JP5892893B2 - 信号検出装置、信号検出方法及び信号検出プログラム - Google Patents

信号検出装置、信号検出方法及び信号検出プログラム Download PDF

Info

Publication number
JP5892893B2
JP5892893B2 JP2012174806A JP2012174806A JP5892893B2 JP 5892893 B2 JP5892893 B2 JP 5892893B2 JP 2012174806 A JP2012174806 A JP 2012174806A JP 2012174806 A JP2012174806 A JP 2012174806A JP 5892893 B2 JP5892893 B2 JP 5892893B2
Authority
JP
Japan
Prior art keywords
signal
signals
information
independent
narrowband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012174806A
Other languages
English (en)
Other versions
JP2014036248A (ja
Inventor
誠 鶴田
鶴田  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012174806A priority Critical patent/JP5892893B2/ja
Publication of JP2014036248A publication Critical patent/JP2014036248A/ja
Application granted granted Critical
Publication of JP5892893B2 publication Critical patent/JP5892893B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Description

本発明の実施形態は、受信した電波から無線信号を検出する信号検出装置と、信号検出装置で用いられる信号検出方法及び信号検出プログラムとに関する。
コグニティブ無線技術又は電波監視技術の分野では、無線信号の出現・消滅を自動的に判断する仕組みが極めて重要になる。例えば、コグニティブ無線技術の視点から見ると、無線信号の出現・消滅を自動的に判断することは、周波数利用効率を向上させる上で重要である。一方、総務省等による電波監視技術の視点から見ると、無線信号の出現・消滅を自動的に判断することは、所定のルールで割り当てられた電波資源を公平に活用させる上で重要である。
ところで、無線信号は、一般に、伝搬路を通過することによる歪み、及び/又は、他の通信系からの干渉を受けることがある。これらの歪み及び/又は干渉のために、信号検出装置における無線信号の自動検出性能が劣化することになる。
特開2007−324753号公報
以上のように、従来の信号検出装置では、電波環境に応じた歪み及び/又は干渉の影響を受けるため、無線信号の自動検出性能が劣化するという問題がある。
そこで目的は、受信した電波に対して電波伝搬環境に応じた適切な前処理を施し、無線信号の自動検出性能を向上させることが可能な信号検出装置と、この信号検出装置で用いられる信号検出方法及び信号検出プログラムとを提供することにある。
実施形態によれば、互いに独立するK(Kは1以上の自然数)本の受信信号を受信する信号検出装置は、時空間処理部、選択制御部、第1の処理部、第2の処理部、第3の処理部及び検出処理部を具備する。時空間処理部は、前記K本の受信信号からM(Mは1以上の自然数)本の独立信号を時空間的に分離及び/又は抽出すると共に、前記M本の独立信号を参照して電波伝搬環境を表す情報を取得する。選択制御部は、前記情報に基づいて第1、第2又は第3の指示信号を生成する。第1の処理部は、前記第1の指示信号に応じて、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号に基づいて第1のスペクトログラムを作成する。第2の処理部は、前記第2の指示信号に応じて、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号を帯域毎に合成して合成信号とし、前記合成信号に基づいて第2のスペクトログラムを作成する。第3の処理部は、前記第3の指示信号に応じて、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号から帯域毎に最大の狭帯域信号を選択して選択信号とし、前記選択信号に基づいて第3のスペクトログラムを作成する。検出処理部は、前記第1、第2又は第3のスペクトログラムを参照して信号を検出する。
本実施形態に係る信号検出装置を有する受信装置の機能構成を示すブロック図である。 電波の伝搬経路を示す図である。 図2に示す伝搬路での伝搬路応答を示す図である。 図1に示す合成・選択処理部の機能構成を示すブロック図である。 図4に示す合成処理部の機能構成を示すブロック図である。 図4に示す選択処理部の機能構成を示すブロック図である。 図1に示す信号検出装置による処理動作のフローチャートを示す図である。 親局から送信される無線信号に基づき、図1に示す受信装置により取得されるスペクトログラムを示す図である。 図4に示す合成処理部の機能構成のその他の例を示すブロック図である。
以下、実施の形態について、図面を参照して説明する。
図1は、本実施形態に係る信号検出装置を有する受信装置の機能構成の例を示すブロック図である。図1に示す受信装置は、信号検出装置10及びアンテナ部20−1〜20−K(Kは1以上の自然数)を備える。
アンテナ部20−1〜20−Kは、親局(図示せず)から送信された無線信号を受信する。アンテナ部20−1〜20−Kは、周波数変換機能及びアナログ−デジタル変換機能を備える。アンテナ部20−1〜20−Kは、受信した無線信号の周波数をIF(Intermediate Frequency)帯に変換し、周波数変換後の信号をデジタル信号に変換する。なお、アンテナ部20−1〜20−Kは、受信した無線信号の周波数をIF帯ではなく、ベースバンド帯に変換するようにしても構わない。アンテナ部20−1〜20−Kは、K本のデジタル信号を信号検出装置10へ出力する。
信号検出装置10は、例えば、CPU(Central Processing Unit)と、CPUが処理を実行するためのプログラムやデータを格納するROM(Read Only Memory)及びRAM(Random Access Memory)等とを備える。信号検出装置10は、CPUにアプリケーション・プログラムを実行させることにより、時空間信号処理部11、合成・選択処理部12及び検出処理部13の機能を実現させる。
時空間信号処理部11は、アンテナ部20−1〜20−Kから供給されるK本のデジタル信号に対し、電波伝搬の状況に応じた時空間信号処理を施すことで、K本のデジタル信号から、M(Mは1以上の自然数)本の独立信号を時空間的に分離・抽出する。時空間信号処理部11は、分離・抽出したM本の独立信号を合成・選択処理部12へ出力する。
電波伝搬環境は、極めて多種多様な状態が考えられる。具体的には、例えば、所望波が干渉波により干渉を受ける状態、複雑な経路を電波が通過することによりマルチパスフェージングを受ける状態、及び、自然的・人工的に生じる外来雑音を受ける状態等である。また、現実の環境では、これらの状態が複合的に生じ得る。以下では、所望波がマルチパスフェージングを受ける状態において、時空間信号処理部11が時空間信号処理を実施する場合を例に説明する。
図2は、郊外における電波の伝搬経路の例を示す模式図である。図2に示すような郊外では、送信源から送信された無線信号が人工建造物等により反射される。無線信号は、複数の人工建造物に複雑に反射され、遅延波1及び遅延波2として、異なる遅延時間を持って受信装置へ到来する。なお、受信装置が移動しながら無線信号を受信する場合には、無線信号は、時間的なレベル変動を伴う。このように、人工建造物での反射による遅延時間の発生、及び、時間的なレベル変動の発生により、伝搬路応答には、図3に示すように、時間方向及び周波数方向にレベル変動が生じる。なお、図3では示していないが、伝搬路応答には、時間方向及び周波数方向の位相変動が生じることもあり得る。
図2に示す伝搬路において受信装置で受信される受信信号X(t)は、
Figure 0005892893
と表される。ここで、Aはi番目の遅延波のステアリングベクトルを示し、S(t)は送信信号を示し、τ はi番目の遅延波に属するj番目の素波の遅延時間を示し、a はi番目の遅延波に属するj番目の素波の振幅を示し、δ(t)はデルタ関数を示し、f はj番目の素波のドップラ周波数を示し、N(t)は熱雑音を示す。
また、受信信号X(t)の相関行列Rxxは、
Figure 0005892893
と表される。ここで、<・>はアンサンブル平均を表す。相関行列Rxxを固有値分解すると、
Figure 0005892893
と表される。
ここで、信号部分空間の最大固有値に属する固有ベクトルをE とし、第2固有値に属する固有ベクトルをE とする。固有ベクトルE ,E を用いて固有ベクトル変換を受信信号X(t)に対して施すと、固有ベクトル変換された受信信号Yは、
Figure 0005892893
Figure 0005892893
と表される。ここで、遅延波1の受信電力レベルをuとし、遅延波2の受信電力レベルをuとした場合、固有値y及びyは、
=a11+a12 (6)
=a21+a22 (7)
と表される。ここで、aijは、遅延波1と遅延波2との混合の程度を表すパラメータを示す。この結果から、最大固有値及び第2固有値のSIR(Signal to Interference Ratio)は、
Figure 0005892893
Figure 0005892893
と表される。ここで、固有値は、互いに直交するように分解される性質がある。つまり、最大固有値と第2固有値との間には、
Figure 0005892893
の関係が成立する。つまり、SIR及びSIRには、
Figure 0005892893
の関係が成立する。
この結果から、固有値のエネルギー収支として、数式(11)の関係があることがわかる。つまり、図2の電波伝搬環境の固有値は、遅延波1と遅延波2とが数式(11)の関係で混合されていることがわかる。これにより、固有値を評価することにより、遅延波1と遅延波2との平均電力レベルを推定することが可能である。時空間信号処理部11は、固有値y及びyに属する固有ベクトルにより生成された信号を合成・選択処理部12へ出力する。なお、この議論は、2パスを超える遅延波の議論に展開することが可能である。また、時空間信号処理部11として、固有ベクトルを用いた信号処理について説明したが、アレーアンテナ信号処理に基づくいかなる空間信号処理を適用してもかまわない。
また、時空間信号処理部11は、分離・抽出した独立信号の本数についての本数情報を合成・選択処理部12へ出力する。また、時空間信号処理部11は、独立信号のSNR(Signal to Noise Ratio)を測定し、測定したSNRについてのSNR情報を合成・選択処理部12へ出力する。また、時空間信号処理部11は、独立信号間の相関関係を計測し、計測した相関関係についての相関関係情報を合成・選択処理部12へ出力する。ここで、相関関係情報には、相関値、及び、独立信号間の相関関係を間接的に表す観測値が含まれる。なお、相関値は、0から1で表され、1に近いほど相関が高く、信号間の相関関係が高いことをいう。
図4は、図1に示す合成・選択処理部12の機能構成を示すブロック図である。図4に示す合成・選択処理部12は、第1及び第2の切替部121,122、分析処理部123、合成処理部124、選択処理部125及び選択制御部126を備える。
第1の切替部121は、選択制御部126からの指示に従い、分析処理部123、合成処理部124又は選択処理部125と選択的に接続する。第1の切替部121は、時空間信号処理部11から供給されるM本の独立信号を、分析処理部123、合成処理部124及び選択処理部125のうち、接続する処理部へ出力する。
分析処理部123は、第1の切替部121を介して供給されるM本の独立信号を受信し、受信した独立信号に対して、所定の周波数幅でFFT処理を実行する。ここで、FFT処理における周波数幅は、無線信号の検出精度に応じてあらかじめ設定されるものである。分析処理部123は、独立信号を狭帯域信号に分割する。分析処理部123は、分割した狭帯域信号に基づいて、周波数領域及び時間領域により示される第1のスペクトログラムを作成する。
図5は、図4に示す合成処理部124の機能構成を示すブロック図である。図5に示す合成処理部124は、周波数分析部1241−1〜1241−M、合成部1242−1〜1242−N(Nは1以上の自然数)及び合成分析部1243を備える。なお、周波数分析部1241−1〜1241−Mの動作はそれぞれ同様であるため、以下では、周波数分析部1241−1について説明する。また、合成部1242−1〜1242−Nの動作はそれぞれ同様であるため、以下では、合成部1242−1について説明する。
周波数分析部1241−1は、M本の独立信号のいずれかを受信し、受信した独立信号に対して、所定の周波数幅でFFT処理を実行する。ここで、FFT処理における周波数幅及び時間幅は、無線信号の検出精度及び電波伝搬の状況に応じて設定されるものである。周波数分析部1241−1は、FFT処理の結果に基づき、独立信号を上記周波数幅毎のN本の狭帯域信号に分割する。周波数分析部1241−1は、N本の狭帯域信号を合成部1242−1〜1242−Nへそれぞれ出力する。なお、周波数分析部1241−1は、FFT処理により独立信号を分割するようにしているが、周波数分析部1241−1での処理は、FFT処理に限定されるわけではない。
合成部1242−1は、N個の狭帯域の周波数帯のうち、担当する周波数帯が予め設定されている。合成部1242−1は、担当する周波数帯の狭帯域信号を周波数分析部1241−1〜1241−Mから受信する。合成部1242−1は、受信したM本の狭帯域信号を合成し、合成信号を合成分析部1243へ出力する。合成部1242−1での合成処理における最もシンプルな方法は、狭帯域信号をxとした場合、
Figure 0005892893
と表される。
また、合成部1242−1は、各狭帯域信号に適切なウェイトwをかける、
Figure 0005892893
の処理を実行するようにしても構わない。なお、合成処理として数式(12)並びに数式(13)を例として示したが、公知の如何なる合成方法を適用しても構わない。
合成分析部1243は、合成部1242−1〜1242−Nから供給されるN本の合成信号に基づいて、周波数領域及び時間領域により示される第2のスペクトログラムを作成する。
図6は、図4に示す選択処理部125の機能構成を示すブロック図である。図6に示す選択処理部125は、周波数分析部1251−1〜1251−M、選択部1252−1〜1252−N及び選択分析部1253を備える。なお、周波数分析部1251−1〜1251−Mの動作はそれぞれ同様であるため、以下では、周波数分析部1251−1について説明する。また、選択部1252−1〜1252−Nの動作はそれぞれ同様であるため、以下では、選択部1252−1について説明する。
周波数分析部1251−1は、M本の独立信号のいずれかを受信し、受信した独立信号に対して、所定の周波数幅でFFT処理を実行する。ここで、FFT処理における周波数幅及び時間幅は、無線信号の検出精度及び電波伝搬の状況に応じて設定されるものである。周波数分析部1251−1は、FFT処理の結果に基づき、独立信号を上記周波数幅毎のN本の狭帯域信号に分割する。周波数分析部1251−1は、N本の狭帯域信号を選択部1252−1〜1252−Nへそれぞれ出力する。なお、周波数分析部1251−1は、FFT処理により独立信号を分割するようにしているが、周波数分析部1251−1での処理は、FFT処理に限定されるわけではない。
選択部1252−1は、N個の狭帯域の周波数帯のうち、担当する周波数帯が予め設定されている。選択部1252−1は、担当する周波数帯の狭帯域信号を周波数分析部1251−1〜1251−Mから受信する。選択部1252−1は、受信したM本の狭帯域信号のうち、例えば、振幅が最大の狭帯域信号を選択する。このとき、選択部1252−1での選択処理における最もシンプルな方法は、
Figure 0005892893
と表される。選択部1252−1は、選択した選択信号を選択分析部1253へ出力する。なお、選択処理として数式(14)を例として示したが、公知の如何なる選択方法を適用しても構わない。
選択分析部1253は、選択部1252−1〜1252−Nから供給されるN本の選択信号に基づいて、周波数領域及び時間領域により示される第3のスペクトログラムを作成する。
第2の切替部122は、選択制御部126からの指示に従い、分析処理部123、合成処理部124及び選択処理部125のうち、第1の切替部121が接続する処理部と選択的に接続する。第2の切替部122は、接続される処理部で作成されるスペクトログラムを検出処理部13へ出力する。すなわち、第2の切替部122は、分析処理部123と接続される場合は、第1のスペクトログラムを検出処理部13へ出力し、合成処理部124と接続される場合は、第2のスペクトログラムを検出処理部13へ出力し、選択処理部125と接続される場合は、第3のスペクトログラムを検出処理部13へ出力する。
選択制御部126は、時空間信号処理部11から供給される本数情報、SNR情報及び相関関係情報を受信し、受信したこれらの情報に基づき、第1及び第2の切替部121,122の接続先を、分析処理部123、合成処理部124及び選択処理部125のいずれかから選択する。
選択制御部126が第1及び第2の切替部121,122を制御する具体的な例を以下に説明する。
選択制御部126は、本数情報が1本である場合、すなわち、時空間信号処理部11から合成・選択処理部12へ出力される独立信号の本数が1本である場合、第1及び第2の切替部121,122が分析処理部123と接続するように第1及び第2の切替部121,122を制御する。なお、独立信号が1本である状況とは、例えば、マルチパス広がりが狭く、角度広がりが狭く、かつ、ドップラ広がりを有する時間選択性フェージング環境が挙げられる。
また、選択制御部126は、本数情報が2本以上であり、かつ、SNR情報に含まれるSNR値が予め設定した閾値よりも高い場合、第1及び第2の切替部121,122が分析処理部123と接続するように第1及び第2の切替部121,122を制御する。SNR値の閾値としては、例えば、20dB程度が設定される。
また、選択制御部126は、本数情報が2本以上であり、SNR値が予め設定した閾値よりも低く、かつ、相関関係情報により信号間の相関関係が低いことが示される場合、第1及び第2の切替部121,122が合成処理部124と接続するように第1及び第2の切替部121,122を制御する。ここで、相関関係情報により独立信号間の相関関係が低いことが示される場合とは、例えば、相関関係情報に含まれる相関値が予め設定した閾値よりも低い場合、及び、信号間の相関関係を間接的に表す観測値が相関関係が低いことを表す値をとる場合等である。なお、相関値の閾値としては、例えば、0.5程度が設定される。
また、選択制御部126は、本数情報が2本以上であり、SNR値が予め設定した閾値よりも低く、かつ、相関関係情報により信号間の相関関係が高いことが示される場合、第1及び第2の切替部121,122が選択処理部125と接続するように第1及び第2の切替部121,122を制御する。
ここで、選択制御部126が相関関係に応じて合成処理部124と選択処理部125とを切り替える理由について説明する。合成処理部124により実行される数式(12)で示す方法は、電波環境に応じた歪み及び/又は干渉の抑圧度が極めて高い有効な方法であるが、狭帯域信号間の相関が高い場合は適当な方法でない。例えば、狭帯域信号xのみのSNRが高く、その他の狭帯域信号x2〜MのSNRが低い場合を想定し、x=s、x2〜M=nとした場合、XのSNRは、s/n(M−1)となりSNRが悪化してしまう。このような状態を避けるため、選択制御部126は、相関関係情報により信号間の相関関係が高いことが示される場合には、合成処理部124ではなく、選択処理部125を選択するようにしている。
一方、選択処理部125により実行される数式(14)で示す方法は、狭帯域信号間の相互のレベル差が大きい場合、つまり、狭帯域信号間の相関が大きい場合は、性能改善が大きく期待できる。しかしながら、狭帯域信号間の相互のレベル差が小さい場合、つまり、狭帯域信号間の相関が小さい場合は、性能改善が小さくなる。このような状態を避けるため、選択制御部126は、相関関係情報により独立信号間の相関関係が低いことが示される場合には、選択処理部125ではなく、合成処理部124を選択するようにしている。
検出処理部13は、合成・選択処理部12から供給される第1、第2又は第3のスペクトログラムを参照し、スペクトログラムの電力差を利用して信号を検出する。
次に、以上のように構成された受信装置が信号を検出する動作を、信号検出装置10の処理手順に従い説明する。図7は、図1に示す信号検出装置10による処理動作のフローチャートを示す図である。なお、図7では、信号間の相関関係が、相関関係情報に含まれる相関値により判断される場合を例に説明する。
まず、時空間信号処理部11は、アンテナ部20−1〜20−Kから供給されるK本のデジタル信号に対して時空間信号処理を施し、K本のデジタル信号から、M(Mは1以上の自然数)本の独立信号を時空間的に分離・抽出する(ステップS71)。時空間信号処理部11は、時空間信号処理を実施すると共に、本数情報、SNR情報及び相関関係情報を取得し、これらの情報を合成・選択処理部12へ出力する。
選択制御部126は、時空間信号処理部11で取得された本数情報に基づいて、独立信号の本数がM=1であるか否かを判断する(ステップS72)。M=1である場合(ステップS72のYes)、選択制御部126は、独立信号が分析処理部123へ供給されるように、第1及び第2の切替部121,122を切り替える。
分析処理部123は、第1の切替部121を介して独立信号が供給されると、供給された独立信号に基づいて第1のスペクトログラムを作成し(ステップS73)、作成した第1のスペクトログラムを検出処理部13へ出力する。
ステップS72において、M=1でない場合(ステップS72のNo)、選択制御部126は、SNR値が20dBを超えるか否かを判断する(ステップS74)。SNR値が20dBを超える場合(ステップS74のYes)、選択制御部126は、独立信号が分析処理部123へ供給されるように、第1及び第2の切替部121,122を切り替え、処理をステップS73へ遷移させる。
ステップS74において、SNR値が20dB以下である場合(ステップS74のNo)、選択制御部126は、相関値が0.5を超えるか否かを判断する(ステップS75)。相関値が0.5を超える場合(ステップS75のYes)、選択制御部126は、M本の独立信号が選択処理部125へ供給されるように、第1及び第2の切替部121,122を切り替える。
選択処理部125は、第1の切替部121を介してM本の独立信号が供給されると、供給された独立信号に基づいて第3のスペクトログラムを作成し(ステップS76)、作成した第3のスペクトログラムを検出処理部13へ出力する。
ステップS75において、相関値が0.5以下である場合(ステップS75のNo)、選択制御部126は、M本の独立信号が合成処理部124へ供給されるように、第1及び第2の切替部121,122を切り替える。
合成処理部124は、第1の切替部121を介してM本の独立信号が供給されると、供給された独立信号に基づいて第2のスペクトログラムを作成し(ステップS77)、作成した第2のスペクトログラムを検出処理部13へ出力する。
検出処理部13は、ステップS73で作成される第1のスペクトログラム、ステップS76で作成される第3のスペクトログラム、又は、ステップS77で作成される第2のスペクトログラムを受信すると、受信したスペクトログラムに基づいて信号を検出する(ステップS78)。なお、ここまでの説明では、相関値の閾値を0.5とし、SNR値の閾値を20dBとしたが、適用する環境等に応じて、これらの閾値は任意の数値を設定することができるものとする。
図8は、親局から送信される無線信号に基づいて取得されるスペクトログラムの例を示す図である。図8(a)は親局から送信される無線信号のスペクトログラムを示し、図8(b)は分析処理部123で作成される第1のスペクトログラムを示し、図8(c)は合成処理部124で作成される第2のスペクトログラムを示し、図8(d)は選択処理部125で作成される第3のスペクトログラムを示す。合成処理を施した図8(c)に示す第2のスペクトログラムと、選択処理を施した図8(d)に示す第3のスペクトログラムとは、合成処理及び選択処理を施さない図8(b)に示す第1のスペクトログラムと比較して電波環境に応じた歪み及び/又は干渉が抑圧され、図8(a)に示すスペクトログラムに近づいていることがわかる。
以上のように、本実施形態では、信号検出装置10は、時空間信号処理部11により、K本のデジタル信号からM本の独立信号を分離・抽出する。信号検出装置10は、時空間信号処理部11で取得される本数情報、SNR情報及び相関関係情報を参照し、分析処理部123、合成処理部124及び選択処理部125のいずれかで、M本の独立信号に基づくスペクトログラムを作成するようにしている。これにより、信号検出装置10は、電波伝搬環境に応じ、電波環境に応じた歪み及び/又は干渉を抑圧する処理を選択することが可能となる。また、電波伝搬環境に応じた方法で、スペクトログラムを作成することが可能となる。
また、本実施形態では、時空間信号処理部11での時空間信号処理に加え、合成・選択処理部12で合成処理又は選択処理を行うようにしている。これにより、時空間信号処理により時間選択性フェージングを解消すると共に、合成処理又は選択処理により周波数選択性フェージングを解消することが可能となり、伝搬環境をAWGN(Additive White Gaussian Noise)環境に近い環境に変換することが可能となる。
したがって、本実施形態に係る信号検出装置10によれば、受信した電波に対して電波伝搬環境に応じた適切な前処理を施し、無線信号の自動検出性能を向上させることができる。
また、従来の受信装置では、異なる送信源から送信される複数の信号が存在する環境下において、信号毎の統計的な独立性を利用することにより各信号を分離し、信号毎の使用周波数帯を検出する技術が提案されている(例えば、特許文献1参照。)。しかしながら、この技術では、信号を分離するために、信号間の統計的な独立性のみに依存しているために、同一の送信源の信号であっても、信号分離される問題がある。このように分離された信号は、独立した信号であると判断されているため、合成されることはなく、SNRが劣化する要因となる恐れがある。これに対し、本実施形態に係る信号検出装置10では、時空間信号処理により独立信号を分離・抽出しているため、分離・抽出した独立信号を合成部1242−1〜1242−Nにより合成することが可能となる。これにより、SNRの劣化を防ぐことが可能となる。また、時空間信号処理、合成処理及び選択処理に係る演算量が少ないため、広帯域の無線信号を検出する場合にも有効である。
また、従来の受信装置では、送信側から受信側までの伝搬路応答が既知である場合に、伝搬路応答の逆行列を用いて信号を分離し、分離した信号を検出する技術も提案されている。信号を検出する際、SNRの低い環境下において検出性能向上させることが重要である。しかしながら、伝搬路応答の逆行列を用いた自動検出技術では、基本的にZF(Zero Forcing)アルゴリズムがベースとなるために雑音強調による実質的なSNRの低下をもたらすことになる。さらに、伝搬路応答による信号分離は、信号数が既知である前提条件と伝搬路応答が計算可能という前提が必要となる。なお、この前提条件は、コグニティブ無線技術又は電波監視技術の自動検出の実現においては、大きな制約となる。これに対し、本実施形態に係る信号検出装置10では、ZFアルゴリズムがベースになることはなく、また、信号数が既知である前提条件と伝搬路応答が計算可能という前提は不要である。
なお、上記実施形態では、合成処理部124が、周波数分析部1241−1〜1241−M、合成部1242−1〜1242−N及び合成分析部1243を有する場合を例に説明したが、これに限定されるわけではない。例えば、合成処理部124は、図9に示すように、判断部1244−1〜1244−Nをさらに備えるようにしてもかまわない。判断部1244−1〜1244−Nは、周波数分析部1241−1〜1241−Mから出力される狭帯域信号の振幅が、予め設定した閾値を超えるか否かを判断する。判断部1244−1〜1244−Nは、振幅が閾値を超えない狭帯域信号を廃棄し、振幅が閾値を超える狭帯域信号のみを合成部1242−1〜1242−Nへ出力する。合成部1242−1〜1242−Nは、閾値を超える狭帯域信号のみを合成する。これにより、狭帯域信号間の相関が高い場合であっても、SNRが悪化することを抑えることが可能となる。
本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10…信号検出装置、11…時空間信号処理部、12…合成・選択処理部、121…第1の切替部、122…第2の切替部、123…分析処理部、124…合成処理部、1241−1〜1241−M…周波数分析部、1242−1〜1242−N…合成部、1243…合成分析部、1244−1〜1244−N…判断部、125…選択処理部、1251−1〜1251−M…周波数分析部、1252−1〜1252−N…選択部、1253…選択分析部、126…選択制御部、13…検出処理部、20−1〜20−K…アンテナ部

Claims (5)

  1. 互いに独立するK(Kは1以上の自然数)本の受信信号を受信する信号検出装置において、
    前記K本の受信信号からM(Mは1以上の自然数)本の独立信号を時空間的に分離及び/又は抽出すると共に、前記M本の独立信号を参照し、前記独立信号の本数情報、前記独立信号のSNR(Signal to Noise Ratio)についてのSNR情報及び前記独立信号間の相関関係についての相関関係情報を表す情報を取得する時空間処理部と、
    前記本数情報により示される本数が1である場合、又は、前記本数が2以上であり、かつ、前記SNR情報により示されるSNR値が予め設定された閾値よりも大きい場合、第1の指示信号を生成し、前記本数情報により示される本数が2以上であり、前記SNR情報により示されるSNR値が予め設定された閾値よりも小さく、かつ、前記相関関係情報により示される相関関係が予め想定された状態よりも低い場合、第2の指示信号を生成し、前記本数情報により示される本数が2以上であり、前記SNR情報により示されるSNR値が予め設定された閾値よりも小さく、かつ、前記相関関係情報により示される相関関係が予め設定された状態よりも高い場合、第3の指示信号を生成する選択制御部と、
    前記第1の指示信号に応じて、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号に基づいて第1のスペクトログラムを作成する第1の処理部と、
    前記第2の指示信号に応じて、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号を帯域毎に合成して合成信号とし、前記合成信号に基づいて第2のスペクトログラムを作成する第2の処理部と、
    前記第3の指示信号に応じて、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号から帯域毎に最大の狭帯域信号を選択して選択信号とし、前記選択信号に基づいて第3のスペクトログラムを作成する第3の処理部と、
    前記第1、第2又は第3のスペクトログラムを参照して信号を検出する検出処理部と
    を具備することを特徴とする信号検出装置。
  2. 前記第2の処理部は、前記分割した狭帯域信号毎に所定のウェイトをかけた後に、前記ウェイトをかけた狭帯域信号を帯域毎に合成することを特徴とする請求項1記載の信号検出装置。
  3. 前記第2の処理は、前記分割した狭帯域信号のうち、予め設定した振幅を超える振幅を有する狭帯域信号を、帯域毎に合成することを特徴とする請求項1又は2に記載の信号検出装置。
  4. 互いに独立するK(Kは1以上の自然数)本の受信信号を受信する信号検出装置で用いられる信号検出方法において、
    前記K本の受信信号からM(Mは1以上の自然数)本の独立信号を時空間的に分離及び/又は抽出し、
    前記M本の独立信号を参照し、前記独立信号の本数情報、前記独立信号のSNR(Signal to Noise Ratio)についてのSNR情報及び前記独立信号間の相関関係についての相関関係情報を表す情報を取得し、
    前記本数情報により示される本数が1である場合、又は、前記本数が2以上であり、かつ、前記SNR情報により示されるSNR値が予め設定された閾値よりも大きい場合、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号に基づいて第1のスペクトログラムを作成し、
    前記本数情報により示される本数が2以上であり、前記SNR値が前記閾値よりも小さく、かつ、前記相関関係情報により示される相関関係が予め設定された状態よりも低い場合、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号を帯域毎に合成して合成信号とし、前記合成信号に基づいて第2のスペクトログラムを作成し、
    前記本数情報により示される本数が2以上であり、前記SNR値が前記閾値よりも小さく、かつ、前記相関関係が前記状態よりも高い場合、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号から帯域毎に最大の狭帯域信号を選択して選択信号とし、前記選択信号に基づいて第3のスペクトログラムを作成し、
    前記第1、第2又は第3のスペクトログラムを参照して信号を検出することを特徴とする信号検出方法。
  5. 互いに独立するK(Kは1以上の自然数)本の受信信号を受信する信号検出装置で用いられる信号検出プログラムにおいて、
    前記K本の受信信号からM(Mは1以上の自然数)本の独立信号を時空間的に分離及び/又は抽出する処理と、
    前記M本の独立信号を参照し、前記独立信号の本数情報、前記独立信号のSNR(Signal to Noise Ratio)についてのSNR情報及び前記独立信号間の相関関係についての相関関係情報を表す情報を取得する処理と、
    前記本数情報により示される本数が1である場合、又は、前記本数が2以上であり、かつ、前記SNR情報により示されるSNR値が予め設定された閾値よりも大きい場合、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号に基づいて第1のスペクトログラムを作成する処理と、
    前記本数情報により示される本数が2以上であり、前記SNR値が前記閾値よりも小さく、かつ、前記相関関係情報により示される相関関係が予め設定された状態よりも低い場合、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号を帯域毎に合成して合成信号とし、前記合成信号に基づいて第2のスペクトログラムを作成する処理と、
    前記本数情報により示される本数が2以上であり、前記SNR値が前記閾値よりも小さく、かつ、前記相関関係が前記状態よりも高い場合、前記M本の独立信号を複数の狭帯域信号にそれぞれ分割し、前記分割した狭帯域信号から帯域毎に最大の狭帯域信号を選択して選択信号とし、前記選択信号に基づいて第3のスペクトログラムを作成する処理と、
    前記第1、第2又は第3のスペクトログラムを参照して信号を検出する処理と
    を前記信号検出装置のコンピュータに実行させることを特徴とする信号検出プログラム。
JP2012174806A 2012-08-07 2012-08-07 信号検出装置、信号検出方法及び信号検出プログラム Expired - Fee Related JP5892893B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174806A JP5892893B2 (ja) 2012-08-07 2012-08-07 信号検出装置、信号検出方法及び信号検出プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174806A JP5892893B2 (ja) 2012-08-07 2012-08-07 信号検出装置、信号検出方法及び信号検出プログラム

Publications (2)

Publication Number Publication Date
JP2014036248A JP2014036248A (ja) 2014-02-24
JP5892893B2 true JP5892893B2 (ja) 2016-03-23

Family

ID=50285001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174806A Expired - Fee Related JP5892893B2 (ja) 2012-08-07 2012-08-07 信号検出装置、信号検出方法及び信号検出プログラム

Country Status (1)

Country Link
JP (1) JP5892893B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576099B2 (ja) * 2000-12-22 2004-10-13 株式会社東芝 スマートアンテナを用いた受信装置、スマートアンテナを用いた受信方法及びビーム形成回路
JP3857204B2 (ja) * 2002-09-19 2006-12-13 株式会社東芝 受信装置
EP1777852A4 (en) * 2004-08-12 2011-12-07 Fujitsu Ltd RECEIVERS, TRANSMITTERS AND RECEIVER PROCEDURES

Also Published As

Publication number Publication date
JP2014036248A (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP4339801B2 (ja) 固有値分解を利用しない信号到来方向推定手法および受信ビーム形成装置
JP4583265B2 (ja) 無線通信装置及び無線通信方法
JP3738705B2 (ja) 適応アンテナ装置
WO2020084672A1 (ja) 無線中継装置および無線通信システム
US6931244B2 (en) Radio equipment capable of real time change of antenna directivity and doppler frequency estimating circuit used for the radio equipment
KR102207844B1 (ko) 적어도 하나의 안테나 배열에 입사하는 신호의 도착 방향을 추정하는 시스템, 방법, 그리고 컴퓨터 판독가능 매체
JPWO2005001504A1 (ja) 電波到来方向推定方法及び装置
KR20050117436A (ko) 공간-시간 빔 형성을 위한 간섭전력 측정 장치 및 방법
Jiang et al. Long-range MIMO channel prediction using recurrent neural networks
WO2012092751A1 (zh) 一种邻区干扰检测方法及***
US11005507B2 (en) Targeted ratio of signal power to interference plus noise power for enhancement of a multi-user detection receiver
JP2004343282A (ja) アレイアンテナ通信装置
JP5892893B2 (ja) 信号検出装置、信号検出方法及び信号検出プログラム
JP2008312188A (ja) アダプティブアンテナ
JP4673869B2 (ja) 送受信装置及びその通信方法
JP2006203522A (ja) 無線通信用送受信装置
Abohamra et al. Direction of Arrival algorithms for user identification in cellular networks
Abohamra et al. Optimum scheduling based on beamforming for the fifth generation of mobile communication systems
KR101524587B1 (ko) 셀 탐색 시스템
Zhu et al. A time-variant MIMO channel model based on the IMT-Advanced channel model
JP2002204193A (ja) 移動通信システム
JP2008211341A (ja) 送受信装置とその通信方法
JP4684068B2 (ja) 無線受信装置及び無線受信方法
KR100666654B1 (ko) 무선통신 빔 형성 장치 및 그 방법
JP5642099B2 (ja) 信号復号装置及び信号復号プログラム

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160223

R151 Written notification of patent or utility model registration

Ref document number: 5892893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees