WO2005103104A1 - Aromatic nanoparticle - Google Patents

Aromatic nanoparticle Download PDF

Info

Publication number
WO2005103104A1
WO2005103104A1 PCT/JP2004/015685 JP2004015685W WO2005103104A1 WO 2005103104 A1 WO2005103104 A1 WO 2005103104A1 JP 2004015685 W JP2004015685 W JP 2004015685W WO 2005103104 A1 WO2005103104 A1 WO 2005103104A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
group
aromatic
methylene groups
benzene rings
Prior art date
Application number
PCT/JP2004/015685
Other languages
French (fr)
Japanese (ja)
Inventor
Genichi Konishi
Natuki Ozeki
Yoshiaki Nakamoto
Original Assignee
Kanazawa University Technology Licensing Organization Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University Technology Licensing Organization Ltd. filed Critical Kanazawa University Technology Licensing Organization Ltd.
Priority to JP2006512472A priority Critical patent/JPWO2005103104A1/en
Publication of WO2005103104A1 publication Critical patent/WO2005103104A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes

Definitions

  • the present invention relates to novel aromatic nanoparticles and a method for producing the same.
  • Patent Documents 13 to 13 In recent years, great attention has been focused on the development and application of nanoparticles.
  • Non-Patent Document 1 Polymer microparticles in the range of about 100 nanometers to 1 micrometer, called submicrons, are synthesized by emulsion polymerization, and are used for paints, dispersants, additives to polymer blends / organic-inorganic composite materials, and for medical materials. It is widely used as a medium (beads) (Non-Patent Document 1).
  • these polymer nanoparticles are made from butyl monomers such as styrene and (meth) acrylic acid derivatives, the heat resistance, durability and mechanical strength of products using these particles are not necessarily sufficient. I could say that.
  • dendrimers are spherical molecules with a controlled structure, and application research is progressing in various fields such as drug delivery systems, photoresists, and liquid crystals, and their effectiveness has been pointed out! Reference 2).
  • hyperbranched polymers are expected as substitutes for dendrimers, but generally the mobility of the polymer chains is high and it is difficult to produce monodispersed polymers.
  • the particle size of the above-mentioned polymer nanoparticles is at least about 100 nm, while the particle diameter of single-molecule particles (dendrimer and fullerene C60) is less than 10 nm in most cases.
  • the diameter of a poly (amidoamine) dendrimer reported by Tomalia the diameter is reported to be 4.75 nanometers even in a high generation (six generations considered synthetically feasible) (Non-Patent Document 3). Therefore, it is very difficult to produce organic nanoparticles of 10 nm or more at present. / ⁇ ⁇
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-059696
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-145896
  • Patent Document 3 Japanese Patent No. 1960894
  • Non-Patent Document 1 "All about Nano affiliate Beads” by Handa and Kawaguchi, Nakayama Shoten (2003)
  • Non-patent Document 2 "Science and Function of Dendrimer” IPC (2000)
  • Non-Patent Document 3 D.A. Tomalia, et al. Angew. Chem. Int.Ed. Engl, vol. 29, 138 (1990) Disclosure of the invention
  • An object of the present invention is to provide nanoparticle having excellent heat resistance, durability, and processability and having a particle diameter that has been conventionally difficult to produce.
  • the nanoparticle according to the present invention is an aromatic nanoparticle produced by the reaction shown in the reaction formula (1).
  • R represents an alkyl group having 11 to 18 carbon atoms, an alkyl group having 2 to 18 carbon atoms, or a benzyl group
  • Nanoparticles randomly contain 1, m, and n, and the ratio of the number of methylene groups to the number of benzene rings (methylene group Z benzene ring) that does not need to have a specific ordered structure is 0.75 or more 1.5 Where n is greater than 0.
  • the aromatic nanoparticles have a number average molecular weight in the range of 500 to 10,000,000.
  • the nanoparticles obtained by the present invention are polymers having a phenylene methylene skeleton similar to phenolic resin, and exhibit excellent heat resistance, chemical resistance, and mechanical strength due to the skeleton.
  • the present invention has a feature that nanoparticles having a particle size of about 1 nanometer to about 1 micrometer can be selectively produced by relatively monodispersion.
  • This method makes it possible to easily produce organic nanoparticles in the region of 10 nm or more, which has been the most difficult to synthesize in the past.
  • nanoparticles obtained by the present invention those having a region of 110 nanometers can be used as dendrimer-like materials.
  • Aromatic dendrimers are known to be extremely difficult to synthesize, making it possible to provide alternative materials at low cost.
  • the aromatic nanoparticles of the present invention have excellent heat resistance, durability, mechanical properties, and workability, and can be applied in various fields as starting materials for nanomaterials and various functional materials. Can be expected.
  • the nanoparticle of the present invention has a novel structure, and is an aromatic fine particle having a particle size that is difficult to separate out by conventional emulsion polymerization.
  • the surface of the nanoparticle has a benzene ring and can be easily chemically modified, it can be applied to micelle-drug delivery system by making amphiphilic core-shell type particles.
  • FIG. 5 1 H NMR chart of nanoparticles obtained in Example 2-1
  • FIG. 7 IR measurement chart of nanoparticles obtained in Example 2-1
  • FIG. 8 GPC measurement chart of nanoparticles obtained in Example 2-1
  • the nanoparticles of the present invention are produced by the method represented by the reaction formula (1).
  • the structure of the nanoparticle is represented by a simplified benzene ring (1,3,5-trihydroxybenzene derivative) (expressed by reference) and a methylene group (expressed by one).
  • the general formula (2) is given as an example when the ratio of the number of methylene groups to the number of benzene rings (methylene group Z benzene ring) is in the range of 1 to 1.5.
  • the general formula (2) is a schematic representation of a multibranched polymer in which the polymer chain is locked at multiple points (meaning that it has an internal cyclic structure).
  • Chemical formula (3) is given as an example when the ratio of the number of methylene groups to the number of benzene rings (methylene group Z benzene ring) is in the range of 0.75 to less than 1.
  • Chemical formula (3) is a schematic representation of a branched multibranched polymer.
  • General formula (4) is unit 1 in the fine particles, and has a structure in which only one methylene group is introduced on the benzene ring. It is. The methylene group is shared with the adjacent benzene ring, and it can be considered that there is one half in the unit.
  • One methylene group per one benzene ring is a unit m in the fine particle, and has a structure in which two methylene groups are introduced on the benzene ring. is there.
  • the methylene group is shared with the adjacent benzene ring, and it can be considered that one methylene group exists in the unit.
  • General formula (6) is a unit of n in the fine particles, and has a structure in which three methylene groups are introduced on the benzene ring. It is. The methylene group is They are shared and can be considered as three-thirds in the unit.
  • the molecular weight of the nanoparticles is not particularly limited as long as the number average molecular weight is in the range of 500 to 10,000,000, more preferably, the number average molecular weight is in the range of 500 to 5,000,000. Less ⁇ is in the range of 1,000-100,000.
  • the particle size of the nanoparticle is not particularly limited, but is preferably from 1 nanometer to 10 micrometer, more preferably from 1 nanometer to 50 nanometer, according to dynamic light scattering measurement. .
  • the RI production method of the nanoparticles according to the present invention uses the general formula (7) and the general formula according to the reaction formula (1).
  • a methyl group, an ethyl group, a propyl group, a butyl group, a fluor group and hydrogen are preferred because of the availability of the raw materials, and particularly preferred are a methyl group, an ethyl group and a hydrogen group. It is.
  • R is the same as that described in the section for solving the problem.
  • methyl, ethyl, propyl, butyl, and hydrogen are preferred, and methyl and hydrogen are particularly preferred in view of the availability of raw materials. It is decomposed by the acid catalyst used for polymerization and forms formaldehyde (R is equivalent to hydrogen) in the reaction system.
  • the molar ratio of the general formula (7) to the general formula (8) is preferably 120, particularly preferably 113.
  • Hydrochloric acid, sulfuric acid, paraphosphoric acid, polyphosphoric acid, oxalic acid, trifluoroacetic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid can be used as an acid catalyst.
  • Hydrochloric acid, sulfuric acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid is used.
  • Particularly preferred are hydrochloric acid and sulfuric acid from the viewpoint of favorable catalytic activity.
  • Reaction solvents include organic acids such as acetic acid, propionic acid, and acetic anhydride; halogen solvents such as chloroform, 1,2-dichloroethane, methylene chloride, carbon tetrachloride, and orthodichloroethane; and organic acids such as acetic acid.
  • chloroform-form 1,2-dichloroethane, acetic acid, propionic acid, and a mixed solvent thereof are particularly preferred. It is a mixed solvent.
  • the reaction temperature is limited depending on the reaction solvent, but it can be carried out at a temperature of 0 to 200 ° C. However, from the viewpoint of controlling the branching ratio and the molecular weight in the polymerization reaction, 0 to 100 ° C is preferable.
  • the temperature is particularly preferably 20 to 80 ° C.
  • the nanoparticle of the present invention has a cyclic structure inside as illustrated in the general formula (2).
  • a multibranched polymer having Such a hyperbranched polymer is a material that is expected to exhibit unique properties in a solution or film state because the mobility of the polymer chain is low. Unlike dendrimers and dendrons, in which the motility of the polymer chains is reduced by steric hindrance, they are locked by covalent bonds, so their stability when used as a material is expected to be higher. Furthermore, the internal structure of the nanoparticles can be controlled by the composition of the reaction solvent.
  • Benzene ring-methylene group in the present invention, nanoparticles having a particle size of about 5 to 50 nm can be easily synthesized.
  • the size of the aromatic fine particles obtained by emulsion polymerization is as small as about 100 nm at most, and the size of the dendrimer having a high generation number is generally less than 10 nm. It can be said that this is an effective method for synthesizing molecular nanoparticles.
  • the ratio of the number of methylene groups to the number of benzene rings methylene group
  • Z benzene ring is 0.75 or more and less than 1, as illustrated in the general formula (3), Is a molecule.
  • Such a hyperbranched polymer has a lower viscosity and crystallinity than a linear polymer, exhibits properties similar to dendrimers and dendrons, and can be used as a substitute material for them.
  • This production method uses the same phenol-formaldehyde condensation (addition condensation) as in the production of novolak, a general-purpose polymer, and the reaction conditions are often mild. Since many of them can be obtained relatively inexpensively, they can be expected as starting materials for various nanomaterials.
  • nanoparticles obtained according to the present invention exhibit excellent solubility in organic solvents or water depending on the type of the substituent, and also have excellent ability to form a film and the like! / In many cases, the degree of dispersion is small (1.3 or less). This is important from the viewpoint of producing nanomaterials of uniform quality and can be said to lead to the stability of the performance of products made from these polymers.
  • FIG. 1 shows a 1 H NMR chart
  • FIG. 2 shows a 13 C NMR chart
  • FIG. 3 shows an IR measurement chart
  • FIG. 4 shows a GPC measurement chart.
  • Example 1-2 The same operation as in Example 1-1 was performed except that the reaction time was changed to 1 hour. As a result, nanoparticles were obtained with a yield of 30%.
  • the ratio of the number of methylene groups to the number of benzene rings was 1.28.
  • the particle size was 1.9 nm.
  • Example 13 The same operation as in Example 11 was carried out except that the reaction time was set to 5 hours, whereby nanoparticles were obtained with a yield of 72%.
  • the ratio of the number of methylene groups to the number of benzene rings was 1.25.
  • the particle size was 8.4 nm.
  • Example 16 By performing the same operation as in Example 11 except that the reaction solvent was acetic acid, nanoparticles were obtained at a yield of 90%.
  • the ratio of the number of methylene groups to the number of benzene rings was 1.40.
  • Example 17 The same operation as in Example 1-1 was carried out except that the reaction solvent was a mixed solvent of acetic acid (7 mL) and chloroform (3 mL), and the yield was 52%. To obtain nanoparticles.
  • the ratio of the number of methylene groups to the number of benzene rings was 1.36.
  • the particle size was 3.6 nm.
  • Example 18 The same operation as in Example 1-1, except that 1,3,5-trimethoxybenzene was changed to 1,3,5-triethoxybenzene (2.10 g, 10 mmol). As a result, nano-particles were obtained with a yield of 25%.
  • the ratio of the number of methylene groups to the number of benzene rings was 1.18.
  • FIG. 5 shows a 1H NMR chart
  • FIG. 6 shows a 13 C NMR chart
  • FIG. 7 shows an IR measurement chart
  • FIG. 8 shows a GPC measurement chart.
  • Example 2-2 When the same operation as in Example 2-1 was performed except that the reaction time was changed to 1 hour, nanoparticles (multi-branched polymer) were obtained in a yield of 22%. Obtained.
  • the ratio of the number of methylene groups to the number of benzene rings was 0.96.
  • Example 2-3 The same operation as in Example 2-1 was performed except that the reaction time was set to 5 hours. However, nanoparticles (multi-branched polymer) were obtained with a yield of 72%.
  • the ratio of the number of methylene groups to the number of benzene rings was 0.97.
  • Example 2-5 Same as Example 2-1 except that 1,3,5-trimethoxybenzene was changed to 1,3,5-triethoxybenzene (2.10 g, 10 mmol). As a result, nano-particles (multi-branched polymer) were obtained in a yield of 25%.
  • the ratio of the number of methylene groups to the number of benzene rings was 0.92.
  • the aromatic nanoparticles of the present invention have excellent heat resistance, mechanical properties, and processability, and can be used as starting materials for nanomaterials and various functional materials.
  • the spillover effect is expected to cover a wide range of fields, not only in the chemical industry but also in ceramics, carbon materials, paints, pharmaceuticals, and biomaterials.

Abstract

[PROBLEMS] To provide new aromatic nanoparticles and a process for producing the same. [MEANS FOR SOLVING PROBLEMS] The aromatic nanoparticles are produced by the method shown by the reaction scheme (1). [Chemical formula 1] (1) 0.75≤(number of methylene groups/number of benzene rings)≤1.5 In the reaction scheme (1), R1 to R3 each is any of C1-18 alkyl, C2-18 alkenyl, benzyl, phenyl, a derivative having any of these hydrocarbon substituents, an alkyl ester group, an aromatic ester group, an alkylene glycol derivative, and hydrogen; and R4 is any of C1-18 alkyl, C2-18 alkenyl, benzyl, phenyl, a derivative having any of these hydrocarbon substituents, and hydrogen. The nanoparticles randomly comprise l, m, and n units, and need not have a specific regular structure. The ratio of the number of methylene groups to the number of benzene rings (methylene groups/benzene rings) is in the range of 0.75 to 1.5, and n is larger than 0.

Description

芳香族系ナノ微粒子  Aromatic nanoparticles
技術分野  Technical field
[0001] 本発明は新規な芳香族系ナノ微粒子およびそれらの製造方法に関する。  The present invention relates to novel aromatic nanoparticles and a method for producing the same.
背景技術  Background art
[0002] 近年、ナノ微粒子の開発と応用に大きな注目が集まっている(特許文献 1一 3)。  [0002] In recent years, great attention has been focused on the development and application of nanoparticles (Patent Documents 13 to 13).
その中でもサブミクロンと呼ばれる 100ナノメートルから 1マイクロメートル程度の領域 の高分子微粒子はェマルジヨン重合によって合成され塗料、分散剤、高分子プレン ドゃ有機無機コンポジット材料への添加剤、さらには医療材料の媒体 (ビーズ)として 幅広く利用されて 、る(非特許文献 1)。  Among them, polymer microparticles in the range of about 100 nanometers to 1 micrometer, called submicrons, are synthesized by emulsion polymerization, and are used for paints, dispersants, additives to polymer blends / organic-inorganic composite materials, and for medical materials. It is widely used as a medium (beads) (Non-Patent Document 1).
これらの高分子ナノ微粒子は、スチレンや (メタ)アクリル酸誘導体などのビュルモノ マーを原料とするものであるため、これらの微粒子を使用する製品の耐熱性、耐久性 、機械的強度などは必ずしも十分とは言えな力つた。  Since these polymer nanoparticles are made from butyl monomers such as styrene and (meth) acrylic acid derivatives, the heat resistance, durability and mechanical strength of products using these particles are not necessarily sufficient. I could say that.
また微粒子を用いた材料、たとえば高分子ブレンド、コンポジットの作成、有機高分 子の焼結による炭素材料への応用を考えると、従来の微粒子では耐熱性、耐久性、 加工性の問題があった。  Considering the application of fine particles to materials such as polymer blends, composites, and carbon materials by sintering organic polymers, conventional particles have problems with heat resistance, durability, and workability. .
さらに高分子微粒子とは別に、単分子ナノ微粒子の研究も盛んになされている。そ の中でも特にデンドリマーは構造の制御された球状分子であり、ドラッグデリバリーシ ステム、フォトレジスト、液晶など様々な分野で応用研究が進んでおり、その有効性が 指摘されて!ヽる (非特許文献 2)。  Further, apart from polymer fine particles, research on single-molecule nanoparticles has been actively conducted. In particular, dendrimers are spherical molecules with a controlled structure, and application research is progressing in various fields such as drug delivery systems, photoresists, and liquid crystals, and their effectiveness has been pointed out! Reference 2).
し力しながら、デンドリマーはその合成過程が煩雑であり、その製造に多大の時間と コストを必要とする場合がほとんどである。従って、工業的なレベルでの応用はほとん ど進んでおらず、デンドリマーまたはデンドリマー類似の機能を持つナノ微粒子の簡 便で低コストの製造法の開発に期待が集まっている。  However, the synthesis process of dendrimers is complicated, and the production thereof often requires a great deal of time and cost. Therefore, application on an industrial level has hardly progressed, and there is an expectation for the development of a simple and low-cost method for producing dendrimers or nanoparticles having dendrimer-like functions.
そこで、デンドリマーの代替材料として種々の多分岐高分子が期待されているが、 一般に高分子鎖の運動性が高ぐまた単分散のものを製造することが難しぐさらに デンドリマーのような硬く成形安定性が得られな 、ため、その応用はあまり進んで ヽ ない。 Therefore, various types of hyperbranched polymers are expected as substitutes for dendrimers, but generally the mobility of the polymer chains is high and it is difficult to produce monodispersed polymers.応 用 応 用 応 用 応 用 応 用 応 用 応 用 応 用 Absent.
上記の高分子ナノ微粒子の粒径は小さくても 100ナノメートル程度であり、一方、単 分子微粒子(デンドリマーやフラーレン C60)の粒径はほとんどの場合 10ナノメートル 以下である。たとえば、 Tomaliaによって報告されたポリ(アミドアミン)デンドリマーの場 合、高世代 (合成的に可能と考えられる 6世代とする)でも直径が 4.75ナノメートルと報 告されている(非特許文献 3)。従って、現在 10ナノメートル以上の有機系ナノ微粒子 を製造することは非常に難しぐこの領域の大きさのナノ微粒子の材料としての応用 研究はあまり進んで!/ヽな ヽ。  The particle size of the above-mentioned polymer nanoparticles is at least about 100 nm, while the particle diameter of single-molecule particles (dendrimer and fullerene C60) is less than 10 nm in most cases. For example, in the case of a poly (amidoamine) dendrimer reported by Tomalia, the diameter is reported to be 4.75 nanometers even in a high generation (six generations considered synthetically feasible) (Non-Patent Document 3). Therefore, it is very difficult to produce organic nanoparticles of 10 nm or more at present. / ヽ ヽ
[0003] 特許文献 1:特開 2004— 059696号公報 [0003] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-059696
特許文献 2:特開 2002— 145896号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 2002-145896
特許文献 3:特許第 1960894号公報  Patent Document 3: Japanese Patent No. 1960894
非特許文献 1 :「ナノアフィ-ティビーズのすべて」半田、川口著、中山書店 (2003) 非特許文献 2:「デンドリマーの科学と機能」アイピーシー (2000)  Non-Patent Document 1: "All about Nano Affiliate Beads" by Handa and Kawaguchi, Nakayama Shoten (2003) Non-patent Document 2: "Science and Function of Dendrimer" IPC (2000)
非特許文献 3 : D. A. Tomalia, et al. Angew. Chem. Int.Ed. Engl, vol.29, 138 (1990) 発明の開示  Non-Patent Document 3: D.A. Tomalia, et al. Angew. Chem. Int.Ed. Engl, vol. 29, 138 (1990) Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] 本発明は、耐熱性、耐久性、加工性に優れ、従来製造が困難であった粒径のナノ 微粒子の提供を目的とする。 [0004] An object of the present invention is to provide nanoparticle having excellent heat resistance, durability, and processability and having a particle diameter that has been conventionally difficult to produce.
課題を解決するための手段  Means for solving the problem
[0005] 本発明に係るナノ微粒子は反応式(1)に示す反応によって製造されることを特徴と する芳香族系ナノ微粒子である。 [0005] The nanoparticle according to the present invention is an aromatic nanoparticle produced by the reaction shown in the reaction formula (1).
[化 1]
Figure imgf000005_0001
[Chemical 1]
Figure imgf000005_0001
0.7S≤ (メチレン基の数/ベンゼン環の数)≤ 1.5 ただし、反応式(1)中、 R— Rは、それぞれ独立して  0.7S≤ (number of methylene groups / number of benzene rings) ≤ 1.5 However, in the reaction formula (1), R—R
1 3  13
炭素数 1一 18のアルキル基又は炭素数 2— 18のァルケ-ル基、ベンジル基又はフ エル基およびそれらの炭化水素置換基を有する誘導体、アルキルエステル基、芳 香族エステル基、アルキレングリコール誘導体、水素、のいずれかである。  C11-C18 alkyl group or C2-C18 alkenyl group, benzyl group or fuller group and derivatives thereof having a hydrocarbon substituent, alkyl ester group, aromatic ester group, alkylene glycol derivative , Hydrogen, or
Rは、炭素数 1一 18のアルキル基又は炭素数 2— 18のァルケ-ル基、ベンジル基 R represents an alkyl group having 11 to 18 carbon atoms, an alkyl group having 2 to 18 carbon atoms, or a benzyl group;
4 Four
又はフエニル基およびそれらの炭化水素置換基を有する誘導体、水素、のいずれか である。  Or a derivative having a phenyl group and a hydrocarbon substituent thereof, or hydrogen.
ナノ微粒子は 1、 m、 nをランダムに含み、特定の規則構造を有する必要が無ぐメチ レン基の個数とベンゼン環の個数の比(メチレン基 Zベンゼン環)は 0. 75以上 1. 5 以下の範囲であり、 nは 0より大きい。  Nanoparticles randomly contain 1, m, and n, and the ratio of the number of methylene groups to the number of benzene rings (methylene group Z benzene ring) that does not need to have a specific ordered structure is 0.75 or more 1.5 Where n is greater than 0.
[0006] 数平均分子量が 500— 10, 000, 000の範囲である、前記芳香族系ナノ微粒子。 [0006] The aromatic nanoparticles have a number average molecular weight in the range of 500 to 10,000,000.
[0007] 粒径が 1ナノメートノレ一 10マイクロメートノレ範囲である、前記ナノ微粒子。 [0007] The nanoparticle having a particle size in a range of 1 nanometer to 10 micrometer.
[0008] 下記一般式 (7)と一般式 (8)で表される化合物の酸触媒を用いた付加縮合によつ て上記反応式(1)に従って製造されることを特徴とするナノ微粒子。 [0008] Nanoparticles produced by addition condensation of compounds represented by the following general formulas (7) and (8) using an acid catalyst according to the above reaction formula (1).
[化 2]  [Formula 2]
Figure imgf000005_0002
Figure imgf000005_0002
[化 3] R4 [Formula 3] R4
c ( 8 ) c (8)
(f H  (f H
[0009] 本発明によって得られるナノ微粒子は、フエノール榭脂と同様のフエ-レンメチレン 骨格を持つ高分子であり、その骨格に起因する優れた耐熱性、耐薬品性、機械的強 度を示す。 [0009] The nanoparticles obtained by the present invention are polymers having a phenylene methylene skeleton similar to phenolic resin, and exhibit excellent heat resistance, chemical resistance, and mechanical strength due to the skeleton.
これらの性質は従来のビニルポリマー系の高分子微粒子の欠点を克服するもので ある。  These properties overcome the disadvantages of the conventional vinyl polymer-based polymer fine particles.
また本発明では、粒径 1ナノメートルから 1マイクロメートル程度のナノ微粒子を比較 的単分散で選択的に製造することができるという特徴を持つ。  Further, the present invention has a feature that nanoparticles having a particle size of about 1 nanometer to about 1 micrometer can be selectively produced by relatively monodispersion.
この方法により従来、最も合成が困難であった 10ナノメートル以上の領域の有機系 ナノ微粒子を簡単に製造することができるようになる。  This method makes it possible to easily produce organic nanoparticles in the region of 10 nm or more, which has been the most difficult to synthesize in the past.
さらに本発明で得られるナノ微粒子のうち 1一 10ナノメートルの領域のものは、デン ドリマー類似の材料として利用することも可能である。芳香族系デンドリマーは極めて 合成が困難であることが知られており、その代替材料を安価で提供することを可能と する。  Further, among the nanoparticles obtained by the present invention, those having a region of 110 nanometers can be used as dendrimer-like materials. Aromatic dendrimers are known to be extremely difficult to synthesize, making it possible to provide alternative materials at low cost.
以上のように、本発明の芳香族系ナノ微粒子は、耐熱性、耐久性、機械的特性、加 工性に優れており、ナノマテリアルや各種機能材料の出発原料として様々な分野で その応用が期待できる。  As described above, the aromatic nanoparticles of the present invention have excellent heat resistance, durability, mechanical properties, and workability, and can be applied in various fields as starting materials for nanomaterials and various functional materials. Can be expected.
発明の効果  The invention's effect
[0010] 本発明のナノ微粒子は、新規な構造であり、従来のェマルジヨン重合ではっくり出 すのが難し力つた粒径の芳香族系微粒子である。  [0010] The nanoparticle of the present invention has a novel structure, and is an aromatic fine particle having a particle size that is difficult to separate out by conventional emulsion polymerization.
その性質としてフエノール榭脂の特徴である優れた耐熱性、耐久性、機械的特性を 示す。  It exhibits excellent heat resistance, durability and mechanical properties that are characteristic of phenolic resin.
またデンドリマーのような単分子ナノ微粒子と類似の性質も有しており、その安価な 代替材料として利用することができる。  It also has properties similar to monomolecular nanoparticles such as dendrimers, and can be used as an inexpensive alternative.
利用方法としては、各種高分子ブレンド、有機 ·無機ハイブリッド型コンポジット、コ 一ティング剤、分散剤、接着剤その他に応用することができる。 ナノマテリアルや各種機能材料の出発原料として様々な分野でその応用が期待でき る It can be applied to various polymer blends, organic-inorganic hybrid composites, coating agents, dispersants, adhesives and others. Expected to be applied in various fields as a starting material for nanomaterials and various functional materials
またナノ微粒子表面はベンゼン環であり、化学的に容易に修飾できるため、両親媒 性のコアシェル型微粒子を作成すれば、ミセルゃドラッグデリバリーシステムへの応 用も可能である。  In addition, since the surface of the nanoparticle has a benzene ring and can be easily chemically modified, it can be applied to micelle-drug delivery system by making amphiphilic core-shell type particles.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]実施例 1-1で得られた多分岐高分子の1 H NMRチャート [FIG. 1] 1 H NMR chart of the hyperbranched polymer obtained in Example 1-1
[図 2]実施例卜 1で得られた多分岐高分子の13 C NMRチャート [FIG. 2] 13 C NMR chart of the hyperbranched polymer obtained in Example 1
[図 3]実施例 1-1で得られた多分岐高分子の IR測定チャート  [FIG. 3] IR measurement chart of the hyperbranched polymer obtained in Example 1-1
[図 4]実施例卜 1で得られた多分岐高分子の GPC測定チャート  [Figure 4] GPC measurement chart of hyperbranched polymer obtained in Example 1
[図 5]実施例 2- 1で得られたナノ微粒子の1 H NMRチャート [FIG. 5] 1 H NMR chart of nanoparticles obtained in Example 2-1
[図 6]実施例 2-1で得られたナノ微粒子の13 C NMRチャート [FIG. 6] 13 C NMR chart of nanoparticles obtained in Example 2-1
[図 7]実施例 2-1で得られたナノ微粒子の IR測定チャート  [FIG. 7] IR measurement chart of nanoparticles obtained in Example 2-1
[図 8]実施例 2-1で得られたナノ微粒子の GPC測定チャート  [FIG. 8] GPC measurement chart of nanoparticles obtained in Example 2-1
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明のナノ微粒子およびその製造方法について詳細に記述する。 Hereinafter, the nanoparticles of the present invention and a method for producing the nanoparticles will be described in detail.
[0013] 本発明のナノ微粒子は反応式(1)で表される方法によって製造される。 [0013] The nanoparticles of the present invention are produced by the method represented by the reaction formula (1).
[化 4]  [Formula 4]
Figure imgf000007_0001
Figure imgf000007_0001
are≤ (メチレン基の数/ベンゼン環の数)≤ 1.5 以下、ナノ微粒子の構造について説明する。 [0014] 簡略ィ匕したベンゼン環(1,3,5-トリヒドロキシベンゼン誘導体)(參で表現)とメチレン 基 (一で表現)でナノ微粒子の構造を表現する。メチレン基の個数とベンゼン環の個 数の比 (メチレン基 Zベンゼン環)力 1以上 1.5以下の範囲である場合の 1例として、一 般式 (2)をあげる。一般式 (2)は、高分子鎖が多点でロックされた(内部環状構造を 持つと 、う意味)多分岐ポリマーを模式ィ匕したものである。 are≤ (number of methylene groups / number of benzene rings) ≤1.5 Below, the structure of the nanoparticles will be described. [0014] The structure of the nanoparticle is represented by a simplified benzene ring (1,3,5-trihydroxybenzene derivative) (expressed by reference) and a methylene group (expressed by one). The general formula (2) is given as an example when the ratio of the number of methylene groups to the number of benzene rings (methylene group Z benzene ring) is in the range of 1 to 1.5. The general formula (2) is a schematic representation of a multibranched polymer in which the polymer chain is locked at multiple points (meaning that it has an internal cyclic structure).
[化 5]  [Formula 5]
Figure imgf000008_0001
Figure imgf000008_0001
ベンゼン環 一 メチレン基 メチレン基の個数とベンゼン環の個数の比 (メチレン基 Zベンゼン環)が 0.75以上 1 未満以下の範囲である場合の 1例として、化学式 (3)をあげる。化学式 (3)は、枝別 れ型の多分岐高分子を模式ィ匕したものである。  Benzene ring methylene group Chemical formula (3) is given as an example when the ratio of the number of methylene groups to the number of benzene rings (methylene group Z benzene ring) is in the range of 0.75 to less than 1. Chemical formula (3) is a schematic representation of a branched multibranched polymer.
[化 6]  [Formula 6]
Figure imgf000008_0002
Figure imgf000008_0002
•ベンゼン環 ― メチレン基  • Benzene ring-methylene group
[0016] 3つのユニット (1、 m、 n)の結合様式は、それぞれ以下のように説明することができ る。
Figure imgf000009_0001
[0016] The bonding mode of the three units (1, m, n) can be described as follows, respectively.
Figure imgf000009_0001
ベンゼン環 1個につきメチレン基 0. 5個 一般式 (4)は微粒子中のユニット 1であり、ベンゼン環上にメチレン基が 1つだけ導 入された構造であり、高分子の末端 (terminal)である。メチレン基は隣のベンゼン環と 共有しており、ユニット中に 2分の 1個存在するとみなせる。  0.5 methylene groups per benzene ring General formula (4) is unit 1 in the fine particles, and has a structure in which only one methylene group is introduced on the benzene ring. It is. The methylene group is shared with the adjacent benzene ring, and it can be considered that there is one half in the unit.
[化 8][Formula 8]
Figure imgf000009_0002
Figure imgf000009_0002
ベンゼン環 1個につきメチレン基 1個 一般式(5)は微粒子中のユニット mであり、ベンゼン環上にメチレン基が 2つ導入さ れた構造であり、高分子の線状部分 (linear)である。メチレン基は隣のベンゼン環と 共有しており、ユニット中に 1個存在するとみなせる。  One methylene group per one benzene ring General formula (5) is a unit m in the fine particle, and has a structure in which two methylene groups are introduced on the benzene ring. is there. The methylene group is shared with the adjacent benzene ring, and it can be considered that one methylene group exists in the unit.
[化 9]
Figure imgf000009_0003
[Formula 9]
Figure imgf000009_0003
ベンゼン環 1個につきメチレン基 1. 5個 一般式(6)は微粒子中のユニット nであり、ベンゼン環上にメチレン基が 3つ導入さ れた構造であり、高分子の分岐部分 (branch)である。メチレン基は隣のベンゼン環と 共有しており、ユニット中に 2分の 3個存在するとみなせる。 1.5 methylene groups per benzene ring General formula (6) is a unit of n in the fine particles, and has a structure in which three methylene groups are introduced on the benzene ring. It is. The methylene group is They are shared and can be considered as three-thirds in the unit.
[0017] 上記ナノ微粒子の分子量は数平均分子量が 500— 10, 000, 000の範囲で特に 限定されないが、数平均分子量が 500— 5, 000, 000の範囲であることが好ましぐ さらに好まし <は 1, 000— 100, 000の範囲である。 [0017] The molecular weight of the nanoparticles is not particularly limited as long as the number average molecular weight is in the range of 500 to 10,000,000, more preferably, the number average molecular weight is in the range of 500 to 5,000,000. Less <is in the range of 1,000-100,000.
[0018] また、上記ナノ微粒子の粒径は特に限定されないが、動的光散乱法測定によると 1 ナノメートル一 10マイクロメートルが好ましぐ特に好ましくは 1ナノメートル一 50ナノメ ートノレの範囲である。 [0018] The particle size of the nanoparticle is not particularly limited, but is preferably from 1 nanometer to 10 micrometer, more preferably from 1 nanometer to 50 nanometer, according to dynamic light scattering measurement. .
[0019] また、本発明のナノ微粒子の RI造方法は、反応式(1)に従って一般式 (7)と一般式  [0019] Further, the RI production method of the nanoparticles according to the present invention uses the general formula (7) and the general formula according to the reaction formula (1).
(8)で表される化合物の酸触媒を用いた付加縮合による。  By addition condensation of the compound represented by (8) using an acid catalyst.
[化 10]  [Formula 10]
Figure imgf000010_0001
Figure imgf000010_0001
[化 11] [Formula 11]
8 8
H  H
[化 12] [Formula 12]
Figure imgf000010_0002
Figure imgf000010_0002
0.75≤ (メチレン基の数/ベンゼン環の数): 反応式(1)および一般式(7)中 R -Rは、課題を解決するための手段の欄に記載 0.75≤ (number of methylene groups / number of benzene rings): In the reaction formula (1) and the general formula (7), R -R are described in the column of means for solving the problem.
1 3  13
したものであれば限定されないが、原料の入手し易さから、メチル基、ェチル基、プロ ピル基、ブチル基、フ -ル基、水素が好ましぐ特に好ましくはメチル基、ェチル基 、水素である。 Although it is not limited as long as it is obtained, a methyl group, an ethyl group, a propyl group, a butyl group, a fluor group and hydrogen are preferred because of the availability of the raw materials, and particularly preferred are a methyl group, an ethyl group and a hydrogen group. It is.
反応式(1)および一般式 (8)中 Rは課題を解決するための手段の欄に記載したも  In the reaction formula (1) and the general formula (8), R is the same as that described in the section for solving the problem.
4  Four
のであれば限定されないが、原料の入手し易さから、メチル基、ェチル基、プロピル 基、ブチル基、水素が好ましぐ特に好ましくはメチル基と水素である。また重合に用 いる酸触媒によって分解し、反応系中でホルムアルデヒド (Rが水素に相当)を発生 However, methyl, ethyl, propyl, butyl, and hydrogen are preferred, and methyl and hydrogen are particularly preferred in view of the availability of raw materials. It is decomposed by the acid catalyst used for polymerization and forms formaldehyde (R is equivalent to hydrogen) in the reaction system.
4  Four
することができるトリオキサン、パラホルムアルデヒド、およびァセトアルデヒド (Rがメ Trioxane, paraformaldehyde, and acetate (where R is
4 チル基に相当)を発生させることができるパラアルデヒドを用いることができる。  4) can be used.
一般式 (7)と一般式 (8)のモル比 (一般式 (8) Z—般式 (7) )は 1一 20が好ましく、 特に好ましくは 1一 3である。  The molar ratio of the general formula (7) to the general formula (8) (general formula (8) Z—general formula (7)) is preferably 120, particularly preferably 113.
酸触媒として塩酸、硫酸、リン酸、ポリリン酸、シユウ酸、トリフルォロ酢酸、パラトル エンスルホン酸、トリフルォロメタンスルホン酸を用いることができる力 塩酸、硫酸、 パラトルエンスルホン酸、トリフルォロメタンスルホン酸が好ましぐ触媒活性の点から 特に好ましくは塩酸、硫酸である。  Hydrochloric acid, sulfuric acid, paraphosphoric acid, polyphosphoric acid, oxalic acid, trifluoroacetic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid can be used as an acid catalyst.Hydrochloric acid, sulfuric acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid is used. Particularly preferred are hydrochloric acid and sulfuric acid from the viewpoint of favorable catalytic activity.
反応溶媒は、酢酸、プロピオン酸、無水酢酸などの有機酸、クロ口ホルム、 1,2-ジク ロロエタン、塩化メチレン、四塩化炭素、オルトジクロロェタンなどのハロゲン系溶媒、 酢酸などの有機酸とハロゲン系溶媒の任意の割合の混合溶媒、酢酸を 50%以上添 加した酢酸ェチル、酢酸ブチルなどのエステル類、エチレングリコールモノェチルエー テル、エチレングリコールモノブチルエーテルなどのセロソルブ類、ジエチレングリコー ルモノェチルエーテルなどのカルビトール類、メタノール、エタノールなどのアルコール類 、トルエンなどの芳香族炭化水素類、などの混合溶媒系に限定される。  Reaction solvents include organic acids such as acetic acid, propionic acid, and acetic anhydride; halogen solvents such as chloroform, 1,2-dichloroethane, methylene chloride, carbon tetrachloride, and orthodichloroethane; and organic acids such as acetic acid. A mixed solvent of an arbitrary ratio of a halogen-based solvent, esters such as ethyl acetate and butyl acetate to which 50% or more of acetic acid is added, cellosolves such as ethylene glycol monoethyl ether and ethylene glycol monobutyl ether, and diethylene glycol monoether. It is limited to a mixed solvent system such as carbitols such as tyl ether, alcohols such as methanol and ethanol, and aromatic hydrocarbons such as toluene.
重合反応における分岐率や分子量の制御の観点からクロ口ホルム、 1,2-ジクロロェ タン、酢酸、プロピオン酸、およびそれらの混合溶媒が好ましぐ特に好ましくはクロ口 ホルムと酢酸の任意の割合の混合溶媒である。  From the viewpoint of controlling the branching ratio and molecular weight in the polymerization reaction, chloroform-form, 1,2-dichloroethane, acetic acid, propionic acid, and a mixed solvent thereof are particularly preferred. It is a mixed solvent.
反応温度は反応溶媒に応じて限界があるが、 0— 200°Cまでの温度で実施可能で ある。ただし、重合反応における分岐率や分子量の制御の観点から 0— 100°Cが好ま しぐ特に好ましくは 20— 80°Cである。 The reaction temperature is limited depending on the reaction solvent, but it can be carried out at a temperature of 0 to 200 ° C. However, from the viewpoint of controlling the branching ratio and the molecular weight in the polymerization reaction, 0 to 100 ° C is preferable. The temperature is particularly preferably 20 to 80 ° C.
本発明のナノ微粒子につ 、てその特徴を述べる。  The features of the nanoparticles of the present invention will be described.
本発明のナノ微粒子は、メチレン基の個数とベンゼン環の個数の比 (メチレン基 z ベンゼン環)が 1以上 1.5以下の場合、一般式(2)に例示されるように、内部に環状構 造を有する多分岐高分子である。このような多分岐高分子は、高分子鎖の運動性が 低いため、溶液やフィルム状態で特異な性質を示すことが期待される材料である。デ ンドリマーやデンドロンのように立体障害により高分子鎖の運動性が低下するものと は異なり共有結合でロックされているため、材料として用いる場合の安定性はそれら より高いと期待される。さらにナノ微粒子の内部構造を反応溶媒の組成によってコント ロールすることができる。メチレン基とベンゼン環の数の比が大きくなる、すなわち内 部環状構造の含有率が高くなる (メチレン基 Zベンゼン環の比が大きくなる)と微粒 子の構造はより強固なものとなり、成形安定性や耐熱性が上昇する。また有機溶媒の 膨潤による形状変化が起きに《なる。  When the ratio of the number of methylene groups to the number of benzene rings (methylene group z benzene ring) is 1 or more and 1.5 or less, the nanoparticle of the present invention has a cyclic structure inside as illustrated in the general formula (2). Is a multibranched polymer having Such a hyperbranched polymer is a material that is expected to exhibit unique properties in a solution or film state because the mobility of the polymer chain is low. Unlike dendrimers and dendrons, in which the motility of the polymer chains is reduced by steric hindrance, they are locked by covalent bonds, so their stability when used as a material is expected to be higher. Furthermore, the internal structure of the nanoparticles can be controlled by the composition of the reaction solvent. When the ratio of the number of methylene groups to benzene rings increases, that is, when the content of the internal ring structure increases (the ratio of methylene groups to benzene rings increases), the structure of the fine particles becomes stronger, and the molding stability becomes higher. And heat resistance increase. In addition, shape change due to swelling of the organic solvent occurs.
これは単分子微粒子である高世代のデンドリマーと似た性質と言え、ナノ微粒子が デンドリマーの代替材料となりうることを示している。  This is similar to the properties of high-generation dendrimers, which are single-molecule particles, indicating that nanoparticles can be a substitute for dendrimers.
[化 13]  [Formula 13]
Figure imgf000012_0001
Figure imgf000012_0001
ベンゼン環 一 メチレン基 また本発明では、 5— 50nm程度の粒径のナノ微粒子を簡便に合成することができる 。ェマルジヨン重合により得られる芳香族系微粒子は小さくても lOOnm程度であり、世 代数の高いデンドリマーの大きさが 10nm以下であることがほとんどであることを考慮 すれば、最も作りにく 、領域の高分子ナノ微粒子の有効な合成法であると言える。 本発明のナノ微粒子のうち、メチレン基の個数とベンゼン環の個数の比 (メチレン基 Benzene ring-methylene group In the present invention, nanoparticles having a particle size of about 5 to 50 nm can be easily synthesized. The size of the aromatic fine particles obtained by emulsion polymerization is as small as about 100 nm at most, and the size of the dendrimer having a high generation number is generally less than 10 nm. It can be said that this is an effective method for synthesizing molecular nanoparticles. Among the nanoparticles of the present invention, the ratio of the number of methylene groups to the number of benzene rings (methylene group
Zベンゼン環)が 0.75以上 1未満の場合、一般式(3)に例示されるように、多分岐高 分子である。このような多分岐高分子は、直鎖状高分子と比べて粘度や結晶性が低 くデンドリマーやデンドロンと似た性質を示しそれらの代替材料として利用することが できる。 (Z benzene ring) is 0.75 or more and less than 1, as illustrated in the general formula (3), Is a molecule. Such a hyperbranched polymer has a lower viscosity and crystallinity than a linear polymer, exhibits properties similar to dendrimers and dendrons, and can be used as a substitute material for them.
本製造法は汎用高分子であるノボラックの製造と同様のフエノールーホルムアルデヒ ド縮合 (付加縮合)を用いており、反応条件も穏和な場合が多!ヽため工業的に実施し やすぐ原料も比較的安価に得られるものが多いため、各種ナノマテリアルの出発原 料として期待できる。  This production method uses the same phenol-formaldehyde condensation (addition condensation) as in the production of novolak, a general-purpose polymer, and the reaction conditions are often mild. Since many of them can be obtained relatively inexpensively, they can be expected as starting materials for various nanomaterials.
本発明によって得られるナノ微粒子の多くは、置換基の種類により優れた有機溶媒 または水への溶解性を示し、またフィルム形成能などの優れた力卩ェ性を有して!/、る。 そして、多くの場合、分散度が小さい(1.3以下)という特徴を有している。これは均一 な品質のナノマテリアルを製造するという観点から重要であり、これらの高分子を原料 とする製品の性能の安定性につながると言える。  Many of the nanoparticles obtained according to the present invention exhibit excellent solubility in organic solvents or water depending on the type of the substituent, and also have excellent ability to form a film and the like! / In many cases, the degree of dispersion is small (1.3 or less). This is important from the viewpoint of producing nanomaterials of uniform quality and can be said to lead to the stability of the performance of products made from these polymers.
[化 14]  [Formula 14]
Figure imgf000013_0001
Figure imgf000013_0001
•ベンゼン環 一 メチレン基 実施例  • Benzene ring-methylene group
[0022] 以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない  Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto.
[0023] 得られたナノ微粒子は、その構造確認を NMR、 IR、 GPC、ゼータ電位計により行つ た。 [0023] The structure of the obtained nanoparticles was confirmed by NMR, IR, GPC, and zeta potentiometer.
(a) 1H NMR(270MHz)および13 C NMR(75MHz)は、日本電子フーリエ変換 NMR分光 光度計 (JNM-EX-270)を使用して 25°Cで測定した。溶媒として重水素化クロ口ホルム 、内部標準物質としてテトラメチルシランを使用した。 (b) FT-IR ^ベクトルは、 日本分光フーリエ変換分光光度計 (FT-IR 460plus)を用い て行った。 (a) 1H NMR (270 MHz) and 13 C NMR (75 MHz) were measured at 25 ° C. using a JEOL Fourier transform NMR spectrophotometer (JNM-EX-270). Deuterated chloroform form was used as a solvent, and tetramethylsilane was used as an internal standard. (b) FT-IR ^ vector was measured using a JASCO Fourier Transform Spectrophotometer (FT-IR460plus).
(c)ゲル浸透クロマトグラフィー(GPC)測定には、カラムとして東ソー製ポリスチレンゲ ル充填からむ TSKgelG3000H XLを用い、検出には東ソー紫外分光光度計( UV-8011、測定波長 270nm)を用い、テトラヒドロフランを溶離液として 1.0mL/min、室 温で測定した。  (c) For gel permeation chromatography (GPC) measurement, use TSKgelG3000H XL from Tosoh polystyrene gel packing as the column, and use Tosoh UV spectrophotometer (UV-8011, measurement wavelength 270 nm) for detection, and use tetrahydrofuran as the column. The eluent was measured at 1.0 mL / min at room temperature.
(d)粒径は Zeta Potential/Particle Sizer NICOMPtm 380ZLSを用いてクロ口ホルム を溶媒として 20°Cで測定した。  (d) The particle size was measured at 20 ° C using Zeta Potential / Particle Sizer NICOMPtm 380ZLS, using porcelain form as a solvent.
[0024] 1.反応式(1)に示された方法により製造されるナノ微粒子の合成例 (その 1)  1. Example of Synthesis of Nanoparticles Produced by Method shown in Reaction Formula (1) (Part 1)
(実施例 1—1) 1,3,5-トリメトキシベンゼン(1.68g, lOmmol)、パラホルムアルデヒド( 0.45g,ホルムアルデヒドとして 15mmol)を酢酸(5mL) 'クロ口ホルム(5mL)混合溶媒に 溶解し、氷冷しながら濃塩酸 (2mL)をゆっくりと滴下した。室温で 2時間力べはんした 後、反応溶液をメタノールに注入し、沈澱物を回収した。得られた固体を吸引ろ過し 、 40°Cで真空乾燥してナノ微粒子を 0.59g, 32%の収率で得た。分子量 Mn = 7300, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比を1 H NMRより求めたと ころ 1.26であった。粒径は 3.5nmであった。 (Example 1-1) 1,3,5-Trimethoxybenzene (1.68 g, 10 mmol) and paraformaldehyde (0.45 g, 15 mmol as formaldehyde) were dissolved in a mixed solvent of acetic acid (5 mL) and chloroform (5 mL). Concentrated hydrochloric acid (2 mL) was slowly added dropwise while cooling with ice. After vortexing at room temperature for 2 hours, the reaction solution was poured into methanol, and the precipitate was collected. The obtained solid was subjected to suction filtration and vacuum-dried at 40 ° C. to obtain 0.59 g of nanoparticles at a yield of 32%. The molecular weights were Mn = 7300 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings determined by 1 H NMR was 1.26. The particle size was 3.5 nm.
なお、図 1に1 H NMRチャート、図 2に13 C NMRチャート、図 3に IR測定チャート、図 4 に GPC測定チャートをそれぞれ示す。 FIG. 1 shows a 1 H NMR chart, FIG. 2 shows a 13 C NMR chart, FIG. 3 shows an IR measurement chart, and FIG. 4 shows a GPC measurement chart.
[0025] (実施例 1-2)反応時間を 1時間にした点を除!、て、実施例 1-1と同じ操作を行った ところ、 30%の収率でナノ微粒子を得た。分子量 Mn = 3500, Mw/Mn = 1.1であった。 メチレン基の数とベンゼン環の数の比は 1.28であった。粒径は 1.9nmであった。  (Example 1-2) The same operation as in Example 1-1 was performed except that the reaction time was changed to 1 hour. As a result, nanoparticles were obtained with a yield of 30%. The molecular weight was Mn = 3500 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 1.28. The particle size was 1.9 nm.
[0026] (実施例 1 3)反応時間を 5時間にした点を除いて、実施例 1 1と同じ操作を行った ところ、 72%の収率でナノ微粒子を得た。分子量 Mn = 21000, Mw/Mn = 1.1であった。 メチレン基の数とベンゼン環の数の比は 1.25であった。粒径は 8.4nmであった。  (Example 13) The same operation as in Example 11 was carried out except that the reaction time was set to 5 hours, whereby nanoparticles were obtained with a yield of 72%. The molecular weights were Mn = 21000 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 1.25. The particle size was 8.4 nm.
[0027] (実施例 1 4)反応時間を 10時間,パラホルムアルデヒド(0.90g,ホルムアルデヒドと して 30mmol)にした点を除いて、実施例 1—1と同じ操作を行ったところ、 50%の収率で ナノ微粒子を得た。分子量 Mn = 45000, Mw/Mn = 1.2であった。メチレン基の数とベ ンゼン環の数の比は 1.36であった。粒径は 18nmであった。 [0028] (実施例 1 5)反応温度を室温力も 50°Cにした点を除いて、実施例 1 1と同じ操作を 行ったところ、 55%の収率でナノ微粒子を得た。分子量 Mn = 12400, Mw/Mn = 1.3で あった。メチレン基の数とベンゼン環の数の比は 1.28であった。 (Example 14) [0027] Except that the reaction time was changed to 10 hours and paraformaldehyde (0.90 g, 30 mmol as formaldehyde), the same operation as in Example 1-1 was performed. Nanoparticles were obtained in a high yield. The molecular weights were Mn = 45000 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings was 1.36. The particle size was 18 nm. (Example 15) [0028] The same operation as in Example 11 was performed except that the reaction temperature was also set to 50 ° C at room temperature. As a result, nanoparticles were obtained at a yield of 55%. The molecular weight was Mn = 12400 and Mw / Mn = 1.3. The ratio of the number of methylene groups to the number of benzene rings was 1.28.
[0029] (実施例 1 6)反応溶媒を酢酸にした点を除いて、実施例 1 1と同じ操作を行ったと ころ、 90%の収率でナノ微粒子を得た。分子量 Mn = 21000, Mw/Mn = 1.2であった。メ チレン基の数とベンゼン環の数の比は 1.40であった。  (Example 16) By performing the same operation as in Example 11 except that the reaction solvent was acetic acid, nanoparticles were obtained at a yield of 90%. The molecular weights were Mn = 21000 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings was 1.40.
[0030] (実施例 1 7)反応溶媒を酢酸 (7mL) 'クロ口ホルム (3mL)混合溶媒にした点を除い て、実施例 1-1と同じ操作を行ったところ、 52%の収率でナノ微粒子を得た。分子量 Mn = 8200, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比は 1.36で あった。粒径は 3.6nmであった。  (Example 17) The same operation as in Example 1-1 was carried out except that the reaction solvent was a mixed solvent of acetic acid (7 mL) and chloroform (3 mL), and the yield was 52%. To obtain nanoparticles. The molecular weights were Mn = 8200 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings was 1.36. The particle size was 3.6 nm.
[0031] (実施例 1 8) 1,3,5-トリメトキシベンゼンを 1,3,5-トリエトキシベンゼン(2.10g, lOmmol )に変えた点を除いて、実施例 1-1と同じ操作を行ったところ、 25%の収率でナノ微粒 子を得た。分子量 Mn = 2000, Mw/Mn = 1.1であった。メチレン基の数とベンゼン環の 数の比は 1.18であった。  (Example 18) The same operation as in Example 1-1, except that 1,3,5-trimethoxybenzene was changed to 1,3,5-triethoxybenzene (2.10 g, 10 mmol). As a result, nano-particles were obtained with a yield of 25%. The molecular weights were Mn = 2000 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 1.18.
[0032] 2.反応式(1)に示された方法により製造されるナノ微粒子の合成例 (その 2)  2. Example of synthesizing nanoparticles produced by the method shown in reaction formula (1) (Part 2)
(実施例 2— 1) 1,3,5-トリメトキシベンゼン(1.68g, lOmmol)、パラホルムアルデヒド( 0.45g,ホルムアルデヒドとして 15mmol)をクロ口ホルム(5mL)混合溶媒に溶解し、氷 冷しながら濃塩酸 (2mL)をゆっくりと滴下した。室温で 2時間力べはんした後、反応溶 液をメタノールに注入し、沈澱物を回収した。得られた固体を吸引ろ過し、 40°Cで真 空乾燥してナノ微粒子(多分岐高分子)を 0.61g, 33%の収率で得た。分子量 Mn = 3100, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比を1 H NMRより求 めたところ 0.98であったまた、粒径は 2.1nmであった。 (Example 2-1) 1,3,5-Trimethoxybenzene (1.68 g, 10 mmol) and paraformaldehyde (0.45 g, 15 mmol as formaldehyde) were dissolved in a mixed solvent of chloroform (5 mL), and the solution was cooled with ice. Concentrated hydrochloric acid (2 mL) was slowly added dropwise. After stirring at room temperature for 2 hours, the reaction solution was poured into methanol, and the precipitate was collected. The obtained solid was filtered by suction and dried in vacuo at 40 ° C. to obtain 0.61 g of nanoparticles (multi-branched polymer) in a yield of 33%. The molecular weight was Mn = 3100 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings determined by 1 H NMR was 0.98, and the particle size was 2.1 nm.
なお、図 5に 1H NMRチャート、図 6に13 C NMRチャート、図 7に IR測定チャート、図 8 に GPC測定チャートをそれぞれ示す。 5 shows a 1H NMR chart, FIG. 6 shows a 13 C NMR chart, FIG. 7 shows an IR measurement chart, and FIG. 8 shows a GPC measurement chart.
[0033] (実施例 2— 2)反応時間を 1時間にした点を除いて、実施例 2— 1と同じ操作を行った ところ、 22%の収率でナノ微粒子(多分岐高分子)を得た。分子量 Mn = 1800, Mw/Mn = 1.1であった。メチレン基の数とベンゼン環の数の比は 0.96であった。  (Example 2-2) When the same operation as in Example 2-1 was performed except that the reaction time was changed to 1 hour, nanoparticles (multi-branched polymer) were obtained in a yield of 22%. Obtained. The molecular weights were Mn = 1800 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 0.96.
[0034] (実施例 2— 3)反応時間を 5時間にした点を除いて、実施例 2— 1と同じ操作を行った ところ、 72%の収率でナノ微粒子(多分岐高分子)を得た。分子量 Mn = 8400, Mw/Mn = 1.3であった。メチレン基の数とベンゼン環の数の比は 0.97であった。 (Example 2-3) The same operation as in Example 2-1 was performed except that the reaction time was set to 5 hours. However, nanoparticles (multi-branched polymer) were obtained with a yield of 72%. The molecular weight was Mn = 8400 and Mw / Mn = 1.3. The ratio of the number of methylene groups to the number of benzene rings was 0.97.
[0035] (実施例 2— 4)反応溶媒を 1,2-ジクロロェタンにした点を除いて、実施例 2— 1と同じ操 作を行ったところ、 90%の収率でナノ微粒子 (多分岐高分子)を得た。分子量 Mn = 2500, Mw/Mn = 1.3であった。メチレン基の数とベンゼン環の数の比は 0.95であった Example 2-4 The same operation as in Example 2-1 was carried out except that the reaction solvent was 1,2-dichloroethane. Polymer). The molecular weights were Mn = 2,500 and Mw / Mn = 1.3. The ratio of the number of methylene groups to the number of benzene rings was 0.95
[0036] (実施例 2— 5) 1,3,5-トリメトキシベンゼンを 1,3,5-トリエトキシベンゼン(2.10g, lOmmol )に変えた点を除いて、実施例 2-1と同じ操作を行ったところ、 25%の収率でナノ微粒 子(多分岐高分子)を得た。分子量 Mn = 1500, Mw/Mn = 1.1であった。メチレン基の 数とベンゼン環の数の比は 0.92であった。 (Example 2-5) Same as Example 2-1 except that 1,3,5-trimethoxybenzene was changed to 1,3,5-triethoxybenzene (2.10 g, 10 mmol). As a result, nano-particles (multi-branched polymer) were obtained in a yield of 25%. The molecular weights were Mn = 1500 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 0.92.
産業上の利用可能性  Industrial applicability
[0037] 本発明の芳香族系ナノ微粒子は、耐熱性、機械的特性、加工性に優れており、ナ ノマテリアルや各種機能材料の出発原料として利用できる。その波及効果が予想さ れる分野は多岐に渡っており、化学工業のみならずセラミック、炭素材料、塗料、医 薬品、生体関連材料などである。 The aromatic nanoparticles of the present invention have excellent heat resistance, mechanical properties, and processability, and can be used as starting materials for nanomaterials and various functional materials. The spillover effect is expected to cover a wide range of fields, not only in the chemical industry but also in ceramics, carbon materials, paints, pharmaceuticals, and biomaterials.

Claims

請求の範囲 下記反応式 (1)に示す反応によって製造されることを特徴とする芳香族系ナノ微粒 子。 Claims Aromatic nano-particles produced by the reaction shown in the following reaction formula (1).
[化 1]  [Chemical 1]
Figure imgf000017_0001
Figure imgf000017_0001
0.75≤ (メチレン基の数/ベンゼン環の数)≤ 1.5 ただし、反応式(1)中、 R— Rは、  0.75 ≤ (number of methylene groups / number of benzene rings) ≤ 1.5 However, in the reaction formula (1), R—R is
1 3  13
炭素数 1一 18のアルキル基又は炭素数 2— 18のァルケ-ル基、ベンジル基又はフ エル基およびそれらの炭化水素置換基を有する誘導体、アルキルエステル基、芳 香族エステル基、アルキレングリコール誘導体、水素、のいずれかである。  C18-C18 alkyl group or C2-C18 alkenyl group, benzyl group or fuller group and derivatives having a hydrocarbon substituent thereof, alkyl ester group, aromatic ester group, alkylene glycol derivative , Hydrogen, or
Rは、炭素数 1一 18のアルキル基又は炭素数 2— 18のァルケ-ル基、ベンジル基 R represents an alkyl group having 11 to 18 carbon atoms, an alkyl group having 2 to 18 carbon atoms, or a benzyl group;
4 Four
又はフエニル基およびそれらの炭化水素置換基を有する誘導体、水素、のいずれか である。  Or a derivative having a phenyl group and a hydrocarbon substituent thereof, or hydrogen.
ナノ微粒子は 1、 m、 nをランダムに含み、特定の規則構造を有する必要が無ぐメチ レン基の個数とベンゼン環の個数の比(メチレン基 Zベンゼン環)は 0. 75以上 1. 5 以下の範囲であり、 nは 0より大きい。  Nanoparticles randomly contain 1, m, and n, and the ratio of the number of methylene groups to the number of benzene rings (methylene group Z benzene ring) that does not need to have a specific ordered structure is 0.75 or more 1.5 Where n is greater than 0.
[2] 数平均分子量が 500— 10, 000, 000の範囲であることを特徴とする請求の範囲 1 に記載の芳香族系ナノ微粒子。  [2] The aromatic nanoparticles according to claim 1, wherein the number average molecular weight is in the range of 500 to 10,000,000.
[3] 粒径が 1ナノメートル一 10マイクロメートルの範囲であることを特徴とする請求の範囲 1に記載のナノ微粒子。 [3] The nanoparticle according to claim 1, wherein the particle diameter is in a range of 1 nanometer to 10 micrometers.
[4] 請求の範囲 1記載の反応式(1)に従って、下記一般式 (7)と一般式 (8)で表される化 合物の酸触媒を用いた付加縮合によって製造されることを特徴とするナノ微粒子。 [4] According to the reaction formula (1) described in claim 1, a compound represented by the following general formulas (7) and (8) Nanoparticles produced by addition condensation of a compound using an acid catalyst.
[化 2]
Figure imgf000018_0001
[Chemical 2]
Figure imgf000018_0001
[化 3] [Formula 3]
Figure imgf000018_0002
Figure imgf000018_0002
PCT/JP2004/015685 2004-04-23 2004-10-22 Aromatic nanoparticle WO2005103104A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006512472A JPWO2005103104A1 (en) 2004-04-23 2004-10-22 Aromatic nanoparticles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004127531 2004-04-23
JP2004-127531 2004-04-23

Publications (1)

Publication Number Publication Date
WO2005103104A1 true WO2005103104A1 (en) 2005-11-03

Family

ID=35196925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015685 WO2005103104A1 (en) 2004-04-23 2004-10-22 Aromatic nanoparticle

Country Status (2)

Country Link
JP (1) JPWO2005103104A1 (en)
WO (1) WO2005103104A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338729A (en) * 1997-06-10 1998-12-22 Dainippon Ink & Chem Inc Spherical phenolic resin composite and its production
JP2001151839A (en) * 1999-11-30 2001-06-05 Sumitomo Durez Co Ltd Thermally infusible resin particle
JP2002226534A (en) * 2001-01-30 2002-08-14 Sumitomo Bakelite Co Ltd Method for producing spherical resin fine particle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140017B (en) * 1983-03-08 1986-11-19 Borden Inc Phenolic resin binder compositions exhibiting low fume evolution in use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338729A (en) * 1997-06-10 1998-12-22 Dainippon Ink & Chem Inc Spherical phenolic resin composite and its production
JP2001151839A (en) * 1999-11-30 2001-06-05 Sumitomo Durez Co Ltd Thermally infusible resin particle
JP2002226534A (en) * 2001-01-30 2002-08-14 Sumitomo Bakelite Co Ltd Method for producing spherical resin fine particle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KONISHI G ET AL: "Design-gata Phenol o Mochiita Nano Biryushi no Sensei.", PROCEEDINGS OF THE THERMOSETTING PLASTICS SYMPOSIUM JAPAN., 21 October 2004 (2004-10-21), pages 13 - 14, XP002996441 *

Also Published As

Publication number Publication date
JPWO2005103104A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
Tomalia et al. Structure control within poly (amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins
Kuo et al. Solid state and solution self-assembly of helical polypeptides tethered to polyhedral oligomeric silsesquioxanes
Fréchet et al. Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers
Chu et al. Intramolecular cyclization in hyperbranched polyesters
CN110787663B (en) High permeability polymer composite membrane for gas separation and method of making the same
JP2003147418A (en) Preparation of metal nanoparticles using shell- crosslinked micelle as template
Guo et al. Grafting of dendritic polyethers onto nanometre silica surface
Gonzaga et al. Highly efficient divergent synthesis of dendrimers via metal‐free “click” chemistry
MALAKPOUR et al. Preparation and characterization of novel optically active poly (amide-ester-imide) s based on bis (p-aminobezoic acid)-ntrimellitylimido-S-valine via direct polyesterification
CN111393647B (en) Non-traditional luminous polymer and preparation method and application thereof
Sahin et al. Polyoxazoline‐modified graphene oxides with improved water and epoxy resin dispersibility and stability towards composite applications
Chang et al. Synthesis and characterization of hyperbranched aromatic poly (ether imide) s with terminal amino groups
CN105384932A (en) Nanomodified backbones for polyimides with difunctional and mixed-functionality endcaps
Kao et al. Solid‐Phase Synthesis of a Seventh‐Generation Inverse Poly (amidoamine) Dendrimer: Importance of the Loading Ratio on the Resin
WO2005103104A1 (en) Aromatic nanoparticle
WO2006051627A1 (en) Core/shell type nanoparticles
Wang et al. Fabrication of Fullerene‐Containing Hybrid Vesicles via Supramolecular Self‐Assembly of a Well‐Defined Amphiphilic Block Copolymer Incorporated with a Single C60 Moiety at the Diblock Junction Point
Mansour et al. Hyperbranched polyesters based on polycondensation of 1, 3, 5‐tris (2‐hydroxyethyl) cyanuric acid and 3, 5‐dihydroxybenzoic acid
JP5139756B2 (en) Polymer fine particles formed in aliphatic hydrocarbon solvents and process for producing the same
Karpagam et al. Synthesis and characterization of endcapped hyperbranched polyesters
JP2000239360A (en) Polyphenyleneethynylene having dendoron side chain, resin composition containing the same, luminescent coating, and luminescent sheet-like molded material
JP2000290365A (en) Polyketone and its production
FI109353B (en) Maleimide-modified poly (propyleneimine) dendrimers and a process for their preparation
Baek et al. Hyperbranched Poly (Phenylquinoxaline− Ether− Ketone) Synthesis in Poly (Phosphoric acid)/P2O5 Medium: Optimization and Some Interesting Observations
Lin et al. One‐pot synthesis and characterization of hyperbranched poly (ester‐amide) s from commercially available dicarboxylic acids and multihydroxyl secondary amines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006512472

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase