WO2006006368A1 - Method for manufacturing thin film photoelectric converter - Google Patents

Method for manufacturing thin film photoelectric converter Download PDF

Info

Publication number
WO2006006368A1
WO2006006368A1 PCT/JP2005/011554 JP2005011554W WO2006006368A1 WO 2006006368 A1 WO2006006368 A1 WO 2006006368A1 JP 2005011554 W JP2005011554 W JP 2005011554W WO 2006006368 A1 WO2006006368 A1 WO 2006006368A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
type
type semiconductor
thin film
Prior art date
Application number
PCT/JP2005/011554
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuru Ichikawa
Toru Sawada
Kenji Yamamoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2006528597A priority Critical patent/JPWO2006006368A1/en
Publication of WO2006006368A1 publication Critical patent/WO2006006368A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a thin film photoelectric conversion device, and more particularly to a method for manufacturing a silicon thin film photoelectric conversion device including an amorphous silicon photoelectric conversion layer.
  • crystalline and “microcrystal” in the present specification include those that partially include amorphous material.
  • a thin film photoelectric conversion device that has almost no problem in terms of resources has attracted attention and has been vigorously developed.
  • Thin film photoelectric conversion devices are expected to be applied to various applications such as solar cells, photosensors, and displays.
  • An amorphous silicon photoelectric conversion device which is one of the thin film photoelectric conversion devices, can be formed on a large-area glass substrate or stainless steel substrate at a low temperature, so that cost reduction can be expected.
  • a thin film photoelectric conversion device generally includes a first electrode, a surface of which is sequentially laminated on an insulating substrate, one or more semiconductor thin film photoelectric conversion units, and a second electrode.
  • One thin film photoelectric conversion unit consists of an i-type photoelectric conversion layer, which is a substantially intrinsic semiconductor photoelectric conversion layer sandwiched between a P-type semiconductor layer and an n-type semiconductor layer.
  • the i-type photoelectric conversion layer that occupies the main part is amorphous.
  • Those having a high quality are called amorphous photoelectric conversion units or amorphous thin-film solar cells, and those having an i-type photoelectric conversion layer crystalline are called crystalline photoelectric conversion units or crystalline thin-film solar cells.
  • the p-type semiconductor layer and the n-type semiconductor layer play a role of generating a diffusion potential in the photoelectric conversion unit, and the value of the open-circuit voltage, which is an important characteristic of the photoelectric conversion device, depends on the magnitude of the diffusion potential. It depends.
  • the high frequency plasma CVD method is used to form the P-type layer.
  • amorphous silicon carnoid is obtained by using a doping gas such as silane-based gas, hydrogen gas, and diborane as a source gas, and a hydrocarbon-based gas such as methane or ethylene.
  • a doping gas such as silane-based gas, hydrogen gas, and diborane
  • a hydrocarbon-based gas such as methane or ethylene.
  • the pressure in the reaction chamber during the formation of the p-type layer is usually about 1 Torr or less.
  • Patent Document 1 describes a method for forming a p-type semiconductor layer of an amorphous silicon thin film photoelectric conversion device. It has been shown that a P-type semiconductor layer is formed by plasma CVD with the pressure in the reaction chamber set to lTorr.
  • Patent Document 2 A method of manufacturing a silicon-based photoelectric conversion device under relatively high pressure conditions is disclosed in Patent Document 2, for example.
  • the pressure of the i-type photoelectric conversion layer, iZn interface layer and pZi interface layer in the amorphous silicon photoelectric conversion device is 0.5 Torr or higher, and the substrate temperature is higher than 80 ° C and lower than 250 ° C.
  • the above-described forming method is intended to improve the photoelectric conversion layer, and there is no description that it can be applied to a conductive type layer such as a p-type layer.
  • Patent Document 3 shows that an amorphous silicon-based thin film photoelectric conversion device is formed under a relatively high pressure condition.
  • each semiconductor layer of an amorphous silicon-based photoelectric conversion device has a partial pressure of a silane-based gas, which is a source gas of a reaction gas, set to 1.2 Torr or more and 5.0 Torr or less, and a distance between electrodes is 8 mm or more. It is described that the characteristics after irradiation of amorphous silicon-based thin film photoelectric conversion devices are improved by manufacturing under conditions of 15 mm or less. This document describes that the flow rate ratio of dilution gas such as hydrogen to source gas is 4 times or less. And limited to low ⁇ conditions.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-326992
  • Patent Document 2 Japanese Patent Publication No. 9 512665
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-252484
  • a transparent conductive oxide layer such as an acid oxide tin (SnO) is generally used as the first electrode laminated thereon Force S is used.
  • a p-type layer is directly deposited on such a transparent conductive oxide layer, it can be reduced by a large amount of hydrogen ions if it is formed by plasma CVD using a silane-based gas diluted at high magnification with hydrogen gas or the like. Under strong plasma conditions, the transparent conductive oxide layer is reduced and its transparency is lowered.
  • the p-type layer is deposited on the transparent conductive oxide layer under plasma conditions, such as by reducing the flow ratio of the diluting gas such as hydrogen gas to the silane-based gas, doping with hydrocarbon gas such as diborane Decomposition of gas is not promoted, and electrical properties, such as optical forbidden band width, decrease, and the characteristics of the photoelectric conversion device deteriorate.
  • the diluting gas such as hydrogen gas
  • the silane-based gas doping with hydrocarbon gas such as diborane Decomposition of gas is not promoted, and electrical properties, such as optical forbidden band width, decrease, and the characteristics of the photoelectric conversion device deteriorate.
  • the present invention provides a method for producing a p-type layer of a photoelectric conversion device that suppresses reduction of a transparent conductive oxide layer used as an underlayer and has good performance. It is intended to provide.
  • a silicon-based thin film photoelectric conversion device is arranged in the order of a transparent conductive oxide layer, a P-type semiconductor layer, a substantially intrinsic semiconductor photoelectric conversion layer, and an n-type semiconductor layer from the light incident direction.
  • the p-type layer is formed by a plasma CVD method using a dilute gas containing at least a silane-based gas and hydrogen, and the formation pressure is in the range of 2 Torr to 5 Torr.
  • the flow rate ratio of the dilution gas to the silane-based gas is 5 to 50 times.
  • the flow rate ratio between the source gas and the dilution gas by hydrogen and the pressure at the time of formation are kept within a predetermined range, so that the plasma can be efficiently confined between the electrodes.
  • the flow rate ratio of the dilution gas to the silane gas is large to some extent, the reduction of the transparent conductive oxide layer that is the underlayer can be suppressed.
  • the reason why the pressure during formation in the CVD reaction chamber is 2 Torr or more and 5 Torr or less is as follows.
  • the plasma is not confined efficiently, and the decomposition of the raw material gas cannot be promoted, so that the electrical and optical properties of the formed thin film are also deteriorated. This is because the film thickness uniformity of the thin film becomes poor, and a large amount of powder-like products and dust are generated in the reaction chamber.
  • the present inventors have changed the pressure in the CVD reaction chamber from lTorr to lOTorr to make a p-type semiconductor. After forming the layer, the conductivity of the p-type semiconductor layer was measured. As a result, less than 2 Torr, with respect to for example the conductivity of the thin film was formed to have a thickness of about 1 mu m on the glass in a reaction chamber pressure of lTorr was 7 X 10- 7 SZcm, 2Torr above, for example 3Torr of one order of magnitude compared react conductivity of the thin film was formed to have a thickness of about 1 mu m on a glass chamber pressure is 5 X 10- 6 SZcm next, the conductivity of the thin film formed in a reaction chamber pressure of less than 2Torr It became big.
  • the flow rate ratio of the dilution gas to the silane-based gas is 5 times or more and 50 times or less. If the flow rate ratio is 5 times or less, the electrical characteristics required for the conductive layer of the photoelectric conversion device can be obtained. This is because if the ratio exceeds 50 times, the transparent conductive oxide layer, which is the underlayer, is reduced by the dilute gas containing hydrogen even under a high pressure in the reaction chamber.
  • reducing damage to the underlayer when forming a p-type semiconductor layer is reduced, and a thin-film silicon-based photoelectric conversion device having a p-type semiconductor layer with excellent film quality is formed. And a highly efficient photoelectric conversion device can be manufactured.
  • FIG. 1 is a structural sectional view of a photoelectric conversion device according to a first embodiment of the present invention.
  • FIG. 2 is a structural sectional view of a stacked photoelectric conversion device according to a second embodiment of the present invention.
  • 311 p-type semiconductor layer which is one conductivity type layer in the front photoelectric conversion unit
  • a substantially intrinsic semiconductor photoelectric conversion layer that is a photoelectric conversion layer in the front photoelectric conversion unit
  • 313 n-type semiconductor layer which is a reverse conductivity type layer in the front photoelectric conversion unit
  • 321 p-type semiconductor layer which is one conductivity type layer in the rear photoelectric conversion unit
  • a substantially intrinsic semiconductor crystalline silicon photoelectric conversion layer that is a photoelectric conversion layer in the rear photoelectric conversion unit 323 n-type semiconductor layer that is the reverse conductivity type layer in the back photoelectric conversion unit 4 Back electrode layer
  • FIG. 1 shows a cross-sectional view of a photoelectric conversion device according to an example of an embodiment of the present invention.
  • transparent substrate 1 transparent conductive oxide layer 2, p-type semiconductor layer 311 disposed in front, substantially intrinsic semiconductor photoelectric conversion layer 312, n-type semiconductor layer 313 disposed in the rear, and back electrode layer They are arranged in the order of 4.
  • Transparent conductive oxide layer 2 is made of conductive metal oxide such as SnO and uses methods such as CVD, sputtering and vapor deposition.
  • the transparent conductive oxide layer 2 has an effect of increasing the scattering of incident light by having fine irregularities on its surface.
  • a p-type semiconductor layer 311, a substantially intrinsic semiconductor photoelectric conversion layer 312 and an n-type semiconductor layer 313 are sequentially formed on the transparent conductive oxide layer 2, and are formed by a plasma CVD method.
  • the layer 311 has a plasma CVD reaction chamber pressure of 2 Torr or more and 5 Torr or less, and a silane-based gas and a diluent gas containing hydrogen are used as the main components of the source gas introduced into the CVD reaction chamber. It is formed under the condition that the flow rate ratio of the dilution gas is 5 times or more and 50 times or less.
  • boron which is a conductivity determining impurity atom is 0.
  • a p-type amorphous silicon thin film doped with 01 atomic% or more can be used.
  • these conditions for the p-type semiconductor layer 311 are not limited.
  • aluminum may be used as an impurity atom, and an alloy material layer such as amorphous silicon carbide or amorphous silicon germanium is used.
  • an alloy material layer such as amorphous silicon carbide or amorphous silicon germanium is used.
  • the substantially intrinsic semiconductor photoelectric conversion layer 312 is a non-doped amorphous silicon thin film.
  • a silicon-based thin film material that is sufficiently p-type or weak-n-type and has sufficient photoelectric conversion efficiency can be used.
  • the intrinsic semiconductor photoelectric conversion layer 312 is not limited to these materials, and a layer of an alloy material such as amorphous silicon carbide or amorphous silicon germanium may be used.
  • n-type semiconductor layer 313 for example, an n-type amorphous silicon thin film doped with 0.01 atomic% or more of phosphorus, which is a conductivity determining impurity atom, may be used.
  • these conditions for the n-type semiconductor layer 313 are not limited, even if a microcrystalline silicon thin film or a layer of an alloy material such as amorphous silicon carnoid or amorphous silicon germanium is used. Good.
  • the back electrode layer 4 it is preferable to form at least one metal layer having at least one material force selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Further, a layer made of a conductive oxide such as ITO, Sn02, or ZnO may be formed between the photoelectric conversion unit and the back electrode! / ⁇ (not shown).
  • a conductive oxide such as ITO, Sn02, or ZnO
  • the transparent conductive oxide layer 2 is formed on the transparent substrate 1 in the same manner as the transparent conductive oxide layer of FIG.
  • a p-type semiconductor layer 311, a substantially intrinsic semiconductor amorphous silicon photoelectric conversion layer 312, and an n-type semiconductor layer 31 3 are sequentially stacked by a plasma CVD method.
  • An amorphous photoelectric conversion unit 31 containing is formed.
  • This tandem photoelectric conversion device further includes a p-type semiconductor layer 321, a substantially intrinsic semiconductor crystalline photoelectric conversion layer 322, and an n-type semiconductor layer 323 on the amorphous photoelectric conversion unit 31.
  • a crystalline photoelectric conversion unit 32 is formed.
  • the back electrode layer 4 is formed on the crystalline photoelectric conversion unit 32 in the same manner as in FIG. 1, and the tandem-type thin film silicon photoelectric conversion device as shown in FIG. 2 is completed.
  • silicon-based thin-film solar cells as silicon-based thin-film photoelectric conversion devices according to some embodiments of the present invention will be described together with solar cells according to comparative examples.
  • an amorphous silicon solar cell as Example 1 was fabricated. Glass was used for the substrate 1 and SnO was used for the transparent conductive oxide layer 2. On top of this, boron-doped p-type silicon carbide, a p-type semiconductor layer
  • the (SiC) layer 311 was formed by plasma CVD with a thickness of 10 nm, the non-doped amorphous silicon photoelectric conversion layer 312 with a thickness of 300 nm, and the phosphorus-doped n-type microcrystalline silicon layer 313 with a thickness of 20 nm. As a result, a pin junction amorphous silicon photoelectric conversion unit was formed. Furthermore, as the back electrode layer 4, a ZnO film having a thickness of 80 nm and an Ag film having a thickness of 300 nm were formed by sputtering.
  • the p-type silicon carbide layer 311 was deposited by a parallel plate type high-frequency plasma CVD method.
  • the film formation conditions were as follows: the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, and the reaction chamber pressure was 3 Torr. Silane, methane, diborane, and hydrogen are used as source gases introduced into the plasma CVD reaction chamber, and the flow rate ratio of these gases is 1.6 for methane and 0.01 for diborane relative to silane 1. , Hydrogen was set to 14. Further, dark conductivity of p-type silicon carbide film 600nm formed into a film on glass 5 X 10- 6 SZcm, optical conductivities was 7 X 10- 6 SZcm in this condition.
  • Example 1 An amorphous silicon solar cell having the structure shown in FIG. 1 was produced. Except for the film forming conditions of the p-type silicon carbide layer 311, it was exactly the same as Example 1.
  • the p-type silicon carbide layer was deposited by a parallel plate type high-frequency plasma CVD method. Regarding the film forming conditions at that time, the excitation frequency of the plasma was 27.12 MHz, the substrate temperature was 190 ° C, the pressure in the reaction chamber was lTorr, and the flow rate ratio of the source gas introduced into the reaction chamber was silane 1. In contrast, methane was 1.6, diborane was 0.01, and hydrogen was set to 14. Further, dark conductivity of p-type silicon carbide film 600nm formed into a film on glass 1 X 10 "6 SZcm, optical conductivities were 2 X 10- 6 SZcm under the conditions of this.
  • an amorphous silicon solar cell having the configuration shown in FIG. 1 was produced.
  • the p-type silicon carbide layer 311 is deposited by a parallel plate type high-frequency plasma CVD method.
  • the film formation conditions are as follows: the plasma excitation frequency is 27.12 MHz, the substrate temperature is 190 ° C, and the reaction chamber pressure is 5 T.
  • silane, methane, diborane, and hydrogen are used as source gases introduced into the reaction chamber, and the flow ratio of these gases is 1.6 for methane to silane 1 and 0.01 for diborane. Yes, hydrogen was set to 20.
  • An amorphous silicon solar cell having the structure shown in FIG. 1 was produced. Except for the film forming conditions of the p-type silicon carbide layer 311, it was exactly the same as Example 1.
  • the p-type silicon carbide layer was deposited by a parallel plate type high-frequency plasma CVD method. Regarding the film formation conditions at that time, the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, the reaction chamber pressure was 7 Torr, and the flow rate ratio of the raw material gas introduced into the reaction chamber was methane to silane 1. Was 1.6, diborane was 0.01, and hydrogen was set to 38.
  • Example 1 the flow rate ratio of the dilution gas to the source gas is changed as the formation condition of the p-type semiconductor layer 311. Otherwise, Example 1 or An amorphous silicon solar cell was produced in the same manner as in Comparative Example 1.
  • the film forming conditions include a substrate temperature of 190 ° C, a reaction chamber pressure of 3 Torr, and a photoelectric conversion characteristic for each value of the flow rate ratio of the dilution gas to the source gas introduced into the reaction chamber when the p-type conductivity layer 311 is formed.
  • the results compared with Comparative Example 3 are shown in Table 1.
  • the conditions for forming the p-type conductivity layer 311 in Comparative Example 3 are as follows: the substrate temperature is fixed at 190 ° C., the reaction chamber pressure is fixed at 3 Torr, and the flow rate ratio of the source gas introduced into the reaction chamber is Methane was fixed at 1.5, diborane at 0.01, and hydrogen at 70.
  • tandem silicon solar cells as Example 6 and Comparative Example 4 were fabricated. Glass was used for the substrate 1, and Sn02 was used for the transparent conductive oxide layer 2.
  • boron-doped p-type silicon carbide ( (SiC) layer 311 was formed to a thickness of 10 nm
  • non-doped amorphous silicon photoelectric conversion layer 312 was formed to a thickness of 300 nm
  • a doped n-type microcrystalline silicon layer 313 was formed to a thickness of 20 nm by plasma CVD.
  • a pin-junction amorphous silicon photoelectric conversion unit 31 as a front photoelectric conversion unit was formed.
  • a boron-doped P-type microcrystalline silicon layer 321 has a thickness of 15 nm
  • a non-doped crystalline silicon photoelectric conversion layer 322 has a size of 1.6 / ⁇ ⁇
  • a phosphorus-doped ⁇ -type microcrystalline silicon layer was formed.
  • Each of 323 films was formed to a thickness of 20 nm by plasma CVD.
  • a pin-junction crystalline silicon photoelectric conversion unit 32 as a rear photoelectric conversion unit was formed.
  • Example 6 a ZnO film having a thickness of 80 nm and an Ag film having a thickness of 300 nm were formed as the back electrode layer 4 on the rear photoelectric conversion unit 32 by sputtering.
  • Example 6 and Comparative Example 4 the formation conditions of the p-type silicon carnoid layer 311 in the front photoelectric conversion unit were changed, and the formation conditions of the other layers were the same.
  • the p-type silicon carnoid layer 311 in Example 6 was deposited by a parallel plate high-frequency plasma CVD method.
  • the film formation conditions were as follows: the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, and the reaction chamber pressure was 3 Torr.
  • Silane, methane, diborane, and hydrogen are used as source gases introduced into the plasma CVD reaction chamber, and the flow ratio of these gases is 1.6 for methane to 1 for silane, and 0.01 for diborane. And hydrogen was set to 14. In the output characteristics when the light of AMI.
  • Example 6 is irradiated at 100 mWZcm2 as the incident light on the solar cell of Example 6, the open-circuit voltage is 1.412 V, the short-circuit current density is 11.8 mAZcm2, and the fill factor Of 74.0% and a conversion efficiency of 12.3%.
  • the p-type silicon carnoid layer 311 in Comparative Example 4 was deposited by a parallel plate type high-frequency plasma CVD method.
  • the film formation conditions at that time were as follows: the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, and the reaction chamber pressure was lTorr.
  • Silane, methane, diborane, and hydrogen are used as source gases introduced into the plasma CVD reaction chamber, and the flow ratio of these gases is 1.6 for methane to 1 for silane, and 0.01 for diborane. And hydrogen was set to 14. In the output characteristics when AMI.
  • Example 6 5 light is irradiated at 100 mWZcm2 as incident light on the solar cell of Example 6, the open-circuit voltage is 1 397V, short circuit current density was 11.7mAZcm2, fill factor was 74.0% and conversion efficiency was 12.0%. Compared with the output characteristics in Example 6, in Comparative Example 4, the short-circuit current density and the fill factor were equivalent, but the open-circuit voltage value was lower than that of Example 6.

Abstract

A method for manufacturing a p-type layer of a silicon thin film photoelectric converter which suppresses reduction of a transparent conductive oxide layer and has excellent performance. The method for manufacturing the silicon thin film photoelectric converter is provided to manufacture a photoelectric converter wherein a transparent conductive oxide layer, a p-type semiconductor layer, a substantially intrinsic semiconductor photoelectric converting layer and an n-type semiconductor layer are arranged in this order when viewed from a light entering side. The p-type layer is formed by a plasma CVD method using a diluted gas including at least a silane gas and hydrogen, at a pressure within a range of 2Torr or more but not more than 5Torr, and with a flow ratio of the diluted gas to the silane gas 5 times or more but not more than 50 times.

Description

明 細 書  Specification
薄膜光電変換装置の製造方法  Method for manufacturing thin film photoelectric conversion device
技術分野  Technical field
[0001] 本発明は、薄膜光電変換装置の製造方法に関し、特に非晶質シリコン系光電変換 層を含むシリコン系薄膜光電変換装置の製造方法に関するものである。なお、本願 明細書における「結晶質」、「微結晶」との用語は、部分的に非晶質を含んでいるもの も含んでいるものとする。  The present invention relates to a method for manufacturing a thin film photoelectric conversion device, and more particularly to a method for manufacturing a silicon thin film photoelectric conversion device including an amorphous silicon photoelectric conversion layer. Note that the terms “crystalline” and “microcrystal” in the present specification include those that partially include amorphous material.
背景技術  Background art
[0002] 近年、光電変換装置の低コスト化、高効率ィ匕を両立するために資源面での問題も ほとんど無い薄膜光電変換装置が注目され、開発が精力的に行われている。薄膜光 電変換装置は、太陽電池、光センサ、ディスプレイなど、さまざまな用途への応用が 期待されている。薄膜光電変換装置の一つである非晶質シリコン光電変換装置は、 低温で大面積のガラス基板やステンレス基板上に形成できることから、低コスト化が 期待できる。  In recent years, in order to achieve both cost reduction and high efficiency of a photoelectric conversion device, a thin film photoelectric conversion device that has almost no problem in terms of resources has attracted attention and has been vigorously developed. Thin film photoelectric conversion devices are expected to be applied to various applications such as solar cells, photosensors, and displays. An amorphous silicon photoelectric conversion device, which is one of the thin film photoelectric conversion devices, can be formed on a large-area glass substrate or stainless steel substrate at a low temperature, so that cost reduction can be expected.
[0003] 薄膜光電変換装置は、一般に表面が絶縁性の基板上に順に積層された第一電極 と、 1以上の半導体薄膜光電変換ユニットと、及び第二電極とを含んでいる。そして 1 つの薄膜光電変換ユニットは P型半導体層と n型半導体層でサンドイッチされた実質 的に真性半導体の光電変換層である i型の光電変換層からなる。ここで、光電変換ュ ニットまたは薄膜太陽電池は、それに含まれる p型と n型の半導体層が非晶質か結晶 質かにかかわらず、その主要部を占める i型の光電変換層が非晶質のものは非晶質 光電変換ユニットまたは非晶質薄膜太陽電池と称され、 i型の光電変換層が結晶質 のものは結晶質光電変換ユニットまたは結晶質薄膜太陽電池と称される。  [0003] A thin film photoelectric conversion device generally includes a first electrode, a surface of which is sequentially laminated on an insulating substrate, one or more semiconductor thin film photoelectric conversion units, and a second electrode. One thin film photoelectric conversion unit consists of an i-type photoelectric conversion layer, which is a substantially intrinsic semiconductor photoelectric conversion layer sandwiched between a P-type semiconductor layer and an n-type semiconductor layer. Here, regardless of whether the p-type and n-type semiconductor layers contained in the photoelectric conversion unit or thin-film solar cell are amorphous or crystalline, the i-type photoelectric conversion layer that occupies the main part is amorphous. Those having a high quality are called amorphous photoelectric conversion units or amorphous thin-film solar cells, and those having an i-type photoelectric conversion layer crystalline are called crystalline photoelectric conversion units or crystalline thin-film solar cells.
[0004] p型半導体層や n型半導体層は光電変換ユニット内に拡散電位を生じさせる役割 を果たしており、その拡散電位の大きさによって光電変換装置の重要な特性である 開放端電圧の値が左右される。薄膜光電変換装置の中で最も一般的な非晶質シリコ ン系薄膜光電変換装置においては、 p型層の光学的禁制帯幅を拡大して p型層内で の光吸収損失を低減するために P型層形成時に高周波プラズマ CVD法を用い、原 料ガスとして、シラン系ガス、水素ガス、ジボラン等のドーピングガスとともにメタンある いはエチレンなどの炭化水素系ガスを用いて非晶質シリコンカーノイドとすることが 一般的である。そして、この p型層形成時の反応室内の圧力としては通常 lTorr程度 以下のものが用いられる。 [0004] The p-type semiconductor layer and the n-type semiconductor layer play a role of generating a diffusion potential in the photoelectric conversion unit, and the value of the open-circuit voltage, which is an important characteristic of the photoelectric conversion device, depends on the magnitude of the diffusion potential. It depends. In the most common amorphous silicon thin film photoelectric conversion device among thin film photoelectric conversion devices, in order to reduce the optical absorption loss in the p type layer by expanding the optical forbidden bandwidth of the p type layer. The high frequency plasma CVD method is used to form the P-type layer. In general, amorphous silicon carnoid is obtained by using a doping gas such as silane-based gas, hydrogen gas, and diborane as a source gas, and a hydrocarbon-based gas such as methane or ethylene. The pressure in the reaction chamber during the formation of the p-type layer is usually about 1 Torr or less.
[0005] 例えば、特許文献 1には非晶質シリコン系薄膜光電変換装置の p型半導体層の形 成方法が記載されている力 この文献の実施例には非晶質シリコン系光電変換装置 の P型半導体層をプラズマ CVD法により反応室内の圧力を lTorrにして形成するこ とが示されている。 [0005] For example, Patent Document 1 describes a method for forming a p-type semiconductor layer of an amorphous silicon thin film photoelectric conversion device. It has been shown that a P-type semiconductor layer is formed by plasma CVD with the pressure in the reaction chamber set to lTorr.
[0006] 比較的高!、圧力条件下でシリコン系光電変換装置を製造する方法は、例えば特許 文献 2に開示されている。この文献には、非晶質シリコン光電変換装置中の i型光電 変換層、 iZn界面層および pZi界面層を圧力が 0. 5Torr以上、基板温度を 80°Cよ り高く 250°Cより低い条件で形成することが示されている力 上記形成方法は光電変 換層の改善を目的とするものであって、 p型層などの導電型層に適用できる旨の記載 はない。  [0006] A method of manufacturing a silicon-based photoelectric conversion device under relatively high pressure conditions is disclosed in Patent Document 2, for example. In this document, the pressure of the i-type photoelectric conversion layer, iZn interface layer and pZi interface layer in the amorphous silicon photoelectric conversion device is 0.5 Torr or higher, and the substrate temperature is higher than 80 ° C and lower than 250 ° C. The above-described forming method is intended to improve the photoelectric conversion layer, and there is no description that it can be applied to a conductive type layer such as a p-type layer.
[0007] さらに特許文献 3には非晶質シリコン系薄膜光電変換装置を比較的高い圧力条件 下で形成することが示されている。この文献には非晶質シリコン系光電変換装置の各 半導体層を反応ガスのうち原料ガスであるシラン系ガスの分圧を 1. 2Torr以上 5. 0 Torr以下とし、かつ電極間距離を 8mm以上 15mm以下の条件で作製することにより 非晶質シリコン系薄膜光電変換装置の光照射後の特性が向上すると記載されている 力 この文献では原料ガスに対する水素などの希釈ガスの流量比が 4倍以下と低 ヽ 条件に限定されている。  Furthermore, Patent Document 3 shows that an amorphous silicon-based thin film photoelectric conversion device is formed under a relatively high pressure condition. In this document, each semiconductor layer of an amorphous silicon-based photoelectric conversion device has a partial pressure of a silane-based gas, which is a source gas of a reaction gas, set to 1.2 Torr or more and 5.0 Torr or less, and a distance between electrodes is 8 mm or more. It is described that the characteristics after irradiation of amorphous silicon-based thin film photoelectric conversion devices are improved by manufacturing under conditions of 15 mm or less. This document describes that the flow rate ratio of dilution gas such as hydrogen to source gas is 4 times or less. And limited to low 条件 conditions.
特許文献 1:特開平 5— 326992号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-326992
特許文献 2:特表平 9 512665号公報  Patent Document 2: Japanese Patent Publication No. 9 512665
特許文献 3:特開 2000 - 252484号公報  Patent Document 3: Japanese Patent Laid-Open No. 2000-252484
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] シリコン系薄膜光電変換装置において絶縁性基板として透明基板を用いる場合、 その上に積層される第一電極には一般的に酸ィ匕錫 (SnO )等の透明導電酸ィ匕物層 力 S用いられる。このような透明導電酸化物層上に p型層を直接堆積する場合、水素ガ ス等で高倍率に希釈したシラン系ガスを用いてプラズマ CVD法により形成すると多 量の水素イオンによる還元性が強いプラズマ条件となり、透明導電酸化物層が還元 されてその透明性が低下する。またシラン系ガスに対する水素ガス等の希釈ガスの 流量比を減らす等、還元性が弱 ヽプラズマ条件で p型層を透明導電酸ィ匕物層上に 堆積すると炭化水素系ガスゃジボラン等のドーピングガスの分解が促進されず、導 電率ゃ光学的禁制帯幅等の物性値が低下するため、光電変換装置の特性が低下し てしまう。 [0008] When a transparent substrate is used as an insulating substrate in a silicon-based thin film photoelectric conversion device, a transparent conductive oxide layer such as an acid oxide tin (SnO) is generally used as the first electrode laminated thereon Force S is used. When a p-type layer is directly deposited on such a transparent conductive oxide layer, it can be reduced by a large amount of hydrogen ions if it is formed by plasma CVD using a silane-based gas diluted at high magnification with hydrogen gas or the like. Under strong plasma conditions, the transparent conductive oxide layer is reduced and its transparency is lowered. In addition, when the p-type layer is deposited on the transparent conductive oxide layer under plasma conditions, such as by reducing the flow ratio of the diluting gas such as hydrogen gas to the silane-based gas, doping with hydrocarbon gas such as diborane Decomposition of gas is not promoted, and electrical properties, such as optical forbidden band width, decrease, and the characteristics of the photoelectric conversion device deteriorate.
[0009] 上述のような課題を鑑み、本発明は、下地層として用いられる透明導電酸ィ匕物層の 還元を抑制すると共に、良好な性能を有する光電変換装置の p型層の製造方法を提 供することを目的としている。  In view of the above-described problems, the present invention provides a method for producing a p-type layer of a photoelectric conversion device that suppresses reduction of a transparent conductive oxide layer used as an underlayer and has good performance. It is intended to provide.
課題を解決するための手段  Means for solving the problem
[0010] 本発明によるシリコン系薄膜光電変換装置は、光入射方向より、透明導電酸化物 層、 P型半導体層、実質的に真性半導体の光電変換層と、 n型半導体層の順に配置 された光電変換装置であって、前記 p型層が少なくともシラン系ガスと水素を含む希 釈ガスを用いたプラズマ CVD法にて形成され、かつその形成時圧力が 2Torr以上 かつ 5Torr以下の範囲であり、前記シラン系ガスに対する希釈ガスの流量比が 5倍 以上 50倍以下であることを特徴とする。  [0010] A silicon-based thin film photoelectric conversion device according to the present invention is arranged in the order of a transparent conductive oxide layer, a P-type semiconductor layer, a substantially intrinsic semiconductor photoelectric conversion layer, and an n-type semiconductor layer from the light incident direction. In the photoelectric conversion device, the p-type layer is formed by a plasma CVD method using a dilute gas containing at least a silane-based gas and hydrogen, and the formation pressure is in the range of 2 Torr to 5 Torr. The flow rate ratio of the dilution gas to the silane-based gas is 5 to 50 times.
[0011] 本発明のシリコン系薄膜光電変換装置の製造方法では、水素による原料ガスと希 釈ガスとの流量比および形成時圧力を所定範囲として ヽるため、プラズマを効率よく 電極間に閉じこめることができると共に、シラン系ガスに対する希釈ガスの流量比が ある程度大きくても下地層である透明導電酸ィ匕物層の還元を抑制することができる。 CVD反応室内の形成時圧力を 2Torr以上 5Torr以下としたのは、次の理由による。 2Torr未満ではプラズマが効率よく閉じ込められず、原料ガスの分解を促進すること ができないために形成した薄膜の電気的および光学的な特性も悪くなるからであり、 5Torrを越えると逆にプラズマが収縮しすぎて薄膜の膜厚均一性が悪ィ匕すると共に 、反応室内にパウダー状の生成物やダストなどが大量に発生するからである。  [0011] In the method for producing a silicon-based thin film photoelectric conversion device of the present invention, the flow rate ratio between the source gas and the dilution gas by hydrogen and the pressure at the time of formation are kept within a predetermined range, so that the plasma can be efficiently confined between the electrodes. In addition, even if the flow rate ratio of the dilution gas to the silane gas is large to some extent, the reduction of the transparent conductive oxide layer that is the underlayer can be suppressed. The reason why the pressure during formation in the CVD reaction chamber is 2 Torr or more and 5 Torr or less is as follows. If it is less than 2 Torr, the plasma is not confined efficiently, and the decomposition of the raw material gas cannot be promoted, so that the electrical and optical properties of the formed thin film are also deteriorated. This is because the film thickness uniformity of the thin film becomes poor, and a large amount of powder-like products and dust are generated in the reaction chamber.
[0012] 本発明者達は CVD反応室内圧力を lTorrから lOTorrまで変化させて p型半導体 層を形成した後、 p型半導体層の導電率を測定した。その結果、 2Torr未満、例えば lTorrの反応室内圧力でガラス上に約 1 μ mの膜厚で形成した薄膜の導電率は 7 X 10— 7SZcmであったのに対し、 2Torr以上、例えば 3Torrの反応室内圧力でガラス 上に約 1 μ mの膜厚で形成した薄膜の導電率は 5 X 10—6 SZcmとなり、 2Torr未満 の反応室内圧力で形成した薄膜の導電率と比較して 1桁程度大きくなつた。 [0012] The present inventors have changed the pressure in the CVD reaction chamber from lTorr to lOTorr to make a p-type semiconductor. After forming the layer, the conductivity of the p-type semiconductor layer was measured. As a result, less than 2 Torr, with respect to for example the conductivity of the thin film was formed to have a thickness of about 1 mu m on the glass in a reaction chamber pressure of lTorr was 7 X 10- 7 SZcm, 2Torr above, for example 3Torr of one order of magnitude compared react conductivity of the thin film was formed to have a thickness of about 1 mu m on a glass chamber pressure is 5 X 10- 6 SZcm next, the conductivity of the thin film formed in a reaction chamber pressure of less than 2Torr It became big.
[0013] また、シラン系ガスに対する希釈ガスの流量比を 5倍以上 50倍以下としたのは、 5 倍以下では光電変換装置の導電型層として必要とされる電気的特性を得ることがで きず、さらに 50倍を越えると高い反応室内圧力下であっても水素を含む希釈ガスに よる下地層である透明導電酸ィ匕物層の還元が激しくなるためである。 [0013] In addition, the flow rate ratio of the dilution gas to the silane-based gas is 5 times or more and 50 times or less. If the flow rate ratio is 5 times or less, the electrical characteristics required for the conductive layer of the photoelectric conversion device can be obtained. This is because if the ratio exceeds 50 times, the transparent conductive oxide layer, which is the underlayer, is reduced by the dilute gas containing hydrogen even under a high pressure in the reaction chamber.
発明の効果  The invention's effect
[0014] 本発明によれば、 p型半導体層を形成する際の下地層への還元性ダメージを低減 して、優れた膜質の p型半導体層を有する薄膜シリコン系光電変換装置を形成する ことができ、高効率の光電変換装置を製造することができる。  According to the present invention, reducing damage to the underlayer when forming a p-type semiconductor layer is reduced, and a thin-film silicon-based photoelectric conversion device having a p-type semiconductor layer with excellent film quality is formed. And a highly efficient photoelectric conversion device can be manufactured.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の第一の実施形態による光電変換装置の構造断面図。 FIG. 1 is a structural sectional view of a photoelectric conversion device according to a first embodiment of the present invention.
[図 2]本発明の第二の実施形態による積層型光電変換装置の構造断面図 符号の説明  FIG. 2 is a structural sectional view of a stacked photoelectric conversion device according to a second embodiment of the present invention.
[0016] 1 透明基板 [0016] 1 Transparent substrate
2 透明導電酸化物層  2 Transparent conductive oxide layer
31 前方光電変換ユニットである、薄膜シリコン光電変換ユニット  31 Thin-film silicon photoelectric conversion unit, which is the front photoelectric conversion unit
311 前方光電変換ユニット内の一導電型層である、 p型半導体層  311 p-type semiconductor layer, which is one conductivity type layer in the front photoelectric conversion unit
312 前方光電変換ユニット内の光電変換層である、実質的に真性半導体の光電 変換層  312 A substantially intrinsic semiconductor photoelectric conversion layer that is a photoelectric conversion layer in the front photoelectric conversion unit
313 前方光電変換ユニット内の逆導電型層である、 n型半導体層  313 n-type semiconductor layer, which is a reverse conductivity type layer in the front photoelectric conversion unit
32 後方光電変換ユニットである、結晶質シリコン光電変換ユニット  32 Crystalline silicon photoelectric conversion unit, the rear photoelectric conversion unit
321 後方光電変換ユニット内の一導電型層である、 p型半導体層  321 p-type semiconductor layer, which is one conductivity type layer in the rear photoelectric conversion unit
322 後方光電変換ユニット内の光電変換層である、実質的に真性半導体の結晶 質シリコン光電変換層 323 後方光電変換ユニット内の逆導電型層である、 n型半導体層 4 裏面電極層 322 A substantially intrinsic semiconductor crystalline silicon photoelectric conversion layer that is a photoelectric conversion layer in the rear photoelectric conversion unit 323 n-type semiconductor layer that is the reverse conductivity type layer in the back photoelectric conversion unit 4 Back electrode layer
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。  [0017] Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡 略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図に お!、て、同一の参照符号は同一部分または相当部分を表して 、る。  In each drawing of the present application, the dimensional relationships such as thickness and length are appropriately changed for clarity and simplification of the drawings and do not represent actual dimensional relationships. In each figure, the same reference numerals denote the same or corresponding parts.
[0018] 図 1に、本発明の実施形態の一例による光電変換装置の断面図を示す。透明基板 1上に、透明導電酸化物層 2、前方に配置された p型半導体層 311、実質的に真性 半導体の光電変換層 312、後方に設置された n型半導体層 313、および裏面電極 層 4の順に配置されている。  FIG. 1 shows a cross-sectional view of a photoelectric conversion device according to an example of an embodiment of the present invention. On transparent substrate 1, transparent conductive oxide layer 2, p-type semiconductor layer 311 disposed in front, substantially intrinsic semiconductor photoelectric conversion layer 312, n-type semiconductor layer 313 disposed in the rear, and back electrode layer They are arranged in the order of 4.
[0019] 基板側力ゝら光を入射するタイプの光電変換装置にて用いられる透明基板 1には、ガ ラス、透明榭脂等から成る板状部材ゃシート状部材が用いられる。透明導電酸化物 層 2は SnO等の導電性金属酸化物から成り、 CVD、スパッタ、蒸着等の方法を用い  For the transparent substrate 1 used in the photoelectric conversion device of the type in which light is incident on the substrate side force, a plate-like member made of glass, transparent resin, or the like is used. Transparent conductive oxide layer 2 is made of conductive metal oxide such as SnO and uses methods such as CVD, sputtering and vapor deposition.
2  2
て形成されることが好ましい。透明導電酸ィ匕物層 2はその表面に微細な凹凸を有す ることにより、入射光の散乱を増大させる効果を有することが望ましい。  It is preferable to be formed. It is desirable that the transparent conductive oxide layer 2 has an effect of increasing the scattering of incident light by having fine irregularities on its surface.
[0020] 透明導電酸化物層 2上に順次形成される p型半導体層 311、実質的に真性半導体 の光電変換層 312および n型半導体層 313はプラズマ CVD法により形成され、この うち ρ型半導体層 311はプラズマ CVD反応室内の圧力として 2Torr以上 5Torr以下 で、かつ CVD反応室内に導入される原料ガスの主成分としてシラン系ガスと、水素を 含む希釈ガスとが用いられ、かつシラン系ガスに対する希釈ガスの流量比が 5倍以 上 50倍以下の条件下で形成される。  [0020] A p-type semiconductor layer 311, a substantially intrinsic semiconductor photoelectric conversion layer 312 and an n-type semiconductor layer 313 are sequentially formed on the transparent conductive oxide layer 2, and are formed by a plasma CVD method. The layer 311 has a plasma CVD reaction chamber pressure of 2 Torr or more and 5 Torr or less, and a silane-based gas and a diluent gas containing hydrogen are used as the main components of the source gas introduced into the CVD reaction chamber. It is formed under the condition that the flow rate ratio of the dilution gas is 5 times or more and 50 times or less.
[0021] この p型半導体層 311としては、たとえば導電型決定不純物原子であるボロンが 0.  As the p-type semiconductor layer 311, for example, boron which is a conductivity determining impurity atom is 0.
01原子%以上ドープされた p型非晶質シリコン薄膜などが用いられ得る。しかし、 p型 半導体層 311についてのこれらの条件は限定的なものではなく不純物原子としては たとえばアルミニウムなどでもよぐまた非晶質シリコンカーバイドや非晶質シリコンゲ ルマニウムなどの合金材料の層が用いられてもよ 、。  A p-type amorphous silicon thin film doped with 01 atomic% or more can be used. However, these conditions for the p-type semiconductor layer 311 are not limited. For example, aluminum may be used as an impurity atom, and an alloy material layer such as amorphous silicon carbide or amorphous silicon germanium is used. Anyway.
[0022] また実質的に真性半導体の光電変換層 312としてはノンドープの非晶質シリコン薄 膜や微少の不純物を含む弱 p型もしくは弱 n型で光電変換効率を十分に備えている シリコン系薄膜材料が使用され得る。また、実質的に真性半導体の光電変換層 312 はこれらの材料に限定されず、非晶質シリコンカーバイドや非晶質シリコンゲルマ- ゥムなどの合金材料の層が用いられても良!、。 [0022] The substantially intrinsic semiconductor photoelectric conversion layer 312 is a non-doped amorphous silicon thin film. A silicon-based thin film material that is sufficiently p-type or weak-n-type and has sufficient photoelectric conversion efficiency can be used. In addition, the intrinsic semiconductor photoelectric conversion layer 312 is not limited to these materials, and a layer of an alloy material such as amorphous silicon carbide or amorphous silicon germanium may be used.
[0023] また n型半導体層 313としては、たとえば導電型決定不純物原子であるリンが 0. 01 原子%以上ドープされた n型非晶質シリコン薄膜などが用いられ得る。しかし、 n型半 導体層 313についてのこれらの条件は限定的なものではなぐ微結晶シリコン薄膜あ るいは非晶質シリコンカーノイドや非晶質シリコンゲルマニウムなどの合金材料の層 が用いられてもよい。 As the n-type semiconductor layer 313, for example, an n-type amorphous silicon thin film doped with 0.01 atomic% or more of phosphorus, which is a conductivity determining impurity atom, may be used. However, these conditions for the n-type semiconductor layer 313 are not limited, even if a microcrystalline silicon thin film or a layer of an alloy material such as amorphous silicon carnoid or amorphous silicon germanium is used. Good.
[0024] 裏面電極層 4としては、 Al、 Ag、 Au、 Cu、 Ptおよび Crから選ばれる少なくとも一つ の材料力 なる少なくとも一層の金属層をスパッタ法または蒸着法により形成すること が好ましい。また、光電変換ユニットと裏面電極との間に、 ITO、 Sn02、 ZnO等の導 電性酸化物からなる層を形成しても構わな!/ヽ(図示せず)。  [0024] As the back electrode layer 4, it is preferable to form at least one metal layer having at least one material force selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition. Further, a layer made of a conductive oxide such as ITO, Sn02, or ZnO may be formed between the photoelectric conversion unit and the back electrode! / ヽ (not shown).
[0025] 次に、図 2の模式的な断面図を参照して、本発明の第 2の実施の形態によるタンデ ム型薄膜シリコン系光電変換装置を説明する。図 2の光電変換装置においては、図 1の透明導電酸化物層と同様に透明基板 1上に透明導電酸化物層 2が形成される。  Next, a tandem-type thin film silicon photoelectric conversion device according to the second embodiment of the present invention will be described with reference to the schematic cross-sectional view of FIG. In the photoelectric conversion device of FIG. 2, the transparent conductive oxide layer 2 is formed on the transparent substrate 1 in the same manner as the transparent conductive oxide layer of FIG.
[0026] 透明導電酸化物層 2上には、プラズマ CVD法で順次積層された p型半導体層 311 、実質的に真性半導体の非晶質シリコン系光電変換層 312、および n型半導体層 31 3を含む非晶質光電変換ユニット 31が形成される。このタンデム型光電変換装置に おいては、非晶質光電変換ユニット 31上にさらに、 p型半導体層 321、実質的に真 性半導体の結晶質光電変換層 322、および n型半導体層 323を含む結晶質光電変 換ュニット 32が形成される。なお、光入射側からみて前方に配置される非晶質光電 変換ユニット 31内の n型半導体層 313と後方に配置される結晶質光電変換ユニット 3 2内の p型半導体層 321の間に光透過性及び光反射性の双方を有し且つ導電性の 中間反射層を形成しても力まわな 、。  [0026] On the transparent conductive oxide layer 2, a p-type semiconductor layer 311, a substantially intrinsic semiconductor amorphous silicon photoelectric conversion layer 312, and an n-type semiconductor layer 31 3 are sequentially stacked by a plasma CVD method. An amorphous photoelectric conversion unit 31 containing is formed. This tandem photoelectric conversion device further includes a p-type semiconductor layer 321, a substantially intrinsic semiconductor crystalline photoelectric conversion layer 322, and an n-type semiconductor layer 323 on the amorphous photoelectric conversion unit 31. A crystalline photoelectric conversion unit 32 is formed. Note that light is present between the n-type semiconductor layer 313 in the amorphous photoelectric conversion unit 31 disposed in front of the light incident side and the p-type semiconductor layer 321 in the crystalline photoelectric conversion unit 32 disposed in the rear. Even if an intermediate reflective layer having both transparency and light reflection property and conductive property is formed, it is not enough.
[0027] そして、結晶質光電変換ユニット 32上には、図 1の場合と同様に裏面電極層 4が形 成され、図 2に示されているようなタンデム型薄膜シリコン系光電変換装置が完成す る。 実施例 [0027] Then, the back electrode layer 4 is formed on the crystalline photoelectric conversion unit 32 in the same manner as in FIG. 1, and the tandem-type thin film silicon photoelectric conversion device as shown in FIG. 2 is completed. The Example
[0028] 以下、本発明のいくつかの実施例によるシリコン系薄膜光電変換装置としてのシリ コン系薄膜太陽電池が、比較例による太陽電池とともに説明される。  Hereinafter, silicon-based thin-film solar cells as silicon-based thin-film photoelectric conversion devices according to some embodiments of the present invention will be described together with solar cells according to comparative examples.
[0029] (実施例 1)  [0029] (Example 1)
図 1を参照して説明された第一の実施の形態に対応して、実施例 1としての非晶質 シリコン太陽電池が作製された。基板 1にはガラスを用い、透明導電酸化物層 2には SnOを用いた。この上に、 p型半導体層であるボロンドープの p型シリコンカーバイド Corresponding to the first embodiment described with reference to FIG. 1, an amorphous silicon solar cell as Example 1 was fabricated. Glass was used for the substrate 1 and SnO was used for the transparent conductive oxide layer 2. On top of this, boron-doped p-type silicon carbide, a p-type semiconductor layer
2 2
(SiC)層 311を 10nm、ノンドープの非晶質シリコン光電変換層 312を 300nm、リン ドープの n型微結晶シリコン層 313を 20nmの膜厚で、それぞれプラズマ CVD法によ り製膜した。これにより、 pin接合の非晶質シリコン光電変換ユニットを形成した。さら に裏面電極層 4として ZnO膜を 80nm、 Ag膜を 300nmの膜厚で、それぞれスパッタ 法により形成した。  The (SiC) layer 311 was formed by plasma CVD with a thickness of 10 nm, the non-doped amorphous silicon photoelectric conversion layer 312 with a thickness of 300 nm, and the phosphorus-doped n-type microcrystalline silicon layer 313 with a thickness of 20 nm. As a result, a pin junction amorphous silicon photoelectric conversion unit was formed. Furthermore, as the back electrode layer 4, a ZnO film having a thickness of 80 nm and an Ag film having a thickness of 300 nm were formed by sputtering.
[0030] p型シリコンカーバイド層 311は、平行平板型高周波プラズマ CVD法で堆積した。  [0030] The p-type silicon carbide layer 311 was deposited by a parallel plate type high-frequency plasma CVD method.
そのときの製膜条件については、プラズマの励起周波数を 27. 12MHz,基板温度 を 190°C、反応室内圧力を 3Torrとして形成した。プラズマ CVD反応室内に導入さ れる原料ガスとしてシラン、メタン、ジボラン、および水素が用いられ、それらのガスの 流量比はシラン 1に対してメタンが 1. 6であり、ジボランが 0. 01であり、水素が 14に 設定された。また、この条件でガラス上に 600nm製膜した p型シリコンカーバイド膜の 暗導電率は 5 X 10—6 SZcm、光導電率は 7 X 10—6 SZcmであった。 The film formation conditions were as follows: the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, and the reaction chamber pressure was 3 Torr. Silane, methane, diborane, and hydrogen are used as source gases introduced into the plasma CVD reaction chamber, and the flow rate ratio of these gases is 1.6 for methane and 0.01 for diborane relative to silane 1. , Hydrogen was set to 14. Further, dark conductivity of p-type silicon carbide film 600nm formed into a film on glass 5 X 10- 6 SZcm, optical conductivities was 7 X 10- 6 SZcm in this condition.
[0031] このような実施例 1の太陽電池に入射光として AMI. 5の光を 100mWZcm2の光 量で照射したときの出力特性においては、開放端電圧が 0. 909V、短絡電流密度 力 2mAZcm2、曲線因子が 73. 5%そして変換効率が 10. 8%であった。  [0031] In the output characteristics when AMI. 5 light is irradiated to the solar cell of Example 1 as the incident light at a light amount of 100 mWZcm2, the open-circuit voltage is 0.909 V, the short-circuit current density force is 2 mAZcm2, The fill factor was 73.5% and the conversion efficiency was 10.8%.
[0032] (比較例 1)  [0032] (Comparative Example 1)
同じく図 1に示す構成の非晶質シリコン太陽電池を作製した。 p型シリコンカーバイ ド層 311の製膜条件以外は実施例 1と全く同じとした。  Similarly, an amorphous silicon solar cell having the structure shown in FIG. 1 was produced. Except for the film forming conditions of the p-type silicon carbide layer 311, it was exactly the same as Example 1.
[0033] p型シリコンカーバイド層は、平行平板型高周波プラズマ CVD法で堆積した。その ときの製膜条件については、プラズマの励起周波数を 27. 12MHz,基板温度を 19 0°C、反応室内圧力を lTorr、反応室内に導入される原料ガスの流量比はシラン 1に 対してメタンが 1. 6であり、ジボランが 0. 01であり、水素が 14に設定された。また、こ の条件でガラス上に 600nm製膜した p型シリコンカーバイド膜の暗導電率は 1 X 10"6 SZcm、光導電率は 2 X 10—6 SZcmであった。 [0033] The p-type silicon carbide layer was deposited by a parallel plate type high-frequency plasma CVD method. Regarding the film forming conditions at that time, the excitation frequency of the plasma was 27.12 MHz, the substrate temperature was 190 ° C, the pressure in the reaction chamber was lTorr, and the flow rate ratio of the source gas introduced into the reaction chamber was silane 1. In contrast, methane was 1.6, diborane was 0.01, and hydrogen was set to 14. Further, dark conductivity of p-type silicon carbide film 600nm formed into a film on glass 1 X 10 "6 SZcm, optical conductivities were 2 X 10- 6 SZcm under the conditions of this.
[0034] このような比較例 1の太陽電池に入射光として AMI. 5、 100mWZcm2の光量で 照射した時の出力特性においては、開放端電圧が 0. 903V、短絡電流密度が 15. 8mAZcm2、曲線因子が 72. 5%そして変換効率が 10. 4%であった。  [0034] In the output characteristics when the solar cell of Comparative Example 1 is irradiated with incident light of AMI. 5 and 100 mWZcm2, the open-circuit voltage is 0.903 V, the short-circuit current density is 15.8 mAZcm2, and the curve The factor was 72.5% and the conversion efficiency was 10.4%.
[0035] (実施例 2)  [0035] (Example 2)
また、図 1に示す構成の非晶質シリコン太陽電池を作製した。 p型シリコンカーバイ ド層 311は平行平板型高周波プラズマ CVD法で堆積し、そのときの製膜条件として は、プラズマの励起周波数を 27. 12MHz,基板温度を 190°C、反応室内圧力を 5T orr、反応室内に導入される原料ガスとしてシラン、メタン、ジボラン、および水素が用 いられ、それらのガスの流量比はシラン 1に対してメタンが 1. 6であり、ジボランが 0. 01であり、水素が 20に設定された。  In addition, an amorphous silicon solar cell having the configuration shown in FIG. 1 was produced. The p-type silicon carbide layer 311 is deposited by a parallel plate type high-frequency plasma CVD method. At this time, the film formation conditions are as follows: the plasma excitation frequency is 27.12 MHz, the substrate temperature is 190 ° C, and the reaction chamber pressure is 5 T. Orr, silane, methane, diborane, and hydrogen are used as source gases introduced into the reaction chamber, and the flow ratio of these gases is 1.6 for methane to silane 1 and 0.01 for diborane. Yes, hydrogen was set to 20.
[0036] このような実施例 2の太陽電池に入射光として AMI. 5の光を 100mWZcm2の光 量で照射したときの出力特性は、開放端電圧が 0. 898V、短絡電流密度が 15. 9m AZcm2、曲線因子が 73. 7%そして変換効率が 10. 6%であった。比較例 1と比較 して実施例 2に示した太陽電池は短絡電流密度に大きな変化はみられないが、一方 で曲線因子の増大がみられる。  [0036] The output characteristics when AMI. 5 light is applied to the solar cell of Example 2 as incident light at a light intensity of 100 mWZcm2, the open-circuit voltage is 0.898 V and the short-circuit current density is 15.9 m. AZcm2, fill factor was 73.7% and conversion efficiency was 10.6%. Compared with Comparative Example 1, the solar cell shown in Example 2 shows no significant change in the short-circuit current density, but on the other hand, the fill factor increases.
[0037] (比較例 2)  [0037] (Comparative Example 2)
図 1に示す構成の非晶質シリコン太陽電池を作製した。 p型シリコンカーバイド層 31 1の製膜条件以外は実施例 1と全く同じとした。  An amorphous silicon solar cell having the structure shown in FIG. 1 was produced. Except for the film forming conditions of the p-type silicon carbide layer 311, it was exactly the same as Example 1.
[0038] p型シリコンカーバイド層は、平行平板型高周波プラズマ CVD法で堆積した。その ときの製膜条件については、プラズマの励起周波数を 27. 12MHz,基板温度を 19 0°C、反応室内圧力を 7Torr、反応室内に導入される原料ガスの流量比はシラン 1に 対してメタンが 1. 6であり、ジボランが 0. 01であり、水素が 38に設定された。  [0038] The p-type silicon carbide layer was deposited by a parallel plate type high-frequency plasma CVD method. Regarding the film formation conditions at that time, the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, the reaction chamber pressure was 7 Torr, and the flow rate ratio of the raw material gas introduced into the reaction chamber was methane to silane 1. Was 1.6, diborane was 0.01, and hydrogen was set to 38.
[0039] このような比較例 2の太陽電池に入射光として AMI. 5、 100mWZcm2の光量で 照射した時の出力特性においては、開放端電圧が 0. 873V、短絡電流密度が 15. 9mAZcm2、曲線因子が 74. 8%そして変換効率が 10. 4%であった。 [0040] (実施例 3〜5および比較例 3) [0039] In the output characteristics when the solar cell of Comparative Example 2 is irradiated with light of AMI.5 and 100mWZcm2 as incident light, the open-circuit voltage is 0.887V, the short-circuit current density is 15.9mAZcm2, and the curve The factor was 74.8% and the conversion efficiency was 10.4%. [0040] (Examples 3 to 5 and Comparative Example 3)
図 1を参照して説明された第一の実施の形態に対応して、 p型半導体層 311の形 成条件として原料ガスに対する希釈ガスの流量比率を変え、それ以外は実施例 1あ るいは比較例 1と同様の方法で非晶質シリコン太陽電池を作製した。製膜条件として は基板温度を 190°C、反応室内圧力を 3Torr、 p型導電型層 311形成時の反応室 内に導入される原料ガスに対する希釈ガスの流量比率の各値に対する光電変換特 性および比較例 3と比較した結果を表 1に示す。なお比較例 3における p型導電型層 311の形成条件は、基板温度を 190°C、反応室内圧力を 3Torrで固定とし、さらに 反応室内に導入される原料ガスの流量比はシラン 1に対してメタンが 1. 5、ジボラン が 0. 01、水素が 70という値に固定した。  Corresponding to the first embodiment described with reference to FIG. 1, the flow rate ratio of the dilution gas to the source gas is changed as the formation condition of the p-type semiconductor layer 311. Otherwise, Example 1 or An amorphous silicon solar cell was produced in the same manner as in Comparative Example 1. The film forming conditions include a substrate temperature of 190 ° C, a reaction chamber pressure of 3 Torr, and a photoelectric conversion characteristic for each value of the flow rate ratio of the dilution gas to the source gas introduced into the reaction chamber when the p-type conductivity layer 311 is formed. The results compared with Comparative Example 3 are shown in Table 1. The conditions for forming the p-type conductivity layer 311 in Comparative Example 3 are as follows: the substrate temperature is fixed at 190 ° C., the reaction chamber pressure is fixed at 3 Torr, and the flow rate ratio of the source gas introduced into the reaction chamber is Methane was fixed at 1.5, diborane at 0.01, and hydrogen at 70.
[0041] [表 1]  [0041] [Table 1]
Figure imgf000011_0001
Figure imgf000011_0001
[0042] 表 1に示すように、原料ガスに対する希釈ガスの流量比率が高くなるにつれ、 p型シ リコンカーノイド層が高品質化され、光電変換特性が向上している。また原料ガスに 対する希釈ガスの流量比率が 70まで増大すると、光電変換特性が低下する。この比 較例 3即ち原料ガスに対する希釈ガスの流量比率が高い領域における光電変換特 性の低下においては特に短絡電流密度の低下が大きぐ原料ガスに対する希釈ガス の流量比率を上げて希釈ガスのプラズマ CVD反応室内における相対量が増大する ことによって、還元性の強いプラズマ条件が下地の透明導電酸ィ匕物層へダメージを 与えた結果として光電変換層へ入射する光量の低下が起こっていると考えられる。 [0042] As shown in Table 1, as the flow rate ratio of the dilution gas to the source gas increases, the quality of the p-type silicon carnoid layer is improved and the photoelectric conversion characteristics are improved. Moreover, when the flow rate ratio of the dilution gas to the source gas increases to 70, the photoelectric conversion characteristics deteriorate. In this comparative example 3, that is, in the region where the flow rate of the dilution gas to the source gas is high, the photoelectric conversion characteristics are lowered.In particular, the dilution gas plasma is increased by increasing the flow rate of the dilution gas to the source gas where the decrease in the short-circuit current density is large. As the relative amount in the CVD reaction chamber increases, the amount of light incident on the photoelectric conversion layer is expected to decrease as a result of the highly reducing plasma conditions damaging the underlying transparent conductive oxide layer. It is done.
[0043] (実施例 6および比較例 4)  [Example 6 and Comparative Example 4]
図 2を参照して説明された第二の実施の形態に対応して、実施例 6および比較例 4 としてのタンデム型シリコン太陽電池が作製された。基板 1にはガラスを用い、透明導 電酸化物層 2には Sn02を用いた。この上に、ボロンドープの p型シリコンカーバイド( SiC)層 311を 10nm、ノンドープの非晶質シリコン光電変換層 312を 300nm、リンド ープの n型微結晶シリコン層 313を 20nmの膜厚で、それぞれプラズマ CVD法により 製膜した。これにより、前方光電変換ユニットである pin接合の非晶質シリコン光電変 換ュニット 31を形成した。さらに非晶質シリコン光電変換ユニット 31の上にボロンドー プの P型微結晶シリコン層 321を 15nm、ノンドープの結晶質シリコン光電変換層 322 を 1. 6 /ζ πι、リンドープの η型微結晶シリコン層 323を 20nmの膜厚で、それぞれプラ ズマ CVD法により製膜した。これにより、後方光電変換ユニットである pin接合の結晶 質シリコン光電変換ユニット 32を形成した。さらに後方光電変換ユニット 32の上に、 裏面電極層 4として ZnO膜を 80nm、 Ag膜を 300nmの膜厚で、それぞれスパッタ法 により形成した。また、実施例 6と比較例 4では上記前方光電変換ユニット内の p型シ リコンカーノイド層 311の形成条件を変更して、その他の層の形成条件は同一とした Corresponding to the second embodiment described with reference to FIG. 2, tandem silicon solar cells as Example 6 and Comparative Example 4 were fabricated. Glass was used for the substrate 1, and Sn02 was used for the transparent conductive oxide layer 2. On top of this, boron-doped p-type silicon carbide ( (SiC) layer 311 was formed to a thickness of 10 nm, non-doped amorphous silicon photoelectric conversion layer 312 was formed to a thickness of 300 nm, and a doped n-type microcrystalline silicon layer 313 was formed to a thickness of 20 nm by plasma CVD. As a result, a pin-junction amorphous silicon photoelectric conversion unit 31 as a front photoelectric conversion unit was formed. Further, on the amorphous silicon photoelectric conversion unit 31, a boron-doped P-type microcrystalline silicon layer 321 has a thickness of 15 nm, a non-doped crystalline silicon photoelectric conversion layer 322 has a size of 1.6 / ζ πι, and a phosphorus-doped η-type microcrystalline silicon layer. Each of 323 films was formed to a thickness of 20 nm by plasma CVD. As a result, a pin-junction crystalline silicon photoelectric conversion unit 32 as a rear photoelectric conversion unit was formed. Further, a ZnO film having a thickness of 80 nm and an Ag film having a thickness of 300 nm were formed as the back electrode layer 4 on the rear photoelectric conversion unit 32 by sputtering. In Example 6 and Comparative Example 4, the formation conditions of the p-type silicon carnoid layer 311 in the front photoelectric conversion unit were changed, and the formation conditions of the other layers were the same.
[0044] 実施例 6における p型シリコンカーノイド層 311は平行平板型高周波プラズマ CVD 法で堆積した。そのときの製膜条件については、プラズマの励起周波数を 27. 12M Hz、基板温度を 190°C、反応室内圧力を 3Torrとして形成した。プラズマ CVD反応 室内に導入される原料ガスとしてシラン、メタン、ジボラン、および水素が用いられ、そ れらのガスの流量比はシラン 1に対してメタンが 1. 6であり、ジボランが 0. 01であり、 水素が 14に設定された。このような実施例 6の太陽電池に入射光として AMI. 5の 光を 100mWZcm2の光量で照射したときの出力特性においては、開放端電圧が 1 . 412V、短絡電流密度が 11. 8mAZcm2、曲線因子が 74. 0%そして変換効率が 12. 3%であった。 [0044] The p-type silicon carnoid layer 311 in Example 6 was deposited by a parallel plate high-frequency plasma CVD method. The film formation conditions were as follows: the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, and the reaction chamber pressure was 3 Torr. Silane, methane, diborane, and hydrogen are used as source gases introduced into the plasma CVD reaction chamber, and the flow ratio of these gases is 1.6 for methane to 1 for silane, and 0.01 for diborane. And hydrogen was set to 14. In the output characteristics when the light of AMI. 5 is irradiated at 100 mWZcm2 as the incident light on the solar cell of Example 6, the open-circuit voltage is 1.412 V, the short-circuit current density is 11.8 mAZcm2, and the fill factor Of 74.0% and a conversion efficiency of 12.3%.
[0045] 比較例 4における p型シリコンカーノイド層 311は平行平板型高周波プラズマ CVD 法で堆積した。そのときの製膜条件については、プラズマの励起周波数を 27. 12M Hz、基板温度を 190°C、反応室内圧力を lTorrとして形成した。プラズマ CVD反応 室内に導入される原料ガスとしてシラン、メタン、ジボラン、および水素が用いられ、そ れらのガスの流量比はシラン 1に対してメタンが 1. 6であり、ジボランが 0. 01であり、 水素が 14に設定された。このような実施例 6の太陽電池に入射光として AMI. 5の 光を 100mWZcm2の光量で照射したときの出力特性においては、開放端電圧が 1 . 397V,短絡電流密度が 11. 7mAZcm2、曲線因子が 74. 0%そして変換効率が 12. 0%であった。実施例 6における出力特性と比較すると、比較例 4では短絡電流 密度や曲線因子が同等な値であつたが、開放端電圧の値は実施例 6の特性よりも低 下している。 [0045] The p-type silicon carnoid layer 311 in Comparative Example 4 was deposited by a parallel plate type high-frequency plasma CVD method. The film formation conditions at that time were as follows: the plasma excitation frequency was 27.12 MHz, the substrate temperature was 190 ° C, and the reaction chamber pressure was lTorr. Silane, methane, diborane, and hydrogen are used as source gases introduced into the plasma CVD reaction chamber, and the flow ratio of these gases is 1.6 for methane to 1 for silane, and 0.01 for diborane. And hydrogen was set to 14. In the output characteristics when AMI. 5 light is irradiated at 100 mWZcm2 as incident light on the solar cell of Example 6, the open-circuit voltage is 1 397V, short circuit current density was 11.7mAZcm2, fill factor was 74.0% and conversion efficiency was 12.0%. Compared with the output characteristics in Example 6, in Comparative Example 4, the short-circuit current density and the fill factor were equivalent, but the open-circuit voltage value was lower than that of Example 6.

Claims

請求の範囲 The scope of the claims
[1] 光入射方向より、透明導電酸化物層、 p型半導体層、実質的に真性半導体の光電 変換層と、 n型半導体層の順に配置された光電変換装置の製造方法であって、前記 P型半導体層が少なくともシラン系ガスと水素を含む希釈ガスとを用いたプラズマ CV D法にて形成され、かつ、その形成時圧力力 ^Torr以上かつ 5Torr以下の範囲であ り、さらに、前記シラン系ガスに対する前記希釈ガスの流量比が 5倍以上 50倍以下で あることを特徴とする光電変換装置の製造方法。  [1] A method for producing a photoelectric conversion device in which a transparent conductive oxide layer, a p-type semiconductor layer, a substantially intrinsic semiconductor photoelectric conversion layer, and an n-type semiconductor layer are arranged in this order from the light incident direction, The P-type semiconductor layer is formed by a plasma CV D method using at least a silane-based gas and a dilute gas containing hydrogen, and the pressure force at the time of formation is in a range of not less than Torr and not more than 5 Torr. A method for producing a photoelectric conversion device, wherein the flow rate ratio of the dilution gas to the silane-based gas is 5 to 50 times.
[2] 前記透明導電酸ィ匕物層が酸ィ匕錫力 なることを特徴とする請求項 1に記載の光電 変換装置の製造方法。  [2] The method for producing a photoelectric conversion device according to [1], wherein the transparent conductive oxide layer has an acid strength.
[3] 前記 p型半導体層が主にシリコンカーノイドを主成分とすることを特徴とする請求項 1および請求項 2に記載の光電変換装置の製造方法。  [3] The method for manufacturing a photoelectric conversion device according to any one of [1] and [2], wherein the p-type semiconductor layer mainly contains silicon carnoid.
PCT/JP2005/011554 2004-07-12 2005-06-23 Method for manufacturing thin film photoelectric converter WO2006006368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006528597A JPWO2006006368A1 (en) 2004-07-12 2005-06-23 Method for manufacturing thin film photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-204785 2004-07-12
JP2004204785 2004-07-12

Publications (1)

Publication Number Publication Date
WO2006006368A1 true WO2006006368A1 (en) 2006-01-19

Family

ID=35783716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011554 WO2006006368A1 (en) 2004-07-12 2005-06-23 Method for manufacturing thin film photoelectric converter

Country Status (3)

Country Link
JP (1) JPWO2006006368A1 (en)
TW (1) TW200612568A (en)
WO (1) WO2006006368A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046182B2 (en) 2005-07-28 2011-10-25 Rohde & Schwarz Gmbh & Co. Kg Method and system for digital triggering of signals on the basis of two triggering events separated by a time difference
US8268714B2 (en) 2009-02-17 2012-09-18 Korea Institute Of Industrial Technology Method for fabricating solar cell using inductively coupled plasma chemical vapor deposition
KR101215631B1 (en) 2009-02-17 2012-12-26 한국생산기술연구원 Method for fabricating solar cell applications using inductively coupled plasma chemical vapor deposition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326992A (en) * 1992-05-14 1993-12-10 Kanegafuchi Chem Ind Co Ltd Semiconductor device
WO1995026571A1 (en) * 1994-03-25 1995-10-05 Amoco/Enron Solar Stabilized amorphous silicon and devices containing same
WO1999025029A1 (en) * 1997-11-10 1999-05-20 Kaneka Corporation Method of producing silicon thin-film photoelectric transducer and plasma cvd apparatus used for the method
JP2000340819A (en) * 1999-05-31 2000-12-08 Kanegafuchi Chem Ind Co Ltd Manufacture of amorphous silicon-based thin-film optoelectronic transducer device
JP2001237446A (en) * 2000-02-23 2001-08-31 Mitsubishi Heavy Ind Ltd Thin-film polycrystalline silicon, silicon-based photoelectric conversion element and its manufacturing method
JP2003197536A (en) * 2001-12-21 2003-07-11 Sharp Corp Plasma enhanced cvd system, amorphous silicon-based thin film, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05326992A (en) * 1992-05-14 1993-12-10 Kanegafuchi Chem Ind Co Ltd Semiconductor device
WO1995026571A1 (en) * 1994-03-25 1995-10-05 Amoco/Enron Solar Stabilized amorphous silicon and devices containing same
WO1999025029A1 (en) * 1997-11-10 1999-05-20 Kaneka Corporation Method of producing silicon thin-film photoelectric transducer and plasma cvd apparatus used for the method
JP2000340819A (en) * 1999-05-31 2000-12-08 Kanegafuchi Chem Ind Co Ltd Manufacture of amorphous silicon-based thin-film optoelectronic transducer device
JP2001237446A (en) * 2000-02-23 2001-08-31 Mitsubishi Heavy Ind Ltd Thin-film polycrystalline silicon, silicon-based photoelectric conversion element and its manufacturing method
JP2003197536A (en) * 2001-12-21 2003-07-11 Sharp Corp Plasma enhanced cvd system, amorphous silicon-based thin film, and its manufacturing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8046182B2 (en) 2005-07-28 2011-10-25 Rohde & Schwarz Gmbh & Co. Kg Method and system for digital triggering of signals on the basis of two triggering events separated by a time difference
US8268714B2 (en) 2009-02-17 2012-09-18 Korea Institute Of Industrial Technology Method for fabricating solar cell using inductively coupled plasma chemical vapor deposition
US8283245B2 (en) 2009-02-17 2012-10-09 Korea Institute Of Industrial Technology Method for fabricating solar cell using inductively coupled plasma chemical vapor deposition
US8304336B2 (en) 2009-02-17 2012-11-06 Korea Institute Of Industrial Technology Method for fabricating solar cell using inductively coupled plasma chemical vapor deposition
KR101215631B1 (en) 2009-02-17 2012-12-26 한국생산기술연구원 Method for fabricating solar cell applications using inductively coupled plasma chemical vapor deposition

Also Published As

Publication number Publication date
JPWO2006006368A1 (en) 2008-04-24
TW200612568A (en) 2006-04-16

Similar Documents

Publication Publication Date Title
KR100976010B1 (en) Silicon-based thin-film photoelectric converter and method of manufacturing the same
JP4257332B2 (en) Silicon-based thin film solar cell
WO2012020682A1 (en) Crystalline silicon solar cell
JP2008153646A (en) Manufacturing method of semiconductor device
JP5314697B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
WO2011065343A1 (en) Photoelectric converter and method for producing same
US8901695B2 (en) High efficiency solar cells fabricated by inexpensive PECVD
JP2010283161A (en) Solar cell and manufacturing method thereof
JP2004260014A (en) Multilayer type thin film photoelectric converter
JP5400322B2 (en) Silicon-based thin film solar cell and method for manufacturing the same
WO2005109526A1 (en) Thin film photoelectric converter
WO2006006368A1 (en) Method for manufacturing thin film photoelectric converter
EP4220742A1 (en) Heterojunction solar cell and preparation method therefor, and power generation apparatus
JP6047494B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
CN110383496B (en) Solar cell apparatus and method for forming single, tandem and heterojunction system solar cell apparatus
JP2011014618A (en) Solar cell and method of manufacturing the same
JP2011216586A (en) Laminated photoelectric conversion device and method of manufacturing the same
JP2003142705A (en) Photovoltaic element
JP2010283162A (en) Solar cell and method for manufacturing the same
WO2011148724A1 (en) Intermediate layer for laminate-type photoelectric conversion device, laminate-type photoelectric conversion device, and process for production of laminate-type photoelectric conversion device
JP2000068533A (en) Microscopic crystal silicon thin film solar battery, and manufacture thereof
JP2001177133A (en) Method of manufacturing hybrid thin-film photoelectric transduser device
JP2001284612A (en) Photovoltaic device
WO2013080803A1 (en) Photovoltatic power device
JP2012015361A (en) Method of manufacturing intermediate layer for laminate-type photoelectric conversion device, method of manufacturing laminate-type photoelectric conversion device, and laminate-type photoelectric conversion device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528597

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase