WO2006006601A1 - X線画像診断装置 - Google Patents

X線画像診断装置 Download PDF

Info

Publication number
WO2006006601A1
WO2006006601A1 PCT/JP2005/012852 JP2005012852W WO2006006601A1 WO 2006006601 A1 WO2006006601 A1 WO 2006006601A1 JP 2005012852 W JP2005012852 W JP 2005012852W WO 2006006601 A1 WO2006006601 A1 WO 2006006601A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
image
diaphragm
display
diagnostic imaging
Prior art date
Application number
PCT/JP2005/012852
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Ikeda
Ichiro Kobayashi
Kaoru Ban
Katsumi Suzuki
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to JP2006529064A priority Critical patent/JP4812053B2/ja
Publication of WO2006006601A1 publication Critical patent/WO2006006601A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Definitions

  • the present invention relates to an X-ray diagnostic imaging apparatus effective for improving the operability of an X-ray diaphragm.
  • An X-ray diaphragm device that limits the X-ray irradiation field is used in an X-ray fluoroscopic imaging apparatus (for example, JP-A-8-266535, JP-A-2003-116845).
  • This imaging apparatus irradiates X-rays emitted from an X-ray tube device onto a subject lying on a table via an X-ray diaphragm device, and the X-rays transmitted through the subject are image intensifiers. It is detected with an X-ray flat panel detector and visualized and displayed on a monitor.
  • the diaphragm device drives the diaphragm blades on the top, bottom, left and right to block X-rays other than the region of interest out of the X-rays emitted from the X-ray tube device.
  • the field of view after the insertion of the X-ray diaphragm is changed, or the area around the field of view, that is, the area shielded by the X-ray diaphragm is required to be observed. It is necessary to check the situation outside the area.
  • the status of the area where the X-ray diaphragm is inserted cannot be recognized because it is not displayed on the monitor. Therefore, after opening the X-ray diaphragm and checking the status of the area other than the visual field area on the monitor, the visual field area must be changed by controlling the X-ray diaphragm to the desired area.
  • An object of the present invention is to provide an X-ray image diagnostic apparatus in which the operability of the X-ray diaphragm is improved.
  • the X-ray image diagnostic apparatus of the present invention controls an X-ray generator that irradiates a subject with X-rays, and an irradiation region of the X-rays irradiated from the X-ray generator to the subject.
  • An X-ray diaphragm device configured to be capable of interlocking three or more diaphragm blades, an operation information storage means for storing operation information for operating the X-ray diaphragm device in a predetermined control mode, and the memory
  • the aperture operation device for controlling the operation of the X-ray aperture device according to the operated operation information, and the transmitted X-ray of the subject passing through the opening formed by the operation-controlled X-ray aperture device are image data.
  • an X-ray detector that outputs the image data and a display that displays the output image data.
  • the X-ray diaphragm can be efficiently operated by controlling three or more diaphragm blades so as to be interlocked with each other. As a result, the amount of exposure to the subject can be minimized.
  • the X-ray fluoroscopic apparatus of the present embodiment controls an X-ray tube 1 that is an X-ray source and an irradiation range of X-rays emitted from the X-ray tube 1.
  • An aperture device 2 and an X-ray flat panel detector (FPD) 3 that detects an X-ray passing through the subject through the X-ray aperture device 2 and forms an image.
  • the X-ray tube 1 and the X-ray diaphragm 2 constitute an X-ray generation unit and are attached to one end of a support mechanism 4 such as a C-type arm, and the FPD 3 is attached to the other end of the C-type arm.
  • a movable table 5 on which the subject 7 is placed is provided between the X-ray tube 1 and the FPD 3, and the region of interest of the subject 7 is positioned by turning the C-type arm and sliding the table 5. .
  • An image visualized by the FPD 3 is displayed on a display (monitor) 6.
  • An image intensifier (I, L) and a TV camera may be used instead of FPD.
  • the X-ray diaphragm device 2 used in the X-ray fluoroscopic apparatus includes a total of four diaphragm blades 20 (21, 22, 23, 24).
  • the diaphragm blade 20 with lead plate as the main material is the most important blade that sets the X-ray irradiation field to the minimum X-ray irradiation range necessary for diagnosis.
  • Each of the upper, lower, left, and right diaphragm blades 21 to 24 is arranged in a frame shape as shown in FIG. 3, and is independently driven by a motor (not shown).
  • the current positions of the diaphragm blades 21 to 24 are detected by blade position detection means (not shown) and output as position data.
  • the wing position detection means is performed, for example, by detecting the rotational position of the motor. This rotation position can be detected, for example, by using a stepping motor or by detecting the rotation position of the motor using a hall element.
  • the X-ray irradiation field is confirmed without irradiating X-rays by visual observation of the light irradiation field from the lamp 25 provided in the X-ray diaphragm device (FIG. 2).
  • the light emitted from the lamp 25 is reflected by the mirrors 26 and 27, the irradiation range is limited by the diaphragm blade 20, and the light irradiation field obtained by the light flux passing through the diaphragm blade 20 is visually observed.
  • the lamp 25 is turned on by a lighting switch 28.
  • the console 8 controls the operation of the X-ray diaphragm 2, the diaphragm actuator 9, the pivoting of the support mechanism 4, the support mechanism controller 10, the table controller 11 that controls the slide of the table 5, and the X-ray It has an X-ray irradiation switch 12 that controls irradiation.
  • the aperture controller 9 has a joystick shape as shown in FIG. In other words, it has an operating rod 31 that is erected from the console 8, and this operating rod 31 is configured to be freely tiltable in any direction of 360 °, and operates the selected diaphragm blade in accordance with the tiltable direction. be able to. Further, a push switch 32 is provided at the tip of the operation rod 31, and the control mode of the selected diaphragm blades is sequentially switched depending on the number of times the push switch 32 is pressed.
  • FIG. 5 shows a functional block diagram of the diaphragm device.
  • the signal input from the operating device 9 is converted into a necessary control signal by the operating device control unit 41 and input to the aperture control unit 42.
  • the aperture control unit 42 operates the drive motor for the aperture blade 20 that operates the aperture blade 20 or selects the selected aperture.
  • the indicator 44 is arranged in a frame shape on each side of the monitor 6 that displays an X-ray fluoroscopic image, and is composed of lights that are lit in the direction of the selected diaphragm blade.
  • information on which position the diaphragm blade 20 has been moved is output from the diaphragm control unit 42 to the X-ray detector 3 (here, FPD) and the image processing unit 43, and the information on the region limited by the diaphragm blade 20 is output.
  • the image is controlled to be displayed on the monitor 6.
  • Figure 6 (A) — (D) shows the screen of monitor 6 with indicator 44 installed.
  • a small thick frame in the screen is a region of interest, and a frame-shaped indicator 44 is provided at the periphery of the monitor display screen.
  • the indicator 4 4 is configured so that each side corresponding to the selected diaphragm blade can be lit.
  • the upper diaphragm blade is selected, the upper side 44U of the indicator lights (Fig. 6 (B)), and when the left diaphragm blade is selected, the left side 44L of the indicator lights (Fig. 6 (C)).
  • the lower diaphragm blade is selected, the lower side 44D of the indicator lights up.
  • the right diaphragm blade is selected, the right side 44R of the indicator lights up.
  • the left diaphragm blade control mode 52 is entered, and the left side 46L of the indicator is lit as shown in FIG. 6 (C).
  • the left diaphragm blade can be operated by tilting the operation rod 31 left and right.
  • push switch 32 is pressed three times to set all blades (position change) control mode 55.
  • the size of the region of interest composed of the blades is not changed, and only the position is controlled so as to move in any direction according to the operation of the operation rod 31.
  • the operator can grasp the mode by lighting all the indicators 44 on the four sides.
  • the same display as the indicator 44 may be performed at an appropriate position on the image.
  • the indicators on the four sides may blink in the all-blade (position change) control mode and always light in the all-blade (size change) control mode. Or, display with different power error depending on the control mode.
  • the push switch 32 is integrated with the operation rod 31. The same effect can be obtained even if the push switch 32 and the operation rod 31 are provided separately from each other. For example, by using a foot switch instead of the push switch 32, the operation device 9 can be further reduced.
  • Figure 8 shows the relationship between the operating direction of the operating rod and the moving direction of the diaphragm blades.
  • control mode is the upper blade control mode
  • the diaphragm blade 2 1 moves in the direction of the thick arrow.
  • the left, lower and right wings do not move.
  • the left blade, lower blade, and right blade control modes when the operating rod is tilted in the direction shown in the figure, only the corresponding diaphragm blade moves in the direction of the arrow.
  • FIG. 9 is a block diagram showing the control system of the diaphragm blades.
  • the memory of the diaphragm control unit 42 (see FIG. 5) stores a table 62 corresponding to FIG. 8 in which the control mode, the operation direction of the operation rod, and the movement direction of each diaphragm blade are associated with each other.
  • the switch corresponding to the tilted direction is entered among the switches connected to the operating rod, and the operating direction is changed.
  • the signal shown is input to the CPU 61 of the aperture control unit 42.
  • the CPU 61 receives a signal from the operation rod 31 and refers to the table 62, and outputs a drive signal for driving the aperture blade corresponding to the selected control mode and the operation direction of the operation rod to the motor Ml-M4.
  • the control rod is tilted and controlled to move in the direction of the thick arrow while the switch is on.
  • each diaphragm blade stops at that position when all the switches connected to the operating rod are cut.
  • the arrangement direction of the filaments 28 of the lamp 25 is set to 45 ° with respect to the longitudinal directions of the diaphragm blades 21 to 24.
  • a lamp uses a filament as its light source.
  • This filament has a certain length, and conventionally, the filament was arranged along one of the diaphragm blades with the longitudinal direction of the filament aligned.
  • the filaments 28 are arranged so as to have an angle of 45 ° with respect to all the diaphragm blades 21 to 24. Therefore, as shown in Fig. 11 (C), the width Bxy where blurring occurs in the X and Y directions can be made uniform, the contour of the light irradiation field is clarified, and the X-ray irradiation field is made easier. Can be confirmed.
  • FIG. 12 is a schematic functional configuration diagram of the X-ray image diagnostic apparatus of the present embodiment.
  • This X-ray diagnostic imaging apparatus includes an X-ray generator 1 that emits X-rays toward a subject 7 , an X-ray diaphragm 2 that defines an X-ray irradiation range, and an X-ray that passes through the subject 7 An X-ray detector 3 for displaying the image and a monitor 6 for displaying the photographed X-ray image.
  • the X-ray generator 1 has an X-ray tube that generates X-rays.
  • the X-ray generator 1 emits X-rays when a predetermined voltage is applied from the high voltage generation device 100.
  • the diaphragm blades are inserted into the X-ray irradiation field by operating the diaphragm blades, thereby defining the field area.
  • the insertion position of the diaphragm blades of the X-ray diaphragm 2 is detected by the insertion position information detection means and output to the display area calculation means 103 described later.
  • the X-ray detector 3 may be anything that can convert X-rays into image data!
  • an X-ray flat panel detector (FPD) was used.
  • the X-rays that have passed through the subject 7 are converted into visible image data by the FPD control unit and output as digital image data.
  • the output image data is stored in the image memory and updated sequentially for each frame.
  • This image memory includes an entire visual field storage means 101 described later.
  • the X-ray generator 1 and the X-ray detector 3 are supported by support means (not shown), and these positions are configured to be movable with respect to the subject 7 as necessary. Yes.
  • the X-ray fluoroscopic image output as image data by the X-ray detector 3 is displayed on the monitor 6 in real time.
  • the X-ray image diagnostic apparatus of the present embodiment includes the entire visual field region storage means 101, the composite image creation means 102, and the display area calculation means 103.
  • the entire visual field storage means 101 stores a fluoroscopic image of the entire visual field before the X-ray diaphragm 2 is inserted.
  • the composite image creation means 102 includes an entire visual field area image stored in the full visual field storage means 101 and an X-ray aperture. 2 is inserted, and the current fluoroscopic image is added by luminance to create a composite image.
  • the display area calculation means 103 calculates a necessary area of the composite image from the insertion position of the X-ray diaphragm 2 and displays it on the monitor 6 in an enlarged manner.
  • the X-ray generator 3 is roughly aligned with the target region of the procedure (hereinafter referred to as "affected site").
  • X-rays transmitted through the subject 7 are imaged by the X-ray detector 3 and converted into image data by the FPD control unit, and this image data is recorded and updated in the image memory as needed during X-ray irradiation. Is done.
  • the final image at this stage may be stored in the entire visual field storage means 101 as a fluoroscopic image of the entire visual field before the X-ray stop 2 is inserted.
  • the entire visual field storage means 101 stores image data output from the X-ray detector 3 before the insertion of the X-ray diaphragm 2 is started. To do.
  • the visual field region is determined by inserting the X-ray stop 2 into a desired region.
  • a composite image is created.
  • the composite image creating unit 102 displays the entire field area before the X-ray diaphragm 2 stored in the entire field-of-view area storage unit 101 is inserted.
  • the image and the image data output from the X-ray detector 3 when the control command for changing the insertion position of the X-ray aperture 2 is input are added to create a composite image.
  • the control command for changing the insertion position is input, for example, when the full blade (position change) control mode 55 is selected in FIG.
  • FIGS. 13A to 13C are schematic explanatory diagrams showing an image composition operation in the composite image creating means 102.
  • FIG. FIG. 13A shows the entire chest image data (full-field image 201) output from the X-ray detector before the X-ray diaphragm is inserted.
  • the outer frame represents the maximum display area of the monitor 6, and in this example, the entire visual field image 201 is displayed over the entire display area of the monitor. This image data is stored in the entire visual field storage means 101 and can be read out as necessary.
  • FIG. 13B shows a part of the chest output from the X-ray detector 3 when a control command for changing the insertion position of the X-ray diaphragm 2 is input.
  • Image data (field-of-view area image 202) is shown. From these two pieces of image data, the composite image creating means 102 creates composite image data as shown in FIG. 13C.
  • the composite image is an image in which the field-of-view area image is superimposed on the entire field-of-view area image.
  • the ratio of luminance addition of both images (Figs. 13A and 13B) when the composite image data is created by the composite image creation means 102, the overlap of the images in the X-ray aperture when the composite image is displayed on the monitor 6 is explained. Depending on the condition, it can be changed in advance, for example, one-to-one or one-to-two. In the case of 1: 1, the image 202 is displayed twice as brightly as the image 201 in FIG. 2C.
  • the display area calculation means 103 receives the insertion position information in the image from the X-ray diaphragm 2 and the surgeon is defined by the insertion of the X-ray diaphragm 2 among the composite images created by the composite image creation means 102.
  • the optimal image area that helps to change and control the viewing area is displayed on the monitor 6.
  • FIGS. 14A and 14B are schematic explanatory diagrams for illustrating the operation of calculating the display image area.
  • the image in FIG. 14A is a composite image created by the composite image creation means 102 corresponding to FIG. 13C.
  • the display area calculation means 103 sets the display target area outside the position Rin in the image, for example, up to the position Rext in the figure.
  • the display position is determined from the composite image according to the position information from the upper blade, the lower blade, and the left blade of the X-ray diaphragm, and displayed on the monitor 6.
  • the extent to which the X-ray stop insertion position is set as the display target area is determined in advance by the inspection target area.
  • Fig. 14B is an enlarged view of the calculated display area in the maximum display area of the monitor.
  • FIGS. 15A and 15B are schematic diagrams for explaining the operation of displaying a composite image on the display means.
  • FIG. 15A shows a composite image displayed in the maximum display area of the monitor before the X-ray aperture retracting operation is performed. Now, let the portion displayed on the monitor in the X-ray aperture inserted from the left side of the image be Lin. Then, when the X-ray aperture 2 is controlled during the composite image display, the display area calculation means performs the entire image indicated by Dimg. The display area is calculated so that the ratio of the insertion part Lin of the X-ray diaphragm 2 to the area is always constant, and only the necessary area is displayed on the monitor 6.
  • FIG. 15B is a diagram illustrating a state after the left blade of the X-ray diaphragm 2 is controlled to be retracted.
  • the display area is calculated so that the ratio of the aperture insertion portion Lin relative to the entire image area Dimg before the evacuation control and the ratio of the aperture insertion portion Lin 'relative to the entire image area Dimg ′ after the evacuation control are the same.
  • the surgeon can change the position of the diaphragm while viewing the composite image displayed up to the outer area. Therefore, it is possible to check the status of the area other than the current visual field area smoothly without opening the X-ray aperture 2 and irradiating the subject with a wide range of X-rays and checking the entire visual field image.
  • X-ray aperture 2 can be operated.
  • the example in which the fluoroscopic image data immediately before the X-ray diaphragm is inserted is used as the image data stored in the entire visual field storage unit 101. You can also create a composite image using the image data that was taken.
  • FIG. 16 is a schematic functional configuration diagram of the apparatus. Note that the description of the same components as those in FIG. 12 is omitted, and differences will be mainly described.
  • the current fluoroscopic image output from the X-ray detector 3 is normally displayed on the monitor 6.
  • the surgeon inputs a composite image start signal from the image display selection means 104.
  • a composite image is created by the composite image creation means 102 according to the same procedure as in FIG. 12, and the composite image is displayed on the monitor 6.
  • surgeon can arbitrarily select and display the fluoroscopic image on the monitor 6 by switching with the image display selection means 104. For example, even when the X-ray diaphragm 2 is being operated, the current fluoroscopic image output from the X-ray detector 3 can be displayed on the monitor 6 as it is.
  • the output image from the X-ray detector 3 is always displayed on the monitor 6, and the composite image is displayed on the monitor 6 by the image display selection means 104 according to the operator's instruction, and then for a certain time. So that the current fluoroscopic image output from X-ray detector 3 is displayed again after It may be.
  • FIG. 17 is a schematic functional configuration diagram of the apparatus.
  • the perspective image output from the X-ray detector 3 is displayed on the monitor 6 and the synthesized image is created by the synthesized image creating means 102 as in FIG. .
  • the composite image is displayed on the composite image display means 105 different from the monitor 6. Therefore, the surgeon can control the X-ray aperture 2 while comparing the two images of the current fluoroscopic image displayed on the monitor 6 and the composite image displayed on the composite image display means 105.
  • a plurality of windows may be provided in the monitor, and the current fluoroscopic image (normal fluoroscopic image) 301 and composite image 302 may be displayed in each window.
  • the current fluoroscopic image (normal fluoroscopic image) 301 and composite image 302 may be displayed in each window.
  • the display contents of the main window and the display contents of the sub-window may be switched to enable display. According to this configuration, the current fluoroscopic image and the synthesized image can be observed simultaneously on a single monitor.
  • the apparatus configuration in this case is the same as in FIG. 16, but the image display selection means 104 selects whether to display the composite image in the main window or the sub window.
  • FIG. 19 is a schematic functional configuration diagram of the apparatus. The description of the same components as those in FIG. 12 will be omitted, and the description will focus on the differences.
  • This X-ray diagnostic imaging apparatus uses a bed 5 on which a subject is placed, an X-ray generator 1 that irradiates X-rays toward the subject 7, and X-rays that have passed through the subject 7.
  • the bed 5 can be moved up and down, left and right, and back and forth while the subject is placed.
  • each part is detected by the motion sensing means 106.
  • the support means 107 includes a C arm having an X-ray generator 1 at one end and an X-ray detector 3 at the other end, and a horizontal and Z or vertical movement that moves the c arm horizontally and Z or vertically.
  • a drive mechanism In addition, it has a circular movement mechanism that slides the c-arm along the arc of the arm and a rotation mechanism that rotates the c-arm around the horizontal axis. The operations of these units are also detected by the operation sensing means 106.
  • the functions of the X-ray generator 1 and the X-ray detector 3 and the point that the synthesized image is created and the predetermined range can be displayed on the monitor 6 are other embodiments. Is the same.
  • the composite image created by the composite image creation means 102 is displayed on the monitor 6.
  • the motion sensing means 106 stops displaying the composite image created by the composite image creation means 102 on the monitor 6,
  • the current fluoroscopic image output from X-ray detector 3 is displayed.
  • the motion detection means 106 detects the control end signal of the bed 5 or the support means 107 during X-ray irradiation, the entire visual field area storage means 101 once opens the X-ray stop 2 and X-ray detection.
  • the full-field fluoroscopic image output from the output device 3 is updated and stored.
  • the composite image storage unit 102 creates a composite image of the entire visual field perspective image stored and updated in the full visual field region storage unit 101 and the current fluoroscopic image output from the X-ray detector 3. And this composite image is displayed on the monitor 6.
  • the operability of the X-ray diaphragm can be improved if three or more diaphragm blades can be interlocked with a single operating device. More preferably, all the diaphragm blades can be interlocked with one controller. [0067] Further, by making the reference for linking the diaphragm blades not limited to the center of the maximum irradiation field, the size and position of the region of interest can be selected more freely.
  • the operation device is preferably a tiltable switch such as a joystick.
  • the operating device is a tiltable switch that tilts the operating rod in any direction and operates the diaphragm blades in response to the tilted direction.
  • the diaphragm blades can be controlled with good operability by controlling the diaphragm blades to move in the tilted direction.
  • a selection switch for selecting a combination of diaphragm blades operated by a retractable switch.
  • the selection switch it is more preferable to provide an indicator indicating the selected diaphragm blade.
  • a push switch may be provided on the operating shaft head of the tiltable switch. What is necessary is just to comprise so that the aperture blade selected sequentially may be switched by pushing this switch in multiple times.
  • An example of this operation mode switching is ⁇ upper blade ⁇ left blade ⁇ lower blade ⁇ right blade ⁇ all blades (irradiation field position change) ⁇ all blades (irradiation field size change) ⁇ operation prohibition ⁇ upper blade '' Is mentioned.
  • the selection switch may be provided independently instead of being provided integrally with the retractable switch, or may be a switch other than the push switch.
  • a foot switch can be a selection switch.
  • the indicator is selected, and any configuration can be used as long as the aperture blade can be displayed.
  • a configuration in which a frame-shaped lighting member consisting of four sides (upper, lower, left, and right) is provided on the outer periphery of a monitor screen that displays a fluoroscopic image, and the diaphragm blades that are selected when the side that lights up is selected is conceivable.
  • Lamps and LEDs can be used as lighting members.
  • the aperture blades selected with characters or figures may be displayed on the screen.
  • a light projection lamp indicating an X-ray irradiation field is provided, and the light emission source of this lamp is for each side of the light irradiation field defined by the diaphragm blades. It is desirable to be provided with an inclination of 45 °.
  • a filament is used as the light source of the lamp.
  • this light source With an inclination of 45 ° with respect to each side of the light field defined by the diaphragm blades, the length of the filament along each side (projection) Long) is constant. Therefore, The blurring near all sides in the field can be made common, and the X-ray field can be accurately grasped.
  • the diaphragm of the X-ray diagnostic imaging apparatus of the present embodiment can be used for any X-ray apparatus that requires control of the X-ray irradiation range.
  • any general imaging apparatus can be used as well as a DR (Digital Radiography) apparatus that measures an X-ray image as a digital image.
  • DR Digital Radiography
  • the X-ray diagnostic imaging apparatus is capable of displaying a composite image obtained by combining the image of the visual field area after insertion of the X-ray diaphragm and the image of the entire visual field area before insertion of the X-ray diaphragm.
  • the field of view can be moved quickly by reducing the amount of exposure of the subject.
  • the X-ray diagnostic imaging apparatus of the present embodiment switches and displays the fluoroscopic image of the entire visual field and the current fluoroscopic image, so that the operator can check the state of the region other than the visual field at any time. be able to.
  • the X-ray diagnostic imaging apparatus includes a composite image display unit that displays only the composite image created by the composite image creation unit, in addition to the display unit, so that the surgeon can view the visual field image. In addition to this, it is possible to confirm the state of the region other than the visual field region at all times, and to accurately move the visual field region.
  • the X-ray diagnostic imaging apparatus updates the fluoroscopic image of the entire visual field region with the relative movement of the bed, the X-ray generator, and the X-ray detector. It is possible to confirm the area other than the visual field area in the composite image.
  • the apparatus of the present invention can be suitably used as a medical X-ray image diagnostic apparatus.
  • FIG. 1 is a schematic configuration diagram of an X-ray image diagnostic apparatus according to the present embodiment.
  • Figure 2 is a schematic diagram of the diaphragm device.
  • FIG. 3 is a diagram showing the arrangement of aperture blades.
  • FIG. 4 is a perspective view showing the operating device of the diaphragm device of the present invention.
  • FIG. 5 is a functional block diagram of the diaphragm device of the present invention.
  • FIGS. 6A to 6D are diagrams schematically showing a monitor screen on which an indicator is installed.
  • FIG. 7 is a diagram showing an example of the control mode switching order in the diaphragm device of the present embodiment.
  • FIG. 8 is a diagram showing the relationship among the control mode, the operating direction of the operating rod, and the moving direction of the aperture blade in the aperture stop device of this embodiment. .
  • FIG. 9 is a block diagram showing a control system of a diaphragm blade.
  • FIG. 10 is a schematic diagram showing the positional relationship between the diaphragm blades and the lamp filament used in the diaphragm device of the present embodiment.
  • FIGS. 11 (A) to 11 (C) are explanatory diagrams showing the blur of the light irradiation field when the orientation of the filament is parallel, perpendicular, and 45 ° to the diaphragm blade.
  • FIG. 12 is a schematic configuration diagram of an example of the X-ray image diagnostic apparatus according to the present embodiment.
  • FIG. 13A is a schematic explanatory view showing an image composition operation in the composite image creating means.
  • FIG. 13B is a schematic explanatory view showing an image composition operation in the composite image creating means.
  • FIG. 13C is a schematic explanatory view showing an image composition operation in the composite image creating means.
  • FIG. 14A is a schematic explanatory diagram showing the operation of display image calculation in the display area calculation means.
  • FIG. 14B is a schematic explanatory diagram showing the operation of display image calculation in the display area calculation means.
  • FIG. 15A is a schematic explanatory diagram showing an operation of displaying a composite image on the display means.
  • FIG. 15B is a schematic explanatory view showing an operation of displaying a composite image by the display means.
  • FIG. 16 is a schematic configuration diagram of another example of the X-ray image diagnostic apparatus of the present embodiment.
  • FIG. 17 is a schematic configuration diagram of another example of the X-ray image diagnostic apparatus of the present embodiment.
  • FIG. 18 is a schematic diagram when a normal fluoroscopic image and a composite image are simultaneously displayed on a monitor.
  • FIG. 19 is a schematic configuration diagram of another example of the X-ray image diagnostic apparatus of the present embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 本発明のX線画像診断装置は、被検者にX線を照射するX線発生器と、前記X線発生器より照射されるX線の前記被検者への照射領域を制御する、3枚以上の絞り羽根が連動可能に構成されたX線絞り装置と、前記X線絞り装置を所定の制御モードで動作させるための操作情報を記憶する操作情報記憶手段と、前記記憶された操作情報によって前記X線絞り装置を操作制御する絞り操作器と、前記操作制御された前記X線絞り装置によって形成される開口部を透過する前記被検者の透過X線を画像データとして出力するX線検出器と、前記出力された画像データを画像表示する表示器とを有する。

Description

明 細 書
X線画像診断装置
技術分野
[0001] 本出願は、 2004年 7月 13日に出願された日本特許出願第 2004— 206527号、 2 004年 7月 15日に出願された日本特許出願第 2004— 209183号の優先権を主張 し、その内容を参照することにより本出願に取り込む。
[0002] 本発明は、 X線絞りの操作性向上に有効な X線画像診断装置に関する。
背景技術
[0003] 近年、患者に対して外科手術を行わないでカテーテルや内視鏡などの経皮的検査 治具を用いて、血管系病変部や消化器系病変部などを検査又は治療するインター ベンショナルな手技が普及しており、 X線透視撮影装置の透視時間が大幅に増える ことになつた。その結果、透視における被曝低減が重要となり、必要とされる領域以 外の被曝を防ぐための X線絞りの頻繁な操作が求められるようになった。
[0004] X線透視撮影装置にお!ヽて X線照射野を限定する X線絞り装置が用いられて!/ヽる( 例えば特開平 8— 266535,特開 2003— 116845)。この撮影装置は、 X線管装置 カゝら放射される X線を X線絞り装置を介してテーブルに寝載した被検体へ照射し、被 検体を透過した X線をイメージインテンシフアイャゃ X線平面検出器などにより、検出 して可視画像化し、モニタに表示する。その絞り装置では、上下左右の絞り羽根を駆 動して X線管装置カゝら放射される X線のうち関心領域以外の X線を遮断している。
[0005] しかし、上記特許文献は、 X線絞り挿入後の視野領域を変更する場合や、この視野 領域の周辺領域、すなわち X線絞りで遮蔽されている領域の観察が必要な場合、視 野領域以外の状況確認が必要となる。ところが、 X線絞りが挿入されている領域の状 況はモニタに表示されないため認識することができない。そのため、ー且 X線絞りを 開け、視野領域以外の領域の状況もモニタで確認した後、所望の領域へ X線絞りを 制御させて視野領域の変更を行なわなければならない。その結果、上記 X線絞りの 頻繁な操作の要求に対し、 X線絞りの操作に手間がかかる。上記特許文献には、 X 線絞りの操作性の向上にっ 、て何も言及されて 、な 、。 [0006] 本発明の目的は、 X線絞りの操作性が向上される X線画像診断装置を提供すること にある。
発明の開示
課題を解決するための手段
[0007] 本発明の X線画像診断装置は、被検者に X線を照射する X線発生器と、前記 X線 発生器より照射される X線の前記被検者への照射領域を制御する、 3枚以上の絞り 羽根が連動可能に構成された X線絞り装置と、前記 X線絞り装置を所定の制御モー ドで動作させるための操作情報を記憶する操作情報記憶手段と、前記記憶された操 作情報によって前記 X線絞り装置を操作制御する絞り操作器と、前記操作制御され た前記 X線絞り装置によって形成される開口部を透過する前記被検者の透過 X線を 画像データとして出力する X線検出器と、前記出力された画像データを画像表示す る表示器とを有することを特徴とする。
発明の効果
[0008] 本発明によれば、 3枚以上の絞り羽根を連動可能に制御することで、 X線絞りを効 率良く操作することができる。その結果、被検者への被爆量を極力少なくすることが できる。
発明を実施するための最良の形態
[0009] 以下、本発明の実施形態を詳細に説明する。
[0010] 本実施形態の X線透視撮影装置は、図 1に示すように、 X線源である X線管球 1と、 X線管球 1から照射される X線の照射範囲を制御する絞り装置 2と、 X線絞り装置 2を 経て被検体を通った X線を検出して画像にする X線平面検出器 (FPD) 3とを有する 。通常、 X線管球 1と X線絞り 2とは X線発生部を構成して C型アームなどの支持機構 4の一端に取り付けられ、 FPD3は C型アームの他端に取り付けられている。 X線管 球 1と FPD3との間には被検体 7が載せられる可動式のテーブル 5が設けられ、 C型 アームの旋回やテーブル 5のスライドを行って被検体 7の関心領域の位置決めを行う 。 FPD3で可視画像化された画像は、ディスプレイ(モニタ) 6に表示される。 FPDの 替わりにイメージインテンシファイア (I, L)と TVカメラを用いてもよい。 [0011] 上記 X線透視撮影装置に用いられる X線絞り装置 2は、図 2に示すように、合計 4枚 の絞り羽根 20 (21, 22, 23, 24)を具える。鉛板を主材料とした絞り羽根 20は X線照 射野を診断上必要最小限の X線照射範囲に設定する最も重要な羽根である。
[0012] これら上下左右の各絞り羽根 21〜24は、図 3に示すように枠状に配置されており、 各々図示しないモータにより独立に駆動される。各絞り羽根 21〜24の現在の位置は 、羽根位置検出手段(図示せず)により検出されて位置データとして出力される。羽 根位置検出手段としては、例えばモータの回転位置を検知することにより行なう。この 回転位置の検知は、例えばステッピングモータを用いたり、ホール素子によりモータ の回転位置を検知したりすることで行える。もちろん、直接各絞り羽根 21〜24の位置 を検出するセンサを設けてもよ!、。
[0013] 一方、 X線照射野は、 X線絞り装置内に設けられたランプ 25からの光照射野の目 視によって X線を照射せずに確認される(図 2)。つまりランプ 25から照射された光は 、ミラー 26, 27で反射して絞り羽根 20で照射範囲が制限され、この絞り羽根 20を通 過してくる光束によって得られる光照射野を目視することで確認できる。ランプ 25の 点灯は点灯用スィッチ 28により行われる。
[0014] 上記の X線透視撮影装置の操作は、全て遠隔の操作卓 8で行われる。操作卓 8は 、 X線絞り 2の動作を制御する絞り操作器 9、支持機構 4の旋回'スライドを制御する 支持機構操作器 10、テーブル 5のスライドを制御するテーブル操作器 11および X線 の照射を制御する X線照射スィッチ 12を具えている。そのうち、絞り操作器 9は、図 4 に示すように、ジョイスティック状のものである。つまり、操作卓 8から立設される操作 棒 31を有し、この操作棒 31は 360° 任意の方向に可倒自在に構成され、選択され た絞り羽根を可倒方向に対応して動作させることができる。また、操作棒 31の先端に はプッシュスィッチ 32が設けられて、このプッシュスィッチ 32を押す回数により、選択 される絞り羽根の制御モードが順次切り替えられる。
[0015] この絞り装置の機能ブロック図を図 5に示す。
[0016] まず、操作器 9から入力された信号は操作器制御部 41により必要な制御信号へ変 換され、絞り制御部 42に入力される。絞り制御部 42では、この制御信号に応じて、絞 り羽根 20を動作させるベく絞り羽根 20の駆動モータを動作させたり、選択された絞り 羽根 20をインジケータ 44に表示させるように指令する。インジケータ 44は、後述する ように、 X線透視画像を表示するモニタ 6の各辺に枠状に配され、選択された絞り羽 根の方向の点灯するライトで構成される。また、絞り羽根 20をどの位置に動作させた かの情報は、絞り制御部 42から X線検出器 3 (ここでは FPD)と画像処理部 43に出力 され、その絞り羽根により制限された領域の画像がモニタ 6に表示されるように制御さ れる。
[0017] 次に、絞り羽根のより具体的な制御方法を説明する。図 6 (A)— (D)にインジケータ 44が設置されたモニタ 6の画面を示す。画面中の小さい太枠が関心領域であり、こ のモニタ表示画面周縁には枠状のインジケータ 44が設けられて!/、る。インジケータ 4 4は、選択された絞り羽根に対応する各辺が点灯可能に構成されている。例えば、上 絞り羽根が選択された場合は、インジケータの上辺 44Uが点灯し(図 6 (B) )、左絞り 羽根が選択された場合は、インジケータの左辺 44Lが点灯し(図 6 (C) )、下絞り羽根 が選択された場合は、インジケータの下辺 44Dが点灯し、右絞り羽根が選択された 場合は、インジケータの右辺 44Rが点灯する。
[0018] 制御する絞り羽根の選択は、プッシュスィッチ 32 (図 4)を押す回数により、図 7に示 す順に切り替えられる。つまり、上絞り羽根 51→左絞り羽根 52→下絞り羽根 53→右 絞り羽根 54→全絞り羽根(関心領域の位置変更) 55→全絞り羽根(関心領域のサイ ズ変更) 56→操作禁止 57→上絞り羽根 51の順に制御モードを切り替えることができ る。
[0019] 図 6 (A)の状態ではインジケータ 44はどれも点灯しておらず、この状態では!、ずれ の絞り羽根も選択されていないため、操作棒 31を倒してもどの絞り羽根も動力ゝない。
[0020] 次に、プッシュスィッチ 32を 1回押すことにより上絞り羽根の制御モード 51となり、図 6 (B)に示すように、インジケータの上辺 44Uが点灯する。術者はその状態で操作棒 31を上下に倒すことにより上絞り羽根の移動を自由に行うことができる。
[0021] 次に、プッシュスィッチ 32をもう一度押すことにより、左絞り羽根の制御モード 52に なり、図 6 (C)に示すようにインジケータの左辺 46Lが点灯する。同様に左右に操作 棒 31を倒すことにより左絞り羽根の動作を行なうことができる。
[0022] 次に、プッシュスィッチ 32を 3回押して全羽根 (位置変更)制御モード 55とし、 4枚の 羽根で構成された関心領域のサイズは変更せずに、その位置のみを操作棒 31の操 作に応じて任意の方向へ移動するように制御する。この場合は図 6 (D)に示すように 、4辺のインジケータ 44が全て点灯することにより術者はモードを把握することができ る。
[0023] さらに、プッシュスィッチ 32をもう一度押して、全羽根 (サイズ変更)制御モード 57と し、 4辺のインジケータ 44を点滅させた状態で、操作棒 31を上下もしくは左右に倒す ことで、関心領域のサイズを変更することも可能である。例えば、関心領域の中心を 基準に拡大、縮小させても良い。
[0024] その他、この制御モードでプッシュスィッチ 32を押しながら操作棒を上下に倒すこと により関心領域のサイズを関心領域の中心から拡大、縮小するように制御させること も可能である。
[0025] なお、本例ではインジケータ 44を設置した力 モニタ 6の表示エリアが十分確保で きれば、画像上の適宜な位置にインジケータ 44と同様の表示を行っても構わな 、。 また、 4辺のインジケータは全羽根 (位置変更)制御モードで点滅させ、全羽根 (サ ィズ変更)制御モードで常時点灯させてもよい。あるいは、制御モードにより異なる力 ラーで表示するようにしてちょ 、。
[0026] また、プッシュスィッチ 32は操作棒 31と一体になつている力 プッシュスィッチ 32と 操作棒 31は離れた場所に別体に設けても同様の効果が得られる。例えばプッシュス イッチ 32の代わりにフットスィッチを用いることで、操作器 9をさらに小さくすることが可 能となる。
プッシュスィッチの替わりに絞り羽根の各制御モード 51— 57に対応した個別のスィ ツチを設けて切り替えるようにしてもょ 、。
図 8に操作棒の操作方向と絞り羽根の動く方向の関係を示す。
制御モードが上羽根制御モードの場合、操作棒を図示の方向に倒すと、絞り羽根 2 1 (図 3参照)のみが太い矢印の方向に動く。左羽根、下羽根、右羽根は動かない。 左羽根、下羽根、右羽根の各制御モードの場合も同様に、操作棒を図示の方向に 倒すと、対応する絞り羽根のみが太!、矢印の方向に動く。
全羽根 (位置変更)制御モードの場合および全羽根 (サイズ変更)制御モードの場 合、操作棒を倒す方向に応じて、各絞り羽根 21— 24が太い矢印の方向に動く。 図 9は絞り羽根の制御系を示すブロック図である。
絞り制御部 42 (図 5参照)のメモリには、制御モードと操作棒の操作方向と各絞り羽 根の移動方向とを関連付けた図 8に相当するテーブル 62が記憶されている。
例えば、オペレータが全羽根 (位置変更)制御モードを選択し、操作棒 31を所望の 方向に倒すと、操作棒に連結したスィッチのうち、倒された方向に対応するスィッチ が入り、操作方向を示す信号が絞り制御部 42の CPU61に入力される。 CPU61は 操作棒 31からの信号を受け、テーブル 62を参照し、選択された制御モードと操作棒 の操作方向に対応した絞り羽根を駆動する駆動信号をモータ Ml— M4に出力する 各絞り羽根は操作棒が倒され、スィッチが入っている間中、太い矢印の方向に動く ように制御される。操作棒が垂直の位置に戻されたとき操作棒に連結したスィッチが すべて切れると各絞り羽根はその位置で停止する。
[0027] 次に、上記の絞り装置において、 X線照射野を確認するためのランプの配置にェ 夫を施した実施形態を説明する。
[0028] 本例は、図 10に示すように、ランプ 25のフィラメント 28の配置方向を各絞り羽根 21 〜24の長手方向に対して 45° となるようにしている。
[0029] ランプには、通常、その発光源としてフィラメントが用いられて 、る。このフィラメント は一定の長さを有し、従来はいずれかの絞り羽根沿いにフィラメントの長手方向を合 わせて配置されていた。
[0030] 例えば、図 11 (A)に示すように、左右絞り羽根 22, 24にフィラメント 28が平行で、 上下絞り羽根 21, 23にフィラメント 28が直角の場合、絞り羽根で規制された光照射 野の周縁のうち、上下絞り羽根 21, 23で規定される辺の近傍は、フィラメントの X方 向、つまり左右絞り羽根の長手方向に Bxの幅でボケが見られることになる。一方、図 1 KB)に示すように、左右絞り羽根 22, 24で規定される辺の近傍は、 Y方向、つまり 上下絞り羽根の長手方向に Byの幅でボケが見られることになる。そのため、 X方向と Y方向とではボケが生じる幅 Bxと Byとが異なることになつて、光照射野の輪郭が不明 確になりやすい。 [0031] これに対して、本実施形態では、図 10に示すように、全ての絞り羽根 21〜24に対 して 45° の角度となるようにフィラメント 28を配している。そのため、図 11 (C)に示す ように、 X方向と Y方向とではボケが生じる幅 Bxyを一様にすることができ、光照射野 の輪郭を明確化し、 X線照射野を一層容易に確認することができる。
[0032] 次に、視野領域を移動させる際、被検者の被爆量を低減させる実施例について説 明する。
図 12は本実施形態の X線画像診断装置の概略機能構成図である。
この X線画像診断装置は、被検者7に向けて X線を照射する X線発生器 1と、 X線の 照射範囲を規定する X線絞り 2と、被検者 7を透過した X線を画像ィ匕する X線検出器 3 と、撮影した X線画像を表示するモニタ 6とを有する。
[0033] X線発生器 1は、 X線を発生する X線管を有する。 X線発生器 1は、高電圧発生装 置 100からの所定の電圧が印加されることで X線を放出する。
[0034] X線絞り 2は、絞り羽根を動作させることで X線照射野中に絞り羽根を挿入し、視野 領域を規定する。 X線絞り 2の絞り羽根の挿入位置は挿入位置情報検知手段により 検知され、後述する表示領域算出手段 103に出力される。
[0035] X線検出器 3は、 X線を画像データに変換できるものであればよ!、。本例では X線 平面検出器 (FPD)を用いた。被検者 7を透過した X線は、 FPD制御部により可視画 像データに変換され、デジタル画像データとして出力される。出力された画像データ は、画像メモリに記憶され、フレームごとに順次更新される。この画像メモリは、後述 する全視野領域記憶手段 101を含む。
[0036] また、 X線発生器 1および X線検出器 3は、図示しない支持手段により支持されてお り、必要に応じて、これらの位置を被検体 7に対して移動可能に構成している。
[0037] そして、 X線検出器 3で画像データとして出力された X線透視画像は、リアルタイム でモニタ 6に表示される。
[0038] ここで、本実施形態の X線画像診断装置は、全視野領域記憶手段 101と、合成画 像作成手段 102と、表示領域算出手段 103を有している。全視野領域記憶手段 101 は、 X線絞り 2が挿入される前の全視野領域の透視画像を記憶する。合成画像作成 手段 102は、全視野領域記憶手段 101に記憶されて ヽる全視野領域画像と X線絞り 2が挿入されて 、る現在の透視画像とを輝度で加算して合成画像を作成する。表示 領域算出手段 103は、合成画像の必要な領域を X線絞り 2の挿入位置より算出しモ ニタ 6に拡大表示する。
[0039] 次に、本実施形態の X線画像診断装置の動作について説明する。
[0040] まず、 X線発生器 3を手技対象部位 (以降「患部」という)に概略的に位置合わせす る。
[0041] この位置合わせの確認のため、短い X線照射を行う。被検者 7を透過した X線は X 線検出器 3で画像化され、 FPD制御部により画像データに変換されて、この画像デ ータは X線照射中には画像メモリに随時記録、更新される。この段階での最終画像を X線絞り 2が挿入される前の全視野領域の透視画像として全視野領域記憶手段 101 に記憶しても良い。
[0042] 術者によって X線絞り 2の挿入制御が開始されると、全視野領域記憶手段 101は X 線絞り 2が挿入開始される前に X線検出器 3より出力される画像データを記憶する。
[0043] 次に、 X線絞り 2を所望の領域へ挿入して視野領域を決定する。その後、再び術者 によって X線絞り 2の挿入位置を変更して視野領域の位置を変更する場合、合成画 像の作成を行う。つまり、 X線絞り 2の挿入位置を変更する制御命令が入力されると、 合成画像作成手段 102は全視野領域記憶手段 101に記憶されている X線絞り 2が 挿入される前の全視野領域画像と X線絞り 2の挿入位置変更のための制御命令が入 力された時点での X線検出器 3から出力される画像データを加算し合成画像を作成 する。挿入位置を変更する制御命令は、例えば図 7で全羽根 (位置変更)制御モード 55が選択された時、入力される。
[0044] 図 13A— 13Cは、合成画像作成手段 102における画像合成の動作を示す模式説 明図である。図 13Aは X線絞りが挿入される前の X線検出器より出力される胸部全体 の画像データ (全視野領域画像 201)を示す。図中、外枠はモニタ 6の最大表示エリ ァを表わしており、この例では、全視野領域画像 201がモニタの表示エリアいっぱい に表示されている。この画像データは、全視野領域記憶手段 101に記憶されており、 必要に応じて読み出し可能である。一方、図 13Bは X線絞り 2の挿入位置の変更の ための制御命令が入力された際に X線検出器 3より出力された胸部の一部を示す画 像データ (視野領域画像 202)を示している。これら 2枚の画像データより、合成画像 作成手段 102では図 13Cに示すような合成画像データを作成する。合成画像は全 視野領域画像に視野領域画像が重ね合わされた画像で、視野領域の位置はもちろ ん、視野領域以外の領域も表されている。合成画像作成手段 102にて合成画像デ ータを作成する際の両画像(図 13A, 13B)の輝度の加算割合については、モニタ 6 に合成画像を表示した際の X線絞りにおける画像の重なり具合によって適宜、例え ば 1対 1とか、 1対 2といった具合に事前に変更可能とする。 1 : 1の場合は、図 2Cに於 いて、画像 201より、画像 202が 2倍明るく表示される。
[0045] 表示領域算出手段 103は X線絞り 2より画像内への挿入位置情報を受け取り、合成 画像作成手段 102で作成された合成画像のうち、術者が X線絞り 2の挿入により規定 された視野領域を変更制御するための助けとなる最適な画像領域をモニタ 6に表示 する。
[0046] 図 14A, 14Bは表示画像領域算出の動作を示すための模式説明図である。図 14 Aの画像は、図 13Cに相当する合成画像作成手段 102にて作成された合成画像で ある。今、 X線絞りより、例えば画像の右方向力 挿入されている絞り羽根が画像内の 位置 Rinまで挿入されているという情報が送られてきたとする。その場合、表示領域 算出手段 103は画像内の位置 Rinよりも外側、例えば図中の位置 Rextまでを表示 対象領域とする。同様に X線絞りの上羽根、下羽根、左羽根からの位置情報に応じ て合成画像より表示位置を決定し、モニタ 6に表示する。 X線絞りの挿入位置からど の程度外側までを表示対象領域とするかについては、検査対象領域などにより予め 決めておくものとする。
図 14Bは算出された表示領域をモニタの最大表示エリアに拡大表示した図である
[0047] 図 15A, 15Bは、表示手段で合成画像表示の動作を説明するための模式図である 。図 15Aは、 X線絞りの退避動作が行われる前のモニタの最大表示エリアに表示さ れている合成画像の様子を示している。今、画像の左側より挿入されている X線絞り の内、モニタに表示されている部分を Linとする。そして、合成画像表示中において、 X線絞り 2が制御される場合に、表示領域算出手段は、 Dimgで示される画像の全領 域に対する X線絞り 2の挿入部分 Linの割合が常に一定となるように表示領域を算出 し、必要な領域だけをモニタ 6に表示させる。
[0048] 例えば、図 15Bは X線絞り 2の左羽根が退避制御された後の様子を示す図である。
退避制御前の画像全領域 Dimgに対する絞りの挿入部分 Linの割合と、退避制御後 の画像全領域 Dimg'に対する絞りの挿入部分 Lin'の割合が同じになるように表示 領域の算出を行う。術者は X線絞り 2の挿入位置によって、その外側の領域まで表示 された合成画像を見ながら、絞りの位置を変更することができる。そのため、 X線絞り 2を開放し、被検体の広範隨こ X線を照射して全視野画像を確認しなくても、現在の 視野領域以外の領域の状況を確認することができ、スムーズに X線絞り 2の操作を行 うことが可能となる。
[0049] なお、上記実施形態では、全視野領域記憶手段 101に記憶される画像データとし て X線絞りが挿入される直前の透視画像データを用いた例を述べたが、予め同一部 位にて撮影されて 、た画像データを用いて合成画像を作成してもよ 、。
[0050] 次に、術者が視野領域画像と合成画像とを切り替えてモニタに表示できる画像表 示選択手段を有している本実施形態 X線画像診断装置を説明する。図 16は同装置 の概略機能構成図である。なお、図 12と同様の構成要素については、その説明を省 略し、相違点を中心に説明する。
[0051] 本例の装置では、通常、モニタ 6には X線検出器 3より出力される現在の透視画像 が表示される。術者は、 X線絞り 2の操作を行う際、画像表示選択手段 104より合成 画像開始信号を入力する。それにより、図 12と同様の手順に従って合成画像作成手 段 102にて合成画像が作成され、その合成画像がモニタ 6に表示される。
[0052] また、術者は画像表示選択手段 104での切り替えにより、任意にモニタ 6に透視画 像を選択表示させることが可能である。例えば、 X線絞り 2の操作中であっても、 X線 検出器 3より出力される現在の透視画像を、そのままモニタ 6に表示することができる
[0053] その他、常に X線検出器 3からの出力画像をモニタ 6に表示し、操作者の指示によ つて画像表示選択手段 104によりモニタ 6に合成画像を表示した後、ある一定の時 間が経過した後に再び X線検出器 3より出力される現在の透視画像が表示されるよう にしてもよい。
[0054] 次に、モニタとは別に、合成画像作成手段で作成した合成画像のみを表示する合 成画像表示手段を有している本実施形態装置を説明する。図 17は、同装置の概略 機能構成図である。
なお、図 12と同様の構成要素については、その説明を省略し、相違点を中心に説 明する。
[0055] 本例の装置でも、モニタ 6に X線検出器 3より出力される透視画像が表示される点、 および合成画像作成手段 102にて合成画像を作成する点は図 12と同様である。本 例では、この合成画像をモニタ 6とは別の合成画像表示手段 105に表示する点が相 違する。従って、術者は、モニタ 6に表示される現在の透視画像と合成画像表示手段 105に表示される合成画像の 2つの画像を比較しながら X線絞り 2の制御を行うことが できる。
[0056] その他、図 18に示すように、モニタ中に複数のウィンドウを設け、各ウィンドウに現 在の透視画像 (通常透視画像) 301と合成画像 302をそれぞれ表示しても良い。例 えば、メインウィンドウとサブウィンドウをモニタの画面上に表示し、メインウィンドウに 現在の透視画像 301を、サブウィンドウに合成画像 302を表示することが考えられる 。さらに、必要に応じて、メインウィンドウの表示内容とサブウィンドウの表示内容とを 入れ替えて表示可能にしても良い。この構成によれば、現在の透視画像と合成画像 とを単一のモニタ上にて同時に観察できる。
この場合の装置構成は図 16と同様であるが、画像表示選択手段 104によりメインゥ インドウとサブウィンドウのどちらに合成画像を表示するかを選択する。
[0057] 次に、 X線発生器 ·Χ線検出器と、被検体が載せられる寝台との動作に対応して全 視野透視画像を更新することができる本実施形態 X線画像診断装置を説明する。図 19は同装置の概略機能構成図である。なお、図 12と同様の構成要素については、 その説明を省略し、相違点を中心に説明する。
[0058] この X線画像診断装置は被検者を寝載する寝台 5と、被検者 7に向けて X線を照射 する X線発生器 1と、被検者 7を透過した X線を画像ィ匕する X線検出器 3と、これら X 線発生器 1および X線検出器 3を一括して寝台 5に対して移動自在に支持する支持 手段 107と、撮影した X線画像を表示するモニタ 6とを有する。
[0059] 寝台 5は、被検者が載せられた状態で、上下、左右、前後に移動させることができる
。この各部の動作は、各々動作感知手段 106により検出される。
[0060] 支持手段 107は、一端に X線発生器 1が設けられて他端に X線検出器 3を有する C アームと、 cアームを水平および Zまたは垂直方向に動かす水平および Zまたは垂 直駆動機構とを有する。その他、 cアームを同アームの円弧沿いにスライドさせる円 弧動機構と、水平軸を回転軸として cアームを回転させる回転機構も有する。これら の各部の動作も、各々動作感知手段 106で検出される。
[0061] また、この装置において、 X線発生器 1および X線検出器 3の機能、および合成画 像が作成されて、その所定の範囲がモニタ 6上に表示可能な点は他の実施形態と同 様である。
[0062] 本例の装置でも、合成画像作成手段 102にて作成した合成画像は、モニタ 6に表 示される。合成画像表示中に、寝台 5または支持手段 107の制御が術者によって行 われると、動作感知手段 106は、合成画像作成手段 102によって作成された合成画 像のモニタ 6への表示を中止し、 X線検出器 3より出力される現在の透視画像を表示 させる。
[0063] また、動作感知手段 106が X線照射中に寝台 5または支持手段 107の制御終了信 号を検知すると、全視野領域記憶手段 101は、一旦 X線絞り 2を開くと共に、 X線検 出器 3より出力される全視野透視画像を更新して記憶する。
[0064] 次に、合成画像記憶手段 102は、全視野領域記憶手段 101に記憶更新されて ヽ る全視野透視画像と X線検出器 3より出力される現在の透視画像との合成画像を作 成し、この合成画像をモニタ 6に表示する。
[0065] このように動作することにより、寝台 5または支持手段 107の制御が行われたとして も、モニタ 6には常に最新の合成画像が表示され、術者はスムーズに X線絞り 2の操 作を行うことが可能となる。
[0066] 上記実施形態によれば、一つの操作器で 3枚以上の絞り羽根を連動可能に構成す れば、 X線絞りの操作性に向上することができる。より好ましくは一つの操作器で全て の絞り羽根を連動可能に構成することである。 [0067] また、絞り羽根を連動する際の基準を最大照射野の中心に限定されないようにする ことで、より自由な関心領域のサイズと位置の選択を行なうことができる。
[0068] 操作器は、ジョイスティックのような可倒スィッチが好ま ヽ。例えば、操作器は任意 の方向に操作棒を倒して、倒した方向に対応して絞り羽根を動作させる可倒スィッチ とする。この操作棒を傾けることで、傾けた方向に絞り羽根が移動するように制御す れば操作性よく絞り羽根を制御できる。
[0069] さらに、可倒スィッチにて操作する絞り羽根の組み合わせを選択する選択スィッチ を有することが好ましい。選択スィッチを設けた場合、選択された絞り羽根を示すイン ジケータを設けることが一層好適である。選択スィッチの具体例としては、可倒スイツ チの操作軸頭部にプッシュスィッチを設けることが挙げられる。このスィッチを複数回 押すことにより、順次選択される絞り羽根が切り替わるように構成すれば良い。この動 作モード切替の一例としては、「上羽根→左羽根→下羽根→右羽根→全羽根 (照射 野位置変更)→全羽根 (照射野サイズ変更)→操作禁止→上羽根」とすることが挙げ られる。なお、選択スィッチは、可倒スィッチと一体に設けるのではなぐ独立して設 けても構わないし、プッシュスィッチ以外のスィッチであっても構わない。例えば、フッ トスイッチを選択スィッチとすることができる。
[0070] また、インジケータは、選択されて!、る絞り羽根を表示することができれば、特に構 成は問わない。例えば、透視画像を表示するモニタ画面の外周に上下左右の 4辺か らなる枠状の点灯部材を設け、点灯して ヽる辺が選択された絞り羽根を表示するよう にする構成が考えられる。点灯部材は、ランプや LEDなどが利用できる。その他、モ ニタ画面内自体に表示エリアが十分にあれば、画面内に文字や図形などで選択され た絞り羽根を表示してもよ 、。
[0071] さらに、上記の X線画像診断装置において、 X線の照射野を示す投光用ランプを設 け、このランプの発光源が、絞り羽根により規定される光照射野の各辺に対して 45° 傾斜して設けられて 、ることが望ま U、。
[0072] 通常、ランプの発光源にはフィラメントが用いられる。この発光源を絞り羽根により規 定される光照射野の各辺に対して 45° 傾斜して設けることにより、いずれの辺に対し ても、フィラメントが各辺に沿った方向の長さ(投影長)が一定となる。そのため、光照 射野における全ての辺の近傍のボケ方を共通にすることができ、 X線照射野を正確 に把握することができる。
[0073] また、本実施形態の X線画像診断装置の絞りは、 X線の照射範囲の制御が必要な X線装置であればどのようなものにも利用することができる。例えば、 X線画像をデジ タル画像として計測する DR (Digital Radiography)装置はもちろん、一般の撮影 装置いずれであっても利用することができる。
[0074] また、本実施形態の X線画像診断装置は、 X線絞り挿入後の視野領域の画像と X 線絞り挿入前の全視野領域の画像とを合成した合成画像を表示可能にすることで、 従来の装置では X線絞りで遮蔽されて観察できなカゝつた領域の状態を確認すること ができる。そのため、被検者の被爆量を低減して視野領域の移動を迅速に行なうこと ができる。
[0075] また、本実施形態の X線画像診断装置は、全視野領域の透視画像と現在の透視 画像とを切り替えて表示することで、随時術者は視野領域以外の領域の状態を確認 することができる。
[0076] また、本実施形態の X線画像診断装置は、合成画像作成手段で作成した合成画 像のみを表示する合成画像表示手段を前記表示手段とは別に備えることで、術者は 視野画像の他に常時視野領域以外の領域の状態を確認することができ、視野領域 の移動を的確に行うことができる。
[0077] さらに、本実施形態の X線画像診断装置は、寝台と X線発生器および X線検出器 の相対的な位置移動に伴って、全視野領域の透視画像を更新することで、最新の合 成画像にて視野領域以外の領域の確認を行うことができる。
産業上の利用可能性
[0078] 本発明装置は、医療用の X線画像診断装置として好適に利用することができる。
上記記載は実施例についてなされたが、本発明はそれに限らず、本発明の精神と 添付の請求の範囲の範囲内で種々の変更および修正をすることができることは当業 者に明らかである。
図面の簡単な説明
[0079] [図 1]図 1は本実施形態の X線画像診断装置の概略構成図。 圆 2]図 2は絞り装置の概略構成図。
[図 3]図 3は絞り羽根の配置を示す図。
[図 4]図 4は本発明の、絞り装置の操作器を示す斜視図。
[図 5]図 5は本発明の絞り装置の機能ブロック図。
[図 6]図 6 (A)〜(D)はインジケータが設置されたモニタの画面を模式的に示した図。
[図 7]図 7は本実施形態の絞り装置における制御モードの切り替え順の一実施例を示 す図。
圆 8]図 8は本実施形態の絞り装置における制御モードと操作棒の操作方向と絞り羽 根の移動方向の関係を示す図。。
[図 9]図 9は絞り羽根の制御系を示すブロック図。
[図 10]図 10は本実施形態の絞り装置に用いる絞り羽根とランプのフィラメントとの位 置関係を示す模式図。
[図 11]図 11 (A)〜(C)はフィラメントの向きが絞り羽根に対して平行、直角、 45° の 場合の光照射野のボケを示す説明図。
圆 12]図 12は本実施形態の X線画像診断装置の一実施例の概略構成図。
[図 13A]図 13Aは合成画像作成手段における画像合成の動作を示す模式説明図。
[図 13B]図 13Bは合成画像作成手段における画像合成の動作を示す模式説明図。
[図 13C]図 13Cは合成画像作成手段における画像合成の動作を示す模式説明図。 圆 14A]図 14Aは表示領域算出手段における表示画像算出の動作を示す模式説明 図。
圆 14B]図 14Bは表示領域算出手段における表示画像算出の動作を示す模式説明 図。
[図 15A]図 15Aは表示手段で合成画像表示の動作を示す模式説明図。
[図 15B]図 15Bは表示手段で合成画像表示の動作を示す模式説明図。
圆 16]図 16は本実施形態の X線画像診断装置の他の実施例の概略構成図。
圆 17]図 17は本実施形態の X線画像診断装置の他の実施例の概略構成図。
[図 18]図 18はモニタに通常の透視画像と合成画像を同時に表示させた場合の模式 図。 [図 19]図 19は本実施形態の X線画像診断装置の他の実施例の概略構成図。

Claims

請求の範囲
[1] 被検者に X線を照射する X線発生器と、
前記 X線発生器より照射される X線の前記被検者への照射領域を制御する、 3枚以 上の絞り羽根が連動可能に構成された X線絞り装置と、
前記 X線絞り装置を所定の制御モードで動作させるための操作情報を記憶する操 作情報記憶手段と、
前記記憶された操作情報によって前記 X線絞り装置を操作制御する絞り操作器と、 前記操作制御された前記 X線絞り装置によって形成される開口部を透過する前記 被検者の透過 X線を画像データとして出力する X線検出器と、
前記出力された画像データを画像表示する表示器とを有する X線画像診断装置。
[2] 前記絞り操作器が、
前記 X線絞り装置の制御モードを選択する制御モード選択部と、
前記絞り操作器に立設され、かつ任意の方向に可倒自在に構成される操作棒と、 該操作棒が倒された方向に対応し前記 X線絞り装置に対して駆動信号を出力する 信号処理部と、
を含む、請求項 1に記載の X線画像診断装置。
[3] 前記操作情報記憶手段が、前記 X線絞り装置の制御モードと前記操作棒の倒され る方向と絞り羽根の移動方向とが関連付けられたテーブルを記憶する、請求項 2に 記載の X線画像診断装置。
[4] 前記制御モード選択部が前記操作棒の端部に設けられた、請求項 2に記載の X線 画像診断装置。
[5] 前記制御モード選択部が前記操作棒と別体に設けられた、請求項 2に記載の X線 画像診断装置。
[6] 前記制御モード選択部がスィッチで構成され、そのスィッチを操作する回数によつ て前記制御モードを順次切り替える、請求項 4、 5に記載の X線画像診断装置。
[7] 前記スィッチが所定回数操作され、前記 3枚以上の絞り羽根を全て連動させる全羽 根位置変更モードとし、さらに前記スィッチを操作して全羽根サイズ変更モードとする 、請求項 6に記載の X線画像診断装置。
[8] 前記スィッチが操作された状態で前記操作棒を倒すことで全羽根サイズ変更モー ドとする、請求項 6に記載の X線画像診断装置。
[9] 前記表示器に近接して配置され前記制御モード選択部によって選択されたモード に対応する絞り羽根を示すインジケータを有する、請求項 1に記載の X線画像診断 装置。
[10] 前記インジケータは前記表示器の表示画面周縁に設けられた、請求項 9に記載の X線画像診断装置。
[11] 前記インジケータは、前記絞り操作器によって選択された制御モードに対応して点 灯、および点滅制御される、請求項 9に記載の X線画像診断装置。
[12] 前記 X線絞り装置は、 X線の照射野を示す投光用ランプを有し、該ランプの発光源 力 絞り羽根により規定される光照射野の各辺に対して 45° 傾斜して配設されてい る、請求項 1に記載の X線画像診断装置。
[13] 前記 X線絞り装置が挿入される前の全視野領域の画像を記憶する全視野領域記 憶手段と、
前記全視野領域記憶手段に記憶されている全視野領域画像と前記 X線絞り装置 が挿入されている状態の画像とを合成した合成画像を作成する合成画像作成手段と 前記合成画像の必要な領域を前記 X線絞り装置の挿入位置により算出して前記表 示器に表示させる表示領域算出手段と、
を更に含む、請求項 1に記載の X線画像診断装置。
[14] 全視野領域の画像と前記 X線絞り装置が挿入されて ヽる状態の画像とを切り替え て前記表示器に表示する画像表示選択手段を更に含む、請求項 13に記載の X線 画像診断装置。
[15] 前記表示器とは別に、前記合成画像作成手段によって作成された画像を表示する 表示装置を含む、請求項 13に記載の X線画像診断装置。
[16] 前記表示器が全視野領域の画像と前記 X線絞り装置が挿入されて ヽる状態の画像 とをそれぞれ表示する複数のウィンドウを前記表示器に表示する手段を含む、請求 項 13に記載の X線画像診断装置。 被検者を載せて移動可能な寝台と、
前記 X線発生器と前記 X線検出器を前記被検者に対して可動自在に支持する支 持手段と、
前記寝台および前記支持手段の少なくとも一方の駆動状態を検知する駆動状態 検知手段とを更に含み、
前記全視野領域記憶手段は、前記駆動状態検知手段の検知結果に基づいて、前 記寝台または前記支持手段の駆動後における全視野領域の透視画像を再度取得し て更新する、請求項 13に記載の X線画像診断装置。
PCT/JP2005/012852 2004-07-13 2005-07-12 X線画像診断装置 WO2006006601A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006529064A JP4812053B2 (ja) 2004-07-13 2005-07-12 X線画像診断装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-206527 2004-07-13
JP2004206527 2004-07-13
JP2004-209183 2004-07-15
JP2004209183 2004-07-15

Publications (1)

Publication Number Publication Date
WO2006006601A1 true WO2006006601A1 (ja) 2006-01-19

Family

ID=35783940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012852 WO2006006601A1 (ja) 2004-07-13 2005-07-12 X線画像診断装置

Country Status (2)

Country Link
JP (1) JP4812053B2 (ja)
WO (1) WO2006006601A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000220A (ja) * 2006-06-20 2008-01-10 Toshiba Corp X線診断装置、その制御方法及びプログラム
JP2010187812A (ja) * 2009-02-17 2010-09-02 Hitachi Medical Corp 医用寝台装置
JP2012245103A (ja) * 2011-05-26 2012-12-13 Toshiba Corp X線診断装置
WO2013051356A1 (ja) * 2011-10-07 2013-04-11 株式会社 東芝 X線診断装置
JP2014004357A (ja) * 2012-06-25 2014-01-16 General Electric Co <Ge> 画像表示方法
JP2014217615A (ja) * 2013-05-09 2014-11-20 株式会社東芝 X線診断装置
JP2020130239A (ja) * 2019-02-13 2020-08-31 キヤノンメディカルシステムズ株式会社 X線診断装置及びコンソール装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596143A (en) * 1979-01-19 1980-07-22 Tokyo Shibaura Electric Co Xxray positioning device
JPS57157945U (ja) * 1981-03-31 1982-10-04
JPH06142097A (ja) * 1992-11-06 1994-05-24 Hitachi Medical Corp X線診断装置
JP2004089699A (ja) * 2002-07-08 2004-03-25 Toshiba Corp X線診断装置およびx線画像の収集方法
JP2004105568A (ja) * 2002-09-20 2004-04-08 Toshiba Corp X線診断装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596143A (en) * 1979-01-19 1980-07-22 Tokyo Shibaura Electric Co Xxray positioning device
JPS57157945U (ja) * 1981-03-31 1982-10-04
JPH06142097A (ja) * 1992-11-06 1994-05-24 Hitachi Medical Corp X線診断装置
JP2004089699A (ja) * 2002-07-08 2004-03-25 Toshiba Corp X線診断装置およびx線画像の収集方法
JP2004105568A (ja) * 2002-09-20 2004-04-08 Toshiba Corp X線診断装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008000220A (ja) * 2006-06-20 2008-01-10 Toshiba Corp X線診断装置、その制御方法及びプログラム
JP2010187812A (ja) * 2009-02-17 2010-09-02 Hitachi Medical Corp 医用寝台装置
JP2012245103A (ja) * 2011-05-26 2012-12-13 Toshiba Corp X線診断装置
WO2013051356A1 (ja) * 2011-10-07 2013-04-11 株式会社 東芝 X線診断装置
JP2013090912A (ja) * 2011-10-07 2013-05-16 Toshiba Corp X線診断装置
US8903041B2 (en) 2011-10-07 2014-12-02 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus
US9131908B2 (en) 2011-10-07 2015-09-15 Kabushiki Kaisha Toshiba X-ray diagnostic apparatus
JP2014004357A (ja) * 2012-06-25 2014-01-16 General Electric Co <Ge> 画像表示方法
JP2014217615A (ja) * 2013-05-09 2014-11-20 株式会社東芝 X線診断装置
JP2020130239A (ja) * 2019-02-13 2020-08-31 キヤノンメディカルシステムズ株式会社 X線診断装置及びコンソール装置
JP7321718B2 (ja) 2019-02-13 2023-08-07 キヤノンメディカルシステムズ株式会社 X線診断装置及びコンソール装置

Also Published As

Publication number Publication date
JP4812053B2 (ja) 2011-11-09
JPWO2006006601A1 (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4812053B2 (ja) X線画像診断装置
JP6157818B2 (ja) X線診断装置
US5740222A (en) Radiation computed tomography apparatus
JP4307406B2 (ja) 医療用x線撮影装置及びこれに用いるx線検出器
JP2006239126A (ja) X線診断装置
JP2002238888A (ja) 医用x線装置
JP2001204720A (ja) X線検査装置
CN100551331C (zh) X射线图像诊断装置
JP6540399B2 (ja) 放射線透視撮影装置
JP4503385B2 (ja) X線撮影装置
JP5004416B2 (ja) 医用x線透視撮影装置
JP2004313739A (ja) X線撮像装置
JP2003135439A (ja) アーム搭載型x線撮影装置
JP4016636B2 (ja) アーム搭載型x線撮影装置
JP5945991B2 (ja) 放射線撮影装置
JP2011167295A (ja) 放射線撮影装置
JP2009153579A (ja) X線ct装置および医用撮像システム
JPH11299766A (ja) X線診断装置
JP4461666B2 (ja) X線透視撮影装置
JP2006325956A (ja) 画像診断装置
JP6544130B2 (ja) コンソールおよびそれを備えた放射線撮影装置
JP7098319B2 (ja) X線診断装置
JP2008148982A (ja) X線画像診断装置
JP4489086B2 (ja) X線診断装置
JP4490982B2 (ja) X線診断装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529064

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580023407.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase