JP2002226534A - Method for producing spherical resin fine particle - Google Patents

Method for producing spherical resin fine particle

Info

Publication number
JP2002226534A
JP2002226534A JP2001022240A JP2001022240A JP2002226534A JP 2002226534 A JP2002226534 A JP 2002226534A JP 2001022240 A JP2001022240 A JP 2001022240A JP 2001022240 A JP2001022240 A JP 2001022240A JP 2002226534 A JP2002226534 A JP 2002226534A
Authority
JP
Japan
Prior art keywords
fine particles
resin fine
spherical resin
particle size
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001022240A
Other languages
Japanese (ja)
Other versions
JP3724789B2 (en
Inventor
Yoshihiro Matsuo
芳大 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001022240A priority Critical patent/JP3724789B2/en
Publication of JP2002226534A publication Critical patent/JP2002226534A/en
Application granted granted Critical
Publication of JP3724789B2 publication Critical patent/JP3724789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a spherical phenolic resin cured product, by which spherical resin fine particles having a sharp particle size distribution of micron or sub-micron order can be produced without using a suspension stabilizer. SOLUTION: This method for producing the spherical resin fine particles from resorcinol and an aldehyde source is characterized by adjusting a recorcinol:water weight ratio of 1:5 to 1:100 and further adjusting the pH value of the reaction system to 5 to 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、粒度分布がシャー
プな球状樹脂微粒子の製造方法に関するものである。本
発明による球状樹脂微粒子は、粒径依存性が大きな液晶
のスペーサーや研磨材、潤滑剤として利用できる。ま
た、固定炭素が高く、トナー用炭素材、電極材料のよう
な炭素材料としても使用出来るものである。
The present invention relates to a method for producing spherical resin fine particles having a sharp particle size distribution. The spherical resin fine particles according to the present invention can be used as spacers, abrasives, and lubricants for liquid crystals having a large particle size dependency. Further, it has a high fixed carbon and can be used as a carbon material such as a carbon material for toner and an electrode material.

【0002】[0002]

【従来の技術】従来、樹脂微粒子を合成する方法とし
て、懸濁重合、エマルジョン重合による方法が試みられ
てきた。このプロセスは安価なものであるため、汎用プ
ラスチックであるポリスチレン、架橋ポリスチレン、ポ
リメチルメタクリレート粉体やポリエステル樹脂等の製
造分野などで利用されてきた。近年、ソープフリー乳化
重合やシード乳化重合が注目されてきている。これは、
懸濁重合や乳化重合とは異なり、懸濁剤や乳化剤、界面
活性剤を一切使用しないため、後工程の洗浄が省略でき
るという非常に大きなメリットがあるためである。ま
た、数μmから数十nm程度の非常に径の小さな粒子の
合成が容易にできたり、さらに粒度分布がシャープな微
粒子を合成することが可能である。
2. Description of the Related Art Conventionally, as a method for synthesizing resin fine particles, methods based on suspension polymerization and emulsion polymerization have been tried. Since this process is inexpensive, it has been used in the field of producing general-purpose plastics such as polystyrene, cross-linked polystyrene, polymethyl methacrylate powder, and polyester resin. In recent years, soap-free emulsion polymerization and seed emulsion polymerization have attracted attention. this is,
This is because, unlike suspension polymerization and emulsion polymerization, a suspension agent, an emulsifier, and a surfactant are not used at all, so that there is a great merit that washing in a subsequent step can be omitted. Further, it is possible to easily synthesize particles having a very small diameter of about several μm to several tens of nm, and to synthesize fine particles having a sharp particle size distribution.

【0003】一方、フェノール樹脂の懸濁重合プロセス
による球状硬化物の合成も様々なところで行われてい
る。特開昭61−127719号公報及び特開昭62−
235312号公報では、懸濁重合プロセスによりフェ
ノール樹脂微粒子が得られている。しかしながら、懸濁
重合プロセスでは、粒径が一般的な懸濁重合の粒度分布
の範囲である数μm〜2mmであり、サブミクロンオー
ダーの球状硬化物は、この重合方法では得られていない
のが現状である。さらに、懸濁重合プロセスでは、懸濁
安定剤を添加して反応を行うため、反応終了後に洗浄工
程を必要とする。小粒径になるほど洗浄−分離工程が困
難となる。特開平10−338728号公報記載の製法
において、セルロース類を懸濁安定剤として、粒径が
0.1〜10μm程度の樹脂微粒子を合成している。こ
の方法でも、樹脂製造後に、熱水抽出を行って反応に関
与しないセルロースを除去する工程が必要となる。しか
も、完全に除去を行うことは困難であり、また、粒子が
独立した球とならずに二次凝集してしまう。
[0003] On the other hand, synthesis of a spherical cured product by a suspension polymerization process of a phenol resin has been performed in various places. JP-A-61-127719 and JP-A-62-127719
No. 2,353,112, phenol resin fine particles are obtained by a suspension polymerization process. However, in the suspension polymerization process, the particle size is several μm to 2 mm, which is the range of the particle size distribution of general suspension polymerization, and a spherical cured product on the order of submicrons has not been obtained by this polymerization method. It is the current situation. Further, in the suspension polymerization process, a reaction is carried out by adding a suspension stabilizer, so that a washing step is required after the completion of the reaction. The smaller the particle size, the more difficult the washing-separation step. In the production method described in JP-A-10-338728, resin fine particles having a particle size of about 0.1 to 10 μm are synthesized using celluloses as a suspension stabilizer. This method also requires a step of removing the cellulose that does not participate in the reaction by performing hot water extraction after the production of the resin. In addition, it is difficult to completely remove the particles, and the particles are not aggregated into independent spheres but secondary aggregated.

【0004】懸濁安定剤を全く使用しない系での微小球
状フェノール樹脂の合成も試みられている。特公昭62
−30210号公報及び特開平07−18043号公報
では、懸濁安定剤を全く使用していない。この方法で
は、粒度分布が1〜20μmの微粒子が得られるが、形
状が真球状でなかったり、また凝集物となっていること
がある。さらに、この方法は高濃度の塩酸存在下で反応
を行うため、洗浄工程が必要となり、洗浄を行っても、
千ppmオーダーで遊離塩素イオンが残留してしまうと
いう欠点がある。
Attempts have also been made to synthesize microspherical phenolic resins in systems that do not use any suspension stabilizers. Tokiko Sho 62
In JP-A-30210 and JP-A-07-18043, no suspension stabilizer is used. In this method, fine particles having a particle size distribution of 1 to 20 μm are obtained, but the shape may not be a true sphere or may be an aggregate. Furthermore, since this method performs the reaction in the presence of high-concentration hydrochloric acid, a washing step is required.
There is a disadvantage that free chlorine ions remain on the order of 1,000 ppm.

【0005】一方、ソープフリー乳化重合によりポリマ
ー微粒子を合成するときは、懸濁剤の分離除去をする必
要がなくなる反面、粒径の調節が非常に困難となる。通
常の懸濁重合では懸濁安定剤の量を調節することで平均
粒径の制御を試みることは可能であるが、ソープフリー
乳化重合の場合はそれができない。また、微小粒径のソ
ープフリー乳化重合の場合は、粒径に対して反応時の攪
拌条件などが非常に重要な因子となるため、邪魔板の有
無や攪拌翼の形状及び攪拌回転数などの物理的要因によ
り大幅に変わってしまうという欠点があった。
On the other hand, when polymer fine particles are synthesized by soap-free emulsion polymerization, it is not necessary to separate and remove the suspending agent, but it is very difficult to control the particle size. In ordinary suspension polymerization, it is possible to try to control the average particle size by adjusting the amount of the suspension stabilizer, but in soap-free emulsion polymerization, it is not possible. In addition, in the case of soap-free emulsion polymerization with a small particle size, the stirring conditions during the reaction with respect to the particle size are very important factors. There is a drawback that it is greatly changed by physical factors.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的とすると
ころは、懸濁安定剤を使用せずに、粒度分布がシャープ
なミクロン及びサブミクロンオーダーの球状樹脂微粒子
を合成する方法を提案するものである。後工程である洗
浄工程を省略するためには、ソープフリーの乳化重合を
行わなくてはならない。また、一般のフェノール樹脂
は、重合度が大きくなるに従い、分子内の親水基の密度
が減少し、同時に疎水基の密度が増加する。この極性の
変化を考慮に入れて反応を設計する必要がある。
SUMMARY OF THE INVENTION An object of the present invention is to propose a method for synthesizing micron and sub-micron spherical resin fine particles having a sharp particle size distribution without using a suspension stabilizer. It is. In order to omit the subsequent washing step, soap-free emulsion polymerization must be performed. Further, in a general phenol resin, as the degree of polymerization increases, the density of hydrophilic groups in the molecule decreases, and at the same time, the density of hydrophobic groups increases. The reaction needs to be designed taking this change in polarity into account.

【0007】[0007]

【課題を解決するための手段】本発明は、(1)レゾル
シンとアルデヒド源から球状樹脂微粒子を製造する方法
であって、レゾルシンと水との比(重量比)を1:5〜
1:100とし、反応系のpHを5〜7に調節して反応
することを特徴とする球状樹脂微粒子の製造方法、
(2)平均粒径が5μm〜50nmであることを特徴と
する第(1)項記載の球状樹脂微粒子の製造方法、
(3)アルデヒド源としてホルムアルデヒド、パラホル
ムアルデヒド、グリオキザール、ベンズアルデヒドを使
用することを特徴とする第(1)項または第(2)項記
載の球状樹脂微粒子の製造方法、(4)レゾルシンとア
ルデヒド源とのモル比を1:0.8〜1:3で行うこと
を特徴とする第(1)項乃至第(3)項いずれか記載の
球状樹脂微粒子の製造方法、(5)反応する際の攪拌強
さを表すレイノルズ数が0〜107 であることを特徴と
する第(1)項乃至第(4)項いずれか記載の球状樹脂
微粒子の製造方法、である。
The present invention provides (1) a method for producing spherical resin fine particles from resorcinol and an aldehyde source, wherein the ratio (weight ratio) of resorcinol to water is 1: 5 to 1: 5.
A method for producing spherical resin fine particles, wherein the reaction is carried out by adjusting the pH of the reaction system to 5 to 7 at a ratio of 1: 100,
(2) The method for producing spherical resin fine particles according to (1), wherein the average particle diameter is 5 μm to 50 nm.
(3) the method for producing spherical resin fine particles according to (1) or (2), wherein formaldehyde, paraformaldehyde, glyoxal, and benzaldehyde are used as the aldehyde source; (4) resorcinol and an aldehyde source; (1) to (3), wherein the molar ratio is 1: 0.8 to 1: 3, and (5) stirring during the reaction. The method for producing spherical resin fine particles according to any one of items (1) to (4), wherein the Reynolds number representing the strength is 0 to 10 7 .

【0008】[0008]

【発明の実施の形態】本発明に関して検討を行った結
果、レゾルシンとホルムアルデヒド類とを用いて重合を
行うことにより均一に重合が進行し、粒径が5μm以下
の非常に微細で均一な粒径の硬化樹脂が得られることを
確認した。このとき、pHを5〜7の範囲で調節するこ
とで、平均粒径を5μmから50nmの範囲で調節する
ことが可能であることもわかった。pHが5を下回ると
粒子同士が凝集しやすくなり、単一球のものを得にくく
なる。またpHが7を上回るとエアロゲルと呼ばれる寒
天状のものが出来やすくなり、微粒子を得ることが難し
くなる。粒子の二次凝集を非常に少なくし、粒度分布の
シャープな球状樹脂微粒子を効率よく得るためには、反
応系のpHは5.9〜6.5であることが特に好まし
い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a result of studying the present invention, it has been found that the polymerization proceeds uniformly by using resorcinol and formaldehyde, and the particle diameter is very fine and uniform, less than 5 μm. It was confirmed that a cured resin was obtained. At this time, it was also found that by adjusting the pH in the range of 5 to 7, the average particle size could be adjusted in the range of 5 μm to 50 nm. When the pH is lower than 5, the particles tend to aggregate with each other, and it is difficult to obtain a single sphere. On the other hand, when the pH is higher than 7, an agar-like material called aerogel is easily formed, and it is difficult to obtain fine particles. The pH of the reaction system is particularly preferably from 5.9 to 6.5 in order to extremely reduce the secondary aggregation of particles and efficiently obtain spherical resin fine particles having a sharp particle size distribution.

【0009】本発明ではレゾルシンとホルムアルデヒド
類とを混合するだけで微粒子を製造することが可能であ
るが、攪拌等による混合を行っても差し支えない。尚、
混合方法は特に限定されるものではないが、攪拌条件を
表すレイノルズ数の範囲が0〜107 であることが好ま
しい。107 を超えると二次凝集を起こした微粒子が形
成しやすくなってしまうためである。また、反応時の温
度についても特に限定されるものではないが、常温〜9
0℃が好ましく、55〜85℃がさらに好ましい。
In the present invention, fine particles can be produced only by mixing resorcinol and formaldehyde, but mixing by stirring or the like may be performed. still,
The mixing method is not particularly limited, but the range of the Reynolds number representing the stirring condition is preferably 0 to 10 7 . If it exceeds 10 7 , secondary aggregated fine particles are likely to be formed. The temperature at the time of the reaction is not particularly limited, either.
0 ° C is preferred, and 55-85 ° C is more preferred.

【0010】アルデヒド源としては、ホルムアルデヒド
水溶液、パラホルムアルデヒド、グリオキザール及びベ
ンズアルデヒドを使用することが好ましい。また、レゾ
ルシンとアルデヒドのモル比については、安定して球状
樹脂微粒子を得るためには1:0.8〜1:3が好まし
く、効率を考慮すると1:1.5〜1:2.5がさらに
好ましい。1:0.8未満では樹脂が硬化せずに熱溶融
したものができやすくなる。また、1:3を上回ると反
応が急激に進行するために、二次凝集を起こしてしま
い、真球状の微粒子を得るのが難しくなる。重合溶媒は
水が最も好ましいが、有機系の溶剤を使用しても良い。
As an aldehyde source, it is preferable to use an aqueous formaldehyde solution, paraformaldehyde, glyoxal and benzaldehyde. The molar ratio of resorcinol to aldehyde is preferably from 1: 0.8 to 1: 3 in order to obtain spherical resin fine particles stably, and from 1: 1.5 to 1: 2.5 in consideration of efficiency. More preferred. When the ratio is less than 1: 0.8, the resin is not cured and easily melted. On the other hand, when the ratio exceeds 1: 3, the reaction proceeds rapidly, so that secondary aggregation occurs, and it is difficult to obtain fine spherical fine particles. The polymerization solvent is most preferably water, but an organic solvent may be used.

【0011】触媒がなくても本反応は進行するが、炭酸
ナトリウムなどの金属系触媒や、アミン系の触媒を使用
しても良い。触媒量はレゾルシンに対して0.3重量%
以下であることが好ましいが、これに限定されるもので
はない。触媒はpH調整剤としての役割を果たしてい
て、pHが5〜7の範囲に収まるような量であることが
肝要である。レゾルシンと水との比(重量比)は、粒度
分布のシャープな球状樹脂微粒子を安定して得るために
は、1:5〜1:100であることが好ましく、より好
ましくは、1:8〜1:15である。この範囲で反応を
行うと、粒子の二次凝集を極めて低く抑制出来、高収率
で粒子を得ることが可能である。1:100より高いと
反応速度が低下したり、安定性が悪くなり、微粒子を得
るのが難しくなる。また、1:5より低いと微粒子球ど
うしが凝集してしまう傾向がある。
Although this reaction proceeds without a catalyst, a metal catalyst such as sodium carbonate or an amine catalyst may be used. 0.3% by weight of catalyst based on resorcinol
The following is preferable, but not limited thereto. The catalyst plays a role as a pH adjuster, and it is important that the amount of the catalyst be within a range of 5 to 7. The ratio (weight ratio) of resorcinol to water is preferably from 1: 5 to 1: 100, more preferably from 1: 8 to 1, in order to stably obtain spherical resin fine particles having a sharp particle size distribution. 1:15. When the reaction is carried out in this range, the secondary aggregation of the particles can be suppressed to an extremely low level, and the particles can be obtained in a high yield. If the ratio is higher than 1: 100, the reaction rate is lowered, the stability is deteriorated, and it is difficult to obtain fine particles. If the ratio is lower than 1: 5, the fine particle spheres tend to aggregate.

【0012】上記の方法で得られた微粒子を、合成した
後水から分離する必要があるが、分離には遠心分離機を
使用することができる。例えば、100mlの遠沈缶を
4本使用し、5000rpmで10分間分離を行い、分
離した上澄みを除去した後、ケーキを50℃で24時間
乾燥させ、その後、遠心粉砕機で解砕を行って微粒子を
得る。本発明で得られた微粒子の粒度は、レーザー散乱
型粒度分布測定装置(堀場製作所製:LA920)を用
いて測定することができる。粒度測定サンプルは反応終
了後の微粒子と水との混合物を用いて直接測定する。
It is necessary to separate the fine particles obtained by the above method from water after the synthesis, and a centrifuge can be used for the separation. For example, using four 100 ml centrifuge cans, separating at 5000 rpm for 10 minutes, removing the separated supernatant, drying the cake at 50 ° C. for 24 hours, and then pulverizing with a centrifugal mill. Obtain fine particles. The particle size of the fine particles obtained in the present invention can be measured using a laser scattering type particle size distribution analyzer (LA920, manufactured by Horiba, Ltd.). The particle size measurement sample is directly measured using a mixture of the fine particles after the reaction and water.

【0013】[0013]

【実施例】次に、実施例により本発明を説明する。水と
微粒子との分離は遠心分離機を用い、微粒子の粒度は、
レーザー散乱型粒度分布測定装置を用い、それぞれ上記
の方法にて実施した。
Next, the present invention will be described by way of examples. Separation of water and fine particles uses a centrifuge, and the particle size of the fine particles is
Using a laser scattering type particle size distribution measuring device, each was carried out by the above method.

【0014】[実施例1]レゾルシン100重量部、水
1000重量部、炭酸ナトリウム0.1重量部を添加し
て、完全に溶解するまで攪拌した。その後、37%ホル
ムアルデヒド水溶液147重量部を添加して攪拌後、ビ
ンに溶液を入れて、80℃の恒温槽で72時間放置し
た。その後、遠心分離機を用いて水と微粒子を分離し
て、乾燥及び解砕を行うことで平均粒径が2μmの球状
樹脂微粒子が得られた。
Example 1 100 parts by weight of resorcinol, 1000 parts by weight of water, and 0.1 part by weight of sodium carbonate were added, and the mixture was stirred until completely dissolved. Thereafter, 147 parts by weight of a 37% formaldehyde aqueous solution was added, and the mixture was stirred. After that, the solution was put in a bottle and left in a constant temperature bath at 80 ° C. for 72 hours. Thereafter, water and fine particles were separated using a centrifuge, followed by drying and crushing, whereby spherical resin fine particles having an average particle size of 2 μm were obtained.

【0015】[実施例2]レゾルシン100重量部、水
1000重量部、炭酸ナトリウム0.2重量部を添加し
て、完全に溶解するまで攪拌した。その後、37%ホル
ムアルデヒド水溶液147重量部を添加して攪拌後、ビ
ンに溶液を入れて、80℃の恒温槽で72時間放置し
た。その後、遠心分離機を用いて水と微粒子を分離し
て、乾燥及び解砕を行うことで平均粒径が1μmの球状
樹脂微粒子が得られた。
Example 2 100 parts by weight of resorcinol, 1000 parts by weight of water and 0.2 parts by weight of sodium carbonate were added and stirred until completely dissolved. Thereafter, 147 parts by weight of a 37% formaldehyde aqueous solution was added, and the mixture was stirred. After that, the solution was put in a bottle and left in a constant temperature bath at 80 ° C. for 72 hours. Thereafter, water and fine particles were separated using a centrifuge, followed by drying and crushing, whereby spherical resin fine particles having an average particle size of 1 μm were obtained.

【0016】[実施例3]レゾルシン100重量部、水
1000重量部、炭酸ナトリウム0.3重量部を添加し
て、完全に溶解するまで攪拌した。その後、37%ホル
ムアルデヒド水溶液147重量部を添加して攪拌後、ビ
ンに溶液を入れて、80℃の恒温槽で72時間放置し
た。その後、遠心分離機を用いて水と微粒子を分離し
て、乾燥及び解砕を行うことで平均粒径が0.5μmの
球状樹脂微粒子が得られた。
Example 3 100 parts by weight of resorcinol, 1000 parts by weight of water, and 0.3 parts by weight of sodium carbonate were added and stirred until completely dissolved. Thereafter, 147 parts by weight of a 37% formaldehyde aqueous solution was added, and the mixture was stirred. After that, the solution was put in a bottle and left in a constant temperature bath at 80 ° C. for 72 hours. Thereafter, water and fine particles were separated using a centrifuge, followed by drying and crushing, whereby spherical resin fine particles having an average particle size of 0.5 μm were obtained.

【0017】[実施例4]恒温槽で72時間放置するか
わりに、攪拌装置を使用し180rpmで攪拌しながら8
0℃で反応させる以外は実施例1と同様の方法で行っ
た。その結果、平均粒径が1.9μmの球状樹脂微粒子
が得られた。
[Example 4] Instead of being left in a constant temperature bath for 72 hours, stirring was performed at 180 rpm using a stirrer.
The reaction was performed in the same manner as in Example 1 except that the reaction was performed at 0 ° C. As a result, spherical resin fine particles having an average particle size of 1.9 μm were obtained.

【0018】[実施例5]37%ホルムアルデヒド水溶
液のかわりに40%グリオキザール水溶液132重量部
を使用する以外は実施例1と同様の方法で行った。その
結果、平均粒径が2.0μmの球状樹脂微粒子が得られ
た。
Example 5 The same procedure as in Example 1 was carried out except that 132 parts by weight of a 40% aqueous glyoxal solution was used instead of the 37% aqueous formaldehyde solution. As a result, spherical resin fine particles having an average particle size of 2.0 μm were obtained.

【0019】[比較例1]レゾルシン100重量部、水
1000重量部、炭酸ナトリウム1重量部を添加して、
完全に溶解するまで攪拌した。その後、37%ホルムア
ルデヒド水溶液147重量部を添加してレゾルシンが完
全に溶解するまで攪拌した。攪拌後、ビンに溶液を入れ
て、80℃の恒温槽で72時間放置した。反応物はエア
ロゲル(寒天状のゲル化物)であった。
Comparative Example 1 100 parts by weight of resorcinol, 1000 parts by weight of water and 1 part by weight of sodium carbonate were added.
Stir until completely dissolved. Thereafter, 147 parts by weight of a 37% aqueous formaldehyde solution was added, and the mixture was stirred until resorcin was completely dissolved. After stirring, the solution was put into a bottle and left in a constant temperature bath at 80 ° C. for 72 hours. The reaction was aerogel (agar gel).

【0020】[比較例2]レゾルシン100重量部、水
1000重量部を加えて完全に溶解するまで攪拌した。
その後、37%ホルムアルデヒド水溶液147重量部を
添加した後、600回転で攪拌を行いながら80℃で3
時間反応を行った。反応物は凝集物であった。
[Comparative Example 2] 100 parts by weight of resorcinol and 1000 parts by weight of water were added and stirred until completely dissolved.
Thereafter, 147 parts by weight of a 37% formaldehyde aqueous solution was added, and the mixture was stirred at 600 rpm at 80 ° C. for 3 hours.
A time reaction was performed. The reactants were aggregates.

【0021】[比較例3]レゾルシン300重量部、水
1000重量部、炭酸ナトリウム0.3重量部を添加し
て、完全に溶解するまで攪拌した。その後、37%ホル
ムアルデヒド水溶液441重量部を添加して 攪拌後、
ビンに溶液を入れて、80℃の恒温槽で72時間放置し
た。得られたのは凝集物であった。
Comparative Example 3 300 parts by weight of resorcinol, 1000 parts by weight of water and 0.3 parts by weight of sodium carbonate were added, and the mixture was stirred until completely dissolved. Thereafter, 441 parts by weight of a 37% aqueous formaldehyde solution were added and stirred,
The solution was put in a bottle and left in a constant temperature bath at 80 ° C. for 72 hours. What was obtained was an aggregate.

【0022】[比較例4]レゾルシン5重量部、水10
00重量部、炭酸ナトリウム0.05重量部を添加し
て、完全に溶解するまで攪拌した。その後、37%ホル
ムアルデヒド水溶液8重量部を添加して攪拌後、ビンに
溶液を入れて、80℃の恒温槽で72時間放置した。得
られたのは凝集物であった。
Comparative Example 4 Resorcinol 5 parts by weight, water 10
00 parts by weight and 0.05 parts by weight of sodium carbonate were added thereto, and the mixture was stirred until it was completely dissolved. Thereafter, 8 parts by weight of a 37% formaldehyde aqueous solution was added and stirred, and then the solution was put into a bottle and left in a constant temperature bath at 80 ° C. for 72 hours. What was obtained was an aggregate.

【0023】実施例、比較例の結果を表1に示す。表中
の「レゾルシン:水(重量比)」に記載されている水の
重量には、アルデヒド源水溶液中の水を含む。また、実
施例の電子顕微鏡写真を図1〜図5に示す。図から明ら
かなように、実施例で得られた球状樹脂微粒子は、粒径
がミクロンおよびサブミクロンオーダーであり、粒度分
布がシャ―プである。
Table 1 shows the results of Examples and Comparative Examples. The weight of water described in “resorcinol: water (weight ratio)” in the table includes water in the aqueous aldehyde source solution. 1 to 5 show electron micrographs of the examples. As is apparent from the figure, the spherical resin fine particles obtained in the examples have a particle size on the order of microns and submicrons, and have a sharp particle size distribution.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明により、レゾルシンとアルデヒド
源から球状微粒子を製造する際、レゾルシンと水との比
(重量比)を1:5〜1:100とし、反応系のpHを
5〜7に調節することで、ミクロン及びサブミクロンオ
ーダーの球状樹脂微粒子の製造が可能となった。これら
は、粒度分布がシャープであり、また粒径制御が容易で
あることから、粒径依存性が大きな液晶のスペーサーや
研磨材、潤滑剤としての利用が可能である。また、固定
炭素が高いことから、トナー用炭素材、電極材料のよう
な炭素材料としての応用も可能である。
According to the present invention, when producing spherical fine particles from resorcinol and an aldehyde source, the ratio (weight ratio) of resorcinol to water is 1: 5 to 1: 100, and the pH of the reaction system is 5 to 7. By adjusting, it became possible to produce micron and submicron order spherical resin fine particles. Since these have a sharp particle size distribution and easy particle size control, they can be used as spacers, abrasives, and lubricants for liquid crystals having a large particle size dependency. Further, since the fixed carbon is high, application as a carbon material such as a carbon material for toner and an electrode material is also possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1で得られた球状樹脂微粒子の電子顕
微鏡写真
FIG. 1 is an electron micrograph of the spherical resin fine particles obtained in Example 1.

【図2】 実施例2で得られた球状樹脂微粒子の電子顕
微鏡写真
FIG. 2 is an electron micrograph of the spherical resin fine particles obtained in Example 2.

【図3】 実施例3で得られた球状樹脂微粒子の電子顕
微鏡写真
FIG. 3 is an electron micrograph of the spherical resin fine particles obtained in Example 3.

【図4】 実施例4で得られた球状樹脂微粒子の電子顕
微鏡写真
FIG. 4 is an electron micrograph of the spherical resin fine particles obtained in Example 4.

【図5】 実施例5で得られた球状樹脂微粒子の電子顕
微鏡写真
FIG. 5 is an electron micrograph of the spherical resin fine particles obtained in Example 5.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 レゾルシンとアルデヒド源から球状樹脂
微粒子を製造する方法であって、レゾルシンと水との比
(重量比)を1:5〜1:100とし、反応系のpHを
5〜7に調節して反応することを特徴とする球状樹脂微
粒子の製造方法。
1. A method for producing spherical resin fine particles from resorcinol and an aldehyde source, wherein the ratio (weight ratio) of resorcinol to water is 1: 5 to 1: 100 and the pH of the reaction system is 5 to 7. A method for producing fine spherical resin particles, characterized in that the fine particles are adjusted and reacted.
【請求項2】 平均粒径が5μm〜50nmであること
を特徴とする請求項1記載の球状樹脂微粒子の製造方
法。
2. The method according to claim 1, wherein the average particle diameter is 5 μm to 50 nm.
【請求項3】 アルデヒド源としてホルムアルデヒド、
パラホルムアルデヒド、グリオキザール、ベンズアルデ
ヒドを使用することを特徴とする請求項1または2記載
の球状樹脂微粒子の製造方法。
3. Formaldehyde as an aldehyde source,
3. The method according to claim 1, wherein paraformaldehyde, glyoxal, or benzaldehyde is used.
【請求項4】 レゾルシンとアルデヒド源とのモル比を
1:0.8〜1:3として反応することを特徴とする請
求項1乃至3いずれか記載の球状樹脂微粒子の製造方
法。
4. The method for producing spherical resin fine particles according to claim 1, wherein the reaction is carried out at a molar ratio of resorcinol to the aldehyde source of 1: 0.8 to 1: 3.
【請求項5】 反応する際の攪拌強さを表すレイノルズ
数が0〜107 であることを特徴とする請求項1乃至4
いずれか記載の球状樹脂微粒子の製造方法。
5. The method according to claim 1, wherein the Reynolds number representing the stirring strength during the reaction is 0 to 10 7.
The method for producing the spherical resin fine particles according to any one of the above.
JP2001022240A 2001-01-30 2001-01-30 Method for producing spherical resin fine particles Expired - Fee Related JP3724789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022240A JP3724789B2 (en) 2001-01-30 2001-01-30 Method for producing spherical resin fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022240A JP3724789B2 (en) 2001-01-30 2001-01-30 Method for producing spherical resin fine particles

Publications (2)

Publication Number Publication Date
JP2002226534A true JP2002226534A (en) 2002-08-14
JP3724789B2 JP3724789B2 (en) 2005-12-07

Family

ID=18887684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022240A Expired - Fee Related JP3724789B2 (en) 2001-01-30 2001-01-30 Method for producing spherical resin fine particles

Country Status (1)

Country Link
JP (1) JP3724789B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103104A1 (en) * 2004-04-23 2005-11-03 Kanazawa University Technology Licensing Organization Ltd. Aromatic nanoparticle
JP2007063377A (en) * 2005-08-30 2007-03-15 Lignyte Co Ltd Method for producing aldehyde-based resin particulate
WO2008047700A1 (en) 2006-10-20 2008-04-24 Air Water Inc. Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
JP2016519695A (en) * 2013-03-13 2016-07-07 エナジー2 テクノロジーズ,インコーポレイテッドEnerG2 TECHNOLOGIES,INC. Improved emulsion and suspension polymerization process, and improved electrochemical performance of carbon derived therefrom

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005103104A1 (en) * 2004-04-23 2005-11-03 Kanazawa University Technology Licensing Organization Ltd. Aromatic nanoparticle
JPWO2005103104A1 (en) * 2004-04-23 2008-03-13 有限会社金沢大学ティ・エル・オー Aromatic nanoparticles
JP2007063377A (en) * 2005-08-30 2007-03-15 Lignyte Co Ltd Method for producing aldehyde-based resin particulate
EP2145906A1 (en) 2006-10-20 2010-01-20 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2078734A1 (en) * 2006-10-20 2009-07-15 Air Water Inc. Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2141184A1 (en) 2006-10-20 2010-01-06 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
WO2008047700A1 (en) 2006-10-20 2008-04-24 Air Water Inc. Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8158095B2 (en) 2006-10-20 2012-04-17 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8293860B2 (en) 2006-10-20 2012-10-23 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8409756B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8411415B2 (en) 2006-10-20 2013-04-02 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
US8658120B2 (en) 2006-10-20 2014-02-25 Air Water Inc. Non-thermofusible phenol resin powder, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2078734B1 (en) * 2006-10-20 2016-06-01 Air Water Inc. Non-thermofusible granular phenol resin, method for producing the same, thermosetting resin composition, sealing material for semiconductor, and adhesive for semiconductor
EP2141184B1 (en) * 2006-10-20 2016-06-29 Air Water Inc. Carbon electrode material powder
JP2016519695A (en) * 2013-03-13 2016-07-07 エナジー2 テクノロジーズ,インコーポレイテッドEnerG2 TECHNOLOGIES,INC. Improved emulsion and suspension polymerization process, and improved electrochemical performance of carbon derived therefrom

Also Published As

Publication number Publication date
JP3724789B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP3903809B2 (en) Method for producing spherical composite cured melamine resin particles
EP2989050B1 (en) A method for producing zeta negative nanodiamond dispersion and zeta negative nanodiamond dispersion
JP5335688B2 (en) A method for producing monodispersed and stable metallic silver nanoparticles
HU218091B (en) Process for producing cured polymers
JP6696177B2 (en) Sugar alcohol microcapsules, method for producing the same, slurry and resin molded product
JP5500758B2 (en) Non-heat-meltable granular phenol resin powder and method for producing the same
JP3724789B2 (en) Method for producing spherical resin fine particles
CN104844743A (en) Preparation method of carboxylic polystyrene microballoon for nucleic acid amplification
CN104844742B (en) Preparation method for the polystyrene microsphere of gene order-checking nucleic acid amplification
JP3330984B2 (en) Method for producing monodisperse spherical silica
JPS6268811A (en) Production of spherical fine cured resin particle having uniform particle diameter
US4323664A (en) Process for producing granular polymer having uniform fine particle size
JP3651837B2 (en) Method for producing heat infusible spherical resin fine particles
JP2512835B2 (en) Method for producing silica fine particles
JPWO2008047702A1 (en) Granular phenol resin, production method thereof, and granular phenol resin dispersion
KR100580271B1 (en) Amino resin composite and method of producing same
JP2020169395A (en) Silver nanoparticle colloid, silver nanoparticle, method for producing silver nanoparticle colloid, and method for producing silver nanoparticle
JP3845464B2 (en) Method for producing fine particle hydroxyapatite aqueous slurry
Li et al. Effects of ultrasonic irradiation on the morphology of chemically prepared polyaniline nanofibers
JP3863080B2 (en) Amino resin composite particles
JP2769773B2 (en) Suspension polymerization stabilizer and method for producing the same
JP2679453B2 (en) Method for producing polymer fine particles
JP2007302861A (en) Method for producing polymer powder
KR830001348B1 (en) Process for preparing granular polymer with uniform microparticle size
US4102762A (en) Process of preparing microspheres using electromagnetic radiation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050916

R150 Certificate of patent or registration of utility model

Ref document number: 3724789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees