WO2005067080A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2005067080A1
WO2005067080A1 PCT/JP2004/019629 JP2004019629W WO2005067080A1 WO 2005067080 A1 WO2005067080 A1 WO 2005067080A1 JP 2004019629 W JP2004019629 W JP 2004019629W WO 2005067080 A1 WO2005067080 A1 WO 2005067080A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
insulating layer
current collector
porous
Prior art date
Application number
PCT/JP2004/019629
Other languages
English (en)
French (fr)
Inventor
Akiko Fujino
Tsumoru Ohata
Tetsuya Hayashi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005516858A priority Critical patent/JP4739958B2/ja
Priority to US10/577,494 priority patent/US7745042B2/en
Priority to KR1020067004149A priority patent/KR100750020B1/ko
Priority to CNB2004800288687A priority patent/CN100440588C/zh
Publication of WO2005067080A1 publication Critical patent/WO2005067080A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery having excellent heat resistance and highly suppressed internal short circuit and abnormal overheating of the battery.
  • a separator having a role of electronically insulating a positive electrode and a negative electrode and holding a nonaqueous electrolyte is interposed.
  • a microporous film made of a polyolefin resin such as polyethylene or polypropylene is used as a separator.
  • the microporous film is usually produced by stretching a sheet obtained by a molding method such as extrusion molding.
  • the microporous film generally shrinks at a high temperature and short-circuit reaction heat generated instantaneously when an internal short circuit occurs immediately or when a sharp protrusion such as a nail penetrates the battery. It may shrink and enlarge the short circuit. Such enlargement of the short-circuit portion generates further reaction heat, and promotes abnormal overheating of the battery.
  • the microporous film shrinks or melts, causing distortion in the electrode group (especially wound electrode group), and May short-circuit, causing the battery to overheat abnormally.
  • a negative electrode composed of a current collector and a negative electrode active material coating layer, a positive electrode composed of a current collector and a positive electrode active material coating layer, and a nonaqueous electrolyte are used. It has been proposed to form a 0.1-200 m thick porous protective film on the surface of the negative electrode active material coating layer or the positive electrode active material coating layer for nonaqueous electrolyte secondary batteries having I have.
  • the porous protective film is made of a resin binder and solid particles (Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-220759
  • an internal short circuit is caused by the electrode mixture carried on one electrode. It often occurs due to the contact between the uncollected current collector and the electrode mixture of the other electrode. In particular, the heat of short-circuit reaction due to contact between the positive electrode current collector and the negative electrode mixture is extremely large, and there is a relatively high possibility that the battery may be damaged by such contact.
  • Patent Document 1 the technology of Patent Document 1 is to form a porous protective film only on the surface of the positive electrode active material coating layer or the negative electrode active material coating layer. Therefore, it is not possible to avoid contact between the current collector and the electrode mixture of the other electrode because the electrode mixture is carried on one electrode.
  • the electrode mixture is supported on one of the electrodes.
  • the present invention firstly provides a positive electrode core material having a positive electrode current collector and a mixture carrier, and a positive electrode mixture layer containing a composite lithium oxide and carried on the mixture carrier.
  • the electron isolation layer is supported in a region including the surface of the positive electrode current collector and the surface of the positive electrode mixture layer, and the positive electrode and the negative electrode are wound with a separator and a porous electronic insulating layer to form a lithium ion.
  • a separator and a porous electronic insulating layer to form a lithium ion.
  • the present invention provides a positive electrode core material having a positive electrode current collecting portion and a mixture supporting portion, and a positive electrode mixture layer containing a composite lithium oxide and supported by the mixture supporting portion.
  • Negative electrode having a positive electrode, a negative electrode current collector, and a negative electrode core material having a mixture carrier, and a negative electrode mixture layer containing a material capable of occluding and releasing lithium, and having a negative electrode mixture layer carried on the mixture carrier,
  • a porous electronic insulating layer interposed between the positive electrode and the negative electrode, containing an inorganic oxide filler and a binder, and a non-aqueous electrolyte.
  • the present invention relates to a lithium ion secondary battery wound around a separator and a porous electronic insulating layer.
  • the present invention provides a positive electrode core material having a positive electrode current collecting portion and a mixture supporting portion, and a positive electrode mixture layer containing a composite lithium oxide and supported by the mixture supporting portion.
  • Negative electrode having a positive electrode, a negative electrode current collector, and a negative electrode core material having a mixture carrier, and a negative electrode mixture layer containing a material capable of occluding and releasing lithium, and having a negative electrode mixture layer carried on the mixture carrier, a positive electrode and a negative electrode
  • the present invention relates to a lithium ion secondary battery wound with an electronic insulating layer interposed.
  • At least one of the positive electrode and the negative electrode supports the electrode mixture of the electrode core material that is formed only on the surface of the electrode mixture layer. It is also carried on the current collector that is not provided. Therefore, even when an internal short circuit occurs, when a sharp protrusion such as a nail penetrates the battery, or when the battery is placed at a high temperature of 150 ° C or higher, the separator may be thermally shrunk. Since the electrode mixture is carried on one of the electrodes, contact between the current collector and the electrode mixture on the other electrode can be avoided. Therefore, abnormal overheating of the battery can be highly suppressed.
  • the lithium ion secondary battery of the present invention it is preferable that a part of a strip-shaped positive electrode lead and a part of a strip-shaped negative electrode lead are welded to the positive electrode current collector and the negative electrode current collector, respectively.
  • the lithium ion secondary battery of the present invention preferably has the following configuration.
  • the positive electrode current collector and the Z or negative electrode current collector have an exposed region that does not support the porous electron insulating layer, and a part of the lead is welded to the exposed region. Configuration.
  • the porous electron insulating layer is a part of the positive electrode lead and the Z or negative electrode lead, and is also supported on at least the lead portion arranged on the current collector. .
  • the lead portion including the current collecting portion and the electrode lead is thicker than the current collecting portion. Therefore, the possibility that the lead portion of one electrode contacts the electrode mixture of the other electrode increases.
  • the porous electron insulating layer is also supported on the lead, it is possible to avoid a short circuit between the lead and the electrode mixture as described above. Therefore, abnormal overheating of the battery can be further suppressed to a high degree.
  • the binder contained in the porous electronic insulating layer preferably contains a resin material containing at least one selected from the group consisting of acrylonitrile units, atalylate units, and methacrylate units.
  • the resin material as described above is excellent in binding force, so that even if the resin material is small in the inorganic oxide film filler, the resin material has high strength! Can be formed.
  • the invention's effect is excellent in binding force, so that even if the resin material is small in the inorganic oxide film filler, the resin material has high strength! Can be formed.
  • a porous insulating layer is interposed between a positive electrode and a negative electrode in addition to a separator, an internal short circuit and abnormal overheating of the battery can be prevented. Can be suppressed.
  • the configuration of the present invention can be realized efficiently by controlling the region where the porous electron insulating layer is supported at the time of manufacturing the electrode, thereby significantly increasing the manufacturing cost as compared with the related art. There is no.
  • FIG. 1 is a schematic sectional view of an electrode plate according to an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view of an electrode plate according to another embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view of a lithium ion secondary battery according to one embodiment of the present invention.
  • the lithium ion secondary battery of the present invention includes a positive electrode having a positive electrode core material having a positive electrode current collector and a mixture carrier, and a positive electrode mixture layer carried on the mixture carrier.
  • a positive electrode current collector a region of the positive electrode core material that does not support the positive electrode mixture is used.
  • the mixture carrier is present on both sides of the positive electrode core material.
  • the positive electrode core material usually has a band-like shape.
  • the thickness of the positive electrode core material is not particularly limited, but is preferably 10 to 50 m.
  • A1 or the like is preferably used as the material of the positive electrode core material. It is.
  • the surface of the positive electrode core material may have unevenness, holes, slits, or the like that may be flat. For example, a lath plate or a punching metal may be used. Further, the positive electrode core material may be three-dimensionally shaped so as to have a certain apparent thickness.
  • the positive electrode current collector is formed at one longitudinal end of, for example, a positive electrode core having a strip shape.
  • One longitudinal end corresponds to a winding start position or a winding end position in winding.
  • the lithium ion secondary battery of the present invention includes a negative electrode having a negative electrode core material having a negative electrode current collecting part and a mixture supporting part, and a negative electrode mixture layer supported on the mixture supporting part. A region of the negative electrode core material that does not support the negative electrode mixture is used for the negative electrode current collector. The mixture carrier is present on each side of the negative electrode core material.
  • the negative electrode core material usually has a band shape.
  • the thickness of the negative electrode core material is not particularly limited, and is preferably 10 to 50 m. Cu or the like is preferably used as the material of the negative electrode core material.
  • the surface of the negative electrode core material may have unevenness, holes, slits, or the like that may be flat. For example, a lath plate or a punching metal may be used. Also, the negative electrode core material may be three-dimensionally shaped so as to have a certain apparent thickness.
  • the negative electrode current collector is formed at one longitudinal end of, for example, a negative electrode core material having a band shape.
  • One longitudinal end corresponds to a winding start position or a winding end position in winding.
  • the negative electrode current collector corresponds to the winding end position in the winding
  • the positive electrode current collector corresponds to the winding end in the winding.
  • the negative electrode current collector corresponds to the winding start position in winding.
  • the arrangement is not limited.
  • a separator and a porous electronic insulating layer are interposed between the positive electrode and the negative electrode.
  • the separator is usually made of a resin microporous film.
  • the microporous film is usually produced by stretching a resin sheet obtained by a molding method such as extrusion.
  • the resin sheet is produced from resin or a resin composition.
  • the resin composition may contain, for example, a filler other than the resin.
  • the separator is provided between the positive and negative electrodes in order to prevent a short circuit between the positive and negative electrodes. The separator allows the nonaqueous electrolyte to pass It has a gap for
  • the resin used as the material of the separator is preferably a polyolefin resin such as polyethylene or polypropylene, but is not limited thereto.
  • a polyolefin resin such as polyethylene or polypropylene
  • polyimide, polyamide, polyamide amide, aramide and the like are also used. These resins may be used alone or in combination of two or more in the separator.
  • the thickness of the separator is not particularly limited, but from the viewpoint of maintaining the design capacity of the battery, the sum of the thickness and the thickness of the porous electronic insulation, which is preferably 10 to 25 Pm, is 15 to 30 Pm. It is preferable that
  • the porous electronic insulating layer contains an inorganic oxide filler and a binder, and has a void for allowing the nonaqueous electrolyte to pass through appropriately.
  • the porous electronic insulating layer has a function similar to that of the separator, but has a structure in which particles of the inorganic oxide film are bonded with a binder. Therefore, the porous electronic insulating layer has a lower tensile strength in the plane direction than the separator.
  • the porous electronic insulating layer does not thermally shrink, unlike a separator, even when exposed to high temperatures. Therefore, the porous electronic insulating layer has an effect of preventing the spread of the short circuit and preventing abnormal heating when the internal short circuit occurs or the battery is exposed to a high temperature.
  • the content of the inorganic oxide film in the porous electronic insulating layer is preferably from 50% by weight to 99% by weight, and more preferably from 90% by weight to 99% by weight. More preferred. If the content of the inorganic oxide film is less than 50% by weight, the amount of the binder is excessive, and it may be difficult to control the pore structure formed by the gaps between the particles of the film. On the other hand, if the content of the inorganic acid filler is more than 99% by weight, the amount of the binder is too small, and the strength of the porous electronic insulating layer and the adhesion to the electrode surface may be reduced. If the porous electron insulating layer falls off, the function of the porous electron insulating layer itself is impaired, and the battery characteristics are impaired.
  • the median diameter (D50: average particle diameter) of the inorganic oxidizing film is not particularly limited, but is generally in the range of 0.1-, and is in the range of 0.2-1.5 m. Is desirable.
  • the thickness of the porous electron insulating layer is not particularly limited, but may be 0.5 to 20 m from the viewpoint of sufficiently securing the utility of the porous electron insulating layer and maintaining the design capacity. It is particularly preferably 2-10 / zm. Also, the separator thickness and porosity It is desirable that the sum of the thickness and the thickness of the electronic insulating layer is about 15 to 30 ⁇ m.
  • the porous electron insulating layer includes a region including a surface of the positive electrode current collector and the surface of the positive electrode mixture layer (hereinafter, a first region), or a region including Z and a surface including the surfaces of the negative electrode current collector and the negative electrode mixture layer. (Hereinafter referred to as the second region).
  • the first region may include at least a part of the positive electrode current collector, and the second region may include at least a part of the negative electrode current collector.
  • the electrode group in the electrode group faces the mixture layer of the other electrode. It is preferable to support a porous electron insulating layer in the electric part region from the viewpoint of improving the safety of the battery.
  • the porous electron insulating layer is assumed to be supported on the separator, regardless of the heat resistance of the porous electronic insulating layer itself, the heat generated by the internal short circuit causes the porous electronic insulating layer to become porous together with the separator.
  • the electronic insulating layer also shrinks.
  • the thickness of the mixture needs to be considerably increased from the viewpoint of maintaining the sheet shape. Requires a binder. Therefore, it is not practical from the viewpoint of battery characteristics and design capacity.
  • the first region and the Z or second region support a porous electron insulating layer, such a problem does not occur.
  • the electrode mixture on one of the electrodes is supported when an internal short circuit occurs or at high temperatures. There is a possibility that contact between the uncollected current collector and the electrode mixture of the other electrode may occur. In that case, a large amount of short-circuit reaction heat is generated, and the battery may be abnormally overheated.
  • the first region and the Z or second region carry a porous electron insulating layer, even when an internal short circuit occurs or the separator thermally shrinks at a high temperature, the current collecting portion of one of the electrodes has: The possibility of contact of the other electrode with the electrode mixture is reduced.
  • the total surface force of the two positive electrode mixture layers on both surfaces of the positive electrode core material may be covered by the porous electron insulating layer.
  • the porous electron insulating layer may be covered with a porous electron insulating layer. V, please. Even if only a part of the positive electrode current collector is covered with the porous electronic insulating layer,
  • the positive electrode current collector Since a part of the positive electrode current collector can be prevented from contacting the negative electrode mixture, a certain effect of the present invention can be obtained. However, from the viewpoint of more reliably avoiding contact between the positive electrode current collector and the negative electrode mixture, it is preferable that the entire surface of the positive electrode current collector be covered with a porous electronic insulating layer.
  • the porous electron insulating layer When the porous electron insulating layer is supported only on the second region, the entire surface of the two negative electrode mixture layers on both surfaces of the negative electrode core material must be covered with the porous electron insulating layer. Is required. On the other hand, the negative electrode current collector is at least partially covered with a porous electron insulating layer.
  • V please. Even when only a part of the negative electrode current collector is covered with the porous electron insulating layer, contact between the part of the negative electrode current collector and the positive electrode mixture can be avoided. The effect is obtained. However, from the viewpoint of more reliably avoiding contact between the negative electrode current collector and the positive electrode mixture, it is preferable that the entire surface of the negative electrode current collector be covered with a porous electronic insulating layer.
  • the porous electron insulating layer is supported on both the first region and the second region, the entire surface of the two positive electrode mixture layers and the entire surface of the two negative electrode mixture layers are porous. It may be covered with a quality electron insulation layer.
  • the porous electron insulating layer is supported on the surface of the negative electrode mixture layer at the position opposite to the surface region of the positive electrode mixture layer, the porous electronic insulating layer need not be supported. Absent. Further, in the case where the porous electron insulating layer is carried on the surface of the positive electrode mixture layer at a position facing the negative electrode mixture layer in the surface region of the negative electrode mixture layer, it is not necessary to carry the porous electron insulating layer. What,
  • the porous electronic insulating layer contains an inorganic oxide filler and a binder. Since the inorganic oxide filler has high heat resistance, the mechanical strength of the porous electronic insulating layer can be maintained high even when the battery reaches a relatively high temperature. It is also desirable that the heat resistance of the binder be high.
  • Various resin materials can be used for the binder of the porous electronic insulating layer.
  • a resin material whose thermal decomposition onset temperature observed by thermal analysis is 250 ° C or more is used. Is desirable ⁇ .
  • the resin material does not significantly deform at a high temperature, it does not have a crystal melting point. It is desirable that the material is a non-crystalline or non-crystalline resin material.
  • the resin material is crystalline, its crystalline melting point is desirably 250 ° C. or higher.
  • a porous electronic insulating layer containing a crystalline resin material having a low heat distortion temperature and a low crystal melting point, and a resin material having a low thermal decomposition initiation temperature even if it is amorphous or non-crystalline, has a softening property. It can be burned and deformed.
  • the thermal decomposition onset temperature, crystal melting point, or thermal deformation onset temperature of the resin material is determined by differential scanning calorimetry (DSC), thermogravimetry (TG-DTA), or thermogravimetry.
  • DSC differential scanning calorimetry
  • TG-DTA thermogravimetry
  • thermogravimetry thermogravimetry
  • the starting point of weight change in TG-DTA measurement is equivalent to the thermal decomposition onset temperature
  • the inflection point in DSC measurement is the thermal deformation temperature or crystal. It corresponds to the melting point.
  • the binder for the porous electronic insulating layer desirably includes a resin material containing at least one polymerized unit selected from the group consisting of acrylonitrile units, acrylate units and methacrylate units.
  • a resin material may be a high molecule having substantially only one type of polymerization unit power, and may be a random copolymer, a block copolymer, a graft copolymer or the like of two or more types of polymerization units.
  • the binder contained in the porous electronic insulating layer preferably has flexibility.
  • the porous electron insulating layer containing a non-crystalline resin material as a binder is different from the hard porous electron insulating layer containing a crystalline binder, in that when the electrode plate is wound, damage such as cracks occurs. , It is possible to maintain a high production yield.
  • the filler of the porous electronic insulating layer is required to have heat resistance, and is also electrochemically safe in an environment in a lithium ion secondary battery. Must be constant. Therefore, fillers made of inorganic acid sardines satisfying these requirements are preferred. It is often used.
  • the porous electronic insulating layer is formed by preparing a paint containing a filler and a binder, and applying the paint to a predetermined surface of the electrode. Therefore, the inorganic oxide filler is also required to be suitable for coating.
  • Examples of those satisfying the above requirements include alumina, titanium, zirconia, and magnesium. Of these, ⁇ -alumina is preferred from the viewpoints of stability, cost, ease of handling, etc., even though alumina is particularly preferred.
  • a plurality of types of inorganic acid scabs may be used as a mixture.
  • a dense porous electronic insulating layer can be obtained.
  • a plurality of porous electronic insulating layers containing different inorganic oxide fillers are laminated.
  • a strip-shaped positive electrode lead and a part of a strip-shaped negative electrode lead are welded to the positive electrode current collector and the negative electrode current collector, respectively.
  • the positive electrode lead has a role of connecting the positive electrode to the external positive terminal of the battery
  • the negative electrode lead has a role of connecting the negative electrode to the external negative terminal of the battery.
  • the material of the positive electrode lead is preferably A1 or the like, and the material of the negative electrode lead is preferably Ni or Cu.
  • the thickness of each lead is preferably 50 to 200 m.
  • FIG. 1 shows a schematic cross-sectional view of an electrode plate having the above-described structure.
  • FIG. 1 at one longitudinal end of the strip-shaped electrode core 2, there are two regions 7 and 7 ′ that do not carry the mixture, which constitute the current collector.
  • the electrode mixture layers 1, 1 ' are supported on the electrode mixture supporting portions 5, 5' of the electrode core 2, respectively.
  • Regions 7 and 7 ' have exposed regions 6 and 6' that do not carry porous electronic insulating layer 4, respectively, and a portion of strip-shaped electrode lead 3 is welded to exposed region 6 '. I have.
  • the porous electron-insulating layer 4 is carried on all the regions 7 and 7 ′ that do not carry the mixture, except for the exposed regions 6 and 6 ′. It is not necessary for the region to carry the porous electron insulating layer 4. For example, there is a case where the porous electron insulating layer 4 is carried on one of the regions 7 and 7 ′.
  • the exposed regions 6, 6 ' may be provided with a coating containing the raw material of the porous electron insulating layer 4 by intermittent coating while avoiding the regions which become the exposed regions 6, 6', or may be provided with a porous material once supported. It can be formed by peeling off the porous electron insulating layer 4 or the like.
  • the porous electron insulating layer 4 is also carried on the electrode lead portion disposed on the current collector (the area surrounded by the broken line in the figure).
  • the lead portion including the current collecting portion and the electrode lead has a greater thickness than the current collecting portion, according to the structure shown in FIG. 2, the force of the lead portion having the increased thickness is greater than that of the other electrode. The potential for contact with the agent is significantly reduced.
  • the positive electrode mixture layer contains a composite lithium oxide as a positive electrode active material.
  • the positive electrode mixture layer generally includes a positive electrode mixture including a positive electrode active material composed of a composite lithium oxide, a positive electrode binder, and a conductive agent.
  • the positive electrode mixture may contain various additives in addition to the positive electrode active material, the positive electrode binder, and the conductive agent! ,.
  • Examples of the composite lithium oxide include lithium cobalt oxide (LiCoO) and lithium cobalt oxide.
  • lithium nickelate LiNiO
  • lithium nickelate lithium nickelate
  • lithium manganate lithium nickelate
  • LiMn O modified form of lithium manganate, Co, Mn or N of these oxides
  • modified products contain elements such as aluminum and magnesium. Some contain at least two species: conoreto, nickel and manganese. Mn-based lithium-containing transition gold such as LiMn O
  • Group oxides are particularly promising in that they are abundant on the earth and low in price.
  • the positive electrode binder is not particularly limited, and polytetrafluoroethylene (PTFE), modified Atari mouth-tolyl rubber particles (such as BM-500B manufactured by Zeon Corporation), polyvinylidene fluoride ( PV DF) can be used.
  • PTFE and BM-500B are combined with carboxymethyl cellulose (CMC), polyethylene oxide (PEO), and modified acrylonitrile rubber (BM-720H manufactured by Nippon Zeon Co., Ltd.), which are thickeners for the raw material paste for the positive electrode mixture layer. It is preferable to use them in combination.
  • PVDF has a single function as a positive electrode binder and a function as a thickener.
  • acetylene black, Ketjen black, various graphites and the like can be used. These may be used alone or in combination of two or more.
  • the negative electrode mixture layer contains a material capable of inserting and extracting lithium as the negative electrode active material.
  • the negative electrode mixture layer generally includes a negative electrode mixture including a negative electrode active material and a negative electrode binder.
  • the negative electrode mixture may include various additives in addition to the negative electrode active material and the negative electrode binder.
  • the materials capable of occluding and releasing lithium include carbon materials such as various natural graphites, various artificial graphites, petroleum coatas, carbon fibers, and fired organic polymers, and silicon materials such as oxides and silicides. Containing composite materials, various metals or alloy materials can be used.
  • the negative electrode binder is not particularly limited, and as in the case of the positive electrode binder, PTFE, modified Atari nitrile rubber particles, cellulosic resin such as PVDF, CMC and the like can be used.
  • a property polymer is preferably used.
  • those containing a styrene unit and a butadiene unit are preferably used from the viewpoint of improving the lithium ion acceptability by the negative electrode.
  • SBR styrene-butadiene copolymer
  • SBR styrene-butadiene copolymer
  • non-aqueous electrolyte it is preferable to use a non-aqueous solvent that dissolves a lithium salt as a solute.
  • concentration of the solute dissolved in the non-aqueous solvent is generally 0.5 to 2 mol ZL.
  • lithium salt lithium hexafluorophosphate (LiPF), lithium perchlorate (LiCIO)
  • LiBF lithium borofluoride
  • non-aqueous solvent ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), getyl carbonate (DEC), methyl ethyl carbonate (HMEC) or the like is used alone or in combination. Is preferred.
  • One type of non-aqueous solvent It is preferable to use a combination of two or more forces that can be used alone.
  • VC bi-lene carbonate
  • CHB cyclohexylbenzene
  • a modified form of CHB can also be used.
  • a cylindrical 18650 lithium ion secondary battery was manufactured in the following manner.
  • PVDF # 1320 the PVD F containing 12 wt 0/0 N-methyl-2-pyrrolidone (hereinafter, NMP) solution
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode mixture paste was applied to both surfaces of a positive electrode core material also having a 15- ⁇ m-thick aluminum foil cover, leaving a predetermined current collecting portion, and dried. Thereafter, the positive electrode core material supporting the positive electrode mixture was rolled, and the positive electrode material layer was supported on the positive electrode core material. At this time, the thickness of the aluminum foil and the positive electrode plate, which also has the positive electrode mixture layer strength on both sides, was controlled to 160 ⁇ m.
  • the electrode plate was cut into a width and a length that can be inserted into a battery case of a cylindrical battery having a diameter of 18 mm and a height of 65 mm, thereby obtaining a belt-shaped positive electrode.
  • a current collector comprising regions 7, 7 'not carrying the mixture was provided as shown in FIG.
  • the lengths of region 7 and region 7 ' were 50 mm and 30 mm, respectively.
  • a negative electrode mixture paste was applied to both surfaces of a negative electrode core material made of copper foil having a thickness of 10 m, leaving a predetermined current collecting portion, and dried. Thereafter, the negative electrode core material carrying the negative electrode mixture was rolled, and the negative electrode material layer was carried on the negative electrode core material. At this time, the thickness of the copper foil and the negative electrode plate composed of the negative electrode mixture layers on both surfaces was controlled to 180 ⁇ m. Thereafter, the negative electrode plate was cut into a width and a length that can be inserted into a battery case having a cylindrical battery with a diameter of 18 mm and a height of 65 mm, and a strip-shaped negative electrode was obtained. At one end in the longitudinal direction of the obtained negative electrode, a current collector comprising regions 7, 7 'not carrying the mixture as shown in FIG. 1 was provided. The lengths of region 7 and region 7 'were 13 mm and 80 mm, respectively.
  • LiPF was added at a concentration of ImolZL to a mixed solvent containing ethylene carbonate (EC), dimethinolecarbonate (DMC), and ethynolemethinolecarbonate (EMC) at a volume ratio of 2: 3: 3.
  • EC ethylene carbonate
  • DMC dimethinolecarbonate
  • EMC ethynolemethinolecarbonate
  • the non-aqueous electrolyte was prepared by dissolving and adding 3% by weight of bi-lene carbonate (VC).
  • One end of the aluminum positive electrode lead 35a (3.5 mm wide x 71 mm long x 150 ⁇ m thick) is also within the 8 mm wide area (hereinafter referred to as area A) in the longitudinal end force of the current collector of the positive electrode 35.
  • area A 8 mm wide area
  • the end force in the longitudinal direction of the current collecting portion of the negative electrode 36 is also within a region having a width of 8 mm (hereinafter referred to as a region B).
  • the negative electrode lead 36a made of nickel (width 3 mm x length 66.5 mm x thickness 100 ⁇ m) ) was welded at one end.
  • the raw material paint for the porous electron insulating layer is applied to the surface of the positive electrode mixture layer on both surfaces of the positive electrode 35 and the current collector except the region A, and dried to obtain a 5 ⁇ m thick porous electron insulating layer. An insulating layer was formed.
  • a positive electrode 35 supporting a porous electronic insulating layer (not shown) and a negative electrode 36 were separated from each other by a separator 37 having a width of 20 ⁇ m and a microporous film made of polyethylene resin and having a thickness of 20 ⁇ m. And wound up to form an electrode group.
  • the current collector of the negative electrode was disposed on the core side, and the current collector of the positive electrode was disposed on the outermost periphery.
  • the outer surface of the electrode group was interposed with a separator 37.
  • An upper insulating ring 38a and a lower insulating ring 38b were arranged above and below this electrode group, respectively, and housed in the inner space of the battery can 31.
  • a lithium ion secondary battery was produced in the same manner as in Example 1, except that the porous electron insulating layer was not supported on the positive electrode.
  • the raw material coating for the porous electron insulating layer was applied to both sides of the separator without the porous electron insulating layer being carried on the positive electrode, and dried to form a porous electronic insulating layer with a thickness of 5 m. Except for the above, a lithium ion secondary battery was produced in the same manner as in Example 1.
  • the raw material for the porous electron-insulating layer is applied only to the surface of the negative-electrode mixture layer on both sides of the negative electrode without supporting the porous electron-insulating layer on the positive electrode.
  • a lithium ion secondary battery was fabricated in the same manner as in Example 1, except that the porous electron insulating layer was formed.
  • a lithium ion secondary battery was fabricated in the same manner as in Example 1, except that a porous electron insulating layer having a thickness of 5 m was formed.
  • Example 4 The procedure was performed except that the raw material paint for the porous electronic insulating layer was applied to the region B and the negative electrode lead disposed in the region B, and dried to form a 5 m-thick porous electronic insulating layer.
  • a lithium ion secondary battery was produced in the same manner as in Example 2. ⁇ Example 4>
  • a 0.3 ⁇ m-diameter median titer was used instead of 0.3 ⁇ m alumina for the inorganic oxide film. Except for the above, a lithium ion secondary battery was produced in the same manner as in Example 2.
  • a lithium ion secondary was prepared in the same manner as in Example 2, except that polyethylene beads having a median diameter of 0.3 m were used instead of the inorganic oxide film filler. A battery was manufactured.
  • lithium ion secondary was prepared in the same manner as in Example 2 except that polyvinylidene fluoride (PVDF) was used instead of BM-720H as a binder. A battery was manufactured.
  • PVDF polyvinylidene fluoride
  • BM-720H BM-500B made by Nippon Zeon Co., Ltd. was used instead of BM-720H as a binder.
  • a lithium ion secondary battery was fabricated in the same manner as in Example 2, except that an NMP solution containing 8% by weight) was used.
  • Table 1 summarizes the configurations of the above Examples and Comparative Examples.
  • Example 1 Alumina ⁇ -720 ⁇ None 320 Oshibe
  • Example 2 Alumina ⁇ -720 ⁇ None 320 Current collector
  • Example 4 Titer 2 7 ⁇ -720 ⁇ None 320 Current collector
  • Example 5 7 Lumina PVDF 174 360 Current collector
  • Example 6 7 Lumina ⁇ -500 ⁇ None 320 Current collector
  • a nail penetration test was performed in the following manner.
  • each battery was charged as follows under a 20 ° C environment.
  • a high temperature heat resistance test was performed in the following manner.
  • each battery was charged as follows under a 20 ° C environment.
  • Constant current charging 1400mA (final voltage 4.25V)
  • Constant voltage charging 4.25V (final current 100mA)
  • the battery after charging was heated to 150 ° C at a heating rate of 5 ° CZ, and left at 150 ° C for 3 hours. The maximum temperature of the battery at this time was measured.
  • Comparative Example 1 In Comparative Example 1 in which the porous electronic insulating layer was not present, abnormal overheating after one second was remarkable regardless of the nail penetration speed. On the other hand, in Comparative Example 2 in which the porous electronic insulating layer was supported on the separator, the overheating rate after nail penetration was slow, but when the nail penetration rate was low, overheating was promoted and ultimately abnormal overheating was suppressed. I had a great deal of power. On the other hand, in Examples 1 and 2 in which the porous electron insulating layer was supported on the surface of the electrode mixture layer and the current collector, the overheating rate was significantly suppressed.
  • the porous electronic insulating layer was also deformed as the separator was melted. It was. Also, in the high temperature heat test, abnormal heat generation due to short circuit was confirmed. In the porous electronic insulating layer, the structure is maintained in the plane direction by the carrier. Therefore, it is considered that no matter how the porous electronic insulating layer itself has high heat resistance, if the separator undergoes shape change due to shrinkage or melting, it must be followed.
  • the cause of the heat generated by nail penetration can be explained as follows from the results of past experiments.
  • Joule heat is generated.
  • the low heat-resistant material melts due to the Joule heat, forming a strong short circuit.
  • the generation of Joule heat is continued, and the temperature is raised to a temperature region (165 ° C. or higher) where the positive electrode becomes thermally unstable. This causes abnormal overheating.
  • Example 5 in which PVDF was used as the binder for the porous electronic insulating layer, abnormal overheating was suppressed when the nail penetration speed was increased.
  • the resin material used as the binder preferably contains acrylonitrile units, acrylate units and / or methacrylate units.
  • Example 4 using titanium instead of alumina almost the same evaluation results as those of alumina could be confirmed.
  • Comparative Example 4 using polyethylene beads (PE beads) resulted in extremely low nail penetration safety. Since PE beads have only the same level of heat resistance as the microporous film that is the separator, it is considered that they cannot function as a porous electronic insulating layer that prevents short circuits. Therefore, it is considered essential to select an inorganic oxide for the filler.
  • the present invention provides a lithium ion secondary battery having excellent heat resistance and highly suppressed internal short-circuit and abnormal overheating of the battery, such as a power supply for portable equipment and the like, for which high safety is required.
  • a lithium ion secondary battery having excellent heat resistance and highly suppressed internal short-circuit and abnormal overheating of the battery, such as a power supply for portable equipment and the like, for which high safety is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 一方の電極の集電部と他方の電極合剤との短絡による異常過熱を抑止するリチウムイオン二次電池であり、正極集電部および合剤担持部を有する正極芯材と、合剤担持部に担持された正極合剤層とを有する正極、負極集電部および合剤担持部を有する負極芯材と、合剤担持部に担持された負極合剤層とを有する負極、正極と負極との間に介在するセパレータ、正極と負極との間に介在し、無機酸化物フィラーおよび結着剤を含む多孔質電子絶縁層、ならびに非水電解液を具備し、多孔質電子絶縁層は、正極集電部および正極合剤層の表面を含む領域、または/および、負極集電部および負極合剤層の表面を含む領域に担持されており、正極と負極とは、セパレータおよび多孔質電子絶縁層を介して捲回されている。                                                                         

Description

明 細 書
リチウムイオン二次電池
技術分野
[0001] 本発明は、耐熱性に優れ、内部短絡および電池の異常過熱が高度に抑制されたリ チウムイオン二次電池に関する。
背景技術
[0002] リチウムイオン二次電池などの化学電池では、正極と負極との間を電子的に絶縁し 、さらに非水電解液を保持する役目をもつセパレータが介在している。現在、リチウム イオン二次電池では、ポリエチレン、ポリプロピレン等のポリオレフイン系榭脂からなる 微多孔フィルムがセパレータとして用いられている。微多孔フィルムは、通常、押出成 形等の成形方法で得られたシートを延伸加工して製造される。
[0003] しかし、微多孔フィルムは、概して高温で収縮しやすぐ内部短絡の発生時や、釘 のような鋭利な形状の突起物が電池を貫いた時に、瞬時に発生する短絡反応熱によ り、収縮して短絡部を拡大させる可能性がある。このような短絡部の拡大は、さらなる 反応熱を発生させ、電池の異常過熱を促進する。さらに、 150°C以上の高温下に電 池が置かれた場合、微多孔フィルムは、収縮もしくは溶融するため、極板群 (特に捲 回型の極板群)に歪みが生じ、正負極間が短絡し、電池が異常過熱に陥る可能性が ある。
[0004] なお、製造工程で生じる内部短絡を防止する観点から、集電体と負極活物質塗布 層からなる負極と、集電体と正極活物質塗布層からなる正極と、非水電解液を有する 非水電解液二次電池にぉ ヽて、負極活物質塗布層または正極活物質塗布層の表 面に、厚さ 0. 1— 200 mの多孔性保護膜を形成することが提案されている。ここで 、多孔性保護膜は、榭脂結着剤と固体粒子カゝらなっている (特許文献 1)。
特許文献 1:特開平 7 - 220759号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明者らの知見によれば、内部短絡は、一方の電極における電極合剤が担持さ れていない集電部と、他方の電極の電極合剤との接触によって、起こる場合が多い。 特に、正極集電部と負極合剤との接触による短絡反応熱は、非常に大きぐこのよう な接触によって電池が破損に至る可能性が、比較的大きい。
[0006] ところが、特許文献 1の技術は、正極活物質塗布層または負極活物質塗布層の表 面のみに多孔性保護膜を形成するものである。よって、一方の電極における電極合 剤が担持されて 、な 、集電部と、他方の電極の電極合剤との接触を回避できるもの ではない。
課題を解決するための手段
[0007] 上記を鑑み、本発明では、正極と負極との間に、セパレータにカ卩えて、多孔質絶縁 層を介在させたリチウムイオン二次電池において、一方の電極における電極合剤が 担持されて!ヽな ヽ集電部と、他方の電極の電極合剤との接触を回避する観点から、 以下のような構造を有するリチウムイオン二次電池を提案する。
[0008] すなわち、本発明は、第一に、正極集電部および合剤担持部を有する正極芯材と 、複合リチウム酸化物を含み、合剤担持部に担持された正極合剤層とを有する正極 、負極集電部および合剤担持部を有する負極芯材と、リチウムを吸蔵および放出し 得る材料を含み、合剤担持部に担持された負極合剤層とを有する負極、正極と負極 との間に介在するセパレータ、正極と負極との間に介在し、無機酸ィ匕物フイラ一およ び結着剤を含む多孔質電子絶縁層、ならびに非水電解液を具備し、多孔質電子絶 縁層は、正極集電部および正極合剤層の表面を含む領域に担持されており、正極と 負極とが、セパレータおよび多孔質電子絶縁層を介して捲回されて ヽるリチウムィォ ン二次電池に関する。
[0009] 本発明は、第二に、正極集電部および合剤担持部を有する正極芯材と、複合リチ ゥム酸化物を含み、合剤担持部に担持された正極合剤層とを有する正極、負極集電 部および合剤担持部を有する負極芯材と、リチウムを吸蔵および放出し得る材料を 含み、合剤担持部に担持された負極合剤層とを有する負極、正極と負極との間に介 在するセパレータ、正極と負極との間に介在し、無機酸化物フィラーおよび結着剤を 含む多孔質電子絶縁層、ならびに非水電解液を具備し、多孔質電子絶縁層は、負 極集電部および負極合剤層の表面を含む領域に担持されており、正極と負極とが、 セパレータおよび多孔質電子絶縁層を介して捲回されているリチウムイオン二次電 池に関する。
[0010] 本発明は、第三に、正極集電部および合剤担持部を有する正極芯材と、複合リチ ゥム酸化物を含み、合剤担持部に担持された正極合剤層とを有する正極、負極集電 部および合剤担持部を有する負極芯材と、リチウムを吸蔵および放出し得る材料を 含み、合剤担持部に担持された負極合剤層とを有する負極、正極と負極との間に介 在するセパレータ、正極と負極との間に介在し、無機酸化物フィラーおよび結着剤を 含む多孔質電子絶縁層、ならびに非水電解液を具備し、多孔質電子絶縁層は、正 極集電部および正極合剤層の表面を含む領域、ならびに、負極集電部および負極 合剤層の表面を含む領域に担持されており、正極と負極とが、セパレータおよび多 孔質電子絶縁層を介して捲回されているリチウムイオン二次電池に関する。
[0011] すなわち、本発明のリチウムイオン二次電池においては、正極および負極の少なく とも一方において、多孔質電子絶縁層が、電極合剤層の表面だけでなぐ電極芯材 の電極合剤が担持されていない集電部にも担持されている。そのため、内部短絡の 発生時、釘のような鋭利な形状の突起物が電池を貫いた時、もしくは 150°C以上の 高温下に電池が置かれた時に、セパレータが熱収縮した場合でも、一方の電極にお ける電極合剤が担持されて 、な 、集電部と、他方の電極の電極合剤との接触を回避 できる。よって、電池の異常過熱を高度に抑制することができる。
[0012] 本発明のリチウムイオン二次電池において、正極集電部および負極集電部には、 それぞれストリップ状の正極リードおよび負極リードの一部が溶接されていることが好 ましい。この場合、本発明のリチウムイオン二次電池は、以下のような構成を有するこ とが好ましい。
[0013] 第一に、正極集電部および Zまたは負極集電部は、多孔質電子絶縁層を担持しな い露出領域を有し、その露出領域に、リードの一部が溶接されている構成が挙げら れる。
[0014] 第二に、多孔質電子絶縁層が、正極リードおよび Zまたは負極リードの一部であつ て、少なくとも集電部上に配置されているリード部分にも担持されている構成が挙げ られる。 [0015] 集電部および電極リードからなるリード部は、集電部よりもさらに厚さが増している。 よって、一方の電極のリード部が、他方の電極の電極合剤と接触する可能性は高くな る。上記第二の構成によれば、多孔質電子絶縁層が、リード部にも担持されているた め、前記のようなリード部と電極合剤との短絡を避けることができる。よって、電池の異 常過熱を、さらに、高度に抑制することができる。
[0016] 多孔質電子絶縁層に含まれる結着剤は、アクリロニトリル単位、アタリレート単位お よびメタタリレート単位よりなる群カゝら選択される少なくとも 1種を含む榭脂材料を含む ことが好ましい。
[0017] 前記のような榭脂材料は、結着力に優れているため、無機酸ィ匕物フイラ一に対して 榭脂材料が少量であっても、強度の大き!、多孔質電子絶縁層の形成が可能である。 発明の効果
[0018] 本発明によれば、正極と負極との間に、セパレータに加えて、多孔質絶縁層を介在 させたリチウムイオン二次電池にお!、て、内部短絡および電池の異常過熱を高度に 抑制できる。
また、本発明の構成は、電極の製造時において、多孔質電子絶縁層を担持させる 領域を制御することにより、効率的に実現できるため、製造コストを、従来に比べて、 大幅に上昇させることがない。
図面の簡単な説明
[0019] [図 1]本発明の一実施形態に係る極板の断面模式図である。
[図 2]本発明の別の実施形態に係る極板の断面模式図である。
[図 3]本発明の一実施形態に係るリチウムイオン二次電池の縦断面図である。
発明を実施するための最良の形態
[0020] 本発明のリチウムイオン二次電池は、正極集電部および合剤担持部を有する正極 芯材と、合剤担持部に担持された正極合剤層とを有する正極を具備する。正極集電 部には、正極芯材のうちの、正極合剤を担持しない領域が利用される。合剤担持部 は、正極芯材の両面にそれぞれ存在する。
[0021] 正極芯材は、通常、帯状の形状を有する。正極芯材の厚さは、特に限定されない 力 10— 50 mであることが好ましい。正極芯材の材質には、 A1等が好ましく用いら れる。正極芯材の表面は、平坦でもよぐ凹凸、孔、スリット等を有してもよい。例えば 、ラス板やパンチングメタルを用いてもよい。また、正極芯材が一定の見かけ厚さを有 するように、立体カ卩ェされていてもよい。
[0022] 正極集電部は、例えば帯状の形状を有する正極芯材においては、一方の長手方 向端部に形成される。一方の長手方向端部は、捲回における巻き始め位置または卷 き終わり位置に対応する。
[0023] 本発明のリチウムイオン二次電池は、負極集電部および合剤担持部を有する負極 芯材と、合剤担持部に担持された負極合剤層とを有する負極を具備する。負極集電 部には、負極芯材のうちの、負極合剤を担持しない領域が利用される。合剤担持部 は、負極芯材の両面にそれぞれ存在する。
[0024] 負極芯材は、通常、帯状の形状を有する。負極芯材の厚さは、特に限定されない 力 10— 50 mであることが好ましい。負極芯材の材質には、 Cu等が好ましく用い られる。負極芯材の表面は、平坦でもよぐ凹凸、孔、スリット等を有してもよい。例え ば、ラス板やパンチングメタルを用いてもよい。また、負極芯材が一定の見かけ厚さを 有するように、立体カ卩ェされていてもよい。
[0025] 負極集電部は、例えば帯状の形状を有する負極芯材においては、一方の長手方 向端部に形成される。一方の長手方向端部は、捲回における巻き始め位置または卷 き終わり位置に対応する。
[0026] なお、通常、正極集電部が捲回における巻き始め位置に対応するときは、負極集 電部が捲回における巻き終わり位置に対応し、正極集電部が捲回における巻き終わ り位置に対応するときは、負極集電部が捲回における巻き始め位置に対応する。た だし、このような配置に限定はされない。
[0027] 正極と負極との間には、セパレータと、多孔質電子絶縁層とが、介在している。
セパレータは、通常、榭脂製の微多孔フィルムからなる。微多孔フィルムは、通常、 押出成形等の成形方法で得られた榭脂シートを、延伸加工等して製造される。榭脂 シートは、榭脂もしくは榭脂組成物カゝら製造される。榭脂組成物には、榭脂以外に、 例えばフイラ一等が含まれていてもよい。セパレータは、正極と負極との短絡を防ぐた めに、前記両極間に設置される。セパレータは、非水電解液を適度に通過させるた めの空隙を有する。
[0028] セパレータの材質である樹脂には、ポリエチレン、ポリプロピレン等のポリオレフイン 榭脂が好ましく用いられるが、これらに限定されず、例えばポリイミド、ポリアミド、ポリ アミドイミド、ァラミド等も用いられる。これらの榭脂は、セパレータにおいて、単独で用 いてもよぐ 2種以上を組み合わせて用いてもよい。
[0029] セパレータの厚さは、特に限定されないが、電池の設計容量を維持する観点から、 10— 25 μ mであることが好ましぐ多孔質電子絶縁厚との総和が 15— 30 μ mとなる ことが好ましい。
[0030] 多孔質電子絶縁層は、無機酸化物フィラーおよび結着剤を含み、非水電解液を適 度に通過させるための空隙を有する。多孔質電子絶縁層は、セパレータと類似の作 用も有するが、無機酸ィ匕物フイラ一の粒子同士を、結着剤で結合した構造を有する。 よって、多孔質電子絶縁層は、面方向の引張強度がセパレータよりも低い。多孔質 電子絶縁層は、高温に曝されても、セパレータのように、熱収縮しない。よって、多孔 質電子絶縁層は、内部短絡の発生時や電池が高温に曝された時に、短絡の拡大を 防ぎ、異常加熱を防止する作用を有する。
[0031] 多孔質電子絶縁層に占める無機酸ィ匕物フイラ一の含有率は、 50重量%以上 99重 量%以下であることが好ましぐ 90重量%以上 99重量%以下であることが更に好ま しい。無機酸ィ匕物フイラ一の含有率が 50重量%を下回ると、結着剤が過多となり、フ イラ一粒子間の隙間で構成される細孔構造の制御が困難になることがある。一方、無 機酸ィ匕物フイラ一の含有率が 99重量%を上回ると、結着剤が過少となり、多孔質電 子絶縁層の強度や電極表面に対する密着性が低下する場合がある。多孔質電子絶 縁層が脱落すると、多孔質電子絶縁層自身の機能が損なわれ、電池特性も損なわ れる。
[0032] 無機酸ィ匕物フイラ一のメディアン径 (D50 :平均粒径)は、特に限定されないが、一 般に 0. 1— の範囲であり、 0. 2-1. 5 mであることが望ましい。
[0033] 多孔質電子絶縁層の厚さは、特に限定されないものの、多孔質電子絶縁層による 効用を十分に確保し、かつ設計容量を維持する観点から、 0. 5— 20 mであること が好ましぐ 2— 10 /z mであることが特に好ましい。また、セパレータの厚みと多孔質 電子絶縁層の厚みとの総和が、 15— 30 μ m程度であることが望ましい。
[0034] 多孔質電子絶縁層は、正極集電部および正極合剤層の表面を含む領域 (以下、 第一領域)、または Zおよび、負極集電部および負極合剤層の表面を含む領域 (以 下、第二領域)に担持されている。なお、第一領域は、正極集電部の少なくとも一部 を含んでいればよぐ第二領域は、負極集電部の少なくとも一部を含んでいればよい
[0035] ただし、正極と負極とは、セパレータおよび多孔質電子絶縁層を介して捲回されて 、電極群を構成しているので、電極群において、他方の電極の合剤層と対向する集 電部の領域には、多孔質電子絶縁層を担持させることが、電池の安全性を高める観 点から好ましい。
[0036] 多孔質電子絶縁層が、仮に、セパレータ上に担持されているとした場合、多孔質電 子絶縁層それ自身の耐熱性にかかわらず、内部短絡に伴う発熱によって、セパレー タとともに多孔質電子絶縁層も収縮してしまう。また、仮に、無機酸ィ匕物フイラ一およ び結着剤を含む混合物をシート状に成形するとした場合、シート状を保持させる観点 から、その厚みを相当に大きくする必要がある上、多量の結着剤を必要とする。よつ て、電池の特性および設計容量の観点から実用的でない。一方、上記第一領域およ び Zまたは第二領域に多孔質電子絶縁層を担持させる場合、そのような問題は起こ らない。
[0037] また、多孔質電子絶縁層が、仮に、電極合剤層の表面のみに担持されているとした 場合、内部短絡発生時や高温下では、一方の電極における電極合剤が担持されて いない集電部と、他方の電極の電極合剤との接触が起こる可能性がある。その場合 、大量の短絡反応熱が発生するため、電池が異常過熱に至る可能性がある。一方、 上記第一領域および Zまたは第二領域に多孔質電子絶縁層を担持させる場合、内 部短絡発生時や高温下で、セパレータが熱収縮した場合でも、一方の電極における 集電部と、他方の電極の電極合剤との接触が起こる可能性は低減する。
[0038] 多孔質電子絶縁層が、第一領域のみに担持されている場合、正極芯材の両面に おける 2つの正極合剤層の全表面力 多孔質電子絶縁層で覆われていることが要求 される。一方、正極集電部は、その少なくとも一部が、多孔質電子絶縁層で覆われて V、ればよ 、。正極集電部の一部だけが多孔質電子絶縁層で覆われて 、る場合でも
、正極集電部のその一部と、負極合剤との接触を回避できるため、ある程度の本発 明の効果が得られる。ただし、正極集電部と、負極合剤との接触を、より確実に回避 する観点力 は、正極集電部の全面が、多孔質電子絶縁層で覆われていることが好 ましい。
[0039] 多孔質電子絶縁層が、第二領域のみに担持されている場合、負極芯材の両面に おける 2つの負極合剤層の全表面が、多孔質電子絶縁層で覆われていることが要求 される。一方、負極集電部は、その少なくとも一部が、多孔質電子絶縁層で覆われて
V、ればよ 、。負極集電部の一部だけが多孔質電子絶縁層で覆われて 、る場合でも 、負極集電部のその一部と、正極合剤との接触を回避できるため、ある程度の本発 明の効果が得られる。ただし、負極集電部と、正極合剤との接触を、より確実に回避 する観点力 は、負極集電部の全面が、多孔質電子絶縁層で覆われていることが好 ましい。
[0040] 多孔質電子絶縁層が、第一領域および第二領域の両方に担持されている場合に も、 2つの正極合剤層の全表面および 2つの負極合剤層の全表面が、多孔質電子絶 縁層で覆われていてもよい。ただし、正極合剤層の表面領域において、その対向位 置の負極合剤層の表面に多孔質電子絶縁層が担持されている場合には、多孔質電 子絶縁層が担持されている必要はない。また、負極合剤層の表面領域において、そ の対向位置の正極合剤層の表面に多孔質電子絶縁層が担持されている場合には、 多孔質電子絶縁層が担持されて 、る必要はな 、。
[0041] 以下、多孔質電子絶縁層の構成について詳述する。
多孔質電子絶縁層は、無機酸化物フィラーおよび結着剤を含む。無機酸化物フィ ラーは、耐熱性が高いため、電池が比較的高温に至った場合でも、多孔質電子絶縁 層の機械的強度を高く維持することができる。また、結着剤の耐熱性も高いことが望 ましい。
[0042] 多孔質電子絶縁層の結着剤には、様々な榭脂材料を用いることができるが、例え ば熱分析で観測される熱分解開始温度が、 250°C以上である榭脂材料が望ま ヽ。 また、榭脂材料は、高温で大きく変形しないことが望ましいため、結晶融点を有さな い非晶質または非結晶性の榭脂材料であることが望ましい。また、榭脂材料が結晶 性である場合には、その結晶融点は 250°C以上であることが望ましい。
[0043] いわゆる釘刺し試験においては、試験条件によっては、内部短絡時の発熱温度は 、局所的に、数百 °Cを超える。よって、結晶性で、熱変形温度や結晶融点の低い榭 脂材料や、非晶質または非結晶性であっても、熱分解開始温度が低い樹脂材料を 含む多孔質電子絶縁層は、軟化や焼失を起こし、変形する可能性がある。
[0044] なお、榭脂材料の熱分解開始温度や、結晶融点もしくは熱変形開始温度は、示差 走査熱量測定(DSC : differential scanning calorimetry)や、熱重量測定 示差熱分 析 (TG—DTA: thermogravimetry— differential tnermal analysis;により孭 Ι| έすること力 できる。例えば、 TG-DTA測定における重量変化の始点は、熱分解開始温度に相 当し、 DSC測定における変曲点は、熱変形温度や結晶融点に相当する。
[0045] 多孔質電子絶縁層の結着剤は、アクリロニトリル単位、アタリレート単位およびメタク リレート単位よりなる群カゝら選択される少なくとも 1種の重合単位を含む榭脂材料を含 むことが望ましい。このような榭脂材料は、実質的に 1種のみの重合単位力もなる高 分子でもよぐ 2種以上の重合単位のランダム共重合体、ブロック共重合体、グラフト 共重合体等でもよい。
[0046] 正極と負極とを、セパレータと多孔質電子絶縁層を介して捲回する際、多孔質電子 絶縁層に応力が印加される。そのため、多孔質電子絶縁層に含まれる結着剤は、柔 軟性を有することが好まし ヽ。非結晶性の榭脂材料を結着剤として含む多孔質電子 絶縁層は、結晶性の結着剤を含む硬い多孔質電子絶縁層と異なり、極板を捲回する 際に、ひび割れなどの損傷を生じにくいため、生産歩留を高く維持できる。
[0047] また、アクリロニトリル単位、アタリレート単位およびメタタリレート単位よりなる群から 選択される少なくとも 1種の重合単位を含む榭脂材料を、多孔質電子絶縁層に用い ることで、耐熱性、結着性、リチウムイオン透過性のバランスが確保され、安全性とハ ィレート特性とを両立するリチウムイオン二次電池を得ることができる。
[0048] 各種榭脂微粒子もフイラ一として一般的であるが、多孔質電子絶縁層のフィラーに は、耐熱性が要求される他、リチウムイオン二次電池内の環境で、電気化学的に安 定である必要がある。よって、これら要求を満たす無機酸ィ匕物からなるフィラーが好ま しく用いられる。また、多孔質電子絶縁層は、フィラーと結着剤とを含む塗料を調製し 、その塗料を電極の所定の表面に塗工することで形成される。よって、無機酸化物フ イラ一は、塗料化に適することも要求される。
[0049] 以上の要件を満たすものとして、例えばアルミナ、チタ-ァ、ジルコユア、マグネシ ァ等が挙げられる。これらのうちでは、安定性、コスト、取り扱いの容易さ等の観点か ら、特にアルミナが好ましぐなかでも α—アルミナが好ましい。
[0050] 無機酸ィ匕物フイラ一は、複数種を混合して用いてもょ ヽ。例えば、メディアン径の異 なる同一種の無機酸ィ匕物フイラ一を混合する場合、緻密な多孔質電子絶縁層を得る ことができる。また、異なる無機酸化物フィラーを含む複数の多孔質電子絶縁層を、 積層してちょい。
[0051] 本発明の一態様においては、正極集電部および負極集電部には、それぞれストリ ップ状の正極リードおよび負極リードの一部が溶接されている。正極リードは、正極と 電池の外部正極端子とを接続する役割を有し、負極リードは、負極と電池の外部負 極端子とを接続する役割を有する。正極リードの材質は、 A1等であり、負極リードの 材質は、 Ni、 Cu等であることが好ましい。また、各リードの厚さは、 50— 200 mであ ることが好ましい。
[0052] 正極集電部が、多孔質電子絶縁層を担持しない露出領域を有する場合には、その 露出領域に、正極リードの一部を溶接することができる。また、負極集電部が、多孔 質電子絶縁層を担持しない露出領域を有する場合には、その露出領域に、負極リー ドの一部を溶接することができる。図 1に、前記のような構造を有する極板の断面模 式図を示す。
[0053] 図 1において、帯状の電極芯材 2の一方の長手方向端部には、集電部を構成する 2つの合剤を担持しない領域 7、 7'が存在する。電極芯材 2の合剤担持部 5、 5'には 、それぞれ電極合剤層 1、 1 'が担持されている。領域 7、 7'には、それぞれ多孔質電 子絶縁層 4を担持しない露出領域 6、 6'を有し、露出領域 6'には、ストリップ状の電 極リード 3の一部が溶接されている。
[0054] 図 1に示すように、電極芯材の長手方向において、合剤を担持しない領域 7と領域 7'の長さには、差を設けることが望ましい。領域 7の長さは、領域 7'の長さよりも大き くなつている。
[0055] なお、図 1では、合剤を担持しない領域 7、 7'のうち、露出領域 6、 6'を除く全領域 に、多孔質電子絶縁層 4が担持されているが、必ずしもその全領域に多孔質電子絶 縁層 4が担持されている必要はない。例えば、領域 7、 7'の一方には、多孔質電子絶 縁層 4が担持されて 、な 、場合もある。
[0056] 露出領域 6、 6'は、多孔質電子絶縁層 4の原料を含む塗料を、露出領域 6、 6'とな る領域を避けて間欠塗工したり、または、一旦担持された多孔質電子絶縁層 4を剥離 したりすることで形成できる。
[0057] 安全性を更に高める観点からは、図 1のように露出領域 6、 6'を設けず、図 2のよう な構造を有する極板を作製することが好ましい。図 2においては、多孔質電子絶縁層 4力 集電部上に配置されている電極リード部分にも担持されている(図中、破線で 囲まれた領域)。集電部および電極リードからなるリード部は、集電部よりもさらに厚さ が増しているが、図 2のような構造によれば、厚さの増したリード部力 他方の電極の 電極合剤と接触する可能性は著しく低減する。
[0058] 以下、正極合剤層および負極合剤層の構成について詳述する。
正極合剤層は、正極活物質として、複合リチウム酸化物を含む。正極合剤層は、一 般に、複合リチウム酸化物からなる正極活物質と、正極結着剤と、導電剤とを含む正 極合剤からなる。ただし、正極合剤は、正極活物質、正極結着剤および導電剤の他 に、種々の添加剤を含んでもよ!、。
[0059] 複合リチウム酸化物としては、コバルト酸リチウム(LiCoO )、コバルト酸リチウムの
2
変性体、ニッケル酸リチウム(LiNiO )、ニッケル酸リチウムの変性体、マンガン酸リチ
2
ゥム(LiMn O )、マンガン酸リチウムの変性体、これらの酸化物の Co、 Mnもしくは N
2 4
iの一部を他の遷移金属元素で置換したものなどが好ましい。各変性体には、アルミ 二ゥム、マグネシウムなどの元素を含むものがある。また、コノ レト、ニッケルおよびマ ンガンの少なくとも 2種を含むものもある。 LiMn Oなどの Mn系リチウム含有遷移金
2 4
属酸化物は、特に、地球上に豊富に存在し、低価格である点で有望である。
[0060] 正極結着剤は、特に限定されず、ポリテトラフルォロエチレン (PTFE)、変性アタリ 口-トリルゴム粒子(日本ゼオン (株)製の BM— 500Bなど)、ポリフッ化ビ-リデン(PV DF)などを用いることができる。 PTFEや BM— 500Bは、正極合剤層の原料ペースト の増粘剤となるカルボキシメチルセルロース(CMC)、ポリエチレンォキシド(PEO)、 変性アクリロニトリルゴム(日本ゼオン (株)製 BM— 720Hなど)などと組み合わせて用 いることが好ましい。 PVDFは、単一で、正極結着剤としての機能と、増粘剤としての 機能とを有する。
[0061] 導電剤としては、アセチレンブラック、ケッチェンブラック、各種黒鉛などを用いること ができる。これらは単独で用いてもよぐ 2種以上を組み合わせて用いてもよい。
[0062] 負極合剤層は、負極活物質として、リチウムを吸蔵および放出し得る材料を含む。
負極合剤層は、一般に、負極活物質と、負極結着剤とを含む負極合剤からなる。た だし、負極合剤は、負極活物質および負極結着剤の他に、種々の添加剤を含んでも よい。
[0063] ここで、リチウムを吸蔵および放出し得る材料としては、各種天然黒鉛、各種人造黒 鉛、石油コータス、炭素繊維、有機高分子焼成物などの炭素材料、酸化物、シリサイ ドなどのシリコン含有複合材料、各種金属もしくは合金材料を用いることができる。
[0064] 負極結着剤としては、特に限定されず、正極結着剤と同様に、 PTFE、変性アタリ口 二トリルゴム粒子、 PVDF、 CMC等のセルロース系榭脂などを用いることができるが 、ゴム性状高分子が好ましく用いられる。このようなゴム性状高分子としては、負極に よるリチウムイオン受入れ性向上の観点から、スチレン単位およびブタジエン単位含 むものが好ましく用いられる。例えばスチレン ブタジエン共重合体(SBR)、 SBRの 変性体などを用いることができるが、これらに限定されない。
[0065] 以下、非水電解液の構成について詳述する。
非水電解液には、リチウム塩を溶質として溶解する非水溶媒を用いることが好まし い。非水溶媒に溶解する溶質濃度は、一般に 0. 5— 2molZLである。
[0066] リチウム塩としては、 6フッ化リン酸リチウム(LiPF )、過塩素酸リチウム(LiCIO )
6 4、 ホウフッ化リチウム (LiBF )などを用いることが好まし!/、。
4
[0067] 非水溶媒としては、エチレンカーボネート (EC)、プロピレンカーボネート (PC)、ジ メチルカーボネート (DMC)、ジェチルカーボネート (DEC)、メチルェチルカーボネ 一 HMEC)などを単独または組み合わせて用いることが好ましい。非水溶媒は、 1種 を単独で用いることもできる力 2種以上を組み合わせて用いることが好まし 、。
[0068] 正極および Zまたは負極上に、良好な皮膜を形成させ、過充電時の安定性等を確 保するために、ビ-レンカーボネート(VC)、シクロへキシルベンゼン(CHB)、 VCや
CHBの変性体などを用いることもできる。
[0069] 《実施例 1》
円筒形 18650のリチウムイオン二次電池を、以下の要領で作製した。
(i)正極の作製
コバルト酸リチウム 3kgと、結着剤としての呉羽化学 (株)製の PVDF # 1320 (PVD Fを 12重量0 /0含む N—メチルー 2—ピロリドン(以下、 NMP)溶液) 1kgと、アセチレンブ ラック 90gと、適量の NMPとを、双腕式練合機にて攪拌し、正極合剤ペーストを調製 した。
[0070] 正極合剤ペーストを厚さ 15 μ mのアルミニウム箔カもなる正極芯材の両面に、所定 の集電部を残して塗布し、乾燥させた。その後、正極合剤を担持した正極芯材を圧 延し、正極芯材に正極合剤層を担持させた。この際、アルミニウム箔および両面の正 極合剤層力もなる正極板の厚みを 160 μ mに制御した。
[0071] その後、極板を円筒形電池の直径 18mm、高さ 65mmサイズの電池ケースに挿入 可能な幅と長さに裁断し、帯状の正極を得た。得られた正極の一方の長手方向端部 には、図 1に示すような合剤を担持しない領域 7、 7'からなる集電部が設けられてい た。領域 7および領域 7'の長さは、それぞれ 50mmおよび 30mmであった。
[0072] (ii)負極の作製
人造黒鉛 3kgと、日本ゼオン (株)製の BM— 400B (スチレン ブタジエン共重合体 を 40重量%含む水性分散液) 75gと、増粘剤としてのカルボキシメチルセルロース( CMC) 30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤ペーストを調製し た。
[0073] 負極合剤ペーストを厚さ 10 mの銅箔からなる負極芯材の両面に、所定の集電部 を残して塗布し、乾燥させた。その後、負極合剤を担持した負極芯材を圧延し、負極 芯材に負極合剤層を担持させた。この際、銅箔および両面の負極合剤層カゝらなる負 極板の厚みを 180 μ mに制御した。 [0074] その後、負極板を円筒形電池の直径 18mm、高さ 65mmサイズの電池ケースに揷 入可能な幅と長さに裁断し、帯状の負極を得た。得られた負極の一方の長手方向端 部には、図 1に示すような合剤を担持しない領域 7、 7'からなる集電部が設けられて いた。領域 7および領域 7'の長さは、それぞれ 13mmおよび 80mmであった。
[0075] (iii)電解液の調製
エチレンカーボネート(EC)と、ジメチノレカーボネート(DMC)と、ェチノレメチノレカー ボネート (EMC)とを、体積比 2: 3: 3で含む混合溶媒に、 LiPFを ImolZLの濃度で
6
溶解させ、さらにビ-レンカーボネート (VC)を 3重量%添加して、非水電解液を調製 した。
[0076] (iv)多孔質電子絶縁層の原料塗料の調製
無機酸ィ匕物フイラ一として、メディアン径 0. 3 mのァノレミナを 970gと、結着剤であ る日本ゼオン (株)製の BM— 720H (アクリロニトリル単位を含む高分子を 8重量0 /0含 む NMP溶液) 375gと、適量の NMPとを、双腕式練合機にて攪拌し、多孔質電子絶 縁層の原料塗料を調製した。
[0077] (V)電池の組立
正極 35の集電部の長手方向最端部力も幅 8mmの領域 (以下、領域 A)内に、アル ミニゥム製の正極リード 35a (幅 3. 5mm X長さ 71mm X厚み 150 μ m)の一端を溶 接した。
[0078] 負極 36の集電部の長手方向最端部力も幅 8mmの領域 (以下、領域 B)内に、ニッ ケル製の負極リード 36a (幅 3mm X長さ 66. 5mm X厚み 100 μ m)の一端を溶接し た。
[0079] 正極 35の両面の正極合剤層の表面および領域 Aを除く集電部に、それぞれ多孔 質電子絶縁層の原料塗料を塗布し、乾燥させて、厚さ 5 μ mの多孔質電子絶縁層を 形成した。
[0080] 多孔質電子絶縁層(図示せず)を担持した正極 35と、負極 36とを、両極板より幅広 で、厚さ 20 μ mのポリエチレン榭脂製の微多孔フィルム力 なるセパレータ 37を介し て、捲回して、電極群を構成した。その際、負極の集電部を卷芯側に、正極の集電 部を最外周に配置させた。 [0081] 極板群の外面はセパレータ 37で介装した。この電極群の上下に、それぞれ上部絶 縁リング 38aおよび下部絶縁リング 38bを配して、電池缶 31の内空間に収容した。次 いで、非水電解液 5. 5gを電池缶 31内に注液し、電極群に含浸させた。正極リード 3 5aの他端は、周縁に絶縁パッキン 33が配された封口板 32の裏面に溶接した。負極 リード 36aの他端は、電池缶 31の内底面に溶接した。最後に電池缶 31の開口を、封 口板 32で塞いだ。こうして図 3に示すような円筒形 18650のリチウムイオン二次電池 (公称容量 2000mAh)を完成させた。
[0082] 《比較例 1》
正極に多孔質電子絶縁層を担持させな力つたこと以外、実施例 1と同様にして、リ チウムイオン二次電池を作製した。
[0083] 《比較例 2》
正極に多孔質電子絶縁層を担持させずに、セパレータの両面に、多孔質電子絶縁 層の原料塗料を塗布し、乾燥させて、それぞれ厚さ 5 mの多孔質電子絶縁層を形 成したこと以外、実施例 1と同様にして、リチウムイオン二次電池を作製した。
[0084] 《比較例 3》
正極に多孔質電子絶縁層を担持させずに、負極の両面の負極合剤層の表面のみ に、多孔質電子絶縁層の原料塗料を塗布し、乾燥させて、それぞれ厚さ 5 mの多 孔質電子絶縁層を形成したこと以外、実施例 1と同様にして、リチウムイオン二次電 池を作製した。
[0085] 《実施例 2》
正極に多孔質電子絶縁層を担持させずに、負極の両面の負極合剤層の表面およ び領域 Bを除く集電部に、それぞれ多孔質電子絶縁層の原料塗料を塗布し、乾燥さ せて、厚さ 5 mの多孔質電子絶縁層を形成したこと以外、実施例 1と同様にして、リ チウムイオン二次電池を作製した。
[0086] 《実施例 3》
領域 Bおよび領域 Bに配置されている負極リード部分にも、多孔質電子絶縁層の原 料塗料を塗布し、乾燥させて、厚さ 5 mの多孔質電子絶縁層を形成したこと以外、 実施例 2と同様にして、リチウムイオン二次電池を作製した。 [0087] 《実施例 4》
多孔質電子絶縁層の原料塗料の調製において、無機酸ィ匕物フイラ一として、メディ アン径 0. 3 μ mのアルミナの代わりに、メディアン径 0. 3 μ mのチタ-ァを用いたこと 以外、実施例 2と同様にして、リチウムイオン二次電池を作製した。
[0088] 《比較例 4》
多孔質電子絶縁層の原料塗料の調製において、無機酸ィ匕物フイラ一の代わりに、 メディアン径 0. 3 mのポリエチレンビーズを用いたこと以外、実施例 2と同様にして 、リチウムイオン二次電池を作製した。
[0089] 《実施例 5》
多孔質電子絶縁層の原料塗料の調製において、結着剤として、 BM— 720Hの代 わりに、ポリフッ化ビ-リデン (PVDF)を用いたこと以外、実施例 2と同様にして、リチ ゥムイオン二次電池を作製した。
[0090] 《実施例 6》
多孔質電子絶縁層の原料塗料の調製において、結着剤として、 BM— 720Hの代 わりに、 日本ゼオン (株)製の BM— 500B (アクリロニトリル単位およびアタリレート単位 を含む共重合体力 なるゴム粒子を 8重量%含む NMP溶液)を用いたこと以外、実 施例 2と同様にして、リチウムイオン二次電池を作製した。
上記実施例および比較例の構成を表 1にまとめて示す。
[0091] [表 1]
多孔質電子絶縁層
結着剤
担体 フィラ- 結晶融点 分解開始温度 種類
(で) CO 正極合剤層
実施例 1 アルミナ ΒΜ-720Η なし 320 集鴛部
負極合剤層
実施例 2 アルミナ Β -720Η なし 320 集電部
負極合剤層
実施例 3 集電部 アルミナ Β -720Η なし 320 リード部
負極合剤層
実施例 4 チタ二 7 ΒΜ-720Η なし 320 集電部
負極合剤層
実施例 5 7ルミナ PVDF 174 360 集電部
負極合剤層
実施例 6 7ルミナ ΒΜ-500Β なし 320 集電部
比較例 1 なし ― ― ― 比較例 2 セ Λ'レ-夕 アルミナ Β -720Η なし 320 比較例 3 負極合剤層 アルミナ ΒΜ-720Η なし 320 負極合剤 β *'リエチレン
比較例 4 ΒΜ-720Η なし 320 集電部 ビ-ス'
[0092] [評価]
各実施例および各比較例の電池について、慣らし充放電を行った後、以下の評価 を行った。結果を表 2に記す。
[0093] (釘刺し安全性)
以下の要領で、釘刺し試験を行った。
まず、 20°C環境下で、各電池に対し、以下の充電を行った。
定電流充電: 1400mA (終止電圧 4. 25V)
定電圧充電: 4. 25V (終止電流 100mA)
充電後の電池に対して、その側面から、 2. 7mm径の鉄製丸釘を、 20°C環境下で 、 5mmZ秒または 180mmZ秒の速度で貫通させ、貫通後 1秒後および 90秒後の 短絡点近傍の発熱状態を観測した。
[0094] (高温安全性)
以下の要領で、高温耐熱試験を行った。
まず、 20°C環境下で、各電池に対し、以下の充電を行った。
定電流充電: 1400mA (終止電圧 4. 25V) 定電圧充電: 4. 25V (終止電流 100mA)
充電後の電池を、 5°CZ分の昇温速度で 150°Cまで昇温し、 150°Cで 3時間放置し た。このときの電池の最高到達温度を測定した。
[表 2]
Figure imgf000020_0001
[0096] [考察]
(i)多孔質電子絶縁層の有無
多孔質電子絶縁層が存在しない比較例 1では、釘刺し速度の如何に関わらず、 1 秒後の異常過熱が顕著であった。一方、多孔質電子絶縁層をセパレータに担持させ た比較例 2では、釘刺し後の過熱速度は遅くなつたが、釘刺し速度が遅い場合には 過熱が促進され、最終的に異常過熱の抑止には至らな力つた。一方、多孔質電子絶 縁層を電極合剤層の表面および集電部に担持させた実施例 1、 2では、大幅に過熱 速度が抑制された。
[0097] 釘刺し試験後の電池を分解して内部を調べたところ、全ての電池において、セパレ ータが広範囲に及んで溶融している力 実施例 1、 2においては、多孔質電子絶縁層 力 その原形を留めていた。よって、多孔質電子絶縁層が、釘刺時の短絡による発 熱時においても破壊されず、一方の電極の集電部と他方の電極の合剤層との短絡 を抑制し、発熱を抑制して、短絡箇所の拡大や異常過熱を防げたものと考えられる。
[0098] 比較例 2の電池では、セパレータの溶融に伴い、多孔質電子絶縁層も変形してい た。また、高温耐熱試験においても、短絡による異常発熱が確認できた。多孔質電 子絶縁層は、面方向の構造維持が担体によってなされている。よって、如何に多孔 質電子絶縁層自身が高い耐熱性を有しても、セパレータが収縮や溶融による形状変 化を起こせば、これに追従せざるを得な 、と考えられる。
[0099] ここで、釘刺し試験について詳述する。
釘刺しによる発熱の原因については、過去の実験結果から、以下のように説明でき る。釘刺しにより、正極と負極とが接触 (短絡)すると、ジュール熱が発生する。ジユー ル熱によって耐熱性の低い材料 (セパレータ)が溶融し、強固な短絡部を形成する。 その結果、ジュール熱の発生が継続され、正極が熱的に不安定となる温度領域(16 5°C以上)に昇温される。こうして異常過熱が引き起こされる。
[0100] また、釘刺し速度を減じた場合には、局部的な発熱の促進が観察できる。釘刺し速 度を減じて単位時間当りの短絡面積を限定した場合、相当の熱量が限定箇所に集 中することになり、正極が熱的に不安定となる温度領域に到達するのが早まるものと 考えられる。一方、釘刺し速度を増して、単位時間当りの短絡面積を拡大した場合、 熱が大面積に分散されることになり、正極が熱的に不安定となる温度領域に達しにく くなると考えられる。
[0101] 各種用途において、リチウムイオン二次電池の安全性規格は益々厳しくなりつつあ り、釘刺し速度 (短絡状態)の如何に関わらず、異常過熱を抑止できる技術が強く求 められている。実施例 1、 2は、本発明がこのような高い要求を満たすことのできるもの であることを示している。
[0102] (ii)多孔質電子絶縁層の結着剤について
多孔質電子絶縁層の結着剤として PVDFを用いた実施例 5では、釘刺し速度を速 くしたときには、異常過熱を抑制できている。しかし、アクリル-トリル単位やアタリレー ト単位を含み、結晶融点を有さない非結晶性の榭脂材料を用いた実施例 1、 2、 6〖こ 比べると、より急激な温度上昇が見られた。よって、結着剤として用いる榭脂材料は、 アクリロニトリル単位、アタリレート単位および/またはメタタリレート単位を含むことが 好ましい。
[0103] アクリロニトリル単位、アタリレート単位および/またはメタタリレート単位を含む榭脂 材料は、柔軟性が高いため、捲回形の電極群を構成する電池においては、多孔質 電子絶縁層の割れによる不良を低減するという観点からも優れている。
[0104] (iii)フィラーの種類について
アルミナに代えてチタ-ァを用いた実施例 4では、ほぼアルミナと同様の評価結果 が確認できた。一方、ポリエチレンビーズ (PEビーズ)を用いた比較例 4では、釘刺し 安全性が極めて低い結果となった。 PEビーズは、セパレータである微多孔性フィル ムと同レベルの耐熱性しか有さないため、短絡を防止する多孔質電子絶縁層の機能 を果たすことができないと考えられる。よって、フィラーには無機酸化物を選択するこ とが必須であると考えられる。
産業上の利用可能性
[0105] 本発明は、耐熱性に優れ、内部短絡および電池の異常過熱が高度に抑制されたリ チウムイオン二次電池を提供するものであり、高度な安全性が要求されるポータブル 機器用電源等として有用である。

Claims

請求の範囲
[1] 正極集電部および合剤担持部を有する正極芯材と、前記合剤担持部に担持され た正極合剤層とを有する正極、
負極集電部および合剤担持部を有する負極芯材と、前記合剤担持部に担持され た負極合剤層とを有する負極、
前記正極と前記負極との間に介在するセパレータ、
前記正極と前記負極との間に介在する多孔質電子絶縁層、ならびに
非水電解液を具備するリチウム二次電池であって、
前記正極合剤層は、複合リチウム酸化物を含み、
前記負極合剤層は、リチウムを吸蔵および放出し得る材料を含み、
前記多孔質電子絶縁層は、無機酸化物フィラーおよび結着剤を含み、 前記多孔質電子絶縁層は、前記正極集電部および前記正極合剤層の表面を含む 領域、または Zおよび、前記負極集電部および前記負極合剤層の表面を含む領域 に担持されており、
前記正極と前記負極とが、前記セパレータぉよび前記多孔質電子絶縁層を介して 捲回されて 、るリチウムイオン二次電池。
[2] 前記正極集電部および前記負極集電部には、それぞれストリップ状の正極リードお よび負極リードの一部が溶接されている請求項 1記載のリチウムイオン二次電池。
[3] 前記正極集電部および Zまたは前記負極集電部が、前記多孔質電子絶縁層を担 持しない露出領域を有し、前記露出領域に、前記リードの一部が溶接されている請 求項 2記載のリチウムイオン二次電池。
[4] 前記多孔質電子絶縁層が、前記正極リードおよび Zまたは前記負極リードの一部 であって、少なくとも前記集電部上に配置されている部分にも担持されている請求項
1記載のリチウムイオン二次電池。
[5] 前記多孔質電子絶縁層に含まれる前記結着剤は、結晶融点を有さな!/、か、もしく は 250°C以上の結晶融点を有する榭脂材料を含む請求項 1記載のリチウムイオン二 次電池。
PCT/JP2004/019629 2004-01-09 2004-12-28 リチウムイオン二次電池 WO2005067080A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005516858A JP4739958B2 (ja) 2004-01-09 2004-12-28 リチウムイオン二次電池
US10/577,494 US7745042B2 (en) 2004-01-09 2004-12-28 Lithium ion secondary battery
KR1020067004149A KR100750020B1 (ko) 2004-01-09 2004-12-28 리튬이온 2차 전지
CNB2004800288687A CN100440588C (zh) 2004-01-09 2004-12-28 锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004003873 2004-01-09
JP2004-003873 2004-01-09

Publications (1)

Publication Number Publication Date
WO2005067080A1 true WO2005067080A1 (ja) 2005-07-21

Family

ID=34747094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019629 WO2005067080A1 (ja) 2004-01-09 2004-12-28 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US7745042B2 (ja)
JP (1) JP4739958B2 (ja)
KR (1) KR100750020B1 (ja)
CN (1) CN100440588C (ja)
WO (1) WO2005067080A1 (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128106A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 二次電池
EP1958277A1 (en) * 2005-12-06 2008-08-20 LG Chem, Ltd. Electrode with enhanced safety and electrochemical device having the same
JP2008300349A (ja) * 2007-05-29 2008-12-11 Samsung Sdi Co Ltd リチウム二次電池
WO2009011123A1 (ja) * 2007-07-17 2009-01-22 Panasonic Corporation 二次電池および二次電池の製造方法
WO2009013890A1 (ja) * 2007-07-20 2009-01-29 Panasonic Corporation 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法
JP2009099558A (ja) * 2007-09-25 2009-05-07 Panasonic Corp 二次電池
JP2010010117A (ja) * 2008-05-30 2010-01-14 Hitachi Vehicle Energy Ltd リチウム二次電池およびその製造方法
US7679739B2 (en) 2005-09-02 2010-03-16 Panasonic Corporation Device and method for measuring microporous film on battery electrode plate, coater equipped with film measuring device, and coating method using film measuring method
US20100203396A1 (en) * 2007-06-06 2010-08-12 Hiroshi Murata Multilayer porous film
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
JP2011243351A (ja) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd 扁平形非水電池
KR101092821B1 (ko) 2005-08-25 2011-12-12 파나소닉 주식회사 비수 전해질 이차전지와 그를 이용한 전지팩
KR20120023573A (ko) 2010-09-03 2012-03-13 가부시키가이샤 지에스 유아사 전지
JPWO2010098380A1 (ja) * 2009-02-25 2012-09-06 日本ゼオン株式会社 リチウムイオン二次電池用電極
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
US8771860B2 (en) 2010-06-11 2014-07-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for manufacturing same
US8986891B2 (en) 2010-11-05 2015-03-24 Gs Yuasa International Ltd. Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
JP2015097159A (ja) * 2013-11-15 2015-05-21 株式会社デンソー 二次電池用電極、二次電池用電極の製造方法および二次電池
JP2015213073A (ja) * 2010-09-03 2015-11-26 株式会社Gsユアサ 電池
JP2016066454A (ja) * 2014-09-24 2016-04-28 株式会社Gsユアサ 蓄電素子
JP2017143004A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子
US20180034098A1 (en) * 2015-02-17 2018-02-01 Gs Yuasa International Ltd. Energy storage device, energy storage apparatus, and automobile
WO2018079817A1 (ja) * 2016-10-31 2018-05-03 Necエナジーデバイス株式会社 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
JP2019029243A (ja) * 2017-08-01 2019-02-21 トヨタ自動車株式会社 リチウムイオン二次電池
WO2019049886A1 (ja) * 2017-09-05 2019-03-14 積水化学工業株式会社 電極、及びリチウムイオン二次電池

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8883354B2 (en) * 2006-02-15 2014-11-11 Optodot Corporation Separators for electrochemical cells
JP5137312B2 (ja) * 2006-03-17 2013-02-06 三洋電機株式会社 非水電解質電池
JP2008269928A (ja) * 2007-04-19 2008-11-06 Matsushita Electric Ind Co Ltd 非水電解質二次電池
KR101407772B1 (ko) * 2007-05-25 2014-06-18 삼성에스디아이 주식회사 전극조립체 및 그를 이용한 이차전지
JP5319943B2 (ja) * 2008-03-19 2013-10-16 株式会社オハラ 電池
DE102008001707A1 (de) * 2008-05-09 2009-11-12 Robert Bosch Gmbh Energiewandler- und/oder Energiespeichervorrichtung mit fluorabsorberierender Ummantelung
US8518577B2 (en) * 2008-06-13 2013-08-27 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery having the same
CA2763959C (en) 2009-05-26 2016-03-22 Steven Allen Carlson Batteries utilizing electrode coatings directly on nanoporous separators
JP5445872B2 (ja) * 2010-05-21 2014-03-19 トヨタ自動車株式会社 二次電池
CN101894937A (zh) * 2010-07-02 2010-11-24 东莞新能源科技有限公司 锂离子电池及其正极片
KR20140018171A (ko) 2010-07-19 2014-02-12 옵토도트 코포레이션 전기화학 전지용 세퍼레이터
KR101252914B1 (ko) * 2010-08-25 2013-04-09 삼성에스디아이 주식회사 전극조립체 및 이를 포함한 이차전지와 그 제조방법
CN102487138B (zh) * 2010-12-02 2014-12-10 上海比亚迪有限公司 负极浆料及其制备方法和锂离子电池负极及其锂离子电池
CN102683735B (zh) * 2011-03-16 2017-03-01 株式会社杰士汤浅国际 蓄电元件
US20140023915A1 (en) * 2012-07-17 2014-01-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell
JP2014035923A (ja) * 2012-08-09 2014-02-24 Sanyo Electric Co Ltd 非水電解質二次電池
CN105247703B (zh) 2013-04-29 2019-09-03 奥普图多特公司 具有增加的热导率的纳米多孔复合分隔物
CN103560224A (zh) * 2013-11-11 2014-02-05 宁德新能源科技有限公司 锂离子二次电池
KR101784743B1 (ko) * 2015-01-23 2017-11-06 삼성에스디아이 주식회사 이차 전지
CN105449159B (zh) * 2015-03-12 2018-04-20 万向一二三股份公司 一种高安全性能的锂离子电池正极片及其制作方法
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
CN107710460B (zh) * 2015-08-31 2021-01-08 松下知识产权经营株式会社 非水电解质二次电池
JP6863288B2 (ja) * 2015-11-19 2021-04-21 日本ゼオン株式会社 リチウムイオン二次電池用電極
EP3316352B1 (en) * 2016-10-27 2021-03-24 Robert Bosch GmbH Safety test method for determination of critical cell states by internal short circuit provocation
JP6981468B2 (ja) * 2017-04-25 2021-12-15 日本電気株式会社 リチウムイオン二次電池
US20190148692A1 (en) * 2017-11-16 2019-05-16 Apple Inc. Direct coated separators and formation processes
WO2019135640A1 (ko) * 2018-01-04 2019-07-11 주식회사 엘지화학 절연 코팅층이 구비된 전극탭을 포함하는 이차전지
CN110277535B (zh) * 2018-03-15 2023-11-03 株式会社理光 多孔质绝缘体,电极及非水系蓄电元件
WO2019194181A1 (ja) * 2018-04-06 2019-10-10 三洋電機株式会社 非水電解質二次電池
US11870037B2 (en) 2018-04-10 2024-01-09 Apple Inc. Porous ceramic separator materials and formation processes
CN109473729B (zh) 2018-11-05 2020-11-13 宁德新能源科技有限公司 电化学装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JP2003142078A (ja) * 2001-11-02 2003-05-16 Japan Storage Battery Co Ltd 非水系二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU6242496A (en) * 1995-06-28 1997-01-30 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US6090506A (en) * 1996-08-02 2000-07-18 Fuji Photo Film Co. Ltd. Nonaqueous secondary battery
JP4061668B2 (ja) * 1997-04-21 2008-03-19 宇部興産株式会社 リチウムイオン非水電解質二次電池
JP2954147B1 (ja) * 1998-03-20 1999-09-27 日本電気株式会社 防爆型二次電池
US5902697A (en) * 1998-05-15 1999-05-11 Valence Technology, Inc. Bi-cell separation for improved safety
JP3428452B2 (ja) * 1998-08-27 2003-07-22 三菱電機株式会社 渦巻状電極体を備えた電池及びその製造方法
JP4366783B2 (ja) * 1998-11-16 2009-11-18 株式会社デンソー 積層型電池及びその電極の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JP2003142078A (ja) * 2001-11-02 2003-05-16 Japan Storage Battery Co Ltd 非水系二次電池

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490463B2 (en) 2004-09-02 2016-11-08 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
US8409746B2 (en) 2004-09-02 2013-04-02 Lg Chem, Ltd. Organic/inorganic composite porous film and electrochemical device prepared thereby
JP2006128106A (ja) * 2004-10-28 2006-05-18 Samsung Sdi Co Ltd 二次電池
KR101092821B1 (ko) 2005-08-25 2011-12-12 파나소닉 주식회사 비수 전해질 이차전지와 그를 이용한 전지팩
US7679739B2 (en) 2005-09-02 2010-03-16 Panasonic Corporation Device and method for measuring microporous film on battery electrode plate, coater equipped with film measuring device, and coating method using film measuring method
US7952703B2 (en) 2005-09-02 2011-05-31 Panasonic Corporation Device and method for measuring microporous film on battery electrode plate, coater equipped with film measuring device, and coating method using film measuring method
EP1958277A4 (en) * 2005-12-06 2011-03-23 Lg Chemical Ltd REINFORCED SAFETY ELECTRODE AND ELECTROCHEMICAL DEVICE EQUIPPED WITH SUCH AN ELECTRODE
EP1958277A1 (en) * 2005-12-06 2008-08-20 LG Chem, Ltd. Electrode with enhanced safety and electrochemical device having the same
US8741470B2 (en) 2007-04-24 2014-06-03 Lg Chem, Ltd. Electrochemical device having different kinds of separators
JP2008300349A (ja) * 2007-05-29 2008-12-11 Samsung Sdi Co Ltd リチウム二次電池
US20100203396A1 (en) * 2007-06-06 2010-08-12 Hiroshi Murata Multilayer porous film
US9070935B2 (en) * 2007-06-06 2015-06-30 Asahi Kasei E-Materials Corporation Multilayer porous film
WO2009011123A1 (ja) * 2007-07-17 2009-01-22 Panasonic Corporation 二次電池および二次電池の製造方法
US7806943B2 (en) 2007-07-17 2010-10-05 Panasonic Corporation Secondary battery and method for producing the same
US7695864B2 (en) 2007-07-20 2010-04-13 Panasonic Corporation Electrode plate for battery, electrode group for battery, lithium secondary battery, and method for producing electrode plate for battery
WO2009013890A1 (ja) * 2007-07-20 2009-01-29 Panasonic Corporation 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法
JP2009099558A (ja) * 2007-09-25 2009-05-07 Panasonic Corp 二次電池
JP2010010117A (ja) * 2008-05-30 2010-01-14 Hitachi Vehicle Energy Ltd リチウム二次電池およびその製造方法
JPWO2010098380A1 (ja) * 2009-02-25 2012-09-06 日本ゼオン株式会社 リチウムイオン二次電池用電極
JP5569515B2 (ja) * 2009-02-25 2014-08-13 日本ゼオン株式会社 リチウムイオン二次電池用電極
JP2011243351A (ja) * 2010-05-17 2011-12-01 Hitachi Maxell Energy Ltd 扁平形非水電池
US8771860B2 (en) 2010-06-11 2014-07-08 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for manufacturing same
US9099757B2 (en) 2010-09-03 2015-08-04 Gs Yuasa International Ltd. Battery
JP2012074359A (ja) * 2010-09-03 2012-04-12 Gs Yuasa Corp 電池
JP2015213073A (ja) * 2010-09-03 2015-11-26 株式会社Gsユアサ 電池
KR20120023573A (ko) 2010-09-03 2012-03-13 가부시키가이샤 지에스 유아사 전지
US8986891B2 (en) 2010-11-05 2015-03-24 Gs Yuasa International Ltd. Electrode for electricity-storing device, electricity-storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
US9450236B2 (en) 2010-11-05 2016-09-20 Gs Yuasa International Ltd. Electrode for electricity-storing device, electricity storing device employing such electrode, and method of manufacturing electrode for electricity-storing device
JP2015097159A (ja) * 2013-11-15 2015-05-21 株式会社デンソー 二次電池用電極、二次電池用電極の製造方法および二次電池
JP2016066454A (ja) * 2014-09-24 2016-04-28 株式会社Gsユアサ 蓄電素子
US20180034098A1 (en) * 2015-02-17 2018-02-01 Gs Yuasa International Ltd. Energy storage device, energy storage apparatus, and automobile
US10505229B2 (en) * 2015-02-17 2019-12-10 Gs Yuasa International Ltd. Energy storage device, energy storage apparatus, and automobile
JP2017143004A (ja) * 2016-02-10 2017-08-17 株式会社Gsユアサ 蓄電素子
WO2018079817A1 (ja) * 2016-10-31 2018-05-03 Necエナジーデバイス株式会社 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
JPWO2018079817A1 (ja) * 2016-10-31 2019-09-19 株式会社エンビジョンAescエナジーデバイス 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
US11158851B2 (en) 2016-10-31 2021-10-26 Envision Aesc Energy Devices Ltd. Electrode for electrochemical device, electrochemical device, and method for manufacturing same
JP7002094B2 (ja) 2016-10-31 2022-01-20 株式会社エンビジョンAescジャパン 電気化学デバイス用の電極と、電気化学デバイスと、それらの製造方法
JP2019029243A (ja) * 2017-08-01 2019-02-21 トヨタ自動車株式会社 リチウムイオン二次電池
WO2019049886A1 (ja) * 2017-09-05 2019-03-14 積水化学工業株式会社 電極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
US20070122715A1 (en) 2007-05-31
KR100750020B1 (ko) 2007-08-16
US7745042B2 (en) 2010-06-29
CN100440588C (zh) 2008-12-03
JP4739958B2 (ja) 2011-08-03
KR20060060712A (ko) 2006-06-05
CN1864288A (zh) 2006-11-15
JPWO2005067080A1 (ja) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4739958B2 (ja) リチウムイオン二次電池
JP4920423B2 (ja) リチウムイオン二次電池
JP4454340B2 (ja) リチウムイオン二次電池
US7572548B2 (en) Non-aqueous electrolyte battery and method of manufacturing the same
US20060019151A1 (en) Non-aqueous electrolyte battery
US20060216609A1 (en) Non-aqueous electrolyte battery and method for producing the same
US20100119940A1 (en) Secondary battery
WO2005117169A1 (ja) 捲回型非水系二次電池およびそれに用いる電極板
JP4694968B2 (ja) リチウム二次電池
CN110462885B (zh) 用于圆柱形卷芯的条形电极以及包含其的锂二次电池
CN114094039B (zh) 一种电极片及包含该电极片的锂离子电池
JP4815845B2 (ja) ポリマー電池
JP4831937B2 (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
CN113394404B (zh) 一种集流体及含该集流体的电极极片和锂离子电池
JP2009259749A (ja) 非水電解液二次電池
WO2012014255A1 (ja) リチウムイオン二次電池
JP4904857B2 (ja) 非水電解液二次電池
JP4794820B2 (ja) リチウムイオン二次電池およびその製造方法
JP2005235617A (ja) リチウムイオン電池
JP2008077996A (ja) 巻回電池
JP2007012496A (ja) 非水電解質二次電池
WO2020059873A1 (ja) 二次電池
JP2016024898A (ja) 正極、これを用いた二次電池およびこれらの製造方法
JP2002151037A (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP2013134826A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028868.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005516858

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067004149

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007122715

Country of ref document: US

Ref document number: 10577494

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10577494

Country of ref document: US