択している。
したがって、画素アレイ 2の全画素 PIX(1,1)〜PIX(n,m)を、それぞれへの映像デー タ Dが示す輝度に設定でき、画素アレイ 2へ表示される画像を更新できる。この結果、 画像表示装置 1は、画素アレイ 2に表示される画像を、映像信号 DATに基づいて、 順次変更できる。なお、以下では、説明の便宜上、映像信号源 SOと画素アレイ 2との 間に配され、映像信号源 SOからの映像信号に基づいて、画素アレイ 2を駆動する部 材 (データ信号線駆動回路 3、走査信号線駆動回路 4、制御回路 12および詳細は後 述する信号処理部 21など)を駆動部 14と称する。
[0063] また、本実施形態に係る画像表示装置 1の駆動部 14は、画素アレイ 2へ映像を表 示するための映像データ Dに応じた出力信号 Oを、画素 PIXGJ)へ繰り返し出力する 合間に、ブランク期間用の出力信号 Oを画素 PIXGJ)へ出力している。ここで、上記 ブランク期間用の出力信号 Oは、上記画像表示時の画素 PIXGJ)の輝度よりも、ブラ ンク期間における画素 PIX(i,j)の輝度の方が高くならないように、あるいは、暗表示 用に予め定められた輝度になるように設定されていれば、 CRT (Cathode-Ray Tube) のようなインパルス型発光に近づけることができ、画素アレイ 2に動画表示する際の画 質を向上できるが、本実施形態では、例えば、黒を表示するための値に設定されて いる。
[0064] なお、以下では、上記画素アレイ 2へ映像を表示するための映像データ Dに応じた 出力信号 Oと、ブランク期間用の出力信号 Oとを区別するために、前者を、映像表示 期間用の出力信号 Odと記載し、後者を符号 Obで参照する。また、映像期間用の出 力信号 Od(i,j,k)が画素 PIX(U)へ供給された時点から、当該画素 PIXGJ)に次に供 給される出力信号 OG,j,k+l)として、ブランク期間用の出力信号 Ob(i,j,k+l)が供給さ れる時点までの期間を、映像表示期間 Tdと称し、ブランク期間用の出力信号 Ob(i,j, k+1)が画素 PIX(U) へ供給された時点から、当該画素 PIXGJ)に次に供給される出 力信号 OG,j,k+2)として、映像表示期間用の出力信号 Od(i,j,k+2)が供給される時点 までの期間を、ブランク期間 Tbと称する。
[0065] ここで、画素 PIXGJ)の応答速度が遅い場合は、ブランク期間用の出力信号 Ob(i,j, …;)として、黒を示す出力信号 Ob(i,j, )を出力したとしても、図 4に示すように、ブラン ク期間 Tbの終了時における画素 PIX(i,j)の輝度は、黒を示す輝度 (輝度 =0)に到 達することができず、それよりも高い輝度(図 4の期間 T1では Llb、期間 T2では L2b )にし力到達できない。なお、期間 T1は、画素 PIX(i,j)への映像データ D(i,j,"-)が、 ある輝度を示している期間であり、期間 T2は、画素 PIX(i,j)への映像データ D(i,j,' --) iS それよりも高い輝度を示している期間である。
[0066] ところが、本実施形態に係る画像表示装置 1の駆動部 14は、画素 PIXGJ)への映 像データ D(i,jV ")が一定の値 D1の場合、画素 PIXGJ)の輝度の平均値が、当該値 D1の示す輝度になるように、映像表示期間用の出力信号 Odl(i,j,"')およびブランク 期間 Tbの出力信号 Ob l(i, j, · · を設定して 、る。
[0067] これにより、画素 PIXGJ)の応答速度が遅ぐし力も、画素 PIXGJ)を駆動する際に 、映像表示期間の合間にブランク期間を設けているにも拘わらず、駆動部 14は、画 素 PIX(U)への映像データ D(i,j,"')が一定の値 D1の場合、全体として、上記値 D1 に応じた輝度になるように、画素 PIX(U)を制御できる。
[0068] この結果、ホールド型の画素アレイ 2、すなわち、予め定められた期間内であれば、 画素 PIX(i,j) へ新たな出力信号 Oが供給されるまでの間、画素 PlX(iJ)の輝度を維 持し続けることが可能な画素アレイ 2を使用しているにも拘わらず、画素アレイ 2の各 画素 PIX(i,j)の発光状態を、 CRTのようなインノルス型発光に近づけることができ、 動きボャケなどの発生を防止できる。この結果、画素アレイ 2に動画表示する際の画 質を向上できる。
[0069] 一例として、本実施形態に係る駆動部 14は、図 5に示すように、ブランク期間用の 出力信号 Obを、黒を示す値 (V0Hまたは VOL)に設定している。また、駆動部 14は 、映像データ Dがとり得る値、それぞれに対応する出力信号 Odを記憶すると共に、 入力された映像データ Dの値に応じて記憶された出力信号 Od(i,j, )を出力している
[0070] なお、図 5において、 LI (ave)は、輝度の平均値であり、上記 D1の示す輝度と一 致している。また、輝度 Lidは、値 D1に対応する出力信号 Odl (図 5では、 VdlHま たは VdlL)の印加によって、画素 PIXGJ)が映像表示期間の終了時点に到達する 輝度である。なお、記憶方法としては、例えば、 LUTに、各映像データ Dに対応する 出力信号 Odを、映像データ Dに対応して記憶する方法であってもよいし、各映像デ ータ Dの代表値に対応する出力信号 Odを、各代表値に対応付けて LUTに記憶す ると共に、代表値の間については、各代表値に対応する出力信号 Odを当該 LUTか ら読み出し、それらを補間して、代表値の間の値に対応する出力信号 Odを算出する 方法を記憶する方法であってもよい。さらに、充分な精度で、し力も、充分な速度で 算出可能な算出式が存在する場合は、その算出方法を記憶してもよい。
[0071] ここで、ホールド型の画素アレイ 2における動きボャケの発生について、さらに詳細 に説明すると、以下の通りである。すなわち、多くの研究者が述べているように、人間 の視覚は、動く観察対象を自動的に追跡 (視線追跡)するようになつている。したがつ て、ホールド型の表示では、ディスプレイ上に固定して表示されている観察対象は、 見かけ上、動きと逆方向に網膜上に写って見えてしまう。この結果、ホールド型の表 示の場合は、動画を表示する際に、ボャケが生じる虞れがある。
[0072] 例えば、以下のような映像、すなわち、白い背景の中で黒い観察対象が、左から右 に向けて、各フレーム期間毎に、 4ドットずつ移動するような映像を表示する場合、各 フレーム期間における、ある水平ラインに位置する各画素の輝度を、縦に並べて記 載すると、図 6に示すようになる。
[0073] ここで、図中の矢印は、各フレーム期間にエッジが存在する場所を結んだものであ り、人間の視線は、このエッジの動きを自動的に追いかけるようになる。したがって、 1 フレーム期間が 4フィールド期間で構成されている場合、人間の視線を空間座標の 原点として置き換えると、図 6は、図 7に示すようになり、各フィールド期間力 フレーム 期間の何番目のフィールド期間であるかによって、いずれの画素がエッジになるかが 変化してしまう。例えば、 1番目のフィールド期間(0フィールド期間など)では、人間 の視線を原点としたときの X座標が 15である画素がエッジになるのに対して、 4番目 のフィールド期間(3フィールド期間など)では、上記 X座標 = 12の画素がエッジにな つている。
[0074] したがって、各画素の輝度を、各フィールド期間に渡って平均した値 (平均輝度)は 、図 7中、最下部に記載しているようになり、エッジ近傍の平均輝度は、白から黒へと 一足飛びに変化するのではなぐ段階的に変化してしまう。この結果、エッジの部分 にボャケが発生してしまう。なお、図 7では、 6フレーム期間分の平均輝度を図示して いるが、移動速度が一定であれば、平均値を算出するフレーム期間の数あるいはフ ィールド期間の数に拘わらず、平均輝度は、一定になる。
[0075] これに対して、本実施形態に係る駆動部 14のように、ブランク期間を設ける構成 (ィ ンノ ルス駆動する構成)では、図 8に示すように、映像表示期間(図の例では、各フレ ームの 1番目のフィールド期間)では、各画素の輝度は、映像を表示するための映像 データに応じた輝度になるように制御されて 、るが、残余のブランク期間にお 、ては 、当該輝度には制御されず、各画素の輝度は、映像表示期間とは異なって、暗く保 たれている。なお、図 8でも、図 6と同様の矢印を図示している。
[0076] この場合、図 7の場合とは異なって、人間の網膜上には、誤った映像 (エッジの上記 X座標の異なる映像)が写らない。したがって、図 7と同様に、人間の視線を空間座標 の原点として、図 8を置き換えると、図 9に示すようになり、図中、最下部に示すように 、各画素の輝度を、各フィールド期間に渡って平均した値 (平均輝度)は、エッジ部分 (図の例では、上記 X座標 = 15から 16への部分)で一足飛びに変化する。この結果 、図 6のように表示する場合とは異なって、エッジの部分におけるボャケの発生を防 止できる。
[0077] さらに、本実施形態に係る駆動部 14は、画素 PIXへの映像データ D力 当該画素 PIXの輝度を増加させるように変化する場合、増加前の映像データ D1に対応する映 像表示期間用の出力信号 Odlと、増加後の映像データ D2に対応する映像表示期 間用の出力信号 Od2との間に出力されるブランク期間用の出力信号 Obを制御して 、当該出力信号 Obの値を、画素 PIXへの映像データが変化しない場合、すなわち、 定常状態の場合に、ブランク期間用の出力信号 Obとして出力される値 (黒)よりも高 V、輝度を示す値に設定して 、る。
[0078] ここで、画素 PIXGJ)の応答速度が遅い場合、図 4に示すように、駆動部 14が、ブラ ンク期間 Tb中に、画素 PlX(iJ)へ黒を示す値を印加しても、ブランク期間 Tbの終了 時に画素 PIX(U)が到達可能な輝度は、ブランク期間 Tbの開始時の輝度 Ldによつ て異なり、当該輝度が高くなれば、ブランク期間 Tbの終了時の輝度も高くなる。また、 ブランク期間 Tbの開始時の輝度 Ldは、上述したように、映像データ D(i,』·,···)によつ て決定される。
[0079] したがって、映像データ Dが値 D1である期間 T1において、ブランク期間 Tbの終了 時に画素 PIX(i,j)が到達する輝度 Lblは、映像データ Dが上記値 D1よりも高い輝度 を示す期間 T2において、ブランク期間 Tbの終了時に画素 PlX(iJ)が到達する輝度 Lb2よりも低くなつている。
[0080] この場合、比較例として、期間 T1から T2へと変化する際のブランク期間 Tbの開始 時点 tlにおいても、期間 T1中または期間 T2中と同様の値 (黒)を、ブランク期間用 の出力信号 Obとして出力したとする。この場合、上記ブランク期間 Tbの終了時点 t2 における画素 PIX(i,j)の輝度は、期間 T1と同様の値 Lblになり、期間 T2の値 Lb2よ りも低くなつている。一方、期間 T2において画素 PIXGJ)へ出力される出力信号 Od2 および出力信号 Obは、画素 PIX(i,j)の輝度が上記輝度 Ld2と Lb2との間を行き来す るように設定されている。
[0081] この結果、上記比較例の構成では、期間 T2の最初の映像表示期間 Tdにおいて、 画素 PIX(U)へ上記出力信号 Od2を出力すると、図 10に示すように、画素 PIX(i,j) の応答が不足して、上記輝度 Ld2へ到達することができない。より詳細には、期間 T2 の最初の映像表示期間 Tdの終了時点 t3において、画素 PIXGJ)が到達する輝度 L d2aは、期間 T2の輝度 Ld2よりも低くなつてしまう。
[0082] この場合は、画素 PIXGJ)が映像信号における輝度の変化の指示に追従できてい ないため、画素アレイ 2の各画素 PIX(U)の発光状態をインパルス型発光に近づける ことによる、動画表示時の画質向上効果が打ち消され、動画表示時の画質を充分に 向上させることが難しい。
[0083] これに対して、本実施形態に係る駆動部 14は、期間 T1から T2へと変化する際の ブランク期間 Tbの開始時点 tlには、定常状態のブランク期間用の出力信号の値、 すなわち、黒を示す値よりも高い輝度を示す出力信号 Obl2を出力する。
[0084] この結果、図 11に示すように、上記時点 t2における輝度は、期間 T1内のブランク 期間 Tbの終了時点における輝度 Lb 1よりも高 ヽ値となり、上記時点 t3における輝度 は、上記比較例よりも、所望の値 Ld2に近い値になる。
[0085] 特に、本実施形態に係る駆動部 14は、各期間 T1および T2における映像データ D l 'D2に基づいて、上記出力信号 Obl2の値を、以下の値、すなわち、上記黒を示 す出力信号 Obを印加された画素 PIXGJ)が期間 T2のブランク期間 Tbの終了時点 に到達する輝度 Lb2と上記時点 t2における輝度とがー致するような値に設定してい る。
[0086] この場合は、図 11に示すように、上記時点 t2における輝度は、期間 T2内のブラン ク期間 Tbの終了時点における輝度 Lb2になる。この結果、上記時点 t3における輝度 を、所望の値 Ld2に設定できる。
[0087] したがって、上記比較例の構成とは異なり、上記時点 t2における輝度を、映像信号 における輝度の変化の指示に追従させることができる。この結果、上記時点 t2〜t3 の期間における応答不足に起因する画質低下を発生させることなく、インパルス型発 光に近づけることによって、動画表示時の画質を向上させることができる。
[0088] また、第 2の比較例として、時点 t2において、画素 PIXGJ)への出力信号 Odを増加 させることによって、時点 t3における画素 PIX(i,j)の輝度を Ld2へ到達させる構成で も、時点 t3における画素 PIX(i,j)の輝度を Ld2へ到達させることができる。
[0089] ただし、この場合には、上記時点 t3における出力信号 Odを、期間 T2内の他の映 像表示期間 Tdの開始時点よりも、高い輝度を示す値に設定する必要がある。したが つて、確実に輝度を高く設定するためには、他の期間における出力信号 Odの値を、 駆動部 14が設定可能な数値範囲よりも低い数値範囲内の値に設定する必要があり 、他の期間(画素 PIX(U)への映像データ Dが変化していない期間)の輝度が低下し てしまう。ここで、ブランク期間 Tbの挿入によっても画素アレイ 2の明るさが低下してい るので、画素 PIX(U)への映像データ Dの変化時の応答速度を向上させるためであ つても、さらなる明るさの低下は、余り好ましくない。 [0090] これに対して、本実施形態に係る駆動部 14は、期間 T1から T2へと変化する際の ブランク期間 Tbの開始時点 tlにおいて出力する出力信号 Obの値を増加させ、当該 ブランク期間 Tbの終了時点 t2における輝度を増大させることによって、時点 t3にお ける輝度を所望の値 Ld2に設定して 、る。
[0091] この結果、ブランク期間の挿入によって画素アレイ 2の明るさが低下しやすい構成を 採用しているにも拘わらず、上記第 2の比較例とは異なり、それ以上、画素アレイ 2の 明るさを損ねることがなぐ画素 PIXGJ)の応答速度を向上できる。
[0092] ここで、各映像表示期間 Tdに画素 PIXGJ)へ表示すべき輝度が変化するときに、 その間に挿入されるブランク期間 Tbの出力信号 Obの値を、上述したように制御でき れば、データ信号線駆動回路 3が、自らに入力される映像信号に基づいて、出力信 号を制御してもよいが、以下では、一例として、映像信号源 SOと制御回路 12との間 に配された信号処理部 21が、制御回路 12へ入力する映像信号を制御することによ つて、ブランク期間用の出力信号 Obを制御する構成について説明する。
[0093] 具体的には、上記信号処理部 21は、映像信号源 SOからの映像信号 DATに、ブラ ンク期間用の映像データ Dを埋め込んで、映像信号 DAT2を生成し、当該映像信号 DAT2を制御回路 12へ出力して 、る。
[0094] 映像信号 DATには、ある画素 PIXGJ)への映像データ Dとして、 Dd(i,j,k)、 Dd(i,j, k+2)、 Dd(i,j,k+4)、…が含まれており、上記信号処理部 21は、当該映像データ Dd(i ,j,k)、 Dd(i,j,k+2)、 Dd(i,j,k+4)、…の合間に、ブランク期間 Tb用の映像データ Db(i, j,k+l)、 Db(i,j,k+3)、 Db(i,j,k+5)、…を挿入し、これらの映像データ Dd(i,j,k)、 Db(i,j ,k+l)、 Dd(i,j,k+2)、 Db(i,j,k+3)、 Dd(i,j,k+4)、 Db(i,j,k+5)、…を含む映像信号 DA T2を生成する。なお、映像表示期間用かブランク期間用かを区別しない場合は、各 映像データを D(i, j, · · として参照する。
[0095] 一方、制御回路 12は、映像信号 DAT2から、各映像データ D(i,j, )を抽出し、上 述したように、データ信号線駆動回路 3および走査信号線駆動回路 4を制御して、画 素 PIX(i,j)へ、上記映像データ Dd(i,j,k)、 Db(i,j,k+1)、 Dd(i,j,k+2)、…にそれぞれ 対応する出力信号 Od(i,j,k)、 Ob(i,j,k+l)、 Od(i,j,k+2)、…を順次印加させる。
[0096] ここで、映像信号源 SOから信号処理部 21へ与えられる映像信号 DATは、フレー ム単位(画面全体単位)で伝送されて!、てもよ 、し、 1フレームを複数のフィールドに 分割すると共に、当該フィールド単位で伝送されていてもよいが、一例として、本実施 形態に係る映像信号 DATは、フィールド単位で伝送されて 、る。
[0097] すなわち、本実施形態において、映像信号源 SOから信号処理部 21へ与えられる 映像信号 DATは、 1フレームを複数のフィールド (例えば、 2フィールド)に分割すると 共に、当該フィールド単位で伝送されている。
[0098] より詳細には、映像信号源 SOは、映像信号線 VLを介して、画像表示装置 1の信号 処理部 21に映像信号 DATを伝送する際、あるフィールド用の映像データを全て伝 送した後に、次のフィールド用の映像データを伝送するなどして、各フィールド用の 映像データを時分割伝送して 、る。
[0099] また、上記フィールドは、複数の水平ラインから構成されており、上記映像信号線 V Lでは、例えば、あるフィールドにおいて、ある水平ライン用の映像データ全てが伝送 された後に、次に伝送する水平ライン用の映像データを伝送するなどして、各水平ラ イン用の映像データが時分割伝送されて 、る。
[0100] なお、本実施形態では、 2フィールドから 1フレームを構成しており、偶数フィールド では、 1フレームを構成する各水平ラインのうち、偶数行目の水平ラインの映像デー タが伝送される。また、奇数フィールドでは、奇数行目の水平ラインの映像データが 伝送される。さら〖こ、上記映像信号源 SOは、 1水平ライン分の映像データを伝送する 際も上記映像信号線 VLを時分割駆動しており、予め定められた順番で、各映像デ ータが順次伝送される。
[0101] 一方、信号処理部 21は、図 1に示すように、映像信号 DATから、各画素 PIX(i,j) への映像データ (入力階調データ)を抽出し、映像表示期間用の映像データ(映像 表示期間用の階調データ) Ddとして出力する映像表示期間用生成回路 (生成手段) 31と、各画素 PIXGJ)へのブランク期間用の映像データ (ブランク期間用の階調デー タ) Dbを生成するブランク期間用生成回路 (ブランキング制御手段) 32と、映像表示 期間用生成回路 31によって生成された映像データ Ddの合間に、ブランク期間用生 成回路 32によって生成された映像データ Dbを挿入し、挿入後の各映像データ Dを、 制御回路 12へ出力する出力回路 33とを備えている。 [0102] ここで、制御回路 12へ各映像データ Dを出力する順番は、ある画素 PIXGJ)への 映像表示期間用の各映像データ Ddの合間に、当該画素 PIXGJ)へのブランク期間 用の映像データ Dbが挿入されていれば、どのような順番であってもよいが、本実施 形態に係る出力回路 33は、以下のような順番で、映像信号 DAT2内の各映像デー タ Dを伝送している。
[0103] すなわち、本実施形態に係る出力回路 33は、映像信号線 VL2を介して、画像表 示装置 1の制御回路 12に映像信号 DAT2を伝送する際、あるフレームの映像表示 用およびブランク期間用の映像データを全て伝送した後に、次のフレームの映像表 示用およびブランク期間用の映像データを伝送するなどして、各フレーム用の映像 データを時分割伝送して 、る。
[0104] また、上記出力回路 33は、上記フレームの映像データを伝送する際、映像表示期 間用の映像データ力もなるサブフレームと、ブランク期間用の映像データ力もなるサ ブフレームとに分け、各サブフレーム用の映像データを時分割伝送している。さらに、 出力回路 33は、各サブフレーム用の映像データを、水平ライン毎に時分割伝送し、 各水平ライン用の映像データを、当該水平ラインに含まれる画素の映像データ毎に 時分割伝送している。
[0105] なお、いずれのサブフレームを先に伝送してもよいが、本実施形態に係る出力回路 33は、映像表示期間用のサブフレームを構成する映像データを全て伝送した後に、 ブランク期間用のサブフレームを構成する映像データを伝送して 、る。
[0106] 一方、上記ブランク期間用生成回路 32は、各画素 PIXGJ)への映像データ D(i,j,k) を後述の生成回路 43が必要としている間、記憶可能なフレームメモリ 41と、上記映 像表示期間用生成回路 31から出力される現フレーム FR(k)の映像データ Dを上記 フレームメモリ 41へ書き込むと共に、当該フレームメモリ 41から前フレーム FR(k-2) の映像データ Dを読み出し、前フレーム映像信号 DATOとして出力するメモリ制御回 路 42と、上記メモリ制御回路 42から出力される前フレーム FR(k-2)の映像データ D、 および、現フレーム FR(k)の映像データ Dのうち、互いに同じ画素 PIX(U)への映像 表示期間用の映像データ同士 (D(i,j,k)および D(i,j,k-2) )に基づいて、両映像表示 期間用の映像データの合間に挿入される、ブランク期間 Tb(k-l)の映像データ Db(i, j,k-l)を生成する生成回路 43とを備えている。
[0107] 本実施形態では、上述したように、映像データ表示用の映像データ Dd(i,j,k-2)を 伝送した後に、ブランク期間用の映像データ Db(i,j,k-1)を伝送しており、当該映像 データ Db(i,j,k-1)は、上記映像データ Dd(i,j,k-2)と、当該映像データ D(i,j,k-2)の 次の映像表示器間用の映像データ D(i,j,k)とに応じて決定される。
[0108] したがって、本実施形態に係る出力回路 33は、フレームメモリ 41から出力される前 回の映像データ D(i,j,k-2)を出力した後に、ブランク期間用生成回路 32から出力さ れる映像データ Db(i,j,k-1)を出力するように構成されており、上記フレームメモリ 41 の記憶容量は、生成回路 43がフレームメモリ 41から出力される前回の映像データ D( i,j,k-2)および今回の映像データ D(i,j,k)に応じて、ブランク期間用の映像データ Db (i,j,k-l)を生成し、出力回路 33へ出力するまでの間、前回の映像データ D(i,j,k-2) を保持できるように設定されて ヽる。
[0109] 上記生成回路 43は、例えば、図 12に示すように、前回の映像データ D(i,j,k-2)と、 今回の映像データ D(i,j,k)との組み合わせ、それぞれについて、当該組み合わせの 映像データがブランク期間用生成回路 32に入力された場合にブランク期間用生成 回路 32が出力すべきブランク期間用の映像データ Dbを示すデータが記憶された L UT(Look Up Table ) 51 (記録手段)を備えている。
[0110] さらに、本実施形態では、 LUT51に必要な記憶容量を削減するために、上記 LU T51が記憶して 、るデータは、両映像データが取り得る値の組み合わせを全て記憶 するのではなぐ予め定められた組み合わせに対応するデータに制限されており、上 記生成回路 43には、上記 LUT51に記憶された各組み合わせに対応するデータを 補間して、実際に入力された映像データの組み合わせに対応するデータを算出して 、算出結果を出力する演算回路 52 (算出手段)が設けられている。
[0111] なお、本実施形態に係るブランク期間用生成回路 32は、互いに同じ画素 PIX(i,j) への映像表示期間用の映像データが変化しな 、場合、黒を示す映像データ Dbを出 力している。したがって、図 12に示す LUT51では、互いに同じ画素 PIX(U)への映 像表示期間用の映像データが変化しない箇所のデータ (互いに同じ映像データの 組み合わせに対応して記憶されたデータ)力 黒を示す値 (0)に設定されている。 [0112] ここで、上記各組み合わせの映像データがブランク期間用生成回路 32に入力され た場合に、ブランク期間用生成回路 32が出力すべき映像データ Ddは、以下のような 値である。
[0113] すなわち、上記各組み合わせに対応する映像データ Dbは、各組み合わせを構成 する映像データが互いに同じ値の場合、黒を示す値 (0)に設定されている。また、前 回の映像データカゝら今回の映像データへの輝度の変化が輝度の増加を示す組み合 わせの場合は、当該組み合わせに対応して、上記黒を示す値よりも高い輝度を示す 値 α 1· ··に設定されている。なお、本実施形態では、上記組み合わせが輝度の減少 を示す組み合わせの場合、当該組み合わせに対応して、黒を示す値 (0)が格納され ている。
[0114] 輝度の増加を示す組み合わせの場合について、さらに詳細に説明すると、映像表 示期間 Tdlには、ある値の映像データ Ddlに対応する出力信号 Odlを出力し、ブラ ンク期間 Tbには、黒を示す出力信号 Obを出力するという動作を繰り返している状態 を、第 1の定常状態とする。また、映像表示期間 Td2には、上記値 Ddlよりも高い輝 度を示す映像データ Dd2に対応する出力信号 Od2を出力し、ブランク期間 Tbには、 黒をす出力信号 Obを出力するという動作を繰り返している状態を、第 2の定常状態と し、当該第 2の定常状態の各ブランク期間 Tbの終了時点において、画素 PIXGJ)が 到達している輝度を Lb2とする。さらに、上記映像データ Ddl ' Dd2の組み合わせに 対応する映像データ Dbは、第 1の定常状態における映像表示期間 Tdlの次のブラ ンク期間 Tbに当該映像データ Dbに対応する出力信号 Obを画素 PIXGJ)へ印加し たときに、当該ブランク期間 Tbの終了時点で、当該画素 PIX(i,j)が上記輝度 Lb2〖こ 到達できる値に設定されて 、る。
[0115] なお、上記各組み合わせに対応する映像データ Dbは、例えば、以下のようにして 決定できる。すなわち、各組み合わせを構成する現フレーム FR(k)の映像データ Dd 2について、当該映像データ Dd2に対応する出力信号 Od2と、上記黒を示す出力信 号 Obとを、画素 PIX(i,j)に繰り返し印加して、ブランク期間 Tbの終了時の輝度 L2b を測定する。一方、各組み合わせを構成する前フレーム FR(k-2)の映像データ Ddl について、当該映像データ Dd2に対応する出力信号 Od2と、上記黒を示す出力信 号 Obとを、画素 PIX(i,j)に繰り返し印加している第 1の定常状態から、次のブランク 期間 Tbに印加する出力信号 Obを変更しながら、当該ブランク期間 Tbの終了時点に おける輝度を測定する。さらに、これら各出力信号 Ob毎に測定された輝度の中から 、上記輝度 L2bに一致するものを探し出し、その輝度を測定したときに、印加された 出力信号 Obに対応する映像データ Dbを、上記映像データ Ddlおよび Dd2に対応 する映像データとして決定する。
[0116] 上記構成において、図 4に示す期間 T1のように、ある画素 PIXGJ)が映像表示期 間 Td中に表示すべき映像データ Ddlが一定の場合、例えば、図 12に示すように、 L UT51には、互いに同じ値の組み合わせ(Ddl 'Ddl)に対応する出力値として、 0が 記憶されているので、ブランク期間用生成回路 32は、 0を示す映像データ Dbを出力 する。この場合、映像表示期間用生成回路 31からは、一定の値の映像データ Ddl が出力されているので、出力回路 33は、ある画素 PIX(i,j)への映像データ Dとして、 映像データ Ddlと 0を示す映像データ Dbとを繰り返し出力する。この結果、図 2に示 すデータ信号線駆動回路 3は、上記画素 PIX(i,j)へ、映像データ Ddlに対応する出 力信号 Odlを出力する動作と、黒を示す出力信号 Obを出力する動作とを繰り返し、 当該画素 PIX(i,j)の輝度は、図 4に示す期間 T1のように、輝度 Lblと輝度 Ldlとの 間を行き来する。
[0117] この状態で、上記画素 PIXGJ)へ映像表示期間 Td中に表示すべき映像データが Ddlから、 D2dへと変化すると、例えば、図 12に示すように、 LUT51には、輝度が 増加する組み合わせに対応する出力値として、互いに同じ値の組み合わせに対応 する出力値よりも高い輝度を示す値が格納されているので、ブランク期間用生成回 路 32は、 0よりも高い輝度を示す映像データ Dbl 2を出力する。
[0118] これにより、出力回路 33は、上記画素 PIX(i,j)へ映像データ Dとして、映像データ Ddl(i,j,k-2)、映像データ Dbl2(i,j,k- 1)および映像データ Dd2(i,j,k)を順次出力し 、上記データ信号線駆動回路 3は、上記画素 PIXGJ)へ、ある映像表示期間 Td(k-2) に映像データ Ddl(i,j,k-2)に対応する出力信号 Odl(i,j,k-2)を出力した後、続くブ ランク期間 Tb(k-l)に、映像データ Dbl2(i,j,k-1)に対応する出力信号 Obl2(i,j,k-l )を出力し、さらに、当該ブランク期間 Tb(k-l)に続く映像表示期間 Td(k)に、映像デ ータ Dd2(i,j,k)に対応する出力信号 Od2(i,j,k)を出力する。
[0119] このように、映像表示期間 Td中に表示すべき映像データが、輝度を増加させるよう に変化する場合、信号処理部 21は、ブランク期間用の映像データとして挿入する映 像データ Dbを定常状態のときよりも増加させることによって、変化前の映像データを 表示する映像表示期間 Td(k-2)と、変化後の映像データを表示する映像表示期間 T d(k)との間に挿入されるブランク期間 Tb(k-l)において、画素 PIX(i,j)へ出力される 出力信号 Ob(i,j,k-l)の値を、定常状態のときよりも、高い輝度を示すように変更する
[0120] これにより、定常状態のときと同じ輝度を示す出力信号が画素 PIX(i,j)へ印加され る場合とは異なって、次の映像表示期間 Td(k)における画素 PIX(U)の応答不足が 発生しない。したがって、応答不足に起因する画質低下を発生させることなぐインパ ルス型発光に近づけることによって、動画表示時の画質を向上させることができる。
[0121] ところで、上記では、一例として、各フレーム期間において、映像表示期間用の後 にブランク期間を設ける構成について説明したが、映像表示期間の前にブランク期 間を設けてもよい。この場合は、上記フレームメモリ 41に必要な記憶容量をさらに削 減できる。
[0122] 〔第 2の実施形態〕
ところで、上記では、ブランク期間用生成回路が、定常状態のブランク期間用の映 像データ Dbとして、黒を示す値 (0)を出力する場合を例にして説明したが、本実施 形態では、垂直配向モードの液晶セルをノーマリブラックモードで使用して 、る場合 に、特に好適な構成として、黒よりも輝度が高ぐしカゝも、充分に暗い輝度を示す値と して、予め定められた値を出力する構成について説明する。
[0123] 具体的には、本実施形態に係る信号処理部 21aは、図 1に示すように、第 1の実施 形態に係る信号処理部 21と略同様の構成であるが、ブランク期間用生成回路 32に 代えて設けられたブランク期間用生成回路 32aが、定常状態のブランク期間用の映 像データ Dbとして、黒よりも高い輝度を示し、し力も、充分に暗い輝度を示す値として 、予め定められた値を出力するように構成されている。
[0124] ここで、上記充分に喑 、輝度とは、ブランク期間 Tbにお 、て画素 PIX(i,j)の輝度を 当該輝度に設定したとしても、表示上、問題となる程の黒浮き (コントラスト低下)が発 生せず、し力も、インパルス効果の低下が問題にならない (動画ボャケ等に起因する 画質劣化を充分に抑制可能な)輝度であって、例えば、白を示す輝度の 1%以下の 輝度を示す値が好適に使用される。また、当該輝度に対応する映像データ Dbは、例 えば、映像データ Dが 8ビットで表現され、当該映像データ Dのガンマ値が 2. 2の場 合、 32階調以下の値になる。
[0125] より詳細に説明すると、通常、テレビ映像の絵作りにおいて、コントラストは、大きけ れば大きい程、好ましいが、コントラストが 250程度あれば、視認上問題とならないと 言われている。ここで、例えば、垂直配向モードの液晶セルをノーマリブラックモード で駆動する場合、階調遷移を強調する作業が行われない定常モードでは、一般に、 黒→灰(1%)の応答に比較して、灰(1%)→黒の応答の方が遙かに速い。したがつ て、黒と灰(1%)との間を繰り返し遷移した場合の平均黒輝度は、中間の 0. 5%より も遙かに黒輝度に近くなる。ここで、当該モードにおける黒輝度は、一般に、白輝度 の 0. 1% (大きくても 0. 2%)程度に設定される。したがって、平均黒輝度が、略 0. 2 % (大きくても 0. 35%)程度になることを期待できる。この結果、ブランク期間の輝度 を、白を示す輝度の 1%以下に設定すれば、上述したコントラストを充分に達成でき、 コントラストを、視認上問題にならないレベルに維持できる。なお、この応答の関係は 、液晶の応答速度が大きく低下する低温時などでも変わらない。したがって、環境の 変化に拘わらず、一定の値 (例えば 32階調)を、そのまま使用できる。
[0126] また、ブランク期間用生成回路 32aには、例えば、当該値 Dbcを出力するために、 LUT51に代えて、図 13に示す LUT51aが設けられている。当該 LUT51aでは、 L UT51において、 0が格納されていた箇所に、上記値 Dbcが格納されており、ブラン ク期間用生成回路 32aは、上記ブランク期間用生成回路 32が 0を出力する状況の場 合、黒を示す値 (0)に代えて、上記値 Dbcを出力することができる。
[0127] ここで、本実施形態のように、画素アレイ 2として、垂直配向モードの液晶セルをノ 一マリブラックモードで使用している場合、階調が大きくなる方向へ階調遷移する際( ライズの階調遷移)、液晶分子は、画素電極へ印加される電圧によって形成される傾 斜電界によって、液晶セルの基板に平行な方向から傾斜する方向に傾斜される。一 方、階調が小さくなる方向へ階調遷移する際 (ディケイの階調遷移)の場合は、基板 に形成された垂直配向膜による垂直方向への規制力によって、液晶分子を垂直方 向に復帰させている。この結果、上記液晶セルを使用した場合は、ライズ方向の階調 遷移は、倒れる方位 (配向方向の基板面内成分)が既に決定している中間調力 の スタートに対し、倒れる方位が決定して 、な 、0スタート応答が極端に遅くなりやす ヽ
[0128] したがって、第 1の実施形態のように、ブランク期間用の映像データ Dbとして、 0 (黒 )を出力し、当該ブランク期間 Tbの終了時点で、画素 PIXGJ)の配向状態が、黒の状 態、すなわち、液晶分子が垂直に配向している状態へと到達していると、次の映像表 示期間 Tdにおけるライズ方向の階調遷移が、黒以外の配向状態(中間調の状態)か らの階調遷移に比べて、大幅に遅くなり、当該映像表示期間 Tdにおける画素 PIX(i,j )の応答速度が大幅に不足する虞れがある。
[0129] これに対して、本実施形態では、ブランク期間用生成回路 32aが、黒よりも輝度が 高ぐし力も、充分に暗い輝度を示す値として、予め定められた値を、ブランク期間用 の映像データ Dbとして出力することによって、ブランク期間用生成回路 32aを含む駆 動部 14aが画素 PIXGJ) へ、定常状態のブランク期間用の出力信号 Obとして、黒より も輝度が高ぐし力も、充分に暗い輝度を示す値として、予め定められた値の出力信 号を印加している。
[0130] したがって、ブランク期間 Tbにおいて、画素 PIXGJ)が充分高速に応答し、ブランク 期間 Tbの終了時点にお 、て、ブランク期間用の映像データ Dbの示す輝度に到達し たとしても、当該輝度は、黒ではないので、次の映像表示期間 Tdにおける画素 PIXG ,j)の応答速度低下は発生しない。
[0131] より詳細には、上記駆動部 14aが画素 PIXG, j)を駆動する構成では、ブランク期間 Tbにおいて、画素 PIXGJ)が充分高速に応答したとしても、ブランク期間 Tbの終了 時点における液晶の配向状態は、コントラストを損なわない範囲で、既に、ある程度、 傾斜している状態である。ここで、黒表示の状態から、液晶に電圧が印加される場合 、各液晶分子は、略垂直に配向している状態から、印加される電界や、周囲の液晶 分子の状態、あるいは、液晶に接触している部材 (電極など)の形状などによって、倒 れる方位と、傾斜角(基板の法線方向からの角度)との双方を決定する必要がある。 これに対して、黒表示以外の状態では、液晶分子の倒れる方位が既に決定されてい るため、各液晶分子は、印加される電圧に応じて、傾斜角を決定するだけでよい。言 い換えると、黒表示以外の状態では、黒表示の状態、すなわち、液晶分子が倒れる 方位が制御されていない状態とは異なり、液晶分子の倒れる方位が充分に制御され ている。したがって、黒表示させる構成と比較して、液晶分子の応答を制御しやすい
。この結果、画素アレイ 2としての液晶パネルの温度低下、データ信号線駆動回路 3 の耐圧の制限などに対処しやすぐこれらに対して、より柔軟に対応できる。
[0132] なお、本実施形態では、画素アレイ 2の各画素 PIXの輝度を、ブランク期間中に、 黒ではなぐ暗表示用に予め定められた輝度に制御しているため、映像表示期間 Td に画素へ表示すべき輝度が当該暗表示用の輝度に近い場合には、ブランク表示期 間 Tbにおける当該画素の輝度を、映像表示期間 Tdにおける当該画素の輝度から 大きく低下させることができず、映像表示期間 Tdの輝度よりも高くなることさえ、あり得 る。
[0133] ただし、図 7〜図 9を参照しながら上述したように、動きボャケが発生する原因は、 比較的明るい領域と暗い領域との位置関係が変化するときに、明るい領域が暗い領 域に混ざって中間的な領域 (ボャケ)ができることである。したがって、上記暗表示用 の輝度に近い階調 (例えば、白の輝度の 1%以下の輝度; 32階調以下程度など)の 映像 (あるいは領域)を表示する場合には、動きボャケが殆ど発生せず、発生したと しても、視認することが難しい。
[0134] 一方、上記暗表示用の輝度と比較して充分に明るい映像 (あるいは領域)を表示す る場合には、ブランク表示期間 Tbにおける当該画素の輝度を、映像表示期間 Tdに おける当該画素の輝度から大きく低下させることができるので、動きボャケの発生を 抑制できる。
[0135] この結果、本実施形態のように、ブランク期間中に、暗表示用の輝度となるように画 素の輝度を制御したとしても、何ら支障なぐ動きボャケなどに起因する画質劣化を 抑制できる。
[0136] なお、以下では、一例として、画素アレイ 2がノーマリーブラックであり、ガンマ値を 2 . 2に合わせる場合の階調電圧の設定方法について簡単に説明する。なお、以下で は、説明の簡略化のため、映像データが 8ビット (0〜255階調)であり、階調電圧を、 32階調刻みに設定できる場合を例にして説明する。
[0137] まず、第 1に、画素アレイ 2の最大輝度、最大コントラストを利用するために、黒電圧
(VO)を最小電圧に, 白電圧 (V255)を最大電圧に設定する。
[0138] 次に、ブランク期間用の映像データ Db (ブランキング期間の階調設定のルール)を 決定する。さらに、ブランク期間用の映像データと白とを交互に表示したときの輝度( 白輝度)と、映像表示期間 Tdもブランク期間 Tbも、ブランク期間用の映像データ Db を表示したときの輝度とが、所望のガンマ特性を持つように、ブランク期間 Tb時に画 素 PIXへ印加される電圧 (ブランキング電圧)を決定する。
[0139] 一例として、ブランク期間用の映像データ Dbが 32階調であり、その場合に画素 PI Xへ印加される電圧を V32、白表示時に画素 PIXへ印加される電圧を V255とし、 V 255, V32, V255, V32,…と馬区動したとさの輝度を L255、 V32、 V32、 V32、…と 馬区動したとさの輝度を 32とすると、 255/ 32= (255/32Γ2. 2 = 96. 2となる ように、ブランキング電圧 V32を調整する。
[0140] さらに、上記で決定したブランキング電圧 (V32)を用いながら、映像表示期間用の 映像データ Ddが任意の階調 Xを示しているときに、画素 PIXに印加される電圧 Vxと ブランキング電圧とを交互に印加した時の輝度 Lxと、上記 L32と、 L255との比率力 ら所望の γを実現する Vxを決定する。
[0141] 次に、以上のように決定された各階調電圧に基づいて、階調遷移が発生した場合 のブランク期間用の映像データ Dbを決定し、上記 LUT(51a)に記憶する。
[0142] 具体的には、定常状態において、階調 Xを表示しているとき(映像表示期間 Tdに階 調 Xに対応する階調電圧 Vxを印加し、ブランク期間 Tbにブランキング電圧を印加し ているとき)のブランク期間 Tbの最終輝度を測定し、当該輝度を TDxとする。同様に 、映像表示期間 Tdに階調 Xを表示しているときのブランク期間 Tbの最終輝度を測定 し、当該輝度を TCxとする。なお、これらの輝度の測定は、各映像表示期間用の映 像データと、ブランク期間用の映像データとの組み合わせ毎に行われ、測定結果は 、例えば、オシロスコープの波形などとして記録される。 [0143] さらに、階調遷移が発生したときの輝度 TDxおよび TCxも測定し、それらの測定結 果に基づいて、階調遷移が発生したときに出力すべきブランク期間用の映像データ Dbを決定する。
[0144] 一例として、この場合、例えば、入力階調データが 32階調から 255階調に変化する とき、定常状態では、 TD32く TD255であり、 TC32く TC255である。したがって、 TD32を TD255に変化させるためのブランク階調は、 32階調のときのブランク階調と 255階調の時のブランク階調の間に必ず存在する。
[0145] したがって、階調遷移が発生した場合の輝度変化を、例えば、フォトダイオードとォ シロスコープとなどによって測定し、測定結果を記録すると共に、階調遷移が発生し た場合の波形と上記定常状態の波形とを比較し、例えば、上記組み合わせ毎に記 録された波形の中から、映像表示期間用の映像データ Tdの示す階調が階調遷移の 前の階調と同じで、し力も、ブランク期間用の映像データ Dbによって到達する輝度 T Dxが、階調遷移の発生した場合の輝度 TDxに最も近くなるような組み合わせを選択 し、その組み合わせを構成するブランク期間用の映像データ Dbを選択するなどして 、階調遷移が発生した場合に出力すべきブランク期間用の映像データ Dbを決定で きる。なお、ディケイ遷移の一部については、通常補正階調 =0 (補正なし)としてお いてよい。
[0146] 〔第 3の実施形態〕
ところで、上記第 1および第 2の実施形態では、信号処理部 21 (21a)が定常状態 のブランク期間用の映像データ Dbとして出力する値力 映像表示期間用の映像デ ータ Ddの値に拘わらず、一定である場合について説明した。これに対して、本実施 形態では、映像表示期間用の映像データ Ddの値に応じて、定常状態のブランク期 間用の映像データ Ddの値を変更する構成について説明する。
[0147] 具体的には、本実施形態に係る信号処理部 21bは、図 1に示す信号処理部 21と略 同様の構成であるが、ブランク期間用生成回路 32に代えて、図 14に示すブランク期 間用生成回路 32bが設けられて 、る点で異なって 、る。
[0148] 当該ブランク期間用生成回路 32bには、ブランク期間用生成回路 32の構成に加え て、上記メモリ制御回路 42から出力される前フレーム FR(k-2)の映像データ D、およ び、現フレーム FR(k)の映像データ Dのうち、互いに同じ画素 PIXGJ)への映像表示 期間用の映像データ同士 (D(i,j,k)および D(i,j,k-2) )に基づいて、定常状態か否か を判定する判定回路 44 (判定手段)と、上記メモリ制御回路 42から出力される現フレ ーム FR(k)の映像データ D(i,j,k)に基づいて、定常状態の場合のブランク期間用の 映像データ Dbを生成する定常状態用生成回路 45 (定常状態生成手段)と、上記判 定回路 44の判定結果に基づいて、生成回路 43 (ブランク生成手段)の出力および定 常状態用生成回路 45の出力の一方を選択して出力する出力回路 46 (出力手段)と を備えている。これにより、定常状態の場合は、定常状態用生成回路 45の生成した 映像データ Dbを出力すると共に、映像表示期間用の映像データが変化する場合は 、生成回路 43の生成する映像データ Dbを出力できる。
[0149] なお、以下では、定常状態用生成回路 45が、現フレーム FR(k)の映像データ D(i,j, k)に基づいて、ブランク期間用の映像データ Dbを生成する構成を例にして説明する 力 定常状態用生成回路 45の出力が出力されるのは、定常状態、すなわち、現フレ ーム FR(k)の映像データ D(i,j,k)と、前フレーム FR(k- 2)の映像データ D(i,j,k-2)と が等しい状態のときなので、定常状態用生成回路 45は、現フレーム FR(k)の映像デ ータ D(i,j,k)に代えて、前フレーム FR(k-2)の映像データ D(i,j,k-2)に基づいて、映 像データ Dbを生成しても同様の効果が得られる。
[0150] 本実施形態に係る定常状態用生成回路 45は、現フレーム FR(k)の映像データ D(i ,j,k)に、充分に輝度差がある値として、予め定められている定数をかけた値として、 定常状態の場合のブランク期間用の映像データ Dbを生成して 、る。
[0151] ここで、ブランク期間用の映像データ Dbの示す輝度が低くなればなる程、 CRTのよ うなインパルス型発光に近づけることができ、画素アレイ 2に動画表示する際の画質 をより向上できる。一方、ブランク期間用の映像データ Dbの示す輝度が低くなればな る程、画素 PIX(i,j)の輝度の平均値が低くなるので、画素アレイ 2の明るさが低くなつ てしまう。したがって、上記定数としては、動画表示時の画質を充分に向上可能で、 し力も、画素アレイ 2の明るさを充分に維持可能なような値に設定することが望まれる
[0152] 具体的には、ブランク期間 Tbを設けるインノ ルス駆動の場合、理想的には、動画 表示時の画質を向上するために、ブランク期間 Tbが充分に長ぐし力も、ブランク期 間 Tbにおける輝度が 0である方が望ましい。ただし、画素が液晶の場合のように、画 素の応答速度が遅い場合には、動画表示時の画質の向上と、画素アレイ 2の明るさ の向上との双方を完全に満たすことは難しい。したがって、このような場合には、ブラ ンク期間 Tbにおいて、間違った映像が認識されないように、ブランク期間 Tbにおける 各画素の輝度を設定することが望ま ヽ。
[0153] ここで、映像表示期間 Tdの輝度に対する、ブランク期間 Tbの輝度の比率を変更し ながら、画素アレイ 2に映像を表示させ、各比率において表示された映像の動画ボャ ケを複数の使用者に主観評価させた結果、上記輝度の比率が 1Z2以下であれば、 実用上許容できる程度に明確に動画ボャケのレベルが改善されていることが判明し た。また、輝度の比率で、 1Z4以下 (特に 1Z5以下)であれば、さらに明確に動画ボ ャケのレベルが改善され、充分に動画表示時の画質改善効果が得られることが判明 した。
[0154] なお、液晶は、応答速度が CRTよりも遅いため、画素の輝度は、図 15に示すように 、波状に変化し、人間の視覚にとっては、ブランク期間が Tbh、映像表示期間が Tdh のように、ブランク期間 Tbおよび映像表示期間 Tdとはズレて把握される。また、図 15 は、輝度の比率が約 1/5 (ガンマ値が 2. 2の階調で表現したときの比率が 1/2)の 場合に、ピーク輝度が 1になるように、ブランク期間 Tbおよび映像表示期間 Tdにお ける輝度を正規ィ匕して示して 、る。
[0155] ここで、上記輝度の比率(1Z4以下、特に 1Z5以下)は、ガンマ値が 2. 2の階調で 表現すると、約 1Z2以下になり、階調の比率で 1Z2以下に設定されていれば、ブラ ンク期間 Tbを設けない構成と比較して、動画応答性能を向上できることが確認され た。
[0156] したがって、上記定数は、少なくとも、これらの上限値以下に設定することが望まれ る。さらに、より好ましい値としては、画素 PIX(i,j)の不十分な応答を考慮して、上記 定数は、輝度で 1Z20以下、ガンマ値が 2. 2の階調では、 1Z4以下の値に設定す ることが望ましい。これらの上限値以下に設定されていれば、画素 PIX(i,j)の応答速 度が遅 、場合であっても、充分に動画応答性能を向上させることができる。 [0157] また、ブランク期間 Tbの輝度を低くすればする程、画素アレイ 2の平均的な輝度が 低くなる。したがって、上記好ましい数値範囲(階調で 1Z4以下)の中でも、ガンマ値 が 2. 2の階調で 1Z5以上に設定されていれば、画素アレイ 2の平均的な明るさを維 持したまま、動画応答性能を向上できるので、さらに好ましい。
[0158] 本実施形態では、上記好適な数値範囲の中で、最も画素アレイ 2の明るさを向上可 能な値として、上記定数を、階調で 1Z4に設定しており、定常状態用生成回路 45は 、現フレーム FR(k)の映像データ D(i,j,k)を 1Z4倍した値を映像データ Dbとして出 力している。
[0159] なお、上記では、現フレーム FR(k)または前フレーム FR(k-2)の映像データを定数 倍して、ブランク期間用の映像データ Dbを算出する定常状態用生成回路 45を設け た構成について説明したが、定常状態の場合に、ブランク期間用の映像データ Dbと して、現フレーム FR(k)または前フレーム FR(k- 1)の映像データ Dを定数倍した値を 出力できれば、上記各部材 44〜46を削除し、例えば、図 1に示す LUT51または 51 aの代わりに、 LUT5 lbを設けた構成であっても同様の効果が得られる。
[0160] 当該 LUT51bには、図 16に示すように、定常状態に対応する記憶領域、すなわち 、互いに等しい値の現フレーム FR(k)の映像データ D(i,j,k)と前フレーム FR(k- 2)の 映像データ D(i,j,k-2)との組み合わせに対応する記憶領域に、 D(i,j,k) =D(i,j,k-2) を定数倍した値が記憶されている。なお、図 16では、一例として、当該定数が 1Z2 であり、階調遷移が輝度の減少を示す領域には、図 12と同様に、黒を示す値 (0)が 格納されて 、る場合を図示して 、る。
[0161] どのようにして、定常状態におけるブランク期間用の映像データ Dbを生成するかに 拘わらず、本実施形態に係る信号処理部 21bは、映像表示期間用の映像データ Dd の値に応じて、定常状態のブランク期間用の映像データ Ddの値を変更している。し たがって、定常状態のブランク期間用の映像データ Ddの値が一定の構成と比較して 、動画表示時の画質向上効果と、画素アレイ 2の明るさ向上効果との双方を、より高 いレベルで、バランス良く達成可能な画像表示装置 lbを実現できる。
[0162] より詳細には、上述したように、ブランク期間 Tbの表示が暗い程、動画表示時の画 質を向上できる一方で、画素アレイ 2の明るさが低下してしまう。したがって、定常状 態のブランク期間用の映像データ Ddの値は、動画表示時の画質向上効果と、画素 アレイ 2の明るさ向上効果とを、バランス良く達成可能な値に設定することが望まれる
[0163] ところが、動画表示時の画質を互いに同じ程度に向上するために必要なブランク期 間 Tbの輝度は、ブランク期間 Tbに隣接する映像表示期間 Tdの輝度が互いに異な つていると、互いに異なった値になり、映像表示期間 Tdの輝度が明るい程、同程度 に画質を向上するために必要な輝度も高くなる。
[0164] したがって、定常状態のブランク期間表示用の映像データ Ddの値を一定にする構 成では、比較的暗い表示においても、動画表示時の画質を向上できるように、ブラン ク期間 Tbの輝度を決定する必要があり、画素アレイ 2の明るさを充分に向上すること が難しい。
[0165] これに対して、本実施形態に係る本実施形態に係る信号処理部 21bは、映像表示 期間用の映像データ Ddの値に応じて、定常状態のブランク期間用の映像データ Dd の値を変更しており、映像データ Ddの示す輝度が高い程、定常状態のブランク期間 用の映像データ Ddの輝度を高く設定している。この結果、定常状態のブランク期間 用の映像データ Ddの値が一定の構成と比較して、動画表示時の画質向上効果と、 画素アレイ 2の明るさ向上効果との双方を、より高いレベルで、ノ《ランス良く達成可能 な画像表示装置 lbを実現できる。
[0166] なお、以下では、上述した例と同様に、画素アレイ 2がノーマリーブラックであり、ガ ンマ値を 2. 2に合わせる場合の階調電圧の設定方法について簡単に説明する。な お、以下でも、説明の簡略化のため、映像データが 8ビット (0〜255階調)であり、階 調電圧を、 16階調刻みに設定できる場合を例にして説明する。
[0167] まず、第 1に、画素アレイ 2の最大輝度、最大コントラストを利用するために、黒電圧
(VO)を最小電圧に, 白電圧 (V255)を最大電圧に設定する。
[0168] 次に、ブランク期間用の映像データ Db (ブランキング期間の階調設定のルール)を 決定し、さらに、各階調に対応する電圧を仮決めする。
[0169] 次に、仮決めされた階調電圧を用いて、各映像表示期間用の映像データ Ddを表 示した場合 (映像表示期間用の映像データ Ddと、それによつて決定されるブランク期 間用の映像データ Dbとを交互に表示した場合)の輝度を測定し、測定された各輝度 と、所望のガンマ特性から算出される各階調表示時の輝度との誤差全体の評価結果 が許容範囲に入るように、各階調電圧の調整を繰り返す。
[0170] ここで、各階調表示時の誤差を全て求めてから、各階調電圧を調整してもよいが、 測定回数が増カロしてしまう。したがって、本実施形態では、白表示から、順番に、ある 第 1の階調 (最初は、白)を表示した場合の輝度と、当該第 1の階調を表示している場 合のブランク期間用の映像データ Db (本実施形態の定数例では、最初は、白階調 の 1/4の階調)と同じ階調を表示している場合の輝度とが、所望のガンマ特性 (この 例では、 2. 2)を持つように、上記第 1の階調に対応する階調電圧を調整する。階調 電圧の調整後は、上記第 1の階調を表示している場合のブランク期間用の映像デー タ Dbを、第 1の階調として、階調電圧の調整を繰り返す。さらに、階調電圧の調整を 繰り返して、第 1の階調が、黒階調よりも大きぐ階調電圧を調整可能な最小の階調 を下回ると、繰り返しを打ち切り、最後に階調電圧を調整した階調を表示した場合の 輝度と、白を表示した場合の輝度とを比較して、所望のガンマ特性からの誤差を評価 する。なお、誤差が許容範囲を超えている場合は、階調電圧の調整方法 (例えば、 調整量や調整比率など)を変更し、最初(白を第 1階調とする調整処理)から、階調電 圧の調整処理を繰り返す。また、階調電圧の調整方法の変更は、階調電圧が安定 するまで (上記誤差が許容範囲に入るまで)繰り返される。
[0171] 一例として、映像データが 8ビット (0〜255階調)の場合、第 1の階調を 255階調と して、階調電圧 V64を調整する。より詳細には、 255階調を表示している場合の輝度 (V255と V64とを繰り返し印加した場合の輝度)と、 64階調を表示している場合の輝 度 (V64と、 V16とを繰り返し印加した場合の輝度)とを比較し、両者の輝度から決定 されるガンマ特性が所望のガンマ特性 (2. 2)に近づくように、 64階調に対応する階 調電圧 V64を調整する。
[0172] 次に、第 1の階調を 64階調として、階調電圧 V16を調整する。より詳細には、 64階 調を表示して ヽる場合の輝度 (V64と V16とを繰り返し印加した場合の輝度)と、 16 階調を表示して ヽる場合の輝度 (V16と V4とを繰り返し印加した場合の輝度)とを比 較し、両者の輝度力も決定されるガンマ特性が所望のガンマ特性 (2. 2)に近づくよう に、 16階調に対応する階調電圧 V16を調整する。
[0173] ここで、上記の例では、階調電圧が 16階調刻みにしか調整できないので、次に、第 1の階調を 4階調とすると、当該階調 (4階調)は、上述した下限値、すなわち、黒階調 よりも大きぐ階調電圧を調整可能な最小の階調を下回ってしまう。したがって、繰り 返しを打ち切り、 16階調を表示した場合の輝度 (V16と V4とを繰り返し印加した場合 の輝度)と、白を表示した場合の輝度とを比較して、所望のガンマ特性からの誤差を 評価する。
[0174] このようにして、白表示を基点とした階調電圧の繰り返し処理において、第 1の階調 とした階調の電圧(上記の例では、 V64および V16)が決定された後は、これらから 算出可能な階調電圧を順次検索し、残余の階調電圧を決定する。
[0175] 具体的には、 V16より小さな階調電圧は、黒電圧と上述した下限値に対応する階 調電圧とから決定される。したがって、下限値の階調(16階調)よりも 1つ大きぐしか も、階調電圧を調整可能な階調 (32階調)を表示している場合の輝度 (V32と、 V8と を繰り返し表示している場合の輝度)と、白を表示した場合の輝度とを比較して、所望 のガンマ特性を持つように、階調電圧 V32を調整することによって、当該階調電圧 V 32を決定できる。同様に、残余の調整可能な階調電圧についても、下の階調から順 番に階調電圧を決定していくことによって決定できる。
[0176] なお、各階調電圧が決定された後は、第 2の実施形態と同様に、階調遷移が発生 した場合のブランク期間用の映像データ Dbを決定し、上記 LUT(51b)に記憶する。
[0177] 〔第 4の実施形態〕
上記第 1ないし第 3の実施形態では、映像表示期間用生成回路 31が入力された映 像データ Dと同じ値を、映像表示期間用の映像データ Ddとして出力する構成につい て説明した。これに対して、本実施形態では、画素 PIXGJ)への今回の映像データ D (i,j,k)を、当該画素 PIXGJ)への前回の映像データ D(i,j,k-2)に応じて補正し、補正 後の値を、映像表示期間用の映像データ Dd(i,j,k)として出力する構成について説 明する。
[0178] すなわち、本実施形態に係る信号処理部 21cでは、図 1に示す映像表示期間用生 成回路 31に代えて、図 17に示す映像表示期間用生成回路 31cが設けられている。 具体的には、当該映像表示期間用生成回路 31cは、画素 PIXへの映像データ Dの 1 フレーム分を次のフレームまで記憶するフレームメモリ 61と、現フレーム FR(k)の映 像データをフレームメモリ 61へ書き込むと共に、フレームメモリ 61から前フレーム FR( k-2)の映像データ DOG, j,k- 2)を読み出して出力するメモリ制御回路 62と、前フレー ム FR(k-2)の映像データ D(i,j,k-2)を参照して、上記現フレーム FR(k)の映像デー タ D(i,j,k)を補正し、補正後の映像データを補正用の映像データ Dd(i,j,k)として出 力する変調処理部 63とを備えて ヽる。
[0179] 上記変調処理部 63は、例えば、前回の映像データ D(i,j,k-2)と、今回の映像デー タ D(i,j,k)との組み合わせ、それぞれについて、当該組み合わせが変調処理部 63に 入力された場合に変調処理部 63が出力すべき映像表示期間用の映像データ Dd(i,j ,k)を示すデータが記憶された LUT (Look Up Table ) 71を備えている。
[0180] さらに、本実施形態では、 LUT71に必要な記憶容量を削減するために、上記 LU T71が記憶して 、るデータは、両映像データが取り得る値の組み合わせを全て記憶 するのではなぐ予め定められた組み合わせに対応するデータに制限されており、上 記変調処理部 63には、上記 LUT71に記憶された各組み合わせに対応するデータ を補間して、実際に入力された映像データの組み合わせに対応するデータを算出し て、算出結果を出力する演算回路 72が設けられている。
[0181] 上記構成では、変調処理部 63が、前フレーム FR(k-2)の映像データ D(i,j,k_2)を 参照して、上記現フレーム FR(k)の映像表示期間用の映像データ Dd(i,j,k)を補正し ているので、第 1ないし第 3の実施形態のように、映像表示期間用生成回路 31が現 フレーム FR(k)の映像データ D(i,j,k)を、そのまま、映像表示期間用の映像データ D d(i,j,k)として出力する構成よりも構成が複雑になるものの、上記映像データ D(i,j,k) をそのまま出力する構成よりも、柔軟に、画素 PIXGJ)の応答を制御できる。
[0182] 一例として、定常状態におけるブランク期間時の映像データ Ddが 0でなければ、ブ ランク期間の応答を加速することも、ある範囲内で可能であり、ディケイ応答の改善に ち対応でさる。
[0183] なお、上記各実施形態では、画素 PIXへの映像データ D力 当該画素 PIXの輝度 を増加させるように変化する場合、増加前の映像データ D1に対応する映像表示期 間用の出力信号 Odlと、増加後の映像データ D2に対応する映像表示期間用の出 力信号 Od2との間に出力されるブランク期間用の出力信号 Obを制御して、定常状 態の場合にブランク期間用の出力信号 Obとして出力される値よりも高い輝度を示す 値に設定する構成について説明した力 これに限るものではない。
[0184] 例えば、画素 PIXへの映像データ D力 当該画素 PIXの輝度を減少させるように変 化する場合、減少前の映像データ D1に対応する映像表示期間 (第 1の映像表示期 間)用の出力信号 Odlと、減少後の映像データ D2に対応する映像表示期間(第 2の 映像表示期間)用の出力信号 Od2との間に出力されるブランク期間用の出力信号 O bを制御して、当該出力信号 Obの値を、定常状態の場合に、ブランク期間用の出力 信号 Obとして出力される値よりも低い輝度を示す値に設定してもよい。
[0185] この場合であっても、上記ブランク期間の終了時点における輝度を、減少後の映像 データ D2が常時印加されている場合のブランク期間の終了時点における輝度に近 づけることができ、上記第 2の映像表示期間における画素 PIXの応答不足の発生を 抑制できる。
[0186] いずれの場合であっても、映像データ Dの変化によって、映像表示期間 Tdに画素 PIX(i,j)へ出力される出力信号 Odの示す輝度が第 1の輝度力ゝら第 2の輝度へと変化 する場合、定常状態のブランク期間用の出力信号 Obと比較して、輝度を増カロさせる 方向および減少させる方向のうち、上記変化と同じ方向に補正された輝度を示すよう に、上記ブランク期間用の出力信号 Obを補正できれば、同様の効果が得られる。
[0187] ただし、ブランク期間における画素 PIXの輝度の変化は、基本的に輝度を減少させ る変化なので、ブランク期間における画素 PIXの輝度を増大させる方向へのブランク 期間用の出力信号 Obの補正は、輝度の変化を弱める補正である。したがって、輝度 の変化を強調するように補正する場合とは異なり、定常状態の場合において、ブラン ク期間用の出力信号 Obとして出力可能な値の範囲の外に、強調されたブランク期間 用の出力信号 Obを出力するための値の範囲を配置しなくても、ブランク期間用の出 力信号 Obを確実に補正できる。この結果、定常状態における画像表示装置(1〜: Lc )の画質を低下させることなぐブランク期間用の出力信号または階調データを補正 できる。 [0188] ところで、輝度が減少するときにもブランク期間用の出力信号 Obを補正する場合、 これまで使用されていた制御回路 12、データ信号線駆動回路 3および走査信号線 駆動回路 4を変更せずに使用するために、ブランク期間用の映像データ Dbを補正 することによってブランク期間用の出力信号 Obを補正しょうとすると、以下の不具合 が発生する虞れがある。
[0189] 具体的には、この場合は、輝度が減少する場合のブランク期間用の映像データ Db
(以下では、補正後の映像データ Dbbと称する)を、定常状態の場合のブランク期間 用の映像データ (Dba)よりも低い値に設定する必要がある。ところが、特に、定常状 態における、ブランク期間用の映像データ Dbaを最も暗い輝度 (黒)を示す 0階調に 設定している構成では、それよりも低い階調が存在しないため、信号処理部は、補正 後の映像データ Dbbを制御回路 12へ正しく通知することができない。また、上記映 像データ Dbaを、予め定められた階調に設定していたり、映像表示期間 Tdの映像デ ータの定数倍に設定して ヽる場合であつても、制御回路 12へ出力する映像データ D は、正しく補正するために必要な階調だけ映像データ Dbaよりも低 ヽ値を表現できな い場合がある。
[0190] 一例として、制御回路 12へ出力する映像データ Dが 0〜255階調を表現可能であ つたとする。さらに、例えば、上記映像データ Dbaが 16階調であり、正しく補正するた めに 20階調だけ低く設定する必要があるとすると、補正後に表示すべき値は、ー4階 調になる。ところが、当該値は、上記映像データ Dでは、表現できない。
[0191] なお、補正後の映像データ Dbbを正しく通知するために、例えば、新たに信号処理 部が制御回路 12へ補正量を伝えるための伝送路を設けるなどすれば、制御回路 12 、およ b、各駆動回路 3 ·4なども、当該補正量を受け付けることができるように変更す る必要があるので、手間が力かると共に、回路規模が増大してしまう。
[0192] 以下では、上記不具合を発生させることなぐ輝度が減少するときにもブランク期間 用の出力信号 Obを補正するために好適な構成として、映像表示期間用生成回路 3 1へ入力される映像信号 DATを変換して、予め定められた階調よりも低い階調を示 す映像データが出現しないように変換する構成について説明する。なお、上述したよ うに、当該構成は、第 1〜第 4の実施形態のいずれにも適用できるが、以下では、特 に適した構成として、第 1の実施形態に適用した場合について説明する。
[0193] すなわち、変形例に係る信号処理回路 21dは、図 1と略同様の構成であるが、図 1 8に示すように、信号処理部 21dでは、映像表示期間用生成回路 31の前段に階調 変換部 34dが設けられて 、る。
[0194] 当該階調変換部 34dは、映像表示期間用生成回路 31へ入力される映像データの 下限値を、当該映像データが表現し得る数値範囲の下限値 (0)よりも大きな値になる ように、入力された映像データを変換するものであって、画質を余り低下させることな ぐ映像信号 DATの各映像データを変換するために、映像信号 DATの映像データ の階調深度(映像データを表現する際のビット幅)を、より深 、階調深度 (より大きなビ ット幅)に設定し、階調-輝度特性を所望の特性に設定した後、時空間的に予め定 められたノイズ情報を加算し、さらに、ノイズ情報の加算後の映像データを丸めている
[0195] 具体的には、本変形例に係る画素アレイ 2d (図 2参照)は、入力端子 T1へ入力さ れる各画素 PIXへの映像データ D αの γよりも大きな y特性を持つように設定されて おり、上記階調変換部 34dは、図 19に示すように、入力端子 T1へ入力される各画素 PIXへの映像データ Dを γ変換して、より大きな γ特性を持った表示デバイスへ表示 するための映像データ D βに変換する γ変換回路 81と、上記映像データ D βが取り 得る数値範囲を圧縮して、当該映像データ D |8と同じビット幅で、しカゝも、映像データ D βの黒レベルよりも低 、値を表現可能な映像データ D yを生成する階調変換回路 82と、当該映像データ にノイズ生成回路 84が生成したノイズを加算して出力す るノイズ付カ卩回路 83と、ノイズ付カ卩回路 83が出力する各映像データの下位ビットを丸 めて、映像データのビット幅を縮小する丸め処理回路 85 (丸め処理手段)とを含む Β DE (Bit-Depth Extension )回路が設けられており、丸め処理回路 85の出力する映 像データ Dは、現フレーム FR(k)の映像データとして映像表示期間用生成回路 31へ 入力される。
[0196] 本変形例では、上記入力端子 T1には、一般的な映像信号として、 γ = 2. 2の特性 を持った表示デバイスへ表示するための映像データ (D a )が入力されており、上記 画素アレイ 2dの γ特性は、 γ = 2. 8に設定されている。また、上記 γ変換回路 81は 、当該画素アレイ 2dの γ特性と同じ特性の映像データ D |8、すなわち、 γ = 2. 8の 特性を持った表示デバイスへ表示するための映像データ D βを生成する。また、本 変形例に係る Ί変換回路 81は、 γ変換に起因する誤差の発生を抑制するために、 映像データ Dをより広 、ビット幅の映像データ D βに変換して 、る。
[0197] 例えば、上記入力端子 T1には、一般的な映像信号として、各色毎に 8ビットの映像 信号が入力されており、上記 γ変換回路 81は、 8ビットの映像データ D αを 10ビット の映像データ D βに変換する。
[0198] さらに、上記階調変換回路 82は、図 20に示すように、上記映像データ D |8が取り 得る数値範囲 A1を圧縮して、当該数値範囲よりも狭い数値範囲 A2に変換する。ま た、当該数値範囲 A2、すなわち、階調 L11〜L12までの範囲は、映像データ が 階調 L10〜L13を表現できるとするとき、 L10<L11、かつ、 L12<L13になるように 設定されている。本変形例では、両映像データ D |8 ·ϋ γがそれぞれ 10ビットであり、 L1 =L10 = 0、 L2=L13 = 1023であり、上記値 L11および L12は、 f列えば、 79お よび 1013に設定されている。なお、上記映像データ D |8では、最小の階調 (L1)が 黒を示しており、最大の階調 (L2)が白を示している。
[0199] 一方、上記ノイズ生成回路 84は、平均値が 0であり、画素アレイ 2dへ表示される映 像に擬似輪郭が発生しない程度にランダムなノイズを出力している。また、ノイズデー タの最大値が大き過ぎると、ノイズパターンが画像表示装置 Idの使用者に認識され る虞れがある。したがって、上記ノイズの最大値は、ノイズパターンが認識されない程 度に設定されている。
[0200] 本変形例では、ノイズ付カ卩回路 83へ入力される各画素 PIXGJ)への映像データ D
Ύ G,j,k)は、 10ビットで表現されており、ノイズデータの大きさは、 ± 7ビット以内に設 定されている。
[0201] 上記ノイズ生成回路 85は、例えば、線形帰還シフトレジスタ(M系列や Gold系列な ど)を含む演算回路など、種々の演算回路であってもよいが、本変形例に係るノイズ 生成回路 85は、 16 X 16あるいは 32 X 32など、予め定められたブロック分のノイズデ ータを記憶したメモリ 91と、当該メモリ 91から順次ノイズデータを読み出すアドレス力 ゥンタ 92と、アドレスカウンタ 92をリセットするためのリセット信号を生成する制御回路 93とを備えて ヽる。
[0202] 上記制御回路 93は、同一の画素 PIX(U)への映像データ D(i,j,*)へ、全フレーム に渡って、互いに同じ値のノイズデータが印加されるように、アドレスカウンタ 92をリセ ットしている。例えば、本変形例では、上記制御回路 93は、図 2に示す映像信号源 S 0から映像データと共に伝送される水平同期信号および垂直同期信号の少なくとも 一方に同期してアドレスカウンタ 92をリセットする。この結果、上記ノイズ付カ卩回路 84 は、同一の画素 PIX(U)への映像データ D(i,j,*)へ、全フレームに渡って、互いに同 じ値のノイズデータを付加できる。したがって、画像表示装置 Idが画素アレイ 2dに静 止画を表示して ヽる場合、ノイズデータの時間変化に起因するチラツキやノイズ感の ない安定した静止画を表示できる。ここで、 *は、任意の値を示している。
[0203] なお、上記メモリ 91には、ランダムなノイズデータが格納されているので、各フレー ムにおいて、同じブロック内に位置する画素 PIXへの映像データには、ランダムなノィ ズデータが付加され、画素アレイ 2dに表示される映像に擬似輪郭が発生しな 、。
[0204] また、上記丸め処理回路 85は、ノイズ生成回路 84の出力する 10ビットの映像デー タから、下位 2ビットを丸め、 8ビットの映像データ D(i,j,k)として出力する。これに伴な い、上記フレームメモリ 31において、現フレーム FR(k)の各映像データ Dl(i,j,k)を 記憶するための記憶領域は、 1つの映像データ D(i,j,k)あたり、 8ビットに設定されて いる。
[0205] ここで、上記丸め処理回路 85によって行われる丸め処理は、切り捨て処理であって もよいし、切り上げ処理であってもよい。また、 10進数の場合の四捨五入処理(2進数 の場合の 0捨 1入処理)のように、予め定められたしきい値を超えるか否かによって、 切り捨てるか切り上げるかを選択する処理であってもよい。ただし、これらの丸め処理 のうち、切り捨て処理であれば、上位の桁を変更する必要がない。したがって、処理 の簡略ィ匕が求められる場合、丸め処理回路 85は、切り捨てによって、下位ビットを丸 めることが望ましい。
[0206] このように、ノイズを付カ卩した後で、丸め処理を行って 、るので、画素アレイ 2dへ表 示される映像にノイズパターンも擬似輪郭も発生せず、丸め処理前の映像データ D を表示した場合と見かけ上相違していないにも拘わらず、丸め処理回路 81以降の回 路で処理される映像データのビット数を削減できる。
[0207] ここで、付加されたノイズは、画像表示装置 Idの使用者によって、観察している階 調が周囲の画素とどの程度異なっている力 (変動率)、および、目指す輝度とどの程 度異なっている力 (誤差)として認識される。一般に、画像表示装置 Idのように、 100 ppiを基準にして絵作りする分野では、上記誤差の許容限界は、白輝度の 5%程度 であり、上記変動率の許容限界は、表示階調の 5%程度であることが知られている。
[0208] 画素 PIXへの階調を X階調だけ増加したときに、画素の透過率が、周囲の輝度(階 調を増加する前の透過率)を基準に何%だけ増加するかを計算したところ、画素ァレ ィ 2dの γ特性が γ = 2. 8であり、映像データ D yが 10ビットで表現される場合、 xが 32〜48階調であれば、殆どの階調で上記変動率が上記許容限界に収まることが確 認できた。同様に、画素の表示階調を X階調だけ増カロしたときに、本来の透過率 (階 調を増加する前の透過率)を基準に何%だけ増加するかとを計算したところ、画素ァ レイ 2dの γ特性が γ = 2. 8であり、映像データ D γが 10ビットで表現される場合、 χ が 32〜48階調であれば、殆どの階調で上記変動率が上記許容限界に収まることが 確認できた。この結果、 32〜48階調のノイズであれば、殆どの階調で上記許容限界 を下回り、使用者に見かけ上表示品質が劣化していないと感じさせることができる。
[0209] したがって、 1つの画素を単独で視認できない距離で見ることが想定されている場 合、 2〜3画素(6〜9画素)の間で、上記変動率および誤差が 5%を下回るように設 定すればよい。ここで、上記ノイズデータが略正規分布であるとすると、 32〜48〔階 調〕 X 6(1/2)〜9(1/2) =80〜144〔階調〕となる。したがって、 7ビット程度、すなわ ち、映像データ Dbよりも 3ビット程度少な 、ビット幅で時系列的に固定のノイズを付カロ しても、ノイズパターンが画像表示装置の使用者に視認される虞れはな 、。
[0210] ここで、一般には、画素サイズが大きくなつても、観察距離は、それに比例する程に は増大しないことが多いので、画素サイズが大きくなる程、ノイズデータの許容レベル 力 S小さくなる。したがって、 1〜144階調(7ビット以内)という数値範囲の中でも、上記 ノイズデータの絶対値の最大値として、多くの画像表示装置で好ましく使用される数 値範囲は、 48〜80階調の範囲であり、さら〖こ好ましくは、 63階調(6ビット)に設定す る方が望ましい。 [0211] 上記構成では、映像表示期間用生成回路 31の前段に階調変換部 34dが設けられ ており、階調変換部 34dによって、映像表示期間用生成回路 31へ入力される映像デ ータ Dが、予め定められた階調 (L11)よりも大きな階調のみになるように、階調変換さ れている。したがって、ブランク期間用生成回路 32は、上記階調以下の階調 (L10〜 L11)を、階調遷移が発生したときのブランク期間用の映像データ Dbを調整するため に使用できる。この結果、制御回路 12以降の回路を変更していないにも拘わらず、 上述の不具合が発生することがなぐ輝度が減少する場合であっても、何ら支障なく 、ブランク期間用の出力信号 Obを補正できる。
[0212] また、画素アレイ 2dは、入力端子 T1へ入力される映像データ(D a )よりも大きな y 特性を持つように設定されており、入力端子 T1へ入力された映像データ D aは、 γ 変換回路 81によって、より大きな γ特性の映像データ D |8へ変換され、さらに、階調 変換回路 82によって、映像データ D |8の黒レベルよりも低い値を表現可能な映像デ ータ に階調変換された後、変換後の映像データ が映像表示期間用生成回 路 31へ入力される。
[0213] したがって、 γ変換によって、図 21に示すように、画素 ΡΙΧがその階調を表示する 際に黒く潰れる階調がより多くなつており、さらに、階調変換によって、それらの階調 中の予め定められた階調(図 20に示す階調 L10〜L11)を映像データ D aの黒レべ ルよりも低い階調に割り当てている。この結果、階調変換部 34dを設けな力つた構成 と比較して、ブランク期間用生成回路 32は、階調を減少させる方向に、映像データ D をより大きく変更できる。したがって、輝度をより大幅に減少させる階調遷移が発生し 、正しく補正するためには、ブランク期間用の映像データ Dbを、より大きく補正する必 要がある場合であっても、何ら支障なぐブランク期間用の映像データ Dbを調整でき る。
[0214] また、上記構成では、ノイズを付カ卩した後に、丸め処理を行って ヽるので、映像表 示期間用生成回路 31へ入力される映像データの数値範囲のうち、通常の映像デー タに使用される数値範囲(上記予め定められた階調よりも大きな数値範囲)が、入力 端子 T1に入力される映像データの数値範囲よりも狭くなつているにも拘わらず、画素 アレイ 2dへ表示される映像にノイズパターンも擬似輪郭も発生させず、丸め処理前 の映像データ Dを表示した場合と見かけ上相違して 、な 、映像を表示できる。
[0215] なお、上記では、ノイズ付カ卩回路 84が映像データ D(i,j,*)へ付加するノイズが時系 列的に固定されており、ある画素 PIXGJ)への映像データ には、常時同一の値 のノイズが付加される場合にっ 、て説明した力 ノイズ付加回路 84が映像データ D Ύへ付加するノイズを時系列的に変化させても、同様の効果が得られる。
[0216] 一例として、制御回路 93力 アドレスカウンタ 92のリセットタイミングと、フレーム FR( k)の最初の映像データ D(l,l,k)との位相差を、フレーム毎に変更すれば、時系列的 にノイズを変化させることができる。
[0217] また、上記では、ノイズ生成回路が生成するノイズの最大値が一定の場合を例にし て説明したが、本実施形態では、入力端子 T1に入力される映像データ D(i,j,k)の示 す階調を検出し、それによつて、ノイズ生成回路の生成するノイズの最大値を変更し ても、同様の効果が得られる。
[0218] なお、本変形例では、映像表示期間用生成回路 (31)の前に階調変換部 34dを設 けているが、ブランク期間用生成回路 32の前段であれば、映像表示期間用生成回 路 31とブランク期間用生成回路 32との間に設けてもよい。ただし、本実施形態のよう に、映像表示期間用生成回路の前に設けた場合は、第 4の実施形態のように、映像 表示期間用生成回路 31cが階調遷移を強調する場合であっても、以下の現象、すな わち、階調遷移が強調された映像データに予測できないノイズを付加してしまい、当 該ノイズが使用者に視認されてしまうという現象の発生を防止でき、より高品質な画像 を表示できる。
[0219] また、上記では、画素 PIXへの映像データ Dが当該画素 PIXの輝度を増加あるい は減少させるように変化する場合全てについて、上記ブランク期間用生成回路がブ ランク期間用の出力信号 Obを補正する構成について説明したが、これに限るもので はなぐ特に、補正が必要な変化に限って、ブランク期間用の出力信号 Obを補正し てもよい。
[0220] なお、上記各実施形態では、垂直配向モードかつノーマリブラックモードの液晶セ ルを表示素子として用いた場合を例にして説明した力 これに限るものではない。応 答速度が遅ぐ階調遷移を強調するように変調して駆動したとしても、前々回から前 回への階調遷移において、実際の階調遷移と、所望の階調遷移とに差が発生する 表示素子であれば、略同様の効果が得られる。
[0221] ただし、現在のところ、液晶セルは、ブランク期間を設けて駆動するには、応答速度 が充分でないことが多いので、液晶テレビジョン受像機や液晶モニタ装置など、液晶 セルを駆動する駆動装置として、上記各実施形態に係る駆動部 14〜14dを用いると 、特に効果が大きい。
[0222] また、上記各実施形態では、信号処理部(21〜21d)を構成する各部材がハードウ エアのみで実現されている場合を例にして説明した力 これに限るものではない。各 部材の全部または一部を、上述した機能を実現するためのプログラムと、そのプログ ラムを実行するハードウェア (コンピュータ)との組み合わせで実現してもよい。一例と して、画像表示装置 1に接続されたコンピュータが、画像表示装置 1を駆動する際に 使用されるデバイスドライバとして、信号処理部を実現してもよい。また、画像表示装 置に内蔵あるいは外付けされる変換基板として、信号処理部が実現され、ファームゥ エアなどのプログラムの書き換えによって、当該信号処理部を実現する回路の動作を 変更できる場合には、当該ソフトウェアが記録された記録媒体を配布したり、当該ソフ トウエアを通信路を介して伝送するなどして、当該ソフトウェアを配布し、上記ハードウ エアに、そのソフトウェアを実行させることによって、当該ハードウェアを、上記各実施 形態の信号処理部として動作させてもょ 、。
[0223] これらの場合は、上述した機能を実行可能なハードウェアが用意されていれば、当 該ハードウェアに、上記プログラムを実行させるだけで、上記各実施形態に係る信号 処理部を実現できる。
[0224] より詳細に説明すると、ソフトウェアを用いて実現する場合、 CPU,あるいは、上述 した機能を実行可能なハードウェアなど力 なる演算手段力 ROMや RAMなどの 記憶装置に格納されたプログラムコードを実行し、図示しない入出力回路などの周辺 回路を制御することによって上記各実施形態に係る信号処理部を実現できる。
[0225] この場合、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処 理を行うプログラムコードを実行する上記演算手段とを組み合わせても実現すること もできる。さらに、上記各部材のうち、ハードウ アとして説明した部材であっても、処 理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプロダラ ムコードを実行する上記演算手段とを組み合わせても実現することもできる。なお、上 記演算手段は、単体であってもよいし、装置内部のノ スや種々の通信路を介して接 続された複数の演算手段が共同してプログラムコードを実行してもよい。
[0226] 上記演算手段によって直接実行可能なプログラムコード自体、または、後述する解 凍などの処理によってプログラムコードを生成可能なデータとしてのプログラムは、当 該プログラム(プログラムコードまたは上記データ)を記録媒体に格納し、当該記録媒 体を配付したり、あるいは、上記プログラムを、有線または無線の通信路を介して伝 送するための通信手段で送信したりして配付され、上記演算手段で実行される。
[0227] なお、通信路を介して伝送する場合、通信路を構成する各伝送媒体が、プログラム を示す信号列を伝搬し合うことによって、当該通信路を介して、上記プログラムが伝 送される。また、信号列を伝送する際、送信装置が、プログラムを示す信号列により 搬送波を変調することによって、上記信号列を搬送波に重畳してもよい。この場合、 受信装置が搬送波を復調することによって信号列が復元される。一方、上記信号列 を伝送する際、送信装置が、デジタルデータ列としての信号列をパケット分割して伝 送してもよい。この場合、受信装置は、受信したパケット群を連結して、上記信号列を 復元する。また、送信装置が、信号列を送信する際、時分割 Z周波数分割 Z符号分 割などの方法で、信号列を他の信号列と多重化して伝送してもよい。この場合、受信 装置は、多重化された信号列から、個々の信号列を抽出して復元する。いずれの場 合であっても、通信路を介してプログラムを伝送できれば、同様の効果が得られる。
[0228] ここで、プログラムを配付する際の記録媒体は、取外し可能である方が好ましいが、 プログラムを配付した後の記録媒体は、取外し可能か否かを問わない。また、上記記 録媒体は、プログラムが記憶されていれば、書換え (書き込み)可能か否か、揮発性 か否か、記録方法および形状を問わない。記録媒体の一例として、磁気テープや力 セットテープなどのテープ、あるいは、フロッピー(登録商標)ディスクゃノヽードディスク などの磁気ディスク、または、 CD— ROMや光磁気ディスク(MO)、ミニディスク(MD )やデジタルビデオディスク(DVD)などのディスクが挙げられる。また、記録媒体は、 ICカードや光カードのようなカード、あるいは、マスク ROMや EPROM、 EEPROM またはフラッシュ ROMなどのような半導体メモリであってもよい。あるいは、 CPUなど の演算手段内に形成されたメモリであってもよい。
[0229] なお、上記プログラムコードは、上記各処理の全手順を上記演算手段へ指示する コードであってもよいし、所定の手順で呼び出すことで、上記各処理の一部または全 部を実行可能な基本プログラム (例えば、オペレーティングシステムやライブラリなど) が既に存在して 、れば、当該基本プログラムの呼び出しを上記演算手段へ指示する コードやポインタなどで、上記全手順の一部または全部を置き換えてもよ 、。
[0230] また、上記記録媒体にプログラムを格納する際の形式は、例えば、実メモリに配置 した状態のように、演算手段がアクセスして実行可能な格納形式であってもよ 、し、 実メモリに配置する前で、演算手段が常時アクセス可能なローカルな記録媒体 (例え ば、実メモリゃノヽードディスクなど)にインストールした後の格納形式、あるいは、ネット ワークや搬送可能な記録媒体などから上記ローカルな記録媒体にインストールする 前の格納形式などであってもよい。また、プログラムは、コンノィル後のオブジェクトコ ードに限るものではなぐソースコードや、インタプリトまたはコンパイルの途中で生成 される中間コードとして格納されていてもよい。いずれの場合であっても、圧縮された 情報の解凍、符号化された情報の復号、インタプリト、コンパイル、リンク、または、実 メモリへの配置などの処理、あるいは、各処理の組み合わせによって、上記演算手段 が実行可能な形式に変換可能であれば、プログラムを記録媒体に格納する際の形 式に拘わらず、同様の効果を得ることができる。
[0231] 本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返し設け られる工程であって、表示装置が表示すべき映像を示す映像信号に応じた映像表 示期間用の出力信号を、当該表示装置の画素へ供給して、当該画素の輝度を制御 する映像表示工程と、上記各映像表示工程の合間に設けられる工程であって、ブラ ンク期間用の出力信号を上記画素へ供給することによって、当該画素の輝度を、当 該工程に隣接して行われる映像表示工程の少なくとも予め定められた一方における 画素の輝度よりも高くならないように、あるいは、暗表示用に予め定められた輝度にな るように制御するブランキング制御工程とを含む表示装置の駆動方法にぉ 、て、上 記ブランキング制御工程は、当該ブランキング制御工程の前後に実施される映像表 示工程での映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2の 輝度とするとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であった 場合は、第 1および第 2の輝度が一致している場合のブランク期間用の出力信号と比 較して、輝度を増加させる方向および減少させる方向のうち、上記変化と同じ方向に 補正された輝度を示すように、上記ブランク期間用の出力信号を補正することを特徴 としている。
[0232] また、本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返し 設けられる工程であって、表示装置が表示すべき映像を示す映像信号に応じた映像 表示期間用の出力信号を、当該表示装置の画素へ供給して、当該画素の輝度を制 御する映像表示工程と、上記各映像表示工程の合間に設けられる工程であって、ブ ランク期間用の出力信号を上記画素へ供給することによって、当該画素の輝度を、 当該工程に隣接して行われる映像表示工程の少なくとも予め定められた一方におけ る画素の輝度よりも高くならないように、あるいは、暗表示用に予め定められた輝度に なるように制御するブランキング制御工程とを含む表示装置の駆動方法にぉ 、て、 上記ブランキング制御工程は、当該ブランキング制御工程の前後に実施される映像 表示工程での映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2 の輝度とするとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であつ た場合は、上記第 1の輝度と上記第 2の輝度とに基づいて上記ブランク期間用の出 力信号を補正することを特徴として 、る。
[0233] さらに、本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返 し設けられる工程であって、表示装置の画素への階調データとして与えられる入力 階調データに基づいて、当該画素への映像表示期間用の階調データと、当該画素 への階調データであって、当該映像表示期間用の階調データよりも明るくない階調、 あるいは、暗表示用に予め定められた階調を示すブランク期間用の階調データとの 双方を生成する生成工程と、上記各生成工程に対応して設けられる工程であって、 対応する生成工程にて生成された上記両階調データを、予め定められた順番で出 力する出力工程とを含んでいる表示装置の駆動方法において、上記各生成工程は 、上記表示装置の画素への前回の入力階調データの示す階調から、当該画素への 今回の入力階調データの示す階調への階調遷移が、予め定められた階調遷移であ る場合は、上記表示装置の画素への前回の入力階調データの示す階調から、当該 画素への今回の入力階調データの示す階調への階調遷移が、予め定められた階調 遷移である場合は、上記前回の入力階調データに基づく生成工程で出力される映 像表示期間用の階調データと、上記今回の入力階調データに基づく生成工程で出 力される映像表示期間用の階調データとの間に出力されるブランク期間用の階調デ ータとして、上記前回の入力階調データの示す階調と上記今回の入力階調データの 示す階調とが同じ場合のブランク期間用の階調データと比較して、増加する方向お よび減少する方向のうち、当該階調遷移と同じ方向に補正された階調データを出力 する補正工程を含んで 、ることを特徴として 、る。
[0234] また、本発明に係る表示装置の駆動方法は、上記課題を解決するために、繰り返し 設けられる工程であって、表示装置の画素への階調データとして与えられる入力階 調データに基づいて、当該画素への映像表示期間用の階調データと、当該画素へ の階調データであって、当該映像表示期間用の階調データよりも明るくない階調、あ るいは、暗表示用に予め定められた階調を示すブランク期間用の階調データとの双 方を生成する生成工程と、上記各生成工程に対応して設けられる工程であって、対 応する生成工程にて生成された上記両階調データを、予め定められた順番で出力 する出力工程とを含んで 、る表示装置の駆動方法にぉ 、て、上記表示装置の画素 への前回の入力階調データの示す階調から、当該画素への今回の入力階調データ の示す階調への階調遷移が、予め定められた階調遷移である場合は、上記前回の 入力階調データに基づく生成工程で出力される映像表示期間用の階調データと、上 記今回の入力階調データに基づく生成工程で出力される映像表示期間用の階調デ ータとの間に出力されるブランク期間用の階調データを、上記前回および今回の入 力階調データに基づいて補正する補正工程を含んでいることを特徴としている。
[0235] さらに、上記構成に加えて、上記予め定められた変化または階調遷移は、画素の 輝度の増加を示すものであって、上記ブランキング制御手段は、それに該当する場 合は、上記ブランク期間における画素の輝度を増大させる方向に、上記ブランク期間 用の出力信号または階調データを補正してもよ!/、。 [0236] 当該構成において、予め定められた変化の場合に出力信号を補正するブランキン グ制御手段は、第 1の輝度力 第 2の輝度への変化が画素の輝度の増加を示す変 化の場合に、ブランク期間における画素の輝度を増大させる方向に出力信号を補正 する。同様に、予め定められた階調遷移の場合に階調データを補正するブランキン グ制御手段は、前回の入力階調データの示す輝度力も今回の入力階調データの示 す輝度への階調遷移が、画素の輝度の増加を示す場合に、ブランク期間における画 素の輝度を増大させる方向に階調データを補正する。
[0237] ここで、ブランク期間における画素の輝度の変化は、基本的に輝度を減少させる変 化なので、ブランク期間における画素の輝度を増大させる方向へのブランク期間用 の出力信号または階調データの補正は、輝度の変化を弱める補正である。したがつ て、輝度の変化を強調するように補正する場合とは異なり、定常状態の場合において 、ブランク期間用の出力信号または階調データとして出力可能な値の範囲の外に、 強調されたブランク期間用の出力信号または階調データを出力するための値の範囲 を配置しなくても、ブランク期間用の出力信号または階調データを確実に補正できる 。この結果、定常状態における表示装置の画質を低下させることなぐブランク期間 用の出力信号または階調データを補正できる。
[0238] さらに、上記構成に加えて、上記映像表示期間用の階調データとして、入力階調 データと同一の階調データを生成する生成手段を備えて 、てもよ 、。
[0239] 当該構成では、生成手段が、入力階調データと同一の値を持った、映像表示期間 用の階調データを生成するので、映像表示期間用の階調データを生成するために 階調を補正する手段 (例えば、テーブルなど)を設ける必要がなぐ当該補正用の手 段を設ける構成よりも、構成を簡略化できる。
[0240] また、上記構成に加えて、上記ブランキング制御手段は、上記予め定められた変化 または階調遷移ではない場合、ブランク期間用の出力信号または階調データが予め 定められた値となるように制御してもよ 、。
[0241] 当該構成では、ブランク期間用の出力信号または階調データを予め定められた値 に制御するので、ブランク期間用の出力信号または階調データを変更する構成よりも 簡単な構成で、ブランク期間の挿入による動画表示時の画質向上効果を確実に達 成できる。
[0242] さらに、ブランキング制御手段が階調データを制御する構成の場合は、上記構成に カロえて、上記入力階調データは、 256階調のいずれかを示しており、上記ブランキン グ制御手段は、上記予め定められた階調遷移ではない場合、ブランク期間用の階調 データが、 0階調よりも大きぐ 32階調以下の値として、予め定められた値となるように 制御してちょい。
[0243] 当該構成では、ブランク期間用の階調データを予め定められた値に制御するので 、ブランク期間用の階調データを変更する構成よりも簡単な構成で、ブランク期間の 挿入による動画表示時の画質向上効果を確実に達成できる。
[0244] さらに、上記構成では、ブランク期間用の階調データが 32階調以下に設定される ので、比較的広く使用されているガンマ値が 2. 2の階調データが入力されている場 合に、ブランク期間における画素の輝度を、表示上、問題となる程の黒浮き (コントラ スト低下)が発生しない輝度に抑えることができる。また、ブランク期間用の階調デー タが 0階調よりも大きな値に設定されるので、表示装置が、画素を含む表示パネルと して、垂直配向モードの液晶セルをノーマリブラックモードで使用しており、黒表示状 態には、黒以外の表示のときとは異なって、液晶分子が倒れる方位が制御されてお らず、応答速度が大幅に低下する場合であっても、画素を充分な速度で応答させる ことができる。
[0245] また、上記構成に加えて、上記ブランキング制御手段は、上記予め定められた変化 または階調遷移ではない場合、ブランク期間用の出力信号または階調データを、当 該ブランク期間に隣接する映像表示期間用の出力信号または階調データに応じた 値になるように制御してもよ 、。
[0246] 当該構成において、予め定められた変化の場合に出力信号を補正するブランキン グ制御手段は、第 1の輝度力 第 2の輝度への変化が予め定められた変化ではない 場合、ブランク期間用の出力信号を、上記映像表示期間用の出力信号に応じて補 正する。同様に、予め定められた階調遷移の場合に階調データを補正するブランキ ング制御手段は、前回の入力階調データの示す輝度力 今回の入力階調データの 示す輝度への階調遷移が、予め定めれた階調遷移ではない場合、ブランク期間用 の階調データを上記映像表示期間用の階調データに応じて制御する。
[0247] さらに、上記構成に加えて、上記表示装置の駆動装置には、画素への映像データ として、当該画素の表示階調を示すデータが入力されており、上記ブランキング制御 手段は、上記予め定められた階調遷移ではない場合、当該映像データの示す階調 を定数倍した値となるように、上記ブランク期間用の階調データを制御してもよい。
[0248] ここで、ブランク期間の画素の輝度が暗い程、動画表示時の画質を向上できる一方 で、表示装置の画面の明るさが低下してしまう。したがって、定常状態のブランク期間 用の出力信号または階調データの値は、動画表示時の画質向上効果と、画面の明 るさ向上効果とを、ノ ランス良く達成可能な値に設定することが望まれる。
[0249] ところが、動画表示時の画質を互いに同じ程度に向上するために必要なブランク期 間用の出力信号または階調データの値は、ブランク期間に隣接する映像表示期間 の輝度が互いに異なっていると、互いに異なった値になり、映像表示期間の輝度が 明るい程、同程度に画質を向上するために必要な輝度も高くなる。
[0250] したがって、定常状態のブランク期間表示用の出力信号または階調データを一定 にする構成では、比較的暗い表示においても、動画表示時の画質を向上できるよう に、ブランク期間の輝度を決定する必要があり、画面の明るさを充分に向上すること が難しい。
[0251] これに対して、上記各構成では、ブランク期間用の出力信号または階調データを、 当該ブランク期間に隣接する映像表示期間用の出力信号または階調データに応じ た値になるように制御する。この結果、定常状態のブランク期間用の出力信号または 階調データの値が一定の構成と比較して、動画表示時の画質向上効果と、画面の明 るさ向上効果との双方を、より高いレベルで、バランス良く達成可能な表示装置を実 現できる。
[0252] また、上記構成に加えて、上記予め定められた階調遷移の少なくとも一部は、画素 の輝度の減少を示すものであって、上記入力階調データを、予め定められた階調よ りも明る 、階調のみ力もなるように、階調変換する階調変換手段を備えて 、てもよ ヽ 。なお、当該予め定められた階調としては、ブランク期間用の階調データなどが好適 に用いられる。 [0253] 上記構成では、上記入力階調データは、階調変換手段によって、予め定められた 階調よりも明るい階調のみ力もなるように階調変換されるので、ブランキング制御手段 は、ブランク期間用の映像データを輝度を減少させる方向に調整できる。したがって 、上記予め定められた階調遷移の少なくとも一部が画素の輝度の減少を示すもので あっても、ブランキング制御手段は、何ら支障なぐ第 2の映像表示期間の終了時点 における画素の輝度を所望の値に近づけることができる。この結果、画素の輝度が減 少する場合であっても、第 2の映像表示期間における応答不足に起因する画質劣化 を抑制でき、高画質な動画を表示可能な表示装置を提供できる。
[0254] さらに、上記構成に加えて、上記階調変換手段は、上記入力階調データを、より深 い深度に変換して出力すると共に、上記階調変換手段によって変換された階調デー タに、ノイズ情報を加算した後、丸め処理を行う丸め処理手段を備えていてもよい。な お、上記ノイズ情報は、時間的にランダムな値であってもよいし、空間的にランダムな 値であってもよい。また、上記丸め処理は、切り捨て処理であってもよいし、切り上げ 処理であってもよい。さらに、 10進数の場合の四捨五入処理(2進数の場合の 0捨 1 入処理)のように、予め定められたしきい値を超えるか否かによって、切り捨てるか切 り上げるかを選択する処理であってもよい。
[0255] 当該構成では、上記入力階調データは、より深い深度に変換されるので、階調変 換に起因する演算誤差の発生を抑制できる。さらに、階調変換後の入力階調データ は、ノイズ情報が加算され、さらに、丸め処理される。したがって、ノイズ情報を加算せ ずに丸め処理を行った結果、各画素に表示される映像に擬似輪郭が発生する構成 とは異なり、丸め処理に起因する擬似輪郭の発生を防止できる。この結果、階調変換 および丸め処理に起因する画質の劣化を抑制でき、高画質な動画を表示可能な表 示装置を提供できる。
[0256] また、上記構成に加えて、上記階調変換手段は、上記入力階調データのガンマ特 性のガンマ値をより大きな値に変更してもよい。当該構成では、表示時に黒く潰れて しまう階調は、ガンマ変換しない構成と比較して多くなる。したがって、余り画質を低 下させることなぐブランキング制御手段がブランク期間用の映像データを輝度を減 少させる方向に調整するための階調を確保でき、高画質な動画を表示可能な表示 装置を提供できる。
[0257] ところで、上記表示装置の駆動装置は、ハードウェアで実現してもよ!/、し、プロダラ ムをコンピュータに実行させることによって実現してもよい。具体的には、本発明に係 るプログラムは、上記表示装置の駆動装置の各手段としてコンピュータを動作させる プログラムであり、本発明に係る記録媒体には、当該プログラムが記録されている。
[0258] これらのプログラムがコンピュータによって実行されると、当該コンピュータは、上記 表示装置の駆動装置として動作する。したがって、上記表示装置の駆動装置と同様 に、第 2の映像表示期間における応答不足に起因する画質劣化を抑制でき、高画質 な動画を表示可能な表示装置を提供できる。
[0259] また、本発明に係る表示装置は、上記各表示装置の駆動装置の!/、ずれかを備えて いる。したがって、上記表示装置の駆動装置と同様に、第 2の映像表示期間における 応答不足に起因する画質劣化を抑制でき、高画質な動画を表示できる。
[0260] さらに、本発明に係る表示装置は、上記構成に加えて、上記表示装置は、上記画 素として液晶を用いた、テレビジョン放送の受像機であってもよい。また、上記構成に 加えて、上記表示装置は、上記画素として液晶を用い、映像信号を表示する液晶モ ニタであってもよい。
[0261] ここで、現在のところ、液晶セルは、ブランク期間を設けて駆動するには、応答速度 が充分でないことが多いので、上記表示装置の駆動装置を備えた表示装置は、液晶 テレビジョン受像機や液晶モニタ装置として特に好適に使用できる。
[0262] 尚、発明を実施するための最良の形態の項においてなした具体的な実施態様また は実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような 具体例にのみ限定して狭義に解釈されるべきものではなぐ本発明の精神と次に記 載する特許請求の範囲内で、いろいろと変更して実施することができるものである。 産業上の利用の可能性
[0263] 本発明によれば、ブランク期間用の出力信号または階調データを補正することによ つて、映像表示期間に表示すべき輝度が変化したときの画素の応答不足に起因する 画質劣化を抑制でき、高画質な動画を表示を可能とするので、例えば、液晶テレビ ジョン受像機および液晶モニタ装置をはじめとして、種々の表示装置の駆動に好適 に使用できる。

Claims

請求の範囲
[1] 繰り返し設けられる工程であって、表示装置が表示すべき映像を示す映像信号に 応じた映像表示期間用の出力信号を、当該表示装置の画素へ供給して、当該画素 の輝度を制御する映像表示工程と、
上記各映像表示工程の合間に設けられる工程であって、ブランク期間用の出力信 号を上記画素へ供給することによって、当該画素の輝度を、当該工程に隣接して行 われる映像表示工程の少なくとも予め定められた一方における画素の輝度よりも高く ならないように、あるいは、暗表示用に予め定められた輝度になるように制御するブラ ンキング制御工程とを含む表示装置の駆動方法において、
上記ブランキング制御工程は、当該ブランキング制御工程の前後に実施される映 像表示工程での映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2の輝度とするとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であ つた場合は、第 1および第 2の輝度が一致している場合のブランク期間用の出力信号 と比較して、輝度を増カロさせる方向および減少させる方向のうち、上記変化と同じ方 向に補正された輝度を示すように、上記ブランク期間用の出力信号を補正することを 特徴とする表示装置の駆動方法。
[2] 繰り返し設けられる工程であって、表示装置が表示すべき映像を示す映像信号に 応じた映像表示期間用の出力信号を、当該表示装置の画素へ供給して、当該画素 の輝度を制御する映像表示工程と、
上記各映像表示工程の合間に設けられる工程であって、ブランク期間用の出力信 号を上記画素へ供給することによって、当該画素の輝度を、当該工程に隣接して行 われる映像表示工程の少なくとも予め定められた一方における画素の輝度よりも高く ならないように、あるいは、暗表示用に予め定められた輝度になるように制御するブラ ンキング制御工程とを含む表示装置の駆動方法において、
上記ブランキング制御工程は、当該ブランキング制御工程の前後に実施される映 像表示工程での映像表示期間用の出力信号の示す輝度を、それぞれ第 1および第 2の輝度とするとき、第 1の輝度力も第 2の輝度への変化が予め定められた変化であ つた場合は、上記第 1の輝度と上記第 2の輝度とに基づいて、上記ブランク期間用の 出力信号を補正することを特徴とする表示装置の駆動方法。
[3] 繰り返し設けられる工程であって、表示装置の画素への階調データとして与えられ る入力階調データに基づいて、当該画素への映像表示期間用の階調データと、当 該画素への階調データであって、当該映像表示期間用の階調データよりも明るくな い階調、あるいは、暗表示用に予め定められた階調を示すブランク期間用の階調デ ータとの双方を生成する生成工程と、
上記各生成工程に対応して設けられる工程であって、対応する生成工程にて生成 された上記両階調データを、予め定められた順番で出力する出力工程とを含んでい る表示装置の駆動方法にぉ 、て、
上記表示装置の画素への前回の入力階調データの示す階調から、当該画素への 今回の入力階調データの示す階調への階調遷移が、予め定められた階調遷移であ る場合は、上記前回の入力階調データに基づく生成工程で出力される映像表示期 間用の階調データと、上記今回の入力階調データに基づく生成工程で出力される映 像表示期間用の階調データとの間に出力されるブランク期間用の階調データとして 、上記前回の入力階調データの示す階調と上記今回の入力階調データの示す階調 とが同じ場合のブランク期間用の階調データと比較して、増加する方向および減少 する方向のうち、当該階調遷移と同じ方向に補正された階調データを出力する補正 工程を含んで!/、ることを特徴とする表示装置の駆動方法。
[4] 繰り返し設けられる工程であって、表示装置の画素への階調データとして与えられ る入力階調データに基づいて、当該画素への映像表示期間用の階調データと、当 該画素への階調データであって、当該映像表示期間用の階調データよりも明るくな い階調、あるいは、暗表示用に予め定められた階調を示すブランク期間用の階調デ ータとの双方を生成する生成工程と、
上記各生成工程に対応して設けられる工程であって、対応する生成工程にて生成 された上記両階調データを、予め定められた順番で出力する出力工程とを含んでい る表示装置の駆動方法にぉ 、て、
上記表示装置の画素への前回の入力階調データの示す階調から、当該画素への 今回の入力階調データの示す階調への階調遷移が、予め定められた階調遷移であ る場合は、上記前回の入力階調データに基づく生成工程で出力される映像表示期 間用の階調データと、上記今回の入力階調データに基づく生成工程で出力される映 像表示期間用の階調データとの間に出力されるブランク期間用の階調データを、上 記前回および今回の入力階調データに基づいて補正する補正工程を含んでいるこ とを特徴とする表示装置の駆動方法。
[5] 繰り返し設けられる映像表示期間には、次の映像表示期間までの間に表示装置が 表示すべき映像を示す映像信号に応じた映像表示期間用の出力信号を、当該表示 装置の画素へ供給して、当該画素の輝度を制御すると共に、各映像表示期間の合 間に設けられるブランク期間には、ブランク期間用の出力信号を上記画素へ供給す ることによって、当該ブランク期間に隣接する映像表示期間の少なくとも一方よりも、 当該画素の輝度を高くならないように、あるいは、暗表示用に予め定められた輝度に なるように制御する表示装置の駆動装置にお!、て、
ブランク期間の前後の映像表示期間に出力される映像表示期間用の出力信号の 示す輝度を、それぞれ第 1および第 2の輝度とするとき、第 1の輝度から第 2の輝度へ の変化が予め定められた変化であった場合は、第 1および第 2の輝度が一致してい る場合のブランク期間用の出力信号と比較して、輝度を増加させる方向および減少 させる方向のうち、上記変化と同じ方向に補正された輝度を示すように、上記ブランク 期間用の出力信号を補正するブランキング制御手段を備えていることを特徴とする 表示装置の駆動装置。
[6] 繰り返し設けられる映像表示期間には、次の映像表示期間までの間に表示装置が 表示すべき映像を示す映像信号に応じた映像表示期間用の出力信号を、当該表示 装置の画素へ供給して、当該画素の輝度を制御すると共に、各映像表示期間の合 間に設けられるブランク期間には、ブランク期間用の出力信号を上記画素へ供給す ることによって、当該ブランク期間に隣接する映像表示期間の少なくとも一方よりも、 当該画素の輝度を高くならないように、あるいは、暗表示用に予め定められた輝度に なるように制御する表示装置の駆動装置にお!、て、
ブランク期間の前後の映像表示期間に出力される映像表示期間用の出力信号の 示す輝度を、それぞれ第 1および第 2の輝度とするとき、第 1の輝度から第 2の輝度へ の変化が予め定められた変化であった場合は、上記第 1の輝度と上記第 2の輝度と に基づいて、上記ブランク期間用の出力信号を補正するブランキング制御手段を備 えて!/、ることを特徴とする表示装置の駆動装置。
[7] 繰り返し与えられる表示装置の画素への入力階調データのそれぞれに基づいて、 当該画素への映像表示期間用の階調データと、当該画素への階調データであって 、当該映像表示期間用の階調データよりも明るくない階調、あるいは、暗表示用に予 め定められた階調を示すブランク期間用の階調データとの双方を生成すると共に、 予め定められた順番で当該両階調データを出力する表示装置の駆動装置において 上記画素への前回の入力階調データの示す階調から、当該画素への今回の入力 階調データの示す階調への階調遷移が、予め定められた階調遷移である場合は、 上記前回の入力階調データの示す階調と上記今回の入力階調データの示す階調と が同じ場合のブランク期間用の階調データと比較して、増加する方向および減少す る方向のうち、当該階調遷移と同じ方向に補正された階調データを、上記前回の入 力階調データに基づいて生成された映像表示期間用の階調データと、上記今回の 入力階調データに基づいて生成される映像表示期間用の階調データとの間に出力 されるブランク期間用の階調データとして出力するブランキング制御手段を備えてい ることを特徴とする表示装置の駆動装置。
[8] 繰り返し与えられる表示装置の画素への入力階調データのそれぞれに基づいて、 当該画素への映像表示期間用の階調データと、当該画素への階調データであって 、当該映像表示期間用の階調データよりも明るくない階調、あるいは、暗表示用に予 め定められた階調を示すブランク期間用の階調データとの双方を生成すると共に、 予め定められた順番で当該両階調データを出力する表示装置の駆動装置において 上記画素への前回の入力階調データの示す階調から、当該画素への今回の入力 階調データの示す階調への階調遷移が、予め定められた階調遷移である場合は、 上記前回の入力階調データに基づいて生成された映像表示期間用の階調データと 、上記今回の入力階調データに基づいて生成される映像表示期間用の階調データ との間に出力されるブランク期間用の階調データを、上記前回および今回の入力階 調データに基づいて補正するブランキング制御手段を備えていることを特徴とする表 示装置の駆動装置。
[9] 上記ブランキング制御手段は、
上記前回および上記今回の入力階調データの組み合わせに対応する上記ブラン ク期間用の階調データを示すデータを記録している記録手段を備え、
当該データに基づ ヽて、上記ブランク期間用の階調データを補正することを特徴と する請求項 7または 8記載の表示装置の駆動装置。
[10] 上記ブランキング制御手段は、上記記録手段が予め定められた組み合わせに対応 する上記ブランク期間用の階調データを示すデータのみを記録しているとき、 当該データを補間して、上記予め定められた組み合わせ以外の組み合わせのとき の上記ブランク期間用の階調データを算出する算出手段を備えていることを特徴と する請求項 9記載の表示装置の駆動装置。
[11] 上記予め定められた変化または階調遷移は、画素の輝度の増加を示すものであつ て、
上記ブランキング制御手段は、それに該当する場合は、上記ブランク期間における 画素の輝度を増大させる方向に、上記ブランク期間用の出力信号または階調データ を補正することを特徴とする請求項 5〜8のいずれか 1項に記載の表示装置の駆動 装置。
[12] 上記映像表示期間用の階調データとして、入力階調データと同一の階調データを 生成する生成手段を備えていることを特徴とする請求項 7または 8記載の表示装置の 駆動装置。
[13] 上記ブランキング制御手段は、上記予め定められた変化または階調遷移ではない 場合、ブランク期間用の出力信号または階調データが予め定められた値となるように 制御することを特徴とする請求項 5〜8のいずれか 1項に記載の表示装置の駆動装 置。
[14] 上記入力階調データは、 256階調のいずれかを示しており、
上記ブランキング制御手段は、上記予め定められた階調遷移ではない場合、ブラ ンク期間用の階調データが、 0階調よりも大きぐ 32階調以下の値として、予め定めら れた値となるように制御することを特徴とする請求項 7または 8に記載の表示装置の 駆動装置。
[15] 上記ブランキング制御手段は、上記予め定められた変化または階調遷移ではない 場合、ブランク期間用の出力信号または階調データを、当該ブランク期間に隣接す る映像表示期間用の出力信号または階調データに応じた値になるように制御するこ とを特徴とする請求項 5、 6、 7または 8記載の表示装置の駆動装置。
[16] 上記ブランキング制御手段は、
上記映像表示期間用の階調データが、定常状態である力否かを判定する判定手 段と、
上記映像表示期間用の階調データが定常状態の場合の上記ブランク期間用の階 調データを生成する定常状態用生成手段と、
上記映像表示期間用の階調データが変化する場合の上記ブランク期間用の階調 データを生成するブランク生成手段と、
上記判定手段の判定結果に基づいて上記定常状態用生成手段の出力、およびブ ランク生成手段の出力の一方を選択して出力する出力手段とを備えていることを特 徴とする請求項 15記載の表示装置の駆動装置。
[17] 上記表示装置の駆動装置には、画素への映像データとして、当該画素の表示階調 を示す映像データが入力されており、
上記ブランキング制御手段は、上記予め定められた階調遷移ではない場合、当該 映像データの示す階調を定数倍した値となるように、上記ブランク期間用の階調デー タを制御することを特徴とする請求項 7または 8記載の表示装置の駆動装置。
[18] 上記映像データの示す階調を定数倍した値とは、上記映像データの示す階調が 1
Z2以下であることを特徴とする請求項 17記載の表示装置の駆動装置。
[19] 上記予め定められた階調遷移の少なくとも一部は、画素の輝度の減少を示すもの であって、
上記入力階調データを、予め定められた階調よりも明るい階調のみ力 なるように、 階調変換する階調変換手段を備えていることを特徴とする請求項 7または 8記載の表 示装置の駆動装置。
[20] 上記階調変換手段は、上記入力階調データを、より深い深度に変換して出力する と共に、
上記階調変換手段によって変換された階調データに、ノイズ情報を加算した後、丸 め処理を行う丸め処理手段を備えていることを特徴とする請求項 19記載の表示装置 の駆動装置。
[21] 上記階調変換手段は、上記入力階調データのガンマ特性のガンマ値をより大きな 値に変更することを特徴とする請求項 19または 20記載の表示装置の駆動装置。
[22] 請求項 5〜21のいずれか 1項に記載の各手段としてコンピュータを動作させるプロ グラム。
[23] 請求項 22記載のプログラムが記録された記録媒体。
[24] 請求項 5〜21のいずれか 1項に記載の表示装置の駆動装置を備えていることを特 徴とする表示装置。
[25] 上記表示装置は、上記画素として液晶を用いた、テレビジョン放送の受像機である ことを特徴とする請求項 24記載の表示装置。
[26] 上記表示装置は、上記画素として液晶を用い、映像信号を表示する液晶モニタで あることを特徴とする請求項 24記載の表示装置。
PCT/JP2005/016977 2004-09-17 2005-09-14 表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、表示装置 WO2006030842A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006535180A JP4828425B2 (ja) 2004-09-17 2005-09-14 液晶表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
US11/663,079 US7903064B2 (en) 2004-09-17 2005-09-14 Method and apparatus for correcting the output signal for a blanking period

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004272366 2004-09-17
JP2004-272366 2004-09-17

Publications (1)

Publication Number Publication Date
WO2006030842A1 true WO2006030842A1 (ja) 2006-03-23

Family

ID=36060093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016977 WO2006030842A1 (ja) 2004-09-17 2005-09-14 表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、表示装置

Country Status (3)

Country Link
US (1) US7903064B2 (ja)
JP (1) JP4828425B2 (ja)
WO (1) WO2006030842A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098246A1 (ja) * 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
JP2008292905A (ja) * 2007-05-28 2008-12-04 Seiko Epson Corp 画像表示装置の駆動装置、その駆動方法並びに投射型表示装置、電子機器
JP2009128504A (ja) * 2007-11-21 2009-06-11 Canon Inc 液晶表示装置
KR20100122661A (ko) * 2009-05-13 2010-11-23 삼성전자주식회사 입체 영상 표시 장치
US7956876B2 (en) 2005-03-15 2011-06-07 Sharp Kabushiki Kaisha Drive method of display device, drive unit of display device, program of the drive unit and storage medium thereof, and display device including the drive unit
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
KR20160024367A (ko) * 2016-02-04 2016-03-04 삼성디스플레이 주식회사 입체 영상 표시 장치
CN115499707A (zh) * 2022-09-22 2022-12-20 北京百度网讯科技有限公司 视频相似度的确定方法和装置
WO2023015085A3 (en) * 2021-08-03 2024-04-04 Sony Interactive Entertainment Inc. Motion blur compensation through eye tracking
US12019795B2 (en) 2021-08-03 2024-06-25 Sony Interactive Entertainment Inc. Motion blur compensation through eye tracking

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5358970B2 (ja) * 2008-02-26 2013-12-04 セイコーエプソン株式会社 レーザ光源を用いた画像表示装置及びその画像表示方法
WO2010064309A1 (ja) * 2008-12-03 2010-06-10 富士通株式会社 表示装置及び表示制御プログラム
TWI405158B (zh) * 2008-12-26 2013-08-11 Novatek Microelectronics Corp 可提高影像亮度並減少畫面失真之驅動方法及相關顯示裝置
US8842111B2 (en) * 2010-09-20 2014-09-23 Intel Corporation Techniques for selectively changing display refresh rate
US9088276B2 (en) * 2011-05-31 2015-07-21 Ati Technologies Ulc Pre-emphasis control circuit for adjusting the magnitude of a signal over a period according to a fraction of a bit-time
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
JP5771241B2 (ja) * 2013-06-28 2015-08-26 双葉電子工業株式会社 表示駆動装置、表示駆動方法、表示装置
JP2015057637A (ja) * 2013-08-09 2015-03-26 セイコーエプソン株式会社 集積回路、表示装置、電子機器および表示制御方法
CN106461990B (zh) * 2014-06-04 2018-03-20 堺显示器制品株式会社 液晶显示装置以及显示方法
CN104484077B (zh) * 2015-01-05 2018-09-18 深圳市华星光电技术有限公司 具有触控功能的显示面板及其触控检测方法
JP6750210B2 (ja) * 2015-02-10 2020-09-02 株式会社Jvcケンウッド 表示信号処理システム、処理装置、表示信号生成装置、処理方法、及び表示信号生成方法
US9569816B2 (en) 2015-04-15 2017-02-14 Apple Inc. Debanding image data using bit depth expansion
KR102469296B1 (ko) * 2015-09-22 2022-11-23 삼성디스플레이 주식회사 표시 패널 구동 장치, 이를 이용하는 표시 패널 구동 방법 및 이를 포함하는 표시 장치
US10475402B2 (en) * 2017-01-08 2019-11-12 Canon Kabushiki Kaisha Liquid crystal driving apparatus, image display apparatus, liquid crystal driving method, and liquid crystal driving program
CN111228793B (zh) * 2020-01-21 2021-11-19 腾讯科技(深圳)有限公司 交互界面的显示方法和装置、存储介质及电子装置
US11508273B2 (en) * 2020-11-12 2022-11-22 Synaptics Incorporated Built-in test of a display driver
KR102663270B1 (ko) * 2022-01-25 2024-05-07 현대모비스 주식회사 차량의 디스플레이 장치의 화면 정지 오류를 검출하는 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207762A (ja) * 2001-11-09 2003-07-25 Sharp Corp 液晶表示装置
JP2004253827A (ja) * 2002-12-25 2004-09-09 Sharp Corp 液晶表示装置
JP2004318131A (ja) * 2003-04-02 2004-11-11 Sharp Corp 画像表示装置の駆動装置、画像表示装置、テレビジョン受像機、画像表示装置の駆動方法、画像表示方法、並びに、そのプログラムおよび記録媒体
JP2005128488A (ja) * 2003-09-29 2005-05-19 Sharp Corp 表示装置、その駆動装置、及び表示装置の表示方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337676B1 (en) * 1998-03-30 2002-01-08 Kabushiki Kaisha Toshiba Flat-panel display device
JP3336408B2 (ja) * 1998-07-17 2002-10-21 株式会社アドバンスト・ディスプレイ 液晶表示装置
US7227519B1 (en) * 1999-10-04 2007-06-05 Matsushita Electric Industrial Co., Ltd. Method of driving display panel, luminance correction device for display panel, and driving device for display panel
US6636229B2 (en) * 2000-03-10 2003-10-21 Matsushita Electric Industrial Co., Ltd. Gradation correction circuit, and γ correction apparatus
JP2002149132A (ja) 2000-11-13 2002-05-24 Mitsubishi Electric Corp 液晶表示装置
US7098886B2 (en) * 2001-06-04 2006-08-29 Samsung Electronics Co., Ltd. Flat panel display
CN1251162C (zh) * 2001-07-23 2006-04-12 日立制作所股份有限公司 矩阵型显示装置
KR100769169B1 (ko) * 2001-09-04 2007-10-23 엘지.필립스 엘시디 주식회사 액정표시장치의 구동방법 및 장치
JP3653506B2 (ja) * 2002-03-20 2005-05-25 株式会社日立製作所 表示装置及びその駆動方法
JP2003280600A (ja) * 2002-03-20 2003-10-02 Hitachi Ltd 表示装置およびその駆動方法
JP3789838B2 (ja) * 2002-03-26 2006-06-28 三洋電機株式会社 表示装置
TWI242666B (en) * 2002-06-27 2005-11-01 Hitachi Displays Ltd Display device and driving method thereof
JP2004157250A (ja) * 2002-11-05 2004-06-03 Hitachi Ltd 表示装置
JP2004226522A (ja) * 2003-01-21 2004-08-12 Hitachi Displays Ltd 表示装置およびその駆動方法
JP2004240236A (ja) * 2003-02-07 2004-08-26 Hitachi Ltd 表示装置
JP4357188B2 (ja) * 2003-02-28 2009-11-04 株式会社 日立ディスプレイズ 液晶表示装置
JP2004264480A (ja) * 2003-02-28 2004-09-24 Hitachi Displays Ltd 液晶表示装置
JP4628650B2 (ja) * 2003-03-17 2011-02-09 株式会社日立製作所 表示装置およびその駆動方法
US7256763B2 (en) * 2003-06-10 2007-08-14 Hitachi Displays, Ltd. Liquid crystal display device and driving method thereof
JP3744924B2 (ja) * 2003-12-19 2006-02-15 セイコーエプソン株式会社 表示コントローラ、表示システム及び表示制御方法
JP3856001B2 (ja) * 2004-01-26 2006-12-13 セイコーエプソン株式会社 表示コントローラ、表示システム及び表示制御方法
JP3856000B2 (ja) * 2004-01-26 2006-12-13 セイコーエプソン株式会社 表示コントローラ、表示システム及び表示制御方法
JP4191136B2 (ja) * 2004-03-15 2008-12-03 シャープ株式会社 液晶表示装置およびその駆動方法
JP2006030741A (ja) * 2004-07-20 2006-02-02 Toshiba Matsushita Display Technology Co Ltd 液晶表示パネルの駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207762A (ja) * 2001-11-09 2003-07-25 Sharp Corp 液晶表示装置
JP2004253827A (ja) * 2002-12-25 2004-09-09 Sharp Corp 液晶表示装置
JP2004318131A (ja) * 2003-04-02 2004-11-11 Sharp Corp 画像表示装置の駆動装置、画像表示装置、テレビジョン受像機、画像表示装置の駆動方法、画像表示方法、並びに、そのプログラムおよび記録媒体
JP2005128488A (ja) * 2003-09-29 2005-05-19 Sharp Corp 表示装置、その駆動装置、及び表示装置の表示方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8035589B2 (en) 2005-03-15 2011-10-11 Sharp Kabushiki Kaisha Drive method of liquid crystal display device, driver of liquid crystal display device, program of method and storage medium thereof, and liquid crystal display device
WO2006098246A1 (ja) * 2005-03-15 2006-09-21 Sharp Kabushiki Kaisha 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
US8253678B2 (en) 2005-03-15 2012-08-28 Sharp Kabushiki Kaisha Drive unit and display device for setting a subframe period
US7956876B2 (en) 2005-03-15 2011-06-07 Sharp Kabushiki Kaisha Drive method of display device, drive unit of display device, program of the drive unit and storage medium thereof, and display device including the drive unit
JP2008292905A (ja) * 2007-05-28 2008-12-04 Seiko Epson Corp 画像表示装置の駆動装置、その駆動方法並びに投射型表示装置、電子機器
JP2009128504A (ja) * 2007-11-21 2009-06-11 Canon Inc 液晶表示装置
KR20100122661A (ko) * 2009-05-13 2010-11-23 삼성전자주식회사 입체 영상 표시 장치
JP2010266852A (ja) * 2009-05-13 2010-11-25 Samsung Electronics Co Ltd 立体映像表示装置
US8786789B2 (en) 2009-05-13 2014-07-22 Samsung Display Co., Ltd. 3-dimensional image display device
KR101594052B1 (ko) * 2009-05-13 2016-02-25 삼성디스플레이 주식회사 입체 영상 표시 장치
KR20160024367A (ko) * 2016-02-04 2016-03-04 삼성디스플레이 주식회사 입체 영상 표시 장치
KR101664959B1 (ko) * 2016-02-04 2016-10-12 삼성디스플레이 주식회사 입체 영상 표시 장치
WO2023015085A3 (en) * 2021-08-03 2024-04-04 Sony Interactive Entertainment Inc. Motion blur compensation through eye tracking
US12019795B2 (en) 2021-08-03 2024-06-25 Sony Interactive Entertainment Inc. Motion blur compensation through eye tracking
CN115499707A (zh) * 2022-09-22 2022-12-20 北京百度网讯科技有限公司 视频相似度的确定方法和装置

Also Published As

Publication number Publication date
JP4828425B2 (ja) 2011-11-30
US7903064B2 (en) 2011-03-08
JPWO2006030842A1 (ja) 2008-05-15
US20070252795A1 (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP4828425B2 (ja) 液晶表示装置の駆動方法、駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
US6894669B2 (en) Display control device of liquid crystal panel and liquid crystal display device
US7924298B2 (en) Display control method, driving device for display device, display device, program, and storage medium
US7382383B2 (en) Driving device of image display device, program and storage medium thereof, image display device, and television receiver
US7956876B2 (en) Drive method of display device, drive unit of display device, program of the drive unit and storage medium thereof, and display device including the drive unit
US8253678B2 (en) Drive unit and display device for setting a subframe period
WO2007018219A1 (ja) 表示装置の駆動制御装置、表示方法、表示装置、表示モニター、テレビジョン受像機
KR100527155B1 (ko) 표시장치의 구동방법, 표시장치의 구동장치와 그 프로그램및 기록매체
JP2007310097A (ja) 表示装置、表示パネルドライバ、及び表示パネルの駆動方法
US7023414B2 (en) Method and apparatus for driving liquid crystal display
WO2006098246A1 (ja) 液晶表示装置の駆動方法、液晶表示装置の駆動装置、そのプログラムおよび記録媒体、並びに、液晶表示装置
JP4511798B2 (ja) 液晶表示装置
KR100701515B1 (ko) 표시장치의 구동 방법, 표시장치, 및 그 컴퓨터 프로그램이기록된 컴퓨터 독출가능한 기록 매체
US8493299B2 (en) Image data processing device, liquid crystal display apparatus including same, display apparatus driving device, display apparatus driving method, program therefor, and storage medium
KR20070087033A (ko) 표시 장치, 표시 모니터, 및 텔레비전 수상기
JP2007333770A (ja) 電気光学装置、電気光学装置用駆動回路、及び電気光学装置の駆動方法、並びに電子機器
JP2006292972A (ja) 表示装置の駆動装置および表示装置
US20090010339A1 (en) Image compensation circuit, method thereof, and lcd device using the same
JP4627074B2 (ja) 液晶表示装置
JP4627073B2 (ja) 液晶表示装置
CN110782850A (zh) 液晶显示装置及其驱动方法
JP2006292973A (ja) 表示装置の駆動装置、および、それを備える表示装置
JP4234178B2 (ja) 映像データ処理装置、それを備える液晶表示装置、表示装置の駆動装置、表示装置の駆動方法、並びに、そのプログラムおよび記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006535180

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11663079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11663079

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05783466

Country of ref document: EP

Kind code of ref document: A1