WO2005095554A1 - 水素製造用炭化水素油および水素製造システム - Google Patents

水素製造用炭化水素油および水素製造システム Download PDF

Info

Publication number
WO2005095554A1
WO2005095554A1 PCT/JP2005/006706 JP2005006706W WO2005095554A1 WO 2005095554 A1 WO2005095554 A1 WO 2005095554A1 JP 2005006706 W JP2005006706 W JP 2005006706W WO 2005095554 A1 WO2005095554 A1 WO 2005095554A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon
volume
temperature
less
hydrogen
Prior art date
Application number
PCT/JP2005/006706
Other languages
English (en)
French (fr)
Inventor
Tadahide Sone
Masanori Hirose
Osamu Sadakane
Iwao Anzai
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004108142A external-priority patent/JP4227927B2/ja
Priority claimed from JP2004108143A external-priority patent/JP4227928B2/ja
Priority claimed from JP2004108146A external-priority patent/JP4227930B2/ja
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to KR1020067022416A priority Critical patent/KR101163249B1/ko
Publication of WO2005095554A1 publication Critical patent/WO2005095554A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrocarbon oil for hydrogen production and a hydrogen production system. [Background technology]
  • Fuel cells hydrogen Hydrogen-fueled systems such as rice fields are in the limelight, among which hydrogen is supplied directly to the fuel cell by compression or liquefaction, as well as methanol.
  • oxygen-containing fuel such as naphtha, kerosene, and other hydrocarbons by reforming hydrocarbons
  • Non-Patent Document 1 Although it has the advantage of being able to be used as a gas, it has problems in storage properties because it is a gas at room temperature, and in its mountability when used in vehicles, etc.
  • Methanol is used to convert hydrogen by reforming in the system.
  • Such hydrocarbons require a reforming process for hydrogen generation, but there are problems with the durability of the reforming system and high hydrogen generation efficiency may not be obtained. It was.
  • carbon monoxide, carbon dioxide, methane, etc. are included in the reformed gas in addition to hydrogen. It is known that carbon monoxide in the reformed gas is a catalyst poison that lowers the performance of a catalyst contained in an electrode used in a fuel cell, particularly a polymer electrolyte fuel cell. For this reason, carbon monoxide purifiers are installed in fuel cells that use hydrocarbons, especially in hydrogen production systems for polymer electrolyte fuel cells. However, depending on the type of hydrocarbon, the amount of carbon monoxide generated in the reformed gas was large, and high hydrogen generation efficiency could not be obtained.
  • Non-Patent Document 1 Masao Ikematsu, “Engine Technology”, Sankaidosha, 2001
  • the present invention provides a stable and high desulfurization rate, excellent durability of the reformer, a low amount of carbon monoxide generated in the reformed gas, and high hydrogen generation efficiency.
  • the purpose is to provide a production hydrocarbon oil and hydrogen production system.
  • the present inventors have found that a hydrocarbon oil having a specific property obtained by treating a specific raw material in a specific step can solve the above problems, and have completed the present invention. That is, in the first aspect of the present invention, the initial boiling point is 140 to 180 ° C., 90% by volume, the distillation temperature is 200 to 270 ° C., and the aromatic content is 20% by volume.
  • the content of the linear saturated hydrocarbon is 25 mass. /.
  • a hydrocarbon mixture having a linear saturated hydrocarbon content of 10 to 15 carbon atoms of 20% by mass or more and a sulfur content of 300% by mass or less is used as a raw material oil, and the following step (1) (3) containing a hydrocarbon base material, having an initial boiling point of 160 ° C. or more and 200 ° C. or less, and a 50% by volume distillation temperature of 200 ° C.
  • Step (2) Stripping 1 to 35% by volume of light components from the hydrodesulfurized oil obtained in Step (1)
  • Step (3) After stripping the light components, extracting and removing 10% by volume or more of the linear saturated hydrocarbon with zeolite under the conditions of a temperature of 150 to 250 ° C and a pressure of 1 to 5 MPa.
  • the second is that the initial boiling point is 140 to 180 ° C, the 90% by volume distillation temperature is 200 to 270 ° C, the aromatic content is 20% by volume or less, and the linear saturated hydrocarbon content is 25% by mass or more.
  • the resulting hydrocarbon base material contains a 95% by volume distillation temperature of 240 ° C or less, a difference between the 95% by volume distillation temperature and the initial boiling point of 50 ° C or less, and a sulfur content of 0.5%.
  • Mass ppm or less, molar ratio of carbon to hydrogen: 1.95 or more, naphthene content: 40% by volume or more, aromatics: 10% by volume or less, oxidation start temperature: 210 ° C or more It features relating to hydrogen production hydrocarbon oil of the hydrogen production system disposed at least carbon monoxide purifier to.
  • Step (1) Feedstock oil, a reaction temperature two hundred and fifty to three hundred ten ° C, the hydrogen pressure 5 ⁇ 1 OMP a, LHSV 0. 5 ⁇ 3 0 h 1, hydrogen Z hydrocarbon volume ratio 0.1 5-0 6 Hydrodesulfurization treatment with a catalyst selected from Ni-W, Ni-Mo, Co-Mo, Co-W, and Ni-Co-Mo under the following conditions: Process
  • Step (2) Step of stripping 1 to 35% by volume of light components from the hydrodesulfurized oil obtained in Step (1)
  • Step (3) After stripping the light components, extracting and removing 10% by volume or more of linear saturated hydrocarbons by zeolite under the conditions of a temperature of 150 to 250 ° C and a pressure of 1 to 5 MPa.
  • Step (4) fractionate the hydrocarbon oil from which the straight-chain saturated hydrocarbon has been extracted and removed in step (3)
  • the initial boiling point is 140 to 180 ° C.
  • the 90% by volume distillation temperature is 200 to 270 ° C.
  • the aromatic content is 20% by volume or less
  • the linear saturated hydrocarbon is contained.
  • a hydrocarbon mixture having an amount of 25% by mass or more, a straight-chain saturated hydrocarbon having 10 to 15 carbon atoms of 20% by mass or more, and a sulfur content of 300% by mass or less is used as a raw material oil in the following step ( 1) to (3) and (5) containing a hydrocarbon base material, flash point of 40 ° C or higher, initial boiling point of 145 ° C or higher, 170 ° C or lower, 50% by volume Distillation temperature: 180 ° C to 220 ° C, 95% by volume Distillation temperature: 220 ° C to 260 ° C, Sulfur content 0.5 mass ppm or less, Smoke point 26 mm or more, Aromatic
  • the present invention relates to a hydrocarbon oil for hydrogen production in a hydrogen production system having at least a reformer, wherein the content is 10% by volume or less and the oxidation start temperature is 210 ° C. or more.
  • Step (1) Feed oil at a reaction temperature of 250 to 310 ° C, hydrogen pressure of 5 to 1 OMPa, LHSV of 0.5 to 3.0 h— 1 , hydrogen / hydrocarbon capacity ratio of 0.15 to 0 Under the conditions of 6, hydrogenation with a catalyst containing one selected from Ni—W, Ni—Mo, Co—Mo, Co—W, and Ni_Co—Mo power Desulfurization process
  • Step (2) Step of stripping 1 to 35% by volume of light components from the hydrodesulfurized oil obtained in Step (1)
  • Step (3) After stripping the light components, extracting and removing 10% by volume or more of linear saturated hydrocarbons with zeolite under conditions of a temperature of 150 to 250 ° C and a pressure of 1 to 5 MPa.
  • Step (5) The hydrocarbon obtained in Step (3) or the hydrocarbon obtained in Step (4) is fractionated with the hydrocarbon obtained in Step (3).
  • a step of mixing 60% by volume or more of the light component stripped in the fourth step of the present invention is to mix the first hydrocarbon oil of the present invention with a reaction pressure (absolute pressure) IMPa of a desulfurization reactor, Hydrogen equipped with a desulfurization reactor for desulfurization by controlling the maximum temperature of the desulfurization catalyst layer in the range of the initial boiling point of hydrocarbon oil-50 ° C to the initial boiling point of hydrocarbon oil + 100 ° C Related to manufacturing system.
  • a fifth aspect of the present invention is that a reformed gas obtained by reforming the second hydrocarbon oil of the present invention and water
  • the reaction temperature is adjusted to 100 to 6 in the presence of a catalyst containing an active metal containing one or more elements selected from Groups IB, IIB, VI, and VIII of the Periodic Table by mixing steam.
  • Water gas shift reactor for obtaining carbon dioxide and hydrogen as products from carbon monoxide and water vapor at a temperature of 00 ° C and a ratio of water to carbon monoxide in reformed gas of 1 to 80 mol / mol It relates to a hydrogen production system.
  • a sixth aspect of the present invention is directed to a sixth aspect of the present invention, in which a mixed gas of the third hydrocarbon oil and the steam of the third aspect of the present invention is used in the presence of a reforming catalyst containing a Group VIII element of the periodic table as an active metal, at a reaction temperature of 400 to 1
  • a seventh aspect of the present invention is to provide a mixed gas of the third hydrocarbon oil, steam and air of the present invention in the presence of a reforming catalyst containing a Group VIII element of the periodic table as an active metal, at a reaction temperature of 400. 1100 ° (: The reaction is carried out at a mixing ratio of water and hydrocarbon oil of 0.5 to 5 mol Z mol and a mixing ratio of oxygen and hydrocarbon oil of 0.1 to 0.5 mol Z mol. Accordingly, the present invention relates to a hydrogen production system equipped with an autothermal reformer for obtaining a product containing hydrogen as a main component.
  • An eighth aspect of the present invention relates to the above-described hydrogen production system, comprising a desulfurization reactor, a reformer, and a carbon monoxide purifier.
  • a desulfurization reactor comprising a desulfurization reactor, a reformer, and a carbon monoxide purifier.
  • the hydrocarbon oil for hydrogen production of the present invention is a hydrocarbon oil having a specific property, comprising a hydrocarbon base material obtained by using a specific hydrocarbon mixture as a raw material oil and treating it in a specific step. It is.
  • the hydrocarbon mixture used as the starting material oil has an initial boiling point of 140-180 ° C, 90% by volume, a distillation temperature of 200-270 ° C, and an aromatic content of 20% by volume. % Or less, straight-chain saturated hydrocarbon content is 25% by mass or more, straight-chain saturated hydrocarbon having 10 to 15 carbon atoms is 20% by mass or more, and sulfur content is 300% by mass or less. It is necessary to be.
  • the initial boiling point is 150-170 ° C
  • 90 vol% distilling temperature is 222-245 ° C
  • the aromatic content is 15 vol% or less
  • linear saturation Hydrocarbon content is 35% by volume or more, linear saturated hydrocarbons having 10 to 15 carbon atoms is 25% by volume or more, and sulfur content is 20% by volume. 0 mass p pm or less. If the properties of the feed oil are out of the above range, it is not preferable because the hydrocarbon oil of the present invention is difficult to obtain.
  • the initial boiling point and 90% by volume distillation temperature are based on JIS K2254 “Petroleum product one distillation test method-Normal pressure distillation test method”, and the aromatic content is JIS K253 6 “Petroleum product one hydrocarbon type
  • the values measured by the fluorescent indicator adsorption method, the content of straight-chain saturated hydrocarbons, and the content of straight-chain saturated hydrocarbons having 10 to 15 carbon atoms in “Test method” are the values measured using GC-FID (mass %).
  • a methyl silicon capillary column (ULTRAALLOY-1) is used as the column
  • helium is used as the carrier gas
  • FID hydrogen ion detector
  • step (1) the feedstock is subjected to a reaction temperature of 250 to 310 ° C, a hydrogen pressure of 5 to 10 MPa, an LHSV of 0.5 to 3.0 h- 1 , a hydrogen Z hydrocarbon volume ratio of 0. Hydrogenation with a catalyst containing any one selected from Ni-W, Ni-Mo, Co-Mo, Co-W, and Ni-Co_Mo under the conditions of 15 to 0.6
  • the desulfurization treatment is performed, and the reaction temperature of the hydrodesulfurization treatment is from 250 to 310 ° C, and preferably from 28 to 300 ° C. If the reaction temperature is lower than 250 ° C, a sufficient hydrodesulfurization reaction rate cannot be obtained, while if it exceeds 310 ° C, the hydrodesulfurization reaction becomes insufficient in terms of reaction equilibrium.
  • the hydrogen pressure in the hydrodesulfurization treatment is 5 to 10 MPa, preferably 7 to 9 MPa.
  • the LHSV in the hydrodesulfurization treatment is 0.5 to 3.0 h- 1 , preferably 1-2 h- 1 .
  • LHSV Although it is advantageous for as low reaction, the case of less than 0. 5 h one 1 requires a very large reactor volumes.
  • the hydrogen / hydrocarbon capacity ratio is 0.15 to 0.6, preferably 0.2 to 0.6. 0.4.
  • the catalyst used in the hydrodesulfurization treatment contains any active metal selected from Ni-W, Ni-Mo, Co_Mo, Co-W, and Ni-Co-Mo. It is necessary.
  • the active metal is preferably used by being supported on a porous carrier.
  • an inorganic oxide is preferably used as the porous carrier.
  • the inorganic oxide include alumina, titania, zirconia, polya, silica, and zeolite.Of these, at least one of titania, zirconia, polya, silica, and zeolite is composed of alumina.
  • the amount of the active metal to be supported is not particularly limited, but is preferably 20 to 35% by mass in total of the metal oxide based on the total amount of the catalyst.
  • the catalyst is preferably used after pre-sulfidation treatment with hydrogen and sulfur compounds.
  • a gas containing hydrogen and sulfur compounds is circulated, and the active metal on the catalyst is pre-sulfided by applying heat of 200 ° C or more according to a predetermined procedure, and hydrogenation and desulfurization activities are exhibited. Will be.
  • step (2) light components (generally a boiling point of 200 ° C or less) are stripped (removed) from the hydrodesulfurized oil obtained in step (1).
  • the strip amount is 1 to 35% by volume, preferably 10 to 35% by volume, and more preferably 20 to 35% by volume, based on the hydrodesulfurized oil.
  • step (3) the hydrocarbon oil from which the light components have been stripped (removed) in step (2) is subjected to a temperature of 150 ° C to 250 ° C and a pressure of 1 to 5 MPa. Extract and remove 10% by volume or more of straight-chain saturated hydrocarbons with zeolite.
  • the extraction temperature for the removal of linear saturated hydrocarbons is 150 ° (: ⁇ 250 ° C, preferably 180-200 ° C.
  • the removal rate of hydrocarbons cannot be obtained on the other hand, if the temperature exceeds 250 ° C, the efficiency of removing saturated Naugagu hydrocarbons decreases, and the pressure at this time is 1 to 5 MPa, preferably 1.5 If the pressure is less than IMPa, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained, whereas if the pressure exceeds 5 MPa, a sufficient removal rate of linear saturated hydrocarbons can be obtained.
  • the zeolite used for removing the linear saturated hydrocarbon is not particularly limited, but generally A-type zeolite is used, among which molecular sieve 5A is preferable. It is preferable to extract and remove hydrogen by 10% by volume or more, preferably 20% by volume or more.
  • the hydrocarbon oil (I) of the invention is a hydrocarbon oil having the following specific properties, comprising the above-mentioned starting material oil and a hydrocarbon base material obtained through steps (1) to (3). .
  • the lower limit of the initial boiling point (I BP) of the hydrocarbon oil (I) of the present invention must be 160 ° C or higher, and preferably 170 ° C or higher, in order to obtain a stable and high desulfurization rate. 180 ° C or higher is more preferable.
  • the upper limit needs to be 200 ° C or lower, and preferably 190 ° C or lower, from the viewpoint of the startability of the desulfurization system.
  • the lower limit of the 50% by volume distilling temperature (T50) of the hydrocarbon oil (I) of the present invention must be 200 ° C or higher in order to obtain a stable and high desulfurization rate. Above is preferable, and 210 ° C. or higher is more preferable. On the other hand, the upper limit needs to be 220 ° C or lower from the viewpoint of the desirability of the desulfurization system.
  • the lower limit of the 90% by volume distillation temperature (T 90) of the hydrocarbon oil (I) of the present invention must be 220 ° C. or higher, and 225 ° C. or lower. Above is preferable, and 230 ° C or more is more preferable.
  • the upper limit needs to be 245 ° C or lower, and preferably 240 ° C or lower, because the hydrocarbon component in the reformed gas at the time of the reforming reaction increases.
  • the distillation properties of the hydrocarbon oil (I) of the present invention other than IBP, T50 and ⁇ 90 are not particularly limited, but the 10% by volume distillation temperature ( ⁇ 10) is from 170 ° C to 220 ° C. Is preferred.
  • the lower limit of T 10 is 1 8 because evaporation gas (THC) is likely to be generated. It is more preferably 0 ° C or higher, further preferably 190 ° C or higher, and most preferably 195 ° C or higher.
  • the temperature is preferably 210 ° C or lower, more preferably 200 ° C or lower.
  • the end point (EP) is preferably from 230 ° C to 280 ° C.
  • the temperature is preferably 240 ° C or higher, more preferably 250 ° C or higher.
  • the temperature is preferably 270 ° C or lower, more preferably 260 ° C or lower.
  • IBP, T10, ⁇ 50, ⁇ 90 and EP are JISK2
  • the aromatic content of the hydrocarbon oil (I) of the present invention must be 10% by volume or less from the viewpoint of a decrease in the desulfurization rate and a decrease in the durability of the desulfurization system, and is 8 volumes. / 0 or less is preferred.
  • the olefin content of the hydrocarbon oil (I) of the present invention is not particularly limited, but is preferably 5% by volume or less, more preferably 1% by volume or less, from the viewpoint of the durability of the desulfurization system. Most preferably, 1% by volume or less.
  • the saturated content of the hydrocarbon oil (I) of the present invention is not particularly limited, but is preferably 85% by volume or more, more preferably 90% by volume or more, in view of the short start-up time of the desulfurization system.
  • the aromatic content, olefin content and saturated content described above are the aromatic content, olefin content, and saturated hydrocarbon content measured by the fluorescent indicator adsorption method of JISK 2536 “Petroleum product-hydrocarbon type test method”. The value of the quantity.
  • the sulfur content of the hydrocarbon oil (I) of the present invention must be 0.5 mass ppm or less in view of the desulfurization rate and the durability of the desulfurization catalyst, and is preferably 0.3 mass ppm or less. Preferably, 0.2 quality * ppm or less is more preferable.
  • the sulfur content is a value measured by ASTM D4045-96 "Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ. (See comments on page 5.)
  • the naphthene content of the hydrocarbon oil (I) of the present invention needs to be 40% by volume or more from the viewpoint of reducing the desulfurization rate and suppressing the decrease in the durability of the desulfurization catalyst. preferable.
  • the naphthene content here refers to the content of naphthenic hydrocarbons measured by a method in accordance with ASTM D2425 (Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants). It is about quantity.
  • the oxidation start temperature of the hydrocarbon oil (I) of the present invention needs to be 210 ° C. or higher, preferably 212 ° C. or higher, more preferably 215 ° C. or higher. . If the oxidation start temperature is lower than 210 ° C., it is not preferable because the durability of the desulfurization system deteriorates due to coking of the catalyst.
  • the oxidation start temperature in the present invention is measured by using a high-pressure differential scanning calorimeter (hereinafter, referred to as “high-pressure DSC”). More specifically, the sample is introduced into a DSC pressurized cell (for example, manufactured by Metrado Red), and the sample is subjected to 20 ° C / min from 30 ° C to 500 ° C under an air atmosphere of 4 MPa. As a result, a correlation curve between the calorific value and the temperature is obtained. The oxidation start temperature is determined based on the force and the exothermic peak that appears first in the correlation curve.
  • high-pressure DSC high-pressure differential scanning calorimeter
  • Fig. 1 is a graph showing an example of a correlation curve between the calorific value and the temperature measured using a high-pressure DSC, and shows the measurement results for a hydrocarbon oil (I-A) described later.
  • the vertical axis is the calorific value
  • the horizontal axis is the temperature.
  • FIG. 2 is a graph showing a derivative curve of the curve shown in FIG.
  • the straight line 1 shows the tangent at the point where the heat generation per unit time is the maximum (point corresponding to point B in FIG. 2).
  • 1 2 in Figure 1 illustrates a tangent line at the start of the heating (point curve rises).
  • the temperature corresponding to the intersection A between 1 and 12 is the oxidation start temperature specified in the present invention.
  • the component ratio of the hydrocarbon having 13 carbon atoms in the hydrocarbon oil (I) of the present invention is 20 mass from the viewpoint of the durability of the desulfurization system. / 0 or more, preferably 25% by mass or more.
  • the number 1 3 in hydrocarbon content of carbon is a value (mass 0/0) which is determined using GC-FID.
  • the column is a methyl silicon capillary column (ULTRAAL LOY-1, 0.25 mm ⁇ , 30 m)
  • the carrier gas is Using a hydrogen ion detector (FID) as the detector, the carrier gas flow rate is 1.
  • the split ratio is 1:79
  • the sample injection temperature is 280 ° C
  • the column temperature is 50 ° C (5 minutes) ⁇ (5 ° C / min) ⁇ 280 ° C (10 minutes)
  • a hydrocarbon base material obtained through the aforementioned steps (1) to (3) can be used.
  • another base material can be appropriately mixed with the hydrocarbon base material as long as the above properties are maintained.
  • the mixing ratio of the other base materials that can be mixed is preferably 20% by volume or less, more preferably 15% by volume or less, and more preferably 10% by volume or less based on the total amount of the hydrocarbon oil. Preferred. If the content of the other base material exceeds 20% by volume, it is not preferable from the viewpoint of deteriorating the durability of the desulfurization catalyst.
  • the hydrocarbon mixture from which the straight-chain saturated hydrocarbons have been extracted and removed in the step (3) is fractionated by a distillation operation.
  • the cut point in the fractionation is that the hydrocarbon base material generated by this operation has a 95% by volume distillation temperature of 240 ° C or less, and the difference between the 95% by volume distillation temperature and the initial boiling point is 50 ° C. Control to be below C. It is desirable to install a hydrogenation unit before distillation to reduce the aromatic content of the product.
  • the hydrocarbon oil for hydrogen production ( ⁇ ) of the present invention is a hydrocarbon having the following specific properties, comprising the above-mentioned starting material oil and a hydrocarbon base obtained through steps (1) to (4). Oil.
  • the upper limit of the 95% by volume distilling temperature (T 95) of the hydrocarbon oil ( ⁇ ) of the present invention is determined from the viewpoint of low carbon monoxide generation in reformed gas and high hydrogen generation efficiency. It is necessary to be not more than ° C, preferably not more than 220 ° C, and more preferably not more than 180 ° C.
  • the difference between the 95% by volume distillation temperature (T 95) and the initial boiling point (I BP) of the hydrocarbon oil ( ⁇ ) of the present invention is due to the low carbon monoxide generation amount in the reformed gas and the hydrogen generation efficiency From the viewpoint of height, the temperature must be 50 ° C or lower, preferably 40 ° C or lower, more preferably 15 ° C or lower. Further, the distillation properties of the hydrocarbon oil ( ⁇ ) other than T95 of the present invention are not particularly limited, but it is necessary for the IBP so that the difference between T95 and IBP satisfies the above-mentioned specific range.
  • IBP is preferably 145 ° C or higher, more preferably 150 ° C or higher, and most preferably 155 ° C or higher, from the viewpoints of flammability, increase in evaporative gas (THC), and handleability.
  • the temperature is preferably 220 ° C. or lower, more preferably 205 ° C. or lower, and most preferably 170 ° C. or lower.
  • the 10% by volume distillation temperature (T 10) is preferably from 150 ° C to 220 ° C. From the viewpoint of flammability and an increase in evaporative gas (THC), the temperature is more preferably at least 155 ° C, and even more preferably at least 160 ° C. On the other hand, from the viewpoint of deteriorating the start-up time of the hydrogen production system, the temperature is preferably 210 ° C or lower, and more preferably 180 ° C or lower.
  • the 50% by volume distillation temperature (T 50) is preferably from 150 ° C to 220 ° C. From the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is more preferably 155 ° C or higher, and further preferably 160 ° C or higher. On the other hand, the temperature is more preferably 210 ° C. or lower, and further preferably 180 ° C. or lower, from the viewpoint of deterioration of the starting time of the hydrogen production system.
  • the 90% by volume distillation temperature (T90) is preferably from 160 ° C to 250 ° C. From the viewpoint of the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated, the temperature is more preferably 165 ° C or higher, and further preferably 170 ° C or higher. On the other hand, from the viewpoint of an increase in THC in the exhaust gas, the temperature is more preferably 220 ° C or lower, and further preferably 180 ° C or lower.
  • the end point (EP) is preferably from 160 ° C to 260 ° C.
  • the temperature is more preferably 170 ° C or higher, and further preferably 180 ° C or higher.
  • the temperature is more preferably 230 ° C or lower, and further preferably 210 ° C or lower.
  • ⁇ ⁇ ⁇ , ⁇ 10, ⁇ 50, ⁇ 90, ⁇ 95, and ⁇ ⁇ are J
  • the sulfur content of the hydrocarbon oil ( ⁇ ) of the present invention depends on the desulfurization rate, the durability of the desulfurization catalyst, the durability of the reforming catalyst, the lowering of the reforming reactivity, and the amount of hydrogen generated per carbon dioxide generated. Therefore, it is necessary to be 0.5 mass ppm or less, preferably 0.3 mass ppm or less, more preferably 0.15 mass ppm or less.
  • the sulfur content is a value measured by ASTM D4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ”.
  • the hydrocarbon oil (II) of the present invention requires that the molar ratio of carbon to hydrogen (CZH) in the hydrocarbon oil be 1.95 or more. From the viewpoint of the small amount of carbon monoxide generated in the reformed gas and the high hydrogen generation efficiency, 2.00 or more is preferable, and 2.05 or more is more preferable.
  • the molar ratio of carbon to hydrogen in hydrocarbon oil (CZH) is measured by a method based on ASTM D 5291-01 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry). Value.
  • the naphthene content of the hydrocarbon oil ( ⁇ ) of the present invention is determined to be lower in desulfurization rate, lower in durability of desulfurization catalyst, lower in durability of reforming catalyst, lower in reforming reactivity, lower in carbon monoxide purification catalyst. It is necessary to be at least 40% by volume, preferably at least 45% by volume, from the viewpoint of suppressing the reduction of the durability of carbon dioxide, the reduction of the carbon monoxide removal rate, and the reduction of the amount of hydrogen generated per amount of carbon dioxide generated. , 50% by volume or more is more preferable.
  • the naphthenic content referred to here is the naphthenic hydrocarbon content measured by a method based on ASTM D 2425 (Test Method for Instrumental Determination of arbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants). Say.
  • the aromatic hydrocarbon content of the hydrocarbon oil (II) of the present invention is as follows: decrease in desulfurization rate, decrease in durability of desulfurization catalyst, decrease in durability of reforming catalyst, decrease in reforming reactivity, reduction in monoxide. It is necessary to be 10% by volume or less from the viewpoint of suppressing the reduction of the durability of the carbon purification catalyst, the reduction rate of carbon monoxide, the reduction of the amount of hydrogen generated per amount of carbon dioxide, etc., and 5% by volume. Or less, more preferably 3% by volume or less, still more preferably 1% by volume or less, and even more preferably 0.5% by volume or less.
  • the olefin content of the hydrocarbon oil ( ⁇ ) of the present invention is preferably 5% by volume or less, more preferably 1% by volume or less, and 0.3% by volume, from the viewpoints of low deterioration of the quality catalyst, long-lasting initial performance and good storage stability. The following are most preferred.
  • the saturated hydrocarbon content of the hydrocarbon oil ( ⁇ ) of the present invention is not limited at all, but the amount of hydrogen generated per weight, the amount of hydrogen generated per carbon dioxide, and the amount of exhaust gas From the viewpoints of low THC and short system startup time, 85% by volume or more is preferable, 90% by volume or more is more preferable, and 95% by volume or more is most preferable.
  • the above-mentioned aromatic content, olefin content, and saturated hydrocarbon content are values measured by the fluorescent indicator adsorption method of JIS K 253 “Petroleum products—one hydrocarbon type test method”.
  • the oxidation start temperature of the hydrocarbon oil ( ⁇ ) of the present invention needs to be 210 ° C. or higher, preferably 212 ° C. or higher, more preferably 215 ° C. or higher. . If the oxidation start temperature is lower than 210 ° C., it is not preferable because the coking of the reforming catalyst deteriorates the durability of the hydrogen production apparatus.
  • hydrocarbon oil (II) for hydrogen production of the present invention a hydrocarbon base material obtained through the aforementioned steps (1) to (4) can be used. Further, other hydrocarbon-producing substrates may be appropriately mixed with the hydrocarbon substrate as long as the above properties are maintained.
  • the mixing ratio of other base materials that can be mixed is preferably 20% by volume or less, more preferably 15% by volume or less, and more preferably 10% by volume or less based on the total amount of the hydrocarbon oil. More preferred. If the content of the other base material exceeds 20% by volume, the amount of hydrogen generated per weight decreases, and the amount of carbon dioxide generated per hydrogen generation is undesirably increased.
  • step (5) the hydrocarbon obtained in the step (3) or the hydrocarbon obtained in the step (4) Then, 60% by volume or more, preferably 70% by volume or more, of the light components stripped in step (2) is mixed.
  • the hydrocarbon oil ( ⁇ ) for hydrogen production of the present invention contains a hydrocarbon base obtained by subjecting the above-mentioned starting material oil to the steps (1) to (3) and (5). Specificity It is a hydrocarbon oil having a shape.
  • the flash point of the hydrocarbon oil (m) of the present invention must be 4 ° C or higher, preferably 42 ° C or higher, more preferably 45 ° C or higher, from the viewpoints of flammability and easy handling. Better.
  • the flash point here is a value measured by JIS K 2265 "Crude oil and petroleum products-Flash point test method”.
  • the lower limit of the initial boiling point (I BP) of the hydrocarbon oil (II) of the present invention needs to be 145 ° C or higher, preferably 150 ° C or higher.
  • the upper limit needs to be 170 ° C. or lower, preferably 165 ° C. or lower, more preferably 160 ° C. or lower, and even more preferably 150 ° C. or lower. If I BP is lower than 145 ° C, it is not preferable from the viewpoint of flammability, increase in evaporative gas (THC), and handleability. If I BP exceeds 165 ° C, it is not preferable because the start-up time of the hydrogen production system deteriorates.
  • the lower limit of the 50% by volume distillation temperature (T 50) of the hydrocarbon oil (m) of the present invention needs to be 18 ° C. or higher, preferably 185 ° C. or higher, and more preferably 190 ° C. or higher. More preferred.
  • the upper limit needs to be 220 ° C or lower, preferably 215 ° C or lower, more preferably 210 ° C or lower. If T50 is lower than 180 ° C, the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide decrease, which is not preferable.If it exceeds 220 ° C, it is preferable because the start-up time of the hydrogen production system deteriorates. Absent.
  • the lower limit of the 95% by volume distillation temperature (T95) of the hydrocarbon oil ( ⁇ ) of the present invention needs to be 220 ° C or higher, preferably 225 ° C or higher, more preferably 230 ° C or higher. Good.
  • the upper limit needs to be 260 ° C or lower, preferably 255 ° C or lower, and more preferably 250 ° C or lower. If T95 is lower than 220 ° C, the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide decrease, which is not preferable.If it exceeds 260 ° C, THC in exhaust gas increases, which is not preferable. .
  • the distillation properties of the hydrocarbon oil ( ⁇ ) of the present invention other than IBP, T50 and ⁇ 95 are not particularly limited, but the 10% by volume distillation temperature ( ⁇ 10) is from 160 ° C to 190 ° C. preferable.
  • the temperature is more preferably 165 ° C or more, and further preferably 170 ° C or more, because the flammability is increased and evaporative gas (THC) is easily generated.
  • the temperature is preferably 185 ° C or less, more preferably 180 ° C or less, because of the deterioration of the start-up time of the hydrogen production system.
  • the 90% by volume distillation temperature (T 90) is preferably from 210 ° C to 255 ° C.
  • the temperature is preferably 245 ° C or lower, and more preferably 240 ° C or lower.
  • the end point (EP) is preferably from 230 ° C to 280 ° C. 240 ° C. or higher is more preferable, and 245 ° C. or higher is more preferable because the amount of hydrogen generation per weight and the amount of hydrogen generation per carbon dioxide generation decrease.
  • the temperature is preferably 270 ° C or lower, more preferably 260 ° C or lower.
  • ⁇ ⁇ , ⁇ 10, ⁇ 50, ⁇ 90, ⁇ 95, and ⁇ ⁇ ⁇ are the values measured by JIS ⁇ 2254 ⁇ Petroleum products-one distillation test method-normal pressure distillation test method ''. .
  • the sulfur content of the hydrocarbon oil (m) of the present invention is 0 from the viewpoint of the desulfurization rate, the durability of the desulfurization catalyst, the durability of the reforming catalyst, the decrease in the reforming reactivity, and the amount of hydrogen generated per carbon dioxide generated. It is necessary to be not more than 5 mass ppm, preferably not more than 0.3 mass ppm, more preferably not more than 0.2 mass ppm.
  • the sulfur content is a value measured by ASTM D4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenesis and Rateometric ColorimetryJ”.
  • the smoke point of the hydrocarbon oil (m) of the present invention is that the amount of hydrogen generated per weight is large, the amount of hydrogen generated per carbon dioxide is large, the THC in exhaust gas is small, 26 mm or more is necessary, 27 mm or more is preferable, and 28 mm or more is more preferable because the starting time is short, the deterioration of the reforming catalyst is small, and the initial performance can be maintained for a long time.
  • the smoke point is a value measured by JIS K2537 "Test method for petroleum products-kerosene and aviation turbine fuel oil-smoke point".
  • the aromatic content of the hydrocarbon oil ( ⁇ ) of the present invention is that the amount of hydrogen generated per weight is large, the amount of hydrogen generated per carbon dioxide is large, the THC in exhaust gas is small, From the viewpoint that the system startup time is short, the deterioration of the reforming catalyst is small, and the initial performance can be maintained for a long time, the content must be 10% by volume or less. % By volume or less is preferred.
  • the olefin content of the hydrocarbon oil (m) of the present invention there is no limitation on the olefin content of the hydrocarbon oil (m) of the present invention.
  • the amount of hydrogen generated per weight is large, the amount of hydrogen generated per carbon dioxide is large, and the THC in the exhaust gas is high.
  • 5% by volume or less preferably 1% by volume, from the viewpoints that the amount of the catalyst is small, the system startup time is short, the deterioration of the reforming catalyst is small, the initial performance can be maintained for a long time, and the storage stability is good.
  • the lower limit is more preferably 0.5% by volume or less.
  • the saturated hydrocarbon content (total amount of saturated and naphthenic components) of the hydrocarbon oil (m) of the present invention is not limited at all, but the amount of hydrogen generated per weight is large, and the amount of hydrogen per carbon dioxide generated is large. From the viewpoints of a large amount of generation, a small amount of THC in the exhaust gas, and a short system startup time, it is preferably 85% by volume or more, more preferably 90% by volume or more, and 95% by volume or more. The above is most preferred.
  • the above-mentioned aromatic content, olefin content, and saturated hydrocarbon content are values measured by the fluorescent indicator adsorption method of JIS K 253 “Petroleum products—one hydrocarbon type test method”.
  • the hydrocarbon oil of the present invention (the naphthenic hydrocarbon content of mo is not limited at all. However, when the content of the naphthenic hydrocarbon decreases, the desulfurization rate decreases, the durability of the desulfurization catalyst decreases, and the reforming catalyst decreases. It is preferably at least 30% by volume, more preferably at least 40% by volume, from the viewpoint of suppressing the reduction of the durability of the steel, the reduction of the reforming reactivity, and the reduction of the amount of hydrogen generated per amount of carbon dioxide. It is more preferably at least 45% by volume.
  • the content of the naphthenic hydrocarbon is measured by a method based on ASTM D2425 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry).
  • the oxidation initiation temperature of the hydrocarbon oil (II) of the present invention needs to be 210 ° C. or higher, preferably 212 ° C. or higher, more preferably 215 ° C. or higher. If the oxidation start temperature is lower than 210 ° C., it is not preferable in that the coking of the reforming catalyst deteriorates the durability of the hydrogen production apparatus.
  • hydrocarbon oil (II) of the present invention a hydrocarbon base material obtained through the aforementioned steps (1) to (3) and (5) can be used. Further, another hydrocarbon-producing base material may be appropriately mixed with the hydrocarbon base material within a range in which the above properties are maintained. You can also.
  • the mixing ratio of the other base materials that can be mixed is preferably 20% by volume or less, more preferably 15% by volume / 0 or less, and more preferably 10% by volume or less, based on the total amount of the hydrocarbon oil. Is more preferable. If the content of the other base material exceeds 20% by volume, it is not preferable in terms of a decrease in the conversion to a hydrogen-rich reformed gas at the beginning of the operation and a change in the conversion after the operation for 100 hours.
  • the hydrocarbon oils (I) to (m) of the present invention are each suitably used as a hydrocarbon oil for hydrogen production for a hydrogen production system.
  • a system including at least one device such as a desulfurization reactor, a reformer, and a carbon monoxide purifier is preferable.
  • a desulfurization reactor, a reformer, Carbon monoxide purifier (b) desulfurization reactor ⁇ reformer ⁇ desulfurization reactor (re-desulfurization) ⁇ carbon monoxide purifier, (c) reformer ⁇ desulfurization reactor ⁇ carbon monoxide purifier
  • a deployed system is preferably employed. However, it is not limited to this example.
  • the desulfurization reactor (hereinafter, referred to as desulfurizer) used in the hydrogen production system of the present invention is a device for removing the sulfur content in hydrocarbon oil, and specifically, as a catalyst, a copper-zinc system or a nickele system is used. , Molybdenum, nickel-molybdenum, copanoletomolybdenum, cobalt-nickel-molybdenum, and the like.
  • the catalyst is preferably a copper-zinc catalyst or a nickel catalyst.
  • the reaction conditions must be such that the maximum temperature of the catalyst layer is controlled within the range from the initial boiling point temperature of hydrocarbon oil of 150 ° C to the initial boiling point temperature of hydrocarbon oil + 100 ° C. It is.
  • the maximum temperature of the catalyst layer is preferably at least 30 ° C of the initial boiling point of hydrocarbon oil from the viewpoint of desulfurization performance, and the initial boiling point of hydrocarbon oil + 90 ° from the viewpoint of the durability of the desulfurization catalyst. ° C or lower, more preferably the initial boiling point temperature of the hydrocarbon oil +80 ° C or lower.
  • LHSV is from the point of impact on the size of the desulfurizer, 0. LH 1 or more preferably, 0.
  • the reaction pressure is preferably less than IMPa, more preferably 0.1 IMPa or less, in terms of installation of a stationary fuel cell in a home or commercial area.
  • the desulfurization operation is preferably carried out so that the sulfur content of the hydrocarbon oil is preferably 0.1 mass ppm or less, more preferably 0.05 mass ppm or less.
  • the reformer is a device for reforming hydrocarbon oil to obtain hydrogen, and specific examples include, but are not limited to, the following.
  • the steam reforming reformer mixes heated and vaporized hydrocarbon oil with steam, and uses a Group VIII element of the periodic table as an active metal as a catalyst to obtain a product containing hydrogen as a main component. It is a reformer.
  • the active metal of the catalyst used in the steam reforming type reformer is preferably ruthenium, rhodium, platinum or the like, particularly preferably ruthenium or rhodium, from the viewpoint of reforming reactivity for obtaining hydrogen from a hydrocarbon compound.
  • the reaction temperature is preferably at least 400 ° C from the viewpoint of reforming reactivity, more preferably at least 500 ° C, and is preferably at most 1,000 ° C from the viewpoint of suppressing the amount of coking generated on the catalyst. The following are more preferred.
  • the mixing ratio (SZC) of water and hydrocarbon oil is preferably 1 mol / mol or more, more preferably 2 mol / mol or more, from the viewpoint of suppressing the amount of coking generated on the catalyst, and 5 mol Z from the viewpoint of reformer efficiency. Mol or less, more preferably 4 mol or less Z mol.
  • the autothermal reforming type reformer mixes heated and vaporized hydrocarbon oil with steam and air, and uses a Group VIII element of the periodic table as an active metal as a catalyst to obtain a product containing hydrogen as a main component. It is a reformer.
  • the active metal of the catalyst used in the autothermal reforming reformer is preferably ruthenium, rhodium, platinum or the like, particularly preferably ruthenium or rhodium, in view of the reforming reactivity for obtaining hydrogen from a hydrocarbon compound.
  • the reaction temperature is preferably at least 400 ° C from the viewpoint of reforming reactivity, more preferably at least 500 ° C, and is preferably at most 1,000 ° C from the viewpoint of suppressing the amount of coking generated on the catalyst. The following are more preferred.
  • the mixing ratio (S / C) of water and hydrocarbon oil is preferably 0.5 mol / mol or more, more preferably 1 mol / mol or more, from the viewpoint of suppressing the amount of coking generated on the catalyst, and from the viewpoint of reformer efficiency. It is preferably 5 mol Z or less, more preferably 3 mol or less.
  • the mixing ratio (o 2 Zc) of hydrogen and hydrocarbon oil is preferably 0.1 mol / mol or more, more preferably 0.2 mol mol or more, from the viewpoint of reforming reactivity. In this respect, the amount is preferably 0.5 mol mol or less, more preferably 0.4 mol / mol or less.
  • o 2 is the number of moles of oxygen (molecule)
  • C is the number of moles of carbon in hydrocarbon oil (molecule). Therefore, the method of obtaining the “mixing ratio of oxygen and hydrocarbon oil (o 2 / c)” will be described by giving an example.
  • ethane (C 2 H 6 ): 1 mole is used as the oil
  • the carbon monoxide purifier is contained in the gas generated in the reformer, and is a catalyst poison for fuel cells. The following are examples of carbon monoxide purifiers.
  • the water gas shift reactor mixes the reformed gas obtained from the reformer with steam that has been heated and vaporized, and serves as a catalyst selected from the group IB, IIB, IV, and VIH of the periodic table. Or a reactor that uses two or more elements to obtain carbon dioxide and hydrogen as products from carbon monoxide and water vapor.
  • the active metal of the catalyst used in the water gas shift reactor is preferably copper, zinc, chromium, iron, platinum, ruthenium, rhodium, or the like, and more preferably copper, zinc, or platinum.
  • the reaction temperature is preferably 100 ° C. or higher in terms of reactivity, more preferably 200 ° C. or higher, and is preferably 60 ° C. from the viewpoint of suppressing coke deposition on the shift catalyst.
  • the temperature is preferably 0 ° C or lower, more preferably 500 ° C or lower.
  • the ratio of water and carbon monoxide in the reformed gas is preferably 1 mol Z mol or more, more preferably 2 mol mol or more, from the viewpoint of stably performing the reaction. Mol / mol or less is preferable, and 10 mol / mol or less is more preferable.
  • the selective oxidation reactor mixes the reformed gas obtained from the reformer with compressed air, uses copper, nickel, platinum, ruthenium, rhodium, etc. as a catalyst, and has a reaction temperature of 100 to 300 ° C. , Gas space velocity 1 00 0 ⁇ :! OOOO h Reaction pressure Less than IMP a, ratio of air to carbon monoxide in reformed gas 0.5-3.0 mol Z mol, from carbon monoxide and air to carbon dioxide It is a reactor for conversion. Since the hydrocarbon oil (I) of the present invention is excellent in desulfurization performance, it is preferably used as a hydrocarbon oil for hydrogen production for a hydrogen production system provided with a desulfurization reactor. Therefore, in the hydrogen production system using the hydrocarbon oil (I) of the present invention, it is necessary to arrange at least a desulfurization reactor.
  • the hydrocarbon oil (II) of the present invention can reduce the generation of carbon monoxide in the reformed gas, the hydrogen production using the above-described carbon monoxide purifier, particularly the water gas shift reactor, is provided. Hydrogen production efficiency can be increased by being used as a hydrocarbon oil for hydrogen production in systems. Therefore, it is necessary to arrange at least a carbon monoxide purifier in the hydrogen production system using the hydrocarbon oil (II) of the present invention.
  • the hydrocarbon oil (II) of the present invention is suitably used as a raw material for a hydrogen production system having the steam reformer or the autothermal reformer described above.
  • the reformer is a device for reforming hydrocarbons to obtain hydrogen, and by using the hydrocarbon oil (m) of the present invention, the durability of the reformer can be further improved, and as a result, hydrogen can be obtained.
  • the durability of the manufacturing system is improved. Therefore, it is necessary to arrange at least a reformer in the hydrogen production system using the hydrocarbon oil (II) of the present invention. [Industrial applicability]
  • the hydrocarbon oil for hydrogen production of the present invention can obtain a stable and high desulfurization rate.
  • the reforming efficiency is high, and the performance of the reformer can be maintained for a long time.
  • the amount of carbon monoxide generated in the reformed gas is suppressed and the hydrogen generation efficiency is high, it is suitable as a hydrocarbon oil for hydrogen production.
  • the general properties of the hydrocarbon oil were measured by the following test methods.
  • Density refers to the density measured by JIS K 2249 “Density test method for crude oil and petroleum products, as well as density / mass / volume conversion table”.
  • Flash point refers to the flash point measured by JIS K 2265 “Crude oil and petroleum products-Flash point test method”.
  • the sulfur content refers to the sulfur content measured by ASTM D4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ”.
  • the aromatic, olefin and saturated components are the aromatic content, olefin content, and saturated hydrocarbon content measured by the fluorescent indicator adsorption method of JIS K2536 “Testing Methods for Hydrocarbons of Petroleum Products”. Refers to the content (including naphthenic hydrocarbons).
  • the naphthene content refers to the naphthenic hydrocarbon content measured by a method based on ASTM D2425 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry).
  • Oxidation onset temperature refers to the temperature measured using a high-pressure differential scanning calorimeter, as described above.
  • the ratio of the component of the hydrocarbon having 13 carbon atoms refers to a value measured by GC-FID according to the gas chromatography method described above.
  • Smoke point refers to the smoke point measured in accordance with JIS K2 537 “Petroleum products – kerosene and aviation turbine fuel oil – smoke point test method”.
  • Hydrocarbon substrates (I-1) to (I-13) were manufactured under the conditions shown in Table 1, and the hydrocarbon substrates (1-1) to (I-13) were blended and shown in Table 2. Hydrocarbon oils (I-A) to (I-D) were produced. Table 2 shows the properties.
  • hydrocarbon oils (I-A) to (I-D) were evaluated by the desulfurization evaluation device shown in FIG.
  • Hydrocarbon oil was introduced by a pump into a reaction tube filled with a desulfurization catalyst (nickel-based, (i »2 mm, filled at 50 niL)).
  • a desulfurization catalyst nickel-based, (i »2 mm, filled at 50 niL)
  • the sulfur content of the hydrocarbon oil after desulfurization was measured under the reaction condition ⁇ S>, and the desulfurization rate was calculated.
  • the reactor was operated under the reaction condition ⁇ A> for 200 hours, returned to the reaction condition S again, the sulfur content of the hydrocarbon oil after desulfurization was measured, and the desulfurization rate was calculated. Then, the change in the desulfurization rate before and after the operation for 200 hours was compared.
  • the catalyst layer maximum temperature initial boiling point temperature one 1 0 ° C of a hydrocarbon oil, LHS V: lh one 1, reaction pressure (absolute pressure): 0. 05MP a
  • Catalyst bed maximum temperature Initial boiling point temperature of hydrocarbon oil + 11 o ° c,
  • Hydrocarbon substrates ( ⁇ _1) to ( ⁇ -5) were manufactured under the conditions shown in Table 4. Hydrocarbon oils ( ⁇ _ ⁇ ) to ( ⁇ - ⁇ ) are produced by blending hydrocarbon base materials ( ⁇ -1) to ( ⁇ -5), and their properties are shown in Table 5.
  • hydrocarbon oils ( ⁇ - ⁇ ) to ( ⁇ - ⁇ ) are shown in the evaluation flowcharts shown in FIGS. 4 and 5 (evaluation apparatuses 1 and 2 including a reformer and a carbon monoxide purifier). ) was evaluated as follows.
  • the difference between the two evaluation devices is the type of reformer.
  • the evaluation conditions are as follows.
  • the hydrocarbon oil preheater, steam generator and air preheater are each set at 300 ° C.
  • the reaction temperature of the steam reformer is 650 ° C, LHS V: 1 h ⁇
  • the reaction temperature of the autothermal reformer is 650 ° C
  • LHSV 1 h ⁇ H 2 0 / C 2. 0 mol mol
  • oxygen and the mixing ratios of hydrocarbon oil ( ⁇ 2 / C): was operated at 0.3 mole Z moles conditions.
  • Example 3 to 5 and Comparative Examples 4 to 5 the reaction temperature was 250 ° C.
  • Comparative Example 6 was operated under the conditions of a carbon monoxide ratio: 5 mol Z mol and a reaction temperature: 90 ° C., and a carbon monoxide ratio in water and reforming gas: 5 mol mol.
  • Hydrocarbon oil and water which have been desulfurized in advance by a desulfurizer, are vaporized by electric heating, respectively, filled with a noble metal catalyst, and led to a reactor (reformer) maintained at a predetermined temperature by an electric heater. A reformed gas rich in hydrogen was generated. The water contained in the reformed gas was separated from the reformed gas by a gas-liquid separator using a cooling method.
  • a reactor water gas shift reactor in which the reformed gas and a mixed gas to which a certain amount of steam was added to the co concentration in the reformed gas was maintained at a predetermined temperature by an electric heater filled with a copper-zinc catalyst. ) And converted carbon monoxide in the reformed gas to carbon dioxide.
  • Hydrocarbon oil and water which have been desulfurized in advance by a desulfurizer, are vaporized by electric heating, respectively, and the mixture of heated air is filled with a noble metal catalyst and maintained at a predetermined temperature by an electric heater.
  • a reactor that generated hydrogen-rich reformed gas.
  • Water contained in the reformed gas was separated from the reformed gas by a gas-liquid separation tube using a cooling method.
  • a reactor water gas shift reactor in which the reformed gas and a mixed gas to which a certain amount of steam was added to the co concentration in the reformed gas was maintained at a predetermined temperature by an electric heater filled with a copper-zinc catalyst.
  • converted carbon monoxide in the reformed gas to carbon dioxide.
  • a gas chromatograph capable of analyzing the gas composition and unreacted hydrocarbon oil was installed at the outlet line of the reformer and the outlet line of the water gas shift reactor of the evaluation devices 1 and 2.
  • Hydrocarbon substrates ( ⁇ -1) to ( ⁇ _5) were manufactured under the conditions shown in Table 7. Hydrocarbon base materials (III-1) to (III-15) are blended to produce hydrocarbon oils (III-A) to (III [-E), and their properties are shown in Table 8.
  • hydrocarbon oils ( ⁇ _ ⁇ ) to ( ⁇ - ⁇ ) were evaluated as follows in accordance with the evaluation flow charts shown in FIGS. 6 and 7.
  • the hydrocarbon oil preheater, steam generator and air preheater are set at 300 ° C respectively.
  • Fig. 6 shows a flowchart of the steam reforming evaluation. Hydrocarbon oil and water are vaporized by electric heating, respectively, filled with a reforming catalyst (ruthenium-based, ⁇ 2 ⁇ , filling volume 5 mL), and led to a reforming reaction tube maintained at a predetermined temperature by an electric heater, and hydrogen content is reduced. A rich reformed gas was generated.
  • a reforming catalyst ruthenium-based, ⁇ 2 ⁇ , filling volume 5 mL
  • FIG. 7 is a flowchart of the autothermal reforming evaluation.
  • the hydrocarbon oil and water are vaporized by electric heating, and a reforming catalyst (rhodium, ⁇ 2 ⁇ , filling volume 5 mL) is filled together with the preheated air into a reforming reaction tube maintained at a predetermined temperature by an electric heater. Led to the generation of reformed gas rich in hydrogen.
  • the conversion was measured as follows.
  • Each reforming evaluation device is equipped with a gas flow meter that can measure the flow rate of reformed gas generated at the reaction tube outlet line, and a gas chromatography that can analyze the composition of generated reformed gas and analyze unreacted hydrocarbons. did.
  • the tank for supplying hydrocarbon oil and water was installed on a balance, and the amount of supply to the reaction tube per hour was measured with the balance.
  • the conversion rate of hydrocarbon oil was calculated from the analysis results of hydrocarbon oil supply amount, generated reformed gas flow rate and generated gas composition.
  • the conversion rate is defined as follows.
  • Substrate blend ratio Substrate (E-3) vol% 5
  • Base material ((-5) vol% 100 Density @ 15 ° C g / cm 3 0.768 0.791 0.793 0.7503 0.7936 Flash point.
  • Example 6 Example 7 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 Hydrocarbon oil ⁇ - ⁇ m -B HI -C ⁇ — D m— ⁇ m -E
  • the conversion rate is a relative value when the conversion rate in the initial operation of Comparative Example 7 was set to 100.0 in each reforming evaluation.
  • FIG. 1 is a graph showing an example of a correlation curve between the calorific value of hydrocarbon oil and temperature measured using a high pressure differential scanning calorimeter.
  • FIG. 2 is a graph showing a differential curve of the correlation curve shown in FIG.
  • FIG. 3 is a flowchart of the evaluation system including the desulfurizer.
  • Figure 4 is a flowchart of the evaluation system including the steam reforming reformer and the water gas shift reactor.
  • Fig. 5 is a flow chart of the evaluation system including the autothermal reforming reformer and the water gas shift reactor.
  • FIG. 6 is an evaluation flowchart of the steam reforming type reformer.
  • Figure 7 is an evaluation flow chart of the autothermal reformer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

特定性状の炭化水素混合物を特定条件下に水素化脱硫する工程、水素化脱硫処理油から軽質分を除去する工程、および軽質分を除去した炭化水素混合物から直鎖飽和炭化水素を所定量以上抽出除去する工程を少なくとも経て製造される炭化水素基材を含む炭化水素油が、安定した高い脱硫率を有し、改質器の耐久性に優れ、また改質ガス中の一酸化炭素発生量が少なく水素発生効率の高い水素製造用炭化水素油として提供される。

Description

水素製造用炭化水素油およぴ水素製造システム
[技術分野]
本発明は、 水素製造用炭化水素油および水素製造システムに関する。 [背景技術]
近年、 将来の地球環境に対する明危機感の高まりから、 地球にやさしいエネルギ 一供給システムの開発が求められ、 エネルギー効率が高いこと及び排出ガスがク リ"ンである点から、 燃料電池、 水素エ田ンジン等の水素を燃料とするシステムが 脚光を浴ぴている。 なかでも、 燃料電池への水素の供給方法としては、 圧縮ある いは液化といった形で直接水素を供給する方法の他、メタノール等の含酸素燃料、 及ぴナフサ、 灯油等の炭化水素の改質による供給方法が知られている (例えば、 非特許文献 1参照。)。 このうち、 直接水素を供給する方法は、 そのまま燃料とし て利用できる利点はあるが、 常温で気体のため貯蔵性およぴ車両等に用いた場合 の搭載性に問題がある。 また、 メタノールはシステム内での改質による水素の製 造が比較的容易であるが、 重量当たりのエネルギー効率が低く、 有毒かつ腐食性 を持っために、 取り扱い性、 貯蔵性にも難点がある。 一方、 ナフサ、 灯油等の炭 化水素の改質による水素の製造は、 既存の燃料供給ィンフラが使用できること、 トータルでのエネルギー効率が高いこと等により注目を集めている。 これら炭化 水素中に含まれる硫黄分は、 水素を発生させる改質工程に使用される触媒や、 燃 料電池、 特に固体高分子型燃料電池の性能を劣化させることが一般的に知られて いる。 そこで、 燃料電池システム内に設置される水素製造においては、 炭化水素 中に含まれる微量硫黄の脱硫工程が必要である。 一般的に燃料電池システムの運 転圧力は、 定置式燃料電池の家庭や商業地への設置等の理由により、 常圧 (大気 圧) 近傍であることが求められている。 しかしながら、 常圧 (大気圧) 近傍の脱 硫工程では炭化水素の種類によっては、 安定した十分な脱硫効率が得られない場 合があった。またこうした炭化水素は水素発生のために改質工程が必要であるが、 改質システムの耐久性に問題が生じ、 高い水素発生効率の得られない場合があつ た。 さらに炭化水素を改質した場合、 水素の他に一酸化炭素、 二酸化炭素および メタン等が改質ガスに含まれる。 改質ガス中の一酸化炭素は、 燃料電池、 特に固 体高分子型燃料電池に用いられる電極に含まれる触媒に対してその性能を低下さ せる触媒毒であることが知られている。 このため、 炭化水素を用いる燃料電池、 特に固体高分子型燃料電池用の水素製造システムには、 一酸化炭素浄化器が配置 されている。 しかし、 炭化水素の種類によっては、 改質ガス中の一酸化炭素発生 量が多く、 高い水素発生効率の得られない場合があった。
(非特許文献 1 ) 池松正榭, 「エンジンテクノロジー」, 山海堂社, 2 0 0 1年
1月, 第 3卷, 第 1号, p . 3 5
[発明の開示]
本発明はこのような状況に鑑み、 安定した高い脱硫率が得られるとともに、 改 質器の耐久性に優れ、 また改質ガス中の一酸化炭素発生量が少なく、 水素発生効 率の高い水素製造用炭化水素油および水素製造システムを提供することを目的と する。
本発明者らは鋭意研究した結果、 特定の原料を特定の工程で処理して得られる 特定性状を有する炭化水素油が前記課題を解決できることを見いだし、 本発明を 完成したものである。 すなわち、 本発明の第 1は、 初留点が 1 4 0 ~ 1 8 0 °C、 9 0容量%留出温度 が 2 0 0〜2 7 0 °C、 芳香族含有量が 2 0容量%以下、 直鎖飽和炭化水素含有量 が 2 5質量。/。以上、 炭素数 1 0〜 1 5の直鎖飽和炭化水素含有量が 2 0質量%以 上、 硫黄含有量が 3 0 0質量 p p m以下である炭化水素混合物を原料油として、 下記工程 (1 ) 〜 (3 ) を経て得られる炭化水素基材を含有してなる、 初留点が 1 6 0 °C以上 2 0 0 °C以下、 5 0容量%留出温度が 2 0 0 °C以上 2 2 0 °C以下、 9 0容量%留出温度が 2 2 0 °C以上 2 4 5 °C以下、 芳香族分が 1 0容量%以下、 硫黄含有量が 0 . 5質量 p p m以下、 ナフテン分が 4 0容量%以上、 酸化開始温 度が 2 1 0 °C以上, 炭素数 1 3の炭化水素の割合が 2 0質量%以上であることを 特徴とする少なくとも脱硫反応器を配置した水素製造システムの水素製造用炭化 水素油に関する。 工程 (1) :原料油を、 反応温度 250〜310°C、 水素圧力 5〜1 OMP a、 LHSV 0. 5〜3. 0 h 1、 水素 Z炭化水素容量比 0. 1 5〜0. 6の条件 で、 N i— W、 N i _Mo、 C o—Mo、 C o—W、 および N i— C o— Moか ら選択される!/、ずれかを含有する触媒により水素化脱硫処理する工程
工程( 2 ):工程( 1 )で得られた水素化脱硫処理油から軽質分の 1〜 35容量% をス トリップする工程
工程 (3):軽質分をストリップした後、 温度 1 50°C〜250°C、 圧力 1〜5 MP aの条件下でゼォライトにより直鎖飽和炭化水素を 10容量%以上抽出除去 する工程 本発明の第 2は、 初留点が 140〜180°C、 90容量%留出温度が 200〜 270°C、芳香族含有量が 20容量%以下、直鎖飽和炭化水素含有量が 25質量% 以上、 炭素数 10〜15の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有 量が 300質量 p pm以下である炭化水素混合物を原料油として、下記工程(1) 〜 (4) を経て得られる炭化水素基材を含有してなる、 95容量%留出温度が 2 40°C以下、 95容量%留出温度と初留点の差が 50°C以下、 硫黄含有量が 0. 5質量 p pm以下、 炭素と水素のモル比が 1. 95以上、 ナフテン含有量が 40 容量%以上、 芳香族分が 10容量%以下、 酸化開始温度が 210°C以上であるこ とを特徴とする少なくとも一酸化炭素浄化器を配置した水素製造システムの水素 製造用炭化水素油に関する。
工程 (1) :原料油を、 反応温度 250〜310°C、 水素圧力 5〜1 OMP a、 LHSV 0. 5〜3. 0 h 1、 水素 Z炭化水素容量比 0. 1 5〜0. 6の条件 で、 N i—W、 N i—Mo、 C o—Mo、 C o— W、 および N i— C o— Moか ら選択されるレ、ずれかを含有する触媒により水素化脱硫処理する工程
工程( 2 ):工程( 1 )で得られた水素化脱硫処理油から軽質分の 1〜 35容量% をストリップする工程
工程 (3) :軽質分をストリップした後、 温度 1 50°C〜250°C、 圧力 1〜5 MP aの条件下でゼォライ トにより直鎖飽和炭化水素を 10容量%以上抽出除去 する工程
工程 (4):工程 (3) で直鎖飽和炭化水素を抽出除去した炭化水素油を分留す る工程 本発明の第 3は、 初留点が 140〜 1 80°C、 90容量%留出温度が 200〜 2 70°C、芳香族含有量が 20容量%以下、直鎖飽和炭化水素含有量が 25質量% 以上、 炭素数 1 0〜1 5の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有 量が 300質量 p pm以下である炭化水素混合物を原料油として、下記工程(1) 〜 (3) および (5) を経て得られる炭化水素基材を含有してなる、 引火点が 4 0°C以上、 初留点が 145°C以上 1 70°C以下、 50容量%留出温度が 1 80°C 以上 220°C以下、 95容量%留出温度が 220°C以上 260°C以下、 硫黄含有 量が 0. 5質量 p p m以下、 煙点が 26 mm以上、 芳香族含有量が 1 0容量%以 下、 酸化開始温度が 2 1 0°C以上であることを特徴とする少なくとも改質器を配 置した水素製造システムの水素製造用炭化水素油に関する。
工程 (1) :原料油を、 反応温度 250〜3 1 0°C、 水素圧力 5〜1 OMP a、 LHSV0. 5〜3. 0 h—1、水素/炭化水素容量比 0. 1 5〜0. 6の条件で、 N i—W、 N i—Mo、 C o— Mo、 C o— W、 および N i _ C o— M o力 ら選 択されるいずれかを含有する触媒により水素化脱硫処理する工程
工程( 2 ):工程( 1 )で得られた水素化脱硫処理油から軽質分の 1〜 3 5容量% をストリップする工程
工程 (3) :軽質分をストリップした後、 温度 1 50°C〜250°C、 圧力 1〜5 MP aの条件下でゼォライトにより直鎖飽和炭化水素を 1 0容量%以上抽出除去 する工程
工程 (5) :工程 (3) で得られた炭化水素または工程 (3) で得られた炭化水 素を分留する工程 (工程 (4)) で得られた炭化水素に、 工程 (2) でス トリ ップ した軽質分の 60容量%以上を混合する工程 本発明の第 4は、 本発明の第 1の炭化水素油を、 脱硫反応器の反応圧力 (絶対 圧) IMP a未満において、 脱硫触媒層の最高温度を炭化水素油の初留点温度一 50°Cから炭化水素油の初留点温度 + 1 00°Cの範囲に制御して脱硫するための 脱硫反応器を具備する水素製造システムに関する。
本発明の第 5は、 本発明の第 2の炭化水素油を改質して得られる改質ガスと水 蒸気を混合し、 周期律表第 I B族、 II B族、 VI族および VIII族から選ばれる 1 種または 2種以上の元素を活性金属として含む触媒の存在下に、 反応温度 1 0 0 〜6 0 0 °C、 水と改質ガス中の一酸化炭素の比 1〜8 0モル/モルにより、 一酸 化炭素と水蒸気から二酸化炭素と水素を生成物として得る水性ガスシフ ト反応器 を具備する水素製造システムに関する。
本発明の第 6は、 本発明の第 3の炭化水素油と水蒸気との混合ガスを、 周期律 表第 VIII族元素を活性金属として含む改質触媒の存在下、反応温度 4 0 0〜1 0 0 0 °C、水と炭化水素油の混合比率が 1〜 5モル Zモルで反応させることにより、 水素を主成分とする生成物を得る水蒸気改質型改質器を具備する水素製造システ ムに関する。
本発明の第 7は、 本発明の第 3の炭化水素油、 水蒸気及ぴ空気の混合ガスを、 周期律表第 VIII族元素を活性金属として含む改質触媒の存在下、反応温度 4 0 0 〜 1 0 0 0 ° (:、 水と炭化水素油の混合比率が 0 . 5〜 5モル Zモル、 酸素と炭化 水素油の混合比率が 0 . 1〜0 . 5モル Zモルで反応させることにより、 水素を 主成分とする生成物を得る自己熱改質型改質器を具備する水素製造システムに関 する。
本発明の第 8は、 脱硫反応器、 改質器おょぴ一酸化炭素浄化器を具備すること を特徴とする前記記載の水素製造システムに関する。 以下、 本発明について詳述する。
本発明の水素製造用炭化水素油は、特定の炭化水素混合物を原料油として用い、 これを特定の工程で処理して得られる炭化水素基材を含有してなる、 特定性状を 有する炭化水素油である。
出発原料油となる炭化水素混合物は、 初留点が 1 4 0〜1 8 0 °C、 9 0容量% 留出温度が 2 0 0〜2 7 0 °C、 芳香族含有量が 2 0容量%以下、 直鎖飽和炭化水 素含有量が 2 5質量%以上、 炭素数 1 0〜 1 5の直鎖飽和炭化水素含有量が 2 0 質量%以上、 硫黄含有量が 3 0 0質量 p p m以下であることが必要である。 好ま しくは、 初留点が 1 5 0〜 1 7 0 °C、 9 0容量%留出温度が 2 2 5〜 2 4 5 °C、 芳香族含有量が 1 5容量%以下、 直鎖飽和炭化水素含有量が 3 5容量%以上、 炭 素数 1 0〜1 5の直鎖飽和炭化水素含有量が 2 5容量%以上、 硫黄含有量が 2 0 0質量 p pm以下である。 原料油の性状が上述の範囲を外れると、 本発明の炭化 水素油が得にくくなるため好ましくない。
ここで、 初留点、 90容量%留出温度は、 J I S K2254 「石油製品一蒸 留試験方法一常圧法蒸留試験方法」 により、 芳香族含有量は、 J I S K253 6 「石油製品一炭化水素タイプ試験方法」 の蛍光指示薬吸着法により測定される 値、 直鎖飽和炭化水素含有量、 炭素数 10〜1 5の直鎖飽和炭化水素含有量は、 GC— F I Dを用いて測定される値 (質量%) である。 すなわち、 カラムにはメ チルシリコンのキヤビラリーカラム (ULTRAALLOY— 1)、 キヤリアガス にはヘリウムを、 検出器には水素イオン検出器 (F I D) を用い、 カラム長 30 m、 キャリアガス流量 1. 0mLZm i n、 分割比 1 : 79、 試料注入温度 36 0°C、 カラム昇温条件 140°C→ ( 8 °C/m i n ) →355°C、 検出器温度 36 0°Cの条件で測定された値である。 また硫黄含有量は、 J I S K 254 1 「原 油及び石油製品—硫黄分試験方法」 により測定される値である。 原料油は、 以下の工程 (1) 〜 (3) にて処理される。
工程 (1) においては、 前記原料油を、 反応温度 250〜3 1 0°C、 水素圧力 5〜: 1 0MP a、 LHSV0. 5〜3. 0 h— 1、 水素 Z炭化水素容量比 0. 1 5 〜0. 6の条件で、 N i— W、 N i— Mo、 C o— Mo、 C o— W、 および N i -C o _Moから選択されるいずれかを含有する触媒により水素化脱硫処理を行 水素化脱硫処理の反応温度は 250〜 3 1 0 °Cであり、 好ましくは 28 Q〜 3 05°Cである。 反応温度が 250°C未満であると十分な水素化脱硫反応速度が得 られず、 一方、 3 1 0°Cを超えると水素化脱硫反応が反応平衡の点で不十分とな る。
水素化脱硫処理における水素圧力は、 5〜1 0MP aであり、 好ましくは 7〜 9MP aである。
水素化脱硫処理における LHS Vは 0. 5〜3. 0 h— 1であり、 好ましくは 1 〜2 h— 1である。 LHSVは低いほど反応に有利であるが、 0. 5 h一1未満の場 合には、 極めて大きな反応塔容積が必要となる。
また、 水素/炭化水素容量比は 0. 1 5〜0. 6であり、 好ましくは 0. 2〜 0 . 4である。
水素圧力が 5 M P a未満の場合や、 水素 Z炭化水素容量比が 0 . 1 5未満の場 合には、 脱硫反応又は水素化反応の促進効果が不十分となる。 また、 水素圧力が 1 O M P aを超える場合や、 水素/"炭化水素容量比が 0 . 6を超える場合には、 装置コストが增大してしまう。
水素化脱硫処理に用いる触媒は、 活性金属として N i一 W、 N i一 M o、 C o _M o、 C o一 Wおよび N i— C o— M oから選択されるいずれかを含有するこ とが必要である。前記活性金属は、好ましくは多孔質担体に担持して使用される。 多孔質担体としては無機酸化物が好ましく用いられる。 具体的な無機酸化物とし ては、 アルミナ、 チタニア、 ジルコユア、 ポリア、 シリカ、 あるいはゼォライト が挙げられ、 このうちチタニア、 ジルコニァ、 ポリア、 シリカ、 ゼォライトのう ち少なくとも 1種類とアルミナによって構成されているものが本発明において好 適に用いられる。 上述の活性金属の担持量は特に限定されないが、 触媒全量に対 し、 金属酸化物量合計で 2 0〜3 5質量%であることが望ましい。
触媒は水素おょぴ硫黄化合物により予備硫化処理を施した後に用いるのが好ま しい。 一般的には水素および硫黄化合物を含むガスを流通し、 2 0 0 °C以上の熱 を所定の手順に従って与えることにより触媒上の活性金属を予備硫化し、 水素化 およぴ脱硫活性を発現することになる。 工程 (2 ) では、 工程 (1 ) で得られた水素化脱硫処理油から軽質分 (一般的 には沸点 2 0 0 °C以下) をストリップ (除去) する。 ストリップ量は、 水素化脱 硫処理油を基準として、 1〜3 5容量%でぁり、 好ましくは 1 0〜3 5容量%で あり、 より好ましくは 2 0〜 3 5容量%である。 ストリップを行わない場合、 ま たはストリップ量が十分でない場合、 後段の直鎖飽和炭化水素の除去装置の負荷 が上がり、 除去効率が低下する。 また、 ス トリ ップ量が過大 (3 5容量%超) な 場合、 ストリップ処理に要する時間が増加するため好ましくない。 工程 (3 ) では、 工程 (2 ) において軽質分をス トリ ップ (除去) した炭化水 素油を、 温度 1 5 0 °C〜2 5 0 °C、 圧力 1〜5 M P aの条件下でゼォライトによ り直鎖飽和炭化水素を 1 0容量%以上抽出除去する。 直鎖飽和炭化水素の除去の抽出温度は 1 50° (:〜 250°Cであり、 好ましくは 1 80〜200°Cである。 抽出温度が 1 50°C未満の場合、 十分な直鎖飽和炭化 水素の除去速度が得られない。 一方、 250°Cを超えると、 直舉飽和炭化水素の 除去効率が低下する。また、この時の圧力は 1〜5MP aであり、好ましくは 1. 5〜3MP aである。 圧力が IMP a未満であると十分な直鎖飽和炭化水素の除 去速度が得られない。 一方、 5MP aを超えると十分な直鎖飽和炭化水素の除去 速度が得られない。 直鎖飽和炭化水素の除去に使用するゼォライ トは特には限定 されないが一般的には A型ゼォライ トが使用され、 その中でもモレキュラーシー ブ 5Aが好ましい。 以上の条件で、 直鎖飽和炭化水素を 10容量%以上、 好まし くは 20容量%以上抽出除去することが好ましい。 本発明の炭化水素油 (I) は、 上記の出発原料油を工程 (1) 〜 (3) を経て 得られる炭化水素基材を含有してなる、 以下の特定性状を有する炭化水素油であ る。
本発明の炭化水素油 (I) の初留点 ( I BP) の下限は、 安定した高い脱硫率 を得るために、 160°C以上であることが必要であり、 1 70°C以上が好ましく、 180°C以上がより好ましい。一方、上限は、脱硫システムの起動性の観点から、 200°C以下であることが必要であり、 190°C以下が好ましい。
本発明の炭化水素油 (I) の 50容量%留出温度 (T50) の下限は、 安定し た高い脱硫率を得るために、 200°C以上であることが必要であり、 205°C以 上が好ましく、 210°C以上がより好ましい。 一方、 上限は、 脱硫システムの起 動性の観点から、 220°C以下であることが必要である。
本発明の炭化水素油 (I) の 90容量%留出温度 (T 90) の下限は、 脱硫シ ステムの耐久性の観点から、 220°C以上であることが必要であり、 225°C以 上が好ましく、 230°C以上がより好ましい。 一方、 上限は、 改質反応をした際 の改質ガス中の炭化水素成分が増加してしまうため、 245°C以下であることが 必要であり、 240°C以下が好ましい。
また、 本発明の炭化水素油 (I) の I B P、 T 50、 Τ 90以外の蒸留性状は 特に制限はないが、 10容量%留出温度 (Τ 10) は 1 70°C以上 220°C以下 が好ましい。 T 10の下限は蒸発ガス (THC) が発生しやすくなるため、 1 8 0°C以上がより好ましく、 1 90°C以上がさらに好ましく、 1 9 5°C以上が最も 好ましい。 一方、 脱硫システムの起動性の観点から、 2 1 0°C以下がより好まし く、 200°C以下がさらに好ましい。
終点 (EP) は 230°C以上 280°C以下が好ましい。 脱硫システムの耐久性 の観点から、 240°C以上がより好ましく、 2 50°C以上がさらに好ましい。 脱 硫システムの起動性の観点から、 270°C以下がより好ましく、 260°C以下が さらに好ましい。
なお、 ここでいう I B P、 T 1 0、 Τ 50、 Τ 90及び EPは、 J I S K 2
254 「石油製品一蒸留試験方法一常圧法蒸留試験方法」 によって測定される値 である。
本発明の炭化水素油 (I ) の芳香族分は、 脱硫率の低下、 脱硫システムの耐久 性の低下の観点から 1 0容量%以下であることが必要であり、 8容量。 /0以下が好 ましい。
本発明の炭化水素油 (I ) のォレフイン分については何ら制限はないが、 脱硫 システムの耐久性の観点から、 5容量%以下であることが好ましく、 1容量%以 下がより好ましく、 0. 1容量%以下が最も好ましい。
本発明の炭化水素油 (I ) の飽和分については何ら制限はないが、 脱硫システ ム起動時間が短い点から、 85容量%以上であることが好ましく、 90容量%以 上がより好ましい。
なお、 上述の芳香族分、 ォレフィン分、 飽和分は、 J I S K 2536 「石油 製品一炭化水素タイプ試験方法」 の蛍光指示薬吸着法により測定される芳香族含 有量、 ォレフィン含有量、 飽和炭化水素含有量の値である。
本発明の炭化水素油 ( I ) の硫黄含有量は、 脱硫率、 脱硫触媒の耐久性の点か ら 0. 5質量 p pm以下であることが必要であり、 0. 3質量 p pm以下が好ま しく、 0. 2質 *p pm以下がさらに好ましい。
ここで、硫黄含有量とは、 A S TM D4045-96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ により測定される値である。 (5頁のコメント参照)
本発明の炭化水素油 (I ) のナフテン分は、 脱硫率の低下、 脱硫触媒の耐久性 の低下抑制の点から 40容量%以上であることが必要であり、 45容量%以上が 好ましい。
なお、 ここでいうナフテン分は、 A S TM D 2 4 2 5 (Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants) に準拠した方法にて測定されるナフテン系炭化水素の 含有量のことである。
本発明の炭化水素油 ( I ) の酸化開始温度は、 2 1 0°C以上であることが必要 であり、 2 1 2°C以上であることが好ましく、 2 1 5°C以上がより好ましい。 酸 化開始温度が 2 1 0°C未満の場合、 触媒のコーキングによる脱硫システムの耐久 性悪化の点から好ましくない。
本発明においていう酸化開始温度とは、 高圧示差走査熱量計 (High- Pressure Differential Scanning Calorimeter, 以下、 「高圧 D S C」 という。) を用いて測 定されるものである。 より具体的には、 D S C加圧セル (例えばメ トラードレド 社製) に試料を導入し、 4MP aの空気雰囲気下、 試料を 3 0°Cから 5 0 0°Cま で 2 0°C/分で昇温することにより、 発熱量と温度との相関曲線が得られる。 そ して、 力、かる相関曲線の最初に発現する発熱ピーク 基づいて酸化開始温度が決 定される。
図 1は高圧 D S Cを用いて測定される発熱量と温度との相関曲線の一例を示す グラフであり、 後述する炭化水素油 (I—A) についての測定結果を示したもの である。 図 1中、 縦軸は発熱量、 横軸は温度である。 また、 図 2は図 1に示した 曲線の微分曲線を示すグラフである。 図 1中、 直線 1 ェは単位時間当たりの発熱 量が最大となる点 (図 2中の点 Bに相当する点) における接線を示している。 ま た、 図 1中の 1 2は発熱の開始点 (曲線が立ち上がる点) における接線を示して いる。 そして、 1ェと 1 2との交点 Aに対応する温度が本発明で規定する酸化開始 温度である。
本発明の炭化水素油 ( I ) の炭素数 1 3の炭化水素の成分割合は、 脱硫システ ムの耐久性の観点から、 2 0質量。 /0以上であることが必要であり、 2 5質量%以 上が好ましい。
ここで、 炭素数 1 3の炭化水素含有量とは、 GC— F I Dを用いて測定される 値 (質量0 /0) である。 すなわち、 カラムにはメチルシリコンのキヤピラリーカラ ム (ULTRAAL LOY— 1、 0. 2 5 mm φ , 3 0m)、 キャリアガスにはへ リゥムを、検出器には水素イオン検出器(F I D)を用い、キヤリァガス流量 1. OmL/m i n,分割比 1 : 79、試料注入温度 280 °C、カラム昇温条件 50 °C ( 5分)→ (5 °C/m i n) →280°C (10分)、 検出器温度 300 °Cの条件で 測定されたクロマトグラフィーより、 炭素数 1 3の炭化水素の面積積分を行った 値である。
本発明の炭化水素油 ( I ) としては、 前述の工程 (1) 〜 (3) を経て得られ る炭化水素基材を使用することができる。 また、 前記した性状が維持される範囲 で、 当該炭化水素基材に、 他の基材を適宜混合することもできる。 混合できる他 の基材の配合割合は、 炭化水素油全量基準で 20容量%以下であることが好まし く、 15容量%以下であることがより好ましく、 10容量%以下であることがさ らに好ましい。 他の基材の含有量が 20容量%を超えると、 脱硫触媒の耐久性悪 化の観点から好ましくない。 本発明の第 2においては、 さらに工程 (4) として、 前記工程 (3) で直鎖飽 和炭化水素を抽出除去した炭化水素混合物を蒸留操作により分留する。 分留にお けるカットポイントは、 この操作により生成する炭化水素基材が、 性状として、 95容量%留出温度が 240°C以下、 95容量%留出温度と初留点の差が 50 °C 以下になるようにコントロールする。 なお、 製品の芳香族分の含有量を減少させ るために、 蒸留分離前に水素化装置を設置することが望ましい。
本発明の水素製造用炭化水素油(Π)は、上記の出発原料油を工程(1)〜(4) を経て得られる炭化水素基材を含有してなる、 以下の特定性状を有する炭化水素 油である。
本発明の炭化水素油 (Π) の 95容量%留出温度 (T 95) の上限は、 改質ガ ス中の一酸化炭素発生量の少なさ、 水素発生効率の高さの観点から、 240°C以 下であることが必要であり、 220°C以下が好ましく、 180°C以下がより好ま しい。
本発明の炭化水素油 (Π) の 95容量%留出温度 (T 95) と初留点 (I BP) の差は、 改質ガス中の一酸化炭素発生量の少なさ、 水素発生効率の高さの観点か ら、 50°C以下であることが必要であり、 40°C以下が好ましく、 1 5°C以下が より好ましい。 また、本発明の炭化水素油(Π)の T95以外の蒸留性状は特に制限はないが、 I B Pは T 95と I B Pの差が上述の特定範囲を満たすようにする必要がある。
I BPは引火性、蒸発ガス (THC) の増加、取り扱い性の観点から、 145°C 以上であることが好ましく、 150°C以上であることがさらに好ましく、 155°C 以上が最も好ましい。 一方、 水素製造システムの始動時間悪化の観点から、 22 0°C以下であることが好ましく、 205°C以下がより好ましく、 1 70°C以下が 最も好ましい。
10容量%留出温度 (T 10) は 150°C以上 220°C以下が好ましい。 引火 性、 蒸発ガス (THC) の増加の観点から、 1 55°C以上であることがより好ま しく、 160°C以上がさらに好ましい。 一方、 水素製造システムの始動時間悪化 の観点から、 210°C以下であることがより好ましく、 180°C以下がさらに好 ましい。
50容量%留出温度 (T 50) は 150°C以上 220°C以下が好ましい。 重量 あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、 155°C 以上であることがより好ましく、 160°C以上がさらに好ましい。 一方、 水素製 造システムの始動時間悪化の観点から 210°C以下であることがより好ましく、 180°C以下がさらに好ましい。
90容量%留出温度 (T 90) は 160°C以上 250°C以下が好ましい。 重量 あたりの水素発生量、二酸化炭素発生量あたりの水素発生量の観点から、 165°C 以上であることがより好ましく、 1 70°C以上がさらに好ましい。 一方、 排出ガ ス中の THC増加の観点から、 220°C以下であることがより好ましく、 180°C 以下がさらに好ましい。
終点 (EP) は 160°C以上 260°C以下が好ましい。 重量あたりの水素発生 量、 二酸化炭素発生量あたりの水素発生量の観点から、 1 70°C以上であること がより好ましく、 180°C以上がさらに好ましい。 一方、 排出ガス中の THC増 加の観点から、 230°C以下であることがより好ましく、 210°C以下がさらに 好ましい。
なお、 ここでいう Ι ΒΡ、 Τ 1 0、 Τ 50、 Τ90、 Τ 95、 及ぴ Ε Ρは、 J
I S Κ2254 「石油製品一蒸留試験方法—常圧法蒸留試験方法」 によって測 定される値である。 本発明の炭化水素油 (Π) の硫黄含有量は、 脱硫率、 脱硫触媒の耐久性、 改質 触媒の耐久性、 改質反応性の低下、 二酸化炭素発生量当りの水素発生量の観点か ら、 0. 5質量 p pm以下であることが必要であり、 0. 3質量 p pm以下が好 ましく、 0. 1 5質量 p pm以下がより好ましい。
ここで、硫黄含有量とは、 AS TM D4045- 96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ により測定される値である。
本発明の炭化水素油 (Π) は、 炭化水素油中の炭素と水素のモル比 (CZH) が 1. 9 5以上であることが必要である。 改質ガス中の一酸化炭素の発生量の少 なさ、 水素発生効率の高さの観点から、 2. 00以上が好ましく、 2. 0 5以上 がより好ましい。
なお、 ここでいう炭化水素油中の炭素と水素のモル比 (CZH) は、 ASTM D 5 2 9 1— 0 1 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry) に準拠した方法により測定される値である。 本発明の炭化水素油 (Π) のナフテン含有量は、 脱硫率の低下、 脱硫触媒の耐 久性の低下、 改質触媒の耐久性の低下、 改質反応性の低下、 一酸化炭素浄化触媒 の耐久性の低下、 一酸化炭素除去率の低下、 二酸化炭素発生量あたり水素発生量 の低下などの抑制の観点から 40容量%以上であることが必要であり、 4 5容 量%以上が好ましく、 50容量%以上がより好ましい。
なお、ここでいうナフテン含有量とは、 ASTM D 2425 (Test Method for Instrumental Determination of し arbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants) に準拠した方法にて測定されるナフテン系炭化水素の 含有量をいう。
本発明の炭化水素油 (Π) の芳香族系炭化水素含有量は、 脱硫率の低下、 脱硫 触媒の耐久性の低下、 改質触媒の耐久性の低下、 改質反応性の低下、 一酸化炭素 浄化触媒の耐久性の低下、 一酸化炭素除去率の低下、 二酸化炭素発生量あたり水 素発生量の低下などの抑制の観点から 1 0容量%以下であることが必要であり、 5容量%以下が好ましく、 3容量%以下がより好ましく、 1容量%以下がさらに 好ましく、 0. 5容量%以下がさらにより好ましい。
本発明の炭化水素油 (Π) のォレフイン含有量について何ら制限はないが、 改 質触媒の劣化が小さく初期性能が長時間持続できること、 貯蔵安定性が良いこと などの点から、 5容量%以下であることが好ましく、 1容量%以下がより好まし く、 0 . 3容量%以下が最も好ましい。
本発明の炭化水素油(Π )の飽和炭化水素含有量については何ら制限はないが、 重量当りの水素発生量が多いこと、 二酸化炭素発生量当りの水素発生量が多いこ と、 排出ガス中の T H Cが少ないこと、 システム起動時間が短いことなどの観点 から、 8 5容量%以上が好ましく、 9 0容量%以上がより好ましく、 9 5容量% 以上が最も好ましい。
なお、 上述の芳香族含有量、 ォレフィン含有量、 飽和炭化水素含有量は、 J I S K 2 5 3 6 「石油製品一炭化水素タイプ試験方法」 の蛍光指示薬吸着法によ り測定される値である。
本発明の炭化水素油 (Π ) の酸化開始温度は、 2 1 0 °C以上であることが必要 であり、 2 1 2 °C以上であることが好ましく、 2 1 5 °C以上がより好ましい。 酸 化開始温度が 2 1 0 °C未満の場合、 改質触媒のコーキングによる水素製造装置の 耐久性悪化の点から好ましくない。
本発明の水素製造用炭化水素油 (Π ) としては、 前述の工程 (1 ) 〜 (4 ) を 経て得られる炭化水素基材を使用することができる。 また、 前記した性状が維持 される範囲で、 当該炭化水素基材に、 他の水素製造用基材を適宜混合することも できる。 混合できる他の基材の配合割合は、 炭化水素油全量基準で 2 0容量%以 下であることが好ましく、 1 5容量%以下であることがより好ましく、 1 0容量% 以下であることがさらに好ましい。 他の基材の含有量が 2 0容量%を超えると、 重量あたり 水素発生量が減少し、 水素発生量あたりの二酸化炭素生成量が增加 する点で好ましくない。 本発明の第 3においては、 前述の工程 (.1 ) 〜 (3 ) の後、 さらに工程 (5 ) として、工程(3 ) で得られた炭化水素または工程(4 ) で得られた炭化水素に、 工程 (2 ) でストリップした軽質分の 6 0容量%以上、 好ましくは 7 0容量%以 上を混合する。
本発明の水素製造用炭化水素油(ΙΠ)は、上記の出発原料油を工程(1 ) 〜(3 ) および (5 ) の工程を経て得られる炭化水素基材を含有してなり、 以下の特定性 状を有する炭化水素油である。
本発明の炭化水素油 (m) の引火点は引火性、 取扱い易さの観点から、 4 o°c 以上であることが必要であり、 42°C以上が好ましく、 45 °C以上がより好まし い。
なお、 ここでいう引火点は、 J I S K 2265 「原油及ぴ石油製品一引火点 試験方法」 によって測定される値である。
本発明の炭化水素油 (ΙΠ) の初留点 (I BP) の下限は 145°C以上であるこ とが必要であり、 1 50°C以上が好ましい。 一方、 上限は 1 70°C以下であるこ とが必要であり、 165°C以下が好ましく、 160°C以下がより好ましく、 1 5 5 °C以下がさらに好ましい。 I B Pが 145°Cより低いと引火性、 蒸発ガス (T HC) の増加、 取り扱い性の観点から好ましくなく、 165°Cを超えると水素製 造システムの始動時間悪化の理由で好ましくない。
本発明の炭化水素油 (m)の 50容量%留出温度(T 50) の下限は、 18 o°c 以上であることが必要であり、 185°C以上が好ましく、 1 90°C以上がより好 ましい。 一方、 上限は 220°C以下であることが必要であり、 215°C以下が好 ましく、 210°C以下がより好ましい。 T 50が 180°Cより低いと重量あたり の水素発生量、 二酸化炭素発生量あたりの水素発生量が減少するため好ましくな く、 220°Cを超えると水素製造システムの始動時間悪化の理由で好ましくない。 本発明の炭化水素油 (ΙΠ) の 95容量%留出温度(T 95) の下限は、 220°C 以上であることが必要であり、 225°C以上が好ましく、 230°C以上がより好 ましい。 一方、 上限は 260°C以下であることが必要であり、 255°C以下が好 ましく、 250°C以下がより好ましい。 T 95が 220°Cより低いと重量あたり の水素発生量、 二酸化炭素発生量あたりの水素発生量が減少するため好ましくな く、 260°Cを超えると排出ガス中の THCが増加するため好ましくない。
また、 本発明の炭化水素油 (ΙΠ) の I BP、 T50、 Τ 95以外の蒸留性状は 特に制限はないが、 10容量%留出温度 (Τ 10) は 160°C以上 190°C以下 が好ましい。 引火性が高くなり、 蒸発ガス (THC) が発生しやすくなるため、 165°C以上がより好ましく、 170°C以上がさらに好ましい。 一方、 水素製造 システムの始動時間悪化の理由から 185 °C以下がより好ましく、 180°C以下 がさらに好ましい。 90容量%留出温度 (T 90) は 210°C以上 255°C以下が好ましい。 重量 あたりの水素発生量、 二酸化炭素発生量あたりの水素発生量が減少するため、 2 20°C以上がより好ましく、 230°C以上がさらに好ましい。 一方、 排出ガス中 の THCが増加するため、 245°C以下がより好ましく、 240°C以下がさらに 好ましい。
終点 (EP) は 230°C以上 280°C以下が好ましい。 重量あたりの水素発生 量、 二酸化炭素発生量あたりの水素発生量が減少するため、 240°C以上がより 好ましく、 245°C以上がさらに好ましい。 一方、 排出ガス中の THCが増加す るため、 270°C以下がより好ましく、 260°C以下がさらに好ましい。
なお、 ここでいう Ι ΒΡ、 Τ 10、 Τ 50、 Τ90、 Τ 95、 及ぴ Ε Ρは、 J I S Κ 2254 「石油製品一蒸留試験方法一常圧法蒸留試験方法」 によって測 定される値である。
本発明の炭化水素油 (m) の硫黄含有量は、 脱硫率、 脱硫触媒の耐久性、 改質 触媒の耐久性、改質反応性の低下、二酸化炭素発生量当り水素発生量の点から 0. 5質量 p pm以下であることが必要であり、 0. 3質量 p pm以下が好ましく、 0. 2質量 p pm以下がより好ましい。
ここで、硫黄含有量とは、 A S TM D4045- 96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogeno丄 ysis and Rateometric ColorimetryJ により測定される値である。
本発明の炭化水素油 (m) の煙点は、 重量当りの水素発生量が多いこと、 二酸 化炭素発生量当りの水素発生量が多いこと、 排出ガス中の THCが少ないこと、 システムの起動時間が短いこと、 改質触媒の劣化が小さく初期性能を長時間持続 できることなどから、 26 mm以上が必要であり、 27 mm以上が好ましく、 2 8 mm以上がより好ましい。
なお、 煙点とは、 J I S K2537 「石油製品一灯油及び航空タービン燃料 油一煙点試験方法」 によって測定される値である。
本発明の炭化水素油 (ΙΠ) の芳香族含有量は、 重量当りの水素発生量が多いこ と、 二酸化炭素発生量当りの水素発生量が多いこと、 排出ガス中の THCが少な いこと、 システム起動時間が短いこと、 改質触媒の劣化が小さく初期性能が長時 間持続できることなどの観点から、 10容量%以下であることが必要であり、 8 容量%以下が好ましい。
本発明の炭化水素油 (m) のォレフイン含有量については何ら制限はないが、 重量当りの水素発生量が多いこと、 二酸化炭素発生量当りの水素発生量が多いこ と、 排出ガス中の T H Cが少ないこと、 システム起動時間が短いこと、 改質触媒 の劣化が小さく初期性能が長時間持続できること、 貯蔵安定性が良いことなどの 観点から、 5容量%以下であることが好ましく、 1容量%以下がより好ましく、 0 . 5容量%以下がさらに好ましい。
本発明の炭化水素油 (m) の飽和炭化水素含有量(飽和分とナフテン分の総量) については何ら制限はないが、 重量当りの水素発生量が多いこと、 二酸化炭素発 生量当りの水素発生量が多いこと、 排出ガス中の T H Cが少ないこと、 システム 起動時間が短いことなどの観点から、 8 5容量%以上であることが好ましく、 9 0容量%以上がより好ましく、 9 5容量%以上が最も好ましい。
なお、 上述の芳香族含有量、 ォレフィン含有量、 飽和炭化水素含有量は、 J I S K 2 5 3 6 「石油製品一炭化水素タイプ試験方法」 の蛍光指示薬吸着法によ り測定される値である。
本発明の炭化水素油 (mo のナフテン系炭化水素含有量については何ら制限は ないが、 ナフテン系炭化水素の含有量が低くなると、 脱硫率の低下、 脱硫触媒の 耐久性の低下、 改質触媒の耐久性の低下、 改質反応性の低下、 二酸化炭素発生量 あたり水素発生量の低下などの抑制の観点から 3 0容量%以上であることが好ま しく、 4 0容量%以上がより好ましく、 4 5容量%以上がさらに好ましい。
なお、 ここでいうナフテン系炭化水素の含有量は、 A S T M D 2 4 2 5 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry) に準拠した方法にて測定される。
本発明の炭化水素油 (ΙΠ) の酸化開始温度は、 2 1 0 °C以上であることが必要 であり、 2 1 2 °C以上が好ましく、 2 1 5 °C以上がより好ましい。 酸化開始温度 が 2 1 0 °C未満の場合、 改質触媒のコーキングによる水素製造装置の耐久性悪化 の点から好ましくない。
本発明の炭化水素油 (ΠΙ) としては、 前述の工程 (1 ) 〜 (3 ) および (5 ) を経て得られる炭化水素基材を使用することができる。 また、 前記した性状が維 持される範囲で、 当該炭化水素基材に、 他の水素製造用基材を適宜混合すること もできる。 混合できる他の基材の配合割合は、 炭化水素油全量基準で 2 0容量% 以下であることが好ましく、 1 5容量 °/0以下であることがより好ましく、 1 0容 量%以下であることがさらに好ましい。 他の基材の含有量が 2 0容量%を超える と、 運転初期の水素分に富む改質ガスへの転化率の低下および 1 0 0時間運転後 の転化率の変化の点で好ましくない。 本発明の炭化水素油 (I ) 〜 (m) は、 それぞれ水素製造システム用の水素製 造用炭化水素油として好適に使用される。
本発明の水素製造システムにおいては、 脱硫反応器、 改質器、 一酸化炭素浄化 器などの機器を少なくとも一つ以上具備するシステムが好ましく、特に、 (a )脱 硫反応器 ·改質器 ·一酸化炭素浄化器、 ( b )脱硫反応器 ·改質器 ·脱硫反応器(再 脱硫) ·一酸化炭素浄化器、 ( c ) 改質器 ·脱硫反応器 ·一酸化炭素浄化器のよう に配置したシステムが好ましく採用される。 ただし、 この例に限られるものでは ない。 本発明の水素製造システムに用いる脱硫反応器 (以下、 脱硫器という。) は、 炭 化水素油中の硫黄分を除去する装置であり、具体的には、触媒として銅一亜鉛系、 ニッケノレ系、モリブデン系、ニッケノレ一モリプデン系、コパノレトーモリブデン系、 コバルト一ニッケル一モリブデン系等を用いる。 特に、 脱硫性能の点から、 触媒 は銅一亜鉛系、 ニッケル系が好ましい。 反応条件としては、 触媒層の最高温度を 炭化水素油の初留点温度一 5 0 °Cから炭化水素油の初留点温度 + 1 0 0 °Cの範囲 内に制御して行うことが必要である。 触媒層の最高温度は、 脱硫性能の点から、 炭化水素油の初留点温度一 3 0 °C以上が好ましく、 脱硫触媒の耐久性の点から炭 化水素油の初留点温度 + 9 0 °C以下が好ましく、 炭化水素油の初留点温度 + 8 0 °C以下がさらに好ましい。 L H S Vは、脱硫器の大きさへの影響の点から、 0 . l h— 1以上が好ましく、 0 . 3 h一1以上がさらに好ましく、 脱硫性能の点から 1 O h— 1以下が好ましく、 5 h一1以下がさらに好ましい。 反応圧力 (絶対圧) は、 定置式燃料電池の家庭や商業地への設置等の点により I M P a未満が好ましく、 0 . I M P a以下がさらに好ましい。 また、 脱硫器への水素の同伴は、 水素製造 システム (脱硫器も含む) を含む燃料電池システムの効率の面から無い方が好ま しい。 これらの脱硫操作を実施した後の、 炭化水素油の硫黄含有量が、 好ましく は 0. 1質量 p pm以下、 より好ましくは 0. 05質量 p pm以下となるように 行うことが好ましい。 改質器は、 炭化水素油を改質して水素を得るための装置であり、 具体的な例と して次のようなも が挙げられるがこれに限ったものではない。
(1) 水蒸気改質型改質器
水蒸気改質型改質器は、 加熱気化した炭化水素油と水蒸気とを混合し、 触媒と して周期律表第 VIII族元素を活性金属として使用し、水素を主成分とする生成物 を得る改質器である。
水蒸気改質型改質器に用いる触媒の活性金属は、 炭化水素化合物より水素を得 るための改質反応性の点で、 ルテニウム、 ロジウム、 白金等が好ましく、 中でも ルテニウム、 ロジウムが特に好ましい。 また、 反応温度は、 改質反応性の点で 4 00°C以上が好ましく、 500°C以上がさらに好ましく、 触媒上のコーキング発 生量抑制の点で 1000°C以下が好ましく、 800°C以下がさらに好ましい。 水 と炭化水素油の混合比率 (SZC) は触媒上のコーキング発生量抑制の点で 1モ ル /モル以上が好ましく、 2モル/モル以上がさらに好ましく、 改質器効率の点 から 5モル Zモル以下が好ましく、 4モル Zモル以下がさらに好ましい。
(2) 自己熱改質型改質器
自己熱改質型改質器は、 加熱気化した炭化水素油を水蒸気及び空気と混合し、 触媒として周期律表第 VIII族元素を活性金属として使用し、水素を主成分とする 生成物を得る改質器である。
自己熱改質型改質器に用いる触媒の活性金属は、 炭化水素化合物より水素を得 るための改質反応性の点で、 ルテニウム、 ロジウム、 白金等が好ましく、 中でも ルテニウム、 ロジウムが特に好ましい。 また、 反応温度は、 改質反応性の点で 4 00°C以上が好ましく、 500°C以上がさらに好ましく、 触媒上のコーキング発 生量抑制の点で 1000°C以下が好ましく、 800°C以下がさらに好ましい。 水 と炭化水素油の混合比率 (S/C) は触媒上のコーキング発生量抑制の点で 0. 5モル/モル以上が好ましく、 1モル/モル以上がさらに好ましく、 改質器効率 の点から 5モル Zモル以下が好ましく、 3モル モル以下がさらに好ましい。 酸 素と炭化水素油の混合比率 (o2Zc) は改質反応性の点で 0. 1モル/モル以 上が好ましく、 0. 2モルノモル以上がさらに好ましく、 触媒上のコーキング発 生量抑制の点で 0. 5モル モル以下が好ましく、 0. 4モル/モル以下がさら に好ましい。
なお、 本発明でいう 「水と炭化水素油の混合比率 (SZC)」 において、 Sは水 (分子) のモル数、 Cは炭化水素油 (分子) 中の炭素のモル数を意味する。 従つ て、 「水と炭化水素油の混合比率 (s/c)」 の求め方に関し例を挙げて説明する と、水(分子): 6モルと、炭化水素油にエタン(C2H6): 1モルを用いた場合、 水と炭化水素油の混合比率 (SZC) は、 炭化水素油であるェタン: 1モル中の 炭素のモル数は 2モルであるので、 「SZC= 6モルノ2モル = 3」 となる。 また、 同様に、 本発明でいう 「酸素と炭化水素油の混合比率 (02 0」 にお いて、 o2は酸素 (分子) のモル数、 Cは炭化水素油 (分子) 中の炭素のモル数 を意味する。 従って、 「酸素と炭化水素油の混合比率 (o2/c)」 の求め方に関 し例を挙げて説明すると、 酸素 (分子): 0. 6モルと、 炭化水素油にエタン (C 2H6) : 1モルを用いた場合、 酸素と炭化水素油の混合比率 (02/C) は、 炭化 水素油であるェタン: 1モル中の炭素のモル数は 2モルであるので、 「〇2 〇= 0. 6モル / 2モル =0. 3」 となる。 一酸化炭素浄化器は、 改質器で生成したガスに含まれ、 燃料電池の触媒毒とな る一酸化炭素の除去を行うものである。 一酸化炭素浄化器としては次のような例 が挙げられる。
(1) 水性ガスシフト反応器
水性ガスシフト反応器は、 改質器より得られた改質ガスと加熱気化した水蒸気 を混合し、 触媒として周期律表第 I B族、 第 IIB族、 第 IV族および第 VIH族から 選ばれる 1種または 2種以上の元素を用い、 一酸化炭素と水蒸気とから二酸化炭 素と水素を生成物として得る反応器である。
水性ガスシフト反応器に用いる触媒の活性金属は、 反応性の点で、 銅、 亜鉛、 クロム、 鉄、 白金、 ルテニウム及びロジウム等が好ましく、 中でも銅、 亜鉛、 白 金がさらに好ましい。また、反応温度は、反応性の点で 1 00°C以上が好ましく、 20 0°C以上がさらに好ましく、 シフト触媒へのコーク析出抑制の点から 6 0 0 °C以下が好ましく、 5 0 0 °C以下がさらに好ましい。 水と改質ガス中の一酸化 炭素の比は反応を安定的に行なう点で 1モル Zモル以上が好ましく、 2モル モ ル以上がさらに好ましく、 一酸化炭素浄化器の効率の点で 8 0モル/モル以下が 好ましく、 1 0モル/モル以下がさらに好ましい。
( 2 ) 選択酸化反応器
選択酸化反応器は、 改質器より得られた改質ガスと圧縮空気とを混合し、 触媒 として銅、 ニッケル、 白金、 ルテニウム、 ロジウム等を用い、 反応温度 1 0 0〜 3 0 0 °C、 ガス空間速度 1 0 0 0〜:! O O O O h 反応圧力 I M P a未満、 空 気と改質ガス中の一酸化炭素の比 0 . 5〜3 . 0モル Zモルの反応条件により、 一酸化炭素と空気とから一酸化炭素を二酸化炭素に変換する反応器である。 本発明の炭化水素油 (I ) は、 脱硫性能に優れるため脱硫反応器を配置した水 素製造システム用の水素製造用炭化水素油として使用されることが好ましい。 し たがって、 本発明の炭化水素油 (I ) を用いる水素製造システムには、 少なくと も脱硫反応器を配置することが必要である。
本発明の炭化水素油 (Π ) は、 改質ガス中の一酸化炭素の発生を少なくするこ とができるため、 前述の一酸化炭素浄化器、 特に水性ガスシフ ト反応器を配置し た水素製造システム用の水素製造用炭化水素油として使用されることで、 水素発 生効率を高めることができる。 したがって、 本発明の炭化水素油 (Π ) を用いる 水素製造システムには、 少なくとも一酸化炭素浄化器を配置することが必要であ る。
また本発明の炭化水素油 (ΙΠ) は、 前述の水蒸気改質型改質器もしくは自己熱 改質型改質器を具備する水素製造システムの原料として好適に使用される。 改質 器は、炭化水素を改質して水素を得るための装置であり、本発明の炭化水素油(m) を用いることで、 改質器の耐久性をより高めることができ、 ひいては水素製造シ ステムとしての耐久性が向上する。 したがって、 本発明の炭化水素油 (ΙΠ) を用 いる水素製造システムには、 少なくとも改質器を配置することが必要である。 [産業上の利用可能性]
本発明の水素製造用炭化水素油は、 安定した高い脱硫率を得ることができ、 ま た改質効率が高く、 また長時間改質器の性能を維持することができる。 また改質 ガス中の一酸化炭素発生量を抑え、 水素発生効率が高いため水素製造用炭化水素 油として好適である。
[発明を実施するための最良の形態]
以下に、 実施例及ぴ比較例を挙げて本発明を具体的に説明するが、 本発明はこ れらの例に限定されるものではない。
なお、 炭化水素油の一般性状は、 以下の試験法により測定'した。
(1) 密度は、 J I S K 2249 「原油及ぴ石油製品の密度試験方法並ぴに密 度 ·質量 ·容量換算表」 により測定される密度を指す。
(2) 引火点は、 J I S K 226 5 「原油及ぴ石油製品—引火点試験方法」 に よって測定される引火点を指す。
(3) 蒸留性状 ( Ι Β Ρ、 Τ 1 0、 Τ 50、 Τ 90、 Τ 95、 Ε Ρ) は、 全て J I S K 2254 「石油製品一蒸留試験方法-常圧法蒸留試験方法」によって測 定される値である。
( 4 )硫黄分は、 ASTM D4045- 96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJ によ り測定される硫黄分含有量を指す。
(5) 芳香族分、 ォレフィン分、 飽和分は、 J I S K2536 「石油製品一炭 化水素タィプ試験方法」 の蛍光指示薬吸着法により測定される芳香族分含有量、 ォレフィン分含有量、飽和炭化水素(ナフテン系炭化水素を含む)含有量を指す。
( 6 ) ナフテン分は、 A S TM D 2 4 2 5 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry) に 拠した 方法にて測定されるナフテン系炭化水素含有量を指す。
( 7) 酸化開始温度は、 前述のとおり、 高圧示差走査熱量計 (High- Pressure Differential Scanning Calorimeter) を用いて測定される温度を指す。
(8) 炭素数 1 3の炭化水素の成分の割合は、 前記のガスクロマトグラフ法によ り、 GC— F I Dを用いて測定される値を指す。
( 9) CZHは、 A S TM D 5 2 9 1 - 0 1 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry) に準拠した 方法により測定される値を指す。
(10) 煙点は、 J I S K2 537 「石油製品一灯油及ぴ航空タービン燃料油一 煙点試験方法」 によって測定される煙点を指す。
《実施例;!〜 2および比較例 1〜 3》
表 1に示すような条件で炭化水素基材 ( I一 1) 〜 ( I一 3) を製造し、 炭化 水素基材 (1— 1) 〜 ( I一 3) を配合して表 2に示す炭化水素油 (I—A) 〜 ( I -D) を製造した。 その性状を表 2に示す。
得られた炭化水素油 ( I—A) 〜 (I—D) を図 3に示した脱硫評価装置によ り評価した。
炭化水素油をポンプにて、 脱硫触媒 (ニッケル系、 (i» 2mm、 50niL充填) が充填された反応管へと導入した。
まず、はじめに反応条件 < S >下にて、脱硫後の炭化水素油の硫黄分を測定し、 脱硫率を算出した。 その後、 反応条件 <A>下にて、 200時間運転を行い、 再 び、 反応条件 Sへ戻し、 脱硫後の炭化水素油の硫黄分を測定し、 脱硫率を算出し た。 そして、 200時間運転前後での脱硫率の変化を比較した。
反応条件く S >
触媒層最高温度:炭化水素油の初留点温度一 1 0°C、 LHS V : l h一1、 反応圧力 (絶対圧) : 0. 05MP a
反応条件 <A>
触媒層最高温度:炭化水素油の初留点温度 + 1 0°C、 LHS V : 5 h-\ 反応圧力 (絶対圧) : 0. 05 MP a また、 反応条件の比較例 (比較例 3) として、 以下の反応条件 <A, >および <S' >にて脱硫反応を行ない、 脱硫率の変化を比較した。
反応条件く s, >
触媒層最高温度:炭化水素油の初留点温度 + 1 1 o°c、
LHS V : 0. 5 h~ 反応圧力 (絶対圧) : 0. 05 M P a
反応条件 < A' >
触媒層最高温度:炭化水素油の初留点温度 + 1 30°C, LHS V: 5 h"\ 反応圧力 (絶対圧) : 0. 05 MP a 炭化水素油 (I—A) 〜 (I—D) について、 上述の評価を行い、 その評価結 果を表 3に示す。
表 3に示す結果から、 本発明の炭化水素油 (I—A) および (I—B) を用い た場合には、 比較例の炭化水素油に比べて、 運転初期おょぴ 200時間運転後の 脱硫率が高く、かつ 200時間運転後の脱硫率の低下割合も小さいことがわかる。 なお、脱硫率の低下割合は、 (運転初期の脱硫率一 200時間後の脱硫率) X 1 00Z運転初期の脱硫率 (%) により算出した。
《実施例 3〜 5及ぴ比較例 4〜 6》
表 4に示すような条件で炭化水素基材 (Π_ 1) 〜 (Π— 5) を製造した。 炭 化水素基材 (Π— 1) 〜 (Π— 5) を配合して炭化水素油 (Π_Α) 〜 (Π— Ε) を製造し、 その性状を表 5に示す。
得られた炭化水素油 (Π— Α) 〜 (Π— Ε) を図 4及ぴ図 5に示した評価フロ 一チャート (改質器及び一酸化炭素浄化器を含む評価装置 1及び評価装置 2) に 従って以下の通り評価した。
なお、 2つの評価装置の相違は改質器の種類である。 評価条件は次のとおりで ある。
炭化水素油余熱器、 水蒸気発生器及び空気余熱器はそれぞれ 300°Cに設定し てある。
(改質器)
水蒸気改質器は反応温度: 650 °C、 LHS V: 1 h~ 水と炭化水素油の混 合比率(S/C): 3.0モルノモルの条件で、自己熱改質器は反応温度: 6 50°C、 LHSV : 1 h~ H20/C 2. 0モル モル、 酸素と炭化水素油の混合比 率 (〇2/C) : 0. 3モル Zモルの条件で運転を行った。
(一酸化炭素浄化器)
実施例 3〜 5及ぴ比較例 4〜 5は、 反応温度: 250 °C、 水と改質ガス中の一 酸化炭素比: 5モル Zモルの条件で、 比較例 6は、 反応温度: 9 0 °C、 水と改質 ガス中の一酸化炭素比: 5モルノモルの条件で運転を行った。
( 1 ) 評価装置 1 :水蒸気改質器 +水性ガスシフ ト反応器
あらかじめ脱硫器により脱硫しておいた炭化水素油と水を電気加熱によりそれ ぞれ気化させ、 貴金属系触媒を充填し、 電気ヒーターで所定の温度に維持した反 応器 (改質器) に導き、 水素分に富む改質ガスを発生させた。 改質ガス中に含ま れる水は、 冷却方式による気液分離管にて改質ガスより分離した。
次に改質ガスと改質ガス中の c o濃度に対して一定量の水蒸気を添加した混合 ガスを銅一亜鉛系触媒を充填した電気ヒーターで所定の温度に維持した反応器 (水性ガスシフト反応器) に導き、 改質ガスの中の一酸化炭素を二酸化炭素に変 換した。
( 2 ) 評価装置 2 : 自己熱型改質器 +水性ガスシフト反応器
あらかじめ脱硫器により脱硫しておいた炭化水素油と水を電気加熱によりそれ ぞれ気化させ、 これに加熱空気を混合したものを貴金属系触媒を充填し、 電気ヒ 一ターで所定の温度に維持した反応器 (改質器) に導き、 水素分に富む改質ガス を発生させた。 改質ガス中に含まれる水は、 冷却方式による気液分離管にて改質 ガスより分離した。
次に改質ガスと改質ガス中の c o濃度に対して一定量の水蒸気を添加した混合 ガスを銅一亜鉛系触媒を充填した電気ヒーターで所定の温度に維持した反応器 (水性ガスシフト反応器) に導き、 改質ガスの中の一酸化炭素を二酸化炭素に変 換した。 なお、 評価装置 1及び評価装置 2の改質器出口ラインおよび水性ガスシフト反 応器出口ラインには、 ガス組成および未反応の炭化水素油を分析できるガスクロ マトグラフィーを設置した。
このガスクロクロマトグラフィーによる組成分析結果より、 水素/ C O比 (H 2/ C O ) を改質器出口および水性ガスシフ ト反応器出口にて計算し、 各炭化水 素油おょぴ水性ガスシフ ト反応器の反応条件を変化させた場合について比較した。 炭化水素油 (Π— Α) ~ (Π-Ε) についてこれらの評価をそれぞれ行い、 そ の評価結果を表 6に示す。
表 6に示す結果から、 本発明の炭化水素油 (Π— Α) 〜 (Π— C) を用いた場 合には、 比較例の炭化水素油に比べて、 一酸化炭素に対する水素発生量が高いこ とがわかる。
《実施例 6〜 7及び比較例 7〜: 10》
表 7に示すような条件で炭化水素基材 (ΊΠ— 1) 〜 (ΙΠ_5) を製造した。 炭 化水素基材 (ΙΠ— 1) 〜 (III一 5) を配合して炭化水素油 (ΠΙ— A) 〜 (Π [— E) を製造し、 その性状を表 8に示す。
得られた炭化水素油 (Π_Α) 〜 (ΙΠ— Ε) を図 6およぴ図 7に示した評価フ ローチャートに従って以下のとおり評価を行った。
なお、 炭化水素油余熱器、 水蒸気発生器および空気余熱器はそれぞれ 300°C に設定してある。
(1) 水蒸気改質評価
水蒸気改質評価のフローチャートを図 6に示す。 炭化水素油と水を電気加熱に よりそれぞれ気化させ、 改質触媒 (ルテニウム系、 φ 2πιιη、 充填量 5mL) を 充填し、 電気ヒーターで所定の温度に維持した改質反応管に導き、 水素分に富む 改質ガスを発生させた。
初めに、 以下の反応条件 S 1にて改質反応を行った。
(反応条件 S 1)
L H S V: 0. 5 h - \ S / C: 3モル Zモル、触媒層出口温度: 650 °C 反応条件 S 1にて転化率を求めたのち、 以下の反応条件 A 1にて 100時間通 油を行った。
(反応条件 A 1 )
LHS V: 5 h"1, S/C : 3モル Zモル、 触媒層出口温度: 650 °C 反応条件 A1での運転後、 反応条件を S 1へ戻し、 転化率を測定し、 運転初期 との転化率変化を算出した。
これらの評価を炭化水素油 (m— A) 〜 (m— E) についてそれぞれ行った。 その結果を表 9に示す, また、反応条件の比較例として、以下の反応条件 S 1,にて改質反応を行った。
(反応条件 S 1 ')
LHS V: 0. 5 h~ S/C : 0. 8モルノモル、 触媒層出口温度: 6
50°C
反応条件 S I ' にて転化率を求めたのち、 以下の反応条件 A 1 ' にて 1 00時 間通油を行った。
(反応条件 A1 ')
LHS V: 5 h~ S/C: 0. 8モル/モル、触媒層出口温度: 6 50。C 反応条件 A 1 ' での運転後、 反応条件を S 1 ' へ戻し、 転化率を測定し、 運転 初期との転化率変化を算出した。 その結果を比較例 1 0として表 9に併記した。
(2) 自己熱改質評価
自己熱改質評価のフロ一チャートを図 7に示す。 炭化水素油と水を電気加熱に より気化させ、 予熱した空気と共に改質触媒 (ロジウム系、 φ 2πιπι、 充填量 5 mL) を充填し、 電気ヒーターで所定の温度に維持した改質反応管に導き、 水素 分に富む改質ガスを発生させた。
初めに、 以下の反応条件 S 2にて改質反応を行った。
(反応条件 S 2)
LHS V: 0. 5 h~\ S/C : 2モル/モル、 02/C : 0. 25、 触媒層出口温度: 650°C
反応条件 S 2にて転化率を求めたのち、 以下の反応条件 A 2にて 1 00'時間通 油を行った。
(反応条件 A 2 )
LHS V : 5 h"\ S/C : 2モル/モル、 02/C : 0. 25、 触媒層出口温度: 650°C
反応条件 A 2での運転後、 反応条件を S 2へ戻し、 転化率を測定し、 運転初期 との転化率変化を算出した。
これらの評価を炭化水素油 (ΙΠ— A) 〜 (ΙΠ— E) についてそれぞれ行った。 その結果を表 9に示す。 また、反応条件の比較例として、以下の反応条件 S 2,にて改質反応を行った。 (反応条件 S 2 ')
LH S V: 0. 5 h"1, S/C : 0. 3モル/モル、 〇2/C : 0. 25、 触媒層出口温度: 650°C
反応条件 S 2' にて転化率を求めたのち、 以下の反応条件 A2 ' にて 1 00時 間通油を行った。
(反応条件 A 2 ')
LHS V : 5 h~\ S/C : 0. 3 m o 1 /mo 1、 02/C : 0. 25、 触媒層出口温度: 650°C
反応条件 A 2' での運転後、 反応条件を S 2, へ戻し、 転化率を測定し、 運転 初期との転化率変化を算出した。 その結果を比較例 10として表 9に併記した。 なお、 転化率の測定は次のように行った。 各改質評価装置には、 反応管出口ラ インに発生した改質ガスの流量を測定できるガス流量計と発生した改質ガスの組 成および未反応の炭化水素を分析できるガスクロマトグラフィーを設置した。 炭 化水素油および水の供給用タンクは天秤上に設置してあり、 時間あたりの反応管 への供給量をこの天秤にて測定した。 炭化水素油供給量および発生改質ガス流量 および発生ガス組成の分析結果より、 炭化水素油の転化率を計算した。 転化率の 定義は次の通りとした。
転化率 (%) ==発生ガス中の C I (C02、 COおよび CH4) 量ノ供給した 炭化水素油中の C量 X 1 00 表 9に示す結果から、 本発明の炭化水素油 (ΙΠ— A) および (III一 B) を用い た場合には、 比較例の炭化水素油及ぴ装置条件に比べて、 転化率が高く、 かつ、 その転化率を長期間安定して維持できることがわかる。 炭化水素基材 I - 1 I一 2 ※ 原料油の性状
IBP °C 155.5 - 一 蒸留性状
T90 °C 234.0 - 一 芳香族分 vol% 11.6 一 一 直鎖飽和炭化水素含有量 vol% 40.0 一 一 炭素数 10〜 15の直鎖飽和炭化水素含有量 vol% 31.4 - 一 硫黄分 mass ppm 120 - 一 製造条件
反応温度 。C 279-302 - 一 水素圧力 Pa 8.5 - ― 工程 (1) :水素化
LHSV h- 1 1.54 - ― 脱硫処理工程
水素/炭化水素容量比 0.26 一 - 触媒 Ni-W - - 工程 (2) :軽質分の
ストリップ工程 軽質分のストリップ量 vol% 30 - - 反応温度 °C 190 ― ― 工程 (3) :直鎖飽和 圧力 MPa 2 - - 炭化水素の抽出 モレキュラーシーフ
除去工程 触媒 ― ―
5A
飽和炭化水素の抽出除去 E vol% 28 - 一 基材の性状
密度 @15°C g/cm3 0.812 0.799 0.794 蒸留性状 IBP °C 188.0 164.0 153.0
CO
T50 °C 212.5 203.5 197.0
T90 °C 235.0 220.0 237.0
EP °C 251.0 241.0 266.0 硫黄分 mass ppm 0.16 0.15 0.25 芳香族分 vol% 7.3 14.8 18.2
※中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に水素化脱硫したもの 表 2
炭化水素油 I一 A I— B I— G I一 D 基材配合割合 基材(I一 1 ) vol% 100 90
基材(I - 2) vol% 100 基材(I - 3) vol% 10 100 密度 @15°C g/cm 0.8124 0.8102 0.7990 07940 引火点 。c 。C 64 66 51.5 70 蒸留性状 IBP °C 188.0 190.0 164.0 197.0
T10 °C 197.5 201.0 179.0 205.0
T50 °C 212.5 214.5 203.5 218.0
T90 。C 235.0 236.0 220.0 237.0
T95 °C 241.0 243.5 230.5 251.0
EP °C 251.0 264.0 241.0 266.0 硫黄分 mass ppm 0.16 0.17 0.15 0.25 芳香族分 vol% 7.3 8.4 14.8 18.2 ォレフィン分 vol% 0.0 0.0 0.4 0.1 飽和分けフ亍ンを含む) voi% 92.7 91.6 84.8 81.7 ナフテン分 vol% 48.0 47.1 43.2 39.4 酸化開始温度 °C 218 216 209 215 炭素数 13の炭化水素の成分の割合 mass% 26.1 21.2 22.3 17.3
表 3 実施例 1 実施例 2 比較例 1 比較例 2 比較例 3 炭化水素油 I一 A I一 B I -C I一 D I— D 脱硫反応条件 A A A A A' 触媒層最高温度 °C 初留点- 10 初留点- 10 初留点- 10 初留点- 10 初留点 + 110 脱硫率、 %
運転初期 94 91 47 40 28
200時間運転後 91 89 35 29 18 低下割合 % 3 3 24 28 36 表 4
Figure imgf000033_0001
※工程 (1 )~(3)で得られた炭化水素油を、一連の装置で蒸留分離し、下記の性状に蒸留分離した ※※中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に水素化脱硫したもののうちの重質分 ※※※中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に水素化脱硫したもの。
表 5 炭化水素油 Π -Β n -c Π -D Π -Ε 基材 ( Π— 1 ) vol% 100
基材 ( Π— 2) vol% 100 95
基材配合割合 基材 ( E— 3) vol% 5
基材 ( Π— 4) vol% 100
基材 ( Π— 5) vol% 100 密度 @15°C g/cm3 0.768 0.791 0.793 0.7503 0.7936 引火点 。c °C 41 74 76 65 45 蒸留性状 IBP °C 163.0 202.5 205.5 192.5 153.0
T10 °c 167.5 207.0 215.0 21 1.0 166.5
T50 °c 170.0 209.0 219.0 233.0 197.0
T90 °c 174.0 213.0 228.0 237.0 242.0
T95 °c 175.0 214.0 239.0 247.5 251.5
EP 。c 193.5 226.5 250.0 261.0 269.0
T95-IBP °c 12.0 1 1.5 33.5 55.0 98.5 飽和分 (ナフテンを含む) vol% 99.8 99.8 99.6 99.7 81.9 芳香族分 vol% 0.2 0.2 0.4 0.3 18.0 ォレフィン分 vol% 0.0 0.0 0.0 0.0 0.1 ナフテン分 vol% 46 56 54 0 24 硫黄分 mass ppm 0.08 > 0.08 0.16 0.28 0.45 酸化開始温度 °C 215 215 214 221 208
C/H モル/モル 2.07 2.02 2.01 2.13 1.92
表 6
Figure imgf000035_0001
※増減比較は、それぞれの評価において、比較例 4の出口 H2/GOを 100.0とした場合の相対値
表 7
Figure imgf000036_0001
※中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に水素化脱硫したもの。 ※※中東系原油を常圧蒸留装置にかけて得られた灯油留分を高度に水素化脱硫したもの。 ※※※中東系原油を常圧蒸留装置にかけ灯油留分を水素化脱硫した通常の製品灯油。
表 8 炭化水素油 Π -Α Π -Β m -c m— D m-E 基材 (m— 1) vol% 100 一 - - vol% - 95 - - - 基材配合割合 基材 (m— 3) vol% - 5 100 - - 基材 (Π— 4) vol% ― - - - 100
基材 (Π— 5) vol% - - - 一 100 密度 @15°C g/cm3 0.794 0.805 0.800 0.796 0.794 引火点 °c °C 42.0 50.0 51.5 53.0 45.0 蒸留性状 IBP °c 50.0 161.0 164.0 166.0 153.0 お T10 。c 166.5 180.5 182.0 170.0 171.0
T50 °c 191.5 205.5 203.5 210.5 197.0
T90 M C °c 225.5 233.0 228.5 252.0 239.5
T95 °c 234.0 246.0 230.0 267.0 249.0
EP °c 246.0 253.5 246.0 287.0 265.0 硫黄分 mass ppm 0.18 0.12 0.15 0.12 4.30 芳香族分 vol% 7.9 6.5 14.8 9.5 18.2 ォレフィン分 vol% 0.2 0.1 0.2 0.2 0.6 飽和分 (ナフテンを含む) vol% 91.9 93.4 85.0 90.3 81.2 ナフテン分 vol% 47.7 41.8 一 - - 酸化開始温度 °C 213 216 209 217 215 煙点 mm 29 27 25 28 25
実施例 6 実施例 7 比較例 7 比較例 8 比較例 9 比較例 1 0 炭化水素油 Π -Α m -B HI -C Π— D m— Ε m -E
1.水蒸気改質による評価
反応条件 S1 S1 S1 S1 S1 sr 反応温度 °c 650 650 650 650 650 650
SZG モル Zモル 3.0 3.0 3.0 3.0 3.0 0.8 転化率
運転初期 110.5 109.7 100.0 102.5 97.8 88.5
100時間運転後 109.7 108.8 92.5 96.1 84.3 69.2 減少率 % 0.8 0.9 7.5 6.4 13.5 21.8
2.自己熱改質による評価
反応条件 S2 S2 S2 S2 S2 S2' 反応温度 °c 650 650 650 650 650 650
SZC モル モル 2.0 2.0 2.0 2.0 2.0 0.3
02ZG モル Zモル 0.25 0.25 0.25 0.25 0.25 0.25 転化率
運転初期 107.3 107.0 100.0 102.0 97.0 83.1
100時間運転後 106.4 106.1 91.8 95.5 82.7 61.3 減少率 % 0.9 0.9 8.2 6.5 14.3 26.2
※転化率は、それぞれの改質評価において、比較例 7の運転初期の転化率を 100.0とした場合の相対値
[図面の簡単な説明]
図 1は、 高圧示差走査熱量計を用いて測定される炭化水素油の発熱量と温度と の相関曲線の一例を示すグラフである。
図 2は、 図 1に示した相関曲線の微分曲線を示すグラフである。
図 3は、 脱硫器を含む評価システムのフローチャートである。
図 4は、 水蒸気改質型改質器及び水性ガスシフト反応器を含む評価システムの フローチヤ一トである。
図 5は、 自己熱改質型改質器及び水性ガスシフト反応器を含む評価システムの フローチヤ一トである。
図 6は、 水蒸気改質型改質器の評価フローチャートである。
図 7は、 自己熱改質型改質器の評価フローチヤ一トである。

Claims

請 求 の 範 囲
1 - 初留点が 140〜180°C、 90容量%留出温度が 200〜270° (:、 芳香族含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量%以上、 炭 素数 10〜 15の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有量が 30 0質量 p pm以下である炭化水素混合物を原料油として、 下記工程 (1) 〜 (3) を経て得られる炭化水素基材を含有してなる、 初留点が 160°C以上 200°C以 下、 50容量%留出温度が 200°C以上 220°C以下、 90容量%留出温度が 2 20 °C以上 245 °C以下、 芳香族分が 10容量%以下、 硫黄含有量が 0. 5質量 p pm以下、 ナフテン分が 40容量%以上、 酸化開始温度が 210°C以上, 炭素 数 13の炭化水素の割合が 20質量%以上であることを特徴とする少なくとも脱 硫反応器を配置した水素製造システムの水素製造用炭化水素油。
工程 (1) :原料油を、 反応温度 250〜310°C、 水素圧力 5〜1 OMP a、 LHS V 0. 5〜3. 0 h 1、 水素 Z炭化水素容量比 0. 1 5〜0. 6の条件 で、 N i— W、 N i—Mo、 C o—Mo、 C o— W、 ぉょぴ N i _ C o— M o力 ら選択されるレ、ずれかを含有する触媒により水素化脱硫処理する工程
工程(2):工程(1)で得られた水素化脱硫処理油から軽質分の 1〜35容量% をストリップする工程
工程 (3):軽質分をストリップした後、 温度 1 50°C〜250°C、圧力 1〜5 MP aの条件下でゼォライ トにより直鎖飽和炭化水素を 10容量%以上抽出除去 する工程
2. 初留点が 140〜180°C、 90容量%留出温度が 200〜270°C、 芳香族含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量%以上、 炭 素数 10〜 15の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有量が 30 0質量 p pm以下である炭化水素混合物を原料油として、 下記工程 (1) 〜 (4) を経て得られる炭化水素基材を含有してなる、 95容量%留出温度が 240°C以 下、 95容量%留出温度と初留点の差が 50°C以下、 硫黄含有量が 0. 5質量 p pm以下、 炭素と水素のモル比が 1. 95以上、 ナフテン含有量が 40容量%以 上、 芳香族分が 10容量%以下、 酸化開始温度が 210°C以上であることを特徴 とする少なくとも一酸化炭素浄化器を配置した水素製造システムの水素製造用炭 化水素油。
工程 (1) :原料油を、 反応温度 250〜310°C、 水素圧力 5〜1 OMP a、 LHS V 0. 5〜3. 0 h 1、 水素/炭化水素容量比 0. 15〜0. 6の条件 で、 N i— W、 N i—Mo、 C o— Mo、 C o—W、 および N i— C o— M o力 ら選択されるいずれかを含有する触媒により水素化脱硫処理する工程
工程( 2 ):工程( 1 )で得られた水素化脱硫処理油から軽質分の 1〜 35容量% をストリップする工程
工程 (3) :軽質分をストリップした後、 温度 150°C〜250°C、 圧力 1〜5 MP aの条件下でゼォライ トにより直鎖飽和炭化水素を 10容量%以上抽出除去 する工程
工程 (4):工程 (3) で直鎖飽和炭化水素を抽出除去した炭化水素油を分留す る工程
3. 初留点が 140〜: 180°C、 90容量%留出温度が 200〜270°C、 芳香族含有量が 20容量%以下、 直鎖飽和炭化水素含有量が 25質量%以上、 炭 素数 1 0〜 15の直鎖飽和炭化水素含有量が 20質量%以上、 硫黄含有量が 30 0質量 p pm以下である炭化水素混合物を原料油として、 下記工程 (1) 〜 (3) および(5)を経て得られる炭化水素基材を含有してなる、引火点が 40°C以上、 初留点が 145。C以上 1 70°C以下、 50容量%留出温度が 1 80°C以上 22 0 °C以下、 95容量%留出温度が 220 °C以上 260 °C以下、 硫黄含有量が 0. 5質量 p pm以下、 煙点が 26 mm以上、 芳香族含有量が 10容量%以下、 酸化 開始温度が 210°C以上であることを特徴とする少なくとも改質器を配置した水 素製造システムの水素製造用炭化水素油。
工程 (1) :原料油を、 反応温度 250〜310°C、 水素圧力 5〜1 OMP a、 LHSV0. 5〜3. 0 h 1、水素/炭化水素容量比 0. 1 5〜0. 6の条件で、 N i— W、 N i— Mo、 C o— Mo、 C o— W、 および N i— C o— M o力 ら選 択されるいずれかを含有する触媒により水素化脱硫処理する工程
工程(2):工程(1)で得られた水素化脱硫処理油から軽質分の 1〜35容量% をストリップする工程 工程 (3):軽質分をストリップした後、 温度 1 50°C〜250°C,圧力 1〜5 MP aの条件下でゼォライトにより直鎖飽和炭化水素を 10容量%以上抽出除去 する工程
工程 (5) :工程 (3) で得られた炭化水素または工程 (3) で得られた炭化水 素を分留する工程 (工程 (4)) で得られた炭化水素に、 工程 (2) でストリップ した軽質分の 60容量%以上を混合する工程
4. 第 1項に記載の炭化水素油を、 脱硫反応器の反応圧力 (絶対圧) 1 MP a未満において、 脱硫触媒層の最高温度を炭化水素油の初留点温度一 50°C から炭化水素油の初留点温度 + 10 o°cの範囲に制御して脱硫するための脱硫反 応器を具備する水素製造システム。
5. 第 2項に記載の炭化水素油を改質して得られる改質ガスと水蒸気を 混合し、 周期律表第 I B族、 II B族、 VI族おょぴ VIII族から選ばれる 1種また は 2種以上の元素を活性金属として含む触媒の存在下に、 反応温度 100〜60 0°C、 水と改質ガス中の一酸化炭素のモル比 1〜80モル/モルにより、 一酸化 炭素と水蒸気から二酸化炭素と水素を生成物として得る水性ガスシフト反応器を 具備する水素製造システム。
6.. 第 3項に記載の炭化水素油と水蒸気との混合ガスを、 周期律表第 VIII 族元素を活性金属として含む改質触媒の存在下、 反応温度 400〜1 00 0 °C、 水と炭化水素油の混合比率が 1〜 5モルノモルで反応させることにより、 水素を主成分とする生成物を得る水蒸気改質型改質器を具備する水素製造システ ム。
7. 第 3項に記載の炭化水素油、 水蒸気及び空気の混合ガスを、 周期律 表第 VIII族元素を活性金属として含む改質触媒の存在下、反応温度 400〜10 00DC、 水と炭化水素油の混合比率が 0. 5〜5モル モル、 酸素と炭化水素油 の混合比率が 0. 1〜0. 5モル/モルで反応させることにより、 水素を主成分 とする生成物を得る自己熱改質型改質器を具備する水素製造システム。
8 . 脱硫反応器、 改質器および一酸化炭素浄化器を具備することを特徴 とする第 4項〜第 7項のいずれかに記載の水素製造システム。
PCT/JP2005/006706 2004-03-31 2005-03-30 水素製造用炭化水素油および水素製造システム WO2005095554A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067022416A KR101163249B1 (ko) 2004-03-31 2005-03-30 수소제조용 탄화수소유 및 수소제조 시스템

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-108143 2004-03-31
JP2004108142A JP4227927B2 (ja) 2004-03-31 2004-03-31 水素製造用炭化水素油および水素製造システム
JP2004-108146 2004-03-31
JP2004-108142 2004-03-31
JP2004108143A JP4227928B2 (ja) 2004-03-31 2004-03-31 水素製造用炭化水素油および水素製造システム
JP2004108146A JP4227930B2 (ja) 2004-03-31 2004-03-31 炭化水素油及び該炭化水素油の脱硫方法

Publications (1)

Publication Number Publication Date
WO2005095554A1 true WO2005095554A1 (ja) 2005-10-13

Family

ID=35063758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006706 WO2005095554A1 (ja) 2004-03-31 2005-03-30 水素製造用炭化水素油および水素製造システム

Country Status (2)

Country Link
KR (1) KR101163249B1 (ja)
WO (1) WO2005095554A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063872A1 (ja) * 2005-11-30 2007-06-07 Nippon Oil Corporation 水素の製造方法、改質ガソリンの製造方法及び芳香族炭化水素の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089773A (ja) * 1999-07-21 2001-04-03 Idemitsu Kosan Co Ltd 水素製造用原料油およびその製造方法
JP2001172002A (ja) * 1999-12-17 2001-06-26 Idemitsu Kosan Co Ltd 燃料電池用燃料油及びその製造方法
JP2002080868A (ja) * 2000-06-29 2002-03-22 Nippon Mitsubishi Oil Corp 燃料電池システム用燃料
JP2003290659A (ja) * 2002-03-29 2003-10-14 Idemitsu Kosan Co Ltd 脱硫剤及びそれを用いた燃料電池用水素の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089773A (ja) * 1999-07-21 2001-04-03 Idemitsu Kosan Co Ltd 水素製造用原料油およびその製造方法
JP2001172002A (ja) * 1999-12-17 2001-06-26 Idemitsu Kosan Co Ltd 燃料電池用燃料油及びその製造方法
JP2002080868A (ja) * 2000-06-29 2002-03-22 Nippon Mitsubishi Oil Corp 燃料電池システム用燃料
JP2003290659A (ja) * 2002-03-29 2003-10-14 Idemitsu Kosan Co Ltd 脱硫剤及びそれを用いた燃料電池用水素の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUKUNAGA T. ET AL: "Development of kerosene fuel processing system for PEFC.", CATALYSIS TODAY., vol. 84, 2003, pages 197 - 200, XP002990164 *
KOSAL N. ET AL: "Determination of hydrocarbon types in naphtas, gasolines and kerosenes: a review and comparative study of different analytical procedures.", FUEL., vol. 69, no. 8, 1990, pages 1012 - 1019, XP002990165 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007063872A1 (ja) * 2005-11-30 2007-06-07 Nippon Oil Corporation 水素の製造方法、改質ガソリンの製造方法及び芳香族炭化水素の製造方法
JP2007153931A (ja) * 2005-11-30 2007-06-21 Nippon Oil Corp 水素の製造方法、改質ガソリンの製造方法及び芳香族炭化水素の製造方法

Also Published As

Publication number Publication date
KR20060133063A (ko) 2006-12-22
KR101163249B1 (ko) 2012-07-05

Similar Documents

Publication Publication Date Title
CN1957075B (zh) 氢制造用烃油以及氢制造***
JP4537666B2 (ja) 燃料電池システム用燃料および燃料電池システム
WO2005095554A1 (ja) 水素製造用炭化水素油および水素製造システム
JP4227927B2 (ja) 水素製造用炭化水素油および水素製造システム
WO2001077262A1 (fr) Combustible s&#39;utilisant dans un système de pile à combustible
WO2001077264A1 (fr) Combustible a utiliser dans une pile a combustible
JP4684539B2 (ja) 燃料電池システム用燃料、その製造方法および燃料電池システム
JP4227928B2 (ja) 水素製造用炭化水素油および水素製造システム
JP2002080868A (ja) 燃料電池システム用燃料
JPWO2001077263A1 (ja) 燃料電池システム用燃料
JP4598898B2 (ja) 燃料電池システム用燃料
JP5393372B2 (ja) パラフィン主体の燃料電池システム用炭化水素燃料油
JP4229448B2 (ja) 水素製造用炭化水素油および水素製造システム
JP4227929B2 (ja) 水素製造システムの水素製造用炭化水素油およびバーナー用燃料
JP2002083626A (ja) 燃料電池システム用燃料
JP4548765B2 (ja) 燃料電池システム用燃料
JP4598895B2 (ja) 燃料電池システム用燃料
JPWO2001077260A1 (ja) 燃料電池システム用燃料
JP4227930B2 (ja) 炭化水素油及び該炭化水素油の脱硫方法
JP2002083625A (ja) 燃料電池システム用燃料
JP2004027082A (ja) 燃料電池システム用燃料
JP2004319403A (ja) 燃料電池システム用燃料
JP2004027083A (ja) 水素製造用燃料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 1020067022416

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580016134.1

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067022416

Country of ref document: KR

122 Ep: pct application non-entry in european phase