JPWO2005103104A1 - Aromatic nanoparticles - Google Patents

Aromatic nanoparticles Download PDF

Info

Publication number
JPWO2005103104A1
JPWO2005103104A1 JP2006512472A JP2006512472A JPWO2005103104A1 JP WO2005103104 A1 JPWO2005103104 A1 JP WO2005103104A1 JP 2006512472 A JP2006512472 A JP 2006512472A JP 2006512472 A JP2006512472 A JP 2006512472A JP WO2005103104 A1 JPWO2005103104 A1 JP WO2005103104A1
Authority
JP
Japan
Prior art keywords
group
nanoparticles
carbon atoms
aromatic
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2006512472A
Other languages
Japanese (ja)
Inventor
玄一 小西
玄一 小西
夏紀 尾関
夏紀 尾関
義章 中本
義章 中本
Original Assignee
有限会社金沢大学ティ・エル・オー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社金沢大学ティ・エル・オー filed Critical 有限会社金沢大学ティ・エル・オー
Publication of JPWO2005103104A1 publication Critical patent/JPWO2005103104A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes

Abstract

【課題】 新しい芳香族ナノ微粒子とその製造法を提供する。【解決手段】 反応式(1)の方法によって製造される芳香族系ナノ微粒子。【化1】ただし、反応式(1)中、R1〜R3は、炭素数1〜18のアルキル基又は炭素数2〜18のアルケニル基、ベンジル基又はフェニル基およびそれらの炭化水素置換基を有する誘導体、アルキルエステル基、芳香族エステル基、アルキレングリコール誘導体、水素、のいずれかである。R4は、炭素数1〜18のアルキル基又は炭素数2〜18のアルケニル基、ベンジル基又はフェニル基およびそれらの炭化水素置換基を有する誘導体、水素、のいずれかである。ナノ微粒子はl、m、nをランダムに含み、特定の規則構造を有する必要が無く、メチレン基の個数とベンゼン環の個数の比(メチレン基/ベンゼン環)は0.75以上1.5以下の範囲であり、nは0より大きい。PROBLEM TO BE SOLVED: To provide a new aromatic nanoparticle and a method for producing the same. SOLUTION: Aromatic nanoparticles produced by the method of reaction formula (1). In the reaction formula (1), R1 to R3 have an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a benzyl group or a phenyl group, and their hydrocarbon substituents. Any one of a derivative, an alkyl ester group, an aromatic ester group, an alkylene glycol derivative, and hydrogen. R4 is any one of an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, a benzyl group or a phenyl group, and a derivative having such a hydrocarbon substituent, hydrogen. Nanoparticles contain l, m, and n at random, and do not need to have a specific regular structure. The ratio of the number of methylene groups to the number of benzene rings (methylene group / benzene ring) is 0.75 or more and 1.5 or less. N is greater than zero.

Description

本発明は新規な芳香族系ナノ微粒子およびそれらの製造方法に関する。   The present invention relates to novel aromatic nanoparticles and methods for producing them.

近年、ナノ微粒子の開発と応用に大きな注目が集まっている(特許文献1〜3)。
その中でもサブミクロンと呼ばれる100ナノメートルから1マイクロメートル程度の領域の高分子微粒子はエマルジョン重合によって合成され塗料、分散剤、高分子ブレンドや有機無機コンポジット材料への添加剤、さらには医療材料の媒体(ビーズ)として幅広く利用されている(非特許文献1)。
これらの高分子ナノ微粒子は、スチレンや(メタ)アクリル酸誘導体などのビニルモノマーを原料とするものであるため、これらの微粒子を使用する製品の耐熱性、耐久性、機械的強度などは必ずしも十分とは言えなかった。
また微粒子を用いた材料、たとえば高分子ブレンド、コンポジットの作成、有機高分子の焼結による炭素材料への応用を考えると、従来の微粒子では耐熱性、耐久性、加工性の問題があった。
さらに高分子微粒子とは別に、単分子ナノ微粒子の研究も盛んになされている。その中でも特にデンドリマーは構造の制御された球状分子であり、ドラッグデリバリーシステム、フォトレジスト、液晶など様々な分野で応用研究が進んでおり、その有効性が指摘されている(非特許文献2)。
しかしながら、デンドリマーはその合成過程が煩雑であり、その製造に多大の時間とコストを必要とする場合がほとんどである。従って、工業的なレベルでの応用はほとんど進んでおらず、デンドリマーまたはデンドリマー類似の機能を持つナノ微粒子の簡便で低コストの製造法の開発に期待が集まっている。
そこで、デンドリマーの代替材料として種々の多分岐高分子が期待されているが、一般に高分子鎖の運動性が高く、また単分散のものを製造することが難しく、さらにデンドリマーのような硬く成形安定性が得られないため、その応用はあまり進んでいない。
上記の高分子ナノ微粒子の粒径は小さくても100ナノメートル程度であり、一方、単分子微粒子(デンドリマーやフラーレンC60)の粒径はほとんどの場合10ナノメートル以下である。たとえば、Tomaliaによって報告されたポリ(アミドアミン)デンドリマーの場合、高世代(合成的に可能と考えられる6世代とする)でも直径が4.75ナノメートルと報告されている(非特許文献3)。従って、現在10ナノメートル以上の有機系ナノ微粒子を製造することは非常に難しく、この領域の大きさのナノ微粒子の材料としての応用研究はあまり進んでいない。
In recent years, great attention has been focused on the development and application of nano-particles (Patent Documents 1 to 3).
Among them, polymer microparticles in the range of 100 nanometers to 1 micrometer, called submicrons, are synthesized by emulsion polymerization and are used as additives for paints, dispersants, polymer blends and organic / inorganic composite materials, and medical media. Widely used as (beads) (Non-Patent Document 1).
Since these polymer nanoparticles are made from vinyl monomers such as styrene and (meth) acrylic acid derivatives, the heat resistance, durability, mechanical strength, etc. of products using these particles are not always sufficient. I couldn't say that.
Considering the application of fine particles to materials such as polymer blends, composites, and carbon materials by sintering organic polymers, conventional fine particles have problems of heat resistance, durability, and processability.
In addition to polymer fine particles, research on single-molecule nanoparticles has been actively conducted. Among them, dendrimers are spherical molecules with controlled structures, and application studies are progressing in various fields such as drug delivery systems, photoresists, and liquid crystals, and their effectiveness has been pointed out (Non-patent Document 2).
However, the synthesis process of dendrimers is complicated, and in most cases, it takes a lot of time and cost to produce them. Accordingly, application at an industrial level has hardly progressed, and there is an expectation for the development of a simple and low-cost production method of dendrimer or nanoparticle having a function similar to dendrimer.
Therefore, various multi-branched polymers are expected as alternative materials for dendrimers, but generally they have high polymer chain mobility and are difficult to produce monodispersed materials, and are hard and stable in molding like dendrimers. The application has not progressed so much because it cannot be obtained.
The particle size of the above-mentioned polymer nanoparticles is about 100 nanometers at the smallest, whereas the particle size of monomolecular particles (dendrimer or fullerene C60) is almost 10 nanometers or less in most cases. For example, in the case of poly (amidoamine) dendrimers reported by Tomalia, a diameter of 4.75 nanometers has been reported even in a high generation (six generations considered to be synthetically possible) (Non-patent Document 3). Therefore, it is very difficult to produce organic nanoparticles having a size of 10 nanometers or more, and application research as a material of nanoparticles having a size in this region has not progressed much.

特開2004−059696号公報JP 2004-059696 A 特開2002−145896号公報JP 2002-145896 A 特許第1960894号公報Japanese Patent No. 1960894 「ナノアフィニティビーズのすべて」半田、川口著、中山書店(2003)“All about Nanoaffinity Beads” Handa, Kawaguchi, Nakayama Shoten (2003) 「デンドリマーの科学と機能」アイピーシー(2000)"Science and Function of Dendrimer" IPC (2000) D. A. Tomalia, et al. Angew. Chem. Int.Ed. Engl., vol.29, 138 (1990)D. A. Tomalia, et al. Angew. Chem. Int. Ed. Engl., Vol. 29, 138 (1990)

本発明は、耐熱性、耐久性、加工性に優れ、従来製造が困難であった粒径のナノ微粒子の提供を目的とする。   An object of the present invention is to provide nano-particles having a particle size that is excellent in heat resistance, durability, and processability and that has been difficult to manufacture.

本発明に係るナノ微粒子は反応式(1)に示す反応によって製造されることを特徴とする芳香族系ナノ微粒子である。

Figure 2005103104
ただし、反応式(1)中、R〜R3は、それぞれ独立して
炭素数1〜18のアルキル基又は炭素数2〜18のアルケニル基、ベンジル基又はフェニル基およびそれらの炭化水素置換基を有する誘導体、アルキルエステル基、芳香族エステル基、アルキレングリコール誘導体、水素、のいずれかである。
4は、炭素数1〜18のアルキル基又は炭素数2〜18のアルケニル基、ベンジル基又はフェニル基およびそれらの炭化水素置換基を有する誘導体、水素、のいずれかである。
ナノ微粒子はl、m、nをランダムに含み、特定の規則構造を有する必要が無く、メチレン基の個数とベンゼン環の個数の比(メチレン基/ベンゼン環)は0.75以上1.5以下の範囲であり、nは0より大きい。The nanoparticle according to the present invention is an aromatic nanoparticle produced by the reaction shown in the reaction formula (1).
Figure 2005103104
However, in the reaction formula (1), R 1 to R 3 are each independently an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a benzyl group or a phenyl group, and their hydrocarbon substituents. Any of a derivative having an alkyl ester group, an aromatic ester group, an alkylene glycol derivative, and hydrogen.
R 4 is any one of an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a benzyl group or a phenyl group, and a derivative or hydrogen having a hydrocarbon substituent thereof.
Nanoparticles contain l, m, and n at random, and do not need to have a specific regular structure. The ratio of the number of methylene groups to the number of benzene rings (methylene group / benzene ring) is 0.75 to 1.5. N is greater than zero.

数平均分子量が500〜10,000,000の範囲である、前記芳香族系ナノ微粒子。   The said aromatic nanoparticle whose number average molecular weight is the range of 500-10,000,000.

粒径が1ナノメートル〜10マイクロメートル範囲である、前記ナノ微粒子。   The nanoparticle having a particle size in the range of 1 nanometer to 10 micrometers.

下記一般式(7)と一般式(8)で表される化合物の酸触媒を用いた付加縮合によって上記反応式(1)に従って製造されることを特徴とするナノ微粒子。

Figure 2005103104
Figure 2005103104
Nanoparticles produced according to the above reaction formula (1) by addition condensation using an acid catalyst of a compound represented by the following general formula (7) and general formula (8).
Figure 2005103104
Figure 2005103104

本発明によって得られるナノ微粒子は、フェノール樹脂と同様のフェニレンメチレン骨格を持つ高分子であり、その骨格に起因する優れた耐熱性、耐薬品性、機械的強度を示す。
これらの性質は従来のビニルポリマー系の高分子微粒子の欠点を克服するものである。
また本発明では、粒径1ナノメートルから1マイクロメートル程度のナノ微粒子を比較的単分散で選択的に製造することができるという特徴を持つ。
この方法により従来、最も合成が困難であった10ナノメートル以上の領域の有機系ナノ微粒子を簡単に製造することができるようになる。
さらに本発明で得られるナノ微粒子のうち1〜10ナノメートルの領域のものは、デンドリマー類似の材料として利用することも可能である。芳香族系デンドリマーは極めて合成が困難であることが知られており、その代替材料を安価で提供することを可能とする。
以上のように、本発明の芳香族系ナノ微粒子は、耐熱性、耐久性、機械的特性、加工性に優れており、ナノマテリアルや各種機能材料の出発原料として様々な分野でその応用が期待できる。
Nanoparticles obtained by the present invention are polymers having a phenylenemethylene skeleton similar to phenolic resins, and exhibit excellent heat resistance, chemical resistance, and mechanical strength due to the skeleton.
These properties overcome the disadvantages of conventional vinyl polymer-based polymer fine particles.
In addition, the present invention has a feature that nanoparticles having a particle diameter of about 1 nanometer to about 1 micrometer can be selectively produced relatively monodisperse.
This method makes it possible to easily produce organic nanoparticles in the region of 10 nanometers or more, which has been difficult to synthesize.
Furthermore, among the fine particles obtained in the present invention, those in the region of 1 to 10 nanometers can be used as dendrimer-like materials. Aromatic dendrimers are known to be extremely difficult to synthesize, making it possible to provide alternative materials at low cost.
As described above, the aromatic nanoparticles of the present invention are excellent in heat resistance, durability, mechanical properties and processability, and are expected to be applied in various fields as starting materials for nanomaterials and various functional materials. it can.

本発明のナノ微粒子は、新規な構造であり、従来のエマルジョン重合ではつくり出すのが難しかった粒径の芳香族系微粒子である。
その性質としてフェノール樹脂の特徴である優れた耐熱性、耐久性、機械的特性を示す。
またデンドリマーのような単分子ナノ微粒子と類似の性質も有しており、その安価な代替材料として利用することができる。
利用方法としては、各種高分子ブレンド、有機・無機ハイブリッド型コンポジット、コーティング剤、分散剤、接着剤その他に応用することができる。
ナノマテリアルや各種機能材料の出発原料として様々な分野でその応用が期待できる
またナノ微粒子表面はベンゼン環であり、化学的に容易に修飾できるため、両親媒性のコアシェル型微粒子を作成すれば、ミセルやドラッグデリバリーシステムへの応用も可能である。
The nano fine particles of the present invention are aromatic fine particles having a novel structure and having a particle size that was difficult to produce by conventional emulsion polymerization.
Its properties show the excellent heat resistance, durability, and mechanical properties that are characteristic of phenolic resins.
It also has similar properties to single-molecule nanoparticles such as dendrimers and can be used as an inexpensive alternative material.
Application methods include various polymer blends, organic / inorganic hybrid composites, coating agents, dispersants, adhesives, and the like.
Applications can be expected in various fields as starting materials for nanomaterials and various functional materials.
In addition, since the surface of the nanoparticle is a benzene ring and can be easily chemically modified, if an amphiphilic core-shell type particle is prepared, it can be applied to micelles and drug delivery systems.

実施例1-1で得られた多分岐高分子の1H NMRチャート 1 H NMR chart of the hyperbranched polymer obtained in Example 1-1 実施例1-1で得られた多分岐高分子の13C NMRチャート 13 C NMR chart of the hyperbranched polymer obtained in Example 1-1 実施例1-1で得られた多分岐高分子のIR測定チャートIR measurement chart of the hyperbranched polymer obtained in Example 1-1 実施例1-1で得られた多分岐高分子のGPC測定チャートGPC measurement chart of the hyperbranched polymer obtained in Example 1-1 実施例2-1で得られたナノ微粒子の1H NMRチャート 1 H NMR chart of the nanoparticle obtained in Example 2-1 実施例2-1で得られたナノ微粒子の13C NMRチャート 13 C NMR chart of the nanoparticle obtained in Example 2-1 実施例2-1で得られたナノ微粒子のIR測定チャートIR measurement chart of nano-particles obtained in Example 2-1 実施例2-1で得られたナノ微粒子のGPC測定チャートGPC measurement chart of nanoparticles obtained in Example 2-1

以下、本発明のナノ微粒子およびその製造方法について詳細に記述する。   Hereinafter, the nanoparticle of the present invention and the production method thereof will be described in detail.

本発明のナノ微粒子は反応式(1)で表される方法によって製造される。

Figure 2005103104
以下、ナノ微粒子の構造について説明する。The nanoparticle of the present invention is produced by the method represented by the reaction formula (1).
Figure 2005103104
Hereinafter, the structure of the nanoparticle will be described.

簡略化したベンゼン環(1,3,5-トリヒドロキシベンゼン誘導体)(●で表現)とメチレン基(−で表現)でナノ微粒子の構造を表現する。メチレン基の個数とベンゼン環の個数の比(メチレン基/ベンゼン環)が1以上1.5以下の範囲である場合の1例として、一般式(2)をあげる。一般式(2)は、高分子鎖が多点でロックされた(内部環状構造を持つという意味)多分岐ポリマーを模式化したものである。

Figure 2005103104
The nanoparticle structure is expressed by a simplified benzene ring (1,3,5-trihydroxybenzene derivative) (represented by ●) and a methylene group (represented by-). As an example when the ratio of the number of methylene groups to the number of benzene rings (methylene group / benzene ring) is in the range of 1 to 1.5, the general formula (2) is given. The general formula (2) is a schematic representation of a multi-branched polymer in which polymer chains are locked at multiple points (meaning having an internal cyclic structure).
Figure 2005103104

メチレン基の個数とベンゼン環の個数の比(メチレン基/ベンゼン環)が0.75以上1未満以下の範囲である場合の1例として、化学式(3)をあげる。化学式(3)は、枝別れ型の多分岐高分子を模式化したものである。

Figure 2005103104
As an example when the ratio of the number of methylene groups to the number of benzene rings (methylene group / benzene ring) is in the range of 0.75 to less than 1, the chemical formula (3) is given. Chemical formula (3) is a schematic representation of a branched multibranched polymer.
Figure 2005103104

3つのユニット(l、m、n)の結合様式は、それぞれ以下のように説明することができる。

Figure 2005103104
一般式(4)は微粒子中のユニットlであり、ベンゼン環上にメチレン基が1つだけ導入された構造であり、高分子の末端(terminal)である。メチレン基は隣のベンゼン環と共有しており、ユニット中に2分の1個存在するとみなせる。
Figure 2005103104
一般式(5)は微粒子中のユニットmであり、ベンゼン環上にメチレン基が2つ導入された構造であり、高分子の線状部分(linear)である。メチレン基は隣のベンゼン環と共有しており、ユニット中に1個存在するとみなせる。
Figure 2005103104
一般式(6)は微粒子中のユニットnであり、ベンゼン環上にメチレン基が3つ導入された構造であり、高分子の分岐部分(branch)である。メチレン基は隣のベンゼン環と共有しており、ユニット中に2分の3個存在するとみなせる。The coupling mode of the three units (l, m, n) can be described as follows.
Figure 2005103104
The general formula (4) is a unit 1 in the fine particle, which has a structure in which only one methylene group is introduced on the benzene ring, and is a terminal of the polymer. The methylene group is shared with the adjacent benzene ring, and can be regarded as being present in half in the unit.
Figure 2005103104
The general formula (5) is a unit m in the fine particle, which has a structure in which two methylene groups are introduced on the benzene ring, and is a linear portion of the polymer. The methylene group is shared with the adjacent benzene ring, and can be regarded as one in the unit.
Figure 2005103104
The general formula (6) is a unit n in the fine particle, has a structure in which three methylene groups are introduced on the benzene ring, and is a branched portion of the polymer. The methylene group is shared with the adjacent benzene ring, and can be considered to exist in three-half in the unit.

上記ナノ微粒子の分子量は数平均分子量が500〜10,000,000の範囲で特に限定されないが、数平均分子量が500〜5,000,000の範囲であることが好ましく、さらに好ましくは1,000〜100,000の範囲である。   The molecular weight of the nanoparticle is not particularly limited as long as the number average molecular weight is in the range of 500 to 10,000,000, but the number average molecular weight is preferably in the range of 500 to 5,000,000, more preferably 1,000. It is in the range of ~ 100,000.

また、上記ナノ微粒子の粒径は特に限定されないが、動的光散乱法測定によると1ナノメートル〜10マイクロメートルが好ましく、特に好ましくは1ナノメートル〜50ナノメートルの範囲である。   The particle size of the nano fine particles is not particularly limited, but is preferably 1 nanometer to 10 micrometers, particularly preferably 1 nanometer to 50 nanometers according to measurement by a dynamic light scattering method.

また、本発明のナノ微粒子の製造方法は、反応式(1)に従って一般式(7)と一般式(8)で表される化合物の酸触媒を用いた付加縮合による。

Figure 2005103104
Figure 2005103104
Figure 2005103104
反応式(1)および一般式(7)中R〜R3は、課題を解決するための手段の欄に記載したものであれば限定されないが、原料の入手し易さから、メチル基、エチル基、プロピル基、ブチル基、フェニル基、水素が好ましく、特に好ましくはメチル基、エチル基、水素である。
反応式(1)および一般式(8)中R4は課題を解決するための手段の欄に記載したものであれば限定されないが、原料の入手し易さから、メチル基、エチル基、プロピル基、ブチル基、水素が好ましく、特に好ましくはメチル基と水素である。また重合に用いる酸触媒によって分解し、反応系中でホルムアルデヒド(R4が水素に相当)を発生することができるトリオキサン、パラホルムアルデヒド、およびアセトアルデヒド(R4がメチル基に相当)を発生させることができるパラアルデヒドを用いることができる。
一般式(7)と一般式(8)のモル比(一般式(8)/一般式(7))は1〜20が好ましく、特に好ましくは1〜3である。
酸触媒として塩酸、硫酸、リン酸、ポリリン酸、シュウ酸、トリフルオロ酢酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸を用いることができるが、塩酸、硫酸、パラトルエンスルホン酸、トリフルオロメタンスルホン酸が好ましく、触媒活性の点から特に好ましくは塩酸、硫酸である。
反応溶媒は、酢酸、プロピオン酸、無水酢酸などの有機酸、クロロホルム、1,2-ジクロロエタン、塩化メチレン、四塩化炭素、オルトジクロロエタンなどのハロゲン系溶媒、酢酸などの有機酸とハロゲン系溶媒の任意の割合の混合溶媒、酢酸を50%以上添加した酢酸エチル、酢酸ブチルなどのエステル類、エチレングリコ−ルモノエチルエ−テル、エチレングリコ−ルモノブチルエ−テルなどのセロソルブ類、ジエチレングリコ−ルモノエチルエ−テルなどのカルビト−ル類、メタノ−ル、エタノ−ルなどのアルコ−ル類、トルエンなどの芳香族炭化水素類、などの混合溶媒系に限定される。
重合反応における分岐率や分子量の制御の観点からクロロホルム、1,2-ジクロロエタン、酢酸、プロピオン酸、およびそれらの混合溶媒が好ましく、特に好ましくはクロロホルムと酢酸の任意の割合の混合溶媒である。
反応温度は反応溶媒に応じて限界があるが、0〜200℃までの温度で実施可能である。ただし、重合反応における分岐率や分子量の制御の観点から0〜100℃が好ましく、特に好ましくは20〜80℃である。Moreover, the manufacturing method of the nanoparticle of this invention is based on the addition condensation using the acid catalyst of the compound represented by General formula (7) and General formula (8) according to Reaction formula (1).
Figure 2005103104
Figure 2005103104
Figure 2005103104
R 1 to R 3 in the reaction formula (1) and the general formula (7) are not limited as long as they are described in the column of means for solving the problem. An ethyl group, a propyl group, a butyl group, a phenyl group, and hydrogen are preferable, and a methyl group, an ethyl group, and hydrogen are particularly preferable.
In reaction formula (1) and general formula (8), R 4 is not limited as long as it is described in the column of means for solving the problem, but from the viewpoint of easy availability of raw materials, methyl group, ethyl group, propyl Group, butyl group and hydrogen are preferable, and methyl group and hydrogen are particularly preferable. Also, it can be decomposed by an acid catalyst used for polymerization to generate trioxane, paraformaldehyde, and acetaldehyde (R 4 corresponds to a methyl group) that can generate formaldehyde (R 4 corresponds to hydrogen) in the reaction system. Paraaldehyde that can be used can be used.
The molar ratio of the general formula (7) to the general formula (8) (general formula (8) / general formula (7)) is preferably 1 to 20, particularly preferably 1 to 3.
Hydrochloric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, oxalic acid, trifluoroacetic acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid can be used as the acid catalyst, but hydrochloric acid, sulfuric acid, paratoluenesulfonic acid, trifluoromethanesulfonic acid are used. Of these, hydrochloric acid and sulfuric acid are particularly preferred from the viewpoint of catalytic activity.
The reaction solvent may be any of organic acids such as acetic acid, propionic acid, acetic anhydride, halogen solvents such as chloroform, 1,2-dichloroethane, methylene chloride, carbon tetrachloride, orthodichloroethane, organic acids such as acetic acid, and halogen solvents. Mixed solvents at a ratio of 50% or more, esters such as ethyl acetate and butyl acetate to which acetic acid is added in an amount of 50% or more, cellosolves such as ethylene glycol monoethyl ether and ethylene glycol monobutyl ether, and carbito such as diethylene glycol monoethyl ether It is limited to mixed solvent systems such as alcohols, methanol and ethanol, and aromatic hydrocarbons such as toluene.
From the viewpoint of controlling the branching rate and molecular weight in the polymerization reaction, chloroform, 1,2-dichloroethane, acetic acid, propionic acid, and a mixed solvent thereof are preferable, and a mixed solvent having an arbitrary ratio of chloroform and acetic acid is particularly preferable.
Although reaction temperature has a limit according to a reaction solvent, it can implement at the temperature of 0-200 degreeC. However, from the viewpoint of controlling the branching rate and molecular weight in the polymerization reaction, 0 to 100 ° C is preferable, and 20 to 80 ° C is particularly preferable.

本発明のナノ微粒子についてその特徴を述べる。
本発明のナノ微粒子は、メチレン基の個数とベンゼン環の個数の比(メチレン基/ベンゼン環)が1以上1.5以下の場合、一般式(2)に例示されるように、内部に環状構造を有する多分岐高分子である。このような多分岐高分子は、高分子鎖の運動性が低いため、溶液やフィルム状態で特異な性質を示すことが期待される材料である。デンドリマーやデンドロンのように立体障害により高分子鎖の運動性が低下するものとは異なり共有結合でロックされているため、材料として用いる場合の安定性はそれらより高いと期待される。さらにナノ微粒子の内部構造を反応溶媒の組成によってコントロールすることができる。メチレン基とベンゼン環の数の比が大きくなる、すなわち内部環状構造の含有率が高くなる(メチレン基/ベンゼン環の比が大きくなる)と微粒子の構造はより強固なものとなり、成形安定性や耐熱性が上昇する。また有機溶媒の膨潤による形状変化が起きにくくなる。
これは単分子微粒子である高世代のデンドリマーと似た性質と言え、ナノ微粒子がデンドリマーの代替材料となりうることを示している。

Figure 2005103104
The characteristics of the nanoparticle of the present invention will be described.
When the ratio of the number of methylene groups to the number of benzene rings (methylene group / benzene ring) is 1 or more and 1.5 or less, the nanoparticle of the present invention has a cyclic structure inside as shown in the general formula (2). It is a multi-branched polymer. Such a multi-branched polymer is a material that is expected to exhibit a unique property in a solution or a film state because of the low mobility of the polymer chain. Unlike dendrimers and dendrons, where the motility of the polymer chain is reduced due to steric hindrance, it is locked with a covalent bond, so that the stability when used as a material is expected to be higher. Furthermore, the internal structure of the nanoparticles can be controlled by the composition of the reaction solvent. When the ratio of the number of methylene groups to benzene rings increases, that is, the content of the internal ring structure increases (the ratio of methylene groups / benzene rings increases), the structure of the fine particles becomes stronger, and molding stability and Increases heat resistance. In addition, shape change due to swelling of the organic solvent is less likely to occur.
This is a property similar to a high-generation dendrimer that is a monomolecular fine particle, and indicates that the nano fine particle can be an alternative material for the dendrimer.
Figure 2005103104

また本発明では、5〜50nm程度の粒径のナノ微粒子を簡便に合成することができる。エマルジョン重合により得られる芳香族系微粒子は小さくても100nm程度であり、世代数の高いデンドリマーの大きさが10nm以下であることがほとんどであることを考慮すれば、最も作りにくい領域の高分子ナノ微粒子の有効な合成法であると言える。
本発明のナノ微粒子のうち、メチレン基の個数とベンゼン環の個数の比(メチレン基/ベンゼン環)が0.75以上1未満の場合、一般式(3)に例示されるように、多分岐高分子である。このような多分岐高分子は、直鎖状高分子と比べて粘度や結晶性が低くデンドリマーやデンドロンと似た性質を示しそれらの代替材料として利用することができる。
本製造法は汎用高分子であるノボラックの製造と同様のフェノール−ホルムアルデヒド縮合(付加縮合)を用いており、反応条件も穏和な場合が多いため工業的に実施しやすく、原料も比較的安価に得られるものが多いため、各種ナノマテリアルの出発原料として期待できる。
本発明によって得られるナノ微粒子の多くは、置換基の種類により優れた有機溶媒または水への溶解性を示し、またフィルム形成能などの優れた加工性を有している。そして、多くの場合、分散度が小さい(1.3以下)という特徴を有している。これは均一な品質のナノマテリアルを製造するという観点から重要であり、これらの高分子を原料とする製品の性能の安定性につながると言える。

Figure 2005103104
In the present invention, nanoparticles having a particle size of about 5 to 50 nm can be easily synthesized. Considering that the size of aromatic fine particles obtained by emulsion polymerization is about 100 nm at the smallest and dendrimers with a large number of generations are almost 10 nm or less, it is the most difficult region to make polymer nano-particles. It can be said that this is an effective method for synthesizing fine particles.
Among the nanoparticles of the present invention, when the ratio of the number of methylene groups to the number of benzene rings (methylene group / benzene ring) is 0.75 or more and less than 1, a multi-branched polymer as illustrated in the general formula (3) It is. Such a multi-branched polymer has low viscosity and crystallinity compared to a linear polymer, exhibits properties similar to dendrimers and dendrons, and can be used as an alternative material for them.
This production method uses the same phenol-formaldehyde condensation (addition condensation) as the production of novolak, a general-purpose polymer, and the reaction conditions are often mild, so it is easy to implement industrially and the raw materials are relatively inexpensive. Since many are obtained, it can be expected as a starting material for various nanomaterials.
Many of the nanoparticles obtained by the present invention exhibit excellent solubility in an organic solvent or water depending on the type of substituent, and have excellent processability such as film-forming ability. In many cases, the degree of dispersion is small (1.3 or less). This is important from the viewpoint of producing nanomaterials of uniform quality, and can be said to lead to the stability of the performance of products made from these polymers.
Figure 2005103104

以下、本発明を実施例により説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this.

得られたナノ微粒子は、その構造確認をNMR、IR、GPC、ゼータ電位計により行った。
(a)1H NMR(270MHz)および13C NMR(75MHz)は、日本電子フーリエ変換NMR分光光度計(JNM-EX-270)を使用して25℃で測定した。溶媒として重水素化クロロホルム、内部標準物質としてテトラメチルシランを使用した。
(b)FT-IRスペクトルは、日本分光フーリエ変換分光光度計(FT-IR 460plus)を用いて行った。
(c)ゲル浸透クロマトグラフィー(GPC)測定には、カラムとして東ソー製ポリスチレンゲル充填からむTSKgelG3000H XLを用い、検出には東ソー紫外分光光度計(UV-8011、測定波長270nm)を用い、テトラヒドロフランを溶離液として1.0mL/min、室温で測定した。
(d)粒径はZeta Potential/Particle Sizer NICOMPtm 380ZLSを用いてクロロホルムを溶媒として20℃で測定した。
The structure of the obtained nanoparticle was confirmed by NMR, IR, GPC, and zeta potentiometer.
(A) 1 H NMR (270 MHz) and 13 C NMR (75 MHz) were measured at 25 ° C. using a Japan Electron Fourier Transform NMR spectrophotometer (JNM-EX-270). Deuterated chloroform was used as a solvent, and tetramethylsilane was used as an internal standard substance.
(B) The FT-IR spectrum was performed using a Japanese spectroscopic Fourier transform spectrophotometer (FT-IR 460plus).
(C) For gel permeation chromatography (GPC) measurement, use TSKgel G3000H XL as a column from Tosoh polystyrene gel packing, and Tosoh ultraviolet spectrophotometer (UV-8011, measurement wavelength 270 nm) for detection, eluting tetrahydrofuran. The liquid was measured at 1.0 mL / min at room temperature.
(D) Particle size was measured at 20 ° C. using chloroform as a solvent using a Zeta Potential / Particle Sizer NICOMPtm 380ZLS.

1.反応式(1)に示された方法により製造されるナノ微粒子の合成例(その1)
(実施例1−1)1,3,5-トリメトキシベンゼン(1.68g, 10mmol)、パラホルムアルデヒド(0.45g,ホルムアルデヒドとして15mmol)を酢酸(5mL)・クロロホルム(5mL)混合溶媒に溶解し、氷冷しながら濃塩酸(2mL)をゆっくりと滴下した。室温で2時間かくはんした後、反応溶液をメタノールに注入し、沈澱物を回収した。得られた固体を吸引ろ過し、40℃で真空乾燥してナノ微粒子を0.59g,32%の収率で得た。分子量Mn = 7300, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比を1H NMRより求めたところ1.26であった。粒径は3.5nmであった。
なお、図1に1H NMRチャート、図2に13C NMRチャート、図3にIR測定チャート、図4にGPC測定チャートをそれぞれ示す。
1. Example of synthesis of nanoparticles produced by the method shown in reaction formula (1) (part 1)
(Example 1-1) 1,3,5-trimethoxybenzene (1.68 g, 10 mmol) and paraformaldehyde (0.45 g, 15 mmol as formaldehyde) were dissolved in a mixed solvent of acetic acid (5 mL) and chloroform (5 mL), and iced. Concentrated hydrochloric acid (2 mL) was slowly added dropwise while cooling. After stirring at room temperature for 2 hours, the reaction solution was poured into methanol, and the precipitate was collected. The obtained solid was subjected to suction filtration and vacuum dried at 40 ° C. to obtain 0.59 g of nanoparticles in a yield of 32%. The molecular weight was Mn = 7300 and Mw / Mn = 1.2. When the ratio of the number of methylene groups to the number of benzene rings was determined by 1 H NMR, it was 1.26. The particle size was 3.5 nm.
1 shows a 1 H NMR chart, FIG. 2 shows a 13 C NMR chart, FIG. 3 shows an IR measurement chart, and FIG. 4 shows a GPC measurement chart.

(実施例1−2)反応時間を1時間にした点を除いて、実施例1−1と同じ操作を行ったところ、30%の収率でナノ微粒子を得た。分子量Mn = 3500, Mw/Mn = 1.1であった。メチレン基の数とベンゼン環の数の比は1.28であった。粒径は1.9nmであった。 (Example 1-2) Except that the reaction time was 1 hour, the same operation as in Example 1-1 was performed. As a result, nanoparticles were obtained in a yield of 30%. The molecular weight was Mn = 3500 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 1.28. The particle size was 1.9 nm.

(実施例1−3)反応時間を5時間にした点を除いて、実施例1−1と同じ操作を行ったところ、72%の収率でナノ微粒子を得た。分子量Mn = 21000, Mw/Mn = 1.1であった。メチレン基の数とベンゼン環の数の比は1.25であった。粒径は8.4nmであった。 Example 1-3 The same operation as in Example 1-1 was performed except that the reaction time was 5 hours. As a result, nanoparticles were obtained in a yield of 72%. The molecular weight was Mn = 21000 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 1.25. The particle size was 8.4 nm.

(実施例1−4)反応時間を10時間,パラホルムアルデヒド(0.90g,ホルムアルデヒドとして30mmol)にした点を除いて、実施例1−1と同じ操作を行ったところ、50%の収率でナノ微粒子を得た。分子量Mn = 45000, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比は1.36であった。粒径は18nmであった。 Example 1-4 The same procedure as in Example 1-1 was performed, except that the reaction time was 10 hours and paraformaldehyde (0.90 g, 30 mmol as formaldehyde). Nanoparticles were obtained in a yield of 50%. Fine particles were obtained. The molecular weight was Mn = 45000 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings was 1.36. The particle size was 18 nm.

(実施例1−5)反応温度を室温から50℃にした点を除いて、実施例1−1と同じ操作を行ったところ、55%の収率でナノ微粒子を得た。分子量Mn = 12400, Mw/Mn = 1.3であった。メチレン基の数とベンゼン環の数の比は1.28であった。 (Example 1-5) Except that the reaction temperature was changed from room temperature to 50 ° C, the same operation as in Example 1-1 was performed to obtain nanoparticles with a yield of 55%. The molecular weight was Mn = 1400, Mw / Mn = 1.3. The ratio of the number of methylene groups to the number of benzene rings was 1.28.

(実施例1−6)反応溶媒を酢酸にした点を除いて、実施例1−1と同じ操作を行ったところ、90%の収率でナノ微粒子を得た。分子量Mn = 21000, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比は1.40であった。 Example 1-6 The same operation as in Example 1-1 was performed except that the reaction solvent was acetic acid. As a result, nanoparticles were obtained in a yield of 90%. The molecular weight was Mn = 21000 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings was 1.40.

(実施例1−7)反応溶媒を酢酸(7mL)・クロロホルム(3mL)混合溶媒にした点を除いて、実施例1−1と同じ操作を行ったところ、52%の収率でナノ微粒子を得た。分子量Mn = 8200, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比は1.36であった。粒径は3.6nmであった。 Example 1-7 The same operation as in Example 1-1 was performed except that the reaction solvent was a mixed solvent of acetic acid (7 mL) and chloroform (3 mL). Nanoparticles were obtained in a yield of 52%. Obtained. The molecular weight was Mn = 8200 and Mw / Mn = 1.2. The ratio of the number of methylene groups to the number of benzene rings was 1.36. The particle size was 3.6 nm.

(実施例1−8)1,3,5-トリメトキシベンゼンを1,3,5-トリエトキシベンゼン(2.10g, 10mmol)に変えた点を除いて、実施例1−1と同じ操作を行ったところ、25%の収率でナノ微粒子を得た。分子量Mn = 2000, Mw/Mn = 1.1であった。メチレン基の数とベンゼン環の数の比は1.18であった。 Example 1-8 The same operation as in Example 1-1 was performed, except that 1,3,5-trimethoxybenzene was changed to 1,3,5-triethoxybenzene (2.10 g, 10 mmol). As a result, nanoparticles were obtained with a yield of 25%. The molecular weight was Mn = 2000 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 1.18.

2.反応式(1)に示された方法により製造されるナノ微粒子の合成例(その2)
(実施例2−1)1,3,5-トリメトキシベンゼン(1.68g, 10mmol)、パラホルムアルデヒド(0.45g,ホルムアルデヒドとして15mmol)をクロロホルム(5mL)混合溶媒に溶解し、氷冷しながら濃塩酸(2mL)をゆっくりと滴下した。室温で2時間かくはんした後、反応溶液をメタノールに注入し、沈澱物を回収した。得られた固体を吸引ろ過し、40℃で真空乾燥してナノ微粒子(多分岐高分子)を0.61g,33%の収率で得た。分子量Mn = 3100, Mw/Mn = 1.2であった。メチレン基の数とベンゼン環の数の比を1H NMRより求めたところ0.98であったまた、粒径は2.1nmであった。
なお、図5に1H NMRチャート、図6に13C NMRチャート、図7にIR測定チャート、図8にGPC測定チャートをそれぞれ示す。
2. Example of synthesis of nanoparticles produced by the method shown in reaction formula (1) (part 2)
Example 2-1 1,3,5-trimethoxybenzene (1.68 g, 10 mmol) and paraformaldehyde (0.45 g, 15 mmol as formaldehyde) were dissolved in a mixed solvent of chloroform (5 mL) and concentrated hydrochloric acid while cooling with ice. (2 mL) was slowly added dropwise. After stirring at room temperature for 2 hours, the reaction solution was poured into methanol, and the precipitate was collected. The obtained solid was subjected to suction filtration and vacuum-dried at 40 ° C. to obtain nanoparticles (multi-branched polymer) in a yield of 0.61 g and a yield of 33%. The molecular weight was Mn = 3100 and Mw / Mn = 1.2. When the ratio of the number of methylene groups to the number of benzene rings was determined by 1 H NMR, it was 0.98 and the particle size was 2.1 nm.
5 shows a 1 H NMR chart, FIG. 6 shows a 13 C NMR chart, FIG. 7 shows an IR measurement chart, and FIG. 8 shows a GPC measurement chart.

(実施例2−2)反応時間を1時間にした点を除いて、実施例2−1と同じ操作を行ったところ、22%の収率でナノ微粒子(多分岐高分子)を得た。分子量Mn = 1800, Mw/Mn = 1.1であった。メチレン基の数とベンゼン環の数の比は0.96であった。 (Example 2-2) Except that the reaction time was 1 hour, the same operation as in Example 2-1 was performed. As a result, nanoparticles (multi-branched polymer) were obtained with a yield of 22%. The molecular weight was Mn = 1800 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 0.96.

(実施例2−3)反応時間を5時間にした点を除いて、実施例2−1と同じ操作を行ったところ、72%の収率でナノ微粒子(多分岐高分子)を得た。分子量Mn = 8400, Mw/Mn = 1.3であった。メチレン基の数とベンゼン環の数の比は0.97であった。 Example 2-3 The same operation as in Example 2-1 was performed except that the reaction time was 5 hours. As a result, nanoparticles (multi-branched polymer) were obtained in a yield of 72%. The molecular weight was Mn = 8400 and Mw / Mn = 1.3. The ratio of the number of methylene groups to the number of benzene rings was 0.97.

(実施例2−4)反応溶媒を1,2-ジクロロエタンにした点を除いて、実施例2−1と同じ操作を行ったところ、90%の収率でナノ微粒子(多分岐高分子)を得た。分子量Mn = 2500, Mw/Mn = 1.3であった。メチレン基の数とベンゼン環の数の比は0.95であった。 Example 2-4 The same operation as in Example 2-1 was performed except that the reaction solvent was changed to 1,2-dichloroethane. As a result, nanoparticles (multi-branched polymer) were obtained in a yield of 90%. Obtained. The molecular weight was Mn = 2500 and Mw / Mn = 1.3. The ratio of the number of methylene groups to the number of benzene rings was 0.95.

(実施例2−5)1,3,5-トリメトキシベンゼンを1,3,5-トリエトキシベンゼン(2.10g, 10mmol)に変えた点を除いて、実施例2−1と同じ操作を行ったところ、25%の収率でナノ微粒子(多分岐高分子)を得た。分子量Mn = 1500, Mw/Mn = 1.1であった。メチレン基の数とベンゼン環の数の比は0.92であった。 Example 2-5 The same operation as in Example 2-1 was performed, except that 1,3,5-trimethoxybenzene was changed to 1,3,5-triethoxybenzene (2.10 g, 10 mmol). As a result, nanoparticles (hyperbranched polymer) were obtained with a yield of 25%. The molecular weight was Mn = 1500 and Mw / Mn = 1.1. The ratio of the number of methylene groups to the number of benzene rings was 0.92.

本発明の芳香族系ナノ微粒子は、耐熱性、機械的特性、加工性に優れており、ナノマテリアルや各種機能材料の出発原料として利用できる。その波及効果が予想される分野は多岐に渡っており、化学工業のみならずセラミック、炭素材料、塗料、医薬品、生体関連材料などである。   The aromatic nanoparticles of the present invention are excellent in heat resistance, mechanical properties, and processability, and can be used as starting materials for nanomaterials and various functional materials. The fields where the ripple effect is expected are diverse, including not only the chemical industry, but also ceramics, carbon materials, paints, pharmaceuticals, bio-related materials, and the like.

Claims (4)

下記反応式(1)に示す反応によって製造されることを特徴とする芳香族系ナノ微粒子。
Figure 2005103104
ただし、反応式(1)中、R〜R3は、
炭素数1〜18のアルキル基又は炭素数2〜18のアルケニル基、ベンジル基又はフェニル基およびそれらの炭化水素置換基を有する誘導体、アルキルエステル基、芳香族エステル基、アルキレングリコール誘導体、水素、のいずれかである。
4は、炭素数1〜18のアルキル基又は炭素数2〜18のアルケニル基、ベンジル基又はフェニル基およびそれらの炭化水素置換基を有する誘導体、水素、のいずれかである。
ナノ微粒子はl、m、nをランダムに含み、特定の規則構造を有する必要が無く、メチレン基の個数とベンゼン環の個数の比(メチレン基/ベンゼン環)は0.75以上1.5以下の範囲であり、nは0より大きい。
An aromatic nanoparticle produced by a reaction represented by the following reaction formula (1).
Figure 2005103104
However, in the reaction formula (1), R 1 to R 3 are
A derivative having an alkyl group having 1 to 18 carbon atoms or an alkenyl group having 2 to 18 carbon atoms, a benzyl group or a phenyl group and a hydrocarbon substituent thereof, an alkyl ester group, an aromatic ester group, an alkylene glycol derivative, hydrogen, Either.
R 4 is any one of an alkyl group having 1 to 18 carbon atoms, an alkenyl group having 2 to 18 carbon atoms, a benzyl group or a phenyl group, and a derivative or hydrogen having a hydrocarbon substituent thereof.
Nanoparticles contain l, m, and n at random, and do not need to have a specific regular structure. The ratio of the number of methylene groups to the number of benzene rings (methylene group / benzene ring) is 0.75 to 1.5. N is greater than zero.
数平均分子量が500〜10,000,000の範囲であることを特徴とする請求の範囲1に記載の芳香族系ナノ微粒子。 The aromatic nanoparticles according to claim 1, wherein the number average molecular weight is in the range of 500 to 10,000,000. 粒径が1ナノメートル〜10マイクロメートルの範囲であることを特徴とする請求の範囲1に記載のナノ微粒子。 The nanoparticle according to claim 1, wherein the particle diameter is in the range of 1 nanometer to 10 micrometers. 請求の範囲1記載の反応式(1)に従って、下記一般式(7)と一般式(8)で表される化合物の酸触媒を用いた付加縮合によって製造されることを特徴とするナノ微粒子。
Figure 2005103104
Figure 2005103104
Nanoparticles produced by addition condensation using an acid catalyst of a compound represented by the following general formula (7) and general formula (8) according to the reaction formula (1) according to claim 1.
Figure 2005103104
Figure 2005103104
JP2006512472A 2004-04-23 2004-10-22 Aromatic nanoparticles Ceased JPWO2005103104A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004127531 2004-04-23
JP2004127531 2004-04-23
PCT/JP2004/015685 WO2005103104A1 (en) 2004-04-23 2004-10-22 Aromatic nanoparticle

Publications (1)

Publication Number Publication Date
JPWO2005103104A1 true JPWO2005103104A1 (en) 2008-03-13

Family

ID=35196925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006512472A Ceased JPWO2005103104A1 (en) 2004-04-23 2004-10-22 Aromatic nanoparticles

Country Status (2)

Country Link
JP (1) JPWO2005103104A1 (en)
WO (1) WO2005103104A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140017A (en) * 1983-03-08 1984-11-21 Borden Inc Phenolic resin binder compositions exhibiting low fume evolution in use
JPH10338729A (en) * 1997-06-10 1998-12-22 Dainippon Ink & Chem Inc Spherical phenolic resin composite and its production
JP2001151839A (en) * 1999-11-30 2001-06-05 Sumitomo Durez Co Ltd Thermally infusible resin particle
JP2002226534A (en) * 2001-01-30 2002-08-14 Sumitomo Bakelite Co Ltd Method for producing spherical resin fine particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2140017A (en) * 1983-03-08 1984-11-21 Borden Inc Phenolic resin binder compositions exhibiting low fume evolution in use
JPH10338729A (en) * 1997-06-10 1998-12-22 Dainippon Ink & Chem Inc Spherical phenolic resin composite and its production
JP2001151839A (en) * 1999-11-30 2001-06-05 Sumitomo Durez Co Ltd Thermally infusible resin particle
JP2002226534A (en) * 2001-01-30 2002-08-14 Sumitomo Bakelite Co Ltd Method for producing spherical resin fine particle

Also Published As

Publication number Publication date
WO2005103104A1 (en) 2005-11-03

Similar Documents

Publication Publication Date Title
Long et al. Marrying multicomponent reactions and aggregation-induced emission (AIE): new directions for fluorescent nanoprobes
Fréchet et al. Hyperbranched polyphenylene and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers
BRPI0717701A2 (en) "USE OF A COPOLYMER AND METHOD FOR MANUFACTURING COPOLIMER"
Chu et al. Intramolecular cyclization in hyperbranched polyesters
JP4094277B2 (en) Preparation of metal nanoparticles using shell-crosslinked micelles as templates
Caminade et al. Fluorinated dendrimers
Yuan et al. Synthesis, characterization, and fluorescence of pyrene‐containing eight‐arm star‐shaped dendrimer‐like copolymer with pentaerythritol core
Liu et al. Controlled ROMP Synthesis of Ferrocene‐Containing Amphiphilic Dendronized Diblock Copolymers as Redox‐Controlled Polymer Carriers
Gou et al. Calixarene‐centered amphiphilic A2B2 miktoarm star copolymers based on poly (ε‐caprolactone) and poly (ethylene glycol): synthesis and self‐assembly behaviors in water
CN110775981B (en) Silica microsphere and method for producing same
Sahin et al. Polyoxazoline‐modified graphene oxides with improved water and epoxy resin dispersibility and stability towards composite applications
CN111393647B (en) Non-traditional luminous polymer and preparation method and application thereof
Wang et al. Fabrication of Fullerene‐Containing Hybrid Vesicles via Supramolecular Self‐Assembly of a Well‐Defined Amphiphilic Block Copolymer Incorporated with a Single C60 Moiety at the Diblock Junction Point
WO2006051627A1 (en) Core/shell type nanoparticles
Chang et al. Synthesis and characterization of hyperbranched aromatic poly (ether imide) s with terminal amino groups
CN105384932A (en) Nanomodified backbones for polyimides with difunctional and mixed-functionality endcaps
Xu et al. Single-molecular hybrid nano-cylinders: Attaching polyhedral oligomeric silsesquioxane covalently to poly (glycidyl methacrylate) cylindrical brushes
JPWO2005103104A1 (en) Aromatic nanoparticles
Mansour et al. Hyperbranched polyesters based on polycondensation of 1, 3, 5‐tris (2‐hydroxyethyl) cyanuric acid and 3, 5‐dihydroxybenzoic acid
JP5139756B2 (en) Polymer fine particles formed in aliphatic hydrocarbon solvents and process for producing the same
Kai et al. Synthesis of Novel Star Shaped Poly (ε‐caprolactone) Utilizing Fullerene as the Molecular Core
Gao et al. Synthesis and characterization of resorcinarene‐centered amphiphilic A8B4 miktoarm star copolymers based on poly (ε‐caprolactone) and poly (ethylene glycol) by combination of CROP and “click” chemistry
JP2000239360A (en) Polyphenyleneethynylene having dendoron side chain, resin composition containing the same, luminescent coating, and luminescent sheet-like molded material
Mu et al. An H‐shaped polymer bonding β‐cyclodextrin at branch points: Synthesis and influences of attached β‐cyclodextrins on physical properties
Rajadurai et al. Rigid aromatic dendrimers

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111212

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20120425