WO2006018985A1 - アルカリ水溶液の精製方法 - Google Patents

アルカリ水溶液の精製方法 Download PDF

Info

Publication number
WO2006018985A1
WO2006018985A1 PCT/JP2005/014337 JP2005014337W WO2006018985A1 WO 2006018985 A1 WO2006018985 A1 WO 2006018985A1 JP 2005014337 W JP2005014337 W JP 2005014337W WO 2006018985 A1 WO2006018985 A1 WO 2006018985A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
aqueous solution
fibrous activated
alkaline aqueous
alkaline
Prior art date
Application number
PCT/JP2005/014337
Other languages
English (en)
French (fr)
Inventor
Keiji Ando
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to US11/632,707 priority Critical patent/US8133459B2/en
Priority to KR1020077002854A priority patent/KR100875313B1/ko
Priority to EP05768860A priority patent/EP1808412B1/en
Priority to JP2006531558A priority patent/JP4125344B2/ja
Publication of WO2006018985A1 publication Critical patent/WO2006018985A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • C01D1/32Purification; Separation by absorption or precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/04Hydroxides
    • C01D1/28Purification; Separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28071Pore volume, e.g. total pore volume, mesopore volume, micropore volume being less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28076Pore volume, e.g. total pore volume, mesopore volume, micropore volume being more than 1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • C01B32/36Reactivation or regeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison
    • Y10S210/912Heavy metal

Definitions

  • the present invention relates to a method for purifying an alkaline aqueous solution.
  • an etching agent for silicon wafers is going to be converted from a mixed acid (hydrofluoric acid + nitric acid + acetic acid) that is difficult to handle to an alkaline aqueous solution that is easy to handle.
  • the alkaline aqueous solution contains trace amounts of metals such as iron, nickel, molybdenum, and copper that are derived from the raw materials or mixed from the manufacturing process.
  • impurities such as iron, nickel, molybdenum, and copper penetrate into the silicon wafer and remain, changing the electrical insulation characteristics of the silicon wafer. For this reason, an alkaline aqueous solution containing a substantial amount of these metal impurities is practically difficult to use as an etchant.
  • the amount of each metal impurity contained in a trace amount in an alkaline aqueous solution be 200 ppb or less, more preferably 10 ppb or less. More specifically, iron is lOOppb or less, more preferably lOppb or less, molybdenum is 1 OOppb or less, more preferably lOppb or less, nickel is lOppb or less, more preferably lppb or less, and copper is lOppb or less. More preferably, it should be reduced to 1ppb or less.
  • Patent Document 1 discloses a method that uses activated carbon to remove iron contained in caustic soda aqueous solution and cause no problems in the production of sodium hypochlorite. It has been done. However, this patent document 1 discloses that a caustic soda aqueous solution is passed through a granular activated carbon layer. Disclosed that iron contained in impurities can be removed up to 2 ppm (Fe 2 O equivalent).
  • Patent Document 2 relating to a nickel removal method discloses that a nickel content can be reduced to the order of lOppb by passing a caustic potash aqueous solution through a filtration device precoated with coconut shell activated carbon.
  • Patent Document 2 shows only a specific example in which the nickel content is reduced to about 50 ppb.
  • the activated carbon used is a granular activated carbon that uses coconut shell as a raw material, so it tends to be fine. Therefore, excessive equipment such as a dustproof device is necessary for clogging of the filtration device and dust scattering, and for immediate handling. Also, it is difficult to recycle activated carbon, so it is difficult to recycle resources. In addition, it is difficult to recycle copper using activated carbon.
  • Patent Document 3 discloses a purification method by electrolysis of an aqueous caustic soda solution using a cation exchange membrane. Patent Document 3 describes that this method can reduce the metal impurity concentration in the aqueous caustic soda solution to 1Oppb or less. However, this method is disadvantageous in that the efficiency is poor because the aqueous solution of caustic soda obtained by electrolyzing salt is electrolyzed again to remove metal impurities while increasing the concentration of the aqueous solution of caustic soda.
  • Patent Document 1 Japanese Patent Laid-Open No. 52-52898
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-203828
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-317285
  • the present invention has been made in view of the current state of the art, and uses a fibrous activated carbon to reduce metal impurities to a level that can be used as an etching agent for silicon wafers. It is an object of the present invention to provide a method for industrially producing a pure alkaline aqueous solution and a silicon wafer etching agent. Furthermore, the present invention also provides the use of a fibrous activated carbon for efficiently removing metal impurities from an alkaline aqueous solution, and an apparatus for purifying an alkaline aqueous solution using the fibrous activated carbon. Purpose The
  • fibrous activated carbon has the ability to highly remove metal impurities such as nickel, iron, molybdenum and copper contained in an alkaline aqueous solution. It came to. Furthermore, the ability to remove the metal impurities of the present invention can be further improved by bringing the fibrous activated carbon into contact with one or more mixed acid solutions in which hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid power are also selected.
  • a first aspect of the present invention is the following purification method (1).
  • a method for purifying an alkaline aqueous solution which comprises contacting fibrous activated carbon with an alkaline aqueous solution to remove metal components other than alkali metals and alkaline earth metals from the alkaline aqueous solution.
  • the present invention is preferably (2) to (12) below.
  • Alkaline aqueous solution power Alkaline aqueous solution containing at least one hydroxide of at least one metal selected from alkali metals and alkaline earth metals, and further containing a metal component other than alkali metal and alkaline earth metal.
  • the fibrous activated carbon is activated in advance by one acid selected from hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid power, or two or more mixed acids, (1) to (4) The method for purifying an alkaline water solution according to any one of the above.
  • the aqueous alkaline solution is continuously passed through a column packed with fibrous activated carbon to bring the fibrous activated carbon into contact with the aqueous alkaline solution.
  • Purification of the alkaline aqueous solution according to any one of (1) to (8) Method.
  • the column packed with fibrous activated carbon includes at least one fibrous activated carbon layer and at least one space layer in which no fibrous activated carbon exists, and before or after the fibrous activated carbon layer or in the fibrous activated carbon layer.
  • the fibrous activated carbon that has been used for the purification of the alkaline aqueous solution is washed with pure water, and then hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid power and one selected acid or two or more mixed acids
  • the present invention also provides the following etching agent (13).
  • a silicon wafer etching agent comprising an alkaline aqueous solution obtained by using the alkaline aqueous solution purification method according to any one of (1) to (12).
  • a second aspect of the present invention is the use of the following fibrous activated carbon (14).
  • the alkaline aqueous solution may be an alkaline aqueous solution containing a hydroxide of at least one metal selected from an alkali metal and an alkaline earth metal and further containing a metal component other than the alkali metal and the alkaline earth metal. .
  • the third aspect of the present invention is the following alkaline solution purifying device (15).
  • An apparatus for purifying an alkaline aqueous solution comprising a container containing fibrous activated carbon, wherein the container is selected from an alkali metal and an alkaline earth metal
  • An apparatus for purifying an alkaline aqueous solution comprising an outlet for discharging an alkaline aqueous solution from which metal components other than the above are removed from the container.
  • metal components other than alkali metals and alkaline earth metals such as nickel, iron, molybdenum, and copper contained in an alkaline aqueous solution can be efficiently removed, so that they are suitable as etching agents for silicon wafers. It is possible to industrially produce a high purity alkaline aqueous solution.
  • FIG. 1 is a schematic sectional view of a column containing fibrous activated carbon used in one embodiment of the purification method of the present invention.
  • FIG. 2 is a schematic plan view showing an apparatus used in one embodiment of the purification method of the present invention, in which a plurality of columns are divided and connected in series.
  • FIG. 3 is a schematic plan view showing an apparatus used in one embodiment of the purification method of the present invention, in which a plurality of columns are continuously connected in series.
  • FIG. 4 is a schematic cross-sectional view showing an example of a column containing fibrous activated carbon and provided with a mesh filter.
  • FIG. 5 shows an apparatus used in one embodiment of the purification method of the present invention, in which a plurality of columns are inserted in series in a quartz glass tube having a jacket, and purification is performed while circulating hot water in the jacket. It is a schematic sectional drawing.
  • the present invention relates to a metal impurity contained in an aqueous solution such as an alkaline aqueous solution containing one or more selected from alkali metal hydroxides or alkaline earth metal hydroxides,
  • an aqueous solution such as an alkaline aqueous solution containing one or more selected from alkali metal hydroxides or alkaline earth metal hydroxides
  • the present invention relates to a technique for producing an alkaline aqueous solution suitable for etching a silicon wafer by removing nickel, iron, molybdenum, copper, etc., and an etching agent for a silicon wafer, which is an alkaline aqueous solution.
  • the alkaline aqueous solution to be purified according to the present invention generally contains iron, nickel, chromium, alkali metal hydroxide or alkaline earth metal hydroxide derived from raw materials and production processes.
  • Metal components such as copper and manganese contain several ppm of several ppb. Therefore, when such an alkaline aqueous solution is considered to be used as an etching agent for silicon wafers, it is desirable that these metal components other than alkali metals and alkaline earth metals be removed as much as possible.
  • an alkaline aqueous solution containing a hydroxide or an alkali metal comprising at least one metal selected from alkali metals and alkaline earth metals which can be treated according to the present invention.
  • a hydroxide aqueous solution or a potassium hydroxide aqueous solution preferably a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution. That is, it is preferable that the hydroxide is sodium hydroxide or potassium hydroxide.
  • TMAH tetramethylammonium hydroxide
  • any fibrous activated carbon can be selected and used as necessary as long as there is no problem.
  • carbon fiber raw materials such as phenol resin or petroleum pitch, which are obtained by spinning and heat treatment, or those obtained by heat treatment of acrylic fiber or rayon fiber can be used.
  • the shape of the fibrous activated carbon used in the present invention is not particularly limited as long as it is non-granular.
  • activated carbon having at least a fibrous portion can be used as a fibrous activated charcoal without any particular limitation, and the activated carbon fiber can be used even if the activated carbon itself has a fiber shape. It may be an aggregate of fibers, or at least a part of the activated carbon may be in a fiber shape, or may have a plurality of ultrafine fibers.
  • the fibrous activated carbon of the present invention is an aggregate of single fibers of activated carbon.
  • the aggregate of single fibers of activated carbon may be knitted, woven or combined.
  • the diameter of the single fiber or the fiber part of the fibrous activated carbon can be selected preferably according to need, and a force of about 5 to 20 microns can be preferably used, more preferably 5 to 15 microns. Activated carbon strength with fiber diameters in this range and handling strength are also desirable. If the diameter is smaller than 5 microns, the filter becomes clogged severely, and the operability is lowered and the purification efficiency is lowered.
  • the length of the fibrous activated carbon is not particularly limited and can be selected as necessary.
  • the length of the short fiber is generally 0.05 to 20 mm, preferably about 0.1 to 20 mm, more preferably 0.5 to 20 mm, and still more preferably.
  • a length in the range of l to 20 mm is desirable from the viewpoint of packing into the column and handling!
  • the length Z diameter (hereinafter referred to as “aspect ratio”) of the fibrous activated carbon is desirably 10 or more on average. If the average aspect ratio is less than 10, the packing density of the column becomes too high and the pressure loss may increase.
  • the upper limit of the aspect ratio when long-fiber fibrous activated carbon is used, there is no upper limit of the average aspect ratio, and it may be selected as necessary.
  • the average aspect ratio is 2000 or more, it becomes bulky and difficult to fill the column, or uneven packing tends to occur, which is not preferable. is there.
  • the variation range and average value of the aspect ratio of the short-fiber activated carbon can be measured by the following method.
  • fibrous activated carbon is dispersed in water to form a dilute slurry.
  • this slurry is filtered with a filter paper, and the back paper is dried.
  • take a picture of the fibrous activated charcoal scattered on the filter paper magnified 10 times with a microscope, and measure the fiber length of 30 fibrous activated carbons with a randomly selected internal force.
  • 10 randomly selected fibrous activities Take an electron micrograph of charcoal magnified 3000 times and measure the fiber diameter.
  • the average value of the fiber diameters at 10 points is defined as the fiber diameter of the fibrous activated carbon. Divide the fiber length of the 30 fibrous activated carbons by the fiber diameter of the fibrous activated carbons to obtain the aspect ratios of each, and calculate the range and average of the variation in aspect ratios.
  • a more preferable average aspect ratio is 50 to 1800, and further preferably 100 to 1500.
  • the shape of the fibrous activated carbon in the case of filling the fibrous activated carbon in a container such as a column having an inlet portion and an outlet portion may be a short fiber shape that can be selected as necessary. Also, it may be a non-woven fabric shape such as felt, compression-molded into a sheet shape, or a shape obtained by finely cutting these, and using long-fiber or short-fiber fibrous activated carbon The shape compression-molded according to the shape may be sufficient.
  • the fibrous activated carbon of the present invention preferably has a BET specific surface area of 1000 m 2 Zg or more determined from the nitrogen adsorption amount and a BET pore volume of 0.45 ml Zg or more obtained from the nitrogen adsorption amount. More preferably, the specific surface area is 1500 m 2 Zg or more and the pore volume is 0.45 ml Zg or more.
  • the specific surface area is less than 1000 m 2 Zg even if the pore volume is greater than 0.45 mlZg, it may be difficult to reduce the nickel content in the alkaline aqueous solution to less than lOppb if the specific surface area is less than 1000 m 2 Zg.
  • the specific surface area is 3000 m 2 / g or more, it becomes difficult to produce fibrous activated carbon, which is not preferable because it is not practical.
  • fibrous activated carbon having a pore volume of 1.5 mlZg or more is not preferable because it is difficult to produce and impractical.
  • fibrous activated carbon has a much superior ability to remove trace metal components compared to conventional granular activated carbon is clearly understood!
  • One reason for this is thought to be the higher utilization efficiency of the adsorption surface compared to activated carbon.
  • the depth from the surface of the infinite number of pores on the activated carbon surface is generally increased, so an alkaline aqueous solution
  • an aqueous alkali solution having a high concentration and a high viscosity is difficult to penetrate deeply into the pores.
  • the depth of the pores into which the alkaline aqueous solution can permeate is the same as that of granular activated carbon, the area of the pore inner surface that can be used for adsorption becomes larger than that of granular activated carbon, and trace metal Fibrous activated carbon, which is thought to lead to an increase in the ability to remove components, is originally preferred because the metal impurities contained in this activated carbon are iron, nickel, and copper, respectively, of less than lOppm. .
  • a large amount of metal impurities is not preferable because it is contaminated by elution into the aqueous solution by contact with the alkaline aqueous solution.
  • the adsorption capacity of the fibrous activated carbon can be activated by pretreating the fibrous activated carbon with an acid. This operation is called “activation”.
  • the activation of the fibrous activated carbon can be performed by contacting the fibrous activated carbon with one kind of acid selected from hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid, or two or more mixed acids (hereinafter referred to as these). "Activator").
  • the acid concentration of the activator is 0.1 to 13N, preferably 0.5 to 6.5N, and more preferably 0.8 to 3N.
  • the activator is low in metal impurities!
  • activation can be carried out before and after the purification of the alkaline aqueous solution and after Z, and the fibrous activated carbon regenerated by the activation can be repeatedly used for purification.
  • An arbitrary method can be selected as a method of bringing the fibrous activated carbon into contact with the activator.
  • the fibrous activated carbon may be put into a tank filled with an activator solution and immersed to be contacted.
  • the fibrous activated carbon is packed in a packed tower such as a column while the activator is passed through it and brought into contact with the fibrous activated carbon.
  • the temperature to be contacted is not particularly limited as long as the activator does not decompose or boil and is below the temperature, but is preferably 100 ° C. or less, more preferably 20 ° C. to 80 ° C.
  • the feed rate is preferably from preferably 0.5 2 Hr _1 or instrument with selectable force space velocity as required when passing the activator 0.5 5: a Lohr _1. And main much time to the processing time is less than 0. 2 Hr _1, it is difficult to sufficiently activated I spoon exceeds 10 ⁇ 1.
  • the flow rate is at least twice the volume of a column or the like, preferably 3 times or more. When contacting in batch mode, contact once The time is preferably at least 30 minutes. Fibrous activated carbon that has been activated is preferably washed with pure water to remove the activator.
  • the moisture content (% by weight) contained in the fibrous activated carbon can be determined from the weight reduction rate after drying the fibrous activated carbon at 60 ° C for 2 hours. That is, it is obtained by the following calculation formula.
  • the water is removed from the fibrous activated carbon so that the amount of water is 70% by weight or less, and preferably 60% by weight or less. Good. Fibrous activated carbon tends to generate fine powder when handled in a dry state. For this reason, when obtaining a column or the like filled with dried fibrous activated carbon, it is preferable that the column is filled with moisture at least 30% by weight and then dried.
  • any aqueous solution can be treated as long as there is no problem as the alkaline aqueous solution to be treated.
  • concentration of the metal hydroxide in the alkaline aqueous solution that can be treated is 10 to 55% by weight, the preferred amount is 20 to 52% by weight, more preferably 30 to 52% by weight. Removal of metal components with fibrous activated carbon is effective for alkaline aqueous solutions in this range, and it is also suitable as an etching agent for silicon wafers.
  • the viscosity of an aqueous alkali solution that can be processed is usually 1 to 70 mPa's, preferably 1.5 to 70 mPa's, and more preferably It is about 1.9-60mPa's. (Viscosity measurement conditions: solution temperature 30 ° C, measured with a rotational viscometer)
  • fibrous activated carbon is packed in a column, and an alkaline aqueous solution is continuously passed through to come into contact with the fibrous activated carbon, whereby alkali metal and alkali earth metal are excluded. More efficient removal of the metal components can be achieved.
  • the force of the inlet of the liquid feeding pipe or the like, the alkaline aqueous solution that has been continuously fed into the column becomes a refined treatment liquid that comes into contact with the fibrous activated carbon when passing through the column, and is continuously discharged into the discharge pipe. It can be taken out from the exit part.
  • a method in which fibrous activated carbon and an alkaline aqueous solution are contacted in a batch system can also be used.
  • Power that is capable of diluting The aqueous alkaline solution is diluted with moisture contained in the fibrous activated carbon.
  • preliminary operations such as concentrating the aqueous alkali solution in advance, increasing the concentration by adding solid alkali metal hydroxide, or sufficiently drying the fibrous activated carbon in advance. is required. These may reduce the efficiency of the purification, so this must be taken into consideration.
  • the temperature at which the aqueous alkaline solution and the fibrous activated carbon are brought into contact with each other is not particularly limited! /.
  • the contact temperature is too low, the viscosity of the alkaline aqueous solution increases and the contact efficiency deteriorates, so the metal impurity removal rate decreases. On the other hand, if the contact temperature is too high, structural materials such as tanks are likely to be corroded, and there is a risk of becoming a source of contamination of the alkaline aqueous solution.
  • the ratio of the amount of the alkaline aqueous solution to be treated and the amount of fibrous activated carbon can be selected each time depending on the content of impurities in the alkaline aqueous solution and the type of fibrous activated carbon.
  • the amount of the alkaline aqueous solution and the fibrous activated carbon can be used in the range of about 50 to 300 L: 1 to 2 kg for normal use.
  • fibrous activated carbon can be used at about 0.5-2 kg.
  • the amount of activated carbon may be selected according to the conditions.
  • the alkaline aqueous solution of the present invention may be sent to the fibrous activated carbon by any method.
  • it may be fed into fibrous activated carbon by a pressure pump or the like, or may be sucked by a suction pump or the like.
  • Containers such as columns containing fibrous activated carbon that can be used in the present invention, as illustrated in Fig. 1, before and after the fibrous activated carbon layer, and between Z or the fibrous activated carbon layer, It is desirable to have a space layer that is free of one or more fibrous activated carbons.
  • the presence of a space layer in the column has the effect of significantly increasing the throughput of the aqueous alkaline solution.
  • fibrous activated carbon can be used more effectively without unevenly distributing the flow of the alkaline aqueous solution in the fibrous activated carbon layer.
  • having a space layer has the advantage that the columns can be connected freely.
  • the volume of the space layer (the total when there are multiple space layers) is preferably 10% or less of the total volume of the column. If it exceeds 10%, the volume of the column becomes unnecessarily large.
  • the fibrous activated carbon of the present invention has a plurality of fibers divided by a space layer and other layers. A fibrous activated carbon layer may be formed. A mesh or the like may be provided on at least one surface of the fibrous activated carbon layer.
  • connection method may be a distributed type as illustrated in Fig. 2 or a serial type including a direct connection type as illustrated in Fig. 3 or a parallel type, or a misalignment method!
  • any shape container other than the column shape can be used for purification as long as it has fibrous activated carbon inside.
  • the number and size of containers can also be selected as needed.
  • the alkaline aqueous solution inlet and the treated outlet may be the same or different, and their shape, number, position, etc. can be selected as necessary.
  • the used fibrous activated carbon having a reduced ability to remove metal impurities can be regenerated by treating it with an activator.
  • the used fibrous activated carbon can be regenerated by, for example, the following method. First, with the column packed, it is washed with pure water until the alkali concentration in the pure water discharged from the column outlet force is 1% by weight or less. Next, hydrochloric acid, nitric acid, sulfuric acid, or phosphoric acid power is selected. Either one kind of acid or two or more kinds of mixed acids (activators) are continuously passed through the column or allowed to stand for a certain period of time after passing a certain amount. The activator and fibrous activated carbon are brought into contact with each other.
  • the pure water used for removing the alkali is preferably 40 ° C or higher, preferably 70 to 90 ° C.
  • the temperature at which the activator is brought into contact with the fibrous activated carbon is not particularly limited as long as it is not higher than the temperature at which the activator does not decompose or boil, but is preferably 100 ° C or lower, more preferably 20 ° C to 80 ° C. It is.
  • Feeding speed when passing the activator is preferably from preferably is 0.5 2 Hr _1 or more at a spatial velocity instrument 0.5 5: A LO Hr _1. 0. 2 Hr _1 takes a long time to the the processing time less, it is difficult to ensure sufficient regeneration and greater than 10 hr _1 Kunar.
  • the flow rate is at least twice the column volume, preferably more than 3 times. Fibrous activated carbon that has been regenerated is preferably washed with pure water to remove the activator!
  • Alkaline aqueous solution from which is removed below a specific amount has a small content of metal components such as nickel, iron, molybdenum, and copper, and can be suitably used as an etching agent for silicon wafers.
  • the fibrous activated carbon listed in Table 2 is packed into a 17 ml column, and as shown in Fig. 5, seven columns are connected in series to a quartz glass tube with a jacket. Then, 63 ° C hot water was circulated through the jacket. Before passing the aqueous sodium hydroxide solution through the column, nitrogen gas was passed through the column for 2 hours at an inlet pressure of 0.1 lMPa to dry the moisture contained in the fibrous activated carbon.
  • Example 6 FR-20 was used that was immersed in 1.5N hydrochloric acid for 1 hour, washed with water, and centrifuged to remove liquid.
  • Example 7 FR-20 was used which was immersed in 1N nitric acid for 1 hour, washed with water, and centrifuged to remove liquid.
  • Example 8 the same operation as in Example 2 was performed, except that a 48 wt% potassium hydroxide aqueous solution containing 500 ppb of iron and 60 ppb of nickel was passed through the column.
  • Comparative Examples 1 to 3 8 g of granular activated carbon was packed in a column instead of fibrous activated carbon, and seven of these were connected in series and inserted into a quartz glass tube. The aqueous solution was passed through the column. In Comparative Examples 1 and 2, the same aqueous sodium hydroxide solution as in Example 1 was passed through the column, and in Comparative Example 3 the same aqueous potassium hydroxide solution as in Example 8 was passed through the column.
  • Example 9 2 g (dry weight) of fibrous activated carbon FR-20 and 100 ml of the same aqueous sodium hydroxide solution as in Example 1 were placed in a fluorine resin container and mixed, and contacted at 60 ° C. for 1 hour. rear, A sodium hydroxide aqueous solution purified by filtration was obtained and analyzed in the same manner.
  • Example 10 a sodium hydroxide aqueous solution in which 350 ppb of copper content was further dissolved in the sodium hydroxide aqueous solution of Example 1 by the following method was prepared and used. 100ml of sodium hydroxide aqueous solution containing copper and fibrous activated carbon FR-20, 2g (dry weight) are put in a fluorine resin container, mixed, contacted at 60 ° C for 1 hour, and then filtered off. Purified sodium hydroxide was obtained and analyzed in the same manner. The above copper was dissolved by immersing the metal copper piece in an aqueous solution of sodium hydroxide and sodium hydroxide heated to 80 ° C for 8 hours.
  • the fibrous activated carbon of the present invention has the ability to remove nickel and iron contained in a sodium hydroxide aqueous solution compared to granular activated carbon having an equivalent specific surface area and pore volume. It can be seen that the power is extremely high. It can also be seen that fibrous activated carbon having a specific surface area of 1500 m 2 Zg or more and a pore volume of 0.45 ml / g or more has a higher nickel removal capability. Furthermore, it can be seen that the activated carbon fiber activated by contacting with the activator has greatly improved the nickel removal ability.
  • Example 9 From Example 9, it can be seen that the contact with the continuous method is more highly purified than the contact with the batch method. It can also be seen that nickel and iron were removed from the aqueous potassium hydroxide solution as well. In addition, Example 10 shows that the fibrous activated carbon of the present invention has a copper removing ability.
  • Example 7 FR-20 nitric acid 2 0. 1 5. 0
  • Example 1 0 FR-20 None 2 1 30 Comparative Example 1 GLC None 8 38 1000 20 Comparative Example 2 WH2C None 8 45 800
  • Fibrous activated carbon was filled with water adjusted to 50% by weight. The values listed in the table are dry weight.
  • Comparative Examples 1 to 3 The product was used as it was packed in a column.
  • Fibrous activated carbon FR (raw material: phenolic resin): made by Kuraray Chemical,
  • Fibrous activated carbon A (raw material: petroleum pitch): Made by Uchika
  • Granular activated carbon GLC raw material: coconut shell
  • Granular activated carbon WH2C (raw material: coconut shell): Takeda Pharmaceutical Company Limited
  • activation treatment was performed by contacting 1.5 ml of hydrochloric acid in the same manner as in Example 6 in an 18 ml column that has the same structure as in Fig. 1.
  • Six columns filled with fibrous activated carbon were directly connected and inserted into a quartz glass tube having a jacket in the same manner as in Example 18, and 63 ° C hot water was circulated through the jacket. Then, nitrogen gas was passed through the column for 2 hours from the top of the quartz glass tube at an inlet side pressure of 0.11 MPa to dry the moisture.
  • Example 12 has the same force as Example 11 except that it has no space layer.
  • the ram was charged with the same fibrous activated carbon FR-20 as in Example 11, and the aqueous sodium hydroxide solution was purified and analyzed in the same manner as in Example 11.
  • a column having a volume of 17 ml as shown in FIG. 4 was packed with fibrous activated carbon FR-20 having a water content of 50% by weight immersed in 1.5N hydrochloric acid and activated in the same manner as in Example 6. Further, as shown in FIG. 5, seven columns were connected in series to a quartz glass tube having a jacket, and hot water at 63 ° C. was circulated through the jacket. Before passing the aqueous sodium hydroxide solution, the moisture contained in the fibrous activated carbon was dried by passing nitrogen gas through the column at an inlet pressure of 0.1 lMPa for 2 hours.
  • the alkaline aqueous solution contained in the fibrous activated carbon FR-20 packed in the seven used columns was extracted while the fibrous activated carbon was inserted into the quartz glass tube. It was. Next, heat the circulating water in the jacket of the quartz glass tube to 80 ° C. Then, 1000 ml of pure water was passed through the column from the bottom of the quartz glass tube at a liquid feed rate of 300 mlZhr. Next, 500 ml of 1.5N hydrochloric acid was passed through the column at a feed rate of 300 mlZhr. Next, 500 ml of pure water was passed through the column at a liquid feed rate of 300 mlZhr.
  • the fibrous activated carbon in the column was activated and regenerated.
  • nitrogen gas was passed through the column for 2 hours under 0.1 lMPa to dry the moisture contained in the fibrous activated carbon.
  • the temperature of the circulating water in the quartz glass tube jacket is adjusted to 63 ° C, and the sodium hydroxide aqueous solution, which is a stock solution containing 50 ppb nickel and 1 lOOppb iron, is placed in an 800 ml column at a feed rate of 300 mlZhr.
  • the nickel and iron contents of the purified aqueous sodium hydroxide solution were collected by analyzing the effluent of the aqueous solution at 200 ml and 400 m, and analyzed by ICP-MS.
  • Example 14 As a comparison, in Example 14, as in Example 13 above, after obtaining the used fibrous activated carbon, regeneration of the used fibrous activated carbon FR-20 was carried out using 1.5N hydrochloric acid as an activator. The same procedure as in Example 13 was carried out except that no passage was made. That is, as in Example 13, the raw solution of sodium hydroxide and sodium hydroxide was passed through the column for purification, and the effluent was collected and prayed.
  • Table 4 shows the analysis results of Examples 13 and 14. It can be seen that the ability to remove metal impurities is greatly recovered by bringing it into contact with an activator for regeneration. Reprocessing with an activator! /, N! /, And removal ability fully recovered! /
  • the amount of contamination by nickel was analyzed as follows. The surface of the etched wafer is washed with pure water for 5 minutes, and further washed with 0.1N hydrofluoric acid solution for 1 minute, and then the wafer is completely dissolved with vapors of hydrofluoric acid and nitric acid. Analyzed by MS. Comparative Example 4 contains 50 ppb of Eckel and has not been refined with fibrous activated carbon. 4 8. Etched with 3% by weight aqueous solution of sodium hydroxide and sodium and analyzed the amount of nickel contamination as well. .
  • the method and apparatus for purifying an alkaline aqueous solution of the present invention makes it possible to produce a high-purity alkaline aqueous solution with a small amount of remaining metal impurities. Can do.
  • a high purity alkaline aqueous solution in which metal components such as iron, nickel, molybdenum, and copper are reduced to a level that can be used as an etching agent for silicon wafers using fibrous activated carbon is industrially produced.
  • a method of manufacturing can be provided.

Description

明 細 書
アルカリ水溶液の精製方法
技術分野
[0001] 本発明は、アルカリ水溶液の精製方法に関する。
本願は、 2004年 8月 6日に日本で出願された特願 2004— 231330号に基づき優 先権を主張し、その内容をここに援用する。
背景技術
[0002] 近年、シリコンウェハーのエッチング剤は、取り扱いの困難な混酸(弗酸 +硝酸 + 酢酸)から取り扱いの易しいアルカリ水溶液へと転換が進もうとしている。しかし、アル カリ水溶液はその原料に由来する、或いは、製造工程から混入する微量の鉄、 -ッケ ル、モリブデン、銅などの金属を含有している。これら鉄、ニッケル、モリブデン、銅な どの金属からなる不純物分は、シリコンウェハーをエッチングするときにシリコンゥェ ハー中へ浸透して残存してしま 、、シリコンウェハーの電気絶縁特性を変化させてし まう。このため、これら金属不純物分を相当量含むアルカリ水溶液は、エッチング剤と して実質的に使 、難 、のが現状である。
[0003] シリコンウェハーエッチングに供するためには、アルカリ水溶液に微量含まれる各 金属不純物分は 200ppb以下、より好ましくは lOOppb以下にすることが要望される。 さらに具体的には、鉄は、 lOOppb以下、より好ましくは lOppb以下、モリブデンは、 1 OOppb以下、より好ましくは lOppb以下であり、ニッケルは lOppb以下、より好ましく は lppb以下に、銅は lOppb以下、より好ましくは lppb以下に低減することが要望さ れる。
[0004] ところで、アルカリ水溶液の精製方法として、活性炭を利用する方法が知られて ヽる 。し力しシリコンウェハーのエッチング用アルカリ水溶液に要求される濃度まで、金属 不純物分を低減した例は知られて ヽな ヽ。苛性ソーダ水溶液の精製に活性炭を利 用した例として、特許文献 1には活性炭を用いて苛性ソーダ水溶液に含まれる鉄分 を除去して、次亜塩素酸ソーダの製造に不具合を発生させな ヽ方法が開示されて ヽ る。しかし、この特許文献 1は、苛性ソーダ水溶液を粒状活性炭層に通過させること により、不純物として含まれる鉄分を 2ppm (Fe O換算)まで除去できることを開示し
2 3
ているにすぎない。
[0005] ニッケル除去方法に関する特許文献 2には、苛性カリ水溶液を椰子殻活性炭がプ レコートされた濾過装置に通過させることで、ニッケル分を lOppb程度のオーダーま で低減できることが開示されている。しかし、特許文献 2には、ニッケル分を 50ppb程 度まで低減した具体例しか示されていない。また、使用された活性炭は椰子殻を原 料とする粒状活性炭であるために微紛になりやすい。したがって濾過装置の目詰まり や粉塵の飛散などが起こりやすぐ実際に取り扱うためには防塵装置など過大な設 備が必要である。また活性炭の再生も難 ヽので資源の再活用と!ヽぅ面でも難がある さらに、活性炭を使って銅を除去すると ヽぅ技術は知られて ヽな ヽ。
[0006] 苛性ソーダ水溶液に含まれる金属不純物を除去し精製する別の方法として、特許 文献 3には、陽イオン交換膜を用いた苛性ソーダ水溶液の電気分解による精製方法 が開示されている。特許文献 3には、この方法によって、苛性ソーダ水溶液中の金属 不純物濃度は lOppb以下にできると記載されている。しかし、この方法は、食塩を電 気分解して得た苛性ソーダ水溶液を再び電気分解して苛性ソーダ水溶液の濃度を 高めながら金属不純物を除去するので、効率が悪!ヽと 、う欠点がある。
[0007] 特許文献 1 :特開昭 52— 52898号公報
特許文献 2:特開 2000 - 203828号公報
特許文献 3:特開 2002— 317285号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明は、このような技術の現状に鑑みて為されたものであり、繊維状活性炭を利 用して、シリコンウェハーのエッチング剤として使用できるレベルにまで金属不純物 分を低減した高純度のアルカリ水溶液を工業的に製造する方法、およびシリコンゥェ ハーのエッチング剤を提供することをその目的とする。また、更に、本発明は、アル力 リ水溶液の金属不純物を効率よく除去するための繊維状活性炭の使用、並びに、繊 維状活性炭を使用するアルカリ水溶液の精製装置を提供することをも、その目的とす る。
課題を解決するための手段
[0009] 本発明者は、鋭意検討した結果、繊維状活性炭がアルカリ水溶液に含まれる微量 のニッケル、鉄、モリブデン、銅等の金属不純物を高度に除去する能力を持つことを 見出して、本発明に至った。また、塩酸、硝酸、硫酸、リン酸力も選ばれる 1種もしくは 2種以上の混酸溶液に繊維状活性炭を接触させることで、本発明の金属不純物の除 去能力をさらに向上することができる。
[0010] 本発明の第一の態様は、以下の(1)の精製方法である。
(1)繊維状活性炭を、アルカリ水溶液と接触させて、アルカリ水溶液中からアルカリ 金属およびアルカリ土類金属以外の金属成分を除去することを特徴とする、アルカリ 水溶液の精製方法。
本発明は、以下(2)〜(12)であることが好ましい。
(2)前記アルカリ水溶液力 アルカリ金属およびアルカリ土類金属から選ばれる少な くとも一つの金属の少なくとも一つの水酸化物を含み更にアルカリ金属およびアル力 リ土類金属以外の金属成分を含むアルカリ水溶液である、 (1)に記載のアルカリ水溶 液の精製方法。
(3)繊維状活性炭の平均アスペクト比が 10以上である、(1)または(2)に記載のアル カリ水溶液の精製方法。
(4)繊維状活性炭が比表面積 1000m2/g以上かつ細孔容積が 0. 45mlZg以上で ある、 (1)〜(3)のいずれかに記載のアルカリ水溶液の精製方法。
[0011] (5)繊維状活性炭が、塩酸、硫酸、硝酸、リン酸力 選ばれる 1種の酸もしくは 2種以 上の混酸によって予め賦活ィ匕されて 、る、(1)〜 (4)の 、ずれかに記載のアルカリ水 溶液の精製方法。
(6)アルカリ水溶液に含まれるアルカリ金属およびアルカリ土類金属以外の金属成 分力 鉄、ニッケル、モリブデン、銅から選ばれる金属を含む、(1)〜(5)のいずれか に記載のアルカリ水溶液の精製方法。
(7)アルカリ水溶液が水酸ィ匕ナトリウム水溶液もしくは水酸ィ匕カリウム水溶液である、 ( 1)〜(6)の 、ずれかに記載のアルカリ水溶液の精製方法。 [0012] (8)繊維状活性炭と接触させるアルカリ水溶液の金属水酸化物の濃度が 10〜55重 量0 /0である、(1)〜(7)のいずれかに記載のアルカリ水溶液の精製方法。
(9)繊維状活性炭を充填したカラムにアルカリ水溶液を連続的に通過させて繊維状 活性炭とアルカリ水溶液とを接触させる、 (1)〜(8)のいずれか〖こ記載のアルカリ水 溶液の精製方法。
[0013] (10)繊維状活性炭を充填したカラムが少なくとも 1つの繊維状活性炭層と少なくとも 1つの繊維状活性炭の存在しない空間層を含み、繊維状活性炭層の前後あるいは 繊維状活性炭層中に 1つ以上の空間層が設置される、 (9)に記載のアルカリ水溶液 の精製方法。
(11)繊維状活性炭を充填したカラムを 2つ以上連結して使用する、 (9)あるいは(10 )に記載のアルカリ水溶液の精製方法。
(12)アルカリ水溶液の精製に供して使用済みとなった繊維状活性炭を、純水で洗 浄し、次いで塩酸、硝酸、硫酸、リン酸力 選ばれる 1種の酸もしくは 2種以上の混酸 と接触させて賦活し再生させることにより、繊維状活性炭をアルカリ水溶液の精製に 繰り返し用いる、(1)又は(2)に記載のアルカリ水溶液の精製方法。
上記繰り返しは 1回以上行ってよい。 また本発明は以下の(13)のエッチング剤も 提供する。
(13) (1)〜(12)のいずれかに記載のアルカリ水溶液の精製方法を用いて得られた アルカリ水溶液を含むシリコンウェハーのエッチング剤。
[0014] また本発明の第二の態様は、以下の(14)の繊維状活性炭の使用である。
(14)アルカリ水溶液と接触させて、該アルカリ水溶液中カゝらアルカリ金属およびァ ルカリ土類金属以外の金属成分を除去する為の、繊維状活性炭の使用。
上記アルカリ水溶液は、アルカリ金属およびアルカリ土類金属から選ばれる少なくと も一つの金属の水酸化物を含み更にアルカリ金属およびアルカリ土類金属以外の金 属成分を含むアルカリ水溶液であってもよ ヽ。
また本発明の第三の態様は、以下の(15)のアルカリ水溶液の精製装置である。
(15)繊維状活性炭を含有する容器を備えることを特徴とするアルカリ水溶液の精製 装置であって、前記容器が、アルカリ金属およびアルカリ土類金属カゝら選ばれる少な くとも一つの金属の少なくとも一つの水酸化物を含み更にアルカリ金属およびアル力 リ土類金属以外の金属成分を含むアルカリ水溶液を前記容器内に導入する入口部 と、アルカリ金属およびアルカリ土類金属以外の金属成分が除去されたアルカリ水溶 液を前記容器内から排出する出口部とを有するアルカリ水溶液の精製装置。
発明の効果
[0015] 本発明によれば、アルカリ水溶液に含まれるニッケル、鉄、モリブデン、銅等のアル カリ金属およびアルカリ土類金属以外の金属成分を効率よく除去できるので、シリコ ンウェハーのエッチング剤として好適な高純度のアルカリ水溶液を工業的に製造す ることがでさる。
図面の簡単な説明
[0016] [図 1]本発明の精製方法の一態様に使用される、繊維状活性炭を含有したカラムの 概略断面図である。
[図 2]本発明の精製方法の一態様に使用される、複数のカラムが直列に分割して連 結された装置を示す概略平面図である。
[図 3]本発明の精製方法の一態様に使用される、複数のカラムが直列に連続して連 結された装置を示す概略平面図である。
[図 4]繊維状活性炭を含み、且つ、メッシュフィルターを備えたカラムの一例を示す概 略断面図である。
[図 5]ジャケットを有する石英ガラス製管中に複数のカラムを直列に挿入し、ジャケット 中に温水を循環させながら精製を行う、本発明の精製方法の一態様に使用される装 置を示す概略断面図である。
符号の説明
[0017] 1 活性炭層
2 空間層
3 メッシュフイノレター
4 カラム
5 シャケッ卜 発明を実施するための最良の形態
[0018] 本発明は、アルカリ金属の水酸ィ匕物もしくはアルカリ土類金属の水酸ィ匕物カゝら選ば れる 1種もしくは 2種以上を含むアルカリ水溶液等の水溶液に含まれる金属不純物、 特にニッケル、鉄、モリブデン、銅等を除去して、シリコンウェハーエッチング用として 好適なアルカリ水溶液を製造する技術、および、このアルカリ水溶液カゝらなるシリコン ウェハーのエッチング剤に関するものである。
[0019] 本発明により精製されるべきアルカリ水溶液には、一般にアルカリ金属の水酸ィ匕物 もしくはアルカリ土類金属の水酸ィ匕物の原料や製造工程に由来する鉄、ニッケル、ク ロム、銅、マンガンなどの金属成分が数 ppm力も数 ppb程度含まれている。したがつ て、そのようなアルカリ水溶液をシリコンウェハーのエッチング剤として利用することを 考えたとき、アルカリ金属およびアルカリ土類金属以外のこれらの金属成分は極力除 去されることが望まれる。とりわけ、シリコンウェハーに付着し浸透することを避けるベ き金属成分としては、鉄、ニッケル、モリブデン、銅等がある。
[0020] シリコンウェハーのエッチング剤としての利用を考えた場合には、本発明により処理 し得る、アルカリ金属およびアルカリ土類金属から選ばれる少なくとも一つの金属から なる水酸ィ匕物を含むアルカリ水溶液としては、水酸ィ匕ナトリウム水溶液もしくは水酸化 カリウム水溶液が好ましい。すなわち前記水酸ィ匕物が水酸ィ匕ナトリウムまたは水酸ィ匕 カリウムであることが好ましい。また特に問題の無い限り、 TMAH (テトラメチルアンモ -ゥムハイド口オキサイド)によるアルカリ水溶液等にも使用してよい。
これらのアルカリ水溶液に含まれる微量の金属不純分を除去するためには、繊維 状活性炭を使用することが必要である。
本発明に使用される繊維状活性炭としては、問題のない限り必要に応じて如何なる 繊維状活性炭も選択して使用することができる。例えば、炭素質原料のフエノール榭 脂または石油ピッチ等を紡糸し熱処理して得られたもの、あるいはアクリル繊維、レー ヨン繊維を熱処理して得られたものなどを使用することができる。
[0021] 本発明に使用される繊維状活性炭の形状は、非粒状である限り特に限定されない 。例えば、少なくとも繊維状部分を有する活性炭であれば特に限定せずに繊維状活 性炭として使用でき、活性炭自身が繊維形状を有するものであっても良ぐ活性炭繊 維の集合体であっても良ぐまた活性炭の少なくとも一部が繊維形状であったり又複 数の超微小繊維を有する等であってもよい。好ましくは、本発明の繊維状活性炭は、 活性炭の単繊維の集合体であり、例えば、活性炭の単繊維の集合体を編んだり織つ たり又はまとめたものでもよい。具体例を挙げれば、長繊維状活性炭、短繊維状 (チヨ ップ状)活性炭、編物や織物等の布帛状活性炭、フェルトのような不織布状にした活 性炭等を使用することができる。繊維状活性炭の単繊維又は繊維部分の直径は必 要に応じて選択できる力 5〜20ミクロン程度のものが好ましく使用することができ、 5 〜15ミクロンのものがより好ましい。繊維直径がこの範囲の活性炭力 強度、取り扱 いの上力も望ましい。直径が 5ミクロンより小さくなるとフィルターの目詰まりが激しくな り、操作性が低下して精製効率が低下するので好ましくない。
本発明においては、繊維状活性炭の長さは特に限定されず必要に応じて選択でき る。例えば、短繊維状の活性炭として用いる場合には、短繊維の長さは、一般的には 0. 05〜20mm、好ましくは 0. l〜20mm程度、より好ましくは 0. 5〜20mm、さらに 好ましくは l〜20mm程度のものを使用することができる。 0. l〜20mmの範囲程度 の長さのものがカラムへ充填性や取り扱 、の上から望まし!/、。
繊維状活性炭の長さ Z直径 (以下、「アスペクト比」という)は、平均で 10以上である ものが望ましい。平均アスペクト比が 10より小さくなるとカラムの充填密度が高くなりす ぎて圧力損失が大きくなるおそれがある。一方アスペクト比の上限については、長繊 維の繊維状活性炭を使用する場合には、平均アスペクト比の上限は存在せず、必要 に応じて選択してよい。短繊維状の繊維状活性炭を使用する場合には、平均ァスぺ タト比が 2000以上になると嵩高くなつてカラムへ充填しにくくなつたり、充填にむらが 発生しやすくなり、好ましくない場合がある。
ここで、短繊維状の活性炭のアスペクト比のばらつき範囲と平均値の測定は、以下 の方法で行なうことができる。
まず、繊維状活性炭を水に分散させ、希薄なスラリー状にする。次に、このスラリー をろ紙でろ過し、その後ろ紙を乾燥させる。そして、ろ紙上に散在している繊維状活 性炭を顕微鏡で 10倍に拡大した写真を撮り、写真内力もランダムに選択した 30本の 繊維状活性炭の繊維長を測定する。一方、ランダムに選択した 10本の繊維状活性 炭を 3000倍に拡大した電子顕微鏡写真を撮り、繊維直径をそれぞれ測定する。 10 点の繊維直径の平均値をこの繊維状活性炭の繊維直径とする。この繊維状活性炭 の繊維直径で上記 30本の繊維状活性炭の繊維長を割り、それぞれのアスペクト比を 求め、アスペクト比のばらつきの範囲と平均値を算出する。
短繊維状の繊維状活性炭を使用する場合には、より好ましい平均アスペクト比は、 50〜1800であり、さらに好ましくは、 100〜1500である。
[0023] また、入口部及び出口部を備えたカラム等の容器に繊維状活性炭を充填する場合 の繊維状活性炭の形状としては、必要に応じて選択してよぐ短繊維の形状でもよい し、フェルトのような不織布状形状やシート状に圧縮成型したものでも良いし、これら を細かく裁断した形状であってもよ!ヽし、長繊維状や短繊維状の繊維状活性炭を力 ラムの形状に合わせて圧縮成型した形状であってもよい。
本発明の繊維状活性炭は、窒素の吸着量から求めた BETの比表面積が 1000m2 Zg以上で、かつ、窒素の吸着量から求めた BETの細孔容積が 0. 45mlZg以上の ものが好ましい。さらに好ましくは比表面積が 1500m2Zg以上でかつ細孔容積が 0. 45mlZg以上のものである。
[0024] 細孔容積が 0. 45mlZgより大きくても比表面積が 1000m2Zgより小さいと、処理 条件にもよる力 アルカリ水溶液中の含有ニッケルを lOppb以下にすることが困難な 場合がある。一方、比表面積が 3000m2/g以上になると繊維状活性炭の製造が困 難になり、実用的でないので好ましくない。また、細孔容積が 1. 5mlZg以上の繊維 状活性炭は、製造が困難であり実用的でないので好ましくない。
繊維状活性炭が、従来の粒状活性炭と比べて微量金属成分を除去する能力が格 段に優れた性能を示す理由につ!ヽて、明確なことは分かって!/ヽな!ヽが、粒状活性炭 に比べて吸着表面の利用効率がより高いことがその理由の 1つだと考えられる。同等 の比表面積あるいは細孔容積を有する繊維状活性炭と粒状活性炭とを比べた場合 、アスペクト比の小さい粒状活性炭では活性炭表面に無数にある細孔の表面からの 深度が一般に長くなるため、アルカリ水溶液、特に高濃度で粘度の高いアルカリ水溶 液は細孔の奥深くまで浸透して 、くことが困難である。そのため粒状活性炭の表面 部分に近い細孔内面部分しか吸着に使用されない。一方、アスペクト比の大きい繊 維状活性炭では、活性炭表面に無数にある細孔の表面からの深度が一般に短い。 このため、仮にアルカリ水溶液が浸透することができる細孔の深度が粒状活性炭と同 等であるとすると、吸着に利用され得る細孔内面部分の面積が粒状活性炭の場合よ り大きくなり、微量金属成分を除去する能力の増大につながつていくものと考えられる 繊維状活性炭は、元々、この活性炭に含まれる金属不純物の鉄分、ニッケル分、 銅分の含有量がそれぞれ lOppm以下のものが好まし 、。金属不純物が多くなるとァ ルカリ水溶液との接触により水溶液中に溶出して汚染するので好ましくない。
[0025] 本発明では、繊維状活性炭を酸で前処理することにより、繊維状活性炭の吸着能 力を活性化させることができる。この操作を「賦活化」という。繊維状活性炭の賦活ィ匕 は、塩酸、硝酸、硫酸、リン酸力 選ばれるいずれ力 1種の酸もしくは 2種以上の混酸 に繊維状活性炭を接触させることにより行うことができる(以下、これらを「賦活剤」とい う)。
賦活剤の酸濃度は、 0. 1〜13N、好ましくは 0. 5〜6. 5N、より好ましくは 0. 8〜3 Nである。賦活剤は金属不純物の少な!/、ものが望まし!/、。
本発明ではアルカリ水溶液の精製に供する前に、及び Zまたは供した後に賦活ィ匕 を行なうことができ、賦活ィ匕により再生された繊維状活性炭は繰り返し精製に使用す ることがでさる。
[0026] 繊維状活性炭を賦活剤と接触させる方法としては、任意の方法を選択できる。例え ば賦活剤溶液を満たしたタンクに当該繊維状活性炭を投入し浸漬させることにより接 触させても良い。しカゝしながら、繊維状活性炭をカラム等の充填塔に充填し、賦活剤 をこれに通過させて繊維状活性炭と接触させることがより好ましい。接触させる温度 は賦活剤が分解または沸騰しな 、温度以下であれば特に限定されるものではな 、が 、 100°C以下が好ましぐより好ましくは 20°C〜80°Cである。賦活剤を通過させるとき の送液速度は必要に応じて選択できる力 空間速度で 0. 2Hr_1以上が好ましぐより 好ましくは 0. 5〜: LOHr_1である。 0. 2Hr_1未満になると処理時間に多大の時間を要 し、 10Η 1を越えると充分な賦活ィ匕が困難である。通液量は少なくともカラム等の容 器の容積の 2倍、好ましくは 3倍以上である。回分式で接触させる場合、一回の接触 時間は少なくとも 30分以上が好ましい。賦活化処理を終えた繊維状活性炭は賦活 剤を除去するために、純水で洗浄を行うことが好ま 、。
[0027] 繊維状活性炭に含まれる水分率 (重量%)は、繊維状活性炭を 60°Cで 2時間乾燥 した後の重量減少率から求められる。即ち、下記の計算式で求められる。
100 X { (乾燥前の水分を含んだ繊維状活性炭重量)一 (60°Cで 2時間乾燥した後 の繊維状活性炭重量) }/ (乾燥前の水分を含んだ繊維状活性炭重量)
繊維状活性炭中に含まれる水分の量が 70重量%以下、好ましくは 60重量%以下 になるように水分が除去された状態、あるいは乾燥された状態で、アルカリ水溶液の 精製に供されるのがよい。繊維状活性炭は乾燥した状態で取り扱うと微粉を発生し やすくなる。このため、乾燥した繊維状活性炭が充填されるカラム等を得る場合には 、水分を少なくとも 30重量%以上保持した状態でカラムに充填して、その後乾燥する ことが好ましい。
[0028] 本発明にお 、て処理されるアルカリ水溶液としては問題の無い限りどのような液も 処理可能である。しかしながら、通常は、処理され得るアルカリ水溶液の金属水酸ィ匕 物の濃度は 10〜55重量%、好ましい量は 20〜52重量%、より好ましくは 30〜52重 量%である。この範囲のアルカリ水溶液のときに、繊維状活性炭による金属成分の除 去が有効であり、シリコンウェハーのエッチング剤としても適している。また問題のな い限りどのような粘度のアルカリ水溶液でも処理可能である力 例えば、処理可能な アルカリ水溶液の粘度は、通常 l〜70mPa ' s、好ましくは 1. 5〜70mPa' s、更に好 ましくは 1. 9〜60mPa ' s程度である。(粘度測定条件:溶液の温度 30°C、回転粘度 計による測定)
[0029] 本発明にお ヽては、例えば、繊維状活性炭をカラムに充填して、アルカリ水溶液を 連続的に通過させて繊維状活性炭と接触させることにより、アルカリ金属およびアル カリ土類金属以外の金属成分のより効率的な除去が達成できる。すなわち、送液管 等の入口部力 連続的にカラム内に送り込まれたアルカリ水溶液は、カラム内を通過 する際に繊維状活性炭と接触し精製された処理液となって、連続的に排出管などの 出口部から取り出されることができる。
本発明では、繊維状活性炭とアルカリ水溶液を回分式で接触させる方式も使用可 能である力 繊維状活性炭に含まれる水分によりアルカリ水溶液が希釈される。この ため、アルカリ水溶液を予め濃縮しておいたり、固形のアルカリ金属水酸ィ匕物を添カロ して濃度を高めておいたり、繊維状活性炭を予め充分に乾燥しておくなどの予備操 作が必要である。これらにより精製の効率が低下することがあるので、その点の考慮 が必要である。
[0030] アルカリ水溶液と繊維状活性炭を接触させる温度は特に限定されるものではな!/、。
40°C〜100°Cが好ましぐ 50〜80°Cがより好ましい。接触させる温度が低すぎるとァ ルカリ水溶液の粘度が高くなり接触効率が悪くなるので金属不純分の除去率が低下 する。一方、接触させる温度が高すぎるとタンクなどの構造材料を腐食させやすくなり 、アルカリ水溶液の汚染源となる恐れがある。
処理されるアルカリ水溶液と繊維状活性炭の量の比はアルカリ水溶液の不純物の 含有率や繊維状活性炭の種類等によって、その都度選択することができる。例えば、 アルカリ水溶液と繊維状活性炭の量は、通常の使用には 50〜300L : l〜2Kg程 度で使用されうる。例えば、アルカリ水溶液 100Lを処理する場合、繊維状活性炭は 0. 5〜2Kg程度で使用できる。ただしこれは 1つの例であり、活性炭の量はその都度 条件により選択してよい。
また本発明のアルカリ水溶液はどのような方法で繊維状活性炭に送りこまれてもよ い。例えば圧送ポンプ等によって繊維状活性炭に送り込まれてもよいし、あるいは吸 引ポンプ等によって吸引されてもよい。
[0031] 本発明に使用され得る、繊維状活性炭を含有するカラム等の容器は、図 1に例示 するように、繊維状活性炭層の前後に、および Zまたは、繊維状活性炭層の間に、 1 つ以上の繊維状活性炭の存在しない空間層を有することが望ましい。カラムに空間 層を存在させるとアルカリ水溶液の処理量を著しく増大させる効果がある。また、繊維 状活性炭層中のアルカリ水溶液の流れを偏在させずに繊維状活性炭をより有効に 活用することができる。さらに、空間層を持つことで、カラムの連結を自在にできる利 点がある。空間層の容積 (空間層が複数あるときはその合計)はカラム全容積の 10% 以下が好ましい。 10%を超えるとカラムの容積が必要以上に大きくなり好ましくない。 また本発明の繊維状活性炭は、空間層やそれ以外の層により分割された複数の繊 維状活性炭層を構成してもよい。また、メッシュ等を繊維状活性炭層の少なくとも 1つ の表面に設けても良い。
本発明ではカラムを二つ以上連結して使用することが望ましい。連結の方法は図 2 に例示するような分散型や図 3に例示するような直結型を含む直列型や、並列型等 の!、ずれの方法でもよ!/、。
なお、本発明においては、繊維状活性炭を内部に有する限り、カラム形状以外の 如何なる形状の容器であっても精製に使用可能である。容器の数及びサイズも必要 に応じて選択され得る。また容器のアルカリ水溶液の入口部と処理後の出口部は同 じであっても異なっていても良ぐまたそれらの形状、数や位置等は必要に応じて選 択できる。
[0032] 金属不純分の除去能力の低下した使用済み繊維状活性炭は、賦活剤で処理する ことにより、その除去能力を再生させることが可能である。
前記使用済み繊維状活性炭の再生は、例えば以下の方法で行なうことができる。 まず、カラムに充填した状態で、カラム出口部力 排出される純水に含まれるアルカリ 濃度が 1重量%以下になるまで純水を用いて洗浄する。次いで塩酸、硝酸、硫酸、リ ン酸力 選ばれる 、ずれか 1種の酸もしくは 2種以上の混酸 (賦活剤)をカラムに連続 的に通過させるか、もしくは一定量通過させた後一定時間静止させて賦活剤と繊維 状活性炭を接触させる。アルカリ分を除去するために用いる純水は、 40°C以上、好 ましくは 70〜90°Cの温水が好ましい。温度が低すぎると繊維状活性炭に付着した金 属不純物やアルカリ分の除去効率が低下する。賦活剤と繊維状活性炭を接触させる 温度は賦活剤が分解または沸騰しない温度以下であれば特に限定されるものでは ないが、 100°C以下が好ましぐより好ましくは 20°C〜80°Cである。賦活剤を通過さ せるときの送液速度は空間速度で 0. 2Hr_1以上が好ましぐより好ましくは 0. 5〜: LO Hr_1である。 0. 2Hr_1以下になると処理時間に多大の時間を要し、 10Hr_1より大き くなると充分な再生が困難である。通液量は少なくともカラム容積の 2倍、好ましくは 3 倍以上である。再生処理を終えた繊維状活性炭は賦活剤を除去するために、さらに 純水で洗浄を行うことが好まし!/、。
[0033] 本発明の方法で得られた、アルカリ金属およびアルカリ土類金属以外の金属成分 が特定量以下に除去されたアルカリ水溶液は、ニッケル、鉄、モリブデン、銅等の金 属成分の含有量がわずかであり、シリコンウェハーのエッチング剤として好適に使用 することができる。
[0034] 実施例
以下に実施例を用いて本発明を詳細に説明する。ただし本発明はこれらの例に限 定されるものではない。
[0035] (実施例 1〜9及び比較例 1〜3)
表 2に掲げた各種繊維状活性炭を図 4に示すように 17mlのカラムに充填し、図 5に 示すようにジャケットを有する石英ガラス製の管に前記カラムを 7個直列に連結して挿 入し、ジャケットに 63°Cの温水を循環させた。水酸ィ匕ナトリウム水溶液をカラム内に通 過させる前に、入口側圧力 0. l lMPaで窒素ガスを 2時間カラム内に通し、繊維状活 性炭に含まれる水分を乾燥した。その後、ニッケル分を 50ppb、鉄分を 1100ppb、 及びモリブデン分を 20ppb含む、 48. 3重量%の水酸ィ匕ナトリウム水溶液を、石英ガ ラス管の下部入口から 300mlZhrの送液速度でカラム内に導入した。石英ガラス管 上部出口力もカラムを通過した水酸ィ匕ナトリウム水溶液の 200mlから 400mほでを収 集し、金属不純物を ICP— MS (発光プラズマ質量分析計)で測定した。なお表 2に 記載した活性炭の比表面積および細孔容積はメーカー測定値 (窒素の吸着量から 求める BET法による)をそのまま用いた。実施例 6では 1. 5Nの塩酸に 1時間浸漬し 水洗した後遠心脱液した FR— 20を用いた。実施例 7では 1Nの硝酸に 1時間浸漬し 水洗した後遠心脱液した FR— 20を用いた。実施例 8では鉄分 500ppb、ニッケル分 60ppbを含む 48重量%の水酸ィ匕カリウム水溶液をカラム内に通過させる以外は実 施例 2と同様の操作を行なった。
[0036] 比較例 1〜3では、繊維状活性炭の代りに粒状活性炭をカラムに 8g充填し、これを 7個直列に連結し石英ガラス管に挿入して、実施例 1〜8と同様にアルカリ水溶液を カラム内に通過させた。比較例 1及び 2は実施例 1と同じ水酸ィ匕ナトリウム水溶液を、 比較例 3は実施例 8と同じ水酸ィ匕カリウム水溶液をカラム内に通過させた。
実施例 9では、繊維状活性炭 FR— 20を 2g (乾燥重量)と実施例 1と同じ水酸ィ匕ナト リウム水溶液 100mlをフッ素榭脂容器に入れて混合し 60°Cで 1時間接触させた後、 濾別して精製した水酸ィ匕ナトリウム水溶液を得て同様に分析した。
実施例 10では、実施例 1の水酸ィ匕ナトリウム水溶液にさらに下記の方法で銅分を 3 50ppb溶解させた水酸ィ匕ナトリウム水溶液を用意し、これを使用した。この銅分を含 む水酸ィ匕ナトリウム水溶液 100mlと繊維状活性炭 FR— 20、 2g (乾燥重量)をフッ素 榭脂容器に入れて混合し、 60°Cで 1時間接触させたあと、濾別して精製した水酸ィ匕 ナトリウムを得て同様に分析した。上記の銅の溶解は、金属銅片を 80°Cに加熱した 水酸ィ匕ナトリウム水溶液に 8時間浸漬することで行なった。
[0037] 表 1に示すように、本発明の繊維状活性炭は同等の比表面積と細孔容積を持つ粒 状活性炭に比べて、水酸ィ匕ナトリウム水溶液に含まれるニッケル分、鉄分の除去能 力が極めて高いことが分かる。また、比表面積が 1500m2Zg以上でかつ細孔容積 が 0. 45ml/g以上の繊維状活性炭がさらに高いニッケル分の除去能力を持つこと が分かる。さらに、賦活剤と接触させて、賦活した繊維状活性炭は、ニッケル分の除 去能力が大幅に向上していることが分かる。
実施例 9から回分式で接触させるよりも連続式で接触させる方が高度に精製できて いることが分かる。また、水酸ィ匕カリウム水溶液も同じようにニッケル分と鉄分が除去 できたことが分かる。また実施例 10から本発明の繊維状活性炭は銅の除去能力を有 していることが分かる。
[0038] [表 1]
活性 賦活 活性炭量 分析結果 (ppb)
炭 剤 (カラム ニッケ 鉄分 モリプ 銅分
当たり) ル分
(g)
実施例 1 FR-25 なし 2 0. 1 1 3. 8
実施例 2 FR-20 なし 2 0. 14 4. 0 2 実施例 3 FR-15 なし 2 0. 22 6. 8
実施例 4 A 15 なし 2 0. 90 230
実施例 5 A-10 なし 2 4. 20 600
実施例 6 FR-20 塩酸 2 0. 1 5. 0
以下
実施例 7 FR-20 硝酸 2 0. 1 5. 0
以下
実施例 8 FR 20 なし 2 0. 16 10
実施例 9 FR-20 なし 2 2. 3 150
実施例 1 0 FR-20 なし 2 1 30 比較例 1 GLC なし 8 38 1000 20 比較例 2 WH2C なし 8 45 800
比較例 3 GLC なし 8 55 450
[0039] 実施例 1〜 10:繊維状活性炭は水分を 50重量%に調整して充填した。表に 記載の値は乾燥重量。
比較例 1〜3:製品をそのままカラムに充填して用いた。
繊維状活性炭 FR (原料:フエノール榭脂):クラレケミカル製、
繊維径—平均 10ミクロン
繊維状活性炭 A (原料:石油ピッチ):ュ-チカ製
粒状活性炭 GLC (原料:椰子殻):クラレケミカル製
粒状活性炭 WH2C (原料:椰子殻):武田薬品工業製
なお上記表の空欄は、測定が行なわれな力 た事を表す。
[0040] [表 2] 活性炭 製造会社 比表面積 紬孔容積 平均ァス ァスぺクト
(m2/g) (m 1 /g) ぺクト比 比
(数値範 囲)
FR-25 クラレケミカ/ 2500 1 - 525 120〜
1040
FR-20 クラレケミ力 2000 0. 75 400 50〜
1 500
FR-15 クラレケミカル' 1500 0. 50
A- 15 ュニチカ 1500 0. 80 420 200〜8
60
A- 10 ュニチカ 1000 0. 50
GLC クラレケミ力 1400- 0. 80- 1600 1. 1
* 比表面積と細孔容積の数値はメーカーのカタログに記載の値および測 定値である。 (実施例 11及び 12)
水酸ィ匕ナトリウム水溶液の入口部側に lmlの空間層を だけ持つ以外は、図 1 の構造と同じである 18mlのカラムに、実施例 6と同様に 1.5Nの塩酸に接触させて 賦活処理した繊維状活性炭 FR— 20を 2g (乾燥重量)充填した。この繊維状活性炭 を充填したカラムを 6個直結して実施例 1 8と同様にジャケットを有する石英ガラス 管に挿入し、ジャケット部に 63°Cの温水を循環させた。そして、入口側圧力 0.11M Paで窒素ガスを石英ガラス管上部から 2時間カラム内に通し、水分を乾燥させた。次 に、ニッケノレ分を 50ppb、鉄分を llOOppb含む 48.3重量0 /0の水酸ィ匕ナトリウム水 溶液を、送液速度 300mlZhrで石英ガラス管底部力 カラム内に 1000ml通過させ た。こうして得た水酸ィ匕ナトリウム水溶液は 100mに'とに捕集し、 ICP— MSでニッケ ル分と鉄分を分析した。実施例 12では、空間層を持たない以外は実施例 11と同じ力 ラムに実施例 11と同じ繊維状活性炭 FR - 20を充填し、実施例 11と同様に水酸ィ匕 ナトリウム水溶液の精製を行 、分析した。
[0042] 表 3に示すように、空間層を持つカラムに充填すると、ニッケル分 0. lppb以下の水 酸ィ匕ナトリウム水溶液を持続して製造できることがわかる。
[0043] [表 3]
Figure imgf000019_0001
[0044] (実施例 13及び 14)
図 4に示すような容積 17mlのカラムに、実施例 6と同様に 1. 5N塩酸に浸漬して賦 活ィ匕した水分率 50重量%の繊維状活性炭 FR— 20を充填した。さらに、図 5に示す ようにジャケットを有する石英ガラス製の管に前記カラムを 7個直列に連結して挿入し 、ジャケットには 63°Cの温水を循環させた。水酸ィ匕ナトリウム水溶液を通過させる前 に、入口側圧力 0. l lMPaで窒素ガスを 2時間カラム内に通して繊維状活性炭に含 まれる水分を乾燥した。その後、ニッケル分を 50ppb、鉄分を l lOOppb含む、 48. 3 重量%の水酸ィ匕ナトリウム水溶液を、前記石英ガラス管の下部から 300mlZhrの通 過速度で 800mlカラム内を通過させて精製を行った。その結果、使用済み繊維状活 性炭が得られた。
[0045] その後、使用済みとなった 7個のカラムに充填されている上記繊維状活性炭 FR— 20に含まれていたアルカリ水溶液を、石英ガラス管に繊維状活性炭を挿入した状態 のままで抜き取った。次いで、石英ガラス管のジャケット部の循環温水を 80°Cに加温 し、 1000mlの純水を石英ガラス管下部から 300mlZhrの送液速度でカラム内に通 過させた。次に 500mlの 1. 5N塩酸を 300mlZhrの送液速度でカラム内に通過さ せた。次に、 500mlの純水を 300mlZhrの送液速度でカラム内に通過させた。こうし てカラム内の繊維状活性炭を賦活ィ匕して再生した。再び、水酸化ナトリウム水溶液を 通過させる前に 0. l lMPa下で窒素ガスを 2時間カラム内に通し繊維状活性炭に含 まれる水分を乾燥した。そして、石英ガラス管のジャケット部の循環水温度を 63°Cに 調整して、 50ppbのニッケルと 1 lOOppbの鉄分を含む原液である水酸化ナトリウム水 溶液を、 300mlZhrの送液速度で 800mlカラム内を通過させて精製した。精製され た水酸ィ匕ナトリウム水溶液のニッケル分と鉄分は、 200ml力も 400mほでの前記水 溶液の流出液を捕集して ICP - MSで分析した。
[0046] 比較として実施例 14では、上記の実施例 13と同様に、使用済みの繊維状活性炭 を得た後、使用済みの繊維状活性炭 FR— 20の再生を、賦活剤の 1. 5N塩酸を通 過させないこと以外は全て実施例 13と同様に行った。すなわち、実施例 13と同様に 、原液水酸ィ匕ナトリウム水溶液をカラム内に通過させて精製し、流出液を捕集して分 祈した。
表 4に実施例 13、 14の分析結果を示す。賦活剤と接触させて再生させることにより 、金属不純分の除去能力が大幅に回復していることがわかる。賦活剤による再生処 理をして!/、な!/、と除去能力が充分に回復して!/、な 、。
[0047] [表 4]
Figure imgf000020_0001
[0048] (実施例 15及び比較例 4)
実施例 6の条件で精製して得た、ニッケルを 0. lppb以下含む 48. 3重量%の水酸 化ナトリウム水溶液 600mlを、内容積 1000mlのエッチング槽に入れて 80°Cに加温 する。このエッチング槽に P型抵抗率 0. 01〜0. 02 Ω 'cmの 200mm φラップウェハ 一を 6分間浸漬してエッチングした。そして、もっとも汚染されやすいニッケルによるゥ ェハーの汚染量を分析した。
[0049] ニッケルによる汚染量の分析は次のように行った。エッチングしたウェハーの表面を 純水で 5分間洗浄しさらに 0. 1Nの弗酸水溶液で 1分間洗浄した後、弗酸と硝酸の 蒸気で前記ウェハーを全て溶解し、その中の残留物を ICP— MSで分析した。比較 例 4は、エッケルを 50ppb含有し、繊維状活性炭による精製処理がなされていない 4 8. 3重量%の水酸ィ匕ナトリウム水溶液でエッチングし、同様にニッケルによる汚染量 を分析したものである。
表 5にしめすように、 0. lppb以下のニッケルを含む水酸化ナトリウム水溶液でエツ チングするとウェハー中のニッケルを大幅に低減できた。
[0050] [表 5]
Figure imgf000021_0001
産業上の利用可能性
本発明のアルカリ水溶液の精製方法及び装置によって、金属不純物の残存量の 少ない高純度のアルカリ水溶液が製造可能となり、例えば、半導体基板等に用いら れるシリコンウェハーのエッチング剤用として好適に利用することができる。
本発明では、繊維状活性炭を使用して、シリコンウェハーのエッチング剤として利 用できるレベルにまで、鉄、ニッケル、モリブデン、銅等の金属成分を低減した高純 度のアルカリ水溶液を、工業的に製造する方法を提供できる。

Claims

請求の範囲
[1] 繊維状活性炭を、アルカリ水溶液と接触させて、アルカリ水溶液中からアルカリ金 属およびアルカリ土類金属以外の金属成分を除去することを特徴とする、アルカリ水 溶液の精製方法。
[2] 前記アルカリ水溶液力 アルカリ金属およびアルカリ土類金属から選ばれる少なくと も一つの金属の少なくとも一つの水酸ィヒ物を含み更にアルカリ金属およびアルカリ土 類金属以外の金属成分を含むアルカリ水溶液である、請求項 1に記載のアルカリ水 溶液の精製方法。
[3] 繊維状活性炭の平均アスペクト比が 10以上である、請求項 1に記載のアルカリ水 溶液の精製方法。
[4] 繊維状活性炭が比表面積 1000m2Zg以上かつ細孔容積が 0. 45mlZg以上であ る、請求項 1に記載のアルカリ水溶液の精製方法。
[5] 前記繊維状活性炭が、塩酸、硫酸、硝酸、リン酸力 選ばれる 1種の酸もしくは 2種 以上の混酸によって予め賦活ィ匕されている、請求項 1に記載のアルカリ水溶液の精 製方法。
[6] アルカリ水溶液に含まれるアルカリ金属およびアルカリ土類金属以外の金属成分 1S 鉄、ニッケル、モリブデン、銅から選ばれる金属を含む、請求項 1に記載のアル力 リ水溶液の精製方法。
[7] アルカリ水溶液が水酸ィ匕ナトリウム水溶液もしくは水酸ィ匕カリウム水溶液である、請 求項 1に記載のアルカリ水溶液の精製方法。
[8] 繊維状活性炭と接触させるアルカリ水溶液の金属水酸化物の濃度が 10〜55重量
%である、請求項 1に記載のアルカリ水溶液の精製方法。
[9] 繊維状活性炭を充填したカラムにアルカリ水溶液を連続的に通過させて繊維状活 性炭とアルカリ水溶液とを接触させる、請求項 1に記載のアルカリ水溶液の精製方法
[10] 繊維状活性炭を充填したカラムが少なくとも 1つの繊維状活性炭層と少なくとも 1つ の繊維状活性炭の存在しな 、空間層を含み、繊維状活性炭層の前後にある ヽは繊 維状活性炭層の間に 1つ以上の空間層が設置される、請求項 9に記載のアルカリ水 溶液の精製方法。
[11] 繊維状活性炭を充填したカラムを 2つ以上連結して使用する、請求項 9あるいは 10 に記載のアルカリ水溶液の精製方法。
[12] アルカリ水溶液の精製に供して使用済みとなった繊維状活性炭を、純水で洗浄し、 次いで塩酸、硝酸、硫酸、リン酸力 選ばれる 1種の酸もしくは 2種以上の混酸と接触 させて賦活し再性させることにより、繊維状活性炭をアルカリ水溶液の精製に繰り返 し用いる、請求項 1に記載のアルカリ水溶液の精製方法。
[13] 請求項 1に記載のアルカリ水溶液の精製方法を用いて得られたアルカリ水溶液を 含むシリコンウェハーのエッチング剤。
[14] アルカリ水溶液と接触させて、該アルカリ水溶液中カゝらアルカリ金属およびアルカリ 土類金属以外の金属成分を除去する為の、繊維状活性炭の使用。
[15] 該アルカリ水溶液が、アルカリ金属およびアルカリ土類金属から選ばれる少なくとも 一つの金属の水酸化物を含み更にアルカリ金属およびアルカリ土類金属以外の金 属成分を含むアルカリ水溶液である、請求項 14に記載の繊維状活性炭の使用。
[16] 繊維状活性炭の平均アスペクト比が 10以上であることを特徴とする請求項 14に記 載の繊維状活性炭の使用。
[17] 繊維状活性炭が比表面積 1000m2Zg以上かつ細孔容積が 0. 45mlZg以上であ ることを特徴とする、請求項 14に記載の繊維状活性炭の使用。
[18] 繊維状活性炭を含有する容器を備えることを特徴とするアルカリ水溶液の精製装置 であって、前記容器が
アルカリ金属およびアルカリ土類金属カゝら選ばれる少なくとも一つの金属の少なくとも 一つの水酸化物を含み更にアルカリ金属およびアルカリ土類金属以外の金属成分 を含むアルカリ水溶液を前記容器内に導入する入口部と、
アルカリ金属およびアルカリ土類金属以外の金属成分が除去されたアルカリ水溶液 を前記容器内から排出する出口部と
を有するアルカリ水溶液の精製装置。
[19] 前記繊維状活性炭を含有する容器が、少なくとも 1つの繊維状活性炭層と少なくと も 1つの繊維状活性炭の存在しな!、空間層を含むカラムである、請求項 18に記載の アルカリ水溶液の精製装置。
前記繊維状活性炭を含有する容器が、繊維状活性炭層が充填され、かつ連結され た 2つ以上のカラム力もなる、請求項 18に記載のアルカリ水溶液の精製装置。
PCT/JP2005/014337 2004-08-06 2005-08-04 アルカリ水溶液の精製方法 WO2006018985A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/632,707 US8133459B2 (en) 2004-08-06 2005-08-04 Method for purifying aqueous alkaline solution
KR1020077002854A KR100875313B1 (ko) 2004-08-06 2005-08-04 알칼리 수용액의 정제 방법
EP05768860A EP1808412B1 (en) 2004-08-06 2005-08-04 Method for purifying aqueous alkaline solution
JP2006531558A JP4125344B2 (ja) 2004-08-06 2005-08-04 アルカリ水溶液の精製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004231330 2004-08-06
JP2004-231330 2004-08-06

Publications (1)

Publication Number Publication Date
WO2006018985A1 true WO2006018985A1 (ja) 2006-02-23

Family

ID=35907375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014337 WO2006018985A1 (ja) 2004-08-06 2005-08-04 アルカリ水溶液の精製方法

Country Status (8)

Country Link
US (1) US8133459B2 (ja)
EP (1) EP1808412B1 (ja)
JP (1) JP4125344B2 (ja)
KR (1) KR100875313B1 (ja)
CN (1) CN100522814C (ja)
MY (1) MY145456A (ja)
TW (1) TWI306837B (ja)
WO (1) WO2006018985A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148552A1 (ja) * 2006-06-19 2007-12-27 Nomura Micro Science Co., Ltd. アルカリ水溶液の精製方法
JP2011031223A (ja) * 2009-08-05 2011-02-17 Nomura Micro Sci Co Ltd 陰イオン交換体、その前処理方法及び再生方法並びにアルカリ水溶液の精製方法及び精製装置
JP2013166150A (ja) * 2013-05-22 2013-08-29 Nomura Micro Sci Co Ltd アルカリ水溶液の精製方法
JP2017014995A (ja) * 2015-07-01 2017-01-19 愛三工業株式会社 蒸発燃料処理装置
JP2017014996A (ja) * 2015-07-01 2017-01-19 愛三工業株式会社 蒸発燃料処理装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100129996A1 (en) * 2008-04-28 2010-05-27 Jian Zhong Yuan Silicon material surface etching for large grain polysilicon thin film deposition and structure
CN101643222B (zh) * 2008-08-07 2012-03-21 友发化工股份有限公司 将富含硅杂质的氢氧化钾水溶液纯化的方法
CN102356454B (zh) * 2009-03-31 2014-03-26 栗田工业株式会社 蚀刻液的处理装置以及处理方法
EP2812365A1 (de) 2012-02-06 2014-12-17 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
CN110186994A (zh) * 2019-06-03 2019-08-30 西安奕斯伟硅片技术有限公司 一种硅片中重金属的处理分析方法及处理装置
CN111943922B (zh) * 2020-09-01 2022-07-08 上海固创化工新材料有限公司 一种从吸附活性炭中回收3,3′,4,4′-二苯醚四甲酸二酐和活性炭再利用的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252898A (en) * 1975-10-28 1977-04-28 Asahi Glass Co Ltd Methof for removing fe from caustic alkali
JPH04290549A (ja) * 1991-03-19 1992-10-15 Osaka Gas Co Ltd 硫酸賦活活性炭素繊維の再生処理方法及びno含有ガスのno除去処理方法
JP2000203828A (ja) * 1998-12-28 2000-07-25 Toagosei Co Ltd 苛性カリ中のニッケルの除去方法
JP2001250807A (ja) * 1999-12-28 2001-09-14 Shin Etsu Handotai Co Ltd エッチング液、エッチング方法及び半導体シリコンウェーハ
JP2003521368A (ja) * 2000-02-04 2003-07-15 ハイトコ カーボン コムポージッツ インコーポレイテッド 生長した無機繊維ホイスカーを有する無機繊維を含有する高性能フィルター

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3438098A1 (de) * 1984-10-18 1986-04-30 Hoechst Ag, 6230 Frankfurt Verfahren zur entfernung von quecksilber aus loesungen
DE69400136D1 (de) 1993-02-18 1996-05-15 Du Pont Polyamide mit verbessertem farbverhalten und verbesserter verarbeitbarkeit und verfahren zu ihrer herstellung
JPH0741658A (ja) 1993-07-26 1995-02-10 Mitsubishi Gas Chem Co Inc 熱可塑性樹脂組成物
JP3409400B2 (ja) 1993-12-13 2003-05-26 東レ株式会社 樹脂組成物およびその製造方法
SG45409A1 (en) 1995-06-07 1998-01-16 Gen Electric Compositions of poly(phenylene ether) and polyamide resins which exhibit improved melt strength
US6033573A (en) * 1997-05-29 2000-03-07 The United States Of America As Represented By The Secretary Of Agriculture Activated nutshell carbons from agricultural waste
US6225256B1 (en) * 1997-06-04 2001-05-01 New Mexico State University Technology Transfer Corporation Activated carbon feedstock
ZA200004369B (en) * 1998-07-02 2002-05-29 Procter & Gamble Carbon fiber filters.
JP4114848B2 (ja) 2001-04-18 2008-07-09 鶴見曹達株式会社 アルカリ溶液の精製装置及びその方法
JP4060251B2 (ja) 2002-07-10 2008-03-12 旭化成ケミカルズ株式会社 ポリアミド樹脂組成物
JP2004107488A (ja) 2002-09-18 2004-04-08 Asahi Kasei Chemicals Corp 熱可塑性樹脂組成物
JP2004344715A (ja) 2003-05-20 2004-12-09 Asahi Kasei Chemicals Corp 苛性アルカリ水溶液に含まれるクロムの除去方法
JP2005001955A (ja) 2003-06-13 2005-01-06 Asahi Kasei Chemicals Corp 高純度苛性ソーダ水溶液の製造方法およびそれに使用する活性炭の賦活方法
JP3975210B2 (ja) 2004-06-18 2007-09-12 旭化成ケミカルズ株式会社 熱可塑性樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252898A (en) * 1975-10-28 1977-04-28 Asahi Glass Co Ltd Methof for removing fe from caustic alkali
JPH04290549A (ja) * 1991-03-19 1992-10-15 Osaka Gas Co Ltd 硫酸賦活活性炭素繊維の再生処理方法及びno含有ガスのno除去処理方法
JP2000203828A (ja) * 1998-12-28 2000-07-25 Toagosei Co Ltd 苛性カリ中のニッケルの除去方法
JP2001250807A (ja) * 1999-12-28 2001-09-14 Shin Etsu Handotai Co Ltd エッチング液、エッチング方法及び半導体シリコンウェーハ
JP2003521368A (ja) * 2000-02-04 2003-07-15 ハイトコ カーボン コムポージッツ インコーポレイテッド 生長した無機繊維ホイスカーを有する無機繊維を含有する高性能フィルター

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148552A1 (ja) * 2006-06-19 2007-12-27 Nomura Micro Science Co., Ltd. アルカリ水溶液の精製方法
JPWO2007148552A1 (ja) * 2006-06-19 2009-11-19 野村マイクロ・サイエンス株式会社 アルカリ水溶液の精製方法
KR101167354B1 (ko) 2006-06-19 2012-07-19 노무라마이크로사이엔스가부시키가이샤 알칼리 수용액의 정제 방법
JP5555424B2 (ja) * 2006-06-19 2014-07-23 野村マイクロ・サイエンス株式会社 アルカリ水溶液の精製方法
JP2011031223A (ja) * 2009-08-05 2011-02-17 Nomura Micro Sci Co Ltd 陰イオン交換体、その前処理方法及び再生方法並びにアルカリ水溶液の精製方法及び精製装置
JP2013166150A (ja) * 2013-05-22 2013-08-29 Nomura Micro Sci Co Ltd アルカリ水溶液の精製方法
JP2017014995A (ja) * 2015-07-01 2017-01-19 愛三工業株式会社 蒸発燃料処理装置
JP2017014996A (ja) * 2015-07-01 2017-01-19 愛三工業株式会社 蒸発燃料処理装置

Also Published As

Publication number Publication date
EP1808412B1 (en) 2012-10-10
CN1993293A (zh) 2007-07-04
TW200621637A (en) 2006-07-01
CN100522814C (zh) 2009-08-05
JP4125344B2 (ja) 2008-07-30
JPWO2006018985A1 (ja) 2008-05-08
US20080078722A1 (en) 2008-04-03
EP1808412A1 (en) 2007-07-18
US8133459B2 (en) 2012-03-13
KR20070030950A (ko) 2007-03-16
MY145456A (en) 2012-02-15
KR100875313B1 (ko) 2008-12-19
EP1808412A4 (en) 2011-06-08
TWI306837B (en) 2009-03-01

Similar Documents

Publication Publication Date Title
WO2006018985A1 (ja) アルカリ水溶液の精製方法
JP5032223B2 (ja) ポリシリコン破砕物を清浄化する方法
KR101167354B1 (ko) 알칼리 수용액의 정제 방법
CN106745887A (zh) 工业废酸除杂回收工艺
EP2601134A1 (en) Method for the purification of fluorine
WO2010016117A1 (ja) ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素ガスを生産する方法、その水素ガスを用いたケイ素化合物の生産方法、およびその方法のためのプラント
KR101814304B1 (ko) 음이온 교환체, 음이온 교환체와 양이온 교환체의 혼합물, 음이온 교환체와 양이온 교환체로 이루어진 혼합상, 그들의 제조 방법, 및 과산화수소수의 정제 방법
CN104671498A (zh) 一种含超细硅粉废水的处理方法及装置
US3897331A (en) Mercury recovery
JPH10114507A (ja) 精製過酸化水素水溶液の製造方法
KR20140013074A (ko) 불소 가스 생성 장치
CN116253295A (zh) 一种超高纯净半导体级硫酸的制备方法
US11293077B2 (en) Method for recovering scandium from red mud left from alumina production
US3502434A (en) Process and apparatus for removing mercury from caustic soda solutions
RU2386586C1 (ru) Способ очистки алмаза
CN104761083B (zh) 一种生产Lyocell纤维用溶液的回收方法
JP2003334458A (ja) アニオン交換樹脂及びその製造方法、並びにこれを用いた精製過酸化水素水の製造方法
CN110078035A (zh) 一种去除黄磷中硫的方法
JP2003096588A (ja) 高純度金属マグネシウムの製造方法および高純度チタンの製造方法
JP4065714B2 (ja) 1,2−ジクロロエタンの精製方法
JP2005001955A (ja) 高純度苛性ソーダ水溶液の製造方法およびそれに使用する活性炭の賦活方法
JPH1135305A (ja) 精製過酸化水素水溶液の製造方法
JP2608825B2 (ja) 過酸化水素水溶液の精製法
JPH08119626A (ja) アンモニア水の製造装置
JP2678836B2 (ja) 塩化第2鉄溶液の再生方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531558

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005768860

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632707

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580026016.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077002854

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 1020077002854

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005768860

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11632707

Country of ref document: US