WO2006016409A1 - 受信機、送信装置及び受信方法 - Google Patents

受信機、送信装置及び受信方法 Download PDF

Info

Publication number
WO2006016409A1
WO2006016409A1 PCT/JP2004/011602 JP2004011602W WO2006016409A1 WO 2006016409 A1 WO2006016409 A1 WO 2006016409A1 JP 2004011602 W JP2004011602 W JP 2004011602W WO 2006016409 A1 WO2006016409 A1 WO 2006016409A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
signals
transmitted
subcarrier
Prior art date
Application number
PCT/JP2004/011602
Other languages
English (en)
French (fr)
Inventor
Wladimir Bocquet
Michiharu Nakamura
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2004/011602 priority Critical patent/WO2006016409A1/ja
Priority to JP2006531092A priority patent/JP4388552B2/ja
Priority to CA2575250A priority patent/CA2575250C/en
Priority to EP04771577A priority patent/EP1777852A4/en
Priority to KR1020077003271A priority patent/KR100875044B1/ko
Priority to CN2004800437785A priority patent/CN1998173B/zh
Priority to TW093124189A priority patent/TWI256200B/zh
Publication of WO2006016409A1 publication Critical patent/WO2006016409A1/ja
Priority to US11/698,050 priority patent/US7787824B2/en
Priority to US12/819,705 priority patent/US20100255806A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present invention generally relates to the technical field of wireless communication, and more particularly to a receiver and a reception method for individually separating signals transmitted from a plurality of transmission antennas.
  • MIMO multiple input multiple output
  • Multi Input Multi Output wireless communication technology is attracting attention.
  • This technology attempts to increase communication capacity by providing multiple antennas on the transmitting and receiving sides and using propagation paths (or channels) formed between the antennas (about the M IMO method).
  • propagation paths or channels formed between the antennas (about the M IMO method).
  • OFDM Orthogonal Frequency Division Multiplexing
  • ⁇ Technology is attracting attention.
  • signals are transmitted using multiple subcarriers that are orthogonal to each other on the frequency axis, thereby reducing the effects of frequency selective fading and multipath propagation environments.
  • wireless communication systems combining the MIMO and OFDM systems are also promising (see Non-Patent Document 2 for such systems).
  • FIG. 1 is a diagram showing an overview of the MIMO scheme. As shown, N on the sending side
  • the transmission signal X X is transmitted from each of the transmission antennas.
  • the transmission signal transmitted from each transmission antenna is transmitted by N ( ⁇ N) reception antennas.
  • N received signals y—y are obtained.
  • Each of the signals n ⁇ n represents a noise component. None between the transmitting antenna and the receiving antenna
  • the line section is represented by the channel matrix H, and the individual matrix elements H of the channel matrix H are
  • nm Corresponds to the channel transfer function between the mth transmit antenna and the nth receive antenna The In the example shown, 0 ⁇ m ⁇ N_l and 0 ⁇ _1.
  • FIG. 2 shows a schematic diagram of a general OFDM transmitter.
  • the modulated transmission signal mapped to a predetermined signal point is serial-parallel converted (S / P202) and fast inverse Fourier transformed (IFFT204), thereby performing modulation by the OFDM method.
  • the signal in the time domain after IFFT is parallel-to-serial converted (PZS 206), a guard interval is added to it (GI208), and is transmitted by radio from the transmitting antenna 210.
  • PZS 206 parallel-to-serial converted
  • GI208 guard interval is added to it
  • the signal mapping method QPSK, 16QAM, 64QAM or any other method can be adopted.
  • FIG. 3 shows a schematic diagram of a general OFDM receiver.
  • the guard interval of the signal received by the receiving antenna 302 is removed (one GI306). Thereafter, the received signal is serial-parallel converted (S / P306) and fast Fourier transformed (FFT308). As a result, demodulation of the OFD M system is performed.
  • the converted frequency domain signal is parallel-to-serial converted (PZS 310), then demodulated (312), and subjected to decoding and other processing.
  • FIG. 4 shows a schematic diagram of a transmitter used in a system combining the MIMO scheme and the OFDM scheme. As shown in the figure, the transmission signal is converted into N pieces by serial-to-parallel conversion (S / P402).
  • t is divided into signals. N individual transmitted signals are processed separately before N
  • the first transmission signal is encoded (404-1), mapped (406-1), fast inverse Fourier transformed (408-1), and then a guard interval is added (410-1). Transmitted from transmit antenna 412-1.
  • Other transmission signals are processed and transmitted in the same way.
  • FIG. 5 shows a schematic diagram of a receiver used in a system combining a MIMO scheme and an OFDM scheme.
  • the received signal is received by N receive antennas 502-1 1 N, the guard interval is removed from them (504-1 1 N), and high-speed Fourier transform is performed separately (506 -1 N).
  • the signal after Fourier transform is separated into N transmission signals
  • the signal processing in the signal separation unit 508 there are various methods for separating signals received by a plurality of reception antennas into individual transmission signals transmitted from the plurality of transmission antennas.
  • the first method uses an algorithm called the zero forcing method. This is a pseudo inverse of H of the channel matrix H
  • the transmission signal is obtained by calculating + and multiplying the received signal by a pseudo inverse matrix.
  • the second method uses an algorithm called a minimum mean square error (MMS) method. This is to obtain the transmitted signal by multiplying the received signal by a matrix expressed by (1 +), where H is the reciprocal of the signal-to-noise ratio (SNR— , I represents the identity matrix, and ⁇ * represents the conjugate transpose of matrix ⁇ .
  • MMS minimum mean square error
  • the third method uses an algorithm called Zero Forcing Bell Laboratories Layered Space Time (ZF_BLAST) method. This is intended to realize high-speed data transmission by iteratively selecting and removing signals from one transmitting antenna (for example, see Non-Patent Document 3). .
  • ZF_BLAST Zero Forcing Bell Laboratories Layered Space Time
  • the fourth method is MMSE BLAST (Minimum Mean).
  • Square Error BLAST An algorithm called Square Error BLAST. This corresponds to a combination of the least mean square error method and the blast method.
  • the fifth method uses an algorithm called a maximum likelihood decoding (MLD) method. This is to calculate the square Euclidean distance between all possible transmission symbol combinations and the received signal, and determine that the symbol combination that gives the minimum distance is the most likely transmission signal.
  • MLD maximum likelihood decoding
  • Non-Patent Document 2 A. Van Zelst et al., "Implementation of a MIMO ⁇ FDM based wireless LAN system, IEEE Trans. Signal. Process. 52, no. 2, 2004, pp. 483-494
  • Non-Patent Document 3 pw Wolniansky et al., "V— BLAST: An architecture for realizing very high data rates over the rich scattering wireless channel, in Proc. Int. Symposium on Advanced Radio Technologies, Boulder, CO, Sept. 1998 Disclosure of the invention
  • the received signal can be separated into each of the plurality of transmission signals by various methods, but the calculation burden is not small regardless of which method is employed.
  • the signal separation accuracy or signal estimation accuracy improves, but the computational burden required for signal processing tends to increase.
  • the fifth method requires a distance calculation for the total number of possible combinations of signal points, that is, the number of combinations of (number of signal points that can be symbol mapped) and (number of transmit antennas). growing. Even if the first method is adopted, the computational burden of finding the inverse matrix is not small.
  • a MIMO system or a communication system that combines a MIMO system and other technologies has promising properties in the future, but distinguishes multiple transmission signals transmitted simultaneously from multiple transmission antennas.
  • the calculation burden required for the is large. This is particularly inconvenient for product applications such as mobile terminals and simple mobile terminals.
  • the present invention has been made in view of the above problems, and the problem is that a received signal including a plurality of transmission signals transmitted simultaneously from a plurality of transmission antennas is separated into individual transmission signals. It is an object of the present invention to provide a receiver and a receiving method that can reduce the calculation burden necessary for the operation.
  • the receiver used in the present invention is:
  • Adaptive array antenna means for receiving a transmission signal in which a subcarrier signal component of a predetermined value is suppressed before transmission to distinguish the transmission antenna from a plurality of transmission signals transmitted from a plurality of transmission antennas.
  • the special provision is to provide The invention's effect
  • the computational burden required to separate the reception signals into individual transmission signals is reduced. be able to.
  • FIG. 1 A conceptual diagram of a wireless communication system of a saddle method is shown.
  • FIG. 2 A conceptual diagram of an OFDM transmitter.
  • FIG. 3 A conceptual diagram of an OFDM receiver.
  • FIG. 4 A conceptual diagram of a transmitter of the MIMO system and the OFDM system.
  • FIG.5 A conceptual diagram of a MIMO and OFDM receiver.
  • FIG. 6 shows a block diagram of a receiver according to an embodiment of the present invention.
  • FIG. 7 is an explanatory diagram for explaining an operation according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a transmission signal and a reception signal on the frequency axis.
  • FIG. 9 is a block diagram showing a modification of the receiver according to one embodiment of the present invention.
  • FIG. 10 shows a block diagram of a receiver according to an embodiment of the present invention.
  • FIG. 11 shows a block diagram of a transmitter according to an embodiment of the present invention.
  • FIG. 12 shows a block diagram of a receiver according to an embodiment of the present invention.
  • FIG. 13 is a flowchart showing an operation according to an embodiment of the present invention.
  • FIG. 14 is a flowchart showing an operation according to an embodiment of the present invention.
  • FIG. 15 is a diagram showing the relationship between the direction of arrival of a transmission signal and directivity.
  • FIG. 16 shows a block diagram of a transmitter according to an embodiment of the present invention.
  • 302 receiving antenna; 304 guard interval remover; 306 serial-parallel converter; 308 fast Fourier transform; 310 parallel-serial converter;
  • 602-1 N antenna element; 604—1—N guard interval remover; 606—
  • 1102 Fast Fourier transform unit 1104 Virtual subcarrier setting unit; 1106 Fast inverse Fourier transform unit; 1108 Parallel-serial conversion unit; 1110 Coding unit; 1112 Mapping unit; 1113 Serial-parallel conversion unit (S / P); 1114 Guard Interval adder; 1116 Digital analog converter; 1118 Frequency converter; 1120 Transmitting antenna;
  • Guard interval remover 1212—one N weight multiplier; 1214 adder; 12
  • 16 Series-parallel conversion unit 1218 Fast Fourier transform unit; 1220 Channel compensation unit; 122 2 Multiplying unit; 1224 Fast inverse Fourier transform unit; 1226 Parallel-serial conversion unit; 1228 Demodulation unit; 1230 Weight control unit; ;
  • the plurality of transmission signals transmitted from the plurality of transmission antennas are received by the adaptive array antenna means.
  • the plurality of transmission signals are distinguished from one another by the positional relationship of subcarriers set to a predetermined value before transmission.
  • a weighting coefficient that suppresses the signal component of the subcarrier set to the predetermined value is calculated.
  • the weighting factor is applied to the adaptive array antenna means; A plurality of transmission signals are received while being distinguished.
  • the individual transmission signals can be distinguished by using the directivity in the direction of arrival of each transmission signal without executing the signal separation method that is performed in a MIMO receiver.
  • the weighting factor that achieves this favorable directivity is derived by utilizing knowledge of subcarriers that are not used for data transmission. In other words, the weighting factor is calculated so that a predetermined subcarrier component included in the received signal is suppressed, and the computational burden at that time is relatively light (compared to MIMO signal separation). Therefore, it is possible to reduce a calculation burden necessary for separating a reception signal including a plurality of transmission signals transmitted simultaneously from a plurality of transmission antennas into individual transmission signals.
  • the predetermined value is substantially zero.
  • adaptive control is performed so that the signal components of subcarriers not used for data transmission are zero, and the weighting factor is set.
  • the signal received by the adaptive array antenna means is a signal transmitted simultaneously from a plurality of transmission antennas at the same frequency.
  • the signal received by the adaptive array antenna means is a signal modulated by an orthogonal frequency division multiplexing (OFDM) system.
  • the signal received by the adaptive array antenna means is a signal modulated by a multicarrier code division multiplexing (MC-CDMA) system.
  • a receiver uses a weighting factor that suppresses a signal transmitted from one or more transmitting antennas other than a certain transmitting antenna within a certain period and received by the adaptive array antenna means.
  • the transmission antenna receives a signal transmitted within another period.
  • the weighting factor is set so that the transmission signal is suppressed so that the transmission signal is maximized, so that the weighting factor appropriate for each transmission antenna can be set accurately and efficiently.
  • a receiver that receives the first and second transmission signals transmitted from the first and second transmission antennas, respectively, is used.
  • the receiver receives the first transmission signal in which the first subcarrier component is set to a predetermined value and the second transmission signal in which the second subcarrier component is set to a predetermined value.
  • At least one of the first and second subcarriers set to the predetermined value includes two or more subcarriers. This increases the degree of freedom in distinguishing multiple transmission signals from each other.
  • the signal received by the adaptive array antenna means is subjected to Fourier transform on the transmission side, and the first and second subcarrier components are set to predetermined values.
  • the present invention can be applied to a single carrier communication system.
  • the first and second transmission signals respectively transmitted in different time slots are received separately.
  • the second transmission signal is received using a weighting factor that suppresses the received first transmission signal.
  • MIMO-OFDM system (Example 1)
  • MIMO-OFDM-CDMA system (Example)
  • FIG. 6 shows a schematic diagram of a receiver according to an embodiment of the present invention.
  • the MIMO method and the OFDM method are employed.
  • a configuration as shown in Fig. 4 can be adopted for the transmitter.
  • the transmitter has two transmission antennas and simultaneously transmits two types of transmission signals X and X at the same frequency.
  • the receiver shown is comprised of multiple (N) antenna elements 602— 1— N and N guard
  • the first signal separation unit 606-1 includes N weight multiplication units 608-1 N and a high-speed frame.
  • FFT One-field converter
  • N antenna elements 602—1—N form a single adaptive array antenna in total.
  • an antenna element having a P-contact is a linearly arranged array antenna arranged at a distance of about a half wavelength of a received signal.
  • Guard interval removal section (one GI) 604-1 1 N is a signal received by each antenna element.
  • the first signal separation unit 606-1 is a signal related to the first transmission signal X included in the received signal.
  • the second signal separation unit 606-2 receives the second transmission signal X included in the received signal.
  • the first signal separation unit 606-1 will be described as a representative example. It should be noted that the number of signal processing units is provided according to the type of transmission signal, that is, the number of transmission antennas.
  • N weight multipliers 608-1 to N correspond to each of the antenna elements 602-1 to N.
  • Adder 610 combines the weighted received signals.
  • Fast Fourier transform section 612 performs fast Fourier transform on the received signal after weighted synthesis, and performs OFDM demodulation. More precisely, a discrete fast Fourier transform (DFT) is performed. As a result, a received signal in the frequency domain is generated, and N subcarrier components in the received signal are obtained.
  • DFT discrete fast Fourier transform
  • Channel compensation section 614 obtains a channel estimation value based on the received signal and the known signal, and corrects the received signal for each subcarrier so that the signal distortion introduced in the propagation path is compensated.
  • Demodulation section 616 performs data demodulation based on the received signal after channel compensation, and outputs the demodulation result to a decoding section (not shown).
  • Normal adaptive array antenna (w,..., W)
  • the present embodiment suppresses a part of the output from the fast Fourier transform unit 612, that is, a certain subcarrier component (p-th subcarrier component in the illustrated example) in the received signal.
  • the weighting factor is determined.
  • weight control section 618 ′ in second signal separation section 606-2 determines the weighting factor so that the qth (q ⁇ p) subcarrier component in the received signal is suppressed. The method for determining the weighting factor will be clearly described in the following explanation of the operation.
  • AAA means the adaptive array antenna of the receiver in Fig. 6, and multiple antenna elements are represented by eight white circles.
  • Figure 7 also shows two curves representing the directivity of the adaptive array antenna (this will be described later).
  • the OFDM transmission signal data is mapped to a plurality of subcarriers and subjected to fast inverse Fourier transform to perform OFDM modulation.
  • the subcarriers are spaced apart from each other by a multiple of the reciprocal of one symbol period, and maintain a positional relationship orthogonal to each other. Therefore, the transmission signals X and X are shown in the upper half of Fig. 8 on the frequency axis.
  • the transmission signal As shown in the figure, it has many frequency components (subcarrier components). However, the transmission signal has many frequency components (subcarrier components). However, the transmission signal is not limited to
  • Subcarriers that are not used for data transmission are set, for example, to suppress DC offset components or to interfere with adjacent bands. This is for avoiding the above.
  • the location of subcarriers not used for data transmission may be determined by the communication standard, determined by the system operator, or determined from another point of view. In any case, both the transmitting side and the receiving side know that the subcarrier is used for data transmission, and multiple transmission signals can be distinguished from each other by the positional relationship of the virtual subcarriers. That's fine.
  • the first and second transmission signals x and X are transmitted from separate transmission antennas 710 and 720, respectively.
  • each signal has a frequency characteristic as shown in the upper part of FIG. They reach the receiver's adaptive array antenna 602-1 N via different (at least partially different) propagation paths, and receive the received signal y of the first and second transmitted signals X 2.
  • a 1 and X are 1st and 1st
  • the first received signal y was received by the adaptive array antenna in FIG.
  • the second received signal y is sent from the weight control unit 618 ′.
  • the received signal is weighted by the determined weighting coefficient w ( 2 ) and added by the adder 610.
  • the p-th subcarrier component of the first transmission signal X is zero
  • the p-th subcarrier component of the first reception signal y may also be zero. Be expected. However, when receiving the first received signal y, the second received signal y is also received at the same time.
  • the p-th subcarrier component of the first received signal y may have a non-zero signal component.
  • a signal component is an interference component and is indicated by a broken line near the p-th subcarrier of the received signal y on the lower side of FIG.
  • the frequency components included in the first received signal y are all obtained from the output signal of the FFT unit 612 in FIG. 6, and the signal component related to the p-th subcarrier is given to the weight control unit 618.
  • i is a parameter indicating the number of iterations
  • is a forgetting factor having a value such as 0.995
  • w H is a conjugate transposed vector of a vector whose components are weighting factors
  • R is Shows the pth subcarrier component in the received signal.
  • the weighting factor For the calculation of the weighting factor, the minimum mean square error (MMSE) such as the recursive least square (RLS) method and the least mean square (LMS) method is used. Law and other existing technologies can be used. If the correspondence between the transmission signal and virtual subcarriers (subcarriers to which no data is mapped) is known on the receiver side, the weighting factor used for the adaptive array antenna is determined by the receiver based on knowledge about the virtual subcarrier. Is calculated.
  • MMSE minimum mean square error
  • RLS recursive least square
  • LMS least mean square
  • the weighting coefficient w (1 ) for suppressing the p-th subcarrier component is set to the weight multiplication unit 608—1 N
  • the directivity of the adaptive array antenna directs nulls in the direction in which the second transmission signal X arrives.
  • the signal demodulated based on the first received signal y accurately represents the first transmitted signal X.
  • the q-th subcarrier component is zero.
  • the second received signal y-force q-th subcarrier component is extracted and is
  • a group of weighting factors w (2) is calculated so as to suppress the qth subcarrier component by giving to the eight control unit 618 ′.
  • weighting factors w (2) are given to each antenna element by the weight multiplier 608-1-N for the second received signal, the directivity of the adaptive array antenna Directs null in the direction of arrival of the first transmitted signal x. q-th subcarrier component is sufficient
  • the signal demodulated based on the second received signal y is the second transmitted signal.
  • the number of subcarriers not used for data transmission may be one or plural for one transmission signal.
  • the plurality of signals transmitted from the plurality of transmission antennas only need to be distinguishable from each other by the positional relationship of the virtual subcarrier. Therefore, when a plurality of virtual subcarriers are included in one transmission signal, it is necessary that at least some of the virtual subcarriers are different between different transmission signals.
  • the position of the virtual subcarrier can be variously set as described above. Some of the subcarriers that can be used for data transmission can be set as virtual subcarriers as long as the frequencies set as unused frequencies can be used as virtual subcarriers.
  • the data transmission quality also deteriorates due to the newly established virtual subcarrier, but if such deterioration falls within the category of deterioration of the communication environment to the extent that it can be compensated, error correction is performed.
  • Other compensation techniques can compensate for the deterioration.
  • the unused frequency can be secured by changing the cutoff frequency of the filter.
  • the virtual subcarriers set in the first and second symbols (of the same content) need to be set in different positions.
  • the pth subcarrier is set as a virtual subcarrier
  • the qth (q ⁇ p) is set as a virtual subcarrier. This is because if the p-th virtual subcarrier is used in both the first and second symbols, the p-th subcarrier component related to the preamble sequence will be unknown.
  • the output from the first antenna and the second antenna is used to distinguish the radio waves emitted from the first antenna and the second antenna.
  • a frequency region where no carrier is arranged is provided so that the frequency region where no carrier is arranged differs between the first antenna and the second antenna.
  • the type of transmission signal or the number of transmission antennas is not limited to two, and any number of transmission antennas can be used. It is. However, it is necessary that the number of signal separation units 606 corresponding to the number of transmission antennas is necessary and that all transmission signals can be distinguished from each other at the position of the virtual subcarrier.
  • FIG. 9 shows a modification of the receiver shown in FIG. It should be noted that in FIG. 9, only the portion related to the first transmission signal X and the first reception signal y is drawn for the sake of simplicity.
  • the receiver shown in FIG. 9 and FIG. 6 calculates a weighting factor that suppresses the p-th subcarrier component in the received signal for the first transmitted signal, and thereby signals other than the first transmitted signal.
  • the directivity which directs null to the arrival direction of is realized.
  • the signal before being input to the adder is subjected to fast Fourier transform.
  • Example 2
  • FIG. 10 is a partial block diagram of a receiver according to an embodiment of the present invention.
  • the receiver according to the present embodiment is used in a system in which a MIMO system, an OFDM system, and a code division multiplexing (CDMA) system are combined. Note that for simplicity, only the parts related to the first transmission signal X and the first reception signal V are shown. As for transmitters, it is possible to use ordinary transmitters (not shown) that employ Ml MO, OFDM, and CDMA.
  • the receiver shown in FIG. 10 includes a plurality of (N) antenna elements 100.
  • Eight multiplication unit 1008-1 N, Karo calculation unit 1010, Fast Fourier transform unit (FFT) 1012,
  • It includes a channel compensation unit 1014, several subcarrier multiplication units 1016 and 1018, a synthesis unit 1020, a parallel-serial conversion unit (P / S) 1022, a demodulation unit 1024, and a weight control unit 1026.
  • the multipliers 1016 and 1018 of several subcarriers are all indicated by the same reference number.
  • N antenna elements 1002-1—N have one adaptive array antenna in total.
  • Guard interval remover (one GI ) 1004—1 N is equivalent to the guard interval from the signal received by each antenna element
  • a 1 N is a
  • Adder 1010 combines the weighted received signals.
  • Fast Fourier transform section 1012 performs fast Fourier transform on the received signal after weighted synthesis, and demodulates the OFDM scheme. As a result, a received signal in the frequency domain is generated, and a received signal is obtained for each of N subcarriers.
  • Channel compensation section 1014 obtains a channel estimation value and corrects the received signal for each subcarrier so that signal distortion introduced in the propagation path is compensated.
  • the number of subcarriers (N) multiplying unit 1018 multiplies the Fourier-transformed signal by a despreading code.
  • the combining unit 1020 combines a predetermined number of signals after despreading.
  • the parallel / serial converter 1022 further converts the combined parallel signal into a serial signal.
  • Demodulation section 1024 performs data demodulation and outputs the demodulation result to a decoding section (not shown).
  • the weight control unit 1026 is based on a part of a signal from each antenna element and a part of the signal from the fast Fourier transform unit 1012 (p-th subcarrier component in the illustrated example), The numbers are calculated, and their weight coefficients are given to the weight multiplier 1008-1—N.
  • the weighting factor is determined so that a part of the output from the fast Fourier transform unit 1012, that is, a certain subcarrier component in the received signal (p-th subcarrier component in the illustrated example) is suppressed.
  • the weighting factor that suppresses the pth subcarrier component is given to each antenna element by the weight multiplier 1008-1 N, the directivity of the adaptive array antenna is the first transmission
  • the signal demodulated based on the first received signal y is
  • the first transmission signal X is accurately represented.
  • the examples described in the first and second embodiments use a communication system that employs a multicarrier scheme. Some of the subcarriers are set as virtual subcarriers, and the signal components of the virtual subcarriers in the received signal are suppressed, so that transmission signals are distinguished and received. The weight of the adaptive array antenna is adjusted as possible. Therefore, such a technique cannot be applied to a conventional single carrier communication system without any modification.
  • an embodiment in which the present invention is applied to a single carrier MIMO system will be described.
  • FIG. 11 shows a partial block diagram of a transmitter according to an embodiment of the present invention.
  • This transmitter employs a single carrier scheme as a MIMO scheme.
  • the transmitter according to the present embodiment includes, for each of N transmission antennas, 1110 encoding units, a mapping unit 1112, and a series-parallel variable t.
  • S / P Conversion unit 1113, Fast Fourier transform unit (FFT) 1102, Virtual subcarrier setting unit 1104, Fast inverse Fourier transform unit (IFFT) 1106, Parallel-serial conversion unit (P / S) 1108 A guard interval adding unit (GI) 1114, a digital analog converting unit (DZA) 1116, N frequency converting units (U / C) 1118, and a transmitting antenna 1120.
  • FFT Fast Fourier transform unit
  • IFFT Fast inverse Fourier transform unit
  • P / S Parallel-serial conversion unit
  • GI guard interval adding unit
  • DZA digital analog converting unit
  • U / C frequency converting units
  • Fast Fourier transform section 1102 performs fast Fourier transform on the transmission signal and outputs N subcarrier components.
  • the virtual subcarrier setting unit 1104 forces a subcarrier component (for example, the pth subcarrier component) to be set as a virtual subcarrier out of N subcarrier components to zero and outputs it. Subcarriers other than virtual subcarriers are output as they are without any changes.
  • the fast inverse Fourier transform unit 1106 performs fast inverse Fourier transform on the input group of signals and returns them to time domain signals. It is assumed that which subcarrier is set as a virtual subcarrier is determined in advance between the transmitter and the receiver, or is set in advance in the system.
  • Encoding section 1110-1 N is an appropriate encoding such as convolutional encoding or error correction encoding.
  • the mapping unit 1112-1—N uses the appropriate modulation method to
  • Guard interval adding section 1114-1 N adds a guard interval to the signal.
  • the frequency converter 1118-1—N converts the signal converted into the t t analog signal into a high-frequency signal.
  • the transmitting antenna 1120-1 N transmits the transmission signal independently.
  • FIG. 12 is a block diagram of a receiver according to an embodiment of the present invention.
  • a single-carrier MIMO scheme is adopted corresponding to the transmitter of FIG. Easy Therefore, only the part related to the first transmission signal x and the first reception signal y is drawn.
  • This receiver has multiple (N) antenna elements 1202-1
  • Bandpass filter unit 1204 1 N and N frequency converters (D / C) 1206— 1
  • Adder 1214 serial / parallel converter (S / P) 1216, fast Fourier transform (FFT) 1218, channel compensator 1220, several subcarrier (N) multipliers 1222, and fast inverse Fourier Conversion unit (IFFT) 1224, parallel-serial conversion unit (P / S) 1226, demodulation unit 1228, and weight control unit 1230.
  • S / P serial / parallel converter
  • FFT fast Fourier transform
  • N subcarrier
  • IFFT fast inverse Fourier Conversion unit
  • P / S parallel-serial conversion unit
  • demodulation unit 1228 demodulation unit 1228
  • weight control unit 1230 weight control unit
  • N antenna elements 1202-1 N have one adaptive array antenna in total.
  • the band-pass filter unit 1204-1-N limits the signal band for each antenna element.
  • Frequency converter 1206-1 1 N is high
  • the analog-digital conversion unit 1208-1 1 N converts an analog signal into a digital signal.
  • Guard interval remover one GI
  • Weight multiplier 1212-1— N is received by each antenna element.
  • Adder 1214 combines the weighted received signals.
  • the serial-parallel converter 1216 converts the combined signal into N parallel signals.
  • the fast Fourier transform unit 1218 performs fast Fourier transform on the received signal and outputs N subcarrier components included in the received signal.
  • Channel compensation section 1220 obtains a channel estimation value and corrects the received signal for each subcarrier so that the signal distortion introduced in the transmission path is compensated.
  • the fast inverse Fourier transform unit 1224 performs fast inverse Fourier transform on the input signal group and outputs a time domain signal group.
  • the parallel / serial converter 1226 converts the signal group into a serial signal.
  • Demodulation section 1228 performs data demodulation and outputs the demodulation result to a decoding section (not shown).
  • Weight control section 1230 calculates weighting factors based on the signals from each antenna element and part of the signal from fast Fourier transform section 1218, and provides these weighting factors to weight multiplication section 1212-1 . Dashed line if frequency domain equalization is not performed As shown by the signal line 1232, the channel compensation unit 1220, the number of subcarriers (N) multiplying unit 1222, the fast inverse Fourier transform unit (IFFT) 1224, and the parallel-serial conversion unit (P / S) 1226 may be omitted, and the output y of the adder 1214 may be directly guided to the demodulator 1228. This
  • the fast Fourier transform unit 1218 only needs to calculate the portion of the subcarrier set in the virtual subcarrier, which is simpler than when performing frequency domain equalization.
  • the weighting factor is determined so that a part of the output from the fast Fourier transform unit 1218, that is, a certain subcarrier component (for example, the pth subcarrier component) in the received signal is suppressed. Is done.
  • a certain subcarrier component for example, the pth subcarrier component
  • the directivity of the adaptive array antenna is directed toward the direction in which signals other than the first transmission signal X arrive. If the p-th subcarrier component is sufficiently suppressed, the signal demodulated based on the first reception signal y accurately represents the first transmission signal X.
  • the present invention can also be applied to a single carrier communication system.
  • the data transmission quality slightly deteriorates due to the virtual subcarrier introduced by the virtual subcarrier setting unit 1104. Therefore, in this embodiment, it is assumed that such deterioration falls within the category of deterioration of the communication environment that can be compensated.
  • Example 4
  • the adaptive array antenna while suppressing a part of the subcarrier components in the received signal (for example, the p-th subcarrier component in the first transmission signal), the adaptive array antenna The directivity was controlled.
  • the weighting factor is calculated so that all subcarrier components of the signal received within a certain period are suppressed.
  • FIG. 13 shows an example of a flowchart for performing such an operation. For simplicity, as shown in Fig. 7, two transmission signals X and x from two transmission antennas 710 and 720
  • step 1304 the second transmission signal X is transmitted from the second transmission antenna 720.
  • the receiver calculates the weighting factor w (1) so as to suppress all of the received signals. Only the second transmission signal X is included in the received signal. Suppress this signal
  • the pattern of directivity to be transmitted is such that a null is directed in the direction of arrival of the second transmission signal X.
  • this weighting factor w (1) is used to receive the signal from the first transmitting antenna while suppressing the signal from the second transmitting antenna.
  • the second transmission signal is not transmitted.
  • the receiver calculates the weighting factor w (2) so as to suppress all of the received signals.
  • the received signal contains only the first transmission signal.
  • the directivity pattern that suppresses this signal is a pattern in which a null is directed in the direction of arrival of the first transmission signal X for the same reason as described above. Therefore, this weighting factor w (2) is used to receive the signal from the second transmitting antenna thereafter.
  • the first and second weighting factors are calculated, and the flow for determining the weighting factor is:
  • FIG. 14 shows a case where three types of transmission signals X, ⁇ , and x are transmitted from three transmission antennas.
  • step 1404 whether the second and third transmission signals X and x are the second and third transmission antennas.
  • the first transmission signal X is not transmitted.
  • the receiver calculates the weighting factor w (1) so as to suppress all of the received signals.
  • the received signal includes the second and third transmission signals.
  • the directivity pattern that suppresses this signal is, as shown in FIG. 15, the second and third transmission signals X,
  • this weighting factor w (1) is
  • step 1408 whether the third and first transmission signals X and x are the third and first transmission antennas.
  • the receiver calculates the weighting factor w (so as to suppress all of the received signals.
  • the directivity that suppresses the received signals including the third and first transmission signals. For the same reason as above, a null pattern is set in the direction of arrival of the third and first transmission signals X and X.
  • this weighting factor w (2) is used to receive the signal X from the second transmitting antenna thereafter.
  • step 1412 whether the first and second transmission signals X and x are the first and second transmission antennas.
  • the third transmission signal X is not transmitted.
  • the receiver calculates the weighting factor w (3) so as to suppress all of the received signals.
  • the directivity pattern that suppresses the reception signal including the first and second transmission signals is null in the arrival direction of the first and second transmission signals X and X for the same reason as described above.
  • this weighting factor w (3) is used to receive the signal X from the third transmitting antenna thereafter.
  • the first, second, and third weighting factors are calculated, and the flow for determining the weighting factors proceeds to step 1416 and ends. Thereafter, using these weighting factors, it is possible to receive the transmission signals from the respective transmission antennas while distinguishing them.
  • the force by which the weighting factors for receiving the first, second and third transmission signals are obtained in order is determined in any order.
  • the orthogonal frequency division multiplexing (OFDM) scheme is used, but the present invention is not limited to this.
  • the present invention it is only necessary to use a multi-carrier as long as the relationship of the carrier frequency arrangement is orthogonal. Therefore, the present invention can also be used in a frequency division multiplexing (FDM) system.
  • FDM frequency division multiplexing
  • the present invention has been described as an example in which different information is output from a plurality of antennas in a multi-output type transmission apparatus, and the configuration for distinguishing radio waves has been described.
  • the MiMo method includes a plurality of radio beams that are formed by weighting the same information on all antennas and repeating this using different weights. There is also a method of configuring the beam.
  • the present invention can also be used in a system for forming these plural beams.
  • a specific example is shown in FIG.
  • FIG. 16 is the same as FIG. 4 except that the transmission signal is subjected to serial-parallel conversion (S / P) 402 and a guard interval is added.
  • S / P serial-parallel conversion
  • Weighting process 411—1 The signal weighted by 411—N is the antenna 42—1—412—
  • Each is input to N.
  • Antennas 412— 1— 412— N cooperate with each other to generate a radio wave beam 413— 1— 413— N
  • One 413—N is different from XI—XN according to the weighting of 411—1 to 411—N t t t

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

 本発明の課題は、複数の送信アンテナから同時に送信された複数の送信信号を含む受信信号を、個々の送信信号に分離するのに必要な演算負担を軽減する受信機を得ることである。本受信機は、複数の送信アンテナから送信された複数の送信信号を受信する適応アレーアンテナ手段を有する。前記複数の送信信号は、送信前に所定値に設定されたサブキャリアの位置関係により互いに区別される。本受信機は、受信信号に含まれるサブキャリア成分の内、前記所定値に設定されたサブキャリアの信号成分を抑制する重み係数を算出する手段と、前記重み係数を前記適応アレーアンテナ手段に適用し、前記複数の送信信号を区別して受信する手段とを有する。  

Description

明 細 書
受信機、送信装置及び受信方法
技術分野
[0001] 本発明は、一般に無線通信の技術分野に関連し、特に複数の送信アンテナから送 信された信号を個々に分離する受信機及び受信方法に関する。
背景技術
[0002] この種の技術分野では、主に通信容量を増やす観点から、多入力多出力(MIMO
: Multi Input Multi Output)方式の無線通信技術が注目されている。この技術 は、送信側及び受信側にそれぞれ複数のアンテナを設け、各アンテナ間に形成され る伝搬路 (又はチャネル)を利用することで、通信容量を増やそうとするものである(M IMO方式については、例えば、非特許文献 1参照。)。また、マルチパス伝搬環境に 対する耐性に加えて周波数利用効率を高める観点からは、直交周波数分割多重化 (OFDM: Orthogonal Frequency Division Multiplexing)方式の無!^通| 技術が注目されている。 OFDM方式では、周波数軸上に並ぶ互いに直交する複数 のサブキャリアを用いて信号を伝送することで、周波数選択性フェージングゃマルチ パス伝搬環境による影響を抑制しょうとするものである。更には、 MIMO方式及び O FDM方式を組合わせた無線通信システムも有望視されている(このようなシステムに ついては、非特許文献 2参照。)。
[0003] 図 1は、 MIMO方式の概要を示す図である。図示されているように、送信側に N個
t の送信アンテナが設けられ、送信アンテナの各々から送信信号 X X がそれぞれ
0 Nt-1
送信される。これらの送信信号は、同一時間及び同一周波数で送信されるが、互い に独立に伝送されるように各送信アンテナ間の距離や配置形式が適切に設定されて いる。各送信アンテナから送信された送信信号は、 N (≥N )個の受信アンテナによ
r t
り受信され、 N個の受信信号 y— y が得られる。図中、各受信信号に加えられる
r 0 Nr-1
信号 n— n はそれぞれ雑音成分を表す。送信アンテナ及び受信アンテナ間の無
0 Nr-1
線区間は、チャネル行列 Hで表現され、チャネル行列 Hの個々の行列要素 H は、
nm m番目の送信アンテナと n番目の受信アンテナとの間のチャネル伝達関数に相当す る。図示の例では、 0≤m≤N _l及び 0≤η≤Ν _1である。
t r
[0004] 図 2は、一般的な OFDM方式の送信機の概略図を示す。所定の信号点にマツピン グされた変調済みの送信信号は、直並列変換され (S/P202)、高速逆フーリエ変 換され(IFFT204)、これにより OFDM方式による変調が行なわれる。 IFFT後の時 間領域の信号は並直列変換され (PZS 206)、それにガードインターバルが付加さ れ (GI208)、送信アンテナ 210から無線送信される。なお、信号のマッピング方式と しては、 QPSK、 16QAM、 64QAMその他任意の方式を採用することができる。
[0005] 図 3は、一般的な OFDM方式の受信機の概略図を示す。受信アンテナ 302で受 信された信号のガードインターバルは除去される (一 GI306)。以後、受信信号は、直 並列変換され(S/P306)、高速フーリエ変換される(FFT308)。これにより、 OFD M方式の復調が行なわれる。変換後の周波数領域の信号は並直列変換され (PZS 310)、以後復調され(312)、デコードその他の処理が行なわれる。
[0006] 図 4は、 MIMO方式と OFDM方式を組合わせたシステムで使用される送信機の概 略図を示す。図示されるように、送信信号は直並列変換 (S/P402)により、 N個の
t 信号に分けられる。 N個の個々の送信信号は、別々に信号処理された後に N個の
t t 送信アンテナから別々に送信される。例えば、第 1の送信信号は、符号化され (404 -1)、マッピングされ (406-1)、高速逆フーリエ変換 (408-1)された後に、ガードィ ンターパルが付加され (410-1)、送信アンテナ 412-1から送信される。他の送信信 号も同様に処理され、送信される。
[0007] 図 5は、 MIMO方式と OFDM方式を組合わせたシステムで使用される受信機の概 略図を示す。図示されるように、受信信号は、 N個の受信アンテナ 502— 1一 Nにより 受信され、ガードインターバルがそれらから除去され(504— 1一 N )、別々に高速フ 一リエ変換される(506-1 N )。フーリエ変換後の信号は、 N個の送信信号に分離
r t
され (508)、各送信信号毎に復調及びデコードが行なわれる。
[0008] 信号分離部 508における信号処理に関し、複数の受信アンテナで受信した信号を 、複数の送信アンテナから送信された個々の送信信号に分離する様々な手法が存 在する。第 1の手法は、ゼロフォーシング(Zero Forcing)法と呼ばれるアルゴリズム を利用する。これは、チャネル行列 Hの擬似的逆行列(pseudo inverse of H) H +を算出し、受信信号に擬似的逆行列を乗じることで、送信信号を得ようとするもので ある。
[0009] 第 2の手法は、最小二乗平均誤差(MMS : Minimum Mean Square Error) 法と呼ばれるアルゴリズムを利用する。これは、(ひ 1 + で表現される行 列を受信信号に乗算することで、送信信号を得ようとするものである。ここで、 ひは信 号対雑音比の逆数(SNR— であり、 Iは単位行列を表わし、 Η*は行列 Ηの共役転置 行列を表す。
[0010] 第 3の手法は、ゼロフォーシングブラスト(ZF_BLAST : Zero Forcing Bell La boratories Layered Space Time)法と呼ばれるアルゴリズムを利用する。これ は、 1つの送信アンテナからの信号の選択及び除去を反復的に行なうことで、高速デ ータ伝送を実現しょうとするものである(この手法については、例えば、非特許文献 3 参照。)。
[0011] 第 4の手法は、最小二乗平均誤差ブラスト(MMSE BLAST : Minimum Mean
Square Error BLAST)法と呼ばれるアルゴリズムを利用する。これは、最小二 乗平均誤差法とブラスト法とを組合わせたものに相当する。
[0012] 第 5の手法は、最尤判定(MLD : Maximum Likelihood Decoding)法と呼ば れるアルゴリズムを利用する。これは、総ての可能な送信シンボルの組合せと受信信 号との二乗ユークリッド距離を計算し、最小の距離を与えるシンボルの組合せが、送 信信号として最も確からしいと判断するものである。
[0013] [ 特 g午文献丄」 A. Van Zelst, Space division multiplexing algorithm , Proc. 10th Med. Electrotechnical Conference 2000, pp. 1218—1221
[非特許文献 2]A. Van Zelst et al. , "Implementation of a MIMO 〇 FDM based wireless LAN system , IEEE Trans. Signal. Process. 52, no. 2, 2004, pp. 483—494
[非特許文献 3] p. w. Wolniansky et al., "V— BLAST : An architecture for realizing very high data rates over the rich scattering wireless channel , in Proc. Int. Symposium on Advanced Radio Technologie s, Boulder, CO, Sept. 1998 発明の開示
発明が解決しょうとする課題
[0014] このように様々な手法により、受信信号を複数の送信信号の各々に分離することが できるが、何れの手法を採用するにしても演算負担は小さくはない。概して第 1の手 法から第 5の手法に向力うにつれて、信号分離精度又は信号の推定精度は向上す るが、信号処理に要する演算負担も増える傾向にある。特に第 5の手法は、総ての可 能な信号点の組合せ数、即ち (シンボルマッピングの可能な信号点数) (送信アンテナ数)も の組合せ数について距離計算を要するので、非常に演算負担が大きくなる。第 1の 手法を採用するにしても、逆行列を求める演算負担は小さくはない。従って、 MIMO 方式や MIMO方式と他の技術を組合わせた通信システムは、将来的に有望な性質 を備えてはいるが、複数の送信アンテナから同時に送信された複数の送信信号を区 別するのに要する演算負担が大きいという問題がある。このことは、携帯端末や簡易 な移動端末のような製品用途では特に不都合になる。
[0015] 本発明は、上記の問題点に鑑みてなされたものであり、その課題は、複数の送信ァ ンテナから同時に送信された複数の送信信号を含む受信信号を、個々の送信信号 に分離するのに必要な演算負担を軽減する受信機及び受信方法を提供することで ある。
課題を解決するための手段
[0016] 本発明で使用される受信機は、
複数の送信アンテナから送信された複数の送信信号で、送信アンテナを区別する ため送信前に所定値のサブキャリア信号成分が抑制された送信信号を受信する適 応アレーアンテナ手段
受信信号に含まれるサブキャリア成分の内、前記所定値に設定されたサブキャリア の信号成分を抑制する重み係数を算出する手段と、
前記重み係数を前記適応アレーアンテナ手段に適用し、前記複数の送信信号を 区別して受信する手段と
を備えることを特 ί敷とする。 発明の効果
[0017] 本発明によれば、複数の送信アンテナから同時に送信された複数の送信信号を受 信する受信機において、受信信号を個々の送信信号に分離するのに必要な演算負 担を軽減することができる。
図面の簡単な説明
[0018] [図 1]ΜΙΜΟ方式の無線通信システムの概念図を示す。
[図 2]OFDM方式の送信機の概念図を示す。
[図 3]OFDM方式の受信機の概念図を示す。
[図 4]MIMO方式及び OFDM方式の送信機の概念図を示す。
[図 5]MIMO方式及び OFDM方式の受信機の概念図を示す。
[図 6]本発明の一実施例による受信機のブロック図を示す。
[図 7]本発明の一実施例による動作を説明するための説明図を示す。
[図 8]周波数軸上における送信信号及び受信信号を示す図である。
[図 9]本発明の一実施例による受信機の変形例を示すブロック図である。
[図 10]本発明の一実施例による受信機のブロック図を示す。
[図 11]本発明の一実施例による送信機のブロック図を示す。
[図 12]本発明の一実施例による受信機のブロック図を示す。
[図 13]本発明の一実施例による動作を示すフローチャートを示す。
[図 14]本発明の一実施例による動作を示すフローチャートを示す。
[図 15]送信信号の到来方向と指向性の関係を示す図である。
[図 16]本発明の一実施例による送信機のブロック図を示す。
符号の説明
[0019] 202 直並列変換部; 204 高速逆フーリエ変換部; 206 並直列変換部; 20 8 ガードインターバル付加部; 210 送信アンテナ;
302 受信アンテナ; 304 ガードインターバル除去部; 306 直並列変換部; 308 高速フーリエ変換部; 310 並直列変換部;
402 直並歹'液換部; 404-1— N 符号器; 406-1— N マッピング部; 408 t t
_1一 N 高速逆フーリエ変換部; 410—1— N ガードインターバル付加部; 412 一 1一 N 送信アンテナ部;
t
502— 1一 N 受信アンテナ部; 504— 1一 N ガードインターバル除去部; 506— 1一 N 高速フーリエ変換部; 508 信号分離部;
602-1— N アンテナ素子; 604—1— N ガードインターバル除去部; 606—
A A
1 , 2 信号分離部; 608 - 1一 N ウェイト乗算部; 610 加算部; 612
A , 612' 高速フーリエ変換部; 614 チャネル補償部; 616 復調部; 618, 618'ウェイト 制御部;
710, 720 送信アンテナ;
1002-1— N アンテナ素子; 1004—1— N ガードインターバル除去部; 10
A A
08—1 N ウェイト乗算部; 1010 加算部; 1012 高速フーリエ変換部; 101
A
4 チャネル補償部; 1016, 1018 乗算部; 1020 加算部; 1022 並直列変 換部; 1024 復調部; 1026 ウェイト制御部;
1102 高速フーリエ変換部; 1104 仮想サブキャリア設定部; 1106 高速逆フ 一リエ変換部; 1108 並直列変換部; 1110 符号化部; 1112 マッピング部; 1113 直並列変換部(S/P) ; 1114 ガードインターバル付加部; 1116 デイジ タルアナログ変換部; 1118 周波数変換部; 1120 送信アンテナ;
1202— 1一 N 受信アンテナ; 1204— 1一 N バンドパスフィルタ; 1206— 1
A A 一
N 周波数変換部; 1208— 1一 N アナログディジタル変換部; 1210— 1一 N
A A A
ガードインターバル除去部; 1212— 1一 N ウェイト乗算部; 1214 加算部; 12
A
16 直並列変換部; 1218 高速フーリエ変換部; 1220 チャネル補償部; 122 2 乗算部; 1224 高速逆フーリエ変換部; 1226 並直列変換部; 1228 復調 部; 1230 ウェイト制御部; 1232 選択的な信号線;
発明を実施するための最良の形態
本発明の一態様によれば、複数の送信アンテナから送信された複数の送信信号は 適応アレーアンテナ手段で受信される。前記複数の送信信号は、送信前に所定値 に設定されたサブキャリアの位置関係により互いに区別される。受信信号に含まれる サブキャリアの内、前記所定値に設定されたサブキャリアの信号成分を抑制する重み 係数が算出される。前記重み係数は前記適応アレーアンテナ手段に適用され、前記 複数の送信信号が区別されながら受信される。
[0021] これにより、 MIMO方式の受信機で行なわれているような信号分離法を実行せず に、各送信信号の到来方向に向く指向性を利用して、個々の送信信号を区別するこ とができる。この好都合な指向性を実現する重み係数は、データ伝送に使用されな いサブキャリアに関する知識を活用することにより導出される。即ち、重み係数は、受 信信号に含まれる所定のサブキャリア成分が抑制されるように算出され、その際の演 算負担は (MIMO方式の信号分離と比較して)比較的軽い。従って、複数の送信ァ ンテナから同時に送信された複数の送信信号を含む受信信号を、個々の送信信号 に分離するのに必要な演算負担を軽減することができる。
[0022] 本発明の一態様によれば、前記所定値が実質的にゼロである。これにより、データ 伝送に使用されていないサブキャリアの信号成分がゼロであるように、適応制御が行 なわれ、重み係数が設定される。
[0023] 本発明の一態様によれば、前記適応アレーアンテナ手段で受信された信号が、複 数の送信アンテナから同時に同一周波数で送信された信号である。
[0024] 本発明の一態様によれば、前記適応アレーアンテナ手段で受信された信号が、直 交周波数分割多重化 (OFDM)方式で変調された信号である。また、一態様では、 前記適応アレーアンテナ手段で受信された信号が、マルチキャリア符号分割多重化 (MC-CDMA)方式で変調された信号である。
[0025] 本発明の一態様における受信機は、ある送信アンテナ以外の 1以上の送信アンテ ナからある期間内に送信され且つ前記適応アレーアンテナ手段で受信した信号を抑 制する重み係数を用いて、前記ある送信アンテナ力 別の期間内に送信される信号 を受信する。これにより、送信信号が最大化されるようにではなぐ送信信号が抑制さ れるように重み係数が設定されるので、各送信アンテナに相応しい重み係数を的確 且つ効率的に設定できる。
[0026] 本発明の一態様によれば、第 1及び第 2の送信アンテナからそれぞれ送信された 第 1及び第 2の送信信号を受信する受信機が使用される。本受信機は、第 1のサブ キャリア成分が所定値に設定された前記第 1の送信信号及び第 2のサブキャリア成分 が所定値に設定された前記第 2の送信信号を受信する、複数のアンテナ素子を含む 適応アレーアンテナ手段と、フーリエ変換後の受信信号に含まれる前記第 1及び第 2 のサブキャリア成分をそれぞれ抑制する第 1及び第 2の重み係数をそれぞれ算出す るウェイト制御手段と、前記第 1及び第 2の重み係数を前記適応アレーアンテナ手段 に適用し、個々の送信信号を区別する手段とを備えることを特徴とする。
[0027] 本発明の一態様によれば、前記所定値に設定された第 1及び第 2の少なくとも一方 のサブキャリアが、 2以上のサブキャリアより成る。これにより、複数の送信信号を互い に区別する自由度が大きくなる。
[0028] 本発明の一態様によれば、前記適応アレーアンテナ手段で受信された信号は、送 信側でフーリエ変換を施し、前記第 1及び第 2のサブキャリア成分が所定値に設定さ れ、フーリエ逆変換された後に無線送信される単一(シングル)キャリアの信号である 。これにより、単一キャリア方式の通信システムにも本発明を適用することができる。
[0029] 本発明の一態様によれば、異なるタイムスロットでそれぞれ送信された前記第 1及 び第 2の送信信号を別々に受信する。また、受信した前記第 1の送信信号を抑制す る重み係数を用いて、前記第 2の送信信号を受信する。
[0030] 以下、 MIMO - OFDM方式(実施例 1)、 MIMO - OFDM - CDMA方式(実施例
2)及び MIMO—シングノレキャリア方式 (実施例 3)に本発明を適用した例並びに別の 実施例 (実施例 4)が説明される。
実施例 1
[0031] 図 6は、本発明の一実施例による受信機の概略図を示す。本実施例では、 MIMO 方式及び OFDM方式が採用されている。送信機については、図 4に示されるような 構成を採用することができる。簡単のため、送信機は、 2つの送信アンテナを有し、そ れらから 2種類の送信信号 X , Xを同時に同一周波数で送信するものとする。図 6に
1 2
示される受信機は、複数の(N個)のアンテナ素子 602— 1— N と、 N個のガードィ
A A A
ンターバル除去部 (- GI) 604 - 1一 N と、第 1の信号分離部 606 - 1と、第 2の信号分
A
離部 606-2とを有する。第 1及び第 2の信号分離部 606-1 , 2は実質的に同様の構 成を有するので、第 1の信号分離部 606— 1がそれらを代表して説明される。第 1の信 号分離部 606— 1は、 N個のウェイト乗算部 608— 1 N と、 と、高速フ
A 一 加算部 610
A
一リエ変換部(FFT) 612と、チャネル補償部 614と、復調部 616と、ウェイト制御部 6 18とを有する。
[0032] N個のアンテナ素子 602—1— N は、 N個全体で 1つの適応アレーアンテナが形
A A A
成されるように、互いの位置関係が定めれられる。適応アレーアンテナを実現する様 々な形態があり得るが、一例としては、 P 接するアンテナ素子が、受信信号の半波長 程度の距離に並べらた等間隔直線配置アレーアンテナである。
[0033] ガードインターバル除去部(一 GI) 604— 1一 N は、各アンテナ素子で受信した信号
A
力 ガードインターバルに相当する信号部分を除去する。
[0034] 第 1の信号分離部 606 - 1は、受信信号に含まれる第 1の送信信号 Xに関する信号
1
処理を行なう。第 2の信号分離部 606 - 2は、受信信号に含まれる第 2の送信信号 X
2 に関する信号処理を行なう。上述したように、第 1及び第 2の信号分離部は実質的に 同様の構成を有するので、第 1の信号分離部 606— 1がそれらを代表して説明される 。なお、信号処理部の数は、送信信号の種類、即ち送信アンテナ数に応じて設けら れることに留意を要する。
[0035] N個のウェイト乗算部 608— 1一 N は、アンテナ素子 602—1— N の各々に対応し
A A A
て設けられ、各アンテナ素子で受信された信号にウェイト又は重み係数をそれぞれ 乗算する。
[0036] 加算部 610は、重み付けされた受信信号を合成する。
[0037] 高速フーリエ変換部 612は、重み付け合成後の受信信号を高速フーリエ変換し、 O FDM方式の復調を行なう。より正確には、離散高速フーリエ変換(DFT: Discrete FFT)が行なわれる。これにより、周波数領域の受信信号が生成され、受信信号中の N個のサブキャリア成分が得られる。
[0038] チャネル補償部 614は、受信信号と既知信号とに基づいてチャネル推定値を求め 、伝搬路で導入された信号歪が補償されるように受信信号をサブキャリア毎に修正す る。
[0039] 復調部 616は、チャネル補償後の受信信号に基づいて、データ復調を行ない、復 調結果をデコード部(図示せず)に出力する。
[0040] ウェイト制御部 618は、各アンテナ素子からの信号及び高速フーリエ変換部 612か らの信号の一部に基づいて、一群の重み係数 wW = (w, . . ., w )を算出し、そ れらの重み係数をウェイト乗算部 608—1— N に与える。通常の適応アレーアンテナ
A
のウェイト制御とは異なり、本実施例では、高速フーリエ変換部 612からの出力の一 部、即ち受信信号中のあるサブキャリア成分(図示の例では p番目のサブキャリア成 分)が抑制されるように重み係数が決定される。また、第 2の信号分離部 606— 2内の ウェイト制御部 618 'は、受信信号中の q番目(q≠p)のサブキャリア成分が抑制され るように重み係数を決定する。重み係数の決定法等については、以下の動作説明で 明ら力、にされる。
[0041] 図 7及び関連する図面を参照しながら、動作が説明される。 2つの送信アンテナ 71 0, 720から異なる送信信号 X, Xがそれぞれ送信される。送信アンテナ 710, 720
1 2
は、互いに非相関であるように設けられ、第 1及び第 2の送信信号 X, Xは同時に同
1 2
一の周波数で送信される。この点、図 4に関して説明された MIMO方式の送信機と 同様である。図中、 AAAは、図 6の受信機の適応アレーアンテナを意味し、複数の アンテナ素子が 8つの白丸で表現されている。また、図 7には、適応アレーアンテナ の指向性を表す 2つの曲線も描かれている(これについては、後述される。)。
[0042] ところで、 OFDM方式の送信信号では、複数のサブキャリアにデータをマッピング し、それらを高速逆フーリエ変換することで、 OFDM方式の変調が行なわれる。各サ ブキャリアは互レヽに 1シンボル期間の逆数の倍数だけ離間されており、互レ、に直交す る位置関係を維持している。従って、送信信号 X, Xは、周波数軸上では、図 8上半
1 2
分に示されるように多数の周波数成分 (サブキャリア成分)を有する。但し、送信信号
Xに関する p番目のサブキャリアや、送信信号 Xに関する q番目のサブキャリアのよう
1 2
に、一部のサブキャリアにはデータがマッピングされない。このようなデータ伝送に使 用されないサブキャリア(「仮想 (virtual)サブキャリア」とも呼ばれる。)が設定される のは、例えば、 DCオフセット成分を抑制するためであったり、隣接する帯域との干渉 を回避する等のためである。データ伝送に使用されないサブキャリアの位置は、通信 規格で決まっているでもよいし、システム運営者が決めたものでもよいし、別の観点か ら決められたものでもよい。いずれにせよ、そのサブキャリアがデータ伝送に使用され てレ、なレ、ことを送信側及び受信側の双方が知っており、複数の送信信号が仮想サブ キャリアの位置関係で互いに区別可能であればよい。 [0043] 第 1及び第 2の送信信号 x , Xは、別々の送信アンテナ 710, 720から送信される。
1 2
送信時点では、各信号は図 8上側に示されるような周波数特性をそれぞれ有する。こ れらは、互いに異なる(少なくとも一部が異なる)伝搬路を経て受信機の適応アレーァ ンテナ 602— 1一 N に到達し、第 1 ,第 2の送信信号 X 2の受信信号 y
A 1, Xは第 1 ,第
2 1
, yとして受信される。第 1の受信信号 yは、図 6の適応アレーアンテナで受信された
2 1
受信信号に、ウェイト制御部 618で決定された重み係数 w(1)で重み付けされ、加算 部 610で加算された後の信号である。第 2の受信信号 yは、ウェイト制御部 618 'で
2
決定された重み係数 w(2)で受信信号を重み付けし、加算部 610で加算した後の信号 である。
[0044] 図 8に示されるように、第 1の送信信号 Xの p番目のサブキャリア成分は、ゼロである ので、第 1の受信信号 yの p番目のサブキャリア成分もゼロであることが期待される。 しかしながら、第 1の受信信号 yを受信する際に、第 2の受信信号 yも同時に受信す
1 2
ることに主に起因して、第 1の受信信号 yの p番目のサブキャリア成分がゼロでない 信号成分を有する可能性がある。そのような信号成分は干渉成分であり、図 8下側の 受信信号 yの p番目のサブキャリア付近の破線で示される。第 1の受信信号 yに含ま れる周波数成分は、図 6の FFT部 612の出力信号から総て得られ、その内の p番目 のサブキャリアに関する信号成分は、ウェイト制御部 618に与えられる。ウェイト制御 部 618は、 p番目のサブキャリア成分に関する評価関数又はコスト関数を算出し、そ の評価関数を最小化する、即ち p番目のサブキャリア成分がゼロになるように、一群 の重み係数 w(1) = (w , w , . . . , w )を算出する。評価関数には様々な関数形が
1 2 NA
考えられるが、一例として、
[0045] [数 1]
Figure imgf000014_0001
のような関数を採用することができる。ここで、 iは反復回数を示すパラメータであり、 λは例えば 0. 995のような値をとる忘却係数であり、 wHは重み係数を成分とするベ タトルの共役転置ベクトルであり、 Rは受信信号中の p番目のサブキャリア成分を表
P
す量である。重み係数の算出法については、再帰的最小二乗(RLS : Recursive L east Square)法や、最小二乗平均(LMS : Least Mean Square)法等のような 最小二乗平均誤差(MMSE : Minimum Mean Square Error)法その他の既存 の技術を利用することができる。適応アレーアンテナに用いる重み係数は、送信信号 と仮想サブキャリア(データのマッピングされないサブキャリア)との対応関係が、受信 機側で既知であれば、その仮想サブキャリアに関する知識に基づいて受信機にて算 出される。
[0046] p番目のサブキャリア成分を抑制する重み係数 w(1)を、ウェイト乗算部 608— 1一 N
A
により各アンテナ素子に与えると、図 7に示されているように、適応アレーアンテナの 指向性は第 2の送信信号 Xが到来する方向にヌルを向けるようになる。 p番目のサブ
2
キャリア成分が充分に抑制されるならば、第 1の受信信号 yに基づいて復調される信 号は、第 1の送信信号 Xを正確に表す。
1
[0047] 同様に、第 2の受信信号 yについても、 q番目のサブキャリア成分がゼロであること
2
が期待されるが、第 1の受信信号 yに起因して、 q番目のサブキャリアに干渉成分が 生じる。そこで、第 2の受信信号 y力 q番目のサブキャリア成分を抽出し、それをゥ
2
エイト制御部 618 'に与え、 q番目のサブキャリア成分が抑制されるような一群の重み 係数 w(2)が算出される。これらの重み係数が、第 2の受信信号に関するウェイト乗算 部 608—1— N により各アンテナ素子に与えられると、適応アレーアンテナの指向性 は第 1の送信信号 xの到来方向にヌルを向ける。 q番目のサブキャリア成分が充分に
1
抑制されるならば、第 2の受信信号 yに基づいて復調される信号は、第 2の送信信号
2
Xを正確に表す。
2
[0048] なお、データ伝送に使用されないサブキャリアは、 1つの送信信号につき 1つでもよ いし複数でもよい。複数の送信アンテナから送信される複数の信号は、仮想サブキヤ リアの位置関係で互いに区別可能であればよい。従って、 1つの送信信号に複数の 仮想サブキャリアが含まれる場合には、異なる送信信号の間で、仮想サブキャリアの 少なくとも一部が異なっていることを要する。仮想サブキャリアの位置は、上述したよう に、様々に設定することができる。未使用周波数として設定済みの周波数が仮想サ ブキャリアとして利用できるだけでなぐデータ伝送に使用可能なサブキャリアの一部 を仮想サブキャリアに設定することもできる。この場合、仮想サブキャリアを新設したこ とに起因してデータ伝送品質も劣化してしまうが、そのような劣化が、補償可能な程 度の通信環境の悪化の範疇に収まるならば、誤り訂正その他の補償技術によって劣 化を補うことができる。未使用周波数として設定済みの周波数を仮想サブキャリアとし て利用する場合に、フィルタのカットオフ周波数を変更することで、未使用周波数を 確保することちできる。
[0049] IEEE802. l la/g規格では、同一内容の 2つの連続する OFDMシンボル(便宜 上、第 1シンボル及び第 2シンボルと呼ぶ。)がプレアンブルシーケンスとして伝送さ れる。この規格に本実施例を適用する場合には、 (同一内容の)第 1及び第 2シンポ ルに設定する仮想サブキャリアは、互いに異なる位置に設定される必要がある。例え ば、第 1シンボルは p番目のサブキャリアが仮想サブキャリアに設定され、第 2シンポ ルは q番目(q≠p)を仮想サブキャリアに設定する。仮に、第 1及び第 2シンボルの双 方で p番目を仮想サブキャリアにすると、プレアンブルシーケンスに関する p番目のサ ブキャリア成分が不明になってしまうからである。
[0050] 本実施例は、マルチアウトプット型の送信装置において、第 1のアンテナと第 2のァ ンテナから出ている無線波を区別するために第 1のアンテナと第 2のアンテナから出 力されるマルチキャリア内に、キャリアを配置しない周波数領域を設け、第 1のアンテ ナと第 2のアンテナで、キャリアを配置しない周波数領域が異なるようにする。キャリア を配置しない周波数領域は、その周波数領域のパワーを絞ることによって実現され、 受信側から見て実質的にキャリアの無い任意の状態を含む。
[0051] 本実施例では、送信側から 2種類の送信信号が送信されていたが、送信信号の種 類又は送信アンテナ数は 2つに限定されず、任意の送信アンテナ数を用いることが 可能である。但し、送信アンテナ数に対応した数の信号分離部 606が必要であること 、及び総ての送信信号が仮想サブキャリアの位置で互いに区別可能であることを要 する。
[0052] 図 9は図 6に示される受信機の変形例を示す。図 9では、簡単のため、第 1の送信 信号 X及び第 1の受信信号 yに関する部分のみが描かれていることに留意を要する
1 1
。図 9及び図 6に示される受信機は、第 1の送信信号に関し、共に受信信号中の p番 目のサブキャリア成分を抑制する重み係数を算出することで、第 1の送信信号以外の 信号の到来方向にヌルを向ける指向性を実現する。図 9の受信機では、図 6の受信 機とは異なり、加算部に入力される前の信号に高速フーリエ変換が施されている。 実施例 2
[0053] 図 10は、本発明の一実施例による受信機の部分ブロック図である。本実施例によ る受信機は、 MIMO方式、 OFDM方式及び符号分割多重化(CDMA)方式の組合 わせられたシステムで使用される。簡単のため、第 1の送信信号 X及び第 1の受信信 号 Vに関する部分のみが描かれている点に留意を要する。送信機については、 Ml MO方式、 OFDM方式及び CDMA方式を採用する通常の送信機(図示せず)を利 用すること力 Sできる。図 10に示される受信機は、複数の(N個)のアンテナ素子 100
A
2-1— N と、 N個のガードインターバル除去部(_GI) 1004—1— N と、 N個のゥ
A A A A
エイト乗算部 1008—1— N と、カロ算部 1010と、高速フーリエ変換部(FFT) 1012と、
A
チャネル補償部 1014と、サブキャリア数個の乗算部 1016, 1018と、合成部 1020と 、並直列変換部(P/S) 1022と、復調部 1024と、ウェイト制御部 1026とを有する。 図示の都合上、サブキャリア数個の乗算部 1016, 1018は総て同じ参照番号で示さ れている。
[0054] N個のアンテナ素子 1002—1— N は、 N個全体で 1つの適応アレーアンテナが
A A A
形成されるように、互いの位置関係が定めれられる。ガードインターバル除去部 (一 GI ) 1004— 1一 N は、各アンテナ素子で受信した信号からガードインターバルに相当
A
する信号部分を除去する。 N個のウェイト乗算部 1008— 1 ンテナ素子 1
A 一 N は、ア
A
002— 1一 N の各々に対応して設けられ、各アンテナ素子で受信された信号にゥェ
A
イト又は重み係数をそれぞれ乗算する。加算部 1010は、重み付けされた受信信号 を合成する。
[0055] 高速フーリエ変換部 1012は、重み付け合成後の受信信号を高速フーリエ変換し、 OFDM方式の復調を行なう。これにより、周波数領域の受信信号が生成され、 N個 のサブキャリア毎に受信信号が得られる。チャネル補償部 1014は、チャネル推定値 を求め、伝搬路で導入された信号歪が補償されるように受信信号をサブキャリア毎に 修正する。サブキャリア数個(N個)の乗算部 1018は、フーリエ変換後の信号に、逆 拡散コードを乗算する。合成部 1020は、逆拡散後の所定数個の信号を合成する。 並直列変換部 1022は、合成後の並列的な信号を更に直列的な信号に変換する。 復調部 1024は、データ復調を行ない、復調結果をデコード部(図示せず)に出力す る。
[0056] ウェイト制御部 1026は、各アンテナ素子からの信号及び高速フーリエ変換部 101 2からの信号の一部(図示の例では、 p番目のサブキャリア成分)に基づレ、て、重み係 数を算出し、それらの重み係数をウェイト乗算部 1008-1— N に与える。本実施例
A
でも、高速フーリエ変換部 1012からの出力の一部、即ち受信信号中のあるサブキヤ リア成分(図示の例では p番目のサブキャリア成分)が抑制されるように重み係数が決 定される。 p番目のサブキャリア成分を抑制する重み係数が、ウェイト乗算部 1008-1 一 N により各アンテナ素子に与えると、適応アレーアンテナの指向性は第 1の送信
A
信号 X以外の信号の到来する方向にヌルを向けるようになる。 p番目のサブキャリア
1
成分が充分に抑制されるならば、第 1の受信信号 yに基づいて復調される信号は、
1
第 1の送信信号 Xを正確に表すようになる。
実施例 3
[0057] 第 1及び第 2実施例で説明された例は、マルチキャリア方式を採用する通信システ ムを使用していた。複数のサブキャリアの一部が仮想サブキャリアに設定され、受信 信号中の仮想サブキャリアの信号成分を抑制することで、送信信号を区別して受信 できるように適応アレーアンテナのウェイトが調整される。従って、何らの修正もなしに 、そのような技術を従来のシングルキャリア方式の通信システムに適用することはでき なレ、。以下、本発明をシングルキャリア方式の MIMO方式のシステムに適用する実 施例が説明される。
[0058] 図 11は、本発明の一実施例による送信機の部分ブロック図を示す。この送信機は 、 MIMO方式でシングルキャリア方式を採用する。本実施例による送信機は、送信ァ ンテナ N個の各々について、符号化部 1110個と、マッピング部 1112と、直並列変 t
換部(S/P) 1113と、高速フーリエ変換部(FFT) 1102と、仮想サブキャリア設定部 1104と、高速逆フーリエ変換部(IFFT) 1106と、並直列変換部(P/S) 1108と、ガ ードインターバル付加部(GI) 1114と、ディジタルアナログ変換部(DZA) 1116と、 N個の周波数変換部(U/C) 1118と、送信アンテナ 1120とを有する。
t
[0059] 高速フーリエ変換部 1102は、送信信号を高速フーリエ変換し、それを N個のサブ キャリア成分を出力する。仮想サブキャリア設定部 1104は、 N個のサブキャリア成分 のうち、仮想サブキャリアとして設定するサブキャリア成分(例えば、 p番目のサブキヤ リア成分)をゼロに強制し、出力する。仮想サブキャリア以外のサブキャリアについて は、何らの変更も加えられずにそのまま出力される。高速逆フーリエ変換部 1106は、 入力された一群の信号を高速逆フーリエ変換し、それらを時間領域の信号に戻す。 どのサブキャリアを仮想サブキャリアに設定するかについては、送信機及び受信機間 で予め定められている、又はシステムで事前に設定されているものとする。
[0060] 符号化部 1110 - 1一 Nは、畳込み符号化や誤り訂正符号化のような適切な符号化
t
を行なう。マッピング部 1112-1— Nは、適切な変調方式で、送信信号をコンステレ
t
ーシヨン上の適切な信号点にマッピングする。ガードインターバル付加部 1114—1一 Nは、信号にガードインターバルを付加する。ディジタルアナログ変換部 1116—1— t
Nは、ディジタル信号をアナログ信号に変換する。周波数変換部 1118-1— Nは、 t t アナログ信号に変換された信号を高周波数の信号に変換する。送信アンテナ 1120 -1一 Nは、送信信号を独立に送信する。
t
[0061] 図 12は、本発明の一実施例による受信機のブロック図である。本実施例では、図 1 1の送信機に対応して、シングルキャリアの MIMO方式が採用されている。簡単のた め、第 1の送信信号 x及び第 1の受信信号 yに関する部分のみが描かれている点に
1 1
留意を要する。本受信機は、複数の(N個)のアンテナ素子 1202 - 1
A 一 N と、 N個
A A
のバンドパスフィルタ部 1204— 1一 N と、 N個の周波数変換部(D/C) 1206— 1
A A 一
N と、 N個のアナログディジタル変換部(A/D) 1208— 1— N と、 N個のガードィ
A A A A
ンターバル除去部(—GI) 1210— 1— N と、 N個のウェイト乗算部 1212— 1— N と、
A A A
加算部 1214と、直並列変換部(S/P) 1216と、高速フーリエ変換部(FFT) 1218と 、チャネル補償部 1220と、サブキャリア数個(N個)の乗算部 1222と、高速逆フーリ ェ変換部(IFFT) 1224と、並直列変換部(P/S) 1226と、復調部 1228と、ウェイト 制御部 1230とを有する。
[0062] N個のアンテナ素子 1202—1 N は、 N個全体で 1つの適応アレーアンテナが
A A A
形成されるように、互いの位置関係が定めれられる。バンドパスフィルタ部 1204—1— N は、アンテナ素子毎に信号の帯域を限定する。周波数変換部 1206 - 1一 N は高
A A
周波数の信号を低周波数の信号に変換する。アナログディジタル変換部 1208 - 1一 N は、アナログ信号をディジタル信号に変換する。ガードインターバル除去部 (一 GI)
A
1210— 1一 N は、各アンテナ素子で受信した信号からガードインターバルに相当す
A
る信号部分を除去する。ウェイト乗算部 1212-1— N は、各アンテナ素子で受信さ
A
れた信号に重み係数をそれぞれ乗算する。加算部 1214は、重み付けされた受信信 号を合成する。
[0063] 直並列変換部 1216は、合成後の信号を N個の並列信号に変換する。高速フーリ ェ変換部 1218は、受信信号を高速フーリエ変換し、受信信号に含まれる N個のサ ブキャリア成分が出力される。チャネル補償部 1220は、チャネル推定値を求め、伝 搬路で導入された信号歪が補償されるように受信信号をサブキャリア毎に修正する。 高速逆フーリエ変換部 1224は、入力された信号群を高速逆フーリエ変換し、時間領 域の信号群を出力する。並直列変換部 1226は、その信号群を直列的な信号に変換 する。復調部 1228は、データ復調を行ない、復調結果をデコード部(図示せず)に 出力する。ウェイト制御部 1230は、各アンテナ素子からの信号及び高速フーリエ変 換部 1218からの信号の一部に基づいて、重み係数を算出し、それらの重み係数を ウェイト乗算部 1212 - 1一 N に与える。周波数領域等化を行なわない場合は、破線 による信号線 1232に示されるように、チャネル補償部 1220と、サブキャリア数個(N 個)の乗算部 1222と、高速逆フーリエ変換部(IFFT) 1224と、並直列変換部(P/S ) 1226を省略し、加算部 1214の出力 yを直接的に復調部 1228に導いてもよい。こ
1
のようにすると、高速フーリエ変換部 1218は、仮想サブキャリアに設定したサブキヤリ ァの部分だけを計算すればよいので、周波数領域等化を行なう場合よりも簡略化さ れる。
[0064] 本実施例でも、高速フーリエ変換部 1218からの出力の一部、即ち受信信号中のあ るサブキャリア成分 (例えば、 p番目のサブキャリア成分)が抑制されるように重み係数 が決定される。このような重み係数を、ウェイト乗算部を各アンテナ素子に与えること で、適応アレーアンテナの指向性は、第 1の送信信号 X以外の信号の到来する方向 にヌルを向けるようになる。 p番目のサブキャリア成分が充分に抑制されるならば、第 1の受信信号 yに基づいて復調される信号は、第 1の送信信号 Xを正確に表す。こ
1 1
のように、シングルキヤリァ方式の通信システムにも本発明を適用することができる。 但し、仮想サブキャリア設定部 1104で導入される仮想サブキャリアに起因して、デー タ伝送品質が若干劣化してしまうことが懸念される。従って、本実施例では、そのよう な劣化が、補償可能な程度の通信環境の悪化の範疇に収まることを想定している。 実施例 4
[0065] 実施例 1乃至 3では、受信信号中の一部のサブキャリア成分 (例えば、第 1の送信 信号にっレ、ては p番目のサブキャリア成分)を抑制しながら、適応アレーアンテナの 指向性が制御されていた。本実施例では、ある期間内に受信する信号の総てのサブ キャリア成分が抑制されるように、重み係数が算出される。
[0066] 図 13は、そのような動作を行なうためのフローチャートの一例を示す。簡単のため、 図 7に示されるように、 2つの送信アンテナ 710, 720から 2種類の送信信号 X, xが
1 2 送信されるものとする。但し、図 7で説明した例とは異なり、第 1及び第 2の送信信号 は、異なるタイムスロットで別々に送信される。フローはステップ 1302から始まり、ステ ップ 1304に進む。
[0067] ステップ 1304では、第 2の送信信号 Xが第 2の送信アンテナ 720から送信される。
2
この場合に、第 1の送信信号 Xは送信されない。 [0068] ステップ 1306では、受信機は、受信信号の総てを抑制するように、重み係数 w(1)が 算出される。受信信号には第 2の送信信号 Xのみが含まれている。この信号を抑制
2
するような指向性のパターンは、第 2の送信信号 Xの到来方向にヌルを向けるような
2
パターンになることが予想される。従って、この重み係数 w(1)は、以後に第 2の送信ァ ンテナからの信号を抑制して第 1の送信アンテナからの信号を受信するのに使用さ れる。
[0069] ステップ 1308では、第 1の送信信号 Xが第 1の送信アンテナ 710から送信される。
この場合に、第 2の送信信号は送信されない。
[0070] ステップ 1310では、受信機は、受信信号の総てを抑制するように、重み係数 w(2)が 算出される。受信信号には第 1の送信信号のみが含まれている。この信号を抑制す るような指向性のパターンは、上記と同様の理由で、第 1の送信信号 Xの到来方向 にヌルを向けるようなパターンになる。従って、この重み係数 w(2)は、以後に第 2の送 信アンテナからの信号を受信するのに使用される。
[0071] このようにして、第 1及び第 2の重み係数が算出され、重み係数を決定するフローは
、ステップ 1212に進み、終了する。以後、これらの重み係数を利用して、各送信アン テナからの送信信号を区別しながら受信することができる。
[0072] 図 14は、 3つの送信アンテナから 3種類の送信信号 X , χ , xが送信される場合に
1 2 3
、 3種類の重み係数 w(1) , w , w(3)を決定するためのフローチャートの一例を示す。 フローはステップ 1402から始まり、ステップ 1404に進む。
[0073] ステップ 1404では、第 2及び第 3の送信信号 X , xが第 2,第 3の送信アンテナか
2 3
ら同時に送信される。この場合に、第 1の送信信号 Xは送信されない。
[0074] ステップ 1406では、受信機は、受信信号の総てを抑制するように、重み係数 w(1)が 算出される。受信信号には第 2及び第 3の送信信号が含まれている。この信号を抑制 するような指向性のパターンは、図 15に示されるように、第 2及び第 3の送信信号 X ,
2
Xの到来方向にヌルを向けるようなパターンになる。従って、この重み係数 w(1)は、以
3
後に第 1の送信アンテナからの信号 Xを受信するのに使用される。
[0075] ステップ 1408では、第 3及び第 1の送信信号 X, xが第 3,第 1の送信アンテナか
3 1
ら同時に送信される。この場合に、第 2の送信信号 Xは送信されない。 [0076] ステップ 1410では、受信機は、受信信号の総てを抑制するように、重み係数 w( が 算出される。第 3及び第 1の送信信号を含む受信信号を抑制するような指向性のパタ ーンは、上記と同様の理由で、第 3及び第 1の送信信号 X , Xの到来方向にヌルを
3 1
向けるようなパターンになる。従って、この重み係数 w(2)は、以後に第 2の送信アンテ ナからの信号 Xを受信するのに使用される。
2
[0077] ステップ 1412では、第 1及び第 2の送信信号 X, xが第 1 ,第 2の送信アンテナか
1 2
ら同時に送信される。この場合に、第 3の送信信号 Xは送信されない。
3
[0078] ステップ 1414では、受信機は、受信信号の総てを抑制するように、重み係数 w(3)が 算出される。第 1及び第 2の送信信号を含む受信信号を抑制するような指向性のパタ ーンは、上記と同様の理由で、第 1及び第 2の送信信号 X , Xの到来方向にヌルを
1 2
向けるようなパターンになる。従って、この重み係数 w(3)は、以後に第 3の送信アンテ ナからの信号 Xを受信するのに使用される。
3
[0079] このようにして、第 1 ,第 2及び第 3の重み係数が算出され、重み係数を決定するフ ローは、ステップ 1416に進み、終了する。以後、これらの重み係数を利用して、各送 信アンテナからの送信信号を区別しながら受信することができる。
[0080] なお、本実施例では、第 1、第 2及び第 3の送信信号を受信するための重み係数が 順に求められた力 その決定の順序は任意である。
[0081] 本発明の実施例では、直交周波数分割多重化(OFDM)方式が使用されていたが 、本発明はこれに限定されない。本発明は、キャリアの周波数配置の関係が直交して レ、ることは必須ではなぐマルチキャリアを用いるものであればよい。従って、周波数 分割多重化 (FDM)方式でも本発明を利用することができる。
[0082] 本発明の実施例では、本願発明はマルチアウトプット型の送信装置において、複 数のアンテナから異なる情報を出力する例で、無線波を区別する構成を説明してき た。
[0083] MiMoの方式については、上述の方式の他に、全てのアンテナに同じ情報を重み 付けして載せることで、無線ビームを構成し、これを異なる重み付けを用いて繰り返 すことにより複数のビームを構成する方式もある。
[0084] 本願発明は、これら複数のビームを構成する方式にも利用する事が出来る。 [0085] 具体的な例を図 16に示す。
[0086] 図 16は、送信信号は直並列変換(S/P) 402しガードインターバルを付加する所 までは図 4と同じであるため説明を省略する。
[0087] 送信信号は、ガードインターバルが付加された後に、アンテナの数に合わせて分岐 し、それぞれのアンテナに対応して重み付けする重み付け処理 411—1一 41 l_Nt が行われる。
[0088] 重み付け処理 411—1一 411—Nで重み付けされた信号はアンテナ 42—1— 412—
t
Nにそれぞれ入力される。
t
[0089] アンテナ 412— 1— 412— Nは互いに協力して、無線波のビーム 413— 1— 413— N
t t のビームを構成する。
[0090] この様な構成の逆フーリエ変換を行う場合に発生させる際に発生させるサブキヤリ ァは図 8のサブキャリアの関係と同じ様にする。即ち、 XI XNはそれぞれサブキヤ
t
リアの異なるチャネルのパワーが実質的にゼロとなるようにする。
[0091] この様にすることで、複数のアンテナ 412— 1— 412— N力 出力されるビーム 413
t
_1一 413—Nは 411—1から 411—Nの重み付けに従い XI— XNをそれぞれ異なる t t t
ビームとして送信することが出来る。
[0092] 本発明は特定の実施例に限定されず、様々な改良、修正、変形等が可能であるこ とは当業者に明白であろう。

Claims

請求の範囲
[1] 複数の送信アンテナから送信された複数の送信信号で、送信アンテナを区別する ため送信前に所定のサブキャリアの信号成分が抑制された送信信号を受信する適 応アレーアンテナ手段と、
受信信号に含まれるサブキャリア成分の内、前記所定値に設定されたサブキャリア の信号成分を抑制する重み係数を算出する手段と、
前記重み係数を前記適応アレーアンテナ手段に適用し、前記複数の送信信号を 区別して受信する手段と
を備えることを特徴とする受信機。
[2] 前記所定値が実質的にゼロである
ことを特徴とする請求項 1記載の受信機。
[3] 前記適応アレーアンテナ手段で受信された信号が、複数の送信アンテナから同時 に同一周波数で送信された信号である
ことを特徴とする請求項 1記載の受信機。
[4] ある送信アンテナ以外の 1以上の送信アンテナからある期間内に送信され、前記適 応アレーアンテナ手段で受信した信号を抑制する重み係数を用いて、前記ある送信 アンテナ力 別の期間内に送信される信号を受信する
ことを特徴とする請求項 1記載の受信機。
[5] 第 1及び第 2の送信アンテナからそれぞれ送信された第 1及び第 2の送信信号を受 信する受信機であって、
第 1のサブキャリア成分が所定値に設定された前記第 1の送信信号及び第 2のサブ キャリア成分が所定値に設定された前記第 2の送信信号を受信する、複数のアンテ ナ素子を含む適応アレーアンテナ手段と、
フーリエ変換後の受信信号に含まれる前記第 1及び第 2のサブキャリア成分をそれ ぞれ抑制する第 1及び第 2の重み係数をそれぞれ算出するウェイト制御手段と 前記第 1及び第 2の重み係数を前記適応アレーアンテナ手段に適用し、個々の送 信信号を区別する手段と
を備えることを特徴とする受信機。
[6] 前記所定値に設定された第 1及び第 2の少なくとも一方のサブキャリアが、 2以上の サブキャリアより成る
ことを特徴とする請求項 5記載の受信機。
[7] 前記適応アレーアンテナ手段で受信された信号は、送信側でフーリエ変換が施さ れ、前記第 1及び第 2のサブキャリア成分が所定値に設定され、フーリエ逆変換され た後に送信された単一のキャリア信号である
ことを特徴とする請求項 5記載の受信機。
[8] 第 1及び第 2の送信アンテナから送信された第 1及び第 2の送信信号を受信する受 信機であって、
複数のアンテナ素子を含む適応アレーアンテナ手段と、
異なるタイムスロットで送信された第 1の送信信号のパイロット信号と第 2の送信信号 のノ ィロット信号をそれぞれ受信するときに、それぞれの送信信号を抑制する第 1及 び第 2の重み係数をそれぞれ算出するウェイト制御手段と、
前記第 1及び第 2の重み係数を前記適応アレーアンテナ手段に適用し、個々の送 信信号を区別する手段と
を備えることを特徴とする受信機。
[9] ある送信アンテナ以外の 1以上の送信アンテナから同時に信号を送信し、
適応アレーアンテナで受信した信号の総てのサブキャリア成分を抑制する重み係 数を算出し、
前記適応アレーアンテナに前記重み係数を適用し、前記ある送信アンテナから送 信される信号を受信する
ことを特徴とする受信方法。
[10] 複数のアンテナからマルチキャリア出力するマルチアウトプット型の送信装置おい て、
少なくとも、複数のアンテナから異なる重み付けされた周波数多重された信号を出 力する第 1のビームと、複数のアンテナから異なる重み付けされた周波数多重された 信号を出力する第 2のビームとを発生させ、
該第 1のビームと第 2のビーム出ている無線波を区別する為に該第 1のビームと第 2 のビームから出力されるマルチキャリア内にキャリア配置をしない周波数領域を設け
、該キャリア配置しない周波数領域は該第 1のビームと第 2のビームでは異なることを 特徴とするマルチアウトプット型の送信装置。
複数のアンテナからマルチキャリア出力するマルチアウトプット型の送信装置おい て、
少なくとも、複数のアンテナから異なる重み付けされた周波数多重された信号を出 力する第 1のビームと、複数のアンテナから異なる重み付けされた周波数多重された 信号を出力する第 2のビームとを発生させ、
該第 1のビーム内の周波数多重された信号の中に実質的にキャリアの無い周波数 領域を少なくとも一つ設け、
該第 2のビーム内の周波数多重された信号の中に該第 1のビームの実質的にキヤリ ァの無い周波数領域と異なる周波数領域に実質的にキャリアの無い周波数領域を 少なくとも一つ設けた
ことを特徴とする送信装置。
PCT/JP2004/011602 2004-08-12 2004-08-12 受信機、送信装置及び受信方法 WO2006016409A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2004/011602 WO2006016409A1 (ja) 2004-08-12 2004-08-12 受信機、送信装置及び受信方法
JP2006531092A JP4388552B2 (ja) 2004-08-12 2004-08-12 受信機、送信装置及び受信方法
CA2575250A CA2575250C (en) 2004-08-12 2004-08-12 Receiver, transmission device and receiving method
EP04771577A EP1777852A4 (en) 2004-08-12 2004-08-12 RECEIVERS, TRANSMITTERS AND RECEIVER PROCEDURES
KR1020077003271A KR100875044B1 (ko) 2004-08-12 2004-08-12 수신기, 송신 장치 및 수신 방법
CN2004800437785A CN1998173B (zh) 2004-08-12 2004-08-12 接收机、发送装置以及接收方法
TW093124189A TWI256200B (en) 2004-08-12 2004-08-12 Receiver, transmitter, and reception method
US11/698,050 US7787824B2 (en) 2004-08-12 2007-01-26 Receiver, transmission device and receiving method
US12/819,705 US20100255806A1 (en) 2004-08-12 2010-06-21 Receiver, Transmission Device And Receiving Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/011602 WO2006016409A1 (ja) 2004-08-12 2004-08-12 受信機、送信装置及び受信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/698,050 Continuation US7787824B2 (en) 2004-08-12 2007-01-26 Receiver, transmission device and receiving method

Publications (1)

Publication Number Publication Date
WO2006016409A1 true WO2006016409A1 (ja) 2006-02-16

Family

ID=35839186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011602 WO2006016409A1 (ja) 2004-08-12 2004-08-12 受信機、送信装置及び受信方法

Country Status (8)

Country Link
US (2) US7787824B2 (ja)
EP (1) EP1777852A4 (ja)
JP (1) JP4388552B2 (ja)
KR (1) KR100875044B1 (ja)
CN (1) CN1998173B (ja)
CA (1) CA2575250C (ja)
TW (1) TWI256200B (ja)
WO (1) WO2006016409A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066982A (ja) * 2006-09-06 2008-03-21 Nippon Hoso Kyokai <Nhk> Ofdm信号合成用受信装置および中継装置
JP2009510918A (ja) * 2005-09-29 2009-03-12 インターデイジタル テクノロジー コーポレーション Mimoビーム形成に基づくシングルキャリア周波数分割多元接続システム
EP2037606A1 (en) * 2006-05-29 2009-03-18 Kyocera Corporation Wireless base station and method for controlling wireless base station
JP2009267816A (ja) * 2008-04-25 2009-11-12 Nippon Telegr & Teleph Corp <Ntt> 無線受信装置、干渉除去方法、無線通信システムおよび無線通信方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575318B2 (ja) * 2006-03-09 2010-11-04 株式会社東芝 基地局、無線端末および無線通信方法
JP5169256B2 (ja) * 2008-01-30 2013-03-27 富士通株式会社 Mimo通信システムおよび送信局
JP5047834B2 (ja) * 2008-02-15 2012-10-10 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置及び無線通信方法
US8369471B1 (en) * 2008-10-21 2013-02-05 Marvell International Ltd. Method and apparatus for improving channel estimation
JP5892893B2 (ja) * 2012-08-07 2016-03-23 株式会社東芝 信号検出装置、信号検出方法及び信号検出プログラム
US8929495B2 (en) * 2013-03-19 2015-01-06 Fundacio Centre Technologic de Telecomunicacions de Catalunya Method for equalizing filterbank multicarrier (FBMC) modulations

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441786B1 (en) 2001-07-20 2002-08-27 Motorola, Inc. Adaptive antenna array and method for control thereof
JP2003060604A (ja) * 2001-08-15 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号送信装置およびofdm信号受信装置
JP2003124907A (ja) * 2001-10-17 2003-04-25 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号伝送装置、ofdm信号受信装置、ofdm信号受信方法
WO2003085869A1 (fr) 2002-04-09 2003-10-16 Panasonic Mobile Communications Co., Ltd. Procede et dispositif de communication par multiplexage par repartition orthogonale de la frequence (ofdm)
EP1434367A2 (en) 2002-12-27 2004-06-30 Fujitsu Limited An adaptive array antenna controller

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328800A (en) * 1997-08-29 1999-03-03 Motorola Ltd Antenna array arrangement with converging nulls
KR100510434B1 (ko) 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
KR100591890B1 (ko) * 2003-04-01 2006-06-20 한국전자통신연구원 다중 안테나 무선 통신 시스템에서의 적응 송수신 방법 및그 장치
US7352819B2 (en) * 2003-12-24 2008-04-01 Intel Corporation Multiantenna communications apparatus, methods, and system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6441786B1 (en) 2001-07-20 2002-08-27 Motorola, Inc. Adaptive antenna array and method for control thereof
JP2003060604A (ja) * 2001-08-15 2003-02-28 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号送信装置およびofdm信号受信装置
JP2003124907A (ja) * 2001-10-17 2003-04-25 Nippon Telegr & Teleph Corp <Ntt> Ofdm信号伝送装置、ofdm信号受信装置、ofdm信号受信方法
WO2003085869A1 (fr) 2002-04-09 2003-10-16 Panasonic Mobile Communications Co., Ltd. Procede et dispositif de communication par multiplexage par repartition orthogonale de la frequence (ofdm)
EP1494381A1 (en) 2002-04-09 2005-01-05 Panasonic Mobile Communications Co., Ltd. Ofdm communication method and ofdm communication device
EP1434367A2 (en) 2002-12-27 2004-06-30 Fujitsu Limited An adaptive array antenna controller
JP2004214857A (ja) * 2002-12-27 2004-07-29 Fujitsu Ltd 適応アレーアンテナ制御装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. VAN ZELST ET AL.: "Implementation of a MIMO OFDM based wireless LAN system", IEEE TRANS. SIGNAL. PROCESS., vol. 52, no. 2, 2004, pages 483 - 494
A. VAN ZELST: "Space division multiplexing algorithm", PROC. 10TH MED. ELECTROTECHNICAL CONFERENCE, 2000, pages 1218 - 1221
P. W. WOLNIANSKY ET AL.: "V-BLAST: An architecture for realizing very high data rates over the rich scattering wireless channel", PROC. INT. SYMPOSIUM ON ADVANCED RADIO TECHNOLOGIES, BOULDER, CO, September 1998 (1998-09-01)
See also references of EP1777852A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009510918A (ja) * 2005-09-29 2009-03-12 インターデイジタル テクノロジー コーポレーション Mimoビーム形成に基づくシングルキャリア周波数分割多元接続システム
US8553521B2 (en) 2005-09-29 2013-10-08 Interdigital Technology Corporation MIMO beamforming-based single carrier frequency division multiple access system
US9184808B2 (en) 2005-09-29 2015-11-10 Interdigital Technology Corporation Mimo beamforming-based single carrier frequency division multiple access system
EP2037606A1 (en) * 2006-05-29 2009-03-18 Kyocera Corporation Wireless base station and method for controlling wireless base station
EP2037606A4 (en) * 2006-05-29 2014-02-19 Kyocera Corp WIRELESS BASE STATION AND METHOD FOR CONTROLLING WIRELESS BASE STATION
JP2008066982A (ja) * 2006-09-06 2008-03-21 Nippon Hoso Kyokai <Nhk> Ofdm信号合成用受信装置および中継装置
JP2009267816A (ja) * 2008-04-25 2009-11-12 Nippon Telegr & Teleph Corp <Ntt> 無線受信装置、干渉除去方法、無線通信システムおよび無線通信方法

Also Published As

Publication number Publication date
TW200607256A (en) 2006-02-16
EP1777852A1 (en) 2007-04-25
US20100255806A1 (en) 2010-10-07
US20070188381A1 (en) 2007-08-16
CN1998173B (zh) 2010-04-14
TWI256200B (en) 2006-06-01
KR20070041748A (ko) 2007-04-19
JP4388552B2 (ja) 2009-12-24
CA2575250A1 (en) 2006-02-16
EP1777852A4 (en) 2011-12-07
US7787824B2 (en) 2010-08-31
CA2575250C (en) 2012-07-31
CN1998173A (zh) 2007-07-11
JPWO2006016409A1 (ja) 2008-05-01
KR100875044B1 (ko) 2008-12-19

Similar Documents

Publication Publication Date Title
JP4490368B2 (ja) 無線通信装置、無線通信システムおよび無線通信方法
JP4431578B2 (ja) 複数の送信アンテナのofdmチャネル推定及びトラッキング
CN101112061B (zh) 用于在多天线***中分离已发射信号的多载波接收机和方法
JP5117159B2 (ja) 無線アクセスシステム、基地局装置及び移動局装置
EP1667341B1 (en) Method for calculating a weighting vector for an antenna array
JP5375520B2 (ja) 通信装置
JP5221285B2 (ja) 無線通信装置及び方法
US7787824B2 (en) Receiver, transmission device and receiving method
WO2007094832A2 (en) Recursive and trellis-based feedback reduction for mimo-ofdm with rate-limited feedback
JP2010136347A5 (ja)
Moretti et al. Resource allocation for power minimization in the downlink of THP-based spatial multiplexing MIMO-OFDMA systems
CN105519029A (zh) Ofdm通信***及信号收发方法与装置
JP5547648B2 (ja) 送信装置、受信装置、送信方法、受信方法および通信システム
JP4889756B2 (ja) 無線アクセスシステム及び移動局装置
JP7415687B2 (ja) 無線通信装置及び無線通信方法
CN108494458B (zh) 基于子载波级模拟波束成形器的信号传输装置和方法
JP4549162B2 (ja) 無線基地局装置及び無線通信方法
Nin et al. Performance comparison of overloaded MIMO system with and without antenna selection
JP2013123196A (ja) プリコーディング装置、無線送信装置、プリコーディング方法、プログラムおよび集積回路
JP5802942B2 (ja) 無線通信システム、無線送信装置および無線通信方法
JP2007110203A (ja) 無線通信システム、無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4310333B2 (ja) 復号装置及び復号方法、及びmimo無線通信システム
JP2019029687A (ja) 無線基地局および無線基地局の制御方法
JP2007104547A (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
Ghaffar et al. Performance analysis of hybrid MMSE/Max-log-MAP MIMO detector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531092

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2004771577

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004771577

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2575250

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11698050

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077003271

Country of ref document: KR

Ref document number: 200480043778.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2004771577

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11698050

Country of ref document: US