WO2005085187A1 - フッ素化合物の製造方法 - Google Patents

フッ素化合物の製造方法 Download PDF

Info

Publication number
WO2005085187A1
WO2005085187A1 PCT/JP2005/003888 JP2005003888W WO2005085187A1 WO 2005085187 A1 WO2005085187 A1 WO 2005085187A1 JP 2005003888 W JP2005003888 W JP 2005003888W WO 2005085187 A1 WO2005085187 A1 WO 2005085187A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
represented
above general
fluoride
reaction
Prior art date
Application number
PCT/JP2005/003888
Other languages
English (en)
French (fr)
Inventor
Hideo Saito
Nobuyuki Uematsu
Masanori Ikeda
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to JP2006510769A priority Critical patent/JP4993462B2/ja
Publication of WO2005085187A1 publication Critical patent/WO2005085187A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/80Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/78Halides of sulfonic acids
    • C07C309/79Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms
    • C07C309/82Halides of sulfonic acids having halosulfonyl groups bound to acyclic carbon atoms of a carbon skeleton substituted by singly-bound oxygen atoms

Definitions

  • the present invention relates to a method for producing ⁇ -fluorosulfol perfluoroalkyl alkyl ether, which is a raw material of a fluorine-based solid electrolyte polymer useful for a fuel cell and a salt electrolysis process, and a synthetic intermediate thereof.
  • Patent Document 1 JP-A-56-90054
  • Patent Document 2 US Pat. No. 6,624,328
  • Patent Document 3 WO2004Z60849
  • Non-Patent Document 1 Weiming Qiu and Donald J. Burton, Journal of Fluorine
  • the present invention relates to a novel ⁇ -fluorosulfol-perperfluoroalkylbutyl ether represented by the general formula (2) or (2 ′) and a synthetic intermediate thereof. It is an object of the present invention to provide a method for producing the compound in a high yield.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, the general formula (1) or Starting from the ⁇ -no, perfluoroalkylsulfur fluoride represented by the general formula (1,) as a raw material, the ⁇ -fluorosulfol-fluorofluoride represented by the general formula (2) or (2 ′) is used as a raw material.
  • Method for efficiently producing alkyl vinyl ether, and method for efficiently producing ⁇ -haloperfluoroalkylsulfur fluoride represented by the general formula (1) or (1 ′) or a synthetic intermediate thereof And completed the present invention.
  • the present invention is as follows.
  • R is a divalent perfluorocarbon group having 1 to 9 carbon atoms
  • X is selected from I or Br.
  • a halogen atom, Y is a fluorine atom, a perfluoroalkyl group having 1 to 3 carbon atoms, or
  • —CFY— R— is a divalent perfluorocarbon group having 3 to 10 carbon atoms.
  • Step (b ′) obtained by the above general formula (4 ′) Fluoride-sulfide compound represented by the above general formula (2) is converted to an ⁇ -fluorosulfol-perfluoroalkylbutyl ether represented by the general formula (2). Converting to.
  • R 1 is an alkyl group having 115 carbon atoms
  • R 2 is CH or CH.
  • P is 0-10
  • the mass ratio of the carboxylic acid di-tolyl solvent in the mixed solvent of the ether solvent represented by the general formula (6) and the carboxylic acid di-tolyl solvent is 30% by mass or more and 99% by mass.
  • This is a method for producing ⁇ -fluorosulfol-perfluoroalkyl ether represented by the following general formula (2 "), wherein ⁇ is a target product represented by the following general formula (2") —R is the number of moles of fluorosulfol-perfluoroalkylbutyl ether formed, and s is the number of moles of the acid fluoride conjugate represented by the above general formula (4 ′′) regenerated as a by-product.
  • the method is characterized in that the reaction is carried out at a production ratio of a by-product represented by [s] Z [r + s] of 0.1 or less.
  • Acid fluoride compound represented by the above general formula (4 ) The derived carboxylate is a potassium salt represented by the following general formula (7), and the carboxylate does not undergo thermal decomposition. 12. The method according to 11 above, which is performed in a solvent.
  • alkali metal salt type alkaline earth metal salt type, quaternary ammonium salt type, or quaternary phospho-dimethyl salt type
  • quaternary ammonium salt type quaternary phospho-dimethyl salt type
  • M is Ma, Mb, a quaternary ammo-radical or a quaternary phospho-dimethyl
  • Ma is an alkali metal and Mb is an alkaline earth metal.
  • X and m are the same as those in the general formula (1 ′).
  • step (ii) is at least the ⁇ - haloperfluoroalkylsulfinic acid salt represented by the general formula (9) obtained by the reaction of the step (i) and a by-product (1
  • step (ii) includes the following steps (ii 1) and (ii 2).
  • ⁇ -haloperfluoroalkylsulfinate represented by the general formula (9) is separated and removed, and then the reaction residue is treated with a chlorinating agent to represent the general formula (8).
  • a, ⁇ Dihaloperfluoroalkane and Z or ⁇ -C-perfluoroalkylsulfoylc chloride represented by the above general formula (10) are produced, and these are subjected to step (i) and Z or 14.
  • reaction mixture represented by the general formula (8) ⁇ Dihaloperfluoroalkane and Z or ⁇ -haloperfluoroalkylsulfol-chloride represented by the above general formula (10) are produced, separated and subjected to step (i) and step (iv). ).
  • Oc ⁇ dihalo perflur represented by the above general formula (8), which comprises reacting perfluoroalkyl a, ⁇ bissulfol chloride represented by the above general formula (12) with iodine or bromine.
  • n or n is SO. 21. — Method described in item 1 of 22.
  • the ⁇ -fluorosulfol-leperfluoroalkylbutyl ether represented by the general formula (2) or (2 ′) and a synthetic intermediate thereof are produced in high yield.
  • a method is provided.
  • Steps (a)-(c) From the above, ⁇ -fluoroperfluoroalkylsulfur fluoride represented by the above general formula (1) is used as a raw material to obtain ⁇ -fluorosulfur-fluoride represented by the above general formula (2). According to the method for producing perfluoroalkylbutyl ether and the steps (a), (c), the ⁇ -noperoperfluoroalkylsulfurfluoride represented by the general formula (1) is used as a raw material. A method for producing ⁇ -fluorosulfol-perfluoroalkyl vinyl ether represented by the general formula (2) will be described.
  • step (a) and the step (a ') will be described.
  • R is a divalent perfluorocarbon group having 19 carbon atoms
  • X is a halogen atom selected from I or Br
  • Y represents a fluorine atom, a perfluoroalkyl group having 13 to 13 carbon atoms, or an f group linked to R (1 to 13 carbon atoms).
  • CF— is sometimes referred to as CFY—.
  • CFY— R— is a divalent perfluoro with 3-10 carbon atoms f
  • X is preferably I or Br, but I is more preferred in terms of reactivity! /.
  • CFY—R— is a divalent perfluorocarbon group having 3 to 10 carbon atoms.
  • It may have a structure, a branched structure, or a cyclic structure.
  • Synthesis and easiness of purification and represented by the above general formula (2) or general formula (2 ") derived from ⁇ -haloperfluoroalkylsulfur fluoride represented by the above general formula (1 ') M is more preferably 418, further preferably 416, and particularly preferably 4, from the viewpoint of the operability and functionality of the ⁇ -fluorosulfol-perfluoroalkyl vinyl ether to be obtained.
  • the ⁇ -fluorosulholi-rui dyad product represented by the following formula can be obtained.
  • R and ⁇ can be variously combined. Yes, for example
  • the ⁇ -fluorosulfonylui conjugate represented by the above general formula (3 ') is particularly preferable because of its high practicality.
  • m is more preferably 418, more preferably 416, for the same reason as in the above general formula (1 ′). And particularly preferably 4.
  • SO fuming sulfuric acid
  • C1SOH C1SOH
  • FSOH NO , O
  • catalysts and additives may be added to promote the reaction.
  • catalysts such as HgO and PO
  • chlorides such as pentaoxide, PC1, and SbCl may be used.
  • reaction temperature should be between 20 ° C and 150 ° C.
  • the concentration of SO in fuming sulfuric acid may vary.
  • the amount of fuming sulfuric acid is 0.1 mol based on the effective SO amount of fuming sulfuric acid per 1 mol of ⁇ - haloperfluoroalkylsulfur fluoride represented by the above general formula (1) or (1 ′). Preferred to use in the range from 1 to 100 moles 1 mole force 20
  • the reaction time is not particularly limited, and may be, for example, about 0.1 to 100 hours as long as the reaction proceeds to some extent.
  • the reaction method is not particularly limited.
  • the mixture of ⁇ -haloperfluoroalkylsulfur fluoride represented by the general formula (1) or (1 ′) and SO or fuming sulfuric acid may be heated to reflux,
  • a sulfol fluoride conjugate represented by the formula is contained in the reaction mixture.
  • the sulfonyl fluoride compound represented by the general formula (5) or (5 ′) is a target compound when brought into contact with an alkali metal salt, an alkaline earth metal salt, or a Lewis base. It can be converted to an ⁇ -fluorosulfonyl compound represented by (3) or the general formula (3 ′). Therefore, the SO dissolved in the reaction mixture is washed and removed with concentrated sulfuric acid.
  • the mixture After removal, the mixture is directly brought into contact with an alkali metal salt, an alkaline earth metal salt, or a Lewis base, and subjected to a distillation operation to obtain a target compound represented by the above general formula (3) or (3 ′) represented by the general formula (3 ′).
  • -Fluorosulfonyl ligated products can be obtained.
  • the target compound After washing and removing the SO dissolved in the reaction mixture with concentrated sulfuric acid, the target compound,
  • the sulfonylfluoride represented by the above general formula (5) or (5 ′) is separated.
  • the distillation residue containing the Doi-Dai-Gai product is brought into contact with an alkali metal salt, an alkaline earth metal salt, or a Lewis base to perform a distillation operation.
  • the ⁇ -fluorosulfonyl compound represented by the above general formula (3) or (3 ′) which is the target compound, can also be obtained.
  • Triethynoleamine, 1,8-diazabicyclo [5,4,0] indene, 1,5-diazabicyclo [4,3,0] non-5-ene, N, N-diisopropylethyla KF and N, N-diisopropylethylamine are preferable among the powers including min.
  • the amount of the alkali metal salt, alkaline earth metal salt or Lewis base to be used is 0.001 mol based on 1 mol of the sulfol fluoride compound represented by the general formula (5) or (5 ′). It is preferred to use in the range of from 5 to 5 mol! / ,.
  • the reaction time is not particularly limited, and may be, for example, about 0.1 to 100 hours.
  • the reaction temperature is preferably in the range of 10 ° C to 220 ° C, more preferably in the range of 20 ° C to 200 ° C, particularly preferably in the range of 30 ° C to 180 ° C.
  • the reaction method is not particularly limited, the alkali metal salt, alkaline earth metal salt, or Lewis base heated under normal pressure in the absence of a solvent or in the presence of a solvent may be added to the above-mentioned general formula (5) or (5 ′)
  • the reaction product may be distilled off at the same time as the dropwise addition of the sulfolfluoride conjugate represented by the general formula (5), or the sulfolfluoride conjugate represented by the above general formula (5) or (5 ′)
  • a mixture of the above-mentioned alkali metal salt, alkaline earth metal salt or Lewis base may be heated to reflux.
  • a mixture of the sulfonylfluoride conjugate represented by the general formula (5) or (5 ′) and the above alkali metal salt, alkaline earth metal salt, or Lewis base is added to a pressurized container. You can heat it.
  • ether solvents such as diglyme, triglyme and tetraglyme
  • amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone
  • polar solvents such as sulfolane A solvent
  • one kind may be used or a plurality of organic solvents may be combined.
  • m is an integer of 3-10, but more preferably 418 for the same reason as in the general formula (1 '). Yes, more preferably 416, and particularly preferably 4.
  • Patent Document 2 discloses that diglyme is used as a reaction solvent.
  • R 1 is an alkyl group having 115 carbon atoms
  • R 2 is CH or CH.
  • P is 0-10
  • Examples of the ether-based solvent represented by the general formula (6) include diethylene glycol dimethyl enoate, diethylene glycol olenoethyl enoate, diethylene glycol propylene dipropyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyole enoate, Ethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, propylene glycol dimethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, toluene propylene glycol dimethyl ether, tetrapropylene glycol dimethyl ether And the like.
  • Examples of the carboxylic acid di-tolyl-based solvent include saturated aliphatic dicarboxylic acids having 3 to 8 carbon atoms, such as adipo-tolyl.
  • the mass ratio of di-tolyl carboxylate in the mixed solvent of the ether-based solvent and di-tolyl carboxylate is preferably from 30% by mass to 99% by mass, more preferably from 40% by mass to 97% by mass. More preferred 50% by mass or more and 95% by mass or less is particularly preferred.
  • the amount of HFPO used depends on the amount of the ⁇ -fluorosulfol compound From 0.95 monoreca to HFPOi, 2 monoreca S is preferred, and from 0.98 monoreca to 1.8 monoreca is more preferably 1 mol to 1.5 mol.
  • reaction pressure there is no particular restriction on the reaction pressure.
  • the reaction may be performed under normal pressure or under pressure.
  • a pressurized reaction in a pressurized vessel is preferred.
  • the pressure in the pressurized reaction is not limited, but it is preferable to introduce HFPO within a range of 0.1 OlMPa force to 0.1 IMPa gauge pressure.
  • various fluoride ion-containing compounds such as alkali metal fluoride and quaternary ammonium fluoride are used as catalysts, and among them, KF and CsF are more preferable.
  • the amount of the fluorine ion-containing conjugate of the catalyst is not limited, it is usually about 0.001 to 1 mol per 1 mol of the ⁇ -fluorosulfonyl compound!
  • the reaction temperature is preferably in the range of 30 ° C to 50 ° C—more preferably in the range of 20 ° C to 30 ° C.
  • the reaction time is not particularly limited, and depends on the time during which HFPO is consumed, and is, for example, 0.5 hour and 72 hours.
  • the contents are divided into two layers (the upper layer is a mixed solvent of an ether-based solvent and a carboxylic acid dinitrile-based solvent, and the lower layer is a reaction mixture containing the acid fluoride conjugate represented by the above general formula (4 ")).
  • the lower layer portion is taken out, and the acid fluoride conjugate represented by the above general formula (4 ") can be obtained by a distillation operation.
  • ⁇ -fluorosulfol-perfluoroalkyl ethers Can be converted into ⁇ -fluorosulfol-perfluoroalkyl ethers, respectively.
  • the ⁇ -fluorosulfol-perperfluoroalkylbutyl ether represented by the general formula (2 ") has high practicability and is particularly preferable.
  • m is preferably an integer in the range of 3 to 10, but is more preferably 418, and still more preferably 416, from the viewpoint of ease of synthesis and purification and operability. Yes, especially 4
  • An acid fluoride compound represented by the above general formula (4) or the general formula (4 ') or the general formula (4 ") is introduced into silica or alumina or the like supporting an alkali metal or alkaline earth metal fluoride, By contacting, ⁇ -fluorosulfol-perfluorofluoroalkyl ether represented by the general formula (2), (2 ′) or (2 ′′) can be obtained.
  • the acid fluoride compound represented by the general formula (4) or (4 ′) or (4 ′′) is reacted with various basic compounds to form an alkali metal salt of carboxylic acid.
  • the carboxylate After being converted into a salt or an alkaline earth metal salt, the carboxylate is subjected to a heat decarboxylation reaction, whereby ⁇ -fluorosulfo- represented by the above general formula (2) or (2 ′) or (2 ′′) is obtained.
  • the method for obtaining ruperfluoroalkylbutyl ether will be described.
  • Examples of the basic compound used in the conversion reaction from the acid fluoride conjugate represented by the general formula (4) or (4 ′) or (4 ′′) to the carboxylate include: Alkali metal or alkaline earth metal carbonates and hydroxides are preferred, especially carbonates because of their good operability. Examples include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, rubidium carbonate, calcium carbonate, barium carbonate, etc., and among them, sodium carbonate, potassium carbonate, and the like are preferred, such as sodium carbonate, potassium carbonate, and calcium carbonate. Particularly preferred is potassium carbonate.
  • a solvent When converting the acid fluoride conjugate represented by the general formula (4), (4 ′) or (4 ′′) into an alkali metal salt or an alkaline earth metal salt of the carboxylic acid, a solvent is required.
  • a solvent for example, a solvent such as acetonitrile or propio-tolyl, or a tolyl solvent or an ether such as monoglyme, diglyme, triglyme, or tetraglyme may be used.
  • a system solvent is used, and a reaction temperature in the range of 0 ° C to 80 ° C is particularly preferred!
  • the above-mentioned general formula (2) or general formula (2 ′) or general formula (2 ′′) is obtained by heat decarboxylation reaction.
  • the conversion may be carried out with or without a solvent, but it is better to carry out the conversion without a solvent. Easy to achieve reaction grade! /, So more preferred.
  • Conditions for performing the decarboxylation reaction in the presence of a solvent include, for example, performing the decarboxylation reaction in the range of 80 ° C to 180 ° C using an ethereal solvent such as diglyme, triglyme, or tetraglyme.
  • the ⁇ -fluorosulfol-perperfluoroalkylbutyl ether represented by the general formula (2), (2 ′) or (2 ′′) can be produced.
  • the solvent used in the neutralization reaction is once distilled off by distillation or the like, and then the decarboxylation reaction is performed in the range of 100 ° C to 250 ° C, preferably in the range of 150 ° C to 230 ° C.
  • the ⁇ -fluorosulfol-perfluorofluoroalkyl ether represented by the general formula (2), (2 ′) or (2 ′′) can be obtained.
  • the reaction products It is desirable to carry out the reaction while continuously and quickly distilling the product out of the reaction system. If the reaction product stays in the reactor, by-products are likely to be generated, and the ⁇ full represented by the above-mentioned general formula (2), general formula (2 ′) or general formula (2 ′′), which is the target product, The yield of olosulfonyl perfluoroalkyl butyl ether is reduced.
  • the present inventors have converted the particularly useful ⁇ -fluorosulfol-leperfluoroalkylbutyl ether represented by the above general formula (2 ′′) to the acid fluoridyl ether represented by the above general formula (4 ′′).
  • the acid fluoridyl ether represented by the above general formula (4 ′′).
  • the present inventors have proposed a method for producing an acid fluoridation compound represented by the above general formula (4 ") and a method for producing ⁇ -fluorosulfol perfluoroalkyl alkyl ether represented by the above general formula (2"). , Including the method described in Patent Document 2.
  • the method via sodium salt described in Patent Document 2 is not an industrially advantageous production method due to the generation of many difficult-to-separate by-products. It has been found that high quality products can be produced with high yield by employing the method very efficiently.
  • Patent Document 2 having these problems cannot be said to be an industrially advantageous production method.
  • the present inventors have conducted intensive studies on a reaction method for minimizing the side reaction as described above. As a result, there are salts such as potassium salts which do not melt even during the heating decarboxylation reaction. In the thermal decarboxylation reaction, it was found that the amount of the by-product acid fluoride compound represented by the above general formula (4 ") was extremely reduced, and the target product of high purity was obtained in high yield.
  • the value of [s] Z [r + s] is preferably 0.1 or less, more preferably 0.08 or less, further preferably 0.06 or less, and particularly preferably. 0.04 or less.
  • the lower limit of [s] Z [r + s] is not particularly limited, but may be 0.001 or 0.0001, or may be lower than the detection limit of the measuring instrument.
  • the carboxylate derived from the acid fluoride compound represented by ") is represented by the following general formula (7)
  • thermal decomposition of the carboxylate is carried out without a solvent.
  • the thermal decomposition of the carboxylate is carried out during decarboxylation by heating. This is performed while keeping the carboxylate in a solid phase state.
  • the effect of the potassium salt will be specifically described by comparing the reaction results of the sodium salt and the potassium salt when the carboxylate is thermally decomposed with a medium.
  • the carboxylate is a sodium salt
  • the heating temperature is set to 180 ° C. or higher
  • the sodium salt is in a molten state at the time of thermal decomposition as described above, and is represented by the above general formula (4 ′′) as a by-product.
  • the acid fluoride compound is produced in a large amount, and the desired product, ⁇ -fluorosulfol-perfluoroalkylalkyl ether represented by the above general formula (2 ′′), is obtained in low yield, and the [ s ] Z [r + s] was 0.19.
  • the carboxylate is a potassium salt
  • the potassium salt is in a solid phase upon thermal decomposition, and is an acid fluoride represented by the general formula (4 "), which is a by-product described above.
  • the formation of the compound was slight, and the desired product, ⁇ -fluorosulfol-perperfluoroalkylbutyl ether represented by the above general formula (2 "), was obtained in high yield, and [s] Z [r + s] was 0.01.
  • alkali metal or alkaline earth metal carbonates used include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, and carbonate. Rubidium, calcium carbonate, barium carbonate and the like can be mentioned. Among them, potassium carbonate, which is more preferably sodium carbonate, potassium carbonate, calcium carbonate and the like, is particularly preferable.
  • a silyl ester of carboxylic acid is produced by reacting the silanol compound with a siloxane compound using the catalyst as a catalyst.
  • siloxane conjugates include, for example, disiloxane conjugates such as hexamethinoresisiloxane, hexethinoresisiloxane, and hexafeninoresisiloxane, and siloxane polymers such as cyclic siloxane compounds and polymethylsiloxane.
  • the silyl ester of the carboxylic acid thus produced is subjected to a desilyl fluoride reaction in a liquid or gaseous phase using an alkali metal fluoride such as KF or NaF as a catalyst to obtain the above general formula (2) or general formula (2 ′)
  • ⁇ -fluorosulfonylperfluoroalkylbutyl ether represented by the general formula (2 ") can be obtained.
  • the temperature at which the desilyl fluoride reaction is performed is, for example, a reaction in a liquid phase. In this case, the reaction temperature is in the range of 25 ° C to 175 ° C, and when the reaction is performed in the gas phase, it is in the range of 140 ° C to 250 ° C.
  • the ⁇ -fluorosulfol-perperfluoroalkylbutyl ether represented by the general formula (2), (2 ′) or (2 ′′) obtained by the above-mentioned various methods is obtained by a method such as distillation. Can be purified.
  • ⁇ -haloperfluoroalkylsulfonylfluoride represented by the above general formula (1) which is a raw material for synthesizing ⁇ -fluorosulfol-perperfluoroalkylbutyl ether represented by the above general formula (2).
  • the metal can be used in the method of the present invention whatever is manufactured by any method.
  • the production method shown in the above scheme 2 has been reported. However, it is not an industrially advantageous production method.
  • highly pure ⁇ -haloperfluoroalkylsulfur fluoride is efficiently produced. It is practically particularly preferable because it can be manufactured.
  • step (i) will be described.
  • M is Ma, Mb, quaternary ammom-radical or quaternary phospho-mradica
  • Ma is an alkali metal and Mb is an alkaline earth metal.
  • X and m are the same as those in the above general formula (1 ′).
  • Alkali metal salt type such as O, KSO, CsSO, alkaline earth metal salt type such as CaSO
  • Quaternary ammonium salt forms such as ((CH) N) SO and ((n-Bu) N) SO, ((CH) P
  • a, ⁇ -dihaloperfluoroalkane represented by the above general formula (8) and an alkali metal salt type, an alkaline earth metal salt type, a quaternary ammonium salt type, or a quaternary ammonium salt type In the reaction of dithionite selected from any of the lower phospho-dum salt forms, in addition to the ⁇ -haloperfluoroalkylsulfinate represented by the general formula (9), by-products
  • the amount of the dithionite used is preferably from 0.1 to 3 equivalents to the a, ⁇ dihaloperfluoroalkane represented by the general formula (8). 0.1 to 2.0 equivalents Is more preferably 0.2 to 1.5 equivalents. At less than 0.1 equivalent, the reaction of the substrate hardly progresses, and at more than 3.0 equivalent, the amount of perfluoroalkyl ⁇ , ⁇ bissulfinate represented by the above general formula (11) increases. This is not preferred.
  • Solvents used in the above reaction include, for example, ketone solvents such as acetone and methyl ethyl ketone, -tolyl solvents such as acetonitrile and propio-tolyl, and linear or cyclic solvents such as tetrahydrofuran, dioxane and diglyme.
  • Ether solvents amide solvents such as ⁇ , ⁇ -dimethylformamide and ⁇ , ⁇ -dimethylacetamide, and various polar solvents such as dimethyl sulfoxide.
  • ketone solvents such as acetone and methyl ethyl ketone
  • -tolyl solvents such as acetonitrile and propio-tolyl
  • acetone and acetonitrile are preferred.
  • These organic solvents are preferably used as a mixed solvent with water, and one kind of organic solvent may be used, or a combination of a plurality of organic solvents may be used.
  • the amount of the organic solvent to be used with respect to water is preferably 0.1 times or more and 100 times or less, more preferably 1 time or more and 50 times or less with respect to the volume of water. It is particularly preferable that the ratio be from 20 to 20 times. If the amount of water used is more than 100 times, the reaction of the substrate hardly proceeds, which is not preferable.
  • the amount of water relative to the substrate is preferably from 0.1 to 200 equivalents, more preferably from 1 to 150 equivalents, particularly preferably from 5 to 100 equivalents, based on the substrate.
  • a neutralizing agent or a buffer may be added.
  • the neutralizing agent include hydrogen carbonate such as lithium hydrogen carbonate, sodium hydrogen carbonate, and potassium hydrogen carbonate; carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; and phosphorus such as sodium hydrogen phosphate and potassium hydrogen phosphate.
  • Hydrogen salts, phosphates such as sodium phosphate and potassium phosphate, and hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide and the like can be used. It comes out.
  • Reaction temperatures are preferably in the range of 30 ° C to 90 ° C—more preferably in the range of 10 ° C to 60 ° C.
  • the reaction time is not particularly limited as long as the dithionite is sufficiently consumed depending on the reaction conditions, but practically, the range is about 0.1 to 48 hours. .
  • step (ii) will be described.
  • the target compound represented by the above general formula (9) is obtained by reacting a, ⁇ dihaloperfluoroalkane represented by the above general formula (8) with dithionite.
  • a, ⁇ dihaloperfluoroalkane represented by the above general formula (8) with dithionite.
  • Oroalkyl ⁇ , ⁇ bissulfinates are formed as by-products.
  • an inorganic iodide or an inorganic bromide generated by the reaction also exists in the reaction system.
  • inorganic iodide or inorganic bromide When a suspension in which inorganic iodide or inorganic bromide is precipitated and formed in the reaction system is formed, inorganic iodide or inorganic bromide may be removed by filtration and separation and purification may be performed. .
  • the removal method can be adopted.
  • Specific examples of the removal method include, for example, removal by distillation, extraction and removal with a fluorine atom-containing organic solvent, or ⁇ -haloperfluoroalkylsulfinate represented by the general formula (9) and Examples of the method include removal by phase separation from an aqueous medium containing a perfluoroalkyl ⁇ , ⁇ bissulfinate represented by the general formula (11).
  • the unreacted a, ⁇ dihaloperfluoroalkane represented by the above general formula (8) is reacted with the used organic solvent by distillation or the like from the solution or suspension after the reaction. Can be excluded.
  • a removal method by phase separation for example, after distilling off the organic solvent used by a method such as distillation, water is added to separate into two layers, and a, ⁇ dihalo perfluoro represented by the above general formula (8) is obtained. Since the lower alkane is separated into the lower layer, the lower layer The a, ⁇ dihaloperfluoroalkane represented by the general formula (8) can be obtained.
  • the method of extraction and removal using a fluorine atom-containing organic solvent is as follows.
  • the reaction mixture obtained in step (i) is mixed with a fluorine atom-containing organic solvent such as HFC43-10mee and perfluorohexane, and the above formula (8) is used.
  • a fluorine atom-containing organic solvent such as HFC43-10mee and perfluorohexane
  • an aqueous dispersion in which the ⁇ -haloperfluoroalkylsulfinate represented by the general formula (9) and the perfluoroalkyl ⁇ , ⁇ bissulfinate represented by the general formula (11) are dissolved From the liquid or the solid mixture containing both components, the ⁇ -haloperfluoroalkylsulfinate represented by the above general formula (9) can be extracted.
  • Reaction mixture in which the ⁇ -haloperfluoroalkyl sulfinate represented by the general formula (9) and the perfluoroalkyl a, ⁇ bis sulfinate represented by the general formula (11) are dissolved As a method for extracting the ⁇ -haloperfluoroalkyl sulfinate represented by the above general formula (9), for example, ester solvents such as ethyl acetate, ether solvents such as ethyl ether, etc. And extracting the ⁇ -noperoperfluoroalkylsulfinate represented by the above general formula (9) into the organic layer by adding the poorly water-soluble organic solvent.
  • ester solvents such as ethyl acetate
  • ether solvents such as ethyl ether
  • the perfluoroalkyl ⁇ , ⁇ -bissulfinate represented by the general formula (11) and the inorganic iodide or inorganic bromide such as an inorganic iodide or an inorganic bromide generated in the step (i) are used.
  • the salt is separated on the aqueous layer side.
  • the organic solvent is distilled off to obtain a highly pure compound represented by the above general formula (9).
  • ⁇ -haloperfluoroalkyl sulfinate can be isolated.
  • the organic layer contains almost no perfluoroalkyl a, ⁇ bissulfinate represented by the general formula (11)! /.
  • an ester solvent such as ethyl acetate or an ether solvent such as getyl ether is used.
  • the perfluoroalkyl ⁇ , ⁇ bissulfinate represented by the general formula (11) and inorganic salts such as inorganic iodide or inorganic bromide, which are insoluble in the organic solvent, are removed by filtration. be able to.
  • the organic solvent is distilled off from the filtrate by distillation or the like, a high-purity ⁇ -no, perfluoroalkylsulfinate represented by the above general formula (9) is obtained in a high yield.
  • step (iii) will be described.
  • the ⁇ -haloperfluoroalkylsulfojuruku mouth represented by the formula can be obtained. Specifically, after dissolving or dispersing the ⁇ -haloperfluoroalkylsulfinate represented by the general formula (9) in water, an organic solvent or a mixed solvent thereof, a chlorinating agent is added. With this, a chlorination reaction can be performed.
  • This step can be carried out in various media, but considering the ease and safety of the reaction operation, it is preferable to use water or an aqueous solution containing an acid as the solvent.
  • the chloridizing agent is not particularly limited as long as it can convert —SO M to SO C1.
  • chloridizing agents For example, the ability to use chlorine, sulfuryl chloride or the like as a chlorine-containing agent, particularly preferably chlorine.
  • chlorine sulfuryl chloride or the like
  • the target compound ⁇ -haloperfluoroalkylsulfuric acid mouth lid represented by the above general formula (10)
  • the conditions for the chlorination reaction are not particularly limited, and may be appropriately determined depending on the type of the chlorinating agent to be used so that the desired chlorinated product is produced.
  • chlorine gas is supplied to an aqueous solution in which the ⁇ -noperoperfluoroalkyl sulfinate of the above general formula (9) is dissolved to perform the chlorination reaction.
  • the reaction temperature is preferably 0-50 ° C, and the amount of chlorine charged is preferably about 115 mol per mol of ⁇ - haloperfluoroalkyl sulfinic acid salt of the above general formula (9).
  • the range of 1.2 to 3 moles is more preferable.
  • the concentration of the ⁇ -noperoperfluoroalkyl sulfinate of the above general formula (9) in the aqueous solution is not particularly limited, but may be usually about 0.5 to 50% by mass.
  • the compound represented by the general formula (1 ′) is obtained.
  • ⁇ -haloperfluoroalkylsulfur fluoride can be obtained.
  • the reaction with the fluoride ion-containing compound can be carried out according to a known method, and in a solvent or without a solvent, the ⁇ -haloperfluoroalkylsulfonyl chloride represented by the above general formula (10) and fluorine ion What is necessary is just to make the contained dangling product react.
  • the solvent is not particularly limited, and various solvents can be used.
  • a polar organic solvent such as acetonitrile, sulfolane, dimethyl sulfoxide, ⁇ , ⁇ -dimethylformamide, water, or a mixed solvent thereof can be used. .
  • the fluorine ion-containing compound used is one that can convert SO C1 to SO F.
  • Any known fluorine ion-containing conjugate can be used without particular limitation.
  • Examples include alkali metal fluorides such as NaF and KF.
  • the reaction temperature may be in the range of 0 to 200 ° C, and the reaction time may be about 0.1 hour, about 48 hours.
  • the amount of the fluoride ion-containing compound to be used is preferably 1 mol or more and 10 mol or less with respect to 1 mol of the ⁇ -halofluoroalkylsulfonyl chloride represented by the above general formula (10). It is more preferably at least 5 mol and at most 5 mol.
  • the concentration of ⁇ -haloperfluoroalkylsulfol chloride represented by the above general formula (10) is not particularly limited, but is usually 10 to 100% by mass.
  • the method for separating the ⁇ -haloperfluoroalkylsulfonyl fluoride represented by the above general formula (1 ′) obtained by the above method may be appropriately changed depending on the solvent used in the reaction.
  • ⁇ -noperoperfluoroalkylsulfonyl fluoride represented by the above general formula (1 ′) can be separated by distillation, and the above general formula can be obtained by removing water depending on the type of solvent.
  • the ⁇ -haloperfluoroalkylsulfur-fluoride represented by the formula (1) can be separated as an organic layer.
  • step (ii 2) the by-product perfluoroalkyl a, ⁇ bissulfinate represented by the above general formula (11), which is separated by the above step (ii 2), is converted into the above general formula (8)
  • a method for producing the ⁇ , ⁇ dihaloperfluoroalkane and ⁇ or the ⁇ -haloperfluoroalkylsulfol-chloride represented by the general formula (10) will be described.
  • the processing solution or purified residue separated in step (ii 2) contains by-products perfluoroalkyl a, ⁇ bissulfinate represented by the general formula (11) and inorganic iodide or Inorganic bromide power Contains at least one selected inorganic salt.
  • the perfluoroalkyl, ⁇ bissulfinate represented by the general formula (11) is represented by the general formula (12)
  • Perfluoroalkyl ⁇ , ⁇ -bissulfol-chloride is formed, while inorganic iodide or inorganic bromide forms iodine or bromine.
  • the reaction of the perfluoroalkyl a, ⁇ bissulfol chloride represented by the above general formula (12) with iodine or bromine causes ⁇ , ⁇ represented by the above general formula (8).
  • Dihaloperfluoroalkanes and ⁇ -haloperfluoroalkyl sulfides represented by the general formula (10) can be obtained.
  • the formation ratio of the ⁇ , ⁇ dihalo perfluoroalkane represented by the general formula (8) and the ⁇ -haloperfluoroalkyl sulfonyl chloride represented by the general formula (10) is determined by the above-mentioned general formula It is determined by the ratio of perfluoroalkylalkyl ⁇ , ⁇ -bissulfoyl chloride represented by (12) and coexisting iodine or bromine.
  • a solvent capable of simultaneously dissolving iodine or bromine and both the perfluoroalkyl ⁇ , ⁇ bissulfoulyl chloride compound represented by the general formula (12) is added, whereby the compound represented by the general formula (8) is added.
  • Examples of the solvent for simultaneously dissolving iodine or bromine and both the perfluoroalkyl ⁇ , ⁇ -bissulfoyl chloride compound represented by the above general formula (12) include, for example, ethyl acetate, butyl acetate and the like.
  • Examples include polar solvents such as ester solvents, ether solvents such as monoglyme and diglyme, -tolyl solvents such as acetonitrile and propio-tolyl, and ketone solvents such as acetone and methyl ethyl ketone. It is more preferable to use a poorly water-soluble organic solvent such as ethyl acetate or butyl acetate as the solvent, because the product can be extracted simultaneously with the reaction.
  • polar solvents such as ester solvents, ether solvents such as monoglyme and diglyme, -tolyl solvents such as acetonitrile and propio-tolyl, and ketone solvents such as acetone and methyl ethyl ketone.
  • polar solvents such as ester solvents, ether solvents such as monoglyme and diglyme, -tolyl solvents such as acetonitrile and propio-tolyl, and ketone solvent
  • the treatment solution or the purified residue is reacted with a chlorinating agent to form a perfluoroalkyl a, ⁇ bissulfol chloride represented by the general formula (12), and the acid chloride is converted to Isolation by filtration, solvent extraction, or the like, followed by reaction with iodine or bromine in a solvent, gives ⁇ , ⁇ dihaloperfluoroalkane represented by the above general formula (8) and Z or ⁇ -haloperfluoroalkylsulfoyl chloride represented by the above general formula (10) can also be obtained.
  • the ratio is determined by the amount of iodine or bromine added.
  • the solvent in this step include ester solvents such as ethyl acetate and butyl acetate, ether solvents such as monodalaim and diglyme, -tolyl solvents such as acetonitrile and propio-tolyl, acetone, and methyl ethyl ketone. And the like.
  • chlorinating agent used in the first step a publicly known chlorinating agent without particular limitation can be used.
  • a publicly known chlorinating agent without particular limitation can be used.
  • chlorine, sulfuryl chloride and the like can be used as a chlorinating agent, and chlorine is particularly preferred.
  • the a, ⁇ -dihaloperfluoroalkane represented by the general formula (8) obtained by the above operation can be reused in the reaction with the dithionite in the step (i). .
  • the ⁇ -haloperfluoroalkylsulfonyl chloride represented by the above general formula (10) obtained by the above operation is reused in the reaction with the fluorine ion-containing conjugate in the above step (iv).
  • it can be used after being converted to ⁇ -no and perfluoroalkylsulfur fluoride represented by the above general formula (1,).
  • the ⁇ -fluorosulfonylperfluoroalkylvinyl ether represented by the above general formula (2) or (2 ′) according to the production method of the present invention can be used for various solid electrolyte materials or ion exchange membranes. It is a useful substance as a monomer component for polymers.
  • the solid electrolyte polymer examples include an electrolyte membrane for a solid polymer electrolyte fuel cell, a catalyst binder, a membrane for a lithium battery, a membrane for salt electrolysis, a membrane for water electrolysis, a membrane for hydrohalic acid electrolysis, and a membrane for oxygen concentrator. It is used as a film for temperature sensors and films for gas sensors.
  • the ⁇ -fluorosulfo-leperfluoroalkylbutyl ether represented by the general formula (2) or (2 ′) and a synthetic intermediate thereof can be produced at a high yield. Can be manufactured.
  • the 19 F-NMR spectrum was measured using a GSX-400 nuclear magnetic resonance device manufactured by JEOL Japan as a measuring device, double-mouthed form as a solvent, and Freon 11 (CFC1) as a reference material.
  • the test was performed under the following apparatus and conditions.
  • the test was performed under the following apparatus and conditions.
  • the vessel was cooled in an ice bath.
  • 287 g of Na 2 S O is calorie divided into 5 times in 15 minutes.
  • reaction mixture was 19 F-NMR, 57 mol I (CF) I % Remaining, 36 mol% of I (CF) SONa and 7 mol% of NaOS (CF) SONa
  • the obtained liquid was purified by distillation (bp 54 ° C, 40 kPa) to obtain FOC (CF) SO F 2.67 kg
  • the flask was placed in an ice bath, 19 g of Na 2 S 2 O was added little by little, and the mixture was stirred at room temperature for 2 hours.
  • Recol dimethyl ether was distilled off under reduced pressure, and the residue was further heated to 120 ° C. and dried under reduced pressure. Dried residue containing CF CF (CO Na) 0 (CF) SO F to 200 ° C
  • Example 1 In a 200 mL three-necked flask equipped with a distillation tower and a dropping funnel, 33.2 g of sulfolane and 6.05 g of KF were placed, and while heating to 50 ° C, the FSO 0 (CF) SOF obtained in Example 1 was heated.
  • reaction mixture Upon heating at 60 ° C. for 19 hours, the reaction mixture separated into two layers and reached a conversion of 91%. After separating the upper layer and washing with concentrated sulfuric acid, distillation and purification yielded 34.lg of liquid.
  • reaction mixture power is also ethylene glyco
  • the reaction was carried out in the same manner as in Example 1. That is, after the reaction of I (CF) I and NaSO is completed, After acetone was distilled off from the mixture, water was added to separate the mixture into two layers. When the lower layer was separated, 546 g of I (CF) I was recovered. Ethyl acetate is added to the upper layer and extracted three times with ethyl acetate.
  • Example 1 In a 1 L four-necked flask equipped with a gas injection tube, NaO S (CF) separated in Example 1 was placed.
  • the solid formed is iodine and CIO S (CF) SOCI.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

フッ素化合物の製造方法
技術分野
[0001] 本発明は燃料電池や食塩電解プロセスに有用なフッ素系固体電解質ポリマーの原 料である、 ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテル及びその合 成中間体の製造方法に関する。
背景技術
[0002] 一般式(2)又は一般式(2,)で表される ω—フルォロスルホ-ルペルフルォロアルキ ルビ-ルエーテルの合成中間体である一般式(3)又は一般式(3 ' )で表される ω—フ ルォロスルホ -ル化合物の製造方法の例としては、例えば FCO (CF ) SO Fの場
2 2 2 合、テトラフルォロエチレンとジメチルカーボネートとナトリウムェチルメル力プチドを 出発原料とした製造方法が開示されている。この方法は、反応工程が長ぐかつ収率 が低いという問題があった (例えば、特許文献 1参照)。
また、一般式(2)又は一般式(2' )で表される ω—フルォロスルホ-ルペルフルォロ アルキルビュルエーテルの製造方法としては、例えば CF =CFO (CF ) SO Fの場
2 2 4 2 合、スキーム 1に示されるようにスルトン化合物を出発原料として、電解フッ素化工程 、へキサフルォロプロピレンォキシド(HFPO)の付カ卩工程、ビュル化工程による方法 が報告されている (例えば、特許文献 2、特許文献 3参照)。
<スキーム 1 >
C 電解フッ素化 HFpo Na2C03
^ FCO(CF2)jS02F ^ CFjCFOiCFiJiSOiF CF2=CFO(CF2)4S02F s y.28% y.65% 0F y.74 し力しながら、電解フッ素化工程は副生成物が多ぐ FCO (CF ) SO Fの収率は
2 3 2
低い。また、 HFPO付カ卩工程及びビニルイ匕工程においても満足のいく収率が得られ ておらず、経済的に有利な製造法にするためには更なる生産効率の向上が必要で ある。
[0003] さらに、一般式(1)又は一般式(1,)で表される ω—ノ、口ペルフルォロアルキルスル ホ-ルフルオリドの製造方法として、スキーム 2に示されるように、 α , ω—ジハロペル フルォロアルカンを亜ジチオン酸ナトリウムと反応させ、塩素化、フッ素化により製造 する方法が報告されている(例えば非特許文献 1参照)。この方法では塩素化反応後 、蒸留操作により目的化合物である ω—ノヽロペルフルォロアルキルスルホユルクロリド を単離している力 蒸留による分離が困難であるうえ、さらに ω—ノヽロペルフルォロア ルキルスルホユルク口リドの熱安定性が悪いため、蒸留時の分解により、蒸留収率が 低くなり、工業的に有利に目的化合物を製造することは困難であった。 くスキーム 2 > I(CF2)mI
KCF2)mI I(CF2)mS02Cl
Figure imgf000004_0001
ClO2S(CF2)mS02CI
: Θ
I(CF2)mS02Cl i(CF2)mS02F
*1
蒸留による I(CF2)mS02CI の単離が困難。
I(CF2)mS02CI が不安定なため蒸留収率が低い
[0004] 特許文献 1:特開昭 56— 90054号
特許文献 2:米国特許第 6624328号
特許文献 3: WO2004Z60849号
非特干文献 1: Weiming Qiu and Donald J. Burton, Journal of Fluorine
Chemistry,60卷 93— 100頁 (1993年)
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、このような現状に鑑み、一般式(2)又は一般式(2' )で表される ω—フル ォロスルホ-ルペルフルォロアルキルビュルエーテル及びその合成中間体を高収率 で製造する方法を提供することを目的とするものである。
課題を解決するための手段
[0006] 本発明者らは、上記問題を解決すベぐ鋭意研究を行った結果、一般式(1)又は 一般式( 1,)で表される ω—ノ、口ペルフルォロアルキルスルホ-ルフルオリドを原料と して、一般式(2)又は一般式(2' )で表される ω—フルォロスルホ-ルペルフルォロア ルキルビニルエーテルを効率的に製造する方法、及び一般式(1)又は一般式(1 ' ) で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリド又はその合成中間体 を効率的に製造する方法を開発し、本発明を完成させた。
すなわち、本発明は以下のとおりである。
1.原料として、下記一般式(1)
Υ
X— CF— Rf— S02F
(Rは炭素原子数 1一 9の 2価のペルフルォロカーボン基、 Xは I又は Brから選ばれる f
ハロゲン原子、 Yはフッ素原子、炭素原子数 1一 3のペルフルォロアルキル基、又は
Rとの連結基 (炭素原子数 1一 3)を表す
f
Y
(― CF—は以下一 C F Y—とも表す) 。
—CFY— R—は炭素原子数 3— 10の 2価のペルフルォロカーボン基である。)
f
で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドから下記一般式(2) CF =CFO (CF CF (CF ) θ) — CFY— R—SO F (2)
2 2 3 n f 2
(nは 0— 2の整数であり、 R及び Yは上記一般式(1)と同じである。 )
f
で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造する 方法であって、以下の工程 (a)—(c)を含む上記方法:
(a)上記一般式 (1)で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドを 酸化剤で処理して下記一般式(3)で表される ω -フルォロスルホニル化合物を製造 する工程、
Υ
I ( 3 )
0=C— Rf— S02F
(R及び Yは上記一般式(1)と同じである。 ) (b)工程 (a)で得られた上記一般式(3)で表される ω—フルォロスルホニル化合物と へキサフルォロプロピレンォキシドを反応させて下記一般式 (4)で表される酸フルォ リド化合物を製造する工程、及び
CF CF(COF)0(CF CF(CF )θ)— CFY— R— SO F (4)
3 2 3 n f 2
(nは上記一般式(2)と同じであり、 R及び Yは上記一般式(1)と同じである。 )
f
(c)工程 (b)で得られた上記一般式 (4)で表される酸フルオリドィ匕合物を上記一般式 (2)で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルに変換 する工程。
2.原料として、下記一般式(1')
X(CF ) SO F (1,)
2 m 2
(Xは I又は Brから選ばれるハロゲン原子、 mは 3— 10の整数である。 ) で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドから下記一般式(2,) CF =CFO(CF CF(CF )θ) (CF ) SO F (2,)
2 2 3 n' 2 m 2
(n'は 0— 2の整数であり、 mは上記一般式(1')と同じである。 )
で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造する 方法であって、以下の工程 (a')—( )を含む上記方法:
(a, )上記一般式( 1,)で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリ ドを酸化剤で処理して下記一般式(3 ' )で表される ω—フルォロスルホニル化合物を 製造する工程、
FCO(CF ) SO F (3,)
2 m-1 2
(mは上記一般式(1')と同じである。 )
(b ' )工程(a ' )で得られた上記一般式(3 ' )で表される ω—フルォロスルホニル化合 物とへキサフルォロプロピレンォキシドを反応させて下記一般式 (4' )で表される酸フ ルオリドィ匕合物を製造する工程、及び
CF CF(C0F)0(CF CF(CF )θ) (CF ) SO F (4,)
3 2 3 n' 2 m 2
(nは上記一般式(2' )と同じであり、 mは上記一般式( )と同じである。 ) (c ' )工程 (b ' )で得られた上記一般式 (4 ' )で表される酸フルオリドィ匕合物を上記一 般式(2,)で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテル に変換する工程。
[0009] 3.前記工程 (a)で使用される酸化剤が SO又は発煙硫酸である、上記 1.に記載の
3
方法。
4.前記工程 (a)で得られた少なくとも上記一般式(3)で表される ω—フルォロスルホ ニル化合物、及び副生成物である下記一般式 (5)
FSO O-CFY-R -SO F (5)
2 f 2
(R及び Yは上記一般式(1)と同じである。 )
f
で表されるスルホ-ルフルオリド化合物を含む反応混合物を、
1)アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、該反応混合 物中の上記一般式(5)で表されるスルホニルフルオリドィ匕合物を、上記一般式(3)で 表される ω—フルォロスルホ-ル化合物に変換し、
2)次いで、 1)の操作で得られた、上記一般式(3)で表される ω—フルォロスルホニル 化合物を、工程 (b)に使用する、
上記 3.に記載の方法。
5.前記工程 (a)で得られた、少なくとも上記一般式(3)で表される ω—フルォロスル ホニル化合物、及び副生成物である上記一般式(5)で表されるスルホニルフルオリド 化合物を含む反応混合物から、
3)上記一般式(3)で表される ω—フルォロスルホ-ルイ匕合物を分離除去し、
4)その結果得られた反応残渣中の上記一般式(5)で表されるスルホ-ルフルオリド 化合物を、アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、上 記一般式(3)で表される ω—フルォロスルホ-ルイ匕合物に変換し、
5)次いで、上記工程 4)で得られた、上記一般式(3)で表される ω—フルォロスルホ- ル化合物を、前記工程 (b)に使用する、
上記 3.に記載の方法。
[0010] 6.前記工程 (a' )で使用される酸化剤が SO又は発煙硫酸である、上記 2.に記載
3
の方法。
7.前記工程 (a' )で得られた、少なくとも上記一般式(3 ' )で表される ω—フルォロス ルホニル化合物、及び副生成物である下記一般式(5' ) FSO 0 (CF ) SO F (5,)
2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表されるスルホ-ルフルオリド化合物を含む反応混合物を、
1 ' )アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、該反応混 合物中の上記一般式(5 ' )で表されるスルホニルフルオリドィ匕合物を、上記一般式(3 ' )で表される ω—フルォロスルホ-ル化合物に変換し、
2 ' )次いで、 1 ' )の操作で得られた上記一般式(3 ' )で表される ω—フルォロスルホ- ルイ匕合物を工程 (b' )に使用する
上記 6.に記載の方法。
8.前記工程 (a' )で得られた、少なくとも上記一般式(3 ' )で表される ω—フルォロス ルホニル化合物、及び副生成物である上記一般式(5 ' )で表されるスルホニルフルォ リド化合物を含む反応混合物から、
3 ' )上記一般式(3 ' )で表される ω—フルォロスルホ-ルイ匕合物を分離除去し、
4' )その結果得られた反応残渣中の上記一般式(5' )で表されるスルホ-ルフルオリ ド化合物を、アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、上 記一般式(3 ' )で表される ω—フルォロスルホニル化合物に変換し、
5 ' )次!、で、上記工程 4 ' )で得られた上記一般式(3 ' )で表される ω—フルォロスルホ ニル化合物を、前記工程 (b' )に使用する、
上記 6.に記載の方法。
9.上記一般式(3' )で表される ω—フルォロスルホ-ル化合物とへキサフルォロプロ ピレンォキシドをフッ素イオン含有ィ匕合物の存在下、下記一般式 (6)
RxO (R20) R1 (6)
P
(R1は炭素数 1一 5のアルキル基であり、 R2は C H又は C Hである。 pは 0— 10
2 4 3 6
の整数である。 )
で表されるエーテル系溶媒とカルボン酸ジ-トリル系溶媒の混合溶媒存在下で反応 させることを含む、上記一般式 (4' )において n' =0である下記一般式 (4")
CF CF (COF) 0 (CF ) SO F (4")
3 2 m 2
(mは上記一般式(1 ' )と同じである。 ) で表される酸フルオリド化合物を製造する方法。
10.上記一般式 (6)で表されるエーテル系溶媒とカルボン酸ジ-トリル系溶媒の混 合溶媒中に占める該カルボン酸ジ-トリル系溶媒の質量割合が 30質量%以上 99質 量%以下である上記 9.記載の方法。
11.上記一般式 (4")で表される酸フルオリド化合物をカルボン酸塩に変換し、次い で該カルボン酸塩を熱分解して、上記一般式(2' )において n' =0である下記一般式 (2")で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製 造する方法であって、目的生成物である下記一般式(2")で表される ω—フルォロス ルホ-ルペルフルォロアルキルビュルエーテルの生成モル数を r、副生成物として再 生成した上記一般式 (4")で表される酸フルオリドィ匕合物の生成モル数を sとした場合 、 [s]Z[r+s]で表される副生成物の生成割合が 0. 1以下で反応を実施することを特徴 とする、上記方法。
CF =CFO (CF ) SO F (2")
2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
12.上記一般式 (4")で表される酸フルオリド化合物力 誘導されるカルボン酸塩が 下記一般式 (7)で表されるカリウム塩であり、かつ、該カルボン酸塩の熱分解を無溶 媒で行う、上記 11.に記載の方法。
CF CF (CO K) 0 (CF ) SO F (7)
3 2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
13.カルボン酸塩の熱分解を、該カルボン酸塩を固相状態に保ちながら行う、上記 1 1.又は 12.に記載の方法。
14.上記一般式(1, )で表される ω—ノヽロペルフルォロアルキルスルホ-ルフルオリド 力 下記工程 (i)一(iv)により得られる、上記 2.に記載の方法:
(i)下記一般式 (8)
X (CF ) X (8)
2 m
(X及び mは上記一般式(1 ' )と同じである。 )
で表される a , ω—ジハロペルフルォロアルカンをアルカリ金属塩型、アルカリ土類金 属塩型、第 4級アンモ-ゥム塩型、又は第 4級ホスホ-ゥム塩型の何れ力から選ばれ る亜ジチオン酸塩と混合、攪拌して、下記一般式 (9)
X (CF ) SO M (9)
2 m 2
(式中、 Mは、 Ma、 Mb 、第 4級アンモ -ゥムラジカル又は第 4級ホスホ-ゥムラジ
1/2
カルであり、 Maはアルカリ金属、 Mbはアルカリ土類金属である。 X及び mは上記一 般式(1 ' )と同じである。)
で表される ωーハロペルフルォロアルキルスルフィン酸塩を製造する工程、
(ii)工程 (i)で得られた反応混合物から上記一般式(9)で表される ω -ハロペルフル ォロアルキルスルフィン酸塩を分離する工程、
(iii)工程(ii)で得られた上記一般式(9)で表される ω ノヽロペルフルォロアルキルス ルフィン酸塩を塩素化剤で処理して下記一般式(10)
X (CF ) SO CI ( 10)
2 m 2
(X及び mは上記一般式(1 ' )と同じである。 )
で表される ω—ハロペルフルォロアルキルスルホ-ルクロリドを製造する工程、及び
(iv)工程(iii)で得られた上記一般式(10)で表される ω—ハロペルフルォロアルキル スルホニルクロリドをフッ素イオン含有ィ匕合物で処理して、上記一般式(1 ' )で表され る ω—ハロペルフルォロアルキルスルホ-ルフルオリドを製造する工程。
15.前記工程 (ii)が、工程 (i)の反応で得られた少なくとも上記一般式 (9)で表され る ω—ハロペルフルォロアルキルスルフィン酸塩及び副生成物である下記一般式(1
1)
MO S (CF ) SO M ( 1 1)
2 2 m 2
(Mは上記一般式(9)と同じであり、 mは上記一般式(1 ' )と同じである。 ) で表されるペルフルォロアルキル α , ω ビススルフィン酸塩を含む反応混合物か ら上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を抽出分 離する操作を含む、上記 14.に記載の方法。
16.前記工程 (ii)が、下記工程 (ii 1)及び工程 (ii 2)を含む工程である上記 14. に記載の方法。
(ii 1)前記工程 (i)で得られた少なくとも未反応の上記一般式 (8)で表される ex , ω -ジハ口ペルフルォロアルカン、目的化合物である上記一般式(9)で表される ω -ハ 口ペルフルォロアルキルスルフィン酸塩、及び副生成物である上記一般式(11)で表 されるペルフルォロアルキル α , ω ビススルフィン酸塩を含む反応混合物から、上 記一般式(8)で表される a , ω ジハロペルフルォロアルカンを除去する工程、 (ii-2)上記工程 (ii-1)で得られた少なくとも上記一般式(9)で表される ω—ハロペル フルォロアルキルスルフィン酸塩及び上記一般式(11)で表されるペルフルォロアル キル a , ω ビススルフィン酸塩を含む混合物から、上記一般式(9)で表される ω - ノ、口ペルフルォロアルキルスルフィン酸塩を抽出分離する工程。
17.上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を分離 除去した後の反応残渣を塩素化剤で処理する操作により上記一般式 (8)で表される a , ω ジハロペルフルォロアルカン及び Z又は上記一般式(10)で表される ω—ハ 口ペルフルォロアルキルスルホユルク口リドを製造し、これらを工程(i)及び Z又はェ 程 (iv)に再使用する、上記 14.一 16.のいずれか一項に記載の方法。
18.上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を分離 除去した後の、少なくとも上記一般式(11)で表されるペルフルォロアルキル α , ω ビススルフィン酸塩及び無機沃化物又は無機臭化物カゝら選ばれる少なくとも一方の 無機塩を含有する反応残渣を溶解した水溶液を塩素化剤で処理し、沃素又は臭素 の少なくとも一方と下記一般式( 12)
CIO S (CF ) SO CI (12)
2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表されるペルフルォロアルキル α , ω—ビススルホ-ルクロリドを生成させ、次い で、当該反応混合物を水難溶性有機溶媒で抽出処理することにより、上記一般式 (8 )で表される , ω ジハロペルフルォロアルカン及び Z又は上記一般式(10)で表 される ω—ハロペルフルォロアルキルスルホ-ルクロリドを製造'分離し、これらを工程 (i)及び Ζ又は工程 (iv)に再使用する、上記 14.一 16.のいずれか一項に記載の 方法。
19.上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を分離 除去した後の反応残渣を、塩素化剤で処理することにより上記一般式(12)で表され るペルフルォロアルキル α , ω—ビススルホ-ルクロリドを製造し、次いで当該ペル フルォロアルキル α , ω—ビススルホユルク口リドを沃素又は臭素と反応させて、上 記一般式(8)で表される a , ω ジハロペルフルォロアルカン及び Ζ又は上記一般 式(10)で表される ω ノヽロペルフルォロアルキルスルホユルク口リドを製造、分離し、 これらを工程 (i)及び Ζ又は工程 (iv)に再使用する、上記 14. 一 16.のいずれか一 項に記載の方法。
20.上記一般式 ( 12)で表されるペルフルォロアルキル a , ω ビススルホ-ルクロ リドを沃素又は臭素と反応させることを含む上記一般式 (8)で表される oc , ω ジハロ ペルフルォロアルカン及び Ζ又は上記一般式(10)で表される ω—ハロペルフルォロ アルキルスルホニルクロリドを製造する方法。
[0015] 21.上記一般式(1 ' )一(5' )、(7)—(12)、(2")、及び (4")で表される化合物にお いて、 mは 4一 8の整数である上記 2.及び 6. — 20.のいずれ力 1項に記載の方法。
22.上記一般式(1 ' )一(5' )、 (7)—(12)、(2")、及び (4")で表される化合物にお いて、 mは 4一 6の整数である上記 2.及び 6. — 20.のいずれ力 1項に記載の方法。
23.上記一般式(2)、(2' )、(4)、及び (4 ' )で表される化合物において、 n又は n 力 SOである上記 1. 一 8. 、 14. 一 19.及び 21. — 22.のいずれ力 1項に記載の方法
24.上記一般式(1)、(1 ' )、及び (8)—(10)で表される化合物において、 Xが沃素 原子である上記 1. 一 8.及び 14. 一 22.のいずれ力 1項に記載の方法。
25.上記 14.に記載の工程 (i)一(iv)を含む、上記一般式(1 ' )で表される ω—ハロ ペルフルォロアルキルスルホ-ルフルオリドを製造する方法。
26.上記 15. — 19.のいずれ力 1項に記載の工程を含む、上記一般式(1 ' )で表さ れる ω—ノ、口ペルフルォロアルキルスルホ-ルフルオリドを製造する方法。
発明の効果
[0016] 本発明によれば、上記一般式(2)又は一般式(2 ' )で表される ω フルォロスルホ -ルペルフルォロアルキルビュルエーテル及びその合成中間体を高収率で製造す る方法が提供される。
発明を実施するための最良の形態
[0017] 以下に本発明を詳細に説明する。 工程(a)—(c)〖こより、上記一般式(1)で表される ω ノヽロペルフルォロアルキルス ルホ-ルフルオリドを原料として、上記一般式(2)で表される ω フルォロスルホ-ル ペルフルォロアルキルビュルエーテルを製造する方法、及び工程(a,)一(c,)により 、上記一般式( 1,)で表される ω ノヽロペルフルォロアルキルスルホ-ルフルオリドを 原料として、上記一般式(2,)で表される ω フルォロスルホ-ルペルフルォロアルキ ルビニルエーテルを製造する方法について説明をする。
まず、工程 (a)及び工程 (a' )について説明をする。
本発明に使用される下記一般式(1)
Figure imgf000013_0001
で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドにおいて、 Rは炭素 f 原子数 1一 9の 2価のペルフルォロカーボン基、 Xは I又は Brから選ばれるハロゲン原 子、 Yはフッ素原子、炭素原子数 1一 3のペルフルォロアルキル基、又は Rとの連結 f 基 (炭素原子数 1一 3)を表す。以下、構造 Y
— CF— を CFY—と表すこともある。—CFY— R—は炭素原子数 3— 10の 2価のペルフルォロ f
カーボン基である。
Xとしては I又は Brが好まし 、が、反応性の面では Iがより好まし!/、。
CFY— R—は炭素原子数 3— 10の 2価のペルフルォロカーボン基である力 直鎖 f
構造でも分岐構造でもよいし、環状構造を含んでもよい。
-CFY-R—の例としては、
f
-(CF ) 一 (mは 3— 10の範囲の整数)
2 m -CFCF2CF2CF2 — CF2CF2CFCF2
CF3 CF3
Figure imgf000014_0001
等が挙げられ、特に- (CF ) —が好ましい。
2 m
上記一般式(1)で表される ω—ノ、口ペルフルォロアルキルスルホ-ルフルオリドに おいて、—CFY— R—が—(CF ) 一である構造は、下記一般式(1 ' )
f 2 m
X (CF ) SO F (1,)
2 m 2
で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドに相当する。上記一 般式( 1,)で表される ω—ノヽロペルフルォロアルキルスルホ-ルフルオリドにお 、て、 mは 3— 10の範囲の整数が好ま 、。合成 ·精製の容易性及び上記一般式( 1 ' )で 表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドから誘導される上記一 般式(2,)又は一般式(2")で表される ω—フルォロスルホ-ルペルフルォロアルキル ビニルエーテルの操作性'機能性から、 mはより好ましくは 4一 8であり、さらに好ましく は 4一 6であり、特に好ましくは 4である。
上記一般式(1)又は上記一般式(1 ' )で表される ω—ハロペルフルォロアルキルス ルホニルフルオリドは酸化剤で処理することによって、下記一般式(3)
Υ
I ― ( 3 )
0=C— Rf— S02F
(R及び Yは上記一般式(1)と同じである。 )
f
又は下記一般式(3 ' )
FCO (CF ) SO F (3,)
2 m-1 2
(mは上記一般式(1 ' )と同じである。 )
で表される ω—フルォロスルホ-ルイ匕合物を得ることができる。上記一般式(3)で表さ れる ω—フルォロスルホ-ル化合物において、 Rと Υは多様な組み合わせが可能で あり、例えば
Figure imgf000015_0001
が挙げられる。
[0020] 上記一般式(3' )で表される ω—フルォロスルホニルイ匕合物は、実用性が高ぐ特に 好ましい。上記一般式(3' )で表される ω—フルォロスルホ-ル化合物において、 mは 上記一般式(1 ' )と同様の理由により、より好ましくは 4一 8であり、さらに好ましくは 4 一 6であり、特に好ましくは 4である。
酸化剤としては、 X— CYF—基を酸ィ匕して 0 = CY—基に変換できるものであれば特 にそれ以上の制限はなぐ例として SO、発煙硫酸、 C1SO H、 FSO H、 NO、 O、
3 3 3 2 2 電解酸化等が挙げられる。中でも so 3又は発煙硫酸が好ましい。当該反応を促進す るために各種の触媒や添加剤を加えてもよぐ例えば触媒として HgO、 P O等の酸
2 5 化物、 PC1、 SbCl等の塩化物を用いても構わない。
5 5
酸化剤として SO又は発煙硫酸を用いる場合は、反応温度は 20°Cから 150°Cの範
3
囲で行うことが好ましぐ 30°Cから 130°Cの範囲がより好ましぐ 40°Cから 120°Cの範 囲が特に好ましい。 SOを使用する場合は、上記一般式(1)又は一般式(1 ' )で表さ
3
れる ω—ノヽロペルフルォロアルキルスルホ-ルフルオリド 1モルに対して 0. 1モルから 100モルの範囲で用いることが好ましぐ 1モルから 20モルの範囲で用いることがより 好ましい。また、発煙硫酸を使用する場合、発煙硫酸中の SOの濃度としては、各種
3
の濃度が採用可能である力 反応速度の面では 10質量%以上が好ましぐより好ま しくは 30質量%以上である。発煙硫酸は、上記一般式(1)又は一般式(1 ' )で表され る ω—ハロペルフルォロアルキルスルホ-ルフルオリド 1モルに対して、発煙硫酸の実 効 SO量として 0. 1モルから 100モルの範囲で用いることが好ましぐ 1モル力ら 20
3
モルの範囲で用いることがより好まし!/、。
[0021] 反応時間は特に限定的ではなぐ反応がある程度進行すればよぐ例えば 0. 1時 間から 100時間程度とすればよい。反応方法は特に限定的ではないが、常圧下、上 記一般式(1)又は一般式(1 ' )で表される ω—ハロペルフルォロアルキルスルホ-ル フルオリドと SO又は発煙硫酸の混合物を加熱還流させてもよいし、加熱した上記
3 一 般式(1)又は一般式( 1,)で表される ω—ハロペルフルォロアルキルスルホ-ルフル オリドに SO又は発煙硫酸を滴下と同時に反応生成物を留出させる形態をとつても
3
構わない。また、加圧容器に上記一般式(1)又は一般式(1 ' )で表される ω—ハロぺ ルフルォロアルキルスルホ-ルフルオリドと SO又は発煙硫酸の混合物を加えてカロ
3
熱させてもよい。
酸化剤として、 SO又は発煙硫酸を使用した場合、上記一般式(1)又は上記一般
3
式(1 ' )で表される ω—ノヽロペルフルォロアルキルスルホ-ルフルオリドから、 目的化 合物である上記一般式(3)又は上記一般式(3 ' )で表される ω—フルォロスルホニル 化合物と共に、副生成物である下記一般式 (5)
FSO O-CFY-R -SO F (5)
2 f 2
(R及び Yは上記一般式(1)と同じである。 )
f
又は下記一般式(5 ' )
FSO 0 (CF ) SO F (5,)
2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表されるスルホ-ルフルオリドィ匕合物が反応混合物中に含まれる。
上記一般式(5)又は一般式(5' )で表されるスルホニルフルオリド化合物は、アル力 リ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させると、 目的化合物である 上記一般式(3)又は一般式(3 ' )で表される ω -フルォロスルホニル化合物に変換す ることができる。このため、当該反応混合物に溶解している SOを濃硫酸で洗浄、除
3
去した後、そのまま、アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触さ せ、蒸留操作により、 目的化合物である上記一般式 (3)又は一般式 (3' )で表される ω—フルォロスルホニルイ匕合物を得ることができる。なお、当該反応混合物に溶解し ている SOを濃硫酸で洗浄、除去した後、蒸留操作により目的化合物である上記
3 一 般式(3)又は一般式(3 ' )で表される ω -フルォロスルホニルイヒ合物を分離後、上記 一般式 (5)又は一般式 (5 ' )で表されるスルホニルフルオリドィ匕合物を含有する蒸留 残渣をアルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させ、蒸留操作 により目的化合物である上記一般式(3)又は一般式(3 ' )で表される ω フルォロス ルホニル化合物を得ることもできる。
上記反応で使用するアルカリ金属塩としては LiF、 Lil、 NaF、 Nal、 KF、 KI、 CsF 等、アルカリ土類金属塩としては MgF、 CaF等、ルイス塩基としてはトリメチルァミン
2 2
、トリエチノレアミン、 1, 8—ジァザビシクロ [5, 4, 0]ゥンデクー 7 ェン、 1, 5—ジァザビ シクロ [4, 3, 0]ノン 5—ェン、 N, N—ジイソプロピルェチルァミン等が挙げられる力 中でも KF、 N, N—ジイソプロピルェチルァミンが好ましい。
上記アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基の使用量は、上記一般 式(5)又は一般式(5' )で表されるスルホ-ルフルオリド化合物 1モルに対して 0. 00 1モルから 5モルの範囲で用いることが好まし!/、。
[0023] 反応時間は特に限定はなぐ例えば 0. 1時間から 100時間程度とすればよい。
反応温度は 10°Cから 220°Cの範囲が好ましぐ 20°Cから 200°Cの範囲がより好ま しぐ 30°Cから 180°Cの範囲が特に好ましい。
反応方法は特に限定されないが、無溶媒又は溶媒存在下、常圧下で、加熱したァ ルカリ金属塩、アルカリ土類金属塩、又はルイス塩基に、上記一般式 (5)又は一般式 (5' )で表されるスルホ-ルフルオリドィ匕合物を滴下すると同時に反応生成物を留出 させてもょ 、し、上記一般式(5)又は一般式(5 ' )で表されるスルホ-ルフルオリドィ匕 合物と上記アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基の混合物を加熱 還流させても構わない。また、加圧容器に一般式(5)又は一般式(5 ' )で表されるス ルホニルフルオリドィ匕合物と上記アルカリ金属塩、アルカリ土類金属塩、又はルイス 塩基の混合物を加えて加熱してもよ 、。
溶媒を使用する場合、ジグライム、トリグライム、テトラグライム等のエーテル系溶媒、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルー 2—ピロリドン等 のアミド系溶媒、スルホラン等の極性溶媒が挙げられ、 1種類でもよいし、又は複数の 有機溶媒を組み合わせても構わな ヽ。
反応終了後、蒸留操作により目的化合物である上記一般式 (3)又は一般式 (3 ' ) で表される ω フルォロスルホ-ル化合物を得ることができる。
[0024] 次に、工程 (b)及び工程 (b' )について説明する。 上記の方法で得られた上記一般式(3)又は一般式(3 ' )で示される ω—フルォロス ルホ-ル化合物とへキサフルォロプロピレンォキシド(HFPO)の反応を、公知の方 法で行うことにより、下記一般式 (4)
CF CF (COF) 0 (CF CF (CF ) θ)— CFY— R— SO F (4)
3 2 3 n f 2
(nは 0— 2の整数であり、 R及び Yは上記一般式(1)と同じである。 )
f
又は下記一般式 (4 ' )
CF CF (C0F) 0 (CF CF (CF ) θ) (CF ) SO F (4,)
3 2 3 n' 2 m 2
(nは 0— 2の整数であり、 mは上記一般式(1 ' )と同じである。 )
で表される酸フルオリドィ匕合物を得ることができる。
本発明者らは、上記一般式 (4)又は一般式 (4 ' )で表される酸フルオリド化合物の 中でも、特に実用性の高い、上記一般式 (4' )において n =0である下記一般式 (4" )
CF CF (C0F) 0 (CF ) SO F (4")
3 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表される酸フルオリド化合物を、上記一般式(3 ' )で表される ω—フルォロスルホニ ル化合物から製造する条件について詳細な検討を行い、工業的に有利な製造方法 を見出したので、以下にその方法について説明する。
なお、上記一般式 (4")で表される酸フルオリド化合物において、 mは 3— 10の整 数であるが、上記一般式(1 ' )と同様の理由により、より好ましくは 4一 8であり、さらに 好ましくは 4一 6であり、特に好ましくは 4である。
上記一般式 (4")にお!/、て m=4である酸フルオリド化合物(すなわち、 CF CF (CO
3
F) 0 (CF ) SO F)を製造する方法としては、特許文献 2に、ジグライムを反応溶媒と
2 4 2
して、 KF存在下、上記一般式(3,)において m=4である ω—フルォロスルホニル化 合物と等量の HFPOを反応させる方法(すなわち、 FCO (CF ) SO F1モルに対し
2 3 2
、 1モルの HFPOを使用する方法)が開示されている。この特許文献 2に記載の方法 により、目的物である該酸フルオリドィ匕合物は得られる力 副生成物として HFPOが さらに付加した高沸点化合物が多く生成するという問題がある。特許文献 3では、該 副生成物の生成を抑えるため、ジグライムを反応溶媒として、 KF存在下、該 ω—フル ォロスルホニル化合物に対して HFPOの使用量を減らして反応させる方法 (すなわ ち、 FCO (CF ) SO Flモルに対し、 0. 77モルの HFPOを使用する方法)が開示さ
2 3 2
れている。この特許文献 3に記載の方法では、該副生成物の生成は少なくなるものの 、該 ω—フルォロスルホニルイ匕合物が未反応のまま多く残存するため、生産効率が悪 ぐ工業的に有利な製造方法とは言えない。
[0026] 本発明者らは、様々な反応溶媒につ!、て検討を行った結果、下記一般式 (6)
RxO (R20) R1 (6)
P
(R1は炭素数 1一 5のアルキル基であり、 R2は C H又は C Hである。 pは 0— 10
2 4 3 6
の整数である。 )
で表されるエーテル系溶媒とカルボン酸ジ-トリル系溶媒の混合溶媒の存在下では
、該 ω—フルォロスルホニル化合物(FCO (CF ) SO F)に対して、等量以上の HFP
2 3 2
Oと反応させても、 目的物である該酸フルオリドィ匕合物(CF CF (COF) 0 (CF ) SO
3 2 4
F)が高収率、高選択的に得られ、上記で問題となっていた該副生成物の生成量及
2
び該 ω—フルォロスルホニルイ匕合物の残存量は少なくなることを見出した。
上記一般式 (6)で表されるエーテル系溶媒の例としては、ジエチレングリコールジメ チノレエーテノレ、ジエチレングリコーノレジェチノレエーテノレ、ジエチレングリコーノレジプロ ピルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチ ノレエーテノレ、トリエチレングリコールジェチルエーテル、テトラエチレングリコールジメ チルエーテル、テトラエチレングリコールジェチルエーテル、プロピレングリコールジメ チルエーテル、プロピレングリコールジェチルエーテル、ジプロピレングリコールジメ チノレエ一テル、トルプロピレングリコールジメチノレエーテル、テトラプロピレングリコー ルジメチルエーテル等が挙げられる。また、カルボン酸ジ-トリル系溶媒としては、炭 素数 3— 8個を有する飽和脂肪族ジカルボン酸であり、例えばアジポ-トリル等が挙 げられる。上記エーテル系溶媒とカルボン酸ジ-トリル系溶媒の混合溶媒中に占め るカルボン酸ジ-トリルの質量割合は、 30質量%以上 99質量%以下が好ましぐ 40 質量%以上 97質量%以下がより好ましぐ 50質量%以上 95質量%以下が特に好ま しい。
[0027] 上記反応において HFPOの使用量は、上記該 ω—フルォロスルホ-ル化合物 1モ ノレに対して、 HFPOiま 0. 95モノレカら 2モノレカ S好ましく、 0. 98モノレカら 1. 8モノレカ ^よ り好ましぐ 1モルから 1. 5モルが特に好ましい。
反応圧力については特に制約はなぐ例えば常圧下でも加圧下でもよいが、効率 的に反応させるためには加圧容器中の加圧反応が好ま 、。加圧反応での圧力に は制限はないが、ゲージ圧で 0. OlMPa力ら 0. IMPaの範囲で HFPOを導入して いくことが好ましい。
上記反応には、アルカリ金属フルオリドゃ 4級アンモ-ゥムフルオリド等の各種のフ ッ素イオン含有化合物が触媒として用いられ、その中でも KFや CsFがより好ま 、。 触媒のフッ素イオン含有ィ匕合物の量は限定的ではないが、通常、上記該 ω フルォ ロスルホニル化合物 1モルに対して 0. 001モルから 1モル程度とすればよ!/、。
反応温度は 30°Cから 50°Cの範囲が好ましぐ— 20°Cから 30°Cの範囲がより好ま しい。
反応時間は特に制限はなぐ HFPOが消費される時間によるが、例えば、 0. 5時間 力 72時間である。
反応終了後、内容物は 2層(上層はエーテル系溶媒とカルボン酸ジニトリル系溶媒 の混合溶媒、下層は上記一般式 (4")で表される酸フルオリドィ匕合物を含有する反応 混合物)に分離するため、分液して下層部分を取り出し、蒸留操作により、上記一般 式 (4")で表される酸フルオリドィ匕合物を得ることができる。
次に、工程 (c)及び工程 (c' )について説明する。
上記の方法で得られた、上記一般式 (4)又は一般式 (4 ' )又は一般式 (4")で表さ れる酸フルオリド化合物は、下記一般式(2)
CF =CFO (CF CF (CF ) θ) CFY— R— SO F (2)
2 2 3 n f 2
(nは 0— 2の整数であり、 R及び Yは上記一般式(1)と同じ。 )
f
又は下記一般式(2 ' )
CF =CFO (CF CF (CF ) θ) (CF ) SO F (2,)
2 2 3 n' 2 m 2
(n は 0— 2の整数であり、 mは上記一般式(1 ' )と同じ。 )
又は下記一般式(2")
CF =CFO (CF ) SO F (2") (mは上記一般式(1 ' )と同じ。)
で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルに、それぞ れ変換することができる。上記一般式(2")で表される ω—フルォロスルホ-ルペルフ ルォロアルキルビュルエーテルは実用性が高く特に好ましい。さらに、上記一般式(
2")において、 mは 3— 10の範囲の整数が好ましいが、合成'精製の容易性、及び操 作性'機能性から、より好ましくは 4一 8であり、さらに好ましくは 4一 6であり、特に好ま しくは 4である。
上記一般式 (4)又は一般式 (4 ' )又は一般式 (4")で表される酸フルオリドィ匕合物か ら、上記一般式(2)又は一般式(2' )又は一般式(2")で表される ω—フルォロスルホ -ルペルフルォロアルキルビュルエーテルを得る方法としては、酸フルオリド化合物 から直接合成する方法、ある!ヽは該酸フルオリド化合物から誘導されるカルボン酸の アルカリ金属塩、アルカリ土類金属塩、アルキルエステル又はシリルエステル等の各 種の誘導体を経る方法が知られている力 S、本発明のビュルィ匕工程の方法には特に 制約は無ぐ例えば、これらの公知の方法の中のいずれの方法を採用してもよい。 当該ビニルイ匕工程のより具体的な例を以下の a)— d)で説明する。
a)上記一般式 (4)又は一般式 (4 ' )又は一般式 (4")で表される酸フルオリド化合物 から、直接上記一般式(2)又は一般式(2' )又は一般式(2")で表される ω—フルォロ スルホ-ルペルフルォロアルキルビュルエーテルを得る方法としては、 180°C力ら 35 0°Cに加熱したガラスビーズや、 KF、 NaF、 CsF、 CaF等のアルカリ金属又はアル力 リ土類金属フルオリドを担持したシリカ又はアルミナ等に、上記一般式 (4)又は一般 式 (4' )又は一般式 (4")で表される酸フルオリド化合物を導入し、接触させることによ つて上記一般式(2)又は一般式(2' )又は一般式(2")で表される ω—フルォロスルホ -ルペルフルォロアルキルビュルエーテルを得ることができる。
b)次に、上記一般式 (4)又は一般式 (4' )又は一般式 (4")で表される酸フルオリド 化合物を各種の塩基性化合物と反応させて、ー且カルボン酸のアルカリ金属塩又は アルカリ土類金属塩にした後、該カルボン酸塩の加熱脱炭酸反応により、上記一般 式(2)又は一般式(2' )又は一般式(2")で表される ω—フルォロスルホ-ルペルフル ォロアルキルビュルエーテルを得る方法について説明する。 上記一般式 (4)又は一般式 (4 ' )又は一般式 (4")で表される酸フルオリドィ匕合物か ら該カルボン酸塩への変換反応で使用する塩基性化合物の例としては、アルカリ金 属又はアルカリ土類金属の炭酸塩や水酸ィ匕物が挙げられる。特に炭酸塩は、操作 性が良いので好ましい。当該反応に適したアルカリ金属又はアルカリ土類金属の炭 酸塩としては、例えば炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭 酸ルビジウム、炭酸カルシウム、炭酸バリウム等が挙げられるが、中でも炭酸ナトリウ ム、炭酸カリウム、炭酸カルシウム等が好ましぐ炭酸ナトリウム、炭酸カリウムがより好 ましぐ炭酸カリウムが特に好ましい。
上記一般式 (4)又は一般式 (4 ' )又は一般式 (4")で表される酸フルオリドィ匕合物か ら該カルボン酸のアルカリ金属塩又はアルカリ土類金属塩に変換する場合、溶媒を 使用しても構わないし、無溶媒で変換を実施しても構わない。溶媒を使用する場合、 例えばァセトニトリル、プロピオ-トリル等の-トリル系溶媒やモノグライム、ジグライム 、トリグライム、テトラグライム等のエーテル系溶媒が使用される。反応温度としては 0 °Cから 80°Cの範囲が特に好まし!/、。
上記の中和反応で得られた該カルボン酸のアルカリ金属塩又はアルカリ土類金属 塩から、加熱脱炭酸反応により上記一般式 (2)又は一般式 (2' )又は一般式 (2")で 表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルに変換する場 合、溶媒を使用しても構わないし無溶媒で変換を実施しても構わないが、無溶媒で 実施するほうが良好な反応成績を実現しやす!/、のでより好ま 、。
溶媒存在下で脱炭酸反応を行う場合の条件としては、例えばジグライム、トリグライ ム、テトラグライム等のエーテル系溶媒を使って、 80°Cから 180°Cの範囲で脱炭酸反 応を行うことにより、上記一般式(2)又は一般式(2' )又は一般式(2")で表される ω— フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造することができる。 無溶媒で脱炭酸反応を行う場合は、中和反応の際に使用した溶媒を一旦蒸留等 により留去した後、 100°Cから 250°Cの範囲、好ましくは 150°Cから 230°Cの範囲で 脱炭酸反応を行うことにより、上記一般式 (2)又は一般式 (2' )又は一般式 (2")で表 される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルを得ることができ る。無溶媒条件下での加熱脱炭酸反応においては、脱炭酸反応で生成した反応生 成物は連続的に速やかに反応系外に留去させながら反応を行うことが望ましい。反 応生成物が反応器内で滞留すると、副生成物が生じやすくなり、目的物である上記 一般式(2)又は一般式(2' )又は一般式(2")で表される ω フルォロスルホニルぺ ルフルォロアルキルビュルエーテルの収率が低くなる。
本発明者らは、特に実用性の高い上記一般式(2")で表される ω フルォロスルホ -ルペルフルォロアルキルビュルエーテルを、上記一般式(4")で表される酸フルォ リドィ匕合物から製造する条件について詳細に検討した結果、工業的に有利な製造方 法を見出したので、以下にその方法について説明する。
従来技術としては、特許文献 2に、上記一般式 (4")において m= 4である酸フルォ リドィ匕合物(CF CF (COF) 0 (CF ) SO F)から、ー且ナトリウム塩を製造し、次いで
3 2 4 2
当該ナトリウム塩の加熱脱炭酸反応により、上記一般式(2")において m=4である ω フルォロスルホ-ルペルフルォロアルキルビュルエーテル(CF =CFO (CF ) SO
2 2 4
F)を製造する方法が示されて!/ヽる。
2
本発明者等は、上記一般式 (4")で表される酸フルオリドィ匕合物力 上記一般式 (2 ")で表される ω フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造す る方法について、特許文献 2に記載の方法も含めて幅広く検討した。その結果、特許 文献 2に記載のナトリウム塩を経由する方法は分離困難な副生成物が多く生成する ため工業的に有利な製造方法ではないことが判明し、一方、本発明による特定の反 応方法を採用すると極めて効率的に高品質の製品を高収率で製造できることを見出 した。
先ず最初に、本発明者らは、特許文献 2に記載の方法に従って、上記一般式 (4") において m=4である酸フルオリドィ匕合物(CF CF (COF) 0 (CF ) SO F)を炭酸ナ
3 2 4 2 トリウムと反応させてナトリウム塩に変換した後、無溶媒下で当該カルボン酸塩を加熱 脱炭酸反応させて、目的物である上記一般式(2")において m=4である ω フルォ ロスルホ -ルペルフルォロアルキルビュルエーテル(CF =CFO (CF ) SO F)を製
2 2 4 2 造する方法について詳細に検討した。その結果、加熱脱炭酸反応において、目的物 の他に副生成物として上記一般式 (4")において m=4である酸フルオリド化合物(C F CF (COF) 0 (CF ) SO F)が大量に生成するため、目的物の収率が低下するこ とがわかった。さらに該副生成物は、目的物と沸点が近いため、両者を分離するのが 困難であり、高純度の目的物を得るために繁雑な精製操作が必要となる。したがって
、これらの問題点を抱えている特許文献 2に記載の方法は、工業的に有利な製造方 法とは言えない。
本発明者等が、特許文献 2に記載の方法における加熱脱炭酸反応時のナトリウム 塩の状態を詳細に観察したところ、ナトリウム塩は熱分解温度付近の温度で溶融して いた。この際の副生成物の生成機構は明らかではないが、下記のような溶融状態の ナトリウム塩の分子間反応により、上記一般式 (4")において m=4である酸フルオリド 化合物 (CF CF (COF) 0 (CF ) SO F)が容易に生成する反応機構が推定された
3 2 4 2
-CO Na H—— SO F → C〇F + -SO Na
2 2 3
そこで、本発明者らは、上記のような副反応を極力抑制する反応方法を鋭意検討し た結果、カリウム塩のように加熱脱炭酸反応時にも溶融しない塩が存在し、そのような 塩の加熱脱炭酸反応では副生成物である上記一般式 (4")で表される酸フルオリド 化合物の生成が極めて少なくなり、高純度の目的物が高収率で得られることを見出 した。
その結果、「上記一般式 (4")で表される酸フルオリドィ匕合物をカルボン酸塩に変換 し、次いで当該カルボン酸塩を熱分解して、上記一般式(2")で表される ω フルォ ロスルホ -ルペルフルォロアルキルビュルエーテルを製造するにあたって、目的生 成物である上記一般式(2")で表される ω フルォロスルホ-ルペルフルォロアルキ ルビ-ルエーテルの生成モル数を r、副生成物として再生成する上記一般式 (4")で 表される酸フルオリドィ匕合物の生成モル数を sとした場合、 [s]Z[r+s]で表される副生 成物の生成割合を 0. 1以下で反応を実施することを特徴とする、上記一般式 (2")で 表される ω フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造する方 法」が可能になった。ここで、 [s]Z[r+s]の値は、好ましくは 0. 1以下であり、より好まし くは 0. 08以下であり、さらに好ましくは 0. 06以下であり、特に好ましくは 0. 04以下 である。また、 [s]Z[r+s]の下限値は特に制約はないが、 0. 001、又は 0. 0001、又 は測定機器の検出限界以下の場合もあり得る。 [0033] 上記のような [s]Z[r+s]で表される副生成物の生成割合を 0. 1以下で反応を実施す る具体的な方法としては、「上記一般式 (4")で表される酸フルオリド化合物から誘導 されるカルボン酸塩が下記一般式(7)
CF CF (CO K) 0 (CF ) SO F (7)
3 2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表されるカリウム塩であり、かつ、当該カルボン酸塩の熱分解を無溶媒で行うことで あり、さらに別の方法としては、加熱脱炭酸の際に、カルボン酸塩の熱分解を、当該 カルボン酸塩を固相状態に保ちながら行うことである。
以下に、上記一般式 (4")において m=4である酸フルオリドィ匕合物(CF CF (COF
3
) 0 (CF ) SO F)をカルボン酸塩 (ナトリウム塩又はカリウム塩)に変換した後、無溶
2 4 2
媒で当該カルボン酸塩を熱分解させた場合の、ナトリウム塩とカリウム塩の反応成績 を比較して、カリウム塩の効果を具体的に説明する。該カルボン酸塩がナトリウム塩の 場合、加熱温度を 180°C以上にすると、上記のようにナトリウム塩は熱分解時に溶融 状態であり、副生成物として上記一般式 (4")で表される酸フルオリド化合物が多量 に生成し、 目的物である上記一般式(2")で表される ω—フルォロスルホ-ルペルフ ルォロアルキルビュルエーテルは低収率で得られ、上記の [s]Z[r+s]は 0. 19であつ た。一方、当該カルボン酸塩がカリウム塩の場合、上記のように、カリウム塩は熱分解 時に固相状態であり、上記の副生成物である上記一般式 (4")で表される酸フルオリ ド化合物の生成はわずかであり、 目的物である上記一般式(2")で表される ω—フル ォロスルホ-ルペルフルォロアルキルビュルエーテルは高収率で得られ、 [s]Z[r+s] は 0. 01であった。
[0034] c)上記一般式 (4)又は一般式 (4 ' )又は一般式 (4")で表される酸フルオリド化合物 とアルカリ金属又はアルカリ土類金属の炭酸塩を高温で接触させて、中和反応と同 時に脱炭酸反応を行う方法としては、例えば 200°Cから 350°Cの範囲に加熱した炭 酸塩の中に、上記酸フルオリド化合物を導入することで、上記一般式(2)又は一般式 (2' )又は一般式 (2")で表される ω—フルォロスルホ-ルペルフルォロアルキルビ- ルエーテルを得ることができる。使用されるアルカリ金属又はアルカリ土類金属の炭 酸塩の例としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸 ルビジウム、炭酸カルシウム、炭酸バリウム等が挙げられる。中でも炭酸ナトリウム、炭 酸カリウム、炭酸カルシウム等がより好ましぐ炭酸カリウムが特に好ましい。
[0035] d)上記一般式 (4)又は一般式 (4' )又は一般式 (4")で表される酸フルオリド化合物 力 カルボン酸のシリルエステルを経由する方法を以下に説明する。例えば、先ず最 初に該酸フルオリド化合物と、 Me SiOK 等のアルカリ金属
3 、 Me SiONa
3 、 Et SiOK
3
シラノレ一トイ匕合物を触媒として、シロキサン化合物と反応させることによって、カルボ ン酸のシリルエステルを製造する。シロキサンィ匕合物の例としては、例えばへキサメ チノレジシロキサン、へキサェチノレジシロキサン、へキサフエニノレジシロキサン等のジ シロキサンィ匕合物、環状シロキサン化合物、ポリメチルシロキサン等のシロキサンポリ マーが挙げられる。製造したカルボン酸のシリルエステルを、 KFや NaF等のアルカリ 金属フルオリドを触媒として、液相又は気相で脱シリルフルオリド反応に付し、上記一 般式(2)又は一般式(2' )又は一般式(2")で表される ω—フルォロスルホニルペルフ ルォロアルキルビュルエーテルを得ることができる。脱シリルフルオリド反応を行う温 度としては、例えば、液相で反応を行う場合、 25°Cから 175°Cの範囲、気相で反応を 行う場合は 140°Cから 250°Cの範囲である。
上記の各種方法で得られた上記一般式(2)又は一般式(2 ' )又は一般式(2")で表 される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルは蒸留等の方 法で精製することができる。
[0036] 次に、本発明に使用される上記一般式(1 ' )で表される ω—ハロペルフルォロアル キルスルホ-ルフルオリドにつ 、て説明する。
上記一般式(2,)で表される ω—フルォロスルホ-ルペルフルォロアルキルビュル エーテルの合成原料である上記一般式(1, )で表される ω—ハロペルフルォロアルキ ルスルホニルフルオリドは、どのような方法で製造されたものでも本発明の方法に使 用することができる。上記一般式(1,)で表される ω—ハロペルフルォロアルキルスル ホニルフルオリドの製造方法としては、上記スキーム 2に示される製造法が報告され ているが、この方法は前記のように各種の合成上の問題点を抱えており、工業的に 有利な製造方法ではない。それに対して、以下に説明する本願の工程 (i)一 (iv)に よると、効率的に高純度の ω—ハロペルフルォロアルキルスルホ-ルフルオリドを製 造することができるので、実用的に特に好ましい。
次に、上記一般式(1,)で表される ω—ハロペルフルォロアルキルスルホ-ルフルォ リドを製造する工程 (i)一 (iv)につ 、て説明する。
[0037] 最初に工程 (i)につ 、て説明する。
下記一般式 (9)
X(CF ) SO M (9)
2 m 2
(式中、 Mは Ma、 Mb 、第 4級アンモ -ゥムラジカル又は第 4級ホスホ-ゥムラジカ
1/2
ルであり、 Maはアルカリ金属、 Mbはアルカリ土類金属である。 X及び mは上記一般 式(1 ' )と同じである。)
で表される ω—ハロペルフルォロアルキルスルフィン塩は、下記一般式(8)
X(CF ) X (8)
2 m
(X、 mは上記一般式(1 ' )と同じである。 )
で表される a , ω—ジハロペルフルォロアルカンをアルカリ金属塩型、アルカリ土類金 属塩型、第 4級アンモ-ゥム塩型、又は第 4級ホスホ-ゥム塩型の何れ力から選ばれ る亜ジチオン酸塩と混合、攪拌させること〖こより得られる。
本発明の製造方法において使用される亜ジチオン酸塩としては、 Li S O
2 2 4、 Na S
2 2
O、 K S O、 Cs S O等のアルカリ金属塩型、 CaS O等のアルカリ土類金属塩型
4 2 2 4 2 2 4 2 4
、 ( (CH ) N) S Oや((n - Bu) N) S O等の第 4級アンモニゥム塩型、((CH ) P
3 4 2 2 4 4 2 2 4 3 4
) S Oや((n— Bu) P) S O等の第 4級ホスホ-ゥム塩型が挙げられる力 中でも N
2 2 4 4 2 2 4
a S O、 K S Oが好ましい。なお、上記の各種の亜ジチオン酸塩は単独で用いて
2 2 4 2 2 4
も混合で用いても構わない。
[0038] 上記一般式(8)で表される a , ω—ジハロペルフルォロアルカンとアルカリ金属塩型 、アルカリ土類金属塩型、第 4級アンモ-ゥム塩型、又は第 4級ホスホ-ゥム塩型の何 れカから選ばれる亜ジチオン酸塩の反応では、上記一般式(9)で表される ω—ハロ ペルフルォロアルキルスルフィン酸塩の他に、副生成物として α位、 ω位の両方がス ルフィン酸塩化された下記一般式(11)
MO S(CF ) SO M (11)
2 2 m 2
(Mは上記一般式(9)と同じであり、 mは上記一般式(1 ' )と同じである。 ) で表されるペルフルォロアルキル α , ω—ビススルフィン酸塩が生成する。
亜ジチオン酸塩の使用量は、上記一般式(8)で表される a , ω ジハロペルフルォ ロアルカンに対して 0. 1当量以上 3当量以下が好ましぐ 0. 1当量以上 2. 0当量以 下がさらに好ましぐ 0. 2当量以上 1. 5当量以下が特に好ましい。 0. 1当量以下で は基質の反応がほとんど進まず、 3. 0当量以上では、上記一般式(11)で表される ペルフルォロアルキル α , ω ビススルフィン酸塩の生成量が多くなるため好ましく ない。
[0039] 上記反応に使用する溶媒としては、例えばアセトン、メチルェチルケトン等のケトン 系溶媒、ァセトニトリル、プロピオ-トリル等の-トリル系溶媒、テトラヒドロフラン、ジォ キサン、ジグライム等の鎖状又は環状のエーテル系溶媒、 Ν, Ν—ジメチルホルムアミ ド、 Ν, Ν—ジメチルァセトアミド等のアミド系溶媒、ジメチルスルホキシド等の各種の極 性溶媒が挙げられる。好ましくはアセトン、メチルェチルケトン等のケトン系溶媒、ァセ トニトリル、プロピオ-トリル等の-トリル系溶媒であり、更に好ましくはアセトン、ァセト 二トリルである。これらの有機溶媒は水との混合溶媒で用いられるのが好ましぐ有機 溶媒は 1種類でもよいし、又は複数の有機溶媒の組み合わせでも構わない。
水を使用する場合には、水に対する上記有機溶媒の使用量としては、水の体積量 に対して 0. 1倍以上 100倍以下が好ましぐ 1倍以上 50倍以下がさらに好ましぐ 2倍 以上 20倍以下が特に好ましい。水の使用量が 100倍以上であると基質の反応がほ とんど進まなくなるため好ましくない。また、基質に対する水の量としては、基質に対 して 0. 1当量以上 200当量以下が好ましぐ 1当量以上 150当量以下がさらに好まし く、 5当量以上 100当量以下が特に好ましい。
[0040] 上記一般式(8)で表される α , ω ジハロペルフルォロアルカンと、アルカリ金属塩 型、アルカリ土類金属塩型、第 4級アンモ-ゥム塩型、又は第 4級ホスホ-ゥム塩型の 何れカゝから選ばれる亜ジチオン酸塩の反応では中和剤や緩衝剤を入れても構わな い。中和剤としては炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等の炭 酸水素塩、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等の炭酸塩、リン酸水素ナトリ ゥム、リン酸水素カリウム等のリン酸水素塩、リン酸ナトリウム、リン酸カリウム等のリン 酸塩、水酸化リチウム、水酸化ナトリウム、水酸ィ匕カリウム等の水酸ィ匕物等を用いるこ とがでさる。
反応温度は 30°Cから 90°Cの範囲が好ましぐ— 10°Cから 60°Cの範囲がさらに好 ましい。反応時間は、反応条件に応じて、亜ジチオン酸塩が十分に消費される時間 であればよぐ特に制約はないが、実用的には 0. 1時間から 48時間程度の範囲が好 ましい。
次に、工程 (ii)について説明する。
上記の工程 (i)で、上記一般式(8)で表される a , ω ジハロペルフルォロアルカン と亜ジチオン酸塩の反応により、目的物の上記一般式(9)で表される ω—ハロペルフ ルォロアルキルスルフィン酸塩の他に、上記一般式(8)で表される未反応の α , ω— ジハロペルフルォロアルカンと上記一般式(11)で表されるペルフルォロアルキル α , ω ビススルフィン酸塩が副生成物として生成する。さらに当該反応により生成す る無機沃化物又は無機臭化物も反応系に存在する。
当該反応系で無機沃化物又は無機臭化物が析出 '懸濁した懸濁液が形成される 場合には、無機沃化物又は無機臭化物を濾過により除去してカゝら分離精製を行って も構わない。
上記 16.の工程 (ii 1)に記載されている工程 (i)の反応混合物から上記一般式 (8 )で表される a , ω ジハロペルフルォロアルカンを除去する方法としては、各種の除 去方法を採用することができる。その除去方法の具体例としては、例えば、蒸留によ る除去、フッ素原子含有有機溶媒による抽出 '除去、又は上記一般式 (9)で表される ωーハロペルフルォロアルキルスルフィン酸塩及び上記一般式(11)で表されるペル フルォロアルキル α , ω ビススルフィン酸塩を含む水系媒体からの相分離による 除去等の方法が挙げられる。
例えば、蒸留による除去方法では、反応後の溶液又は懸濁液から蒸留等により、 使用した有機溶媒と未反応の上記一般式 (8)で表される a , ω ジハロペルフルォロ アルカンを除くことができる。
相分離による除去方法としては、例えば蒸留等の方法によって使用した有機溶媒 を留去した後に水を加えると 2層に分離し、上記一般式 (8)で表される a , ω ジハロ ペルフルォロアルカンが下層に分離されるので、下層を分液することにより、上記一 般式(8)で表される a , ω ジハロペルフルォロアルカンを得ることができる。
フッ素原子含有有機溶媒による抽出 ·除去方法は、工程 (i)で得られた反応混合物 に、 HFC43— 10mee、ペルフルォ口へキサン等のフッ素原子含有有機溶媒をカロえ て上記一般式(8)で表される a , ω ジハロペルフルォロアルカンを抽出する方法が 挙げられる。
以上の方法で分離した上記一般式(8)で表される a , ω ジハロペルフルォロアル カンは、再度、亜ジチオン酸塩との反応に使用することができる。
次に上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩と上 記一般式(11)で表されるペルフルォロアルキル a , ω ビススルフィン酸塩を含む 混合物から、上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸 塩を抽出分離する工程 (ii - 2)では、各種方法が使用できる。例えば上記一般式 (9) で表される ω—ハロペルフルォロアルキルスルフィン酸塩と上記一般式( 11)で表され るペルフルォロアルキル α , ω ビススルフィン酸塩が溶解した水性分散液、又は 両成分を含有する固体混合物から、上記一般式(9)で表される ω—ハロペルフルォ 口アルキルスルフィン酸塩を抽出することができる。
上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩と上記一 般式(11)で表されるペルフルォロアルキル a , ω ビススルフィン酸塩が溶解した 反応混合物から、上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィ ン酸塩を抽出する方法としては、例えば、酢酸ェチル等のエステル系溶媒やジェチ ルエーテル等のエーテル系溶媒等の水難溶性有機溶媒を加えて、有機層に上記一 般式(9)で表される ω ノヽロペルフルォロアルキルスルフィン酸塩を抽出する方法が 挙げられる。この場合、上記一般式(11)で表されるペルフルォロアルキル α , ω - ビススルフィン酸塩及び、上記工程 (i)で生成した副生成物である無機沃化物又は 無機臭化物等の無機塩は水層側に分離される。上記一般式 (9)で表される ω—ハロ ペルフルォロアルキルスルフィン酸塩を含む有機層を分液した後、有機溶媒を留去 すると、高純度の上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィ ン酸塩を単離することができる。なお、当該有機層には、上記一般式(11)で表され るペルフルォロアルキル a , ω ビススルフィン酸塩はほとんど含まれな!/、。 上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩と上記一 般式(11)で表されるペルフルォロアルキル a , ω ビススルフィン酸塩の両成分を 含有する固体混合物から、上記一般式(9)で表される ω—ハロペルフルォロアルキル スルフィン酸塩を分離する方法としては、例えば酢酸ェチル等のエステル系溶媒や ジェチルエーテル等のエーテル系溶媒等の有機溶媒で、当該固体混合物から上記 一般式(9)で表される ω ノヽロペルフルォロアルキルスルフィン酸塩を抽出する方法 が挙げられる。当該有機溶媒に不溶な固形物である上記一般式(11)で表されるぺ ルフルォロアルキル α , ω ビススルフィン酸塩、及び無機沃化物又は無機臭化物 等の無機塩は濾過により除去することができる。一方、濾液は蒸留等により有機溶媒 を留去すると、高純度の上記一般式(9)で表される ω—ノ、口ペルフルォロアルキルス ルフィン酸塩が高収率で得られる。
次に、工程 (iii)について説明する。
上記の工程 (ii)で得られた上記一般式(9)で表される ω—ハロペルフルォロアルキ ルスルフィン酸塩は塩素ィ匕剤で処理することによって下記一般式(10)
X(CF ) SO CI (10)
2 m 2
(X及び mは上記一般式(1 ' )と同じである。 )
で表される ω—ハロペルフルォロアルキルスルホユルク口リドを得ることができる。具体 的には上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を水 、有機溶媒又はそれらの混合溶媒に溶解又は分散させた後、塩素化剤を添加するこ とにより塩素化反応を行うことができる。
当該工程は、各種の媒体中で実施できるが、反応操作の容易性や安全性等を考 慮すると、水又は酸を含む水溶液を溶媒とすることが好まし ヽ。
塩素ィ匕剤としては、—SO Mを SO C1に変換できるものであれば特に制限はなぐ
2 2
各種の公知の塩素ィ匕剤を用いることが可能である。例えば、塩素、塩化スルフリル等 を塩素ィ匕剤として用いることができる力 特に塩素が好ましい。塩素を用いて水中で 塩素化反応を行う場合は、 目的物である上記一般式(10)で表される ω—ハロペルフ ルォロアルキルスルホユルク口リドは水に不溶であるため、水との分離操作が容易と なり、工業的実施が特に有利となる。 塩素化反応の条件については、特に制限はなぐ使用する塩素化剤の種類に応じ て、 目的とする塩素化物が生成するように適宜決めればよい。例えば、塩素化剤とし て塩素を用いる場合には、上記一般式(9)の ω ノヽロペルフルォロアルキルスルフィ ン酸塩を溶解した水溶液中に塩素ガスを供給して塩素化反応を行えばよぐ反応温 度は 0— 50°C、塩素の仕込み量は上記一般式(9)の ω—ハロペルフルォロアルキル スルフィン酸塩 1モルに対して 1一 5モル程度が好ましぐ 1. 2モルから 3モルの範囲 がより好ましい。水溶液中の上記一般式(9)の ω ノヽロペルフルォロアルキルスルフ イン酸塩の濃度については、特に限定はないが、通常 0. 5— 50質量%程度とすれ ばよい。
次に、工程 (iv)について説明する。
工程(iii)で得られた上記一般式(10)で表される ω—ハロペルフルォロアルキルス ルホニルクロリドをフッ素イオン含有ィ匕合物で処理することによって、一般式(1 ' )で 表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドを得ることができる。 フッ素イオン含有ィ匕合物による反応は公知の方法に従って行うことができ、溶媒中 又は無溶媒下で上記一般式(10)で表される ω—ハロペルフルォロアルキルスルホ二 ルクロリドとフッ素イオン含有ィ匕合物を反応させればよい。溶媒としては、特に制限は なく多様な溶媒が使用可能であり、ァセトニトリル、スルホラン、ジメチルスルホキシド 、 Ν, Ν—ジメチルホルムアミド等の極性有機溶媒、水又はこれらの混合溶媒などを用 いることがでさる。
使用するフッ素イオン含有ィ匕合物としては、 SO C1を SO Fに変換できるもので
2 2
あれば特に限定はなぐ公知のフッ素イオン含有ィ匕合物を用いることができる。例え ば、 NaF、 KF等のアルカリ金属フルオリドが挙げられる。
反応温度は 0— 200°Cの範囲で、反応時間は 0. 1時間力 48時間程度であれば よい。フッ素イオン含有ィ匕合物の使用量は、上記一般式(10)で表される ω ハロぺ ルフルォロアルキルスルホ-ルクロリド 1モルに対して、 1モル以上 10モル以下が好 ましぐ 1モル以上 5モル以下がより好ましい。また、上記一般式(10)で表される ω— ハロペルフルォロアルキルスルホ-ルクロリドの濃度は特に制限はな 、が、通常 10 一 100質量%である。 [0045] 上記の方法で得られた上記一般式( 1 ' )で表される ω—ハロペルフルォロアルキル スルホニルフルオリドを分離する方法は、反応に使用する溶媒によって適宜変えれ ばよ 、。例えば蒸留で上記一般式( 1 ' )で表される ω ノヽロペルフルォロアルキルス ルホニルフルオリドを分離することもできるし、また溶媒の種類によっては水をカ卩える ことによって上記一般式(1, )で表される ω—ハロペルフルォロアルキルスルホ -ルフ ルオリドを有機層として分離することができる。
以上で説明した本願の工程 (i)一 (iv)の具体例をスキーム 3に示す。 くスキ一ム 3 > 本発明の方法の例
工程 ( i)
Na2S20,
KCF2)mI I(CF2)mS02Na
Figure imgf000033_0001
:程 (iv)
F〇
l(CF2)mS02CI KCF2)
* 2 :高選択的に分離が可能。
* 3 :不安定な I(CF,)mSO,Cl は熱履歴かけずに I(CF2)mS02F
に高収率で変 できる。 スキーム 3で示すように、本発明の工程 (i)から(iv)の工程を経ることによって、不安 定な上記一般式(10)で表される ω—ノ、口ペルフルォロアルキルスルホ-ルクロリドを 蒸留等の熱履歴をかけることなぐ高収率、高選択的に、上記一般式(1 ' )で表され る ω—ハロペルフルォロアルキルスルホ-ルフルオリドに変換できる。
[0046] 次に上記工程 (ii 2)によって分離された副生成物である上記一般式(11)で表さ れるペルフルォロアルキル a , ω ビススルフィン酸塩から上記一般式(8)で表され る α , ω ジハロペルフルォロアルカン及び Ζ又は上記一般式(10)で表される ω— ハロペルフルォロアルキルスルホ-ルクロリドを製造する方法について説明する。 工程 (ii 2)によって分離された処理液又は精製残渣には副生成物である上記一 般式(11)で表されるペルフルォロアルキル a , ω ビススルフィン酸塩及び無機沃 素化物又は無機臭素化物力 選ばれる少なくとも一方の無機塩を含んでいる。この 処理液又は精製残渣を塩素化剤と反応させる第 1ステップでは、上記一般式(11)で 表されるペルフルォロアルキル , ω ビススルフィン酸塩からは、上記一般式( 12 )で表されるペルフルォロアルキル α , ω—ビススルホ-ルクロリドが生成し、一方、 無機沃素化物又は無機臭素化物力 は、沃素又は臭素が生成する。次いで第 2ステ ップでは上記一般式( 12)で表されるペルフルォロアルキル a , ω ビススルホ-ル クロリドと沃素又は臭素の反応により、上記一般式 (8)で表される α , ω ジハロペル フルォロアルカン及び Ζ又は上記一般式(10)で表される ω—ハロペルフルォロアル キルスルホユルク口リドを得ることができる。上記一般式(8)で表される α , ω ジハロ ペルフルォロアルカンと上記一般式(10)で表される ω—ハロペルフルォロアルキル スルホニルクロリドの生成比は、生成した上記一般式(12)で表されるペルフルォロア ルキルー α , ω—ビススルホユルクロリドと、共存する沃素又は臭素の割合によつて決 まる。
第 2ステップにおいて、沃素又は臭素と、上記一般式(12)で表されるペルフルォロ アルキル α , ω ビススルホユルクロリドの両化合物を同時に溶解させる溶媒を添 カロさせることによって、上記一般式(8)で表される α , ω ジハロペルフルォロアルカ ン及び Ζ又は上記一般式(10)で表される ω—ハロペルフルォロアルキルスルホ-ル クロリドへの変換反応を促進させることができる。沃素又は臭素と、上記一般式(12) で表されるペルフルォロアルキル α , ω—ビススルホユルクロリドの両化合物を同時 に溶解させる溶媒の例としては、例えば酢酸ェチル、酢酸ブチル等のエステル系溶 媒、モノグライム、ジグライム等のエーテル系溶媒、ァセトニトリル、プロピオ-トリル等 の-トリル系溶媒、アセトン、メチルェチルケトン等のケトン系溶媒等の極性溶媒が挙 げられる。なお、溶媒として、酢酸ェチルや酢酸ブチルのような水難溶性有機溶媒を 使用した場合には、反応と同時に生成物の抽出も同時に実施できるのでより好まし い。
また、上記第 1ステップで、処理液又は精製残渣を塩素化剤と反応させて上記一般 式( 12)で表されるペルフルォロアルキル a , ω ビススルホ-ルクロリドを生成させ 、当該酸クロリドをろ過や溶媒抽出等で単離してから、溶媒中で沃素又は臭素と反応 させることより、上記一般式(8)で表される α , ω ジハロペルフルォロアルカン及び Z又は上記一般式(10)で表される ω—ハロペルフルォロアルキルスルホユルクロリド を得ることもできる。この場合、上記一般式(8)で表される α , ω—ジノヽ口ペルフルォ ロアルカン及び Ζ又は上記一般式(10)で表される ω—ハロペルフルォロアルキルス ルホニルクロリドの種類とその生成割合は、沃素又は臭素の添加量で決定される。当 該工程の溶媒の例としては、酢酸ェチル、酢酸ブチル等のエステル系溶媒、モノダラ ィム、ジグライム等のエーテル系溶媒、ァセトニトリル、プロピオ-トリル等の-トリル系 溶媒、アセトン、メチルェチルケトン等のケトン系溶媒が挙げられる。
[0048] 上記第 1ステップで使用される塩素化剤としては、特に制限はなぐ公知の塩素化 剤を用いることが可能である。例えば、塩素、塩化スルフリル等を塩素化剤として用い ることができ、特に塩素が好ましい。
上記の操作で得られた上記一般式(8)で表される a , ω—ジハロペルフルォロアル カンは、上記工程 (i)の亜ジチオン酸塩との反応に再使用することができる。また上 記の操作で得られた上記一般式(10)で表される ω—ハロペルフルォロアルキルスル ホニルクロリドは上記工程 (iv)のフッ素イオン含有ィ匕合物との反応に再使用されて、 上記一般式( 1,)で表される ω—ノ、口ペルフルォロアルキルスルホ-ルフルオリドに変 換して使用することができる。
[0049] 本発明の製造方法によって上記一般式 (2)又は一般式 (2 ' )で表される ω—フルォ ロスルホニルペルフルォロアルキルビニルエーテルは、各種の固体電解質材料又は イオン交換膜等に用 、るポリマー用のモノマー成分として有用な物質である。
この固体電解質ポリマーは、例えば固体高分子電解質型燃料電池の電解質膜、 触媒バインダーや、リチウム電池用膜、食塩電解用膜、水電解用膜、ハロゲン化水 素酸電解用膜、酸素濃縮器用膜、温度センサー用膜、ガスセンサー用膜等として使 用される。
以上の通り、本発明によれば、上記一般式(2)又は一般式(2' )で表される ω -フ ルォロスルホ -ルペルフルォロアルキルビュルエーテル及びその合成中間体を高収 率で製造することができる。
実施例
[0050] 以下、実施例及び比較例により本発明を具体的に詳細に説明するが、本発明はこ れらに限定されるものではない。
実施例及び比較例にぉ 、て種々の物性は次の方法により測定した。
1.フッ素— 19核磁気共鳴(19F— NMR)スペクトル
19F - NMRスペクトルは、測定装置として日本電子日本国製 GSX - 400型核磁気共 鳴装置、溶媒として重クロ口ホルム、基準物質としてフレオン 11 (CFC1 )を使用した
3
2.ガスクロマトグラフィー(GC)
以下の装置及び条件で行った。
装置:日本国島津製作所社製 GC-2010
カラム:'米国 RESTEK社製 キヤビラリ一力ラム RTX— 200
(内径 0. 25mm,長さ 60m、膜厚 1 μ m)
'米酣 &WScientific社製 キヤビラリ一力ラム DB— 1
(内径 0. 25mm,長さ 30m、膜厚 1 μ m)
キャリアガス: He
検出: FID
3.ガスクロマトグラフィーマススペクトル(GC— MS)
以下の装置及び条件で行った。
装置:日本国日本電子製 Automass— Sun (商品名)
カラム:'米国 RESTEK社製 キヤビラリ一力ラム RTX— 200
(内径 0. 25mm,長さ 60m、膜厚 1 μ m)
'米酣 &WScientific社製 キヤビラリ一力ラム DB— 1
(内径 0. 25mm,長さ 30m、膜厚 1 μ m)
キャリアガス: He
実施例 1
(I (CF ) Iから CF =CFO (CF ) SO Fの合成)
2 4 2 2 4 2
5L反応器に、ァセ卜ン 2250mL、水 750mL、及び I (CF ) IlOOOgを入れ、反応
2 4
器を氷浴で冷却した。この反応器に、 Na S O 287gを 15分間で 5回に分けてカロえ
2 2 4
た後、室温で 2時間攪拌させた。反応混合物は19 F— NMRより、 I (CF ) Iが 57mol %残存し、 I (CF ) SO Naが 36mol%、 NaO S (CF ) SO Naが 7mol%生成して
2 4 2 2 2 4 2
いた。該反応混合物からアセトンと I (CF ) Iを減圧留去すると、固体状の残渣が得ら
2 4
れた。この残渣に水をカ卩え、酢酸ェチルで 3回抽出し、これらの酢酸ェチル抽出溶液 を減圧濃縮すると茶色固体 445gが得られた。
この固体は、 19F— NMR (内部標準: CF CO Na)により I (CF ) SO Naを 0. 79m
3 2 2 4 2
ol (収率 36%)含有することがわ力つた。また、上記抽出操作後の水層には、 19F-N MR (内部標準: CF CO Na)により NaO S (CF ) SO Naを 0. 15mol (収率 7%)
3 2 2 2 4 2
含有することがわ力つた。
I (CF ) SO Na
2 4 2
19F— NMR -61. 9ppm (2F)、— 114. 2ppm (2F)、— 122. 2ppm(2F)、— 13 1. lppm (2F)
NaO S (CF ) SO Na
2 2 4 2
19F— NMR -123. 0ppm (4F)、— 130. 6ppm (4F)
ガス吹き込み管を備えた 2Lの 4つ口フラスコに、上記 I (CF ) SO Naを含む茶色
2 4 2
固体 445g (I (CF ) SO Naを 0. 79mol含有)、及び水 lOOOmLを加えて攪拌した
2 4 2
。このフラスコを氷浴で冷却し、 2層に分離するまで塩素を吹き込んだ。下層を分液 すると、 336gの液体が得られた。この液体は、 19F— NMR (内部標準: C F )により 1 (
6 6
CF ) SO C1を 0. 787mol (収率 99. 7%)含有していることがわかった。
2 4 2
19F— NMR -61. 6ppm (2F)、— 105. 8ppm (2F)、— 114. 3ppm(2F)、— 12 0. 0ppm (2F)
滴下ロート、還流冷却管を備えた 2Lの 4つ口フラスコに、 KF187. 8gとァセトニトリ ノレ 700mLをカロ免、 50oCにカロ熱した。このフラス に I (CF ) SO C1665gを 2時間力
2 4 2
けて滴下した。滴下後、さらに 50°Cで 2時間攪拌し、 19F— NMRで反応終了を確認し た。反応混合物に水を加えると 2層に分離した。下層を分液後、蒸留精製 (bp92°C、 26. 6kPa)すると、 606. 8gの I (CF ) SO F力 S得られた(収率 94. 9%) 0
2 4 2
19F— NMR 44. 0ppm (lF)、— 61. 6ppm(2F)、— 109. 6ppm (2F)、— 114. 6ppm (2F)、— 121. lppm(2F)
還流塔と温度計を備えた 10Lの 3つ口フラスコに、 I (CF ) SO F5. 26kgに 65質 量%の発煙硫酸 7.2kgを加えて、常圧下、 40時間加熱還流すると、反応混合物は 2 層に分離し、転ィ匕率は 98%に到達した。上層を分液後、さらに濃硫酸で 3回洗浄し た。
得られた液体は、蒸留精製 (bp54°C、 40kPa)により、 FOC(CF ) SO F2.67kg
2 3 2
(収率 74.4%)が得られ、 570gの蒸留残渣には19 F— NMR (内部標準: C F )より F
6 6
SO 0(CF ) SO Fが 78.5質量%含まれていることが分かった。
2 2 4 2
FOC (CF ) SO F
2 3 2
19F— NMR 44.3ppm(lF)、22.5ppm(lF)、— 109.8ppm(2F)、— 119.5pp m(2F)、— 122.4ppm(2F)
FSO 0(CF ) SO F
2 2 4 2
19F— NMR 48.5ppm(lF)、43.6ppm(lF)、— 85.0ppm(2F)、— 109.8pp m(2F)、— 122.0ppm(2F)、— 126.2ppm(2F)
2Lのオートクレーブに、 FOC(CF ) SO F1000g、テトラグライム 40g、アジポ-ト
2 3 2
リル 400g、及び KF27.2gを入れ、 0°Cで攪拌しながら、へキサフルォロプロピレン ォキシド (HFPO)654gを 6時間かけて導入した。反応後、過剰の HFPOを放圧し、 内容物を分液して下層部分を取り出すと、 1588gの液体が得られた。この液体は、 G C、及び19 F— NMR (内部標準: C F )により、 CF CF(COF)0(CF ) SO Fを 3.3
6 6 3 2 4 2
54mol (収率 94.0%)、 CF CF(COF)OCF CF(CF )0(CF ) SO Fを 0.036m
3 2 3 2 4 2
ol(収率 1.0%)、未反応の FOC(CF ) SO Fを 0.157mol含有することがわかつ
2 3 2
た。得られた液体は、蒸留精製 (bpl05°C、 40kPa)により、 1449gの CF CF(COF
3
)0(CF ) SO F (収率 91.0%)であった。
2 4 2
19F— NMR 44.0ppm(lF)、 23.8ppm(lF)、— 79.9ppm(lF)、— 84.4ppm( 3F)、— 87.2ppm(lF)、— 110.0ppm(2F)、— 122. lppm(2F)、— 126.8ppm( 2F)、— 132.4ppm(lF)
滴下ロートと蒸留塔を備えた 1Lの 4つ口フラスコに乾燥した炭酸カリウム 102gと、 無水エチレングリコールジメチルエーテル 135gを入れ、フラスコの内温が 50°C以内 になるように CF CF(COF)0(CF ) SO F300gをゆっくり滴下した。発泡が止まつ
3 2 4 2
て力 さらに 50°Cで 2時間攪拌後、 19F— NMRにより完全に原料が中和され、 CF C F(CO K)0(CF ) SO Fに変換したことを確認した。この反応混合物力 エチレン
2 2 4 2
グリコールジメチルエーテルを減圧留去し、さらに残渣を 140°Cに加熱して減圧下で 乾燥させた。乾燥させた CF CF(CO K)0(CF ) SO Fを含む残渣を減圧下 190
3 2 2 4 2
°Cに加熱すると脱炭酸反応が起こり、 222gの液体が留出した。留出した液体は GC 、 19F— NMR (内部標準: C F )により、目的物である CF =CFO(CF ) SO Fが 0.
6 6 2 2 4 2
572mol (収率 85.0%)、副生成物として再生成した CF CF(COF)0(CF ) SO
3 2 4 2
Fが 0.007mol含有しており、 [s]Z[r+s]は、 0.01であった。上記で得られた液体は 、蒸留精製(bp92。C、 40kPa)により、 CF =CFO(CF ) SO F210g (収率 82.2
2 2 4 2
%)を得た。
19F— NMR: 43.8ppm(lF)、— 87.0ppm(2F)、— 110.0ppm(2F)、— 116.9 ppm(lF)、— 122.2ppm(2F)、— 124.4ppm(lF)、— 127.0ppm(2F)、— 138. 4ppm(lF)
EI-MS:m/z 380, 283, 100, 97, 81
[0053] 比較例 1
500mLの 3つ口フラスコに I(CF ) I50g、アセトン 150mL、及び水 50mLを入れ、
2 4
フラスコを氷浴につけ、 Na S O 19gを少しずつ加えた後、室温で 2時間攪拌させた
2 2 4
。反応混合物を19 F - NMRで測定すると、 I(CF ) Iが 38mol%残存し、 l(CF ) SO
2 4 2 4 2
Naが 44mol%、 NaO S(CF ) SO Naが 18mol%生成していた。反応混合物中の
2 2 4 2
固形物をろ過で取り除き、さらにろ液力 アセトンを留去し、残渣を得た。該残渣をガ ス吹き込み管を備えた 500mLの 3つ口フラスコに移し、さらに水 200mLを加えた。フ ラスコを氷浴につけ、 2層に分離するまで塩素を吹き込んだ。下層を分液すると、下 層には I(CF ) I、 I(CF ) SO Cl、 CIO S(CF ) SO CIを含む混合物が得られた。
2 4 2 4 2 2 2 4 2
これらの混合物は蒸留操作を行ったが、 I (CF ) I、 I(CF ) SO Cl、 CIO S(CF )
2 4 2 4 2 2 2 4
SO CIが混在して得られ、 19F— NMR (内部標準: C F )により I(CF ) SO CIは 0.
2 6 6 2 4 2
Ollmol (収率 10%)含有して!/、た。
[0054] 比較例 2
200mLのオートクレーブに、実施例 1で得られた、 FOC(CF ) SO F100g、テトラ
2 3 2
グライム 45g、及び KF2.72gを入れ、 0°Cで攪拌しながら、へキサフルォロプロピレ ンォキシド (HFPO)59. 3gを 6時間かけて導入した。反応後、内容物を分液して下 層部分を取り出すと、 136. 2gの液体が得られた。この液体は GC、 19F— NMR (内部 標準: C F )により、 CF CF(COF)0(CF ) SO Fを 0. 186mol (収率 52. 2%)、
6 6 3 2 4 2
CF CF(COF)OCF CF(CF )0(CF ) SO Fを 0.055mol (収率 15. 3%)、 CF
3 2 3 2 4 2 3
CF(COF)0(CF CF(CF ) O) (CF ) SO Fを 0.006mol (収率 1.8%)、未反応
2 3 2 2 4 2
の FOC(CF ) SO Fを 0.039mol含有していた。
2 3 2
[0055] 比較例 3
滴下ロートと蒸留塔を備えた 200mLの 4つ口フラスコに乾燥した炭酸ナトリウム 16 .4gと、無水エチレングリコールジメチルエーテル 15mlを入れ、 70°Cで、実施例 1で 得られた 30gの CF CF(COF)0(CF ) SO Fをゆっくり滴下した。発泡が止まって
3 2 4 2
力もさらに 70°Cで 2時間攪拌後、 19F— NMRにより完全に原料が中和され、 CF CF(
3
CO Na)0(CF ) SO Fに変換したことを確認した。この反応混合物からエチレング
2 2 4 2
リコールジメチルエーテルを減圧留去し、さらに残渣を 120°Cに加熱して減圧下で乾 燥させた。乾燥させた CF CF(CO Na)0(CF ) SO Fを含む残渣を 200°Cまでカロ
3 2 2 4 2
熱させると脱炭酸反応により 18. 9gの液体が留出した。留出した液体は19 F— NMR( 内部標準: C F )により、 CF =CFO(CF ) SO Fが 0.038mol (収率 56. 1%)、 C
6 6 2 2 4 2
F CF(COF)0(CF ) SO Fが 0.009mol含有しており、 [s]Z[r+s]は、 0. 19であ
3 2 4 2
つた o
[0056] 実飾 12
蒸留塔と滴下ロートを備えた 200mLの 3つ口フラスコにスルホラン 33. 2g、及び K F6.05gを入れ、 50°Cに加熱しながら、実施例 1で得られた FSO 0(CF ) SO Fを
2 2 4 2
78. 5質量%含有する蒸留残渣 100gを滴下した。滴下後、さらに 50°Cで 2時間加熱 攪拌した後、蒸留精製を行うと、 FCO(CF ) SO Fが 54. 7g (収率 95. 1%)得られ
2 3 2
た。
[0057] 実施例 3
(I(CF ) Iから CF =CFO(CF ) SO Fの合成)
2 3 2 2 3 2
還流塔及び攪拌機を備えた 1Lの 3つ口フラスコに I(CF ) I300gとアセトン 900mL
2 3
及び水 300mLを入れ、フラスコを氷浴につけ、 Na S O 96. 9gを少しずつ加えた。 2時間攪拌した後、反応混合物を19 F— NMRで測定すると、 I (CF ) SO Naが 36. 6
2 3 2 mol%、 NaO S (CF ) SO Naが 8· 4mol%生成していた。該反応混合物からァセ
2 2 3 2
トンを留去した後、水 300mLをカ卩えると 2層に分離し、下層を分液すると I (CF ) Iが
2 3
159g回収された。また、上層は酢酸ェチルで 3回抽出した後、酢酸ェチル溶液を減 圧濃縮すると粘稠な液体が得られた。この液体は19 F— NMR (内部標準: CF CO N
3 2 a)により、 I (CF ) SO Naを 0· 272mol含むことがわかった(収率 36· 6%)。
2 3 2
ガス吹き込み管を備えた 1Lの 3つ口フラスコに、上記 I (CF ) SO Naを含む液体を
2 3 2
移し、さらに、水 300mLをカ卩えた。フラスコを氷浴につけ、塩素を吹き込んでいくと、 2層に分離した。下層を分液すると 97. 7gの液体が得られた。この液体は、 19F— NM Rにより、 I (CF ) SO CIであることがわかった(収率 92. 8%)。
2 3 2
還流塔を備えた 500mLフラスコに、上記で得られた I (CF ) SO C197. 7gと KF4
2 3 2
5. 3gとァセトニトリル 200mLを加え、 50°Cで 2時間攪拌した。反応終了後、反応混 合物に水を加えると 2層に分離した。下層を分液すると、 86. lgの液体が得られ、 19F NMRにより I (CF ) SO Fであることがわかった(収率 92. 0%)。
2 3 2
上記で得られた I (CF ) SO F86. lgに 60質量0 /0の発煙硫酸 255gを加え、常圧
2 3 2
下、 60°Cで 19時間加熱すると、反応混合物は 2層に分離し、転化率 91%に到達し た。上層を分液後、濃硫酸で洗浄した後、蒸留精製を行うと 34. lgの液体が得られ た。
この液体は19 F— NMRにより、 FOC (CF ) SO Fであることがわかった(収率 62. 0
2 2 2
%)。
19F— NMR 44. 3ppm(lF)、 22. 5ppm(lF)、— 109. 8ppm (2F)、— 119. 5pp m (2F)
lOOmLのオートクレーブに、 FOC (CF ) SO F40g、テトラグライム 5g、アジポニト
2 2 2
リル 15g、及びフッ化カリウム 1. 8gを入れ、 0°Cで攪拌しながら、 38. 5gの HFPOを 、 2時間かけて導入した。反応後、過剰の HFPOを放圧し、内容物を分液して下層部 分を取り出した。得られた液体を蒸留して、 CF CF (COF) 0 (CF ) SO F50. 9g (
3 2 3 2 収率 74%)を得た。
滴下ロートと蒸留塔を備えた 200mLの 3つ口フラスコに乾燥した炭酸カリウム 19. 5 gと、無水ァセトニトリル 50mLを入れ、 40°Cのオイルバスで加熱しながら、上記 CF
3
CF (COF) 0 (CF ) SO F50. 9gをゆっくり滴下した。発泡が止まってからさらに 40
2 3 2
°Cで 2時間攪拌後、 19F— NMRより完全に原料が中和され、 CF CF (CO K) 0 (CF
3 2 2
) SO Fに変換したことを確認した。この反応混合物力 ァセトニトリルを減圧留去し、
3 2
残渣を 140°Cに加熱して減圧下で乾燥させた。乾燥させた CF CF (CO K) 0 (CF )
3 2 2
SO Fを含む残渣を常圧下 220°Cまで加熱すると、脱炭酸反応が起こり、液体が留
3 2
出した。さらに得られた液体は蒸留精製により、 35. 2gの CF =CFO (CF ) SO F
2 2 3 2 を得た (収率 83%)。
19F— NMR 43. 8ppm(lF)、— 86. 7ppm (2F)、— 110. 0ppm (2F)、— 116. 6p pm (lF)、— 124. lppm (lF)、— 125. 6ppm (2F)、— 138. 5ppm(lF)
実施例 4
(I (CF ) Iから CF =CFO (CF ) SO Fの合成)
2 6 2 2 6 2
還流塔、攪拌機を備えた 2Lの 3つ口フラスコに I (CF ) I122gとアセトン 450mL、
2 6
水 50mLを入れ、フラスコを氷浴につけ、 Na S O 48gを少しずつ加えた後、 25°Cで
2 2 4
2時間攪拌した。反応混合物を19 F-NMRで測定すると、 I (CF ) SO Naが 68mol
2 6 2
%、 NaO S (CF ) SO Naが 6mol%生成していた。反応混合物力もアセトンと水を
2 2 6 2
留去した後、残渣に HFC43— 10mee300mLをカ卩え、固形物をろ過した。ろ液から HFC43— lOmeeを減圧留去させると、 I (CF ) Iが 31. 6g回収された。一方、固形
2 6
物に 500mLの水をカ卩えた後、酢酸ェチルで 3回抽出した後、酢酸ェチル溶液を減 圧濃縮すると固体が得られた。この固体は、 19F— NMR (内部標準: CF CO Na)に
3 2 より I (CF ) SO Naを 0· 150mol含有していることがわかった(収率 68%)。
2 6 2
ガス吹き込み管を備えた 1Lの 3つ口フラスコに、上記 I (CF ) SO Naを移し、水 30
2 6 2
OmLをカ卩え、フラスコを氷浴につけ、塩素を吹き込んでいくと、 2層に分離した。下層 を分液すると、 75. lgの液体が得られた。この液体は19 F— NMRにより、 I (CF ) SO
2 6
CIであることがわかった(収率 95. 3%)。
2
還流塔を備えた 500mLフラスコに、上記で得られた I (CF ) SO C175. lgに KF2
2 6 2
4. 8gとァセトニトリル 150mLを加え、 50°Cで 2時間攪拌した。反応終了後、反応混 合物に水を加えると 2層に分離した。下層を分液すると、 66. 8gの液体が得られた。 この液体は F— NMRにより、 I(CF ) SO Fであることがわかった(収率 91.9%)。
2 6 2
I(CF ) SO F129gに 60質量0 /0の発煙硫酸 269gを加え、常圧下、 60°Cで 12時
2 6 2
間、さらに 80°Cで 13.5時間加熱すると、反応混合物は 2層に分離し、転化率は 100 %に到達した。上層を分液後、濃硫酸で洗浄すると 89gの液体が得られた。
[0060] この液体は、 19F— NMRにより、 FOC(CF ) SO Fであることがわかった(収率 93
2 5 2
%)。
19F— NMR 44.3ppm(lF)、 22.5ppm(lF)、— 109.7ppm(2F)、— 120. Opp m(2F)、— 121.8ppm(2F)、— 122.5ppm(2F)、— 124. lppm(2F)
200mLのオートクレーブに、 FOC(CF ) SO F79g、テトラグライム 7g、アジポニト
2 5 2
リル 35g、及び 1.45gのフッ化カリウムを入れ、 0°Cで攪拌しながら、 41.4gの HFP Oを 7時間かけて導入した。反応後、過剰の HFPOを放圧し、内容物を分液して下層 部分を取り出した。得られた液体を蒸留して、 CF CF(COF)0(CF ) SO F91.6g
3 2 6 2
(収率 81%)を得た。
窒素気流中、滴下ロートと蒸留塔を備えた 500mLの 3つ口フラスコに乾燥した炭酸 カリウム 31.9gと、無水エチレングリコールジメチルエーテル 200mLを入れ、室温で 上記 CF CF(COF)0(CF ) SO F120gをゆっくり滴下した。そのまま室温で 1時間
3 2 6 2
攪拌し、さらに 50°Cで 1時間攪拌後、 19F— NMRより完全に原料が中和され、 CF C
3
F(CO K)0(CF ) SO Fに変換したことを確認した。反応混合物力もエチレングリコ
2 2 6 2
ールジメチルエーテルを減圧留去し、残渣を 100°Cに加熱して乾燥させた後、減圧 下 200°Cに加熱すると脱炭酸反応が起こり液体が留出した。さらに得られた液体は 蒸留精製により、 94.3gの CF =CFO(CF ) SO Fを得た(収率 89%)。
2 2 6 2
19F— NMR 43.8ppm(lF)、— 86.9ppm(2F)、— 110.0ppm(2F)、— 117. lp pm(lF)、— 121.9ppm(2F)、— 123.4ppm(2F)、— 124.0ppm(2F)、— 124.7 ppm(lF)、— 127.3ppm(2F)、— 138.4ppm(lF)
EI-MS:m/z 480, 100, 97, 81
[0061] 実施例 5
KCF ) Iと Na S Oの反応後の分離精製方法を以下のように変更した以外は実施
2 4 2 2 4
例 1と同様にして反応を行った。すなわち、 I(CF ) Iと Na S Oの反応終了後、反応 混合物からアセトンを留去した後、水を加えると 2層に分離し、下層を分液すると I (C F ) Iが 546g回収された。また、上層に酢酸ェチルをカ卩えて、酢酸ェチルで 3回抽出
2 4
した後、これらの酢酸ェチル溶液を減圧濃縮すると茶色固体が得られ、 19F— NMR( 内部標準: CF CO Na)により、 I (CF ) SO Naが 0. 79mol (収率 36%)含有して
3 2 2 4 2
いることがわかった。
[0062] 実施例 6
ガス吹き込み管を備えた 1Lの 4つ口フラスコに、実施例 1で分離した NaO S (CF )
2 2
SO NaO. 15molと Nalを含む 900gの水溶液を入れ、氷浴中で塩素を吹き込むと
4 2
固体が生成し懸濁状態となった。生成した固体は、沃素と CIO S (CF ) SO CIであ
2 2 4 2 ることが19 F— NMRで確認された。この懸濁液に酢酸ェチルをカ卩えると沃素と CIO S
2
(CF ) SO C1は溶解した後、 2層に分離した。この酢酸ェチル層は19 F-NMRにより
2 4 2
KCF ) Iであることが確認された。酢酸ェチル層を分離した後、常圧下で蒸留精製
2 4
を行い、 I (CF ) Iが 65. 7g得られた(NaO S (CF ) SO Naを出発原料とした場合
2 4 2 2 4 2
、収率 94%)。
CIO S (CF ) SO C1
2 2 4 2
19F— NMR -105. 6ppm (4F)、— 120. 3ppm (4F)
[0063] 施例 7
lOOmLの 3つ口フラスコに、実施例 6で得られた CIO S (CF ) SO C13. 2g (8. 0
2 2 4 2
6mmol)、沃素 2. 05g (8. 06mmol)、及び酢酸ェチル lOmLを入れ、室温 3時間 攪拌した。この反応混合物には19 F— NMRにより、 I (CF ) Iが 8mol%、 I (CF ) SO
2 4 2 4 2
CIが 64mol%、 CIO S (CF ) SO CIが 20mol%含まれていることがわかった。
2 2 4 2
[0064] 実施例 8
lOOmLの 3つ口フラスコに、実施例 6で得られた CIO S (CF ) SO C13. 2g (8. 0
2 2 4 2
6mmol)、沃素 4. 10g (16. lmmol)、及び酢酸ェチル lOmLを入れ、室温 3時間 攪拌した。この反応混合物は19 F— NMRにより、転化率 100%で I (CF ) Iに変換し
2 4
ていることが確認された。
産業上の利用の可能性
[0065] 本発明の製造方法により得られる上記一般式 (2)又は一般式 (2 ' )で表される ω— フルォロスルホ-ルペルフルォロアルキルビュルエーテル及びその合成中間体は、 燃料電池や食塩電解プロセスに有用なフッ素系固体電解質ポリマーの原料として用 いられる。

Claims

請求の範囲 原料として、下記一般式(1) Y X— CF— Rf― S02F (Rは炭素原子数 1一 9の 2価のペルフルォロカーボン基、 Xは I又は Brから選ばれる f ハロゲン原子、 Yはフッ素原子、炭素原子数 1一 3のペルフルォロアルキル基、又はRとの連結基 (炭素原子数 1 f 一 3)を表す Y (― CF—は以下一 C F Y—とも表す) 。 —CFY— R—は炭素原子数 3— 10の 2価のペルフルォロカーボン基である。) f で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドから下記一般式(2) CF =CFO (CF CF (CF ) θ) — CFY— R—SO F (2) 2 2 3 n f 2 (nは 0— 2の整数であり、 R及び Yは上記一般式(1)と同じである。 ) f で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造する 方法であって、以下の工程 (a)—(c)を含む上記方法: (a)上記一般式 (1)で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドを 酸化剤で処理して下記一般式(3)で表される ω -フルォロスルホニル化合物を製造 する工程、 Υ I η ( 3 ) 0=C— Rf— S02F
(R及び Yは上記一般式(1)と同じである。 )
f
(b)工程 (a)で得られた上記一般式(3)で表される ω—フルォロスルホニル化合物と へキサフルォロプロピレンォキシドを反応させて下記一般式 (4)で表される酸フルォ リド化合物を製造する工程、及び
CF CF (COF) 0 (CF CF (CF ) θ) —CFY— R—SO F (4)
3 2 3 n f 2
(nは上記一般式(2)と同じであり、 R及び Yは上記一般式(1)と同じである。 ) (c)工程 (b)で得られた上記一般式 (4)で表される酸フルオリドィ匕合物を上記一般式 (2)で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルに変換 する工程。
[2] 原料として、下記一般式 (1 ' )
X(CF ) SO F (1,)
2 m 2
(Xは I又は Brから選ばれるハロゲン原子、 mは 3— 10の整数である。 ) で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリドから下記一般式(2,) CF =CFO (CF CF (CF ) θ) (CF ) SO F (2,)
2 2 3 n' 2 m 2
(n'は 0— 2の整数であり、 mは上記一般式(1 ' )と同じである。 )
で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造する 方法であって、以下の工程 (a' )—( )を含む上記方法:
(a, )上記一般式( 1,)で表される ω—ハロペルフルォロアルキルスルホ-ルフルオリ ドを酸化剤で処理して下記一般式(3 ' )で表される ω—フルォロスルホニル化合物を 製造する工程、
FCO (CF ) SO F (3,)
2 m-1 2
(mは上記一般式(1 ' )と同じである。 )
(b ' )工程(a ' )で得られた上記一般式(3 ' )で表される ω—フルォロスルホニル化合 物とへキサフルォロプロピレンォキシドを反応させて下記一般式 (4' )で表される酸フ ルオリドィ匕合物を製造する工程、及び
CF CF (C0F) 0 (CF CF (CF ) θ) (CF ) SO F (4,)
3 2 3 n' 2 m 2
(nは上記一般式(2' )と同じであり、 mは上記一般式( )と同じである。 ) (c ' )工程 (b ' )で得られた上記一般式 (4 ' )で表される酸フルオリドィ匕合物を上記一 般式(2,)で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテル に変換する工程。
[3] 前記工程 (a)で使用される酸化剤が SO又は発煙硫酸である、請求項 1に記載の
3
方法。
[4] 前記工程 (a)で得られた少なくとも上記一般式(3)で表される ω—フルォロスルホ- ル化合物、及び副生成物である下記一般式 (5) FSO O-CFY-R -SO F (5)
2 f 2
(R及び Yは上記一般式(1)と同じである。 )
f
で表されるスルホ-ルフルオリド化合物を含む反応混合物を、
1)アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、該反応混合 物中の上記一般式(5)で表されるスルホニルフルオリドィ匕合物を、上記一般式(3)で 表される ω—フルォロスルホ-ル化合物に変換し、
2)次いで、 1)の操作で得られた、上記一般式(3)で表される ω—フルォロスルホニル 化合物を、工程 (b)に使用する、
請求項 3に記載の方法。
[5] 前記工程 (a)で得られた、少なくとも上記一般式(3)で表される ω—フルォロスルホ ニル化合物、及び副生成物である上記一般式(5)で表されるスルホニルフルオリド化 合物を含む反応混合物から、
3)上記一般式(3)で表される ω—フルォロスルホ-ルイ匕合物を分離除去し、
4)その結果得られた反応残渣中の上記一般式(5)で表されるスルホ-ルフルオリド 化合物を、アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、上 記一般式(3)で表される ω—フルォロスルホ-ルイ匕合物に変換し、
5)次いで、上記工程 4)で得られた、上記一般式(3)で表される ω—フルォロスルホ- ル化合物を、前記工程 (b)に使用する、
請求項 3に記載の方法。
[6] 前記工程 (a' )で使用される酸化剤が SO又は発煙硫酸である、請求項 2に記載の
3
方法。
[7] 前記工程 (a' )で得られた、少なくとも上記一般式(3 ' )で表される ω—フルォロスル ホニル化合物、及び副生成物である下記一般式(5' )
FSO 0 (CF ) SO F (5,)
2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表されるスルホ-ルフルオリド化合物を含む反応混合物を、
1 ' )アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、該反応混 合物中の上記一般式(5 ' )で表されるスルホニルフルオリドィ匕合物を、上記一般式(3 ' )で表される ω—フルォロスルホ-ル化合物に変換し、
2 ' )次いで、 1 ' )の操作で得られた上記一般式(3 ' )で表される ω—フルォロスルホ- ルイ匕合物を工程 (b' )に使用する
請求項 6に記載の方法。
[8] 前記工程 (a' )で得られた、少なくとも上記一般式(3 ' )で表される ω—フルォロスル ホニル化合物、及び副生成物である上記一般式(5 ' )で表されるスルホニルフルオリ ド化合物を含む反応混合物から、
3 ' )上記一般式(3 ' )で表される ω—フルォロスルホ-ルイ匕合物を分離除去し、 4' )その結果得られた反応残渣中の上記一般式(5' )で表されるスルホ-ルフルオリ ド化合物を、アルカリ金属塩、アルカリ土類金属塩、又はルイス塩基と接触させて、上 記一般式(3 ' )で表される ω—フルォロスルホニル化合物に変換し、
5 ' )次!、で、上記工程 4 ' )で得られた上記一般式(3 ' )で表される ω—フルォロスルホ ニル化合物を、前記工程 (b' )に使用する、
請求項 6に記載の方法。
[9] 上記一般式(3 ' )で表される ω—フルォロスルホ-ル化合物とへキサフルォロプロピ レンォキシドをフッ素イオン含有ィ匕合物の存在下、下記一般式 (6)
RxO (R20) R1 (6)
P
(R1は炭素数 1一 5のアルキル基であり、 R2は C H又は C Hである。 pは 0— 10
2 4 3 6
の整数である。 )
で表されるエーテル系溶媒とカルボン酸ジ-トリル系溶媒の混合溶媒存在下で反応 させることを含む、上記一般式 (4' )において n' =0である下記一般式 (4")
CF CF (COF) 0 (CF ) SO F (4")
3 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表される酸フルオリド化合物を製造する方法。
[10] 上記一般式 (6)で表されるエーテル系溶媒とカルボン酸ジ-トリル系溶媒の混合溶 媒中に占める該カルボン酸ジ-トリル系溶媒の質量割合が 30質量%以上 99質量% 以下である請求項 9記載の方法。
[11] 上記一般式 (4")で表される酸フルオリドィ匕合物をカルボン酸塩に変換し、次!、で 該カルボン酸塩を熱分解して、上記一般式(2' )において n' =0である下記一般式( 2")で表される ω—フルォロスルホ-ルペルフルォロアルキルビュルエーテルを製造 する方法であって、目的生成物である下記一般式(2")で表される ω—フルォロスル ホ-ルペルフルォロアルキルビュルエーテルの生成モル数を r、副生成物として再生 成した上記一般式 (4")で表される酸フルオリドィ匕合物の生成モル数を sとした場合、 [s]Z[r+s]で表される副生成物の生成割合が 0. 1以下で反応を実施することを特徴と する、上記方法。
CF =CFO (CF ) SO F (2")
2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
[12] 上記一般式 (4")で表される酸フルオリドィ匕合物から誘導されるカルボン酸塩が下 記一般式 (7)で表されるカリウム塩であり、かつ、該カルボン酸塩の熱分解を無溶媒 で行う、請求項 11に記載の方法。
CF CF (CO K) 0 (CF ) SO F (7)
3 2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
[13] カルボン酸塩の熱分解を、該カルボン酸塩を固相状態に保ちながら行う、請求項 1
1又は 12に記載の方法。
[14] 上記一般式(1, )で表される ω—ノ、口ペルフルォロアルキルスルホ-ルフルオリドが 、下記工程 (i)一(iv)により得られる、請求項 2に記載の方法:
(i)下記一般式 (8)
X (CF ) X (8)
2 m
(X及び mは上記一般式(1 ' )と同じである。 )
で表される a , ω—ジハロペルフルォロアルカンをアルカリ金属塩型、アルカリ土類金 属塩型、第 4級アンモ-ゥム塩型、又は第 4級ホスホ-ゥム塩型の何れ力から選ばれ る亜ジチオン酸塩と混合、攪拌して、下記一般式 (9)
X (CF ) SO M (9)
2 m 2
(式中、 Mは、 Ma、 Mb 、第 4級アンモ -ゥムラジカル又は第 4級ホスホ-ゥムラジ
1/2
カルであり、 Maはアルカリ金属、 Mbはアルカリ土類金属である。 X及び mは上記一 般式(1 ' )と同じである。) で表される ωーハロペルフルォロアルキルスルフィン酸塩を製造する工程、
(ii)工程 (i)で得られた反応混合物から上記一般式(9)で表される ω -ハロペルフル ォロアルキルスルフィン酸塩を分離する工程、
(iii)工程(ii)で得られた上記一般式(9)で表される ω ノヽロペルフルォロアルキルス ルフィン酸塩を塩素化剤で処理して下記一般式(10)
X (CF ) SO CI ( 10)
2 m 2
(X及び mは上記一般式(1 ' )と同じである。 )
で表される ω—ハロペルフルォロアルキルスルホ-ルクロリドを製造する工程、及び
(iv)工程(iii)で得られた上記一般式(10)で表される ω—ハロペルフルォロアルキル スルホニルクロリドをフッ素イオン含有ィ匕合物で処理して、上記一般式(1 ' )で表され る ω—ハロペルフルォロアルキルスルホ-ルフルオリドを製造する工程。
[15] 前記工程 (ii)が、工程 (i)の反応で得られた少なくとも上記一般式 (9)で表される ω ーハロペルフルォロアルキルスルフィン酸塩及び副生成物である下記一般式( 11)
MO S (CF ) SO M ( 11)
2 2 m 2
(Mは上記一般式(9)と同じであり、 mは上記一般式(1 ' )と同じである。 ) で表されるペルフルォロアルキル α , ω ビススルフィン酸塩を含む反応混合物か ら上記一般式(9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を抽出分 離する操作を含む、請求項 14に記載の方法。
[16] 前記工程 (ii)力 下記工程 (ii 1)及び工程 (ii 2)を含む工程である請求項 14〖こ 記載の方法。
(ii 1)前記工程 (i)で得られた少なくとも未反応の上記一般式 (8)で表される ex , ω -ジハ口ペルフルォロアルカン、目的化合物である上記一般式(9)で表される ω -ハ 口ペルフルォロアルキルスルフィン酸塩、及び副生成物である上記一般式(11)で表 されるペルフルォロアルキル α , ω ビススルフィン酸塩を含む反応混合物から、上 記一般式(8)で表される a , ω ジハロペルフルォロアルカンを除去する工程、 (ii 2)上記工程 (ii 1)で得られた少なくとも上記一般式(9)で表される ω—ハロペル フルォロアルキルスルフィン酸塩及び上記一般式(11)で表されるペルフルォロアル キル a , ω ビススルフィン酸塩を含む混合物から、上記一般式(9)で表される ω - ノ、口ペルフルォロアルキルスルフィン酸塩を抽出分離する工程。
[17] 上記一般式 (9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を分離除 去した後の反応残渣を塩素化剤で処理する操作により上記一般式 (8)で表される α , ω ジハロペルフルォロアルカン及び Ζ又は上記一般式(10)で表される ω—ハロ ペルフルォロアルキルスルホ-ルクロリドを製造し、これらを工程(i)及び Z又は工程 (iv)に再使用する、請求項 14一 16のいずれか一項に記載の方法。
[18] 上記一般式 (9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を分離除 去した後の、少なくとも上記一般式(11)で表されるペルフルォロアルキル α , ω— ビススルフィン酸塩及び無機沃化物又は無機臭化物から選ばれる少なくとも一方の 無機塩を含有する反応残渣を溶解した水溶液を塩素化剤で処理し、沃素又は臭素 の少なくとも一方と下記一般式( 12)
CIO S (CF ) SO CI (12)
2 2 m 2
(mは上記一般式(1 ' )と同じである。 )
で表されるペルフルォロアルキル α , ω—ビススルホ-ルクロリドを生成させ、次い で、当該反応混合物を水難溶性有機溶媒で抽出処理することにより、上記一般式 (8 )で表される , ω ジハロペルフルォロアルカン及び Z又は上記一般式(10)で表 される ω—ハロペルフルォロアルキルスルホ-ルクロリドを製造'分離し、これらを工程 (i)及び Ζ又は工程 (iv)に再使用する、請求項 14一 16のいずれか一項に記載の方 法。
[19] 上記一般式 (9)で表される ω—ハロペルフルォロアルキルスルフィン酸塩を分離除 去した後の反応残渣を、塩素化剤で処理することにより上記一般式( 12)で表される ペルフルォロアルキル α , ω ビススルホ-ルクロリドを製造し、次いで当該ペルフ ルォロアルキル α , ω—ビススルホユルク口リドを沃素又は臭素と反応させて、上記 一般式(8)で表される a , ω ジハロペルフルォロアルカン及び Ζ又は上記一般式( 10)で表される ω ノヽロペルフルォロアルキルスルホ-ルクロリドを製造、分離し、こ れらを工程 (i)及び Ζ又は工程 (iv)に再使用する、請求項 14一 16のいずれか一項 に記載の方法。
[20] 上記一般式( 12)で表されるペルフルォロアルキル a , ω ビススルホユルクロリド を沃素又は臭素と反応させることを含む上記一般式 (8)で表される a , ω—ジハロぺ ルフルォロアルカン及び Ζ又は上記一般式(10)で表される ω—ハロペルフルォロア ルキルスルホニルクロリドを製造する方法。
[21] 上記一般式(1 ' )一(5' )、(7)—(12)、(2")、及び (4")で表される化合物におい て、 mは 4一 8の整数である請求項 2及び請求項 6— 20のいずれ力 1項に記載の方 法。
[22] 上記一般式(1 ' )一(5' )、(7)—(12)、(2")、及び (4")で表される化合物におい て、 mは 4一 6の整数である請求項 2及び請求項 6— 20のいずれ力 1項に記載の方 法。
[23] 上記一般式(2)、(2' )、(4)、及び (4' )で表される化合物において、 n又は nが 0 である請求項 1一 8、 14一 19及び 21— 22のいずれ力 1項に記載の方法。
[24] 上記一般式( 1)、( 1 ' )、及び (8)—( 10)で表される化合物にお 、て、 Xが沃素原 子である請求項 1一 8及び 14一 22のいずれか 1項に記載の方法。
[25] 請求項 14に記載の工程 (i)一(iv)を含む、上記一般式(1 ' )で表される ω ハロぺ ルフルォロアルキルスルホ-ルフルオリドを製造する方法。
[26] 請求項 15— 19のいずれか 1項に記載の工程を含む、上記一般式(1 ' )で表される ω ノヽロペルフルォロアルキルスルホ-ルフルオリドを製造する方法。
PCT/JP2005/003888 2004-03-08 2005-03-07 フッ素化合物の製造方法 WO2005085187A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510769A JP4993462B2 (ja) 2004-03-08 2005-03-07 フッ素化合物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004064678 2004-03-08
JP2004-064678 2004-03-08

Publications (1)

Publication Number Publication Date
WO2005085187A1 true WO2005085187A1 (ja) 2005-09-15

Family

ID=34918199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003888 WO2005085187A1 (ja) 2004-03-08 2005-03-07 フッ素化合物の製造方法

Country Status (2)

Country Link
JP (1) JP4993462B2 (ja)
WO (1) WO2005085187A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248907A (ja) * 2005-03-08 2006-09-21 Daikin Ind Ltd 含フッ素ハロゲン化物の製造方法
US7399887B1 (en) 2007-08-06 2008-07-15 E. I. Du Pont De Nemours And Company Fluorinated sulfonate surfactants
JP2011203029A (ja) * 2010-03-25 2011-10-13 Hitachi-Ge Nuclear Energy Ltd フッ化化合物の処理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624328B1 (en) * 2002-12-17 2003-09-23 3M Innovative Properties Company Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241980A (ja) * 2001-02-13 2002-08-28 Asahi Kasei Corp フッ素化モノマーの製造法
JP4143810B2 (ja) * 2002-06-14 2008-09-03 ダイキン工業株式会社 含フッ素フルオロスルホニルアルキルビニルエーテルの製造方法
JP4143809B2 (ja) * 2002-06-14 2008-09-03 ダイキン工業株式会社 含フッ素フルオロスルホニルアルキルビニルエーテルの製造方法
JP4412171B2 (ja) * 2002-06-14 2010-02-10 ダイキン工業株式会社 スルホン酸官能基含有フッ素化単量体、それを含有する含フッ素共重合体、およびイオン交換膜

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624328B1 (en) * 2002-12-17 2003-09-23 3M Innovative Properties Company Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIU W. ET AL: "A Useful Synthesis of omega-Iodoperfluoroalkanesulfonyl fluorides and perfluoroalkane-alpha, omega-bis-sulfonyl fluorides", JOURNAL OF FLUORINE CHEMISTRY, vol. 60, 1993, pages 93 - 100, XP000335011 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006248907A (ja) * 2005-03-08 2006-09-21 Daikin Ind Ltd 含フッ素ハロゲン化物の製造方法
US7399887B1 (en) 2007-08-06 2008-07-15 E. I. Du Pont De Nemours And Company Fluorinated sulfonate surfactants
JP2011203029A (ja) * 2010-03-25 2011-10-13 Hitachi-Ge Nuclear Energy Ltd フッ化化合物の処理方法

Also Published As

Publication number Publication date
JPWO2005085187A1 (ja) 2007-12-13
JP4993462B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
JP5471121B2 (ja) パーフルオロアルカンスルフィン酸塩の製造方法
JP5609879B2 (ja) ビススルホニルイミドアンモニウム塩、ビススルホニルイミドおよびビススルホニルイミドリチウム塩の製造方法
KR101431926B1 (ko) 에테르 구조를 갖는 퍼플루오로술폰산 및 그 유도체의 제조 방법, 그리고 함불소에테르술폰산 화합물 및 그 유도체를 함유하는 계면활성제
JP5730513B2 (ja) 含フッ素スルホニルイミド化合物の製造方法
US9394247B2 (en) Method for preparing a sulfonimide compound and salts thereof
WO2005085187A1 (ja) フッ素化合物の製造方法
JPWO2002044138A1 (ja) 含フッ素スルホニルフルオリド化合物の製造方法
KR20000071141A (ko) 플루오르화된 베타-설톤의 제조 방법
WO2009083451A1 (en) Addition reaction to fluoroallylfluorosulfate
JP2006219419A (ja) パーフルオロビニルエーテルモノマーの製造法
JP2006335699A (ja) モノマー中間体の製造方法
US20140339096A1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
JP4666107B2 (ja) トリクロロトリフルオロ酸化プロピレン及びその製造方法
JP4688427B2 (ja) (ペル)フルオロハロゲンエーテルの製造方法
JP2006131588A (ja) 含フッ素スルフィン酸塩の製造方法
JP5092192B2 (ja) ペルフルオロ化合物およびその誘導体の製造方法
JP2006232704A (ja) 新規なフルオロスルホニル基含有化合物
JP4857618B2 (ja) 酸フルオライドの製造方法
JP4231999B2 (ja) ω−ヨウ化含フッ素アルキルビニルエーテルの製造方法
JP4058142B2 (ja) 弗化沃化エタンの製造方法
JP2011037784A (ja) ペルフルオロアルキルスルホンアミドの製造方法
JP4284493B2 (ja) ジフルオロハロアセチルフロリドの製造方法
JP2004018427A (ja) 含フッ素フルオロスルホニルアルキルビニルエーテルの製造方法
JP2016135803A (ja) ペルフルオロアルケニルオキシ基含有アレーン化合物の製造法
JP6524454B2 (ja) ペルフルオロアルケニルオキシ基含有ビニル化合物の製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510769

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase