JPH05326992A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH05326992A
JPH05326992A JP4122271A JP12227192A JPH05326992A JP H05326992 A JPH05326992 A JP H05326992A JP 4122271 A JP4122271 A JP 4122271A JP 12227192 A JP12227192 A JP 12227192A JP H05326992 A JPH05326992 A JP H05326992A
Authority
JP
Japan
Prior art keywords
layer
impurity
band gap
surface side
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4122271A
Other languages
Japanese (ja)
Inventor
Hitoshi Nishio
仁 西尾
Yoshinori Yamaguchi
美則 山口
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP4122271A priority Critical patent/JPH05326992A/en
Publication of JPH05326992A publication Critical patent/JPH05326992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To suppress the photo-deterioration of the conversion efficiency of a multiple junction type solar battery by placing, between an i-layer and a wide band gap impurity layer other than a wide band gap impurity layer that is closest to a light receiving surface side, a buffer layer in which a band gap is continuously or stepwise reduced from that impurity layer toward the i-layer. CONSTITUTION:Layers 3 and 13 having a high concentration of impurity, which act as wide band gap semiconductor layers having a high concentration of impurity, are arranged on a light receiving surface side of wide band gap impurity layers 4 and 14, and these layers having a high concentration of impurity are of the same conductivity type as the p-type semiconductor layers 4 and 14, respectively. A buffer layer 15 is disposed between an i-layer 16 and a wide band gap impurity layer other than the wide band gap impurity layer 4 that is closest to the light receiving surface side, namely, the p-type semiconductor layer 14. That buffer layer is formed by continuously varying the concentration of impurity and/or the composition ratio toward the i-layer Thereby, photo-deteriorations occurring in a semiconductor device which is located closest to the light receiving surface side are suppressed, and hence the photo- deterioration of the conversion efficiency of a multiple junction type semiconductor device is suppressed overall.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置に関し、さら
に詳しくは光電変換の半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a photoelectric conversion semiconductor device.

【0002】[0002]

【従来の技術】非単結晶の光起電力素子が安定性に欠け
ていることは一般によく知られている。特に非晶質シリ
コンの場合、照射光により伝導度が低下し150 ℃程度の
熱処理により再び伝導度が回復するというStaebler-Wro
nski効果と呼ばれる現象があるために太陽電池の変換効
率が低下する。
2. Description of the Related Art It is generally well known that non-single-crystal photovoltaic devices lack stability. Especially in the case of amorphous silicon, the conductivity decreases due to irradiation light, and the conductivity is restored again by heat treatment at about 150 ° C.
Due to the phenomenon called the nski effect, the conversion efficiency of the solar cell decreases.

【0003】したがって比較的安定な素子をえるために
は、i層を薄膜化することにより活性層にかかる電界強
度を強め輸送能を上げるような構造のものが考えられて
いる。さらに積層型の構造を採用することによって、受
光面側の素子はi層が薄膜であるために劣化が抑制さ
れ、裏面側の素子は長波長光のみが照射されるために劣
化が抑制されるので、安定性の良い素子として考えられ
ている。
Therefore, in order to obtain a relatively stable element, a structure in which the i layer is thinned to enhance the electric field strength applied to the active layer and enhance the transport capability has been considered. Further, by adopting the laminated structure, the element on the light-receiving surface side is suppressed from being deteriorated because the i layer is a thin film, and the element on the back surface side is irradiated with only long-wavelength light, so that the deterioration is suppressed. Therefore, it is considered as an element with good stability.

【0004】図2に、受光面側にa−SiC:Hのよう
な広バンドギャップ半導体層を用いた従来の非晶質p−
i−n−型多重接合型太陽電池を示す。図2において、
1はガラス基板、2は透明電極、3、13はp型高濃度不
純物層、4、14はp型高バンドギャップ不純物層、5、
15はバッファー層、6、16はi層、7、17はn型不純物
層、8は裏面電極を示す。図示したように、p層4、14
とi層6、16のそれぞれの界面に、i層にむかってバン
ドギャップを減少させたバッファー層5、15が設けられ
ており、さらに透明導電膜2と第1番目のp層4、第1
番目のn層7と第2番目のp層14のオーミック性を改善
するために、広バンドギャップp層4、14の受光面側に
高濃度の不純物層3、13が設けられている。実際に図2
の積層型太陽電池を作製し劣化促進試験を実施したとこ
ろ、20%程度の変換効率の低下が認められた。
FIG. 2 shows a conventional amorphous p-type using a wide bandgap semiconductor layer such as a-SiC: H on the light-receiving surface side.
1 shows an in-type multi-junction solar cell. In FIG.
1 is a glass substrate, 2 is a transparent electrode, 3 and 13 are p-type high concentration impurity layers, 4 and 14 are p-type high bandgap impurity layers, 5 and
Reference numeral 15 is a buffer layer, 6 and 16 are i layers, 7 and 17 are n-type impurity layers, and 8 is a back surface electrode. As shown, p layers 4, 14
The buffer layers 5 and 15 having a reduced band gap toward the i layer are provided at the respective interfaces between the and i layers 6 and 16, and the transparent conductive film 2 and the first p layer 4 and the first p layer 4 are provided.
In order to improve the ohmic properties of the n-th n layer 7 and the second p-layer 14, high-concentration impurity layers 3 and 13 are provided on the light-receiving surface side of the wide band gap p-layers 4 and 14. Actually Figure 2
When a stacked solar cell of No. 1 was produced and a deterioration acceleration test was conducted, a decrease in conversion efficiency of about 20% was observed.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記問題を解
決するためになされたものであり、多重接合型太陽電池
の変換効率の光劣化を抑制し、高効率で安定性に優れた
半導体装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and suppresses the photodegradation of the conversion efficiency of a multi-junction solar cell, and is a highly efficient and stable semiconductor device. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の半導体装置は、
受光面側に、活性層である真性半導体のi層よりもバン
ドギャップの広いp型あるいはn型の不純物層を有する
p−i−n型あるいはn−i−p型光起電力素子を多重
に接合した非単結晶のシリコン系半導体装置であって、
少なくとも一つの広バンドギャップ不純物層の受光面側
に該不純物層と同じ導電型でかつ不純物濃度の高い高濃
度不純物層を設けるとともに、受光面側に最近接の広バ
ンドギャップ不純物層以外の広バンドギャップ不純物層
とi層の間に、該広バンドギャップ不純物層からi層に
むかってバンドギャップを連続的または段階的に減少さ
せたバッファー層を設けることを特徴としている。
The semiconductor device of the present invention comprises:
On the light-receiving surface side, multiple p-i-n-type or n-ip-type photovoltaic elements having p-type or n-type impurity layers having a wider bandgap than the i-layer of the intrinsic semiconductor which is the active layer are multiplexed. A bonded non-single-crystal silicon-based semiconductor device,
A high-concentration impurity layer having the same conductivity type as that of the impurity layer and having a high impurity concentration is provided on the light-receiving surface side of at least one wide bandgap impurity layer, and a wide band other than the closest wide-bandgap impurity layer is provided on the light-receiving surface side. It is characterized in that a buffer layer whose band gap is reduced continuously or stepwise from the wide band gap impurity layer to the i layer is provided between the gap impurity layer and the i layer.

【0007】[0007]

【作用】受光面側に最近接の広バンドギャップ不純物層
以外の広バンドギャップ不純物層とi層の間に、該広バ
ンドギャップ不純物層からi層にむかってバンドギャッ
プを減少させたバッファー層を設けることにより、受光
面側に最近接の半導体装置での光劣化が抑制され全体と
しての多重接合型半導体装置の変換効率の光劣化が抑制
され、高効率で安定性に優れたものができる。
A buffer layer having a band gap reduced from the wide bandgap impurity layer to the i layer is provided between the i band and the wide bandgap impurity layer other than the wide bandgap impurity layer closest to the light receiving surface side. By providing it, the photodegradation of the semiconductor device closest to the light-receiving surface side is suppressed, and the photodegradation of the conversion efficiency of the multi-junction semiconductor device as a whole is suppressed, and a highly efficient and excellent stability can be obtained.

【0008】[0008]

【実施例】本発明における非単結晶シリコン系半導体と
しては、たとえば、Si、SiC、SiN、SiGe、
SiSnなどの水素化合金、フッ素化合金などの一般に
光起電力素子に使用されるアモルファス系、微結晶を含
むアモルファス系または多結晶系の半導体があげられ
る。
EXAMPLES Examples of the non-single-crystal silicon semiconductor according to the present invention include Si, SiC, SiN, SiGe,
Examples include hydrogenated alloys such as SiSn, fluorinated alloys, and other amorphous semiconductors generally used in photovoltaic devices, and amorphous or polycrystalline semiconductors including microcrystals.

【0009】非単結晶シリコン系半導体は、窓層材料と
してi層よりバンドギャップの広い広バンドギャップ半
導体を用いて、p−i−n型あるいはn−i−p型の光
起電力素子とされ、一般にはさらに二重ないし四重にさ
れ多重接合型光起電力素子が形成される。多重接合型光
起電力素子を形成する各非単結晶シリコン系半導体の厚
さは特に限定されず、通常光起電力素子に使用される範
囲のものであれば良い。
The non-single crystal silicon semiconductor is a pin-type or n-ip type photovoltaic device using a wide bandgap semiconductor having a wider bandgap than the i-layer as a window layer material. Generally, a double or quadruple structure is used to form a multi-junction photovoltaic device. The thickness of each non-single-crystal silicon-based semiconductor forming the multi-junction photovoltaic element is not particularly limited as long as it is within a range normally used for photovoltaic elements.

【0010】本発明においては、多重接合型光起電力素
子の受光面側のp/iまたはn/i界面にi層に向かっ
てバンドギャップを減少させたバッファー層を設け、さ
らに透明導電膜およびp/n逆接合部におけるオーミッ
ク性を改善するために、広バンドギャップ層の受光面側
に、さらに不純物濃度を高めた高濃度不純物層を設けて
いる。ここで受光面側に最近接の第1番目の光起電力素
子にはp/iまたはn/i界面にはバッファー層は形成
しない。バッファー層のバンドギャップ幅を連続的また
は段階的に減少させる方法としては、半導体材料の組成
比を変化させる方法、不純物濃度を減少させる方法、あ
るいはこれらを併用する方法などが採用できる。前者に
ついては、たとえばSiCのばあいには、成膜に際して
炭素源の供給量を徐々に減らしてCの割合を減少させる
ことによって、バンドギャップを漸減させることができ
る。バッファー層は、そのバンドギャップの値がi層に
向かってほぼ広バンドギャップ層からi層の値に減少す
るように形成するのが好ましく、たとえば、バッファー
層の組成比を、広バンドギャップ層の組成比から実質的
にi層と同様の状態にまで連続的に変化させることによ
って、かかるバッファー層を形成することができる。
In the present invention, a buffer layer having a band gap reduced toward the i layer is provided at the p / i or n / i interface on the light receiving surface side of the multi-junction photovoltaic element, and a transparent conductive film and In order to improve the ohmic property in the p / n reverse junction, a high-concentration impurity layer having a higher impurity concentration is provided on the light-receiving surface side of the wide band gap layer. Here, no buffer layer is formed at the p / i or n / i interface in the first photovoltaic element closest to the light receiving surface side. As a method of continuously or stepwise reducing the bandgap width of the buffer layer, a method of changing the composition ratio of the semiconductor material, a method of reducing the impurity concentration, a method of using these in combination, or the like can be adopted. Regarding the former, for example, in the case of SiC, the band gap can be gradually reduced by gradually reducing the supply amount of the carbon source during film formation to reduce the proportion of C. The buffer layer is preferably formed such that its bandgap value decreases from the wide bandgap layer toward the i-layer toward the value of the i-layer. Such a buffer layer can be formed by continuously changing the composition ratio to a state substantially similar to that of the i layer.

【0011】本発明の半導体装置の一実施態様を示す図
1に基づいて説明すると、広バンドギャップ不純物層
(p型半導体層)4、14の受光面側に高濃度広バンドギ
ャップ半導体層である高濃度不純物層3、13が設けられ
ており、それぞれp型半導体層4、14と同じ導電型を示
す。広バンドギャップ不純物層4、14がn型半導体であ
るばあいは、高濃度不純物層3、13もn型半導体であ
る。さらに、受光面側に最近接の広バンドギャップ不純
物層4以外の広バンドギャップ不純物層、すなわち図1
においてはp型半導体層14とi層16との間に、i層に向
かって不純物濃度および(または)組成比を連続的に変
化させて形成したバッファー層15が設けられている。な
お、図1において、1は基板、2はSnO2 透明電極、
6、16はi層、8は裏面電極を示す。
Referring to FIG. 1 showing an embodiment of the semiconductor device of the present invention, a high concentration wide bandgap semiconductor layer is formed on the light receiving surface side of the wide bandgap impurity layers (p-type semiconductor layers) 4 and 14. High-concentration impurity layers 3 and 13 are provided and have the same conductivity type as the p-type semiconductor layers 4 and 14, respectively. When the wide band gap impurity layers 4 and 14 are n-type semiconductors, the high-concentration impurity layers 3 and 13 are also n-type semiconductors. Further, a wide band gap impurity layer other than the wide band gap impurity layer 4 closest to the light receiving surface side, that is, FIG.
In the above, a buffer layer 15 is formed between the p-type semiconductor layer 14 and the i layer 16 by continuously changing the impurity concentration and / or the composition ratio toward the i layer. In FIG. 1, 1 is a substrate, 2 is a SnO 2 transparent electrode,
Reference numerals 6 and 16 denote i layers, and 8 denotes a back surface electrode.

【0012】本発明における受光面側の広バンドギャッ
プ層としては、a−Si:H、好ましくはa−SiC:
Hなどにp型用ドーパントとして周期律表III b族の元
素をドープしたもの、あるいはn型用ドーパントとして
周期律表Vb族の元素をドープしたものなどであり、そ
の厚さは通常80〜 300オングストロームである。通常は
広バンドギャップ層の不純物濃度は一定とされる。
The wide bandgap layer on the light-receiving surface side in the present invention is a-Si: H, preferably a-SiC:
For example, H or the like is doped with an element of Group IIIb of the periodic table as a p-type dopant, or is doped with an element of Group Vb of the periodic table as an n-type dopant, and the thickness thereof is usually 80 to 300. Angstrom. Usually, the impurity concentration of the wide band gap layer is constant.

【0013】該広バンドギャップ層とi層の間にi層に
向かってバンドギャップを減少させたバッファー層が設
けられるが、その厚さは通常30〜 500オングストローム
であり、好ましくは50〜 200オングストロームである。
A buffer layer having a reduced bandgap toward the i layer is provided between the wide bandgap layer and the i layer, and the thickness thereof is usually 30 to 500 angstroms, preferably 50 to 200 angstroms. Is.

【0014】さらに受光面側広バンドギャップ層と透明
電極の間に両層間の接触抵抗を低下する目的で、あるい
は第2番目以降の素子の広バンドギャップ層の受光面側
にp/n逆接合部の接触抵抗を低下する目的で、該広バ
ンドギャップ層と同型でさらに高濃度の不純物層を設け
ても良い。この高濃度不純物層の厚さは、通常5〜 100
オングストローム、好ましくは10〜50オングストローム
であり、不純物濃度は受光面側広バンドギャップ層の5
〜50倍とするのが好ましい。
Further, for the purpose of reducing the contact resistance between the light receiving surface side wide band gap layer and the transparent electrode, or to the light receiving surface side of the wide band gap layer of the second and subsequent elements, p / n reverse junction is performed. An impurity layer of the same type as the wide band gap layer and having a higher concentration may be provided for the purpose of reducing the contact resistance of the portion. The thickness of this high-concentration impurity layer is usually 5 to 100.
Å, preferably 10 to 50 Å, and the impurity concentration is 5 of the wide bandgap layer on the light-receiving surface side.
It is preferably ˜50 times.

【0015】i層としては、たとえばa−Si:H、a
−Si:H:Fなどが用いられ、その厚さは通常300 〜
7000オングストロームである。
As the i layer, for example, a-Si: H, a
-Si: H: F or the like is used, and the thickness is usually 300-
It is 7,000 angstroms.

【0016】また、裏面電極側の不純物層7、17として
は、たとえばa−Si:Hや微結晶化Siなどに受光面
側と逆の導電性を示す不純物をドープしたものであり、
その厚さは80〜 300オングストロームである。なお、上
記の各層の厚さは上記の数値に限定されるものではな
い。
The impurity layers 7 and 17 on the back electrode side are, for example, a-Si: H or microcrystallized Si doped with an impurity having conductivity opposite to that of the light receiving surface side.
Its thickness is 80-300 Angstroms. The thickness of each layer is not limited to the above numerical values.

【0017】本実施例では透明電極としてSnO2 を使
用しているがITO、ZnOなどあるいはこれらの複層
膜でも差し支えない。
In this embodiment, SnO 2 is used as the transparent electrode, but ITO, ZnO or the like or a multilayer film of these may be used.

【0018】つぎに実施例をあげて本発明の半導体装置
を説明するが、本発明はかかる実施例のみに限定される
ものではない。
Next, the semiconductor device of the present invention will be described with reference to examples, but the present invention is not limited to these examples.

【0019】実施例1 平行平板容量結合型グロー放電装置を用いて半導体各層
を成膜形成し、図1に示す構造を有する有効面積 1.0cm
2 の太陽電池を作製した。
Example 1 An effective area of 1.0 cm having a structure shown in FIG. 1 in which each semiconductor layer is formed into a film by using a parallel plate capacitively coupled glow discharge device.
A solar cell of 2 was produced.

【0020】SnO2 透明電極2付きガラス基板1上
に、膜厚50オングストロームの高濃度p型半導体層3を
ガス流量SiH4 (50sccm) 、CH4 (35sccm) 、B2
6 (1000ppmH2 希釈品)(500sccm) にて反応圧力1.0To
rr 、ヒーター温度 200℃、RFパワー50mW/cm2 で成
膜し、ついで膜厚 250オングストロームのp型半導体層
4をガス流量SiH4 (50sccm) 、CH4 (35sccm)、B
2 6 ( 1000ppmH2 希釈品)(100sccm) 、H2 (500scc
m) にて反応圧力1.0Torr 、ヒーター温度200 ℃、RF
パワー50mW/cm2 で成膜した。i型半導体層6を、ガス
流量SiH4 (50sccm)にて反応圧力0.3Torr 、ヒーター
温度200 ℃、RFパワー50mW/cm2 で成膜した。つぎに
膜厚300 オングストロームの微結晶化n型半導体層7
を、ガス流量SiH4 (5sccm) 、PH3 (1000 ppmH2
希釈品)(100sccm) 、H2 (200sccm) にて反応圧力1.0T
orr 、ヒーター温度200 ℃、RFパワー 500mW/cm2
成膜した。
A high-concentration p-type semiconductor layer 3 having a film thickness of 50 Å is formed on a glass substrate 1 with a SnO 2 transparent electrode 2 at a gas flow rate of SiH 4 (50 sccm), CH 4 (35 sccm), and B 2.
The reaction pressure 1.0To by H 6 (1000ppmH 2 diluted mixture) (500 sccm)
rr, heater temperature 200 ° C., RF power 50 mW / cm 2 to form a film, and then a p-type semiconductor layer 4 having a film thickness of 250 angstrom is formed by gas flow rate SiH 4 (50 sccm), CH 4 (35 sccm), B
2 H 6 (1000ppm H 2 diluted product) (100sccm), H 2 (500scc
m) reaction pressure 1.0 Torr, heater temperature 200 ℃, RF
The film was formed with a power of 50 mW / cm 2 . The i-type semiconductor layer 6 was formed at a gas flow rate of SiH 4 (50 sccm) at a reaction pressure of 0.3 Torr, a heater temperature of 200 ° C., and an RF power of 50 mW / cm 2 . Next, the microcrystallized n-type semiconductor layer 7 having a film thickness of 300 angstrom
Gas flow rate SiH 4 (5 sccm), PH 3 (1000 ppmH 2
Diluted product) (100sccm), H 2 (200sccm) with reaction pressure 1.0T
A film was formed with an orr, a heater temperature of 200 ° C., and an RF power of 500 mW / cm 2 .

【0021】さらに上記と同様にして、高濃度p型半導
体層13、p型半導体層14、i型半導体層16、微結晶化n
型半導体層17を成膜した。ただし、p型半導体層14の成
膜後に該層14とi型半導体層16の界面に、膜厚200 オン
グストロームのバッファー層15を、初期成膜条件はp型
半導体層14と同一とし、ドーパント濃度およびCH4
度を徐々に減少させながら原料ガスを供給し、最終成膜
条件はp型半導体層14の成膜条件からCH4 、B2 6
がない条件で成膜した。さらに、n型半導体層17の成膜
後裏面電極8を形成して太陽電池をえた。
Further, similarly to the above, the high-concentration p-type semiconductor layer 13, the p-type semiconductor layer 14, the i-type semiconductor layer 16, and the microcrystallized n.
The type semiconductor layer 17 was formed. However, after the p-type semiconductor layer 14 is formed, a buffer layer 15 having a film thickness of 200 Å is formed at the interface between the p-type semiconductor layer 14 and the i-type semiconductor layer 16, the initial film formation conditions are the same as those of the p-type semiconductor layer 14, and the dopant concentration is And the source gas is supplied while gradually reducing the CH 4 concentration, and the final film forming conditions are CH 4 , B 2 H 6 from the film forming conditions of the p-type semiconductor layer 14.
The film was formed under the condition that there is no Further, after forming the n-type semiconductor layer 17, the back surface electrode 8 was formed to obtain a solar cell.

【0022】[0022]

【発明の効果】以上説明したように受光面側に最近接の
広バンドギャップ不純物層以外の広バンドギャップ不純
物層とi層の間にi層にむかってバンドギャップを連続
的または段階的に減少させたバッファー層を設けたた
め、受光面側に最近接の半導体装置での光劣化が抑制さ
れ全体としての多重複合型半導体装置の変換効率の光劣
化が抑制され、高効率で安定性に優れたものができる。
As described above, the band gap is continuously or stepwise reduced toward the i layer between the i layer and the wide band gap impurity layer other than the wide band gap impurity layer closest to the light receiving surface side. Since the buffer layer is provided, the photodegradation of the semiconductor device closest to the light receiving surface side is suppressed, and the photodegradation of the conversion efficiency of the multiple compound semiconductor device as a whole is suppressed, resulting in high efficiency and excellent stability. I can do things.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の一実施例である太陽電池
の構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a configuration of a solar cell which is an embodiment of a semiconductor device of the present invention.

【図2】従来の太陽電池の構成を示す説明図である。FIG. 2 is an explanatory diagram showing a configuration of a conventional solar cell.

【符号の説明】[Explanation of symbols]

1 基板 2 透明電極 3、13 高濃度p型半導体層 4、14 p型半導体層 5、15 バッファー層 6、16 i型半導体層 7、17 n型半導体層 8 裏面電極 DESCRIPTION OF SYMBOLS 1 substrate 2 transparent electrode 3, 13 high concentration p-type semiconductor layer 4, 14 p-type semiconductor layer 5, 15 buffer layer 6, 16 i-type semiconductor layer 7, 17 n-type semiconductor layer 8 backside electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 受光面側に、活性層である真性半導体の
i層よりもバンドギャップの広いp型あるいはn型の不
純物層を有するp−i−n型あるいはn−i−p型光起
電力素子を多重に接合した非単結晶のシリコン系半導体
装置であって、少なくとも一つの広バンドギャップ不純
物層の受光面側に該不純物層と同じ導電型でかつ不純物
濃度の高い高濃度不純物層を設けるとともに、受光面側
に最近接の広バンドギャップ不純物層以外の広バンドギ
ャップ不純物層とi層の間に、該広バンドギャップ不純
物層からi層にむかってバンドギャップを連続的または
段階的に減少させたバッファー層を設けることを特徴と
する半導体装置。
1. A p-i-n-type or n-ip-type photovoltaic layer having a p-type or n-type impurity layer having a bandgap wider than that of an i-layer of an intrinsic semiconductor, which is an active layer, on the light-receiving surface side. A non-single-crystal silicon-based semiconductor device in which power elements are multiple-bonded, and a high-concentration impurity layer having the same conductivity type as that of the impurity layer and a high impurity concentration is provided on the light-receiving surface side of at least one wide bandgap impurity layer. In addition, the band gap is continuously or stepwise between the wide band gap impurity layer other than the wide band gap impurity layer closest to the light receiving surface side and the i layer from the wide band gap impurity layer toward the i layer. A semiconductor device comprising a reduced buffer layer.
【請求項2】 広バンドギャップ不純物層がa−Si
C:Hである請求項1記載の半導体装置。
2. The wide bandgap impurity layer is a-Si
The semiconductor device according to claim 1, wherein C: H.
JP4122271A 1992-05-14 1992-05-14 Semiconductor device Pending JPH05326992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4122271A JPH05326992A (en) 1992-05-14 1992-05-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4122271A JPH05326992A (en) 1992-05-14 1992-05-14 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH05326992A true JPH05326992A (en) 1993-12-10

Family

ID=14831835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4122271A Pending JPH05326992A (en) 1992-05-14 1992-05-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH05326992A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006368A1 (en) * 2004-07-12 2006-01-19 Kaneka Corporation Method for manufacturing thin film photoelectric converter
KR101233205B1 (en) * 2006-10-20 2013-02-15 엘지전자 주식회사 Solar cell system and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006368A1 (en) * 2004-07-12 2006-01-19 Kaneka Corporation Method for manufacturing thin film photoelectric converter
KR101233205B1 (en) * 2006-10-20 2013-02-15 엘지전자 주식회사 Solar cell system and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2740284B2 (en) Photovoltaic element
JP3490964B2 (en) Photovoltaic device
US6368892B1 (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5213628A (en) Photovoltaic device
US5646050A (en) Increasing stabilized performance of amorphous silicon based devices produced by highly hydrogen diluted lower temperature plasma deposition
US4776894A (en) Photovoltaic device
JP2846651B2 (en) Photovoltaic device
JPH0795603B2 (en) Photovoltaic device
JPS62234379A (en) Semiconductor device
JP2719036B2 (en) Amorphous photoelectric conversion device and method of manufacturing the same
JPH0693519B2 (en) Amorphous photoelectric conversion device
US4857115A (en) Photovoltaic device
JPH0658970B2 (en) Semiconductor device
JPH11274527A (en) Photovoltaic device
JPH0122991B2 (en)
JP2002016271A (en) Thin-film photoelectric conversion element
JPH05326992A (en) Semiconductor device
JP2634812B2 (en) Semiconductor device
JP4187328B2 (en) Photovoltaic element manufacturing method
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
JPS5936836B2 (en) Amorphous thin film solar cell
JPS61135167A (en) Thin-film solar cell
JPH0685291A (en) Semiconductor device and its manufacture
JPS62256481A (en) Semiconductor device
JPH0282582A (en) Laminated amorphous silicon solar cell