WO2006016420A1 - ワークを加工する加工方法 - Google Patents

ワークを加工する加工方法 Download PDF

Info

Publication number
WO2006016420A1
WO2006016420A1 PCT/JP2004/011855 JP2004011855W WO2006016420A1 WO 2006016420 A1 WO2006016420 A1 WO 2006016420A1 JP 2004011855 W JP2004011855 W JP 2004011855W WO 2006016420 A1 WO2006016420 A1 WO 2006016420A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
wear
machining
amount
workpiece
Prior art date
Application number
PCT/JP2004/011855
Other languages
English (en)
French (fr)
Inventor
Jun Yoshida
Akira Kawana
Yasuhiro Kurahashi
Original Assignee
Makino Milling Machine Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co., Ltd. filed Critical Makino Milling Machine Co., Ltd.
Priority to DE602004020497T priority Critical patent/DE602004020497D1/de
Priority to US10/538,148 priority patent/US7331739B2/en
Priority to PCT/JP2004/011855 priority patent/WO2006016420A1/ja
Priority to EP04771816A priority patent/EP1683605B1/en
Publication of WO2006016420A1 publication Critical patent/WO2006016420A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/16Compensation for wear of the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/28Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece with compensation for tool wear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30084Milling with regulation of operation by templet, card, or other replaceable information supply
    • Y10T409/300896Milling with regulation of operation by templet, card, or other replaceable information supply with sensing of numerical information and regulation without mechanical connection between sensing means and regulated means [i.e., numerical control]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/30084Milling with regulation of operation by templet, card, or other replaceable information supply
    • Y10T409/30112Process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306664Milling including means to infeed rotary cutter toward work
    • Y10T409/306776Axially
    • Y10T409/306832Axially with infeed control means energized in response to activator stimulated by condition sensor

Definitions

  • the present invention relates to a machining method for machining in consideration of the amount of tool wear, and a machine tool having a tool wear correction function.
  • NC machine tools workpieces are machined by moving the tool mounted on the spindle and the workpiece placed on the table relative to each other according to the desired machining program. Therefore, the shape of the workpiece obtained by machining is the movement of the tool. It will be determined by the trajectory. Generally, a machining program is created on the assumption that the tool does not wear due to machining and that the tool length is constant.
  • the tool described in Japanese Patent Application Laid-Open No. 5 4-3 5 4 85 is disclosed in Japanese Patent Publication No. 2 0 0 1-1 5 0 2 9 9 and the like.
  • Detect tool life and change tools In other words, the machining is interrupted and the worn tool is replaced with a new tool of standard length, and then the machining is restarted. However, in this case, the replaced tool is worn. Therefore, if the tool is returned to the command position according to the machining program, the actual tool edge position will be shifted downward by the amount of tool wear before and after tool change.
  • the same tool is used to interrupt the first area, the second area is different from the first area, and then the first area is restarted.
  • a step 45 (see Fig. 5) is produced in the machined shape before and after the machining interruption for tool change or machining of a different area, resulting in inconvenience.
  • the tool since the tool was changed three times, three steps 45 are shown in the machining shape. Disclosure of the invention
  • an object of the present invention is to solve the problems existing in the above-mentioned conventional technology caused by tool wear, and to obtain a machining shape with little deviation from a desired machining shape, and a tool It is to provide a machine tool having a wear correction function.
  • Another object of the present invention is to provide a machining method capable of obtaining a smooth machining shape without a step generated by tool change, and a machine tool having a tool wear correction function.
  • the present invention detects the amount of tool wear at the end of machining, and matches the tool edge position at the end of machining with the tool edge position at the start of the next machining based on the detected amount of tool wear.
  • the tool edge position at the start of the next machining is determined and machining is continued.
  • a preset NC machining is performed in the machining method for machining the workpiece by relatively moving the tool and the workpiece.
  • a step of generating a position command based on the program; a step of machining the workpiece in accordance with the generated position command; a step of interrupting machining of the workpiece; and a tool when the machining of the workpiece is interrupted Based on the detected amount of wear of the tool and the position of the tool edge when resuming machining of the workpiece so as to coincide with the position of the edge of the tool when machining of the workpiece is interrupted based on the detected amount of wear of the tool And a step of resuming machining of the workpiece is provided.
  • a step of generating a position command based on a preset NC machining program A step of machining the cake according to the position command, a step of sequentially estimating the amount of wear of the tool during machining of the cake, and a cutting edge position of the tool so as to compensate for the estimated amount of wear of the tool.
  • a position command is generated based on a preset NC machining program, and the generated position command
  • a position command generating means for commanding relative movement of the tool and the workpiece
  • a tool wear amount detecting means for detecting the wear amount of the tool when the machining of the workpiece is interrupted
  • the tool wear amount detecting means More detected Cutting edge position control means for determining the cutting edge position of the tool when resuming machining of the workpiece so as to coincide with the cutting edge position of the tool when machining of the workpiece is interrupted based on the amount of wear of the tool.
  • a machine tool having a tool wear compensation function is provided.
  • a position command is generated based on a preset NC machining program, and the generated position command
  • a position command generating means for instructing to move the tool and the workpiece relative to each other
  • a tool wear amount detecting means for detecting the wear amount of the tool when the machining of the workpiece is interrupted, and during the machining of the workpiece
  • Tool wear amount estimating means for sequentially estimating the amount of tool wear
  • blade edge position correcting means for successively correcting the tool edge position so as to compensate for the tool wear amount estimated by the tool wear amount estimating means
  • Wear amount accumulation calculating means for accumulating a difference between the detected tool wear amount and the estimated tool wear amount, and processing the workpiece based on the accumulated tool wear amount.
  • the amount of wear of a tool worn by machining is detected, and the cutting edge position of the tool before and after the machining interruption is matched based on the amount of wear, so that machining without a difference can be performed.
  • using a step that sequentially corrects the tool tip position to compensate for the amount of tool wear estimated in real time during machining can reduce or eliminate the deviation between the desired machining shape and the actual machining shape.
  • FIG. 1 is a block diagram showing the main configuration of an NC machine tool according to the present invention.
  • Fig. 2 is a flowchart showing the procedure of the machining method performed in the NC machine tool shown in Fig. 1 so as not to cause a step on the surface of the actually machined workpiece.
  • Fig. 3 is a flowchart showing the continuation of the procedure of the processing method of Fig. 2.
  • FIG. 4 is a flowchart showing a machining method performed in the NC machine tool shown in FIG. 1 in order to obtain a machined shape after actual machining with no deviation from the desired shape. Is.
  • FIG. 5 is a diagram showing a level difference that occurs at the position where the tool is changed on the surface of the workpiece after machining in the prior art.
  • “desired machining shape” means the desired workpiece shape after processing
  • “actual machining shape” means the workpiece shape actually obtained by machining.
  • ⁇ Standard machining program '' means a machining program created so that the desired machining shape can be obtained on the premise that the tool T will not wear and maintain a certain length during machining.
  • the “program” means a program in which the reference machining program is modified so that the desired machining shape can be obtained in consideration of the deviation between the desired machining shape and the actual machining shape caused by the wear of the tool T in advance.
  • the machine body of the NC machine tool 1 1 consists of a spindle 1 5 rotatably supported by the spindle head 1 3 and a workpiece Table 1 7 for mounting and fixing W, X axis feed motor 2 1, Y axis feed motor (not shown), Z axis feed motor 2 3 based on the axis movement command from NC unit 19
  • the main shaft 1 3 and the table 17 can be moved relative to each other in the three orthogonal directions of the X, Y, and Z axes.
  • the table 17 is moved in the X-axis direction by the X-axis feed motor 21 and the spindle 15 is moved in the Y-axis direction by the Y-axis feed motor and the Z-axis feed motor 23.
  • the spindle 15 and the table 17 are moved relative to each other in the three orthogonal directions, but the X-axis feed motor 21, Y-axis feed motor, Z-axis feed motor 2 3 It is possible to adopt other configurations, such as moving the main shaft 15 in three orthogonal directions.
  • the X axis and the Y axis indicate two orthogonal axial directions in a plane perpendicular to the rotation axis of the main axis 15, and the Z axis indicates an axial direction parallel to the rotation axis of the main axis 15.
  • a tool T is attached to the tip of the spindle 1 3, and the rotating tool T is cut into the workpiece W, and the spindle 15 and the table 17 are moved relative to each other to move the tool T and the workpiece W.
  • the spindle 15 and the table 17 are moved relative to each other to move the tool T and the workpiece W.
  • the NC unit 19 includes a program storage means 19a for storing various programs such as a machining program and a tool tip position measurement program, and a reading interpretation means for interpreting a program stored in the program storage means 19a.
  • 1 9 b and position command generation means 1 9 c that generates position commands for spindle 15 and table 17 according to the interpreted program, X-axis feed motor 2 1, Y-axis feed motor, Z according to this position command
  • a shaft movement control means 19 d such as a servo motor driver for driving the shaft feed motor 2 3.
  • the machine body of NC machine tool 1 1 has an X-axis at any moment, Position reading means 25 for reading the coordinate values of the feed axes of the Y-axis and ⁇ axis is provided, and the relative position of the spindle 15 with respect to the table 17 read by the position reading means 25 is successively Axis movement control means 1 9 Feed packed to d.
  • position reading means 2 digital scale attached to each feed shaft of spindle 15 or table 17, X-axis feed motor 2 1, Y-axis feed motor, Z-axis feed motor 2 3, respectively. It is possible to use an appropriate device such as an attached encoder.
  • the NC machine tool 1 1 is provided with a tool edge position calculating means 27, and the tool edge position of the tool T with respect to the spindle 15 is preferably the distance between the front end surface of the spindle 15 and the tool edge position of the tool T, that is, the tool. The length can be measured.
  • the tool edge position calculating means 2 7 moves the spindle 1 5 and the table 1 7 relative to each other, and uses a tool edge detection device 2 9 provided at a position on the table 17 that does not interfere with machining.
  • the position of the cutting edge of the tool T with respect to the spindle 15 is calculated from the relative position of the spindle 15 with respect to the table 17 detected by the position reading means 25 at this time. Is calculated.
  • the tool edge detection position of the tool edge detection device 29 is a predetermined position with respect to the table 17, so if the positions of the spindle 15 and the table 17 are detected, Using the fact that the distance between the spindle 15 and the detection position of the tool edge detector 29 is known, the edge position of the tool T with respect to the spindle 15 is calculated.
  • the tool edge detection device 29 may be a contact sensor as shown in FIG. 1, or may be a non-contact sensor such as a laser type, a capacitance type, or an eddy current type.
  • the method of calculating the tool tip position of the tool T with respect to the spindle 15 by the tool tool tip position calculating means 27 is not limited to the above method. Needless to say, the cutting edge position calculating means 27 may calculate the cutting edge position of the tool T with respect to the spindle 15 by other suitable methods.
  • machining is usually performed according to a standard machining program created on the assumption that the tool T does not wear during machining and maintains a certain length. Therefore, as the tool T wears, the cutting edge position of the tool T approaches the spindle 15 side from the workpiece surface position of the desired machining shape, and an actual machining shape deviating from the desired machining shape is obtained. Also, if the tool T is replaced at this time, even if the spindle 15 is placed at the same position, the cutting edge position of the tool T will approach the table 17 side, resulting in a step on the surface of the actually processed shape of the cake. .
  • the NC machine tool 11 includes a tool wear amount detection means 31 and a wear tool for performing machining while taking into consideration that the length of the tool T or the position of the cutting edge changes due to wear.
  • Coefficient correction means 3 2 tool wear amount estimation means 3 3, blade edge position correction means 3 4, wear amount accumulation calculation means 3 5, and blade edge position control means 3 7 are further provided.
  • the tool wear amount detection means 3 1 calculates and detects the wear amount of the tool T from the difference between the cutting edge position of the tool T before and after machining a certain area, or after the previous machining by the tool T.
  • the cutting edge position of tool T is the cutting edge position of tool T before the current machining, and the wear amount of tool T is calculated and detected from the difference from the cutting edge position of tool T after the current machining.
  • the tool wear amount estimation means 33 estimates the wear amount of the tool T from the cutting conditions, the processing load, the cutting length CL, and the like during machining.
  • the tool wear amount estimation means 3 3 stores in advance a wear coefficient M k representing the tool wear amount per unit cutting length, and the cutting length CL and wear coefficient M k of the tool T used for machining Based on the integrated value, the wear amount of the tool is determined sequentially during machining.
  • the tool wear amount estimation means 3 3 3 estimates the total wear amount of the tool T during machining by adding the successively obtained wear amounts. You can also.
  • the cutting length CL means the length of the workpiece W cut.
  • the blade edge position correction means 3 4 Based on the wear amount of the tool T estimated by the tool wear amount estimation means 3 3, the blade edge position correction means 3 4 sequentially sends a signal for compensating the wear amount to the position command generation means 1 9 c or the axis movement control means 1 9 Send to d for machining without error due to wear
  • Wear coefficient correction means 32 is provided for comparing the wear amount and successively correcting the wear coefficient M k so that the two match.
  • the wear amount accumulation calculation means 3 5 adds the wear amount of the tool T obtained by the tool wear amount detection means 3 1 every time the machining is interrupted by changing the tool, and the desired machining determined by the reference machining program is added.
  • the amount of deviation that is, the error at the time of machining interruption of the actual machining shape relative to the shape is obtained.
  • the blade edge position control means 37 changes the relative position between the spindle 15 and the table 17 by the wear amount of the tool T obtained by the wear amount detection means 3 1. This change in relative position is performed by sending a signal from the blade edge position control means 3 7 to the position command generation means 19 c or the shaft movement control means 19 d. In this way, the cutting edge position of the tool T before and after the machining interruption is matched to eliminate or reduce the influence of the tool T wear on the actual machining shape.
  • the position command generated by the position command generating means 19 c is corrected according to the reference machining program, and the tool wear amount calculating means 3 1 is the cumulative value of the wear amount of each tool T, that is, the cumulative wear amount calculation.
  • the spindle 15 after the replacement of the tool T and the table 17 are shifted in the direction away from each other by the error between the desired machining shape obtained by means 35 and the actual machining shape. As a result, the position of the cutting edge of the tool T with respect to the workpiece W before and after the replacement of the tool T coincides, and the step generated in the actual machining shape due to the amount of wear is eliminated.
  • the position command generated by the position command generation means 19 c is corrected according to the reference machining program, and the wear of the tool used is determined by the tool wear amount estimation means 33. Shift the spindle 15 and the table 17 in order to bring them closer together by the amount. This offsets and compensates for changes in the tool length due to tool T wear, and the tool tip position relative to the workpiece W moves along the desired machining shape. The deviation of the shape from the desired machining shape is eliminated or reduced.
  • the correction of the position command can be performed by any one of the following: tool offset correction, workpiece coordinate system correction, and NC machine tool 11 machine zero point position correction.
  • the operator Prior to machining, the operator sets a machining program and stores it in the program storage unit 19a.
  • the program storage unit 19a stores a reference machining program created on the assumption that the tool T will not wear as a machining program. It is also possible to store a modified program created in consideration of the above.
  • the NC machine tool 11 calculates the cutting edge position of the tool T with respect to the spindle 15 with respect to the spindle 15 with respect to the tool T mounted on the spindle 15 when machining is started by the tool cutting edge position calculation means 27 ( Step S 1) .
  • the cutting edge position of the tool T with respect to the front end face of the spindle 15, that is, the tool length Ha is calculated in step S 1.
  • the tool T having the same standard length is used after the tool T is replaced in the following steps.
  • the following procedure is not limited to the tool ⁇ having the same length, and it goes without saying that it can be applied to the tool T having various lengths.
  • the reading and interpreting means 19 b interprets the reference machining program stored in the program storage section 19 a, and the position command generation means 19 c according to the interpretation results in the spindle 15 and By generating a position command for the table 17 and the axis movement control means 19 d driving the X-axis feed motor 21, Y-axis feed motor and Z-axis feed motor 23 according to this position command, Processing is performed (step S2).
  • Step S 3 the machining is interrupted to change the tool T, and the relative positions of the spindle 15 with respect to the table 17 at the time of interruption relative to the X axis, Y axis, and Z axis are obtained (Ste S 3).
  • the relative position between the spindle 15 and the table 17 can be obtained from the position command for the spindle 15 and the table 17 generated by the position command means 19c. Values detected by the position reading means 25 can be used for the positions of the main shaft 15 and the table 17 with respect to the X axis, Y axis, and Z axis.
  • the tool length Hb of the tool T worn by machining is calculated by the tool blade tip position calculating means 27 (step S4).
  • the tool edge position calculating means 27 may calculate the tool length in a timely manner, and the processing may be interrupted when the tool length becomes shorter than a predetermined value. In this case, the last calculated tool length can be used as the tool length Hb at the time of suspension.
  • the tool wear amount detection means 3 1 calculates the wear amount M t of the tool T from the tool length H a at the start of machining and the tool length H b at the time of machining interruption (step S 5 ) Then, the tool wear amount detection means 3 1 sends the calculated wear amount M t of the tool T to the wear amount accumulation calculation means 35, and the wear amount accumulation calculation means 35 gives the wear amount of the tool T that has been sent. Based on M t, the accumulated error amount Me is obtained and stored together with the relative positions of the spindle 15 with respect to the table 17 at the time of machining interruption with respect to the X axis, Y axis, and Z axis (step S 6).
  • step S7 Since the sequential wear compensation in step S7 will be described later, it is assumed in step S7 that the sequential wear compensation has not been performed, and the process proceeds to the next step S9, where the worn tool T mounted on the spindle 15 is Replace it.
  • step S 1 When the tool T is replaced and a new tool T is mounted on the spindle 15, the tool length at the time when the machining is resumed by the tool blade tip position calculation means 2 7 in the same manner as in step S 1 before the machining is resumed. Is calculated (step S 1 0). When the tool length Ha is calculated, machining using the new tool T is resumed (step S 1 1).
  • the new tool T is longer than the tool T used before the interruption by the amount of wear Mt.
  • the surface of the workpiece with the actual machining shape is displaced from the surface of the workpiece with the desired machining shape toward the main spindle 15 by the amount of wear M t of the tool T at the time of interruption. Therefore, when the machining is resumed, if the spindle 15 and the table 17 are moved to the same relative position as when machining was interrupted, the cutting edge position of the tool T mounted on the spindle 15 will be the desired machining shape. It is arranged on the top and moves closer to the table 17 side by the wear amount M t of the tool T from the surface of the workpiece in the actual machining shape. As a result, a step equal to the wear amount M t occurs on the surface of the workpiece W. Therefore, in the NC machine tool 11 according to the present invention, the spindle 15 or the table
  • step S 1 The position command generated by the position command generation means 1 9 c for 7 or both is corrected by the blade edge position control means 3 7 and the cumulative error amount Me obtained by the wear amount accumulation calculation means 3 5 is obtained. At this stage, the relative position of the spindle 15 with respect to the table 17 is shifted away from each other by an amount equal to the wear amount M t of the tool T obtained by the tool wear amount detection means 3 1. Continue processing (step S 1 2).
  • step S 3 when the calculated tool length becomes shorter than the predetermined value, the worn tool T is machined to be replaced with a new tool T. Is interrupted (step S 1 3).
  • the tool length H b of the tool T worn by machining is calculated by the tool edge position calculating means 27 (step S 1 4), and the tool wear amount detecting means 3 1 Calculates the wear amount M t of the tool T used in step S 12 in the same manner as in step S 5 (step S 15), and the wear amount cumulative calculation means 35 calculates the accumulated error from this wear amount M t.
  • the quantity Me is calculated and stored (step S 1 6).
  • step S 17 Since the sequential wear correction in step S 17 will be described later, it is assumed in step S 17 that the sequential wear correction is not performed, and the flow proceeds to step S 18. If machining is to be continued in step S 1 8, repeat the procedure from step S 9 to step S 1 7 in the same way. Note that the tool used in step S 1 2 wears with the machining as well as the tool used in step S 2. Therefore, when machining is interrupted for tool replacement, the desired machining shape and actual machining shape The difference between and is the sum of the wear amount M t of the tool T used in step S 2 and the wear amount M t of the tool T used in step S 12, that is, the cumulative wear amount calculation. It is equal to the cumulative error amount Me obtained by means 35.
  • step S 12 the cutting edge position control means 3 7 sets the relative position of the spindle 15 to the table 1 7 by the cumulative error amount Me. Machining may be continued while correcting the position command generated by the position command generating means 19 c according to the reference machining program so as to shift away from the position.
  • the tool wear amount estimation means 33 reads a preset wear coefficient M k from any storage means or machining program (step S 2 1), and then monitors the cutting length CL ( Step S 2 2).
  • the cutting length CL may be obtained based on the relative movement distance of the spindle 15 with respect to the table 17 detected by the position reading means 25, and is obtained from each axis movement command generated by the axis movement control means 19 d. May be.
  • the tool wear amount estimation means 3 3 calculates the wear amount increment by accumulating the cutting length increment CL and the wear coefficient M k, and determines the successive wear compensation amount M s, that is, the effect of tool T wear. To offset the spindle 15 The amount of correction required for the position relative to Bull 1 7 is obtained (Step S 2 3). Then, the tool wear amount estimation means 33 uses the total cutting length SCL and the total sequential correction amount SM s, which are the sum of the cutting length and the sequential wear correction amount M s, from the cutting length increment CL and the sequential wear correction amount M s. Is calculated and sent to the blade edge position correction means 3 4 (step S 2 4).
  • the blade edge position correction means 3 4 corrects the position command generated by the position command generation means 19 c for the spindle 15 and / or the table 17 (step S 2 5), and the total sequential correction amount
  • the relative position of the spindle 15 with respect to the table 17 is shifted by the amount of SM s in a direction to bring them closer to each other (step S 26).
  • step S 2 7 when machining is continued, the procedure from step S 22 to step S 26 is repeated.
  • step S22 to S26 the wear amount of the tool T estimated by the tool wear i estimation means 33 is used, so the deviation between the actual machining shape and the desired machining shape The amount may not be completely eliminated. However, if machining is not continued in step S27, if the process returns to step S3 or step S13, there will be a step on the surface of the workpiece in the actual machining shape due to the deviation between the actual machining shape and the desired machining shape. Will not occur.
  • the wear coefficient correction means 3 2 reads the wear amount M t of the tool T obtained in step S 5 or step S 15 from the tool wear amount detection means 3 1 (step S 2 8 ) By dividing this amount of wear M t by the total cutting length SCL, The wear coefficient M k may be obtained (step S 29). This makes it possible to obtain the wear coefficient M k according to the actual machining conditions and machining load, and to determine the actual machining shape and the desired machining shape. It is possible to further reduce the amount of deviation.
  • the amount of tool wear it can also be calculated from cutting conditions such as tool rotation speed, feed rate per tooth, depth of cut, tool material, tool type, workpiece material, and / or machining load.
  • the procedure for correcting the wear of the tool T shown in Fig. 3 is used together.
  • the amount of deviation between the actual machining shape and the desired machining shape at the time of machining interruption is smaller than the wear amount of the tool T used by the total successive correction amount SM s.
  • step S8 and step S19 the wear amount accumulation calculation means 35 subtracts the total successive correction amount SM s from the accumulated error amount Me that represents the deviation amount between the actual machining shape and the desired machining shape. However, the correction amount is taken into account.
  • the present invention has been described above by taking the NC machine tool 11 shown in FIG. 1 as an example.
  • actual machining is performed by considering the wear of the tool T at the time of machining interruption / resumption or during machining.
  • the present invention is not limited to the above-described embodiment, and is merely an example of a method for eliminating or reducing a step generated on the surface of a workpiece having a shape or a deviation amount between an actual machining shape and a desired machining shape.
  • step S1 to step S19 it was explained that machining was interrupted due to tool T replacement. It is also possible to apply the above procedure when processing in the first area is interrupted to process two areas with different workpieces W, and after processing the second area, the first area is processed again. It is.
  • the spindle 1 5 is the same as the difference between the wear amount M t of the tool T during the first machining of the first region and the wear amount M t of the tool T during the machining of the second zone.
  • Tool wear amount calculation means 3 1 Instead of tool wear amount estimation means 3 3 is used, and the sequential wear amount estimated by the tool wear amount estimation means 3 3 is accumulated to perform a series of machining with the same tool. It is also possible to obtain the total amount of wear of the tool that occurs in the process, and send the obtained total amount of wear to the wear amount cumulative calculation means 35. Even in this case, since the wear amount of the tool T is taken into consideration, the step difference in the surface of the workpiece in the actual machining shape that occurs before and after the tool change is reduced at least compared to the case where the wear amount is not taken into consideration. be able to.
  • the amount of tool wear during processing is estimated or calculated, and processing is interrupted, resumed or performed during tool replacement.
  • the change in the tool length caused by tool wear is offset by changing the relative position of the spindle and the table, and the step created on the surface of the workpiece in the actual machining shape when the machining is interrupted or resumed, or the desired machining shape And the actual machining shape can be reduced or eliminated. Therefore, it is possible to obtain a machining shape with little deviation from the desired machining shape or a smooth machining shape without a step without being affected by tool wear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

ワークWを加工する際に、加工時の工具Tの摩耗量を推定し、所望される加工形状が得られるように、推定された工具Tの摩耗量に基づいて、予め設定された加工プログラムに従って生成された位置指令を加工中に逐次補正し、補正後の位置指令に従って、ワークWを加工する。また、加工中断時における工具Tの摩耗量を演算し、加工中断位置において加工を再開するときに、加工中断時の工具Tの刃先位置と加工再開時の工具Tの刃先位置とが等しくなるように、演算された工具の摩耗量に基づいて、予め設定された加工プログラムに従って生成された位置指令を補正し、補正後の位置指令に従って、ワークWを加工する。

Description

ワークを加工する加工方法
技術分野
本発明は、 工具摩耗量を考慮して加工を行う加工方法、 及び工具 摩耗補正機能を備えた工作機械に関する。
明 背景技術
N C工作機械では、 主軸に装着され書た工具とテーブルに载置され たワーク とを所望の加工プログラムに従って相対移動させることに よってワークを加工するので、 加工によって得られるワークの形状 は工具の移動軌跡によって定められることになる。 一般に、 加工プ ログラムは、 加工により工具が摩耗せず、 工具長が一定であること を前提として作成される。
ところが、 実際には、 工具は加工に伴って摩耗し、 工具長がだん だん短くなつていく。 したがって、 例えば図 5に示されているよう に、 所望されるワークの形状 4 1 の輪郭が右肩上がりに傾斜してい る場合、 実際に加工される形状 (加工軌跡) 4 3は所望される形状 (加工軌跡) 4 1から上方 (主軸側) にだんだんシフ ト し、 ずれを 生じていく。 よって、 所望される加工形状 4 1 を得ることはできな い。
さ らに、 工具が摩耗すると、 特開昭 5 4— 3 5 4 8 5号公報ゃ特 開 2 0 0 1 - 1 5 0 2 9 9号公報などに記載されている方法によ り 、 工具寿命を検知して、 工具交換を行う。 すなわち、 加工を途中で 中断し、 摩耗した工具を標準的な長さの新しい工具に交換した後に 加工を再.開する。 ところが、 この場合、 交換後の工具は摩耗してい ないため、 加工プログラムに従った指令位置に工具を戻すと、 実際 の工具刃先位置は工具交換前後で交換前の工具の摩耗量分だけ下方 へずれることになる。 また、 同一の工具を用いて、 第 1の領域の加 ェを中断して第 1の領域と異なる第 2の領域の加工を経てから再度 第 1の領域の加工を再開する場合も、 第 1の領域に関する加工の中 断前後で工具の摩耗量が変化しているため、 同様に、 加工を中断し た時の指令位置に工具を戻すと、 実際の工具刃先位置は加工の中断 前後で変化することになる。 この結果、 工具交換のため又は異なる 領域を加工するための加工中断の前後で、 加工された形状に段差 4 5 (図 5参照) を生じることになり、 不都合が生じる。 なお、 図 5 の例では、 工具交換を 3回行ったため、 加工形状に段差 4 5が 3つ 表われてレ、る。 発明の開示
よって、 本発明の目的は、 工具の摩耗に起因して発生する上記従 来技術に存する問題を解消して、 所望される加工形状に対するずれ の少ない加工形状を得ることができる加工方法、 及び工具摩耗補正 機能を備えた工作機械を提供することである。
また、 本発明の他の目的は、 工具交換によ り発生する段差のない 滑らかな加工形状を得ることができる加工方法、 及び工具摩耗補正 機能を備えた工作機械を提供することである。
本願発明は、 上記目的に鑑み、 加工終了時の工具摩耗量を検出し 、 検出した工具摩耗量に基づき加工終了時の工具刃先位置と次加工 開始時の工具刃先位置とがー致するよ うに次加工開始時の工具刃先 位置を定め、 加工を続行するようにしたものである。
本発明の第 1の態様によれば、 工具とワーク とを相対移動させて 前記ワークを加工する加工方法において、 予め設定された N C加工 プログラムに基づいて位置指令を生成するステップと、 生成した前 記位置指令に従って前記ワークの加工を行うステップと、 前記ヮー クの加工を中断するステップと、 前記ワークの加工を中断したとき の工具の摩耗量を検出するステップと、 検出した工具の摩耗量に基 づいて、 前記ワークの加工を中断したときの工具の刃先位置と一致 するように前記ワークの加工を再開するときの工具の刃先位置を定 め、 前記ワークの加工を再開するステップとを含む加工方法が提供 される。
本発明の第 2の態様によれば、 工具とワーク とを相対移動させて 前記ワークを加工する加工方法において、 予め設定された N C加工 プログラムに基づいて位置指令を生成するステップと、 生成した前 記位置指令に従って前記ヮークの加工を行うステップと、 前記ヮー クの加工中の工具の摩耗量を逐次推定するステップと、 前記推定し た工具の摩耗量を補償するように前記工具の刃先位置を逐次補正す るステップと、 前記ワークの加工を中断するステツプと、 前記ヮー クの加工を中断したときの工具の摩耗量を検出するステツプと、 前 記検出した工具の摩耗量と前記推定した工具の摩耗量との差分を累 積するステップと、 前記累積した工具の摩耗量に基づいて、 前記ヮ ークの加工を中断したときの工具の刃先位置と一致するように前記 ワークの加工を再開するときの工具の刃先位置を定め、 前記ワーク の加工を再開するステップとを含む加工方法が提供される。
本発明の第 3の態様によれば、 工具とワーク とを相対移動させて 前記ワークを加工する工作機械において、 予め設定された N C加工 プログラムに基づいて位置指令を生成し、 生成した前記位置指令に 従って工具とワーク とを相対移動させるよう指令する位置指令生成 手段と、 前記ワークの加工を中断したときの工具の摩耗量を検出す る工具摩耗量検出手段と、 前記工具摩耗量検出手段によ り検出した 工具の摩耗量に基づいて、 前記ワークの加工を中断したときの工具 の刃先位置と一致するように前記ワークの加工を再開するときのェ 具の刃先位置を定める刃先位置制御手段とを具備する工具摩耗補正 機能を備えた工作機械が提供される。
本発明の第 4の態様によれば、 工具とワークとを相対移動させて 前記ワークを加工する工作機械において、 予め設定された N C加工 プログラムに基づいて位置指令を生成し、 生成した前記位置指令に 従って前記工具とワークとを相対移動させるよう指令する位置指令 生成手段と、 前記ワークの加工を中断したときの工具の摩耗量を検 出する工具摩耗量検出手段と、 前記ワークの加工中に工具の摩耗量 を逐次推定する工具摩耗量推定手段と、 前記工具摩耗量推定手段に より推定した工具の摩耗量を補償するように前記工具の刃先位置を 逐次補正する刃先位置補正手段と、 前記検出した工具の摩耗量と前 記推定した工具の摩耗量との差分を累積する摩耗量累積演算手段と 、 前記累積した工具の摩耗量に基づいて、 前記ワークの加工を中断 したときの工具の刃先位置と一致するように前記ワークの加工を再 開するときの工具の刃先位置を定める刃先位置制御手段とを具備す る工具摩耗補正機能を備えた工作機械が提供される。
本発明では、 加工により摩耗した工具の摩耗量を検出し、 その摩 耗量に基づいて加工中断前後の工具の刃先位置を一致させるので段 差のない加工が行える。 また加工中にリ アルタイムに推定した工具 の摩耗量を補償するよ うに工具の刃先位置を逐次補正するステツプ を併用すると、 所望加工形状と実加工形状とのずれも軽減又は解消 できる。 図面の簡単な説明
本発明の上述の及びその他の目的、 特徴、 利点を以下、 添付図面 を参照して本発明の実施形態に基づいてさらに詳細に説明する。 図 1 は、 本発明による N C工作機械の要部構成を示しているプロ ック図である。
図 2は、 実際に加工されたワークの表面に段差を生じさせないた めに図 1に示されている N C工作機械において行われる加工方法の 手順を示しているフローチヤ一トである。
図 3は、 図 2の加工方法の手順の続きを示しているフ口一チヤ一 トである。
図 4は、 所望のヮ一ク形状に対してずれのない実加工後のヮ一ク 形状を得るために図 1に示されている N C工作機械において行われ る加工方法を示しているフローチヤ一トである。
図 5は、 従来技術において、 加工後ワークの表面において工具交 換した位置に生じる段差を示している図である。 発明を実施するための最良の形態
以下に、 図面を参照して本発明の実施形態について説明する。 なお、 以下の説明において、 「所望加工形状」 とは所望される加 ェ後のワーク形状を意味し、 「実加工形状」 とは実際に加工によ り 得られたワーク形状を意味し、 「基準加工プログラム」 とは、 加工 の際に工具 Tが摩耗せず一定の長さを保つことを前提と して、 所望 加工形状が得られるように作成された加工プログラムを意味し、 「 修正加工プログラム」 とは、 工具 Tの摩耗に起因する所望加工形状 と実加工形状との間のずれを予め考慮して、 所望加工形状が得られ るよ うに基準加工プログラムを修正したものを意味する。
まず、 図 1 を参照して、 本発明による工具摩耗補正機能を備えた N C工作機械 1 1 の要部構成を説明する。 N C工作機械 1 1 の機械 本体部は、 主軸頭 1 3に回転可能に支持された主軸 1 5 と、 ワーク Wを载置、 固定するテーブル 1 7 とを備え、 N C装置 1 9からの軸 移動指令に基づいて、 X軸送りモータ 2 1 、 Y軸送りモータ (不図 示) 、 Z軸送りモータ 2 3により、 主軸 1 3 とテーブル 1 7 とを互 いに対して X軸、 Y軸及び Z軸の直交 3軸方向に相対移動できるよ うに構成されている。
図 1の N C工作機械 1 1では、 X軸送りモータ 2 1によってテー ブル 1 7を X軸方向に移動させ、 Y軸送りモータ及び Z軸送りモー タ 2 3によって主軸 1 5を Y軸方向及び Z軸方向に移動させること によ り、 主軸 1 5 とテーブル 1 7 とを直交 3軸方向に相対移動させ ているが、 X軸送りモータ 2 1、 Y軸送りモータ、 Z軸送りモータ 2 3によって主軸 1 5を直交 3軸方向に移動させるようにするなど 、 他の構成をとることも可能である。 こ こで、 X軸及び Y軸は主軸 1 5の回転軸線と垂直な平面内の直交する 2つの軸方向を指し、 Z 軸は主軸 1 5の回転軸線と平行な軸方向を指す。
さらに、 主軸 1 3の先端には工具 Tが装着されており、 回転する 工具 Tをヮーク Wに切り込ませ、 主軸 1 5 とテーブル 1 7 とを相対 移動させることによ り工具 Tとワーク Wとを X軸、 Y軸、 Z軸方向 に相対移動させて、 ヮーク Wを所望される形状に加工する。
N C装置 1 9は、 加工プログラムや工具先端位置測定プログラム などの各種プログラムを格納するプログラム格納手段 1 9 a と、 こ のプログラム格納手段 1 9 aに格納されているプロダラムを解釈す る読取解釈手段 1 9 b と、 解釈されたプログラムに従って主軸 1 5 及びテーブル 1 7に対する位置指令を生成する位置指令生成手段 1 9 c と、 この位置指令に従って X軸送りモータ 2 1 、 Y軸送りモー タ、 Z軸送りモータ 2 3を駆動するサーポモータ ドライバなどの軸 移動制御手段 1 9 d とを含んでいる。
また、 N C工作機械 1 1の機械本体部には、 任意の瞬間の X軸、 Y軸、 Ζ軸の各送り軸の座標値を読み取る位置読取手段 2 5が設け られており、 位置読取手段 2 5によつて読み取られたテーブル 1 7 に対する主軸 1 5の相対位置は、 逐次、 軸移動制御手段 1 9 dへフ イー ドパックされる。 位置読取手段 2 5 として、 主軸 1 5又はテー ブル 1 7の各送り軸に取り付けられたデジタルスケールや、 X軸送 りモータ 2 1 、 Y軸送りモータ、 Z軸送りモータ 2 3にそれぞれ取 り付けられたエンコーダなど適宜の装置を使用することが可能であ る。
さ らに、 N C工作機械 1 1 は工具刃先位置演算手段 2 7を備え、 主軸 1 5に対する工具 Tの刃先位置、 好ましく は主軸 1 5の前端面 と工具 Tの刃先位置との距離、 すなわち工具長を測定できるように なっている。
例えば、 工具刃先位置演算手段 2 7は、 主軸 1 5 とテーブル 1 7 とを相対移動させて、 テーブル 1 7上の加工の妨げとならない位置 に設けられた工具刃先検出装置 2 9で主軸 1 5に装着された工具 T の刃先を検出させることによって、 このと'きに位置読取手段 2 5に よって検出されたテーブル 1 7に対する主軸 1 5の相対位置から、 主軸 1 5に対する工具 Tの刃先位置を演算する。 詳細には、 工具刃 先検出装置 2 9の刃先検出位置はテーブル 1 7に対して予め定めら れた位置となっていることから、 主軸 1 5及びテーブル 1 7の位置 が検出されれば、 主軸 1 5 と工具刃先検出装置 2 9の検出位置との 距離が判明することを利用して、 主軸 1 5に対する工具 Tの刃先位 置を演算する。 なお、 工具刃先検出装置 2 9は、 図 1 に示されてい るような接触式センサとしてもよく、 レーザ式、 静電容量式、 渦電 流式などの非接触式センサとしてもよい。
なお、 工具刃先位置演算手段 2 7が主軸 1 5に対する工具 Tの刃 先位置を演算する方法は上記方法に限定されるものではなく、 工具 刃先位置演算手段 2 7は他の適した方法によ り主軸 1 5に対するェ 具 Tの刃先位置を演算してもよいことはいうまでもない。
さて、 上記のような N C工作機械 1 1では、 通常、 加工の際にェ 具 Tが摩耗せず一定の長さを保つことを前提と して作成された基準 加工プログラムに従って加工が行われる。 したがって、 工具 Tの摩 耗に伴って工具 Tの刃先位置が所望加工形状のワーク表面位置から 主軸 1 5側に近づいていき、 所望加工形状からずれた実'加工形状が 得られてしまう。 また、 このときに工具 Tを交換すると、 主軸 1 5 が同じ位置に配置されても工具 Tの刃先位置はテーブル 1 7側に近 づく ので、 実加工形状のヮークの表面に段差が生じてしまう。
そこで、 本発明の N C工作機械 1 1 は、 工具 Tの長さ又は刃先位 置が摩耗によ り変化することを考慮しながら加工を行うために、 ェ 具摩耗量検出手段 3 1 と、 摩耗係数補正手段 3 2 と、 工具摩耗量推 定手段 3 3 と、 刃先位置補正手段 3 4 と、 摩耗量累積演算手段 3 5 と、 刃先位置制御手段 3 7 とをさらに備える。
工具摩耗量検出手段 3 1 は、 ある領域を加工したときの加工前と 加工後における工具 Tの刃先位置の差から工具 Tの摩耗量を演算、 検出する、 又は当該工具 Tによる前回の加工後の刃先位置を今回の 加工前における工具 Tの刃先位置と し、 今回の加工後における工具 Tの刃先位置との差から工具 Tの摩耗量を演算、 検出する。
一方、 工具摩耗量推定手段 3 3は、 加工中に、 切削条件、 加工負 荷、 切削長 C Lなどから工具 Tの摩耗量を推定する。 例えば、 工具 摩耗量推定手段 3 3は、 単位切削長当たりの工具摩耗量を表す摩耗 係数 M kを予め記憶しており、 加工に使用している工具 Tの切削長 C L と摩耗係数 M k とを積算した値に基づいて、 加工中、 工具丁の 摩耗量を逐次求めていく。 また、 工具摩耗量推定手段 3 3は、 逐次 求めた摩耗量を加算して加工中の工具 Tの総摩耗量を推定すること もできる。 ここで、 切削長 C L とはワーク Wを切削加工した長さを 意味するものとする。
工具摩耗量推定手段 3 3によって推定した工具 Tの摩耗量に基づ き刃先位置補正手段 3 4は逐次その摩耗量を補償する信号を位置指 令生成手段 1 9 c又は軸移動制御手段 1 9 dに送って摩耗による誤 差のない加工を行う
また、 推定に用いる摩耗係数 M kをよ り正しく設定するために、 工具摩耗検出手段 3 1 によって検出した工具 Tの摩耗量と、 工具摩 耗量推定手段 3 3によつて推定した工具 Tの摩耗量とを比較し、 両 者が一致するように摩耗係数 M kを逐次補正する摩耗係数補正手段 3 2が設けられている。
摩耗量累積演算手段 3 5は、 工具摩耗量検出手段 3 1 によって求 められた工具 Tの摩耗量を工具交換などによる加工の中断毎に加算 していき、 基準加工プログラムによって定められた所望加工形状に 対する実加工形状の加工中断時点におけるずれ量、 すなわち誤差を 求める。
そして、 刃先位置制御手段 3 7は、 摩耗量検出手段 3 1によって 求められた工具 Tの摩耗量分だけ主軸 1 5 とテーブル 1 7 との相対 位置を変化させる。 この相対位置の変化は、 刃先位置制御手段 3 7 からの信号を位置指令生成手段 1 9 c又は軸移動制御手段 1 9 dに 送出することによって行われる。 こ う して加工中断時前後における 工具 Tの刃先位置を一致させて、 工具 Tの摩耗が実加工形状に与え る影響を除去又は軽減させる。
例えば、 工具 Tの交換などによ り工具長又は摩耗量が不連続に変 化するときには、 基準加工プログラムに従って位置指令生成手段 1 9 cが生成した位置指令を補正し、 工具摩耗量算出手段 3 1 によつ て求められた各工具 Tの摩耗量の累積値、 すなわち摩耗量累積演算 手段 3 5によって求められた所望加工形状と実加工形状との誤差分 だけ、 工具 Tの交換後の主軸 1 5 とテーブル 1 7 とを離れる方向に シフ トさせるよ うにする。 これによ り、 工具 Tの交換前後における ワーク Wに対する工具 Tの刃先位置は一致すること となり、 摩耗量 分に起因して実加工形状に発生する段差が解消される。
また、 摩耗により工具長が連続的に変化するときには、 基準加工 プログラムに従って位置指令生成手段 1 9 cが生成した位置指令を 補正し、 工具摩耗量推定手段 3 3によって求められた使用工具丁の 摩耗量分だけ、 主軸 1 5 とテーブル 1 7 とを近づける方向に逐次シ フ トさせるよ うにする。 これによ り、 工具 Tの摩耗に起因する工具 長の変化が相殺、 補償され、 ワーク Wに対する工具 Tの刃先位置は 所望加工形状に沿って移動するようになり、 工具 Tの摩耗により実 加工形状の所望加工形状からのずれが解消又は軽減される。
ここで、 位置指令の補正は、 工具のオフセッ ト補正、 ワークの座 標系の補正、 N C工作機械 1 1の機械原点位置補正のうち、 いずれ か 1つの方法で行う ことができる。
次に、 図 2〜図 5を参照して、 図 1 の N C工作機械 1 1 の動作を 説明する。
加工を行うに先立って、 操作者が加工プログラムを設定し、 これ をプログラム格納部 1 9 aに格納しておく。 ここでは、 プログラム 格納部 1 9 aに、 加工プログラムと して、 工具 Tが摩耗しないこと を前提と して作成された基準加工プログラムが格納されているもの とするが、 あらかじめ工具 Tの摩耗量を考慮して作成された修正加 ェプログラムを格納してもよい。
次に、 N C工作機械 1 1 は、 工具刃先位置演算手段 2 7によって 、 加工を開始したときに主軸 1 5に装着されている工具 Tについて 、 主軸 1 5に対する工具 Tの刃先位置を演算する (ステップ S 1 ) 。 以下では、 説明の簡略化のために、 ステップ S 1において、 主軸 1 5の前端面に対する工具 Tの刃先位置、 すなわち工具長 H aが演 算されるものとする。 また、 説明の簡略化のために、 以下のステツ プでは、 工具 Tの交換後も同一の標準長さを有する工具 Tが使用さ れるものとする。 なお、 以下の手順は同一長さの工具 τに限定され るものではなく、 様々な長さの工具 Tに対して適用することができ ることはいうまでもない。
工具長 H a の演算が終了すると、 プログラム格納部 1 9 aに格納 されている基準加工プログラムを読取解釈手段 1 9 bが解釈し、 そ れに従って位置指令生成手段 1 9 cが主軸 1 5及びテーブル 1 7に 対する位置指令を生成し、 軸移動制御手段 1 9 dが、 この位置指令 に従って X軸送りモータ 2 1、 Y軸送りモータ、 Z軸送りモータ 2 3を駆動することによ り、 加工が行われる (ステップ S 2 ) 。
次に、 予め定められたタイ ミ ングで、 工具 Tの交換のために加工 が中断され、 中断時のテーブル 1 7に対する主軸 1 5の X軸、 Y軸 、 Z軸に関する相対位置が求められる (ステップ S 3 ) 。 主軸 1 5 とテーブル 1 7 との相対位置は、 位置指令手段 1 9 cによつて生成 された主軸 1 5及びテーブル 1 7に対する位置指令から求めればよ い。 主軸 1 5及びテーブル 1 7の X軸、 Y軸、 Z軸に関する位置は 、 位置読取手段 2 5によって検出される値を用いることも'可能であ る。
次に、 工具 Tの交換に先立って、 加工によ り摩耗した工具 Tのェ 具長 H bが工具刃先位置演算手段 2 7によって演算される (ステツ プ S 4 ) 。 ステップ S 3に代えて、 工具刃先位置演算手段 2 7によ つて適時工具長を演算し、 工具長が所定値よ り も短くなつたときに 加工を中断してもよい。 このときは、 最後に演算された工具長を加 ェ中断時の工具長 H b とすることができる。 次に、 工具摩耗量検出手段 3 1 は、 加工開始時の工具長 H a と加 ェ中断時の工具長 H b とから工具 Tの摩耗量 M t を算出す—る (ステ ップ S 5 ) 。 そして、 工具摩耗量検出手段 3 1 は、 算出した工具 T の摩耗量 M t を摩耗量累積演算手段 3 5に送り、 摩耗量累積演算手 段 3 5は、 送られてきた工具 Tの摩耗量 M t に基づいて累積誤差量 M e を求め、 これを加工中断時のテーブル 1 7に対する主軸 1 5の X軸、 Y軸、 Z軸に関する相対位置と共に記憶する (ステップ S 6 ) 。 これによ り、 加工を中断したときのテーブル 1 7に対する主軸 1 5の 軸、 Y軸、 Z軸に関する相対位置とその位置における実加 ェ形状と所望加工形状とのずれ量とが記憶されたことになる。
ステップ S 7の逐次摩耗補正については後述するので、 ステップ S 7では、 逐次摩耗補正を行っていないものと して、 次のステップ S 9に進み、 主軸 1 5に装着されている摩耗した工具 Tの交換を行 ラ。
工具 Tの交換が行われ、 新しい工具 Tが主軸 1 5に装着されると 、 ステップ S 1 と同様にして、 加工再開に先だって、 工具刃先位置 演算手段 2 7によって加工再開時の工具長 H aが演算される (ステ ップ S 1 0 ) 。 工具長 H aが演算されると、 新しい工具 Tを用いた 加工が再開される (ステップ S 1 1 ) 。
ところで、 新しい工具 Tは、 中断前に使用していた工具 Tよ り も 摩耗量 M t分だけ長く なつている。 一方、 実加工形状のワークの表 面は、 中断時において、 所望加工形状のワークの表面から工具 Tの 摩耗量 M t分だけ、 主軸 1 5側にずれている。 したがって、 加工が 再開されるにあたって、 主軸 1 5及びテーブル 1 7を加工を中断し たときと同じ相対位置に移動すると、 主軸 1 5に装着されているェ 具 Tの刃先位置は、 所望加工形状上に配置され、 実加工形状のヮー クの表面から工具 Tの摩耗量 M t分だけテーブル 1 7側に近づくの で、 ワーク Wの表面には摩耗量 M t に等しい段差が生じてしまう。 そこで、 本発明の N C工作機械 1 1では、 主 ·軸 1 5又はテーブル
1 7若しくはその両方に対して位置指令生成手段 1 9 cが生成した 位置指令を刃先位置制御手段 3 7によって補正し、 摩耗量累積演算 手段 3 5によって求められた累積誤差量 M e、 すなわち、 この段階 では、 工具摩耗量検出手段 3 1 によって求められた工具 Tの摩耗量 M t に等しい分だけ、 テーブル 1 7に対する主軸 1 5の相対位置を 互いから離れる方向にシフ トさせた状態で、 加工を継続する (ステ ップ S 1 2 ) 。
次に、 ステップ S 3 と同様に、 予め定められたタイ ミ ングで又は 演算した工具長が所定値よ り も短くなったときに、 摩耗した工具 T を新たな工具 Tと交換するために加工を中断する (ステップ S 1 3 ) 。 そして、 工具 Tの交換に先立って、 加工によ り摩耗した工具 T の工具長 H bが工具刃先位置演算手段 2 7によって演算され (ステ ップ S 1 4 ) 、 工具摩耗量検出手段 3 1がステップ S 5 と同様にし てステップ S 1 2で使用した工具 Tの摩耗量 M t を算出し (ステツ プ S 1 5 ) 、 摩耗量累積演算手段 3 5がこの摩耗量 M t から累積誤 差量 M eを演算し、 これを記憶する (ステップ S 1 6 ) 。
ステップ S 1 7の逐次摩耗補正については後述するので、 ステツ プ S 1 7においては、 逐次摩耗補正を行っていないと して、 ステツ プ S 1 8に進むものとする。 ステップ S 1 8において加工を継続す る場合には、 ステップ S 9からステップ S 1 7までの手順を同様に して繰り返す。 なお、 ステップ S 1 2で使用する工具もステップ S 2で使用する工具と同様に加工に伴って摩耗していく ので、 工具交 換のために加工を中断したときには、 所望加工形状と実加工形状と のずれは、 ステップ S 2で使用の工具 Tの摩耗量 M t とステップ S 1 2で使用の工具 Tの摩耗量 M t との和、 すなわち摩耗量累積演算 手段 3 5によって求められた累積誤差量 M eに等しく なる。 したが つて、 2回目以降の工具 Tの交換においては、 ステップ S 1 2にお いて、 刃先位置制御手段 3 7は、 テーブル 1 7に対する主軸 1 5の 相対位置を累積誤差量 M e分だけ互いから離れる方向にシフ トさせ るよ うに、 位置指令生成手段 1 9 cが基準加工プログラムに従って 生成した位置指令を補正しながら、 加工を継続すればよい。
このように、 使用した工具 Tの摩耗量 M t を考慮して新しい工具 Tを使用した加工を行うことで、 工具 Tの交換を行った位置、 すな わち加工中断位置における実加工形状のワークの表面に段差が生じ ることが回避される。
ところが、 以上の手順で加工を行ったときには、 実加工形状の段 差は解消されるが、 所望加工形状からずれを生じてしまう。 そこで 、 本発明の N C工作機械 1 1では、 ステップ S 2及びステップ S 1 2の加工において、 図 4に示されているステップ S 2 1〜 S 2 9に 従って、 加工中の工具 Tの摩耗も主軸 1 5 とテーブル 1 7 との相対 位置を逐次補正することによ り補償していく ようにしている。 以下 でその手順を詳述する。
最初に、 工具摩耗量推定手段 3 3は、 予め設定されている摩耗係 数 M kを任意の記憶手段又は加工プログラムなどから読み込み (ス テツプ S 2 1 ) 、 その後、 切削長 C Lを監視する (ステップ S 2 2 ) 。 切削長 C Lは、 位置読取手段 2 5によって検出されたテーブル 1 7に対する主軸 1 5の相対移動距離に基づいて求めてもよく、 軸 移動制御手段 1 9 dによって生成された各軸移動指令から求めても よい。
工具摩耗量推定手段 3 3は、 切削長の増分 C L と摩耗係数 M k と を積算することによ り、 摩耗量の増分を演算し、 逐次摩耗補正量 M s、 すなわち工具 Tの摩耗の影響を相殺するために主軸 1 5 とテー ブル 1 7 との相対位置に必要とされる補正量を求める (ステップ S 2 3 ) 。 そして、 工具摩耗量推定手段 3 3は、 切削長の増分 C L と 逐次摩耗補正量 M s とから、 切削長及び逐次摩耗補正量 M s の総計 である総切削長 S C L及び総逐次補正量 S M s を演算し、 刃先位置 補正手段 3 4に送る (ステップ S 2 4 ) 。
刃先位置補正手段 3 4は、 主軸 1 5又はテーブル 1 7若しく はそ の両方に対して位置指令生成手段 1 9 cが生成した位置指令を補正 し (ステップ S 2 5 ) 、 総逐次補正量 S M s分だけテーブル 1 7に 対する主軸 1 5の相対位置を互いに近づける方向にシフ トさせて加 ェを行わせる (ステップ S 2 6 ) 。
ステップ S 2 7において、 加工が継続される場合にはステップ S 2 2〜ステップ S 2 6の手順が繰り返される。
このよ うな手順で、 テーブル 1 7に対する主軸 1 5の相対位置を 逐次補正していけば、 加工の際に工具 Tの摩耗が工具 Tの刃先位置 に与える影響を相殺し、 実加工形状の所望加工形状からのずれ量が 解消又は低減される。
なお、 ステップ S 2 2〜ステップ S 2 6においては、 工具摩耗 i 推定手段 3 3によつて推定された工具 Tの摩耗量を使用しているた め、 実加工形状と所望加工形状とのずれ量が完全に解消されないこ ともある。 しかしながら、 ステップ S 2 7において加工を継続しな い場合に、 ステップ S 3又はステップ S 1 3に戻れば、 実加工形状 と所望加工形状とのずれによ り実加工形状のワークの表面に段差が 生じることはなくなる。
また、 ステップ S 2 7の後、 ステップ S 5又はステップ S 1 5で 求められた工具 Tの摩耗量 M t を摩耗係数補正手段 3 2が工具摩耗 量検出手段 3 1から読み込み (ステップ S 2 8 ) 、 この摩耗量 M t を総切削長 S C Lによって除算することによ り、 実際の加工に基づ いた摩耗係数 M kを求めてもよい (ステップ S 2 9 ) これによ り 、 実際の加工条件や加工負荷に即した摩耗係数 M kを求めることが でき、 実加工形状と所望加工形状とのずれ量をよ り少なくすること が可能である。
工具の摩耗量を推定する別法として、 工具回転速度、 1刃当りの 送り速度、 切込量、 工具材質、 工具種類、 ワーク材質等の切削条件 及び/又は加工負荷から演算することもできる。
図 2及び図 3に示されている実加工形状のヮ一クの表面の段差を 回避するための手順と共に、 図 3に示されている工具 Tの摩耗の逐 次補正を行う手順を併用する場合には、 上記で説明した実加工形状 のワークの表面の段差を回避するための手順を一部変更する必要が あり、 それがステップ S 8又はステップ S 1 9 と して示されている 工具 Tの摩耗の逐次補正を行う場合、 加工中断時における実加工 形状と所望加工形状とのずれ量は使用した工具 Tの摩耗量よ り も総 逐次補正量 S M s分だけ小さくなる。 そこで、 ステップ S 8及びス テツプ S 1 9において、 摩耗'量累積演算手段 3 5が実加工形状と所 望加工形状とのずれ量を表す累積誤差量 M eから総逐次補正量 S M s を減算し、 逐次補正分を加味するよ うにしている。
以上、 図 1 に示されている N C工作機械 1 1 を例にして本発明を 説明したが、 上記実施形態は、 工具 Tの摩耗を加工の中断 · 再開時 に又は加工中逐次考慮し実加工形状のワークの表面に生じる段差や 実加工形状と所望加工形状とのずれ量を解消又は低減させる方法の 単なる例示に過ぎず、 本発明は上記実施形態に限定されるものでは ない。
例えば、 ステップ S 1〜ステップ S 1 9の手順では、 工具 Tの交 換のために加工を中断するものと して説明したが、 同一の工具丁で ワーク Wの異なる 2つの領域を加工するために第 1の領域での加工 を中断し、 第 2の領域を加工した後に再度第 1 の領域を加工する場 合に上記手順を適用することも可能である。 この場合には、 最初に 第 1 の領域を加工した間の工具 Tの摩耗量 M t と第 2の領域を加工 した間の工具 Tの摩耗量 M t との差の分だけ、 主軸 1 5 とテーブル 1 7 との相対位置を近づける方向にシフ トさせることによ り、 実加 ェ形状のワークの表面に段差が生じることを回避することができる また、 上記ステップ S 5及びステップ S 1 5において、 工具摩耗 量算出手段 3 1に代えて工具摩耗量推定手段 3 3を使用し、 工具摩 耗量推定手段 3 3によって推定された逐次摩耗量を累積して、 同一 工具による一連の加工の際に生じる工具の総摩耗量を求め、 求めた 総摩耗量を摩耗量累積演算手段 3 5に送ることも可能である。 この 場合でも、 工具 Tの摩耗量を考慮しているため、 摩耗量を考慮して いない場合と比較して、 工具交換などの前後で生じる実加工形状の ワークの表面の段差を少なく とも減少させることができる。
以上、 本発明によれば、 加工中の工具摩耗量を推定又は算出し、 工具の交換のためなどになされる加工の中断 · 再開時又は加工中に
、 工具摩耗に起因して生じる工具長の変化を主軸とテーブルとの相 対位置を変化させることにより相殺させ、 加工の中断 · 再開時に実 加工形状のワークの表面に生じる段差や、 所望加工形状と実加工形 状とのずれ量を軽減又は解消させることができる。 したがって、 ェ 具摩耗の影響を受けずに、 所望加工形状に対するずれの少ない加工 形状又は段差のない滑らかな加工形状を得ることが可能となる。

Claims

1 . 工具とワーク とを相対移動させて前記ワークを加工する加工 方法において、
予め設定された N C加工プログラムに基づいて位置指令を生成す るステップと、
生成した前記位置指令に従って前記ワークの加工を行うステップ と、
前記ワークの加工を中断するスのテップと、
前記ワークの加工を中断したときの工具の摩耗量を検出するステ ップと、
検出した工具の摩耗量に基づいて、 前記ワークの加工を中断した ときの工具の刃先位置と一致するよ うに前記ワークの加工を再開す るときの工具の刃先位置を定め、 前記ワークの加工を再開するステ ップと、
を含むことを特徴と した加工方法。
2 . 前記ワークの加工を中断するたびに、 検出した工具の摩耗量 を累積するステップをさらに含み、
前記ワークの加工を中断したときの工具の刃先位置と一致するよ うに前記ワークの加工を再開するときの工具の刃先位置を定め、 前 記ワークの加工を再開するステップは、 前記累積した工具の摩耗量 に基づいて行う請求項 1に記載の加工方法。
3 . 前記工具の摩耗量を検出するステップは、 工具の刃先位置を 測定し、 工具の摩耗量を演算するステップを含む請求項 1に記載の 加工方法。
4 . 工具とワーク とを相対移動させて前記ワークを加工する加工 方法において、 予め設定された N C加工プログラムに基づいて位置指令を生成す るステップと、
生成した前記位置指令に従って前記ワークの加工を行うステップ と、
前記ワークの加工中の工具の摩耗量を逐次推定するステップと、 前記推定した工具の摩耗量を補償するように前記工具の刃先位置 を逐次補正するステツプと、
前記ワークの加工を中断するステップと、
前記ワークの加工を中断したときの工具の摩耗量を検出するステ ップと、
前記検出した工具の摩耗量と前記推定した工具の摩耗量との差分 を累積するステップと、
前記累積した工具の摩耗量に基づいて、 前記ワークの加工を中断 したときの工具の刃先位置と一致するように前記ワークの加工を再 開するときの工具の刃先位置を定め、 前記ワークの加工を再開する ステップと
を含むことを特徴と した加工方法。
5 . 前記工具の摩耗量を検出するステップは、 工具の刃先位置を 測定し、 工具の摩耗量を演算するステップを含む請求項 4に記載の 加工方法。
6 . 前記工具の摩耗量を推定するステップは、 切削長さと、 予め 決められた単位切削長さ当 りの摩耗量とから工具の摩耗量を推定す るステップを含む請求項 4に記載の加工方法。
7 . 前記工具の摩耗量を推定するステップは、 切削条件及び Z又 は加工負荷から工具の摩耗量を推定するステップを含む請求項 4に 記載の加工方法。
8 . 前記工具の摩耗量を推定するステップは、 切削長さ、 及び予 め決められた単位切削長さ当りの摩耗量、 並びに切削条件及び Z又 は加工負荷から工具の摩耗量を推定するステップを含む請求項 4に 記載の加工方法。
9 . 前記工具の摩耗量を推定するステップは、 工具の刃先位置を 測定し、 演算して求めた工具の摩耗量と前記推定した工具の摩耗量 とを比較し、 両者が一致するように推定に用いる単位切削長さ当り の摩耗量を逐次補正するステップを含む請求項 4に記載の加工方法
1 0 . 工具とワーク とを相対移動させて前記ワークを加工するェ 作機械において、
予め設定された N C加工プログラムに基づいて位置指令を生成し 、 生成した前記位置指令に従って工具とワーク とを相対移動させる よう指令する位置指令生成手段と、
前記ワークの加工を中断したときの工具の摩耗量を検出する工具 摩耗量検出手段と、
前記工具摩耗量検出手段によ り検出した工具の摩耗量に基づいて 、 前記ワークの加工を中断したときの工具の刃先位置と一致するよ うに前記ワークの加工を再開するときの工具の刃先位置を定める刃 先位置制御手段と、
を具備することを特徴と した工具摩耗補正機能を備えた工作機械
1 1 . 前記ワークの加工を中断するたびに前記工具摩耗量検出手 段により検出した工具の摩耗量を累積する摩耗量累積演算手段をさ らに具備し、
前記刃先位置制御手段は、 前記摩耗量累積演算手段により演算し た前記工具の累積摩耗量に基づいて、 前記ワークの加工を中断した ときの工具の刃先位置と一致するよ うに前記ワークの加工を再開す るときの工具の刃先位置を定め、 前記ワークの加工を再開する請求 項 1 0に記載の工具摩耗補正機能を備えた工作機械。
1 2 . 工具とワークとを相対移動させて前記ワークを加工するェ 作機械において、
予め設定された N C加工プログラムに基づいて位置指令を生成し 、 生成した前記位置指令に従って前記工具とワークとを相対移動さ せるよう指令する位置指令生成手段と、
前記ワークの加工を中断したときの工具の摩耗量を検出する工具 摩耗量検出手段と、
前記ワークの加工中に工具の摩耗量を逐次推定する工具摩耗量推 定手段と、
前記工具摩耗量推定手段によ り推定した工具の摩耗量を補償する ように前記工具の刃先位置を逐次補正する刃先位置補正手段と、 前記検出した工具の摩耗量と前記推定した工具の摩耗量との差分 を累積する摩耗量累積演算手段と、
前記累積した工具の摩耗量に基づいて、 前記ワークの加工を中断 したときの工具の刃先位置と一致するように前記ワークの加工を再 開するときの工具の刃先位置を定める刃先位置制御手段と、
を具備することを特徴と した工具摩耗補正機能を備えた工作機械
1 3 . 前記工具摩耗量検出手段によ り検出した工具の摩耗量と前 記工具摩耗量推定手段で推定した工具の摩耗量とを比較し、 両者が 一致するように推定に用いる単位切削長さ当りの摩耗量を逐次補正 する摩耗係数補正手段を更に具備する請求項 1 2に記載の工具摩耗 補正機能を備えた工作機械。
PCT/JP2004/011855 2004-08-12 2004-08-12 ワークを加工する加工方法 WO2006016420A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602004020497T DE602004020497D1 (de) 2004-08-12 2004-08-12 Verfahren zur maschinellen bearbeitung eines werkstücks
US10/538,148 US7331739B2 (en) 2004-08-12 2004-08-12 Method for machining workpiece
PCT/JP2004/011855 WO2006016420A1 (ja) 2004-08-12 2004-08-12 ワークを加工する加工方法
EP04771816A EP1683605B1 (en) 2004-08-12 2004-08-12 Method for machining work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/011855 WO2006016420A1 (ja) 2004-08-12 2004-08-12 ワークを加工する加工方法

Publications (1)

Publication Number Publication Date
WO2006016420A1 true WO2006016420A1 (ja) 2006-02-16

Family

ID=35839197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011855 WO2006016420A1 (ja) 2004-08-12 2004-08-12 ワークを加工する加工方法

Country Status (4)

Country Link
US (1) US7331739B2 (ja)
EP (1) EP1683605B1 (ja)
DE (1) DE602004020497D1 (ja)
WO (1) WO2006016420A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247264A (ja) * 2009-04-15 2010-11-04 Jtekt Corp 切削加工方法
CN102069421A (zh) * 2010-11-30 2011-05-25 长城汽车股份有限公司 数控车床刀具补偿防错控制***和方法
CN103324139A (zh) * 2013-06-07 2013-09-25 华中科技大学 一种数控机床铣削加工刀具破损监测方法
JP2015074055A (ja) * 2013-10-09 2015-04-20 西部電機株式会社 刃先位置推定方法、加工方法、nc加工装置、センサ装置及びプログラム
WO2022059616A1 (ja) * 2020-09-16 2022-03-24 株式会社小松製作所 制御装置、産業機械及び制御方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005058038B3 (de) * 2005-12-05 2007-07-26 Siemens Ag Verfahren und Steuereinrichtung zur Bestimmung der Zeitdauer bis zu einer notwendigen Wartung eines Maschinenelementes
DE102006019135B4 (de) * 2006-04-21 2014-08-28 Thielenhaus Technologies Gmbh Verfahren zur Verschleißkompensation eines Finishwerkzeuges
US20080147430A1 (en) * 2006-12-18 2008-06-19 Hawthorne John D Virtual Event Attendance Systems
US7424338B1 (en) * 2007-04-02 2008-09-09 Honda Motor Co., Ltd. Broken tool detection system
EP2058717B1 (de) * 2007-11-12 2011-07-20 Siemens Aktiengesellschaft Verfahren und Einrichtung zum Betrieb einer Werkzeugmaschine
DE102008004849B4 (de) 2008-01-17 2012-02-09 Vollmer Werke Maschinenfabrik Gmbh Vorrichtung und Verfahren zum Bearbeiten von Werkstücken
WO2009109064A1 (en) * 2008-03-05 2009-09-11 Abb Technology Ab A method for compensation tool wear and a machine tool for performing the method
CN101670532B (zh) * 2008-09-08 2011-06-22 鸿富锦精密工业(深圳)有限公司 刀具磨损补偿***及方法
JP4998419B2 (ja) * 2008-09-18 2012-08-15 富士通株式会社 基板加工装置及び基板加工方法
WO2010064985A1 (en) * 2008-12-03 2010-06-10 Novator Ab Method, system, computer programme and a computer programme product for tool wear compensation
CN101745672B (zh) * 2009-12-21 2013-01-23 东方电气集团东方汽轮机有限公司 汽轮机叶片菌型叶根型槽的加工方法
JP5665047B2 (ja) * 2010-10-27 2015-02-04 オークマ株式会社 工作機械
JP4980458B2 (ja) * 2010-10-27 2012-07-18 ファナック株式会社 数値制御工作機械の加工時間予測装置
CN102073300B (zh) * 2010-12-28 2013-04-17 华中科技大学 一种数控加工状态自学习的刀具磨损监控***
CN103149877B (zh) * 2011-12-07 2016-06-15 沈阳黎明航空发动机(集团)有限责任公司 一种确保加工指令信息正确的数控加工方法
JP5289601B1 (ja) 2012-03-19 2013-09-11 ファナック株式会社 多軸加工機用切削距離演算装置
DE202012102352U1 (de) * 2012-06-26 2012-07-18 Prewi Schneidwerkzeuge Gmbh Vorrichtung zur Abbildung und Überprüfung eines Fräsprofils
CN102862093B (zh) * 2012-09-14 2014-11-12 西安航空动力股份有限公司 判断输入数控车加工机床刀补值对错的方法
JP5984630B2 (ja) * 2012-11-14 2016-09-06 三菱重工工作機械株式会社 工作機械のインターフェースシステム
WO2015120293A1 (en) * 2014-02-06 2015-08-13 Arizona Board Of Regents On Behalf Of Arizona State University Systems and methods for real-time monitoring of micromilling tool wear
US10195708B2 (en) * 2016-09-28 2019-02-05 The Boeing Company Method and apparatus for centralized compliance, operations and setup of automated cutting tool machines
CN106514147B (zh) * 2016-11-23 2018-09-14 沈阳黎明航空发动机(集团)有限责任公司 一种高温合金压气机叶片的型面精密加工方法
CN107544429B (zh) * 2017-09-28 2020-02-07 中国航发动力股份有限公司 一种防止数控加工对刀值及刀具补偿值输入错误的方法
JP6687575B2 (ja) * 2017-10-05 2020-04-22 ファナック株式会社 数値制御装置
JP6574915B1 (ja) * 2018-05-15 2019-09-11 東芝機械株式会社 被加工物の加工方法および被加工物の加工機
CN108958161B (zh) * 2018-07-28 2020-09-08 华中科技大学 一种五轴刀具轨迹的b样条拟合方法
JP6959279B2 (ja) * 2019-02-28 2021-11-02 ファナック株式会社 工作機械および加工変更方法
WO2020218278A1 (ja) * 2019-04-26 2020-10-29 芝浦機械株式会社 ワークの加工方法およびワークの加工機
JP2023506457A (ja) 2019-12-10 2023-02-16 バーンズ グループ インコーポレーテッド 無線センサ、格納媒体及びスマートデバイスアプリ方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188252A (ja) * 1988-01-20 1989-07-27 Matsushita Electric Works Ltd 数値制御工作機械の工具摩耗の補償方法
JPH0259253A (ja) * 1988-08-20 1990-02-28 Tochigi Pref Gov 金型等の曲面切削における送り可変速加工方法
JPH06143093A (ja) * 1992-11-09 1994-05-24 Fanuc Ltd 工具の摩耗補正方式

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235154B2 (ja) * 1972-03-23 1977-09-07
US4186529A (en) * 1977-06-28 1980-02-05 S. E. Huffman Corporation Programmably controlled method for grinding end cutting tools and the like
US4176396A (en) * 1977-09-23 1979-11-27 The Charles Stark Draper Laboratory, Inc. Apparatus for directly measuring machine tool wear
US5871391A (en) * 1980-03-27 1999-02-16 Sensor Adaptive Machine Inc. Apparatus for determining dimensions
US4514797A (en) * 1982-09-03 1985-04-30 Gte Valeron Corporation Worn tool detector utilizing normalized vibration signals
US4802095A (en) * 1986-12-24 1989-01-31 The Boeing Company Method for indicating end mill wear
JPS6418252A (en) 1987-07-14 1989-01-23 Fujitsu Ltd Complementary semiconductor device
JP2531198B2 (ja) 1987-09-30 1996-09-04 株式会社島津製作所 複数試料及び複数項目連続自動分析工程における制御法
JPH0475855A (ja) * 1990-05-31 1992-03-10 Ntn Corp 切削機械の制御装置
US5251144A (en) 1991-04-18 1993-10-05 Texas Instruments Incorporated System and method utilizing a real time expert system for tool life prediction and tool wear diagnosis
DE4228333A1 (de) * 1991-08-26 1993-03-04 Konishiroku Photo Ind Zerspanungsvorrichtung
US6041271A (en) * 1991-10-10 2000-03-21 Finn-Power International, Inc. Apparatus to determine the operational effectiveness of a machine tool and method therefor
JP3312154B2 (ja) * 1992-10-09 2002-08-05 オムロン株式会社 加工情報決定システムおよび方法,ならびに加工工程情報決定システムおよび方法
US6161055A (en) * 1993-05-17 2000-12-12 Laser Measurement International Inc. Method of determining tool breakage
JP3331024B2 (ja) * 1993-10-13 2002-10-07 ファナック株式会社 工具寿命管理方式
JP3686336B2 (ja) * 1998-08-28 2005-08-24 株式会社森精機製作所 工具摩耗データを作成し、工具摩耗量を推定し、工具の使用判定を行う方法
DE19840801B4 (de) * 1998-09-08 2005-09-15 Walter Maschinenbau Gmbh Werkzeugmaschine mit automatischer Prozesssteuerung/Überwachung und Verfahren zum Bearbeiten
DE10127972C1 (de) * 2001-06-08 2002-07-25 Buderus Schleiftechnik Vorrichtung und ein Verfahren zum spanabhebenden Bearbeiten von Werkstücken
JP3883485B2 (ja) 2002-10-08 2007-02-21 ファナック株式会社 工具折損あるいは予知検出装置
JP3699458B2 (ja) * 2003-05-08 2005-09-28 義昭 垣野 切削抵抗検出方法及び切削抵抗による加工制御方法並びに制御装置
DE10337489B4 (de) * 2003-08-14 2007-04-19 P & L Gmbh & Co. Kg Verfahren zur automatischen Werkzeugverschleißkorrektur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188252A (ja) * 1988-01-20 1989-07-27 Matsushita Electric Works Ltd 数値制御工作機械の工具摩耗の補償方法
JPH0259253A (ja) * 1988-08-20 1990-02-28 Tochigi Pref Gov 金型等の曲面切削における送り可変速加工方法
JPH06143093A (ja) * 1992-11-09 1994-05-24 Fanuc Ltd 工具の摩耗補正方式

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010247264A (ja) * 2009-04-15 2010-11-04 Jtekt Corp 切削加工方法
CN102069421A (zh) * 2010-11-30 2011-05-25 长城汽车股份有限公司 数控车床刀具补偿防错控制***和方法
CN103324139A (zh) * 2013-06-07 2013-09-25 华中科技大学 一种数控机床铣削加工刀具破损监测方法
CN103324139B (zh) * 2013-06-07 2016-02-24 华中科技大学 一种数控机床铣削加工刀具破损监测方法
JP2015074055A (ja) * 2013-10-09 2015-04-20 西部電機株式会社 刃先位置推定方法、加工方法、nc加工装置、センサ装置及びプログラム
WO2022059616A1 (ja) * 2020-09-16 2022-03-24 株式会社小松製作所 制御装置、産業機械及び制御方法

Also Published As

Publication number Publication date
DE602004020497D1 (de) 2009-05-20
EP1683605B1 (en) 2009-04-08
US20060251484A1 (en) 2006-11-09
EP1683605A4 (en) 2006-09-27
US7331739B2 (en) 2008-02-19
EP1683605A1 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
WO2006016420A1 (ja) ワークを加工する加工方法
US9599979B2 (en) Machining error calculation apparatus, machining error calculation method, machining control apparatus and machining control method thereof
US9421657B2 (en) Machining control apparatus and machining control method thereof
US10788807B2 (en) Method for compensating milling cutter deflection
CN102091838B (zh) 使用火花腐蚀磨削来加工零件的方法和机械
CN107102616B (zh) 具有旋刮加工中锥形加工的锥角修正功能的数值控制装置
CN111032258A (zh) 振动切削装置以及接触检测程序
JP2010120150A (ja) 工作機械の熱変形補正のための推定方法
JP2000198047A (ja) 工作機械
JP3926739B2 (ja) ねじ切り加工制御方法及びその装置
JP2013061884A (ja) 加工シミュレーション装置、加工シミュレーション方法、加工制御装置および加工制御方法
JP4236483B2 (ja) 工具摩耗補正機能を備えた工作機械
KR20160115763A (ko) 피가공물의 장착 위치 조정 수단을 구비한 와이어 방전 가공기
EP0487738B1 (en) System for correcting quantity of deformation of tool
JP6168396B2 (ja) 工作機械
JPWO2004087359A1 (ja) ネジ切り制御方法及びその装置
JP2004261934A (ja) 工作機械の制御方法及び工作機械
JP2006150504A (ja) びびり振動予測防止加工装置、びびり振動予測防止加工装置のびびり振動予測防止方法
JP5838680B2 (ja) 加工誤差算出装置、加工誤差算出方法、加工制御装置および加工制御方法
JPH08263117A (ja) 数値制御工作機械のバックラッシ補正装置
CN113874798A (zh) 数控装置
JP7494596B2 (ja) 歯車加工装置
JP5616262B2 (ja) 数値制御工作機械
WO2022185640A1 (ja) プログラム、clデータ編集装置及び工作機械
JP2007164228A (ja) 加工面方向を考慮した送り軸加減速機能を有する数値制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004771816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006251484

Country of ref document: US

Ref document number: 10538148

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004771816

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10538148

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE