WO2005081340A1 - 燃料電池用担持触媒、その製造方法及び燃料電池 - Google Patents

燃料電池用担持触媒、その製造方法及び燃料電池 Download PDF

Info

Publication number
WO2005081340A1
WO2005081340A1 PCT/JP2005/002265 JP2005002265W WO2005081340A1 WO 2005081340 A1 WO2005081340 A1 WO 2005081340A1 JP 2005002265 W JP2005002265 W JP 2005002265W WO 2005081340 A1 WO2005081340 A1 WO 2005081340A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
supported catalyst
supported
catalyst
alloy
Prior art date
Application number
PCT/JP2005/002265
Other languages
English (en)
French (fr)
Inventor
Tomoaki Terada
Toshiharu Tabata
Hiroaki Takahashi
Original Assignee
Cataler Corporation
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corporation, Toyota Jidosha Kabushiki Kaisha filed Critical Cataler Corporation
Priority to EP05710216A priority Critical patent/EP1727224A4/en
Publication of WO2005081340A1 publication Critical patent/WO2005081340A1/ja
Priority to US11/244,459 priority patent/US7223493B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a supported catalyst for a fuel cell, a method for producing the same, and a fuel cell, and more particularly to a supported catalyst for a fuel cell in which a platinum alloy is supported on a conductive carrier, a method for producing the same, and a method for using the same.
  • a supported catalyst for a fuel cell in which a platinum alloy is supported on a conductive carrier, a method for producing the same, and a method for using the same.
  • Some platinum alloys have a higher catalytic activity than platinum. Therefore, to improve the performance of the fuel cell, it is effective to use a supported catalyst in which a platinum alloy is supported on a conductive carrier.
  • the fuel cell using such a supported catalyst has a problem that it tends to deteriorate with time as compared with a fuel cell using a supported catalyst in which platinum is supported on a conductive carrier. is there.
  • JP-A-6-176766 discloses that, when platinum, nickel and cobalt supported on a conductive carrier are heated to form an alloy, the heating temperature is set to 600 ° C or higher and lower than 800 ° C. It is described that a regular structure is formed in a ternary platinum-nickel-conoreto alloy.
  • Japanese Patent Application Laid-Open No. 2001-52718 discloses that a platinum-supported catalyst is produced by supporting platinum on a carbon support, and a base metal is added to the platinum-supported catalyst to produce an alloy-supported catalyst. It is described that a part of the compound is eluted and removed, and then it is brought into contact with carbon monoxide, and further heat-treated in an inert atmosphere.
  • documents related to the present invention include JP-A-9-161811, JP-A-2003-142112, and JP-A-2003-45442.
  • An object of the present invention is to provide a supported catalyst for a fuel cell in which a platinum alloy is supported on a conductive carrier.
  • An object of the present invention is to make it possible to realize a fuel cell that has excellent life characteristics while being used.
  • a supported catalyst for a fuel cell comprising a conductive support and a platinum alloy supported on the conductive support, wherein 0.5 g of the supported catalyst is added to 30 mL at normal temperature.
  • the fuel cell system includes an anode catalyst layer, a force catalyst layer, and an electrolyte layer interposed therebetween, and includes at least the anode catalyst layer and the force catalyst layer.
  • a fuel cell containing the supported catalyst according to claim 1 is provided.
  • a third aspect of the present invention supporting a platinum compound on a particulate conductive carrier by a wet method, metallizing the platinum compound by applying a reducing agent to platinum, After the platinum compound is metallized, a transition metal other than platinum is further supported on the conductive carrier by a wet method under reducing conditions, and the conductive carrier loaded with the transition metal other than platinum is heated.
  • a method for producing a supported catalyst for a fuel cell comprising removing unalloyed transition metals other than platinum.
  • FIG. 1 is a cross-sectional view schematically showing a structure that can be employed in a fuel cell according to one embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between stirring time and transition metal concentration.
  • FIG. 3 is a graph showing a relationship between a stirring time and a transition metal elution rate.
  • FIG. 4 is a graph showing the change over time of the output voltage.
  • FIG. 1 is a cross-sectional view schematically showing a structure that can be employed in a fuel cell according to one embodiment of the present invention.
  • FIG. 1 shows a membrane electrode assembly for a polymer electrolyte fuel cell as an example.
  • the membrane electrode assembly 1 includes an anode catalyst layer 2 and a force sword catalyst layer 3, and a proton conductive solid electrolyte layer 4 interposed therebetween and containing a proton conductive solid electrolyte. I have.
  • the anode catalyst layer 2 and the force sword catalyst layer 3 include a supported catalyst 5 in which a platinum catalyst 51 is supported on a conductive carrier 52 such as a carbon carrier, and a proton conductive solid electrolyte 6. Further, the proton conductive solid electrolyte layer 4 includes a proton conductive solid electrolyte 6.
  • At least one of the anode catalyst layer 2 and the force sword catalyst layer 3 contains a supported catalyst 5 using a platinum alloy as the platinum catalyst 51.
  • both the anode catalyst layer 2 and the force catalyst layer 3 contain a supported catalyst 5 using a platinum alloy as the platinum catalyst 51, and all the supported catalysts 5 use a platinum alloy as the platinum catalyst 51. It shall be used.
  • the present inventors have found that the supported catalyst manufactured by the method described below has a low transition metal elution rate.
  • the present inventors have found that an excellent fuel cell can be realized, and have accomplished the present invention.
  • the “elusion rate of transition metal” can be measured by the following evaluation method.
  • the ratio of transition metals other than platinum in the supported catalyst was determined. I will. On the other hand, 0.5 g was weighed from the rest of the supported catalyst, and this was poured into 30 mL of a 0.1 N sulfuric acid aqueous solution, and the dispersion was stirred at room temperature for a predetermined time. Thereafter, this dispersion is subjected to filtration under reduced pressure, and the volume V (mL) of the filtrate is measured. In addition, this filtrate is Measure the concentration of transition metals other than platinum in the filtrate, that is, the concentration of eluted transition metal, C (ppm). The suffix of these abbreviations indicates that the supported catalyst is dispersed.
  • the transition metal elution rate R (%) is determined by comparing the amount of transition metal other than platinum contained in the filtrate with the amount of sulfuric acid aqueous solution.
  • Dissolution rate R This is a ratio to the amount of transition metal other than platinum contained in the supported catalyst before the solution treatment.
  • the eluted transition metal concentration C obtained by this method is affected by the stirring temperature. That is
  • the supported catalyst 5 for example, a catalyst produced by the following method can be used.
  • a platinum compound is supported on the particulate conductive carrier 52 by a wet method.
  • a conductive carrier 52 such as a carbon carrier is sufficiently dispersed in an aqueous solution of a platinum compound such as chloroplatinic acid. Thereafter, the dispersion is filtered, and the filter cake is washed with deionized water or the like.
  • a reducing agent is allowed to act on the platinum compound supported on the conductive carrier 52, and this is metallized to platinum.
  • the filter cake after washing is dispersed again in deionized water, and a reducing agent such as sodium borohydride is added to the dispersion. Thereafter, the dispersion is filtered and the filter cake is washed.
  • a transition metal other than platinum is further supported on the conductive carrier 52 by a wet method under reducing conditions.
  • a filter cake after reduction treatment and washing is put into an aqueous solution of an iron compound such as iron chloride, and the conductive carrier 52 supporting platinum is sufficiently dispersed.
  • a reducing agent such as hydrazine is slowly dropped into the dispersion. This maintains the dispersion under reducing conditions.
  • the conductive support 52 supporting a transition metal other than platinum is heated in an inert atmosphere or a reducing atmosphere to produce an alloy of platinum and a transition metal other than platinum.
  • the conductive carrier 52 supporting a transition metal other than platinum is heated in an argon atmosphere.
  • a supported catalyst 5 in which the platinum alloy 51 is supported on the conductive carrier 52 is obtained.
  • the supported catalyst 5 is washed with an acid to remove unalloyed transition metals other than platinum from the supported catalyst 5.
  • the supported catalyst 5 is dispersed in an aqueous sulfuric acid solution, and this dispersion is sufficiently stirred. Subsequently, the dispersion is filtered, the filter cake is washed with deionized water or the like, and further subjected to a drying treatment.
  • the transition metal dissolution rate R power is less than 0%, typically less than 20%.
  • the supported catalyst 5 is obtained.
  • the transition metal concentration C obtained according to the above evaluation method for the supported catalyst 5 obtained by this method is usually 200 ppm or less, typically 10 ppm.
  • a transition metal other than platinum is further supported on the conductive carrier 52. Further, the step of supporting a transition metal other than platinum on the conductive carrier 52 is performed under reducing conditions. Therefore, at the end of this step, no platinum compound or other transition metal compound exists on the surface of platinum or a transition metal other than platinum, and at the interface between them. Therefore, these compounds do not prevent alloying of platinum with a transition metal other than platinum. Therefore, according to this method, a platinum alloy having a uniform composition can be obtained.
  • the corrosion resistance to the acid becomes non-uniform. That is, a region having extremely low corrosion resistance to acids (low corrosion resistance region) is generated in the platinum alloy.
  • the low corrosion resistance region is typically a region having a significantly high content of transition metals other than platinum, and can be removed to some extent by acid washing. However, low acid cleaning Only the portion of the corrosion resistant region exposed on the surface of the platinum alloy can be removed.
  • the platinum alloy When a fuel cell is used, the platinum alloy is exposed to a severe environment such as a stronger acid or voltage fluctuation. Therefore, even if the low corrosion resistant region is partially removed by acid cleaning, transition metals other than platinum are eluted from the small low corrosion resistant region that cannot be removed by acid cleaning when the fuel cell is used. . For these reasons, in a fuel cell using a supported catalyst having a heterogeneous platinum alloy composition, it is not possible to realize an excellent life characteristic in which the electrolyte is easily deteriorated due to the elution.
  • the low corrosion resistance region exists in a platinum alloy having a uniform composition! Therefore, even when the fuel cell is used, the transition metal other than platinum is hardly eluted from the platinum alloy. Therefore, when the supported catalyst 5 manufactured by the above method is used, deterioration of the electrolyte due to elution of the transition metal other than platinum can be suppressed, and excellent life characteristics can be realized.
  • the platinum alloy used as the platinum catalyst 51 may contain platinum and at least one transition metal other than platinum.
  • the platinum alloy may contain three or more transition metals such as a ternary alloy, but is typically a binary alloy.
  • the platinum alloy used as the platinum catalyst 51 contains a transition metal that is more soluble in acid than platinum.
  • Such transition metals include, for example, iron, cobalt, nickel, copper, manganese, and mixtures thereof.
  • the molar ratio of the transition metal other than platinum to platinum in the platinum alloy is, for example, 0.15 or more, and typically 0.2 to 1.
  • the average particle size of the platinum catalyst 51 is preferably about lnm to 5nm.
  • the average particle size of the platinum catalyst 51 is lnm or more, their aggregation can be suppressed. Further, when the average particle size of the platinum catalyst 51 is set to 5 nm or less, the specific surface area thereof becomes large, and the ability as the catalyst can be sufficiently brought out.
  • the supported amount of platinum of the supported catalyst 5 is desirably about 5% to 80% by weight, and more desirably about 20% to 80% by weight.
  • the amount of supported platinum is not less than the lower limit, it is advantageous in improving the current-voltage characteristics of the polymer electrolyte fuel cell.
  • the amount of supported platinum is about 80% by weight or less, the specific surface area of the platinum catalyst 51 is increased. This is advantageous in terms of cost and also in terms of cost.
  • a carbon carrier such as carbon black or activated carbon can be used.
  • the conductive carrier 52 one having an average particle size of about 100 nm or less is usually used.
  • the proton conductive solid electrolyte 6 in the anode catalyst layer 2, the force catalyst layer 3, and the proton conductive solid electrolyte layer 4 contains water.
  • a proton conductive solid electrolyte having an SO— group can be used.
  • a proton conductive solid electrolyte it is preferable to use, for example, a perfluorosulfonic acid ionomer represented by the following structural formula represented by naphthion.
  • a perfluorosulfonic acid ionomer represented by the following structural formula represented by naphthion.
  • the same type of proton conductive solid electrolyte 6 may be used for the anode catalyst layer 2, the force catalyst layer 3, and the proton conductive solid electrolyte layer 4, or Alternatively, different types of proton conductive solid electrolytes 6 may be used.
  • Supported catalyst 5 was prepared by the following method.
  • the filter cake was washed and dispersed again in 1 L of pure water.
  • a solution obtained by dissolving 4 g of sodium borohydride in pure water as a reducing agent was dropped into the dispersion, and the dispersion was filtered.
  • the platinum compound supported on the carbon carrier 52 was metallized to platinum.
  • the filter cake was washed and dispersed again in 1 L of pure water.
  • an aqueous solution containing 0.5 g of iron was added to the dispersion.
  • hydrazine was slowly dropped into the dispersion.
  • the dispersion was maintained under reducing conditions, and the metallic iron was supported on the carbon carrier 52.
  • this dispersion was filtered, and the filter cake was washed and vacuum dried. Thereafter, this was heated at 800 ° C. for 2 hours in an argon atmosphere to produce an alloy 51 of platinum and iron.
  • the carbon support 52 supporting the alloy 51 of platinum and iron was washed with a 1N aqueous sulfuric acid to remove unalloyed substances. Subsequently, the dispersion was filtered, and the filter cake was washed and dried.
  • supported catalyst 5 having a platinum loading of 61.2% by weight and an iron loading of 4.1% by weight was obtained.
  • the supported catalyst 5 thus obtained is referred to as catalyst powder [A].
  • Supported catalyst 5 was prepared by the following method.
  • a supported catalyst 5 having a platinum loading of 61.2% by weight and an iron loading of 4.1% by weight was obtained by the same method as described above for the catalyst powder [A].
  • the supported catalyst 5 thus obtained is referred to as catalyst powder [B].
  • a supported catalyst was prepared by the following method.
  • the dispersion was filtered, and the filter cake was washed and vacuum dried. Thereafter, this was subjected to a reduction treatment at 500 ° C. for 2 hours in a hydrogen atmosphere. Subsequently, this was heated in an argon atmosphere at 800 ° C. for 6 hours to produce an alloy of platinum and iron.
  • the carbon support supporting the alloy of platinum and iron was pickled with a 1N aqueous sulfuric acid solution to remove unalloyed substances. Subsequently, the dispersion was filtered, and the filter cake was washed and dried.
  • catalyst powder [C] As described above, a supported catalyst having a platinum loading of 61.2% by weight and an iron loading of 4.0% by weight was obtained.
  • the supported catalyst thus obtained is referred to as catalyst powder [C].
  • the diffraction angle of the platinum (111) plane was measured using an X-ray diffractometer. As a result, it was confirmed that platinum and iron were alloyed with respect to the amount of shift.
  • FIG. 2 is a graph showing the relationship between the stirring time T and the transition metal concentration C.
  • Figure 2 is a graph showing the relationship between the stirring time T and the transition metal concentration C.
  • the horizontal axis shows the stirring time T, and the vertical axis shows the transition metal concentration C. Also, FIG.
  • FIG. 6 is a graph showing the relationship between time T and transition metal elution rate R.
  • the horizontal axis is the disturbance.
  • the stirring time T is shown, and the vertical axis shows the transition metal elution rate R.
  • Tables 1 and 2 and FIGS. 2 and 3
  • elution of iron ions was suppressed in the catalyst powders [A] and [B] compared to the catalyst powder [C].
  • the membrane / electrode assembly 1 shown in FIG. 1 was produced by the following method.
  • a supported catalyst in which platinum was supported on a carbon support in a loading amount of 30% by weight was added to an organic solvent, and the resulting mixture was uniformly dispersed in the organic solvent by an ultrasonic homogenizer.
  • this dispersion was applied on a Teflon sheet, and this coating was dried to obtain an anode catalyst layer 2 having a catalyst weight per 0.3 cm 2 of electrode area of 0.3 nm.
  • this anode catalyst layer 2 is referred to as a catalyst layer [D].
  • catalyst layers [A] to [C] were produced by the following method.
  • the catalyst powder [A] was added into an organic solvent, and the mixture was uniformly dispersed in the organic solvent with an ultrasonic homogenizer. Next, this dispersion was applied onto a Teflon sheet, and the coating was dried to obtain a force sword catalyst layer 3 having a catalyst weight per unit area of 1 cm 2 of electrode of 0.4 mg.
  • this power sword catalyst layer 3 is referred to as a catalyst layer [A].
  • a force sword catalyst layer 3 was obtained in the same manner as described above for the catalyst layer [A] except that the catalyst powder [B] was used. Further, a force sword catalyst layer 3 was obtained by the same method as described above for the catalyst layer [A] except that the catalyst powder [C] was used.
  • these cathode catalyst layers 3 are referred to as catalyst layers [B] and [C], respectively.
  • each of the catalyst layers [A] to [C] and the catalyst layer [D] were bonded by hot pressing via the proton conductive solid electrolyte layer 4.
  • three kinds of membrane electrode assemblies 1 were produced, and diffusion layers were provided on both surfaces of each.
  • the single cell electrodes obtained as described above are referred to as single cell electrodes [A] to [C].
  • the characteristics of the single cell electrodes [A] to [C] were evaluated by the following methods.
  • FIG. 4 is a graph showing the change over time of the output voltage.
  • the horizontal axis indicates the elapsed time from the start of power generation
  • the vertical axis indicates the battery voltage of the single cell electrodes [A] to [C].
  • the battery voltage of the single-cell electrode [C] dropped significantly with the passage of time, and dropped to 0.77 V 10 hours after the start of power generation.
  • single-cell electrodes [A] and [B] had a battery voltage of 0.770 V or more even after 800 hours from the start of power generation, and maintained a high battery voltage for a long time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

 導電性担体(52)とこれに担持された白金合金(51)とを含んだ燃料電池用担持触媒(5)であって、担持触媒(5)の0.5gを常温のもと30mLの0.1N硫酸水溶液中で800時間攪拌したときに、白金以外の遷移金属の溶出率が30%以下である担持触媒が提供される。

Description

燃料電池用担持触媒、その製造方法及び燃料電池
技術分野
[0001] 本発明は、燃料電池用担持触媒、その製造方法及び燃料電池に係り、特には、白 金合金を導電性担体に担持してなる燃料電池用担持触媒、その製造方法及びこれ を用 、た燃料電池に関する。
背景技術
[0002] 白金合金には、白金と比較して触媒活性がより大きいものがある。したがって、燃料 電池の高性能化には、白金合金を導電性担体に担持してなる担持触媒を使用する ことが効果的である。しカゝしながら、そのような担持触媒を使用した燃料電池には、白 金を導電性担体に担持してなる担持触媒を使用した燃料電池と比較して、経時劣化 を生じ易いという問題がある。
[0003] このような問題に対しては、担持触媒の耐久性を向上させることにより燃料電池の 経時劣化を抑制する試みが為されて 、る。
[0004] 例えば、特開平 6— 176766号公報には、導電性担体に担持させた白金、ニッケル 及びコバルトを加熱して合金化するに際し、その加熱温度を 600°C以上 800°C未満 として、白金 ニッケル コノ レト三元合金に規則性構造を生じさせることが記載され ている。また、特開 2001— 52718号公報には、カーボン担体に白金を担持させて白 金担持触媒を製造し、この白金担持触媒に卑金属を添加して合金担持触媒を製造 し、合金担持触媒の卑金属の一部を溶出除去し、次いで、これを一酸化炭素と接触 させ、さらに、不活性雰囲気中で熱処理することが記載されている。なお、これら文献 に加え、本発明に関連する文献として、特開平 9— 161811号公報、特開 2003— 14 2112号公報、及び特開 2003-45442号公報がある。
[0005] これら方法によると、燃料電池の経時劣化を或る程度は抑制可能である。しかしな がら、これら方法によって達成される寿命特性は、必ずしも十分ではない。
発明の開示
[0006] 本発明の目的は、白金合金を導電性担体に担持してなる燃料電池用担持触媒を 使用するとともに寿命特性に優れた燃料電池を実現可能とすることにある。
[0007] 本発明の第 1側面によると、導電性担体とこれに担持された白金合金とを具備した 燃料電池用担持触媒であって、前記担持触媒の 0. 5gを常温のもと 30mLの 0. 1N 硫酸水溶液中で 800時間攪拌したときに、白金以外の遷移金属の溶出率が 30%以 下である担持触媒が提供される。
[0008] 本発明の第 2側面によると、アノード触媒層と、力ソード触媒層と、それらの間に介 在した電解質層とを具備し、前記アノード触媒層及び前記力ソード触媒層の少なくと も一方は請求項 1に記載の担持触媒を含有した燃料電池が提供される。
[0009] 本発明の第 3側面によると、湿式法により粒子状の導電性担体に白金化合物を担 持させることと、前記白金化合物に還元剤を作用させて白金へと金属化することと、 前記白金化合物を金属化した後に還元条件とした湿式法により前記導電性担体に 白金以外の遷移金属をさらに担持させることと、前記白金以外の遷移金属を担持さ せた前記導電性担体を加熱することにより前記白金と前記白金以外の遷移金属との 合金を生じさせて、前記合金を前記導電性担体に担持してなる担持触媒を得ることと 、前記担持触媒を酸洗浄して前記担持触媒から前記白金以外の遷移金属の未合金 化物を除去することとを含んだ燃料電池用担持触媒の製造方法が提供される。 図面の簡単な説明
[0010] [図 1]本発明の一態様に係る燃料電池に採用可能な構造を概略的に示す断面図。
[図 2]攪拌時間と遷移金属濃度との関係を示すグラフ。
[図 3]攪拌時間と遷移金属の溶出率との関係を示すグラフ。
[図 4]出力電圧の経時変化を示すグラフ。
発明を実施するための最良の形態
[0011] 以下、本発明の態様について、図面を参照しながら詳細に説明する。なお、各図に おいて、同様又は類似する構成要素には同一の参照符号を付し、重複する説明は 省略する。
[0012] 図 1は、本発明の一態様に係る燃料電池に採用可能な構造を概略的に示す断面 図である。図 1には、一例として、固体高分子型燃料電池用の膜電極接合体を示し ている。 [0013] この膜電極接合体 1は、アノード触媒層 2及び力ソード触媒層 3と、それらの間に介 在するとともにプロトン電導性固体電解質を含んだプロトン電導性固体電解質層 4と を備えている。
[0014] アノード触媒層 2及び力ソード触媒層 3は、白金触媒 51をカーボン担体などの導電 性担体 52に担持してなる担持触媒 5と、プロトン電導性固体電解質 6とを含んでいる 。また、プロトン電導性固体電解質層 4は、プロトン電導性固体電解質 6を含んでいる
[0015] アノード触媒層 2及び力ソード触媒層 3の少なくとも一方は、白金触媒 51として白金 合金を使用した担持触媒 5を含有している。ここでは、一例として、アノード触媒層 2 及び力ソード触媒層 3の双方が、白金触媒 51として白金合金を使用した担持触媒 5 を含有し、全ての担持触媒 5は、白金触媒 51として白金合金を使用していることとす る。
[0016] ところで、従来、白金合金を導電性担体に担持してなる担持触媒を使用した燃料 電池が経時劣化し易い理由は、主として、そのような担持触媒は触媒活性の低下を 生じ易いためであると考えられていた。本発明者らは、これについて鋭意検討した結 果、先の経時劣化には、触媒活性の低下よりも、白金合金から電解質中への遷移金 属イオンの溶出が大きな影響を与えていることを見出した。すなわち、燃料電池の経 時劣化を抑制するうえでは、遷移金属イオンの溶出に起因した電解質の劣化を抑制 することが重要である。
[0017] 本発明者らは、さらに研究を重ねた結果、後述する方法によって製造した担持触媒 は、遷移金属の溶出率が低ぐこのように遷移金属の溶出率が低い担持触媒は寿命 特性に優れた燃料電池を実現可能とすることを見出し、本発明を為すに至った。な お、この「遷移金属の溶出率」は、以下の評価方法によって測定することができる。
[0018] まず、白金合金を導電性担体に担持してなる担持触媒の一部を用いて、担持触媒 に占める白金以外の遷移金属の割合,すなわち遷移金属担持量, P (重量%)を求 める。その一方で、先の担持触媒の残りの中から 0. 5gを計量し、これを 30mLの 0. 1N硫酸水溶液中に投入し、この分散液を常温で所定の時間攪拌する。その後、こ の分散液を減圧濾過に供し、濾液の体積 V (mL)を測定する。さらに、この濾液を原 子吸光分光分析に供し、濾液中の白金以外の遷移金属の濃度,すなわち溶出遷移 金属濃度, C (ppm)を測定する。なお、これら略号の添え字は、担持触媒を分散さ
T
せた硝酸水溶液の攪拌時間 τ (時間)を意味している。
[0019] 遷移金属の溶出率 R (%)は、濾液に含まれる白金以外の遷移金属の量と硫酸水
T
溶液処理前の担持触媒が含む白金以外の遷移金属の量との比である。溶出率 R
Tは
、遷移金属担持量 P、濾液の体積 V、溶出遷移金属濃度 Cを用いて、以下の等式
T T
力 算出され得る。
[数 1]
Figure imgf000006_0001
[0020] なお、室温乃至 40°Cの範囲内であれば、先の分散液の攪拌を何れの温度で実施 しても、この方法で得られる溶出遷移金属濃度 Cが攪拌温度の影響を受けることは
T
ない。また、担持触媒が沈降しない範囲内であれば、先の分散液の攪拌を何れの速 度で実施しても、この方法で得られる溶出遷移金属濃度 cが攪拌速度の影響を受
T
けることはない。
[0021] 本態様では、担持触媒 5として、例えば、以下の方法により製造したものを使用する ことができる。
まず、湿式法により、粒子状の導電性担体 52に白金化合物を担持させる。例えば、 塩化白金酸などの白金化合物の水溶液中にカーボン担体などの導電性担体 52を 十分に分散させる。その後、この分散液を濾過し、この濾過ケークを脱イオン水など で洗浄する。
[0022] 次に、導電性担体 52に担持させた白金化合物に還元剤を作用させ、これを白金へ と金属化する。例えば、洗浄後の濾過ケークを脱イオン水中に再度分散させ、この分 散液に、水素化ホウ素ナトリウムなどの還元剤を添加する。その後、この分散液を濾 過し、濾過ケークを洗浄する。
[0023] 次いで、還元条件とした湿式法により、導電性担体 52に白金以外の遷移金属をさ らに担持させる。例えば、塩化鉄などの鉄化合物の水溶液中に、還元処理及び洗浄 後の濾過ケークを投入し、白金を担持した導電性担体 52を十分に分散させる。この 分散液には、例えばヒドラジンなどの還元剤をゆっくりと滴下する。これにより、分散液 を還元条件に維持する。
[0024] さらに、白金以外の遷移金属を担持させた導電性担体 52を不活性雰囲気又は還 元性雰囲気中で加熱して、白金と白金以外の遷移金属との合金を生じさせる。例え ば、白金以外の遷移金属を担持させた導電性担体 52をアルゴン雰囲気中で加熱す る。これにより、白金合金 51を導電性担体 52に担持してなる担持触媒 5を得る。
[0025] その後、担持触媒 5を酸洗浄して、担持触媒 5から白金以外の遷移金属の未合金 化物を除去する。例えば、担持触媒 5を硫酸水溶液中に分散させ、この分散液を十 分に攪拌する。続いて、この分散液を濾過し、この濾過ケークを脱イオン水などを用 いて洗浄し、さらに、乾燥処理に供する。
[0026] この方法〖こよると、遷移金属の溶出率 R 力^ 0%以下,典型的には 20%以下,の
800
担持触媒 5が得られる。また、この方法により得られた担持触媒 5について先の評価 方法に従って得られる遷移金属濃度 C は、通常は 200ppm以下,典型的には 10
800
Oppm以下,である。
[0027] 理論に束縛されることを望む訳ではな 、が、上記の方法によって製造した担持触媒 5の溶出率 R
T力 、さい理由は、以下のように考えられる。
[0028] 上記の製造方法では、導電性担体 52に担持させた白金化合物を白金へと金属化 した後に、導電性担体 52に白金以外の遷移金属をさらに担持させる。また、白金以 外の遷移金属を導電性担体 52に担持させる工程は、還元条件のもとで実施する。そ のため、この工程を終了した時点で、白金や白金以外の遷移金属の表面及びそれら の界面などに、白金化合物やそれ以外の遷移金属化合物は存在していない。それ ゆえ、これら化合物によって白金と白金以外の遷移金属との合金化が妨げられること がない。したがって、この方法〖こよると、均一な組成の白金合金が得られる。
[0029] 白金合金の組成が不均一である場合、その酸に対する耐食性が不均一となる。す なわち、白金合金中に、酸に対する耐食性が極端に低い領域 (低耐食性領域)を生 じる。
[0030] この低耐食性領域は、典型的には白金以外の遷移金属含量が著しく高い領域で あって、酸洗浄によって或る程度は除去可能である。しかしながら、酸洗浄では、低 耐食性領域のうち、白金合金の表面に露出した部分しか除去することができない。
[0031] 燃料電池の使用時には、白金合金は、より強い酸や電圧変動などのように苛酷な 環境に晒される。そのため、例え、酸洗浄により低耐食性領域を部分的に除去したと しても、燃料電池の使用時には、酸洗浄によって除去できなカゝつた低耐食性領域か ら白金以外の遷移金属の溶出を生じる。このような理由力ゝら、白金合金の組成が不 均一な担持触媒を使用した燃料電池では、上記の溶出に起因した電解質の劣化が 生じ易ぐ優れた寿命特性を実現することができない。
[0032] これに対し、組成が均一な白金合金に先の低耐食性領域は存在して!/ヽな ヽ。した がって、燃料電池の使用時であっても、白金合金からの白金以外の遷移金属の溶出 は生じ難い。それゆえ、先の方法により製造した担持触媒 5を使用すると、白金以外 の遷移金属の溶出に起因した電解質の劣化を抑制することができ、優れた寿命特性 を実現することが可能となる。
[0033] 白金触媒 51として使用する白金合金は、白金と白金以外の少なくとも 1種の遷移金 属とを含有していればよい。この白金合金は、例えば三元合金などのように 3種以上 の遷移金属を含有して 、てもよ 、が、典型的には二元合金である。
[0034] 白金触媒 51として使用する白金合金は、白金よりも酸に溶けやすい遷移金属を含 有している。そのような遷移金属としては、例えば、鉄、コバルト、ニッケル、銅、マン ガン、及びそれらの混合物などを挙げることができる。
[0035] この白金合金における白金に対する白金以外の遷移金属のモル比は、例えば、 0 . 15以上であり、典型的には 0. 2乃至 1である。
[0036] 白金触媒 51の平均粒径は、 lnm乃至 5nm程度であることが好ましい。白金触媒 5 1の平均粒径を lnm以上とすると、それらの凝集を抑制することができる。また、白金 触媒 51の平均粒径を 5nm以下とすると、それらの比表面積が大きくなり、その触媒と しての能力を十分に引き出すことができる。
[0037] 担持触媒 5の白金担持量は、 5重量%乃至 80重量%程度とすることが望ましぐ 20 重量%乃至 80重量%程度とすることがより望ましい。白金担持量が先の下限値以上 である場合、固体高分子型燃料電池の電流電圧特性を向上させるうえで有利である 。また、白金担持量が約 80重量%以下である場合、白金触媒 51の比表面積を高め るうえで有利であり、また、コストの観点でも有利である。
[0038] 導電性担体 52としては、例えば、カーボンブラックや活性炭などをカーボン担体を 使用することができる。導電性担体 52としては、通常、平均粒径が約 lOOnm以下の ものを使用する。
[0039] アノード触媒層 2、力ソード触媒層 3及びプロトン電導性固体電解質層 4中のプロト ン電導性固体電解質 6は水を含んでいる。プロトン電導性固体電解質 6としては、例 えば、 SO—基を有するプロトン電導性固体電解質を使用することができる。そのよう
3
なプロトン電導性固体電解質としては、例えばナフイオンに代表される以下の構造式 に示すようなパーフルォロスルホン酸ィオノマーを使用することが好ましい。また、図 1 に示す膜電極接合体 1では、アノード触媒層 2と力ソード触媒層 3とプロトン電導性固 体電解質層 4とに同種のプロトン電導性固体電解質 6を使用してもよぐ或いは、それ らには互いに異なる種類のプロトン電導性固体電解質 6を使用してもよい。
Figure imgf000009_0001
[0040] 以下、本発明の実施例について説明する。
[0041] ·触媒粉末 [A]の調製
以下の方法により、担持触媒 5を調製した。
まず、比表面積が約 1000m2Zgの市販のカーボンブラック粉末 3. 5gを 0. 2Lの 純水中に分散させた。次いで、この分散液中に、 6. Ogの白金を含むへキサヒドロキ ソ白金硝酸溶液を滴下した。さらに 1Lの純水を滴下した後、分散液を濾過した。
[0042] 次に、濾過ケークを洗浄し、再度、 1Lの純水中に分散させた。次いで、この分散液 中に、還元剤として、 4gの水素化硼素ナトリウムを純水中に溶解してなる溶液を滴下 し、その後、この分散液を濾過した。この水素化硼素ナトリウム水溶液の滴下により、 カーボン担体 52が担持している白金化合物を白金へと金属化した。 [0043] 次に、濾過ケークを洗浄し、再度、 1Lの純水中に分散させた。続いて、この分散液 中に、 0. 5gの鉄を含む塩ィ匕鉄水溶液を投入した。さらに、この分散液中に、ヒドラジ ンをゆっくりと滴下した。これにより、分散液を還元条件に維持して、金属鉄をカーボ ン担体 52に担持させた。
[0044] 次 、で、この分散液を濾過し、濾過ケークの洗浄及び真空乾燥を行った。その後、 これを、アルゴン雰囲気中、 800°Cで 2時間加熱して、白金と鉄との合金 51を生じさ せた。
[0045] さらに、この白金と鉄との合金 51を担持したカーボン担体 52を 1Nの硫酸水溶液で 酸洗浄して、未合金化物を除去した。続いて、この分散液を濾過し、この濾過ケーク を洗浄及び乾燥した。
[0046] 以上のようにして、白金担持量が 61. 2重量%であり、鉄担持量が 4. 1重量%の担 持触媒 5を得た。以下、このようにして得られた担持触媒 5を触媒粉末 [A]と呼ぶ。
[0047] なお、この触媒粉末 [A]に関して、 X線回折計を用いて白金の(111)面について の回折角を測定した。その結果、そのシフト量力も白金と鉄とが合金化していることを 確認することができた。
[0048] ,触媒粉末 [B]の調製
以下の方法により、担持触媒 5を調製した。
すなわち、触媒粉末 [A]に関して上述したのと同様の方法により、白金担持量が 6 1. 2重量%であり、鉄担持量が 4. 1重量%の担持触媒 5を得た。以下、このようにし て得られた担持触媒 5を触媒粉末 [B]と呼ぶ。
[0049] なお、この触媒粉末 [B]に関しても、 X線回折計を用いて白金の(111)面について の回折角を測定した。その結果、そのシフト量力も白金と鉄とが合金化していることを 確認することができた。
[0050] ·触媒粉末 [C]の調製
以下の方法により、担持触媒を調製した。
まず、触媒粉末 [A]の製造に使用したのと同様のカーボンブラック粉末 3. 5gを 0. 2Lの純水中に分散させた。次いで、この分散液中に、 6. Ogの白金を含むへキサヒド ロキソ白金硝酸溶液を滴下した。さらに 1Lの純水を滴下した後、分散液を濾過した。 [0051] 次に、濾過ケークを洗浄し、再度、 1Lの純水中に分散させた。続いて、この分散液 中に、 0. 5gの鉄を含む塩ィ匕鉄水溶液を投入した。さらに、この分散液中に、 1Nのァ ンモユア水溶液をゆっくりと滴下した。これにより、鉄水酸化物をカーボン担体に担持 させた。
[0052] 次 、で、この分散液を濾過し、濾過ケークの洗浄及び真空乾燥を行った。その後、 これを、水素雰囲気中、 500°Cで 2時間の還元処理に供した。続いて、これを、アル ゴン雰囲気中、 800°Cで 6時間加熱して、白金と鉄との合金を生じさせた。
[0053] さらに、この白金と鉄との合金を担持したカーボン担体を 1Nの硫酸水溶液で酸洗 浄して、未合金化物を除去した。続いて、この分散液を濾過し、この濾過ケークを洗 浄及び乾燥した。
[0054] 以上のようにして、白金担持量が 61. 2重量%であり、鉄担持量が 4. 0重量%の担 持触媒を得た。以下、このようにして得られた担持触媒を触媒粉末 [C]と呼ぶ。
[0055] なお、この触媒粉末 [C]に関しても、 X線回折計を用いて白金の(111)面について の回折角を測定した。その結果、そのシフト量力も白金と鉄とが合金化していることを 確認することができた。
[0056] ,触媒粉末の物性測定
触媒粉末 [A]乃至 [C]について、遷移金属の溶出率 R及び溶出遷移金属濃度 C
T
を調べた。その結果を、以下の表 1及び表 2並びに図 2及び図 3に纏める。
T
[表 1]
Figure imgf000012_0001
[表 2]
表 2
Figure imgf000012_0002
図 2は、攪拌時間 Tと遷移金属濃度 Cとの関係を示すグラフである。図 2において、
T
横軸は攪拌時間 Tを示し、縦軸は遷移金属濃度 Cを示している。また、図 3は、攪拌
T
時間 Tと遷移金属の溶出率 Rとの関係を示すグラフである。図 3において、横軸は攪
T
拌時間 Tを示し、縦軸は遷移金属の溶出率 Rを示している。 表 1及び表 2並びに図 2及び図 3に示すように、触媒粉末 [A]及び [B]は、触媒粉 末 [C]と比較して、鉄イオンの溶出が抑制されていた。
[0058] ·単セル電極 [A]乃至 [C]の作製
以下の方法により、図 1に示す膜電極接合体 1を作製した。
まず、カーボン担体に白金を 30重量%の担持量で担持してなる担持触媒を有機 溶剤中に添加し、それを超音波ホモジナイザで有機溶剤中に均一に分散させた。次 いで、この分散液をテフロンシート上に塗布し、この塗膜を乾燥させることにより、電 極面積 lcm2当りの触媒目付量が 0. 3mgのアノード触媒層 2を得た。以下、このァノ ード触媒層 2を触媒層 [D]と呼ぶ。
[0059] 次に、以下の方法により、触媒層 [A]乃至 [C]を作製した。
まず、触媒粉末 [A]を有機溶剤中に添加し、それを超音波ホモジナイザで有機溶 剤中に均一に分散させた。次いで、この分散液をテフロンシート上に塗布し、この塗 膜を乾燥させることにより、電極面積 lcm2当りの触媒目付量が 0. 4mgの力ソード触 媒層 3を得た。以下、この力ソード触媒層 3を、触媒層 [A]と呼ぶ。
[0060] 次に、触媒粉末 [B]を用いたこと以外は、触媒層 [A]に関して上述したのと同様の 方法により、力ソード触媒層 3を得た。さらに、触媒粉末 [C]を用いたこと以外は、触 媒層 [A]に関して上述したのと同様の方法により、力ソード触媒層 3を得た。以下、こ れらカソード触媒層 3を、それぞれ、触媒層 [B]及び [C]と呼ぶ。
[0061] 次に、触媒層 [A]乃至 [C]のそれぞれと触媒層 [D]とをプロトン電導性固体電解質 層 4を介してホットプレスにより貼り合せた。このようにして 3種の膜電極接合体 1を作 製し、それぞれの両面に拡散層を設けた。以上のようにして得られた単セル電極を単 セル電極 [A]乃至 [C]と呼ぶ。
[0062] ·単セル電極 [A]乃至 [C]の評価
上記の単セル電極 [A]乃至 [C]について、以下の方法で特性を評価した。
[0063] すなわち、これら単セル電極 [A]乃至 [C]に、力ソード触媒層 3側から空気を 1. OL Z分の流量で供給するとともに、アノード触媒層 2側から水素を 0. 5LZ分の流量で 供給して発電させた。この際、力ソード触媒層 3側のバブラ温度は 85°Cに設定し、ァ ノード触媒層 2側のバブラ温度は 75°Cに設定した。また、単セル電極 [A]乃至 [C] の温度は 80°Cに維持した。これら単セル電極 [A]乃至 [C]の出力電流密度を 0. 5A Zcm2に維持し、出力電圧の経時変化を調べた。その結果を、以下の表 3及び図 4 に纏める。
[表 3]
表 3
Figure imgf000014_0001
[0064] 図 4は、出力電圧の経時変化を示すグラフである。図中、横軸は発電開始からの経 過時間を示し、縦軸は単セル電極 [A]乃至 [C]の電池電圧を示している。表 3及び 図 4に示すように、単セル電極 [C]の電池電圧は、時間の経過とともに著しく低下し、 発電開始から 10時間を経過した時点で 0. 770Vにまで低下した。これに対し、単セ ル電極 [A]及び [B]は、発電開始から 800時間を経過した時点でも電池電圧が 0. 7 70V以上であり、長時間にわたって高い電池電圧を維持した。
[0065] さらなる利益及び変形は、当業者には容易である。それゆえ、本発明は、そのより 広 ヽ側面にぉ 、て、ここに記載された特定の記載や代表的な態様に限定されるべき ではない。したがって、添付の請求の範囲及びその等価物によって規定される本発 明の包括的概念の真意又は範囲力 逸脱しない範囲内で、様々な変形が可能であ る。

Claims

請求の範囲
[I] 導電性担体とこれに担持された白金合金とを具備した燃料電池用担持触媒であつ て、前記担持触媒の 0. 5gを常温のもと 30mLの 0. 1N硫酸水溶液中で 800時間攪 拌したときに、白金以外の遷移金属の溶出率が 30%以下である担持触媒。
[2] 前記担持触媒の 0. 5gを常温のもと 30mLの 0. 1N硫酸水溶液中で 800時間攪拌 したときに、前記攪拌を終了した時点の前記水溶液中における白金以外の遷移金属 の濃度が 200ppm以下である請求項 1に記載の担持触媒。
[3] 前記白金合金は、鉄、コバルト、ニッケル、銅及びマンガンからなる群より選択され る少なくとも 1種の元素を含有した請求項 1に記載の担持触媒。
[4] 前記白金合金は二元合金である請求項 1に記載の担持触媒。
[5] 前記白金合金における白金に対する白金以外の遷移金属のモル比は 0. 15以上 である請求項 1に記載の担持触媒。
[6] 前記白金合金の平均粒径は lnm乃至 5nmの範囲内にある請求項 1に記載の担持 触媒。
[7] 前記担持触媒の白金担持量は 5重量%乃至 80重量%の範囲内にある請求項 1に 記載の担持触媒。
[8] 前記導電性担体はカーボン担体である請求項 1に記載の担持触媒。
[9] アノード触媒層と、力ソード触媒層と、それらの間に介在した電解質層とを具備し、 前記アノード触媒層及び前記力ソード触媒層の少なくとも一方は請求項 1乃至 8の何 れか 1項に記載の担持触媒を含有した燃料電池。
[10] 前記電解質層はプロトン電導性固体電解質層である請求項 9に記載の燃料電池。
[II] 湿式法により粒子状の導電性担体に白金化合物を担持させることと、
前記白金化合物に還元剤を作用させて白金へと金属化することと、
前記白金化合物を金属化した後に還元条件とした湿式法により前記導電性担体に 白金以外の遷移金属をさらに担持させることと、
前記白金以外の遷移金属を担持させた前記導電性担体を加熱することにより前記 白金と前記白金以外の遷移金属との合金を生じさせて、前記合金を前記導電性担 体に担持してなる担持触媒を得ることと、 前記担持触媒を酸洗浄して前記担持触媒から前記白金以外の遷移金属の未合金 化物を除去することとを含んだ燃料電池用担持触媒の製造方法。
PCT/JP2005/002265 2004-02-23 2005-02-15 燃料電池用担持触媒、その製造方法及び燃料電池 WO2005081340A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05710216A EP1727224A4 (en) 2004-02-23 2005-02-15 SUPPORT CATALYST FOR A FUEL CELL, MANUFACTURING METHOD AND FUEL CELL
US11/244,459 US7223493B2 (en) 2004-02-23 2005-10-05 Supported catalyst for fuel cell, method of manufacturing the same, and fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-046349 2004-02-23
JP2004046349A JP2005235688A (ja) 2004-02-23 2004-02-23 燃料電池用担持触媒、その製造方法及び燃料電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/244,459 Continuation US7223493B2 (en) 2004-02-23 2005-10-05 Supported catalyst for fuel cell, method of manufacturing the same, and fuel cell

Publications (1)

Publication Number Publication Date
WO2005081340A1 true WO2005081340A1 (ja) 2005-09-01

Family

ID=34879439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002265 WO2005081340A1 (ja) 2004-02-23 2005-02-15 燃料電池用担持触媒、その製造方法及び燃料電池

Country Status (5)

Country Link
US (1) US7223493B2 (ja)
EP (1) EP1727224A4 (ja)
JP (1) JP2005235688A (ja)
CN (1) CN100530785C (ja)
WO (1) WO2005081340A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168450B2 (ja) * 2007-03-01 2013-03-21 信越化学工業株式会社 燃料電池用電極触媒の製造方法
JP5168452B2 (ja) 2007-03-29 2013-03-21 信越化学工業株式会社 燃料電池用電極触媒の製造方法
EP2221104B1 (en) * 2007-12-14 2021-08-18 Nissan Motor Co., Ltd. Purification catalyst
US8129306B2 (en) * 2008-01-28 2012-03-06 Uchicago Argonne, Llc Non-platinum bimetallic polymer electrolyte fuel cell catalysts
JP5375117B2 (ja) * 2009-01-19 2013-12-25 トヨタ自動車株式会社 膜電極接合体の製造方法
US9440224B2 (en) 2012-12-18 2016-09-13 Umicore Ag & Co. Kg Catalyst particles comprising hollow multilayered base metal-precious metal core/shell particles and method of their manufacture
JP6156490B2 (ja) 2013-04-25 2017-07-05 日産自動車株式会社 燃料電池用電極触媒ならびに当該触媒を用いる電極触媒層、膜電極接合体および燃料電池
CN105142779A (zh) 2013-04-25 2015-12-09 日产自动车株式会社 催化剂及其制造方法以及使用该催化剂的电极催化剂层
KR101697985B1 (ko) * 2014-03-28 2017-01-19 엔.이. 켐캣 가부시키가이샤 전극용 촉매의 제조 방법, 전극용 촉매, 가스 확산 전극 형성용 조성물, 가스 확산 전극, 막·전극 접합체(mea) 및 연료 전지 스택
CN104148058A (zh) * 2014-04-04 2014-11-19 西北师范大学 一种提高碳载型铂基催化剂活性的方法
CN107210447B (zh) 2014-10-29 2019-08-23 日产自动车株式会社 燃料电池用电极催化剂层、其制造方法以及使用该催化剂层的膜电极接合体及燃料电池
KR102096130B1 (ko) 2016-05-02 2020-04-01 주식회사 엘지화학 담체-나노입자 복합체, 이를 포함하는 촉매 및 이의 제조방법
KR102022413B1 (ko) 2016-11-21 2019-09-18 주식회사 엘지화학 촉매 및 이의 제조방법
KR20210115529A (ko) * 2020-03-13 2021-09-27 현대자동차주식회사 용출된 전이금속이 제거된 연료전지용 촉매 잉크의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629028A (ja) * 1992-07-08 1994-02-04 Fuji Electric Co Ltd 燃料電池およびその製造方法
JPH06246160A (ja) * 1993-02-22 1994-09-06 Tanaka Kikinzoku Kogyo Kk 燃料電池用合金触媒の製造方法
JPH09161811A (ja) * 1995-12-04 1997-06-20 Tanaka Kikinzoku Kogyo Kk 高分子電解質型燃料電池用アノード触媒及びその製造方法
JP2001118582A (ja) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd 燃料電池用電極およびその製造方法
JP2001319661A (ja) * 2000-05-12 2001-11-16 Japan Storage Battery Co Ltd 燃料電池用触媒およびその製造方法
JP2003092114A (ja) * 2001-09-17 2003-03-28 Toyota Central Res & Dev Lab Inc 燃料電池用電極触媒体およびその製造方法
JP2003142112A (ja) * 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法
JP2003151566A (ja) * 2001-11-16 2003-05-23 Toyota Central Res & Dev Lab Inc 電極触媒層形成方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163746A (ja) * 1986-01-13 1987-07-20 Nippon Engeruharudo Kk 白金合金電極触媒およびそれを使用した酸電解質燃料電池用電極
JPS62269751A (ja) * 1986-05-16 1987-11-24 Nippon Engeruharudo Kk 白金−銅合金電極触媒およびそれを使用した酸電解質燃料電池用電極
JPH03127459A (ja) * 1989-10-11 1991-05-30 Fuji Electric Co Ltd 燐酸型燃料電池の電極触媒
US5189005A (en) 1992-04-03 1993-02-23 Tanaka Kikinzoku Kogyo K.K. Electrocatalyst and process of preparing same
JPH067679A (ja) * 1992-06-25 1994-01-18 Tanaka Kikinzoku Kogyo Kk りん酸型燃料電池用白金合金触媒の製造方法
JP3351285B2 (ja) * 1997-03-27 2002-11-25 三菱電機株式会社 固体高分子型燃料電池用アノード電極触媒
JP3649009B2 (ja) * 1998-12-07 2005-05-18 日本電池株式会社 燃料電池用電極およびその製造方法
JP2001052718A (ja) 1999-08-12 2001-02-23 Fuji Electric Co Ltd 触媒の製造方法と該触媒を用いた燃料電池
JP5281221B2 (ja) 2001-08-03 2013-09-04 トヨタ自動車株式会社 貴金属−卑金属合金系触媒とその評価および製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629028A (ja) * 1992-07-08 1994-02-04 Fuji Electric Co Ltd 燃料電池およびその製造方法
JPH06246160A (ja) * 1993-02-22 1994-09-06 Tanaka Kikinzoku Kogyo Kk 燃料電池用合金触媒の製造方法
JPH09161811A (ja) * 1995-12-04 1997-06-20 Tanaka Kikinzoku Kogyo Kk 高分子電解質型燃料電池用アノード触媒及びその製造方法
JP2001118582A (ja) * 1999-10-19 2001-04-27 Japan Storage Battery Co Ltd 燃料電池用電極およびその製造方法
JP2001319661A (ja) * 2000-05-12 2001-11-16 Japan Storage Battery Co Ltd 燃料電池用触媒およびその製造方法
JP2003092114A (ja) * 2001-09-17 2003-03-28 Toyota Central Res & Dev Lab Inc 燃料電池用電極触媒体およびその製造方法
JP2003142112A (ja) * 2001-10-31 2003-05-16 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法
JP2003151566A (ja) * 2001-11-16 2003-05-23 Toyota Central Res & Dev Lab Inc 電極触媒層形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1727224A4 *

Also Published As

Publication number Publication date
JP2005235688A (ja) 2005-09-02
US7223493B2 (en) 2007-05-29
EP1727224A1 (en) 2006-11-29
CN1774827A (zh) 2006-05-17
EP1727224A4 (en) 2007-10-03
US20060051657A1 (en) 2006-03-09
CN100530785C (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2005081340A1 (ja) 燃料電池用担持触媒、その製造方法及び燃料電池
JP5138584B2 (ja) 燃料電池用電極触媒の製造方法
JP4401059B2 (ja) 燃料電池用のアノード触媒を調製するプロセスおよびそのプロセスを用いて調製されたアノード触媒
JP2909166B2 (ja) 担持白金四元系合金電極触媒
JP4463522B2 (ja) 電極の触媒用微粒子および該電極触媒用微粒子分散液、該電極触媒用微粒子分散液の製造方法
JP6554266B2 (ja) 燃料電池用電極触媒、及び触媒を活性化させる方法
US10985382B2 (en) Core-shell structure type nanosheet
JP3643552B2 (ja) 高分子固体電解質形燃料電池の空気極用触媒及び該触媒の製造方法
JPH04141233A (ja) 電極触媒
JPH05129023A (ja) 改善された触媒材料
JP4290524B2 (ja) 燃料電池用カソード触媒
JP4776240B2 (ja) 電極触媒、その製造方法及び燃料電池
JP7089805B2 (ja) 電気化学的酸素還元用触媒
JP2003308849A (ja) 高分子固体電解質形燃料電池の燃料極用触媒
WO1999066576A1 (fr) Catalyseur pour pile a combustible du type a electrolyte solide polymere et procede de production d'un catalyseur pour une telle pile
JPH09167620A (ja) 燃料電池用電極触媒とその製造方法、およびその触媒を用いた電極と燃料電池
JP6967761B2 (ja) 電気化学的酸素還元用触媒
JP2000003712A (ja) 高分子固体電解質型燃料電池用触媒
JP2006127979A (ja) 燃料電池用電極触媒及び燃料電池
JP3839961B2 (ja) 高分子固体電解質型燃料電池用触媒の製造方法
JP2002248350A (ja) 合金触媒の調製方法及び固体高分子型燃料電池の製造方法
US11239473B2 (en) Catalyst for solid polymer fuel cells and method for manufacturing the same
JPH05135773A (ja) 燐酸型燃料電池の触媒とその製造方法
JPH05135772A (ja) 燐酸型燃料電池の触媒とその製造方法
JP2001015121A (ja) 高分子固体電解質型燃料電池用触媒及び高分子固体電解質型燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 11244459

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005710216

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20058002913

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 11244459

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005710216

Country of ref document: EP