WO2006008948A1 - 排気ガス浄化用触媒及びその製造方法 - Google Patents

排気ガス浄化用触媒及びその製造方法 Download PDF

Info

Publication number
WO2006008948A1
WO2006008948A1 PCT/JP2005/012325 JP2005012325W WO2006008948A1 WO 2006008948 A1 WO2006008948 A1 WO 2006008948A1 JP 2005012325 W JP2005012325 W JP 2005012325W WO 2006008948 A1 WO2006008948 A1 WO 2006008948A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
catalyst
supported
noble metal
refractory inorganic
Prior art date
Application number
PCT/JP2005/012325
Other languages
English (en)
French (fr)
Inventor
Isamu Yashima
Yuichi Anno
Masatoshi Yamazaki
Hiromitsu Takagi
Yasuhisa Goto
Moei Chai
Yunosuke Nakahara
Original Assignee
Mitsui Mining & Smelting Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co., Ltd. filed Critical Mitsui Mining & Smelting Co., Ltd.
Publication of WO2006008948A1 publication Critical patent/WO2006008948A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying catalyst and a method for producing the same, and more specifically, exhibits the desired catalytic performance by suppressing the reaction 'decomposition of a catalyst component comprising a specific tetragonal complex oxide.
  • the present invention relates to an exhaust gas purifying catalyst that can be produced and a method for producing the same.
  • Exhaust gas discharged from internal combustion engines such as automobiles contains harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO). Therefore, three-way catalysts that purify and detoxify these harmful components have been used in the past.
  • harmful components such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NO). Therefore, three-way catalysts that purify and detoxify these harmful components have been used in the past.
  • a three-way catalyst As such a three-way catalyst, a first layer provided on a support substrate, containing at least alumina and having Zro added or supported on a surface layer, and a velovskite type provided on the first layer Structure
  • Patent Document 1 JP-A-7-80311
  • A represents at least one selected from the group consisting of Ca, Sr and Ba
  • B represents at least one selected from the group consisting of Mn, Fe, Ti, Sn and V
  • An aqueous solution prepared by adding a complex oxide such as manganese (II) nitrate hexahydrate and calcium nitrate tetrahydrate to a molar ratio of 1: 2 is dropped into an aqueous ammonium carbonate solution.
  • Precursor precipitation It is made of Ca MnO, which is obtained by filtering the precipitate, drying at about 120 ° C, and calcining at about 800 ° C. It has high low-temperature activity, excellent heat resistance, and stable exhaust gas. Purifying performance
  • the present invention has been made in view of the circumstances as described above, and even if the tetragonal complex oxide is obtained by the above-mentioned mixed drying firing, the tetragonal complex oxide is obtained.
  • the purpose of the present invention is to provide an exhaust gas purifying catalyst capable of exhibiting the desired catalytic performance by suppressing the reaction and decomposition of the catalyst component comprising the product, and a method for producing the same.
  • a tetragonal complex oxide represented by O at least the surface layer being composed of MgAl 2 O
  • the present invention has been completed by finding that the above object can be achieved by coexisting with a refractory inorganic oxide.
  • the exhaust gas purifying catalyst of the present invention has the general formula A BO (where A is Ca, Sr and Ba
  • a tetragonal complex oxide represented by at least one selected from the group consisting of Mn, Fe, Ti, Sn and V), and at least one selected from the group consisting of And a refractory inorganic oxide whose surface layer is composed of MgAl 2 O and the tetragonal complex oxide.
  • the exhaust gas purifying catalyst of the present invention comprises
  • a first catalyst layer comprising a product, or a first catalyst layer serving as a catalyst for exhaust gas purification according to the present invention, and a noble metal component-supported refractory inorganic oxide supported on the first catalyst layer.
  • a second catalyst layer consisting of
  • the method for producing an exhaust gas purifying catalyst of the present invention includes alumina, basic magnesium carbonate, and a general formula A BO (where A is a group force consisting of Ca, Sr, and Ba, at least
  • B represents a group force consisting of Mn, Fe, Ti, Sn, and V.
  • At least one selected from the group consisting of tetragonal complex oxides A tetragonal complex acid which is coated on a carrier, dried, and fired at 300 to 600 ° C. for 1 to 6 hours, and the noble metal component is in a solid solution and supports the noble metal component or the noble metal component.
  • the calcination product is used, or the calcined product after calcination is immersed in an aqueous solution of a basic noble metal salt to carry a predetermined amount of noble metal, and then calcined at 300 to 600 ° C.
  • the method for producing an exhaust gas purifying catalyst of the present invention includes MgAl 2 O and a general formula A BO
  • A represents at least one selected from the group force consisting of Ca, Sr and Ba
  • B represents at least one selected from the group consisting of Mn, Fe, Ti, Sn and V
  • the slurry containing a tetragonal complex oxide represented by the following formula is coated on a support made of ceramics or a metal material, dried, fired at 300 to 600 ° C. for 1 to 6 hours, and the noble metal component is solidified. Melting Be a body! / Use a tetragonal complex acid oxide that supports the metal or the precious metal component, or immerse the fired product after firing in an aqueous solution of a basic precious metal salt to support a predetermined amount of the precious metal. And then firing at 300 to 600 ° C.
  • the exhaust gas purifying catalyst of the present invention is a catalyst comprising a tetragonal complex oxide even when used for purifying harmful components contained in high-temperature exhaust gas discharged from an internal combustion engine such as an automobile.
  • the desired catalytic performance can be exhibited by suppressing the reaction 'decomposition of the components.
  • FIG. 1 is a chart showing XRD results of the products obtained in Test Examples 1 to 5.
  • A represents at least one selected from the group consisting of Ca, Sr and Ba
  • B represents at least one selected from the group forces selected from Mn, Fe, Ti, Sn and V forces
  • Examples of the crystalline complex oxide include Ca MnO, Sr MnO, Sr FeO, Ba SnO, Sr VO and the like.
  • Ca MnO is particularly preferable in terms of catalytic activity.
  • It may be a tetragonal complex oxide obtained by firing or a tetragonal complex oxide obtained by the above-mentioned mixed dry firing, but it can be obtained by the above described mixed dry firing. A remarkable effect is achieved in the case of a tetragonal complex oxide.
  • the tetragonal complex oxide has a K NiF type structure, that is, a tetragonal structure, whereas the perovskite complex oxide is cubic. In the lattice
  • perovskite structures and OSC materials (CeO and ZrO and
  • the exhaust gas purifying catalyst of the present invention such a tetragonal complex oxide is used, so that the oxygen concentration is not high based on the change in the exhaust gas atmosphere, that is, the stoichiometric air-fuel ratio.
  • Ten Oxygen entry and exit is relatively easy in response to changes in the oxygen concentration over a wide range from a rich reducing atmosphere (rich atmosphere) to an oxygen-excess oxidizing atmosphere (lean atmosphere).
  • tetragonal complex oxides are excellent in heat resistance, even when an exhaust gas purifying catalyst is used in a high temperature range, it exhibits a very high oxygen storage capacity and catalytic activity.
  • the exhaust gas purification performance can be improved.
  • At least the surface layer is composed of MgAl 2 O.
  • the inside of the refractory inorganic oxide is alumina and the surface layer is MgAl 2 O 3
  • the entire refractory inorganic oxide is composed of MgAl 2 O.
  • the effect in the present invention is that the above-mentioned tetragonal complex oxide and the refractory inorganic acid at least the surface layer of which is composed of MgAl 2 O.
  • noble metal components such as rhodium, palladium and platinum are solid solution or supported in the tetragonal complex oxide. Or supported by the above-mentioned refractory inorganic oxide.
  • the tetragonal complex oxide in which the noble metal component is in a solid solution in the tetragonal complex oxide has the general formula A B C O (
  • A represents at least one selected from the group force consisting of Ca, Sr and Ba
  • B represents at least one selected from the group force selected from Mn, Fe, Ti, Sn and V
  • C represents a noble metal
  • X is 0.01 to 0.5
  • the tetragonal complex oxide in such a state is It can be obtained by immersing the tetragonal composite oxide in a basic noble metal salt aqueous solution and supporting a predetermined amount of noble metal, followed by firing at 300 to 600 ° C.
  • the calcined product containing the above tetragonal complex oxide in an aqueous solution of a basic noble metal salt, supporting a predetermined amount of noble metal, and then calcining at 300 to 600 ° C.
  • the noble metal component is solid solution or supported in the tetragonal complex oxide, and the noble metal component is supported on the refractory inorganic oxide.
  • the mixed state is equally effective as an exhaust gas purifying catalyst.
  • the state in which the noble metal component is in solid solution in the tetragonal complex oxide is a noble metal component in which part of the element at the B site of the tetragonal complex oxide acts as a catalyst.
  • a noble metal component in which part of the element at the B site of the tetragonal complex oxide acts as a catalyst.
  • it is in a state where it is substituted with a palladium component, and as such a solid solution, for example, Ca Mn Pd O
  • a noble metal component such as Pd
  • X which represents the amount of the precious metal component in the solid solution
  • x is preferably 0.01 to 0.5 in the tetragonal complex oxide of the general formula A B C O used for the exhaust gas purifying catalyst of the present invention.
  • the exhaust gas purifying catalyst of the present invention comprises a tetragonal complex oxide as described above, a refractory inorganic oxide having at least a surface layer composed of MgAl 2 O, and a noble metal component. Also
  • a first catalyst layer made of a product or a catalyst for exhaust gas purification of the present invention.
  • a second catalyst layer comprising a noble metal component-supported refractory inorganic oxide supported on the first catalyst layer;
  • the noble metal components may be different from each other in the kind of the noble metal component supported by each of the refractory inorganic acids.
  • the shape of the carrier that also has ceramic or metal material power is not particularly limited, but in general, such as a hard cam, a plate, a pellet, etc. It is a shape, preferably a Hercam shape.
  • the material of such a carrier include anolemina (Al 2 O 3), mullite (3A1 O—2SiO), cordierite (2M gO—2Al).
  • Ceramics such as O-5SiO2
  • metal materials such as stainless steel
  • Jiraito material are particularly effective because the thermal expansion coefficient is extremely low and 1.0 X 10- 6 Z ° C.
  • a layer comprising the above tetragonal complex oxide supported on a carrier having a ceramic or metal material strength and a refractory inorganic oxide having at least a surface layer composed of MgAl 2 O
  • the exhaust gas purifying catalyst layer comprising a porous inorganic oxide and a noble metal component includes a refractory inorganic oxide containing the above tetragonal complex oxide and at least a surface layer made of MgAl 2 O.
  • the exhaust gas purifying catalyst layer includes a calcined product containing the above tetragonal complex oxide and a refractory inorganic oxide whose surface layer is composed of MgAl 2 O on the support.
  • the layer After the layer is formed, it can also be formed by immersing in a basic noble metal salt aqueous solution and supporting a predetermined amount of noble metal, followed by firing at 300 to 600 ° C.
  • a layer of a refractory inorganic oxide carrying a precious metal component for example, a layer of porous alumina carrying a platinum component, immerses the refractory inorganic oxide in a basic precious metal salt aqueous solution and supports a predetermined amount of precious metal.
  • the noble metal component is supported on the refractory inorganic oxide by firing at ⁇ 600 ° C, the slurry containing the noble metal component-supported refractory inorganic oxide is used.
  • the porcelain and at least the surface layer are composed of MgAl O
  • the noble metal component-supported refractory inorganic oxide layer is formed by forming a refractory inorganic oxide layer and then immersing it in a basic noble metal salt solution to support a predetermined amount of noble metal, and then 300 to 600 It can also be formed by baking at ° C.
  • the tetragonal complex oxide is Ca MnO.
  • the precious metal component is rhodium, palladium or platinum
  • the refractory inorganic oxide is Al O, SiO, ZrO, CeO, CeO—ZrO composite oxide or
  • the exhaust gas purifying catalyst of the present invention can obtain excellent heat resistance even when used in a wide range from a low temperature range immediately after starting an internal combustion engine such as an automobile to a high temperature range during continuous operation. In addition, stable exhaust gas purification performance with high low-temperature activity can be obtained.
  • the method for producing an exhaust gas purifying catalyst of the present invention comprises alumina, basic magnesium carbonate and a general formula A BO (wherein A is a group force consisting of Ca, Sr and Ba, at least one selected.
  • a slurry containing a tetragonal complex oxide represented by the following formula: B or B represents a group force consisting of Mn, Fe, Ti, Sn, and V). It is applied onto a carrier in the form of a hard cam, plate, pellet, etc., dried and fired at 300 to 600 ° C. for 1 to 6 hours, and the precious metal component is used as a solid solution or a precious metal component.
  • B or B represents a group force consisting of Mn, Fe, Ti, Sn, and V. It is applied onto a carrier in the form of a hard cam, plate, pellet, etc., dried and fired at 300 to 600 ° C. for 1 to 6 hours, and the precious metal component is used as a solid solution or a precious metal component.
  • A represents at least one selected from the group force consisting of Ca, Sr and Ba
  • B represents at least one selected from the group consisting of Mn, Fe, Ti, Sn and V.
  • a slurry containing a tetragonal complex oxide represented by a seed) is applied onto a carrier in the form of a ceramic, a metal material, a hard cam, a plate, a pellet or the like, dried, and 300 to 600 Calcination for 1 to 6 hours at ° C, and the precious metal component forms a solid solution or supports the precious metal component, and uses a tetragonal complex acid silicate or a fired product after firing Is immersed in an aqueous solution of a basic noble metal salt, and after a predetermined amount of noble metal is supported, firing is performed at 300 to 600 ° C.
  • MnCO powder and CaCO powder are stirred and mixed in pure water so that the molar ratio is 1: 2.
  • MnO production was confirmed by XRD measurement.
  • a slurry containing a quantity ratio of 1 was prepared. Each of the obtained slurries was dried at 120 ° C and calcined at 450 ° C for 2 hours to obtain a calcined product. Next, Ca MnO in these fired products
  • a slurry containing was prepared.
  • the obtained slurry was dried at 120 ° C. and calcined at 450 ° C. for 2 hours to obtain a calcined product.
  • the reaction 'decomposability of Ca MnO in this fired product is examined.
  • each particle has become MgAl 2 O by reaction with basic magnesium carbonate,
  • the reaction decomposition of O is suppressed.
  • the surface of each particle of alumina powder is MgA
  • Ca is not coated with 1 O or incompletely coated with MgAl O.
  • MnO is reactively decomposed to produce CaMnO, and the expected catalytic performance cannot be expected.
  • the components were supported on the surface of Ca MnO, and some of them were in solid solution in Ca MnO.
  • a slurry containing 2 4 and MgAl 2 O powder was prepared and the slurry was transferred to a 600 cell / inch 2 ha
  • wash coating was applied to the surface of the cam-shaped cordierite carrier. Thereafter, it was dried at about 120 ° C. and calcined at about 500 ° C. to form a first catalyst layer.
  • a slurry containing platinum-supported alumina obtained by supporting a platinum component on porous alumina was wash-coated, dried, and calcined at about 500 ° C to be second.
  • a catalyst layer was formed.
  • a slurry containing rhodium-supported alumina obtained by supporting the rhodium component on porous alumina was wash-coated, dried, and calcined at about 500 ° C. to be third catalyst layer.
  • the exhaust gas purifying catalyst of the present invention was obtained.
  • the exhaust gas purifying catalyst shown in Table 1 was prepared by adopting a method similar to the method described in Example 1.
  • Example 4 C a aMn i-wholeP d ⁇ O ⁇ + Mg A 1, c P t / A 1 sOs 0- 2] ⁇ . 0
  • Example 5 S r F e C + Mg A l ⁇ O ⁇ P t / A 1 3 0 3 Rb / A 1 ⁇ 0 3 0- 2 0. 2
  • Example 6 S r ⁇ F e .... P d x O ⁇ + Mg AI, c one 1. 0
  • Example 7 S re i- 3 ⁇ 4 P d C + Mg A ⁇ o 4 P ⁇ / ⁇ 1 ⁇ 0 3 0- 2 1.
  • 0-Example 8 S re ix P dO ⁇ + Mg A 1: ⁇ P t / AI sOa R h / AO ⁇ 0. 2 1 0 0. 2 Note) x of the composite oxide in the first catalyst layer is all 0.05.
  • In was ⁇ Ka ⁇ the amount of palladium nitrate corresponding to 5 mol 0/0 manganese. Thereafter, it was dried at about 120 ° C. and calcined at about 1100 ° C. to obtain Ca MnO powder.
  • the palladium component was supported on the surface of Ca MnO, and a part of the palladium component was formed into a solid solution in Ca MnO. The production of Ca MnO was confirmed by XRD measurement.
  • a slurry containing Ca MnO powder and porous alumina powder in which at least a part of the palladium component obtained above is in a solid solution is prepared, and this slurry is formed into a Herkam shape of 600 cells / inch 2 Wash cord on the surface of the cordierite carrier. Then about 120
  • a slurry containing platinum-supported alumina obtained by supporting a platinum component on porous alumina is wash-coated on this first catalyst layer, dried, fired at about 500 ° C., and then second-coated. Touch A medium layer was formed. Further, on this second catalyst layer, a slurry containing rhodium-supported alumina obtained by supporting the rhodium component on porous alumina was wash-coated, dried, and dried.
  • a catalyst for exhaust gas purification for comparison was obtained by calcining at 500 ° C. to form a third catalyst layer.
  • Example 1 The exhaust gas purifying catalysts of Example 1 and Comparative Example 1 were each mounted on a 2000 cc engine, and heat treatment was performed at 950 ° C for 100 hours under the condition that AZF was in the range of 13.6 to 15.6. did. Both catalysts thus heat-treated were installed in the exhaust passage of a vehicle equipped with a 660cc engine, and the exhaust gas amount (g / km) when running in the 10 ⁇ 15 mode was measured. The results are shown in Table 2.
  • the above-mentioned tetragonal complex oxide was able to maintain the desired catalytic performance.
  • the reaction 'decomposition occurred and the catalytic activity decreased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 一般式A2BO4(式中、AはCa、Sr及びBaからなる群から選択される少なくとも1種を表し、BはMn、Fe、Ti、Sn及びVからなる群から選択される少なくとも1種を表す)で示される正方晶系複合酸化物と、少なくとも表面層がMgAl2O4で構成されている耐火性無機酸化物と、該正方晶系複合酸化物中に固溶体化しているか若しくは担持されているか、又は該耐火性無機酸化物に担持されている貴金属成分とを含み、触媒成分の反応・分解を抑制して所期の触媒性能を発揮できる排気ガス浄化用触媒及びその製造方法である。

Description

明 細 書
排気ガス浄化用触媒及びその製造方法
技術分野
[0001] 本発明は排気ガス浄化用触媒及びその製造方法に関し、より詳しくは、特定の正 方晶系複合酸化物からなる触媒成分の反応'分解を抑制して所期の触媒性能を発 揮できる排気ガス浄化用触媒及びその製造方法に関する。
背景技術
[0002] 自動車等の内燃機関から排出される排気ガス中には、炭化水素 (HC)、一酸化炭 素 (CO)、窒素酸ィ匕物 (NO )等の有害成分が含まれている。それで、従来から、これ ら有害成分を浄化して無害化する三元触媒が用いられて ヽる。
[0003] このような三元触媒としては、担体基材上に設けられ、少なくともアルミナを含み Zr oを添加又は表層に担持した第 1層と、該第 1層上に設けられたベロブスカイト型構
2
造の複合酸化物を含む第 2層とを備え、該第 1層と第 2層の少なくともいずれかに貴 金属が担持されている排気ガス浄化用触媒が知られている(例えば、特許文献 1参 照。)。
[0004] このようなぺロブスカイト型複合酸ィ匕物は、約 900°C以上の高温域で使用すると他 の金属成分と反応して触媒活性が著しく低下するという問題があり、特に、理論空燃 比を基準に酸素濃度が不十分な還元雰囲気 (リッチ雰囲気)下においてはべ口ブス カイト構造が壊れることも問題視されている。
特許文献 1 :特開平 7— 80311号公報
発明の開示
発明が解決しょうとする課題
[0005] 本出願人は先に、中和共沈 乾燥 焼成によって得られる一般式 A BO (式中、
2 4
Aは Ca、 Sr及び Baからなる群から選択される少なくとも 1種を表し、 Bは Mn、 Fe、 Ti 、 Sn及び Vからなる群から選択される少なくとも 1種を表す)で示される正方晶系複合 酸化物、例えば、硝酸マンガン (II)六水和物と硝酸カルシウム四水和物とを 1 : 2のモ ル比になるように調製した水溶液を炭酸アンモ-ゥム水溶液中に滴下して前駆体沈 殿物を得、この沈殿物をろ過し、約 120°Cで乾燥し、約 800°Cで焼成して得られる Ca MnO、からなり、低温活性が高ぐ耐熱性に優れ、安定した排気ガス浄ィ匕性能を得
2 4
ることができる排気ガス浄ィ匕用触媒に関する発明を特許出願した。
[0006] その発明の過程で、同じ一般式 A BOで示される正方晶系複合酸ィ匕物であっても
2 4
、その製造方法によって触媒性能、安定性能に大きな差異が生じ、混合 乾燥 焼 成によって得られる正方晶系複合酸化物、例えば、 MnCO粉末と CaCO粉末とを 1
3 3
: 2のモル比となるように純水中で攪拌混合し、約 120°Cで乾燥させた後、約 1100°C で焼成して得られる Ca MnO、をアルミナに担持させた場合には、例えば、自動車
2 4
等の内燃機関から排出される高温排気ガスに含まれる有害成分の浄化に使用すると 、反応式
Ca MnO + 2A1 0 → CaMnO +CaAl O
2 4 2 3 3 4 7
に従ってアルミナと徐々に反応して分解し、触媒性能が徐々に低下し、所期の触媒 性能を長時間に渡って維持することができないことを見出した。
[0007] 本発明は、上記のような事情に鑑みてなされたものであり、上記の混合 乾燥 焼 成によって得られる正方晶系複合酸ィ匕物であっても、正方晶系複合酸ィ匕物からなる 触媒成分の反応 ·分解を抑制して所期の触媒性能を発揮できる排気ガス浄化用触 媒及びその製造方法を提供することを目的として!ヽる。
課題を解決するための手段
[0008] 本発明者等は上記目的を達成するために鋭意検討した結果、特定の一般式 A B
2
Oで示される正方晶系複合酸化物を、少なくとも表面層が MgAl Oで構成されてい
4 2 4
る耐火性無機酸化物と共存させることにより上記目的が達成されることを見いだし、 本発明を完成した。
[0009] 即ち、本発明の排気ガス浄化用触媒は、一般式 A BO (式中、 Aは Ca、 Sr及び Ba
2 4
力 なる群力 選択される少なくとも 1種を表し、 Bは Mn、 Fe、 Ti、 Sn及び Vからなる 群から選択される少なくとも 1種を表す)で示される正方晶系複合酸化物と、少なくと も表面層が MgAl Oで構成されている耐火性無機酸化物と、該正方晶系複合酸ィ匕
2 4
物中に固溶体ィ匕して ヽるカゝ若しくは担持されて ヽるか又は該耐火性無機酸化物に担 持されて!ヽる貴金属成分とからなることを特徴とする。 [0010] また、本発明の排気ガス浄化用触媒は、
セラミックス又は金属材料からなる担体と、該担体上に担持されて!、る上記の本発 明の排気ガス浄ィ匕用触媒の層とからなるものであっても、
セラミックス又は金属材料からなる担体と、該担体上に担持されて!、る上記の正方 晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている耐火性無機酸ィ匕
2 4
物とからなる第一触媒層、又は上記の本発明の排気ガス浄ィ匕用触媒力 なる第一触 媒層と、該第一触媒層上に担持されている貴金属成分担持耐火性無機酸化物から なる第二触媒層と
からなるものであっても、或いは
セラミックス又は金属材料からなる担体と、該担体上に担持されて!、る上記の正方 晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている耐火性無機酸ィ匕
2 4
物とからなる第一触媒層、又は上記の本発明の排気ガス浄ィ匕用触媒力 なる第一触 媒層と、該第一触媒層上に担持されている 2層以上の貴金属成分担持耐火性無機 酸ィ匕物からなる触媒層とからなり、各々の耐火性無機酸ィ匕物に担持されている貴金 属成分の種類が異なって 、るものであってもよ 、。
[0011] また、本発明の排気ガス浄化用触媒の製造方法は、アルミナ、塩基性炭酸マグネ シゥム及び一般式 A BO (式中、 Aは Ca、 Sr及び Baからなる群力 選択される少なく
2 4
とも 1種を表し、 Bは Mn、 Fe、 Ti、 Sn及び Vからなる群力 選択される少なくとも 1種 を表す)で示される正方晶系複合酸化物を含有するスラリーを、セラミックス又は金属 材料力もなる担体上に塗布し、乾燥させ、 300〜600°Cで 1〜6時間焼成すること、 並びに貴金属成分が固溶体ィ匕して 、る力若しくは貴金属成分を担持して 、る正方晶 系複合酸ィヒ物を用いるか又は焼成後の焼成物を塩基性貴金属塩の水溶液中に浸 漬し、所定量の貴金属を担持させた後、 300〜600°Cで焼成することを特徴とする。
[0012] 更に、本発明の排気ガス浄化用触媒の製造方法は、 MgAl O及び一般式 A BO
2 4 2 4
(式中、 Aは Ca、 Sr及び Baからなる群力 選択される少なくとも 1種を表し、 Bは Mn、 Fe、 Ti、 Sn及び Vからなる群カゝら選択される少なくとも 1種を表す)で示される正方晶 系複合酸化物を含有するスラリーを、セラミックス又は金属材料からなる担体上に塗 布し、乾燥させ、 300〜600°Cで 1〜6時間焼成すること、並びに貴金属成分が固溶 体化して!/ヽるカゝ若しくは貴金属成分を担持して ヽる正方晶系複合酸ィ匕物を用いるか 又は焼成後の焼成物を塩基性貴金属塩の水溶液中に浸漬し、所定量の貴金属を担 持させた後、 300〜600°Cで焼成することを特徴とする。
発明の効果
[0013] 本発明の排気ガス浄化用触媒は、例えば、自動車等の内燃機関から排出される高 温排気ガスに含まれる有害成分の浄化に使用した場合でも、正方晶系複合酸化物 からなる触媒成分の反応'分解を抑制して所期の触媒性能を発揮することができる。 図面の簡単な説明
[0014] [図 1]図 1は試験例 1〜5で得られた生成物の XRDの結果を示すチャートである。
発明を実施するための最良の形態
[0015] 以下に、本発明の実施形態を具体的に説明する。
本発明の排気ガス浄化用触媒において触媒成分として用いる一般式 A BO (式中
2 4
、 Aは Ca、 Sr及び Baからなる群から選択される少なくとも 1種を表し、 Bは Mn、 Fe、 T i、 Sn及び V力 なる群力 選択される少なくとも 1種を表す)で示される正方晶系複 合酸化物として、例えば、 Ca MnO、 Sr MnO、 Sr FeO、 Ba SnO、 Sr VO等を
2 4 2 4 2 4 2 4 2 4 挙げることができ、触媒活性の面では、特に Ca MnOが好ましい。
2 4
[0016] 上記の一般式 A BOで示される正方晶系複合酸ィヒ物は、上記の中和共沈 乾燥
2 4
焼成によって得られる正方晶系複合酸ィ匕物であっても、上記の混合 乾燥 焼 成によって得られる正方晶系複合酸ィ匕物であってもよいが、上記の混合 乾燥 焼 成によって得られる正方晶系複合酸化物の場合に顕著な効果が達成される。
[0017] なお、上記の正方晶系複合酸化物は、ぺロブスカイト系複合酸ィ匕物が立方晶系で あるのに対して、 K NiF型構造、即ち、正方晶系の構造を有しており、その格子内に
2 4
数多くの空間が存在しているので、化学量論組成以上の酸素を取り込むことができ、 且つその酸素の出入りが比較的自由であるので、非常に高い酸素貯蔵能力を発揮 し、その酸素貯蔵能力は、例えば、ぺロブスカイト構造及び OSC材 (CeOと ZrOと
2 2 の複合酸化物)よりも著しく高 、。
[0018] 本発明の排気ガス浄ィ匕用触媒においては、このような正方晶系複合酸ィ匕物を用い ているので、排ガス雰囲気の変化、すなわち、理論空燃比を基準に酸素濃度が不十 分な還元雰囲気 (リッチ雰囲気)から酸素濃度が過剰な酸化雰囲気 (リーン雰囲気) までの広い範囲での酸素濃度の変化に応じて、酸素の出入りが比較的容易となって いる。
[0019] これは、一般式 A BOの構成元素のうち、特に、 Bサイトイオンの価数変化が起こり
2 4
易くなつているためと、構造内に大きな空間を有していることが考えられる。このように 、酸素の出入りが容易であることにより、浄ィ匕対象物質との反応サイトとなるウィンドウ が広がって高活性ィ匕が実現されることとなり、触媒活性が高められて、排ガス浄化性 能が向上する。
[0020] また、正方晶系複合酸ィ匕物は耐熱性にも優れていることから、排気ガス浄化用触媒 を高温域において使用しても、非常に高い酸素貯蔵能力を発揮して触媒活性を高 め、排ガス浄ィ匕性能を向上することができる。
[0021] 本発明の排気ガス浄ィ匕用触媒においては、少なくとも表面層が MgAl Oで構成さ
2 4
れている耐火性無機酸ィ匕物を上記の正方晶系複合酸ィ匕物と共存させることが必須 の構成要件である。この少なくとも表面層が MgAl Oで構成されている状態としては
2 4
、耐火性無機酸ィ匕物の内部がアルミナであり、表面層が MgAl O
2 4で構成されている 状態であっても、耐火性無機酸化物全体が MgAl Oで構成されている状態であって
2 4
も良い。なお、 MgAl Oの代わりに CaAl O、 BaAl O等を用いた場合には、上記
2 4 2 4 2 4
の正方晶系複合酸化物からなる触媒成分の反応'分解を抑制することができず、所 期の触媒性能を発揮することができない。従って、本発明における効果は、上記の正 方晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている耐火性無機酸
2 4
化物との組み合わせで達成される特有の効果と考えられる。
[0022] 本発明の排気ガス浄ィ匕用触媒においては、貴金属成分、例えばロジウム、パラジゥ ム、白金が上記の正方晶系複合酸ィ匕物中に固溶体ィ匕しているか若しくは担持されて V、るか又は上記の耐火性無機酸ィ匕物に担持されて 、る。正方晶系複合酸化物中に 貴金属成分が固溶体ィ匕している状態の正方晶系複合酸ィ匕物は一般式 A B C O (
2 l-x x 4 式中、 Aは Ca、 Sr及び Baからなる群力 選択される少なくとも 1種を表し、 Bは Mn、 F e、 Ti、 Sn及び Vからなる群力 選択される少なくとも 1種を表し、 Cは貴金属を表し、 Xは 0.01〜0.5である)で示され、このような状態の正方晶系複合酸ィ匕物は上記の正 方晶系複合酸化物を塩基性貴金属塩水溶液中に浸潰し、所定量の貴金属を担持さ せた後、 300〜600°Cで焼成することにより得ることができる。或いは、 MgAl O及び
2 4 上記の正方晶系複合酸化物を含む焼成物を塩基性貴金属塩の水溶液中に浸漬し 、所定量の貴金属を担持させた後、 300〜600°Cで焼成することによつても得ること ができ、この場合には正方晶系複合酸ィ匕物中に貴金属成分が固溶体ィ匕するか又は 担持され、且つ耐火性無機酸化物に貴金属成分が担持される。しかし、本発明の排 気ガス浄化用触媒にぉ 、ては貴金属成分が固溶体ィ匕して 、るか又は担持されて ヽ るかは問題ではない。何れの場合にも、またその混合状態でも排気ガス浄化用触媒 として同様に有効である。
[0023] 貴金属成分が正方晶系複合酸ィ匕物中に固溶体ィ匕している状態とは、正方晶系複 合酸化物の Bサイトの元素の一部が、触媒として作用する貴金属成分、例えばパラジ ゥム成分で置換された状態であり、このような固溶体として、例えば、 Ca Mn Pd O
2 1 4
、Sr Fe Pd O、Sr Mn Pd O等を挙げることができる。このように正方晶系複合
2 1 4 2 1 4
酸ィ匕物の構造内に Pd等の貴金属成分を均一な分散状態で固溶させることにより、触 媒活性として作用するウィンドウを広げることができ、安定した排ガス浄ィ匕性能を確保 できる。なお、上記の固溶体ィ匕する貴金属成分の量を表す Xの値については、 0.01 未満であると貴金属成分による触媒効果が不十分であり、逆に 0.5を超えてもコスト に見合った効果が達成されない。従って、本発明の排気ガス浄化用触媒に用いる一 般式 A B C Oの正方晶系複合酸化物においては xが 0.01〜0.5であることが好ま
2 1 4
しい。
[0024] 本発明の排気ガス浄化用触媒は、上記のように正方晶系複合酸ィ匕物と、少なくとも 表面層が MgAl Oで構成されている耐火性無機酸化物と、貴金属成分とからなるも
2 4
のであってもよいが、一般的には、
セラミックス又は金属材料からなる担体と、該担体上に担持されて!、る上記の本発 明の排気ガス浄ィ匕用触媒の層とからなるものであっても、
セラミックス又は金属材料からなる担体と、該担体上に担持されて!、る上記の正方 晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている耐火性無機酸ィ匕
2 4
物とからなる第一触媒層、又は上記の本発明の排気ガス浄ィ匕用触媒力 なる第一触 媒層と、該第一触媒層上に担持されている貴金属成分担持耐火性無機酸化物から なる第二触媒層と
からなるものであっても、或いは
セラミックス又は金属材料からなる担体と、該担体上に担持されて!、る上記の正方 晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている耐火性無機酸ィ匕
2 4
物とからなる第一触媒層、又は上記の本発明の排気ガス浄ィ匕用触媒力 なる第一触 媒層と、該第一触媒層上に担持されている 2層以上の貴金属成分担持耐火性無機 酸ィ匕物からなる触媒層とからなり、各々の耐火性無機酸ィ匕物に担持されている貴金 属成分の種類が異なって 、るものであってもよ 、。
[0025] 上記のような排気ガス浄ィ匕用触媒においては、セラミックス又は金属材料力もなる 担体の形状は、特に限定されるものではないが、一般的にはハ-カム、板、ペレット 等の形状であり、好ましくはハ-カム形状である。また、このような担体の材質としては 、例えば、ァノレミナ(Al O )、ムライト(3A1 O—2SiO )、コージライト(2M gO— 2Al
2 3 2 3 2
O - 5SiO )等のセラミックスや、ステンレス等の金属材料が挙げられる。なお、コー
2 3 2
ジライト材料は熱膨張係数が 1.0 X 10— 6Z°Cと極めて低いので特に有効である。
[0026] セラミックス又は金属材料力 なる担体に担持された上記の正方晶系複合酸ィ匕物と 少なくとも表面層が MgAl Oで構成されている耐火性無機酸ィ匕物とからなる層又は
2 4
上記の正方晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている耐火
2 4
性無機酸化物と貴金属成分とからなる排気ガス浄化用触媒の層は、上記の正方晶 系複合酸化物及び少なくとも表面層が MgAl Oで構成されている耐火性無機酸ィ匕
2 4
物を含有するスラリー又は上記の排気ガス浄化用触媒の諸成分を含有するスラリー を用いて担体上にゥォッシュコートし、乾燥し、焼成することによって形成される。また 、上記の排気ガス浄化用触媒の層は、担体上に上記の正方晶系複合酸化物及び少 なくとも表面層が MgAl Oで構成されている耐火性無機酸化物を含有する焼成物
2 4
層を形成した後、塩基性貴金属塩水溶液中に浸潰し、所定量の貴金属を担持させ た後、 300〜600°Cで焼成することによつても形成することができる。
[0027] 上記の正方晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている耐火
2 4
性無機酸ィ匕物とからなる層又は上記の排気ガス浄ィ匕用触媒の層の上に担持された 貴金属成分担持耐火性無機酸化物の層、例えば、白金成分担持多孔質アルミナの 層は、耐火性無機酸化物を塩基性貴金属塩水溶液中に浸漬し、所定量の貴金属を 担持させた後、 300〜600°Cで焼成することによって貴金属成分を耐火性無機酸ィ匕 物に担持させた後、この貴金属成分担持耐火性無機酸化物を含有するスラリーを用 いて、上記の正方晶系複合酸ィ匕物と少なくとも表面層が MgAl Oで構成されている
2 4
耐火性無機酸ィ匕物とからなる層又は上記の排気ガス浄ィ匕用触媒の層の上にゥォッ シュコートし、乾燥し、焼成することによって形成される。また、貴金属成分担持耐火 性無機酸化物の層は、耐火性無機酸化物の層を形成させた後、塩基性貴金属塩水 溶液中に浸漬し、所定量の貴金属を担持させた後、 300〜600°Cで焼成することに よっても形成することができる。貴金属成分担持耐火性無機酸化物の層を 2層以上と する場合は上記と同様にして形成することができる力 この場合には各々の貴金属 成分担持耐火性無機酸化物の層の貴金属成分は異なるものとする。
[0028] 本発明の排気ガス浄ィ匕用触媒においては、正方晶系複合酸ィ匕物が Ca MnOであ
2 4 ることが好ましぐ貴金属成分がロジウム、パラジウム又は白金であることが好ましぐ また耐火性無機酸化物が Al O、 SiO、 ZrO、 CeO、 CeO— ZrO複合酸ィ匕物又
2 3 2 2 2 2 2
は CeO -ZrO— Al O複合酸化物であることが好ましい。
2 2 2 3
[0029] 本発明の排気ガス浄化用触媒は自動車等の内燃機関の始動直後の低温域から連 続動作時の高温域までの広範囲において使用されても、優れた耐熱性を得ることが でき、且つ低温活性が高ぐ安定した排ガス浄ィ匕性能を得ることができる。
[0030] 本発明の排気ガス浄化用触媒の製造方法は、アルミナ、塩基性炭酸マグネシウム 及び一般式 A BO (式中、 Aは Ca、 Sr及び Baからなる群力 選択される少なくとも 1
2 4
種を表し、 Bは Mn、 Fe、 Ti、 Sn及び Vからなる群力 選択される少なくとも 1種を表 す)で示される正方晶系複合酸化物を含有するスラリーを、セラミックス又は金属材料 力らなるハ-カム、板、ペレット等の形状の担体上に塗布し、乾燥させ、 300〜600°C で 1〜6時間焼成すること、並びに貴金属成分が固溶体ィヒしている力若しくは貴金属 成分を担持して!/、る正方晶系複合酸化物を用いるか又は焼成後の焼成物を塩基性 貴金属塩の水溶液中に浸漬し、所定量の貴金属を担持させた後、 300〜600°Cで 焼成することからなる。 [0031] また、本発明の排気ガス浄化用触媒の製造方法は、 MgAl O及び一般式 A BO (
2 4 2 4 式中、 Aは Ca、 Sr及び Baからなる群力 選択される少なくとも 1種を表し、 Bは Mn、 F e、 Ti、 Sn及び Vからなる群カゝら選択される少なくとも 1種を表す)で示される正方晶 系複合酸化物を含有するスラリーを、セラミックス又は金属材料カゝらなるハ-カム、板 、ペレット等の形状の担体上に塗布し、乾燥させ、 300〜600°Cで 1〜6時間焼成す ること、並びに貴金属成分が固溶体ィ匕して 、るか若しくは貴金属成分を担持して 、る 正方晶系複合酸ィヒ物を用いるか又は焼成後の焼成物を塩基性貴金属塩の水溶液 中に浸漬し、所定量の貴金属を担持させた後、 300〜600°Cで焼成することからなる 実施例
[0032] 以下に、試験例、実施例及び比較例に基づいて本発明を説明する。
試験例 1〜4
MnCO粉末と CaCO粉末とを 1: 2のモル比となるように純水中で攪拌混合し、そ
3 3
の後約 120°Cで乾燥させ、約 1100°Cで焼成して Ca MnO粉末を得た。なお、 Ca
2 4 2
MnOの生成確認は XRD測定によって行った。
4
[0033] アルミナ粉末と、マグネシウム化合物粉末としての塩基性炭酸マグネシウム粉末 (試 験例 1)、酸ィヒマグネシウム粉末 (試験例 2)、酢酸マグネシウム粉末 (試験例 3)又は 水酸化マグネシウム粉末 (試験例 4)と、上記の Ca MnO粉末とを Al: Mg : Ca=4 : 2
2 4
: 1となる量比で含有するスラリーを調製した。得られた各々のスラリーを 120°Cで乾 燥し、 450°Cで 2時間焼成して焼成物を得た。次いでこれらの焼成物中の Ca MnO
2 4 の反応 ·分解性を調べるために耐久試験として 1000°Cで 6時間焼成した。得られた 各々の生成物の XRDの結果は第 1図に示す通りであった。
[0034] 試験例 5
MgAl O粉末と、実施例 1で得られた Ca MnO粉末とを Al: Ca=4 : 1となる量比
2 4 2 4
で含有するスラリーを調製した。得られたスラリーを 120°Cで乾燥し、 450°Cで 2時間 焼成して焼成物を得た。次いでこの焼成物中の Ca MnOの反応'分解性を調べる
2 4
ために耐久試験として 1000°Cで 6時間焼成した。得られた生成物の XRDの結果は 第 1図に示す通りであった。 [0035] 第 1図から明らかなように、試験例 1及び試験例 5の場合には Ca MnO及び MgAl
2 4
Oのピークは高くて CaMnOのピークは低いが、試験例 2〜4の場合には Ca MnO
2 4 3 2 及び MgAl Oのピークは低くて CaMnOのピークは高い。即ち、アルミナ粉末の各
4 2 4 3
々の粒子の表面が塩基性炭酸マグネシウムとの反応で MgAl Oとなっているか、又
2 4
はアルミナ粉末の各々の粒子全体が MgAl Oで構成されている場合には、 Ca Mn
2 4 2
Oの反応分解は抑制されている。し力し、アルミナ粉末の各々の粒子の表面が MgA
4
1 Oで被覆されていないか又は MgAl Oで不完全に被覆されている場合には、 Ca
2 4 2 4 2
MnOは反応分解して CaMnOが生じており、所期の触媒性能が期待できないこと
4 3
は明らかである。
[0036] 実施例 1
MnCO粉末と CaCO粉末とを 1: 2のモル比となるように純水中で攪拌混合し、更
3 3
に、マンガンの 5モル0 /0にあたる量の硝酸パラジウムを添カ卩した。その後、約 120°C で乾燥させ、約 1100°Cで焼成して Ca MnO粉末を得た。この場合には、パラジウム
2 4
成分は Ca MnOの表面に担持され、その一部が Ca MnO中に固溶体化していた。
2 4 2 4
[0037] また、アルミナ粉末と、塩基性炭酸マグネシウム粉末とを A1: Mg = 2: 1となる量比 で混合し、約 1000°Cで焼成して MgAl O粉末を得た。なお、 Ca MnO及び MgAl
2 4 2 4 2
Oの生成確認は XRD測定によって行った。
4
[0038] 上記で得たパラジウム成分の少なくとも一部が固溶体ィ匕している Ca MnO粉末及
2 4 び MgAl O粉末を含有するスラリーを調製し、このスラリーを 600セル/ inch2のハ-
2 4
カム形状のコージエライト担体の面上にゥォッシュコートした。その後、約 120°Cで乾 燥し、約 500°Cで焼成して第一触媒層を形成した。
[0039] 次に、この第一触媒層上に、白金成分を多孔質アルミナに担持して得た白金担持 アルミナを含有するスラリーをゥォッシュコートし、乾燥し、約 500°Cで焼成して第二触 媒層を形成した。更に、この第二触媒層の上に、ロジウム成分を多孔質アルミナに担 持して得たロジウム担持アルミナを含有するスラリーをゥォッシュコートし、乾燥し、約 500°Cで焼成して第三触媒層を形成して本発明の排気ガス浄化用触媒を得た。
[0040] この排気ガス浄ィ匕用触媒において、マンガンの 5%がパラジウムで置換されるように した。また、ノ《ラジウムの担持量は排気ガス浄ィ匕用触媒の体積 1リットル当たり l.Ogと なるよう〖こし、白金成分及びロジウム成分の担持量は排気ガス浄化用触媒の体積 1リ ットル当たりそれぞれ 0.2gとなるようにした。
[0041] 実施例 2〜8
実施例 1に記載の方法と類似の方法を採用して第 1表に示す排気ガス浄化用触媒 を調製した。
[0042] [表 1]
第 1 表
触 媒 層 成 分 貴金属成分 Cg L) 第 一 触 媒屬 第二触媒層 第三触媒層 P t P d Rh 実施例 2 C a n G_t+Mg 1 Rh/Ά 1 ^Os 0. 2 0. 2 実施例 3 C a ^Mn ,t-..P dK04+M A 1 ; ― 1. 0
実施例 4 C a aMn i-„P d^O^ + Mg A 1 , c P t/A 1 sOs 0- 2 ]·. 0
実施例 5 S r F e C +Mg A l ^O^ P t /A 1303 Rb/A 1 Ξ03 0- 2 0. 2 実施例 6 S r ^ F e ....P dxO^+Mg A I , c 一 1. 0
宾施例 7 S r e i-¾ P d C 十 Mg A ί o4 P ί/Α 1 Ξ03 0- 2 1. 0 - 実施例 8 S r e i-x P d.O^+Mg A 1: 〇 P t /A I sOa R h/A O^ 0. 2 1 0 0. 2 注) 第一触媒層の複合酸化物の xは全て 0. 05である。
[0043] 比較例 1
MnCO粉末と CaCO粉末とを 1: 2のモル比となるように純水中で攪拌混合し、更
3 3
に、マンガンの 5モル0 /0にあたる量の硝酸パラジウムを添カ卩した。その後、約 120°C で乾燥させ、約 1100°Cで焼成して Ca MnO粉末を得た。この場合には、パラジウム 成分は Ca MnOの表面に担持され、その一部が Ca MnO中に固溶体化していた。 なお、 Ca MnOの生成確認は XRD測定によって行った。
[0044] 上記で得たパラジウム成分の少なくとも一部が固溶体ィ匕している Ca MnO粉末及 び多孔質アルミナ粉末を含有するスラリーを調製し、このスラリーを 600セル/ inch2 のハ-カム形状のコージエライト担体の面上にゥォッシュコートした。その後、約 120
°Cで乾燥し、約 500°Cで焼成して第一触媒層を形成した。
[0045] 次に、この第一触媒層上に、白金成分を多孔質アルミナに担持して得た白金担持 アルミナを含有するスラリーをゥォッシュコートし、乾燥し、約 500°Cで焼成して第二触 媒層を形成した。更に、この第二触媒層の上に、ロジウム成分を多孔質アルミナに担 持して得たロジウム担持アルミナを含有するスラリーをゥォッシュコートし、乾燥し、約
500°Cで焼成して第三触媒層を形成して比較用の排気ガス浄ィ匕用触媒を得た。
[0046] この排気ガス浄化用触媒において、マンガンの 5%がパラジウムで置換されるように した。また、パラジウムの担持量は排気ガス浄ィ匕用触媒の体積 1リットル当たり l.Ogと なるよう〖こし、白金成分及びロジウム成分の担持量は排気ガス浄化用触媒の体積 1リ ットル当たりそれぞれ 0.2gとなるようにした。
[0047] 排気ガス浄化性能試験
実施例 1及び比較例 1の排気ガス浄ィ匕用触媒の排気ガス浄ィ匕性能についての評 価試験を行った。
[0048] 実施例 1及び比較例 1の排気ガス浄ィ匕用触媒をそれぞれ 2000ccエンジンに装着 し、 AZFが 13.6〜15.6の範囲内になる条件下で 950°Cで 100時間加熱処理を実 施した。このように加熱処理を実施した両触媒をそれぞれ、 660ccエンジン搭載車両 の排気通路に装着し、 10· 15モード走行をさせた時の排出ガス量 (g/km)を測定し た。その結果を第 2表に示す。
[0049] [表 2]
Figure imgf000013_0001
第 1表に示すデータから明らかなように、上記の正方晶系複合酸化物は、少なくとも 表面層が MgAl Oで構成されている耐火性無機酸化物と共存すると、反応'分解が
2 4
抑制されて所期の触媒性能を維持することができたが、上記の正方晶系複合酸化物 はアルミナと共存すると反応 '分解が生じて触媒活性の低下が生じた。

Claims

請求の範囲
[1] 一般式 A BO (式中、 Aは Ca、 Sr及び Baからなる群力 選択される少なくとも 1種を
2 4
表し、 Bは Mn、 Fe、 Ti、 Sn及び V力 なる群力 選択される少なくとも 1種を表す)で 示される正方晶系複合酸化物と、少なくとも表面層が MgAl Oで構成されている耐
2 4
火性無機酸化物と、該正方晶系複合酸化物中に固溶体化しているか若しくは担持さ れているか又は該耐火性無機酸ィ匕物に担持されている貴金属成分とからなることを 特徴とする排気ガス浄化用触媒。
[2] 上記耐火性無機酸化物の内部がアルミナであり、表面層が MgAl Oで構成されて
2 4
V、る請求項 1記載の排気ガス浄化用触媒。
[3] 上記耐火性無機酸化物全体が MgAl Oで構成されて!ヽる請求項 1記載の排気ガ
2 4
ス浄化用触媒。
[4] 上記正方晶系複合酸化物が Ca MnOである請求項 1〜3の何れかに記載の排気
2 4
ガス浄化用触媒。
[5] セラミックス又は金属材料からなる担体と、該担体上に担持されている請求項 1〜4 の何れかに記載の排気ガス浄化用触媒の層とからなる排気ガス浄化用触媒。
[6] セラミックス又は金属材料からなる担体と、
該担体上に担持されている請求項 1記載の正方晶系複合酸ィ匕物と少なくとも表面 層が MgAl Oで構成されている耐火性無機酸化物とからなる第一触媒層、又は請
2 4
求項 1〜4の何れかに記載の排気ガス浄化用触媒からなる第一触媒層と、
該第一触媒層上に担持されている貴金属成分担持耐火性無機酸化物からなる第 二触媒層と
カゝらなることを特徴とする排気ガス浄ィ匕用触媒。
[7] セラミックス又は金属材料からなる担体と、
該担体上に担持されている請求項 1記載の正方晶系複合酸ィ匕物と少なくとも表面 層が MgAl Oで構成されている耐火性無機酸化物とからなる第一触媒層、又は請
2 4
求項 1〜4の何れかに記載の排気ガス浄化用触媒からなる第一触媒層と、
該第一触媒層上に担持されている 2層以上の貴金属成分担持耐火性無機酸ィ匕物 からなる触媒層と カゝらなり、各々の耐火性無機酸ィ匕物に担持されている貴金属成分の種類が異なって V、ることを特徴とする排気ガス浄化用触媒。
[8] 貴金属成分がロジウム、パラジウム又は白金である請求項 1〜7の何れかに記載の 排気ガス浄化用触媒。
[9] 耐火性無機酸ィ匕物が Al O、 SiO、 ZrO、 CeO、 CeO— ZrO複合酸化物又は
2 3 2 2 2 2 2
CeO -ZrO—Al O複合酸化物である請求項 1〜8の何れかに記載の排気ガス浄
2 2 2 3
化用触媒。
[10] アルミナ、塩基性炭酸マグネシウム及び一般式 A BO (式中、 Aは Ca、 Sr及び Ba
2 4
力 なる群力 選択される少なくとも 1種を表し、 Bは Mn、 Fe、 Ti、 Sn及び Vからなる 群から選択される少なくとも 1種を表す)で示される正方晶系複合酸化物を含有する スラリーを、セラミックス又は金属材料力もなる担体上に塗布し、乾燥させ、 300〜60 0°Cで 1〜6時間焼成すること、並びに貴金属成分が固溶体ィヒしている力若しくは貴 金属成分を担持して!/、る正方晶系複合酸化物を用いるか又は焼成後の焼成物を塩 基性貴金属塩の水溶液中に浸漬し、所定量の貴金属を担持させた後、 300〜600 °Cで焼成することを特徴とする排気ガス浄化用触媒の製造方法。
[11] MgAl O及び一般式 A BO (式中、 Aは Ca、 Sr及び Baからなる群から選択される
2 4 2 4
少なくとも 1種を表し、 Bは Mn、 Fe、 Ti、 Sn及び V力 なる群力 選択される少なくと も 1種を表す)で示される正方晶系複合酸化物を含有するスラリーを、セラミックス又 は金属材料力もなる担体上に塗布し、乾燥させ、 300〜600°Cで 1〜6時間焼成する こと、並びに貴金属成分が固溶体ィ匕して 、る力若しくは貴金属成分を担持して 、る 正方晶系複合酸ィヒ物を用いるか又は焼成後の焼成物を塩基性貴金属塩の水溶液 中に浸漬し、所定量の貴金属を担持させた後、 300〜600°Cで焼成することを特徴 とする排気ガス浄化用触媒の製造方法。
PCT/JP2005/012325 2004-07-16 2005-07-04 排気ガス浄化用触媒及びその製造方法 WO2006008948A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-210367 2004-07-16
JP2004210367A JP3786666B2 (ja) 2004-07-16 2004-07-16 排気ガス浄化用触媒及びその製造方法

Publications (1)

Publication Number Publication Date
WO2006008948A1 true WO2006008948A1 (ja) 2006-01-26

Family

ID=35785068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012325 WO2006008948A1 (ja) 2004-07-16 2005-07-04 排気ガス浄化用触媒及びその製造方法

Country Status (2)

Country Link
JP (1) JP3786666B2 (ja)
WO (1) WO2006008948A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015159403A1 (ja) * 2014-04-17 2015-10-22 三井金属鉱業株式会社 排気ガス浄化用触媒組成物及び排気ガス浄化触媒
JP6181260B1 (ja) * 2016-09-13 2017-08-16 田中貴金属工業株式会社 排ガス浄化用の触媒組成物及び排ガス浄化触媒
RU2712124C1 (ru) * 2019-07-22 2020-01-24 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт химии силикатов им. И.В. Гребенщикова Российской академии наук (ИХС РАН) СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ НАНОКРИСТАЛЛИЧЕСКИХ МЕЗОПОРИСТЫХ ПОРОШКОВ В СИСТЕМЕ CeO2(ZrO2)-Al2O3 ДЛЯ ТРЕХМАРШРУТНЫХ КАТАЛИЗАТОРОВ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150395A (en) * 1976-06-09 1977-12-14 Nippon Soken Exhaust gas scrubbing catalyst compositions
US5906958A (en) * 1995-10-14 1999-05-25 Samsung Electro-Mechanics Co., Ltd. Catalyst for purifying automobile exhausts and method of manufacturing the catalyst
JP2000202245A (ja) * 1999-01-14 2000-07-25 Hitachi Ltd 内燃機関の排ガス浄化方法,排ガス浄化触媒及び排ガス浄化装置
WO2004089538A1 (ja) * 2003-04-10 2004-10-21 Mitsui Mining & Smelting Co. Ltd. 排気ガス浄化用触媒及び正方晶系複合酸化物の製造方法
JP2004359540A (ja) * 2003-05-15 2004-12-24 Honda Motor Co Ltd K2NiF4型複合酸化物及び排ガス浄化触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150395A (en) * 1976-06-09 1977-12-14 Nippon Soken Exhaust gas scrubbing catalyst compositions
US5906958A (en) * 1995-10-14 1999-05-25 Samsung Electro-Mechanics Co., Ltd. Catalyst for purifying automobile exhausts and method of manufacturing the catalyst
JP2000202245A (ja) * 1999-01-14 2000-07-25 Hitachi Ltd 内燃機関の排ガス浄化方法,排ガス浄化触媒及び排ガス浄化装置
WO2004089538A1 (ja) * 2003-04-10 2004-10-21 Mitsui Mining & Smelting Co. Ltd. 排気ガス浄化用触媒及び正方晶系複合酸化物の製造方法
JP2004359540A (ja) * 2003-05-15 2004-12-24 Honda Motor Co Ltd K2NiF4型複合酸化物及び排ガス浄化触媒

Also Published As

Publication number Publication date
JP3786666B2 (ja) 2006-06-14
JP2006026554A (ja) 2006-02-02

Similar Documents

Publication Publication Date Title
JP3498453B2 (ja) 排気ガス浄化用触媒及びその製造方法
KR101688850B1 (ko) 자동차에서 엔진 근처의 위치에서 사용하기 위한 질소 산화물 저장 촉매 컨버터
JP5864443B2 (ja) 排気ガス浄化用触媒
JP2014522726A (ja) ランタニドでドープされたジルコニアを含む触媒および製造方法
JPH0586258B2 (ja)
WO2006124213A1 (en) Alumina-based perovskite catalysts and catalyst supports
JP5674092B2 (ja) 排気ガス浄化用触媒及びその製造方法
US20090124493A1 (en) Catalyst for purifying exhaust gas and method for producing tetragonal system composite oxide
US20100167920A1 (en) Exhaust gas purification catalyst and exhaust gas purification honeycomb structure with catalyst
JPH10286462A (ja) 排気ガス浄化用触媒
JP2013039575A (ja) 排ガス浄化用触媒
JP6339013B2 (ja) 排気ガス浄化触媒用担体、排気ガス浄化用触媒及び排気ガス浄化用触媒構成体
JP2009050791A (ja) 排ガス浄化用触媒
WO2006008948A1 (ja) 排気ガス浄化用触媒及びその製造方法
JP5071840B2 (ja) 排ガス浄化用触媒
JPH09248462A (ja) 排気ガス浄化用触媒
US11633723B2 (en) Exhaust gas purging composition
JPH09248458A (ja) 排ガス浄化用触媒及び排ガス浄化方法
JP4263542B2 (ja) 排ガス浄化用触媒の製造方法
JP5050659B2 (ja) 排ガス浄化触媒
JP2000256017A (ja) 層状ペロブスカイト化合物、窒素酸化物浄化触媒材料及びこれを用いた排ガス浄化用触媒
KR100235029B1 (ko) 팔라듐(Pd) 삼원촉매의 제조방법
JP2000051700A (ja) 排気ガス浄化用触媒及びその製造方法
JP2007117852A (ja) 排ガス浄化用触媒及びその製造方法
JPS62277150A (ja) 排ガス浄化用触媒

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase