WO2005065559A1 - バルーンカテーテル - Google Patents

バルーンカテーテル Download PDF

Info

Publication number
WO2005065559A1
WO2005065559A1 PCT/JP2004/019053 JP2004019053W WO2005065559A1 WO 2005065559 A1 WO2005065559 A1 WO 2005065559A1 JP 2004019053 W JP2004019053 W JP 2004019053W WO 2005065559 A1 WO2005065559 A1 WO 2005065559A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
electrode
catheter
cylinder shaft
frequency power
Prior art date
Application number
PCT/JP2004/019053
Other languages
English (en)
French (fr)
Inventor
Akinori Matsukuma
Yoshiharu Yamazaki
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to US10/583,730 priority Critical patent/US20070149963A1/en
Priority to JP2005516828A priority patent/JPWO2005065559A1/ja
Priority to CN2004800399590A priority patent/CN1901844B/zh
Priority to EP04807410A priority patent/EP1709922A4/en
Priority to CA002551752A priority patent/CA2551752A1/en
Publication of WO2005065559A1 publication Critical patent/WO2005065559A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M29/00Dilators with or without means for introducing media, e.g. remedies
    • A61M29/02Dilators made of swellable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B2018/044Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid
    • A61B2018/046Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating the surgical action being effected by a circulating hot fluid in liquid form

Definitions

  • the present invention relates to a balloon catheter. More specifically, a balloon catheter is inserted into the body of a patient, and while the balloon is in close contact with the target lesion, the liquid injected into the balloon is heated by high-frequency dielectric heating and Joule heat using high-frequency current.
  • the present invention also relates to a balloon catheter that heats a target lesion site via a balloon by this heating, and ablates the target lesion site by the heating. This balloon force catheter is called an ablation catheter with a balloon!
  • Patent Document 1 discloses an abrasion catheter with a balloon for electrical isolation of pulmonary veins for treating cardiac arrhythmias.
  • the inflatable and deflated balloon 52 disposed at the distal end of the catheter 51 is percutaneously inserted.
  • the balloon 52 is introduced into the inferior vena cava QA and pierced through the atrial septum Hw from the right atrium Ha of the heart HA to the left atrium Hb while being boosted by the catheter 51.
  • a coil electrode 53 for energizing high-frequency current which is formed by spirally winding a round electric wire having a diameter of about 0.5 mm and having a perfectly circular cross section, is provided in the balloon 52.
  • High-frequency power is supplied from the high-frequency power supply 55 to the high-frequency current-carrying coil electrode 53, and the high-frequency current is passed between the high-frequency current-carrying coil electrode 53 and the high-frequency current-carrying external electrode (hereinafter referred to as a counter electrode) 54 arranged outside the patient. High-frequency energization is performed between them.
  • each pulmonary vein opening Qa to Qd By ablating the annular peripheral portion of each pulmonary vein opening Qa to Qd, all four pulmonary veins are in an electrically isolated state.
  • the annular periphery of each pulmonary vein ostium Qa to Qd is abraded and each of the four pulmonary veins is in an electrically isolated state, the electrical signal causing arrhythmia is cut off and the cardiac arrhythmia is almost resolved.
  • the counter electrode 54 attached to the patient's body surface is energized by the high-frequency current during the abrasion. Fever may occur.
  • a guide wire In order to introduce an ablation catheter with a balloon into a target lesion site in a patient's body, a guide wire is required.
  • a metal coil type In the case of an ablation catheter with a balloon using a return electrode plate, a metal coil type is used. ⁇ If a guide wire is used with a thin resin coating, high-frequency current flows to the tip of the guide wire due to high-frequency current during abrasion. As a result, the distal end of the guidewire is also heated, which may cause ablation of blood vessels and tissues other than the target lesion site.
  • the ablation catheter with the balloon is pulled out, and another potential detection catheter (not shown) for detecting a potential around the ablation treatment site is treated. It is inserted into the site. As a result, it was necessary to check whether the abrasion was properly performed, that is, whether the abrasion was electrically isolated. If the ablation is not performed properly, the introduction and withdrawal of the balloon ablation catheter and the potential detection catheter will be repeated again.
  • Patent Literature 2 discloses a medical device (200) including a balloon catheter having a sharp tip (this number is the number described in Patent Literature 2; the same applies hereinafter in this paragraph).
  • This device has bipolar high-frequency electrodes (22, 24) provided inside the balloon (8) as means for heating the liquid (36) supplied into the balloon (8). .
  • the balloon is deflated, and the pointed tip is punctured into the organ to be treated to reach the treatment site.
  • the liquid (36) is supplied into the balloon (8) to expand the balloon (8).
  • high-frequency power is applied between the high-frequency power supply electrodes (22, 24).
  • the fluid (36) is heated by high-frequency dielectric heating and Joule heat generated by the high-frequency current flowing between the high-frequency electrodes (22, 24). This heating heats undesired cells inside the living body via the balloon (8) and destroys the cells.
  • Target tissues are malignant or benign tumors, sac, and hyperplastic tissues that extrinsically narrow the nearby body cavity.
  • Patent Document 2 JP 2002-78809 A
  • Patent Document 2 Japanese Patent Publication No. 10-503407
  • the present invention eliminates the above-mentioned damage to the body surface due to the use of the return electrode plate or the ablation other than the target lesion site, prevents the boiling of the liquid inside the balloon, and further includes the above-described norain.
  • a balloon catheter ablation with balloon that eliminates the burden on the patient due to repeated introduction and withdrawal of the ablation catheter and the potential detection catheter (Chilling catheter).
  • the balloon catheter of the present invention includes a catheter shaft, a balloon attached to the catheter shaft, a first electrode and a second electrode located inside the balloon and spaced apart along the catheter shaft.
  • a high-frequency power supply lead wire for supplying high-frequency power to the first electrode and the second electrode, and a liquid supply path force for supplying liquid into the balloon, and the surface area of the first electrode SA and the surface area SB force of the second electrode are each 20 mm 2 or more.
  • the balloon catheter of the present invention comprises a catheter shaft, a balloon attached to the catheter shaft, a first electrode and a second electrode located inside the balloon and spaced apart along the catheter shaft. Electrodes, a high-frequency power supply lead wire for supplying high-frequency power between the first electrode and the second electrode, and a liquid supply path force for supplying liquid into the balloon, which is closer to the distal end than the balloon. Alternatively, at a position on the rear end side, a potential detecting electrode provided on the catheter shaft for detecting a potential of a treatment site, and a potential information deriving lead wire for deriving potential information detected by the potential detecting electrode. Are provided. In the balloon catheter of the present invention, it is preferable that the surface area SA of the first electrode and the surface area SB force of the second electrode are each 20 mm 2 or more.
  • the shortest distance Esd between the first electrode and the second electrode is preferably 1 mm or more.
  • the balloon catheter is provided between the first electrode and the second electrode between the electrodes to maintain the above-mentioned interval.
  • the balloon catheter of the present invention preferably has a temperature sensor provided inside or outside the balloon, and a temperature information deriving lead wire for deriving temperature information detected by the temperature sensor. ,.
  • the catheter shaft may be an outer cylinder shaft.
  • An inner cylinder shaft provided inside the outer cylinder shaft so as to be movable along the outer cylinder shaft, and a distal end of the balloon is fixed to a distal end of the inner cylinder shaft.
  • a rear end portion of the balloon is fixed to a front end portion of the outer cylinder shaft, and the balloon is deformable by movement of the inner cylinder shaft with respect to the outer cylinder shaft.
  • the second electrode force is preferably located at intervals along the inner cylinder shaft.
  • the catheter shaft comprises: an outer cylinder shaft; and an inner cylinder shaft provided inside the outer cylinder shaft so as to be movable along the outer cylinder shaft.
  • a distal end portion is fixed to a distal end portion of the inner cylinder shaft
  • a rear end portion of the balloon is fixed to a distal end portion of the outer cylinder shaft
  • movement of the inner cylinder shaft with respect to the outer cylinder shaft causes the balloon to move.
  • the first electrode and the second electrode force are located at intervals along the inner cylinder shaft, and when the potential detection electrode is located on the distal end side of the balloon, When a potential detection electrode is provided on the inner cylinder shaft, or when the potential detection electrode is located on the rear end side of the balloon, the potential detection electrode is located on the front end. It is preferable that kicked set in the outer cylinder shaft.
  • the liquid supply path is formed by a clearance between the outer cylinder shaft and the inner cylinder shaft.
  • a temperature information processing device coupled to the temperature information deriving lead wire and a high frequency power adjusting device coupled to the high frequency power supply lead wire are provided.
  • the high frequency power adjusting device is configured to adjust the high frequency power supplied to the first electrode and the second electrode according to the temperature determined by the processing device. Is preferred,.
  • the frequency of the high-frequency power supplied to the first electrode and the second electrode is ⁇ to 2.45 GHz, and the high-frequency power causes the liquid supply path force and the balloon to operate. It is preferable that the liquid is supplied to the inside of the balloon and filled in the balloon. The liquid is heated to a temperature of 50 ° C. to 80 ° C.!
  • a liquid agitating device coupled to the liquid supply channel is provided, and the liquid agitator supplies the liquid from the liquid supply channel into the balloon and fills the balloon. Liquid to the liquid supply path and the inside of the balloon. It is preferable to be configured so that the liquid in and out of the balloon can be stirred.
  • both electrodes of the electrode for high-frequency power supply are installed inside the balloon, the return electrode plate conventionally provided outside the body of the patient becomes unnecessary, and the possibility of heat generation of the return electrode plate is eliminated.
  • a balloon catheter for ablation without the above.
  • the bipolar electrode of the high-frequency power supply electrode is located inside the balloon made of an electrically high-resistance material, high-frequency current does not flow to the tip of the guide wire during abrasion. Therefore, there is provided a balloon catheter for ablation in which blood vessels and tissues other than the target lesion site are not ablated due to heating of the guide wire tip.
  • both electrodes of the high-frequency energization due to the presence of each 20 mm 2 or more, good Mashiku, in addition to this, by being a higher minimum distance force 1mm between both electrodes, the balloon A balloon catheter for abrasion capable of raising the temperature inside the balloon without boiling the liquid therein is provided.
  • a balloon catheter for abrasion capable of accurately detecting the temperature inside or outside the balloon is provided.
  • the interval between the electrodes for high-frequency power supply does not approach during introduction of a balloon catheter into a patient or during treatment, and high-frequency power supply is performed. It is possible to avoid the problem that the liquid around the electrode for boiling is boiled or the short circuit between the electrodes for high-frequency conduction makes heating impossible.
  • a balloon catheter for abrasion capable of stably controlling the temperature inside the bore is provided.
  • the balloon catheter By providing a potential detection electrode for detecting a potential around the ablation treatment site on the catheter shaft at a position on the distal end side or the rear end side of the nolan, the balloon catheter is provided when the target lesion site is ablated. Without pulling out, the potential around the ablation treatment site is detected using the potential detection electrode, It is possible to determine the suitability of the solution. If the determination result is inappropriate, the balloon can be immediately inflated again and the abrasion process can be repeated. As a result, it is not necessary to introduce a potential detecting catheter or re-introduce a balloon catheter for abrasion. The patient is relieved of the invasive burden of introducing a potential detection catheter or reintroducing an ablation balloon catheter. Accordingly, a balloon catheter for abrasion capable of reducing the burden on the patient due to catheter invasion is provided.
  • both of the electrodes of the electrode for high-frequency conduction are installed inside the balloon formed of an electrically high-resistance material, high-frequency current does not flow to the potential detection electrode during abrasion. Therefore, there is provided a balloon catheter for ablation in which blood vessels and tissues other than the target lesion site are not likely to be ablated due to heating of the potential detection electrode.
  • both electrodes for high-frequency power supply are concentrically extrapolated to the inner cylinder shaft, both electrodes for high-frequency power supply can be substantially integrated with the inner cylinder shaft. .
  • the introduction of the balloon catheter into the patient's body is smoother.
  • An abrasion balloon catheter is provided.
  • the supply according to the temperature measurement result of the temperature sensor is provided.
  • the amount of high frequency power can be supplied.
  • a balloon catheter for abrasion capable of precisely controlling the heating temperature by high-frequency dielectric heating and Joule heat is provided.
  • the provision of the liquid agitator coupled to the liquid supply path allows the liquid in the balloon inflated by the introduction of the liquid to be supplied to the liquid supply path during execution of high-frequency dielectric heating and heating by Joule heat. It can be moved in and out of the balloon. As a result, the liquid in the balloon is agitated, and the liquids having different temperatures are mixed with each other, so that the liquid temperature in the balloon becomes uniform, and the balloon for abrasion can suppress heating unevenness due to high-frequency dielectric heating and Joule heat.
  • a catheter is provided.
  • FIG. 1 is a schematic side view of an embodiment of the balloon catheter of the present invention.
  • FIG. 2 is a longitudinal sectional view of a balloon of the balloon catheter shown in FIG. 1 and its vicinity.
  • FIG. 3 is a longitudinal sectional view showing an outer shape of the balloon of the balloon catheter shown in FIG. 1 when the balloon is inflated.
  • FIG. 4 is a cross-sectional view of the balloon catheter shown in FIG.
  • FIG. 5 is a schematic side view showing a state during ablation of a pulmonary vein ostium by the balloon catheter shown in FIG. 1.
  • FIG. 6 is a schematic side view showing a state in which a potential of a treatment site is detected by a potential detection electrode on the distal end side of the balloon catheter shown in FIG.
  • FIG. 7 is a schematic side view showing a state where a potential at a treatment site is detected by a potential detection electrode on the rear end side of the balloon catheter shown in FIG.
  • FIG. 8 is a schematic longitudinal sectional view illustrating a state of ablation of a pulmonary vein ostium by a conventional abrasion catheter with a norain using a return electrode provided outside the patient's body.
  • a balloon catheter (ablation catheter with balloon) 1 of the present invention has a catheter shaft CS.
  • the catheter shaft CS includes an outer cylinder shaft 3 and an inner cylinder shaft 4 provided inside the outer cylinder shaft 3 so as to be movable along the outer cylinder shaft 3.
  • the balloon catheter 1 has a balloon 2 attached thereto.
  • the balloon 2 is made of an electrically high-resistance material that can be deformed and expand and contract. It is.
  • the distal end 2F of the balloon 2 is fixed to the distal end 4F of the inner cylindrical shaft 4, and the rear end 2R of the normal 2 is fixed to the distal end 3F of the outer cylindrical shaft 3.
  • the balloon catheter 1 has a first electrode 5A and a second electrode 5B located inside the balloon 2 and spaced apart along the inner cylindrical shaft 4.
  • the first electrode 5A and the second electrode 5B may be hereinafter referred to as high-frequency electrodes 5A and 5B.
  • a high-frequency power supply lead wire 12A (FIG. 4) for supplying high-frequency power is led out of the first electrode 5A.
  • a high-frequency power supply lead wire 12B (FIG. 4) for supplying high-frequency power is led out of the second electrode 5B.
  • the balloon catheter 1 has a liquid supply path 6A (FIG. 4) for supplying a liquid into the balloon 2.
  • the liquid supply passage 6A is formed using a clearance between the outer cylinder shaft 3 and the inner cylinder shaft 4.
  • the rear end 2R of the norain 2 has a liquid inlet 2A (FIG. 3) connected to the liquid supply passage 6A.
  • the surface area SA of the first electrode 5A is set to 20 mm 2 or more
  • the surface area SB of the second electrode 5B are the same 20 mm 2 or more.
  • a potential detection electrode 19A for detecting the potential of the treatment site is provided on the inner cylinder shaft 4 at a position on the distal side from the balloon 2, and at a position on the rear end side from the balloon 2
  • the inner cylinder shaft 4 is provided with a potential detection electrode 19B for detecting the potential of the treatment site.
  • a potential information deriving lead wire 20A (FIG. 4) for deriving potential information detected by the potential detecting electrode 19A is derived from the potential detecting electrode 19A.
  • a potential information deriving lead wire 20B (FIG. 4) for deriving potential information detected by the potential detection electrode 19B is derived from the potential detection electrode 19B.
  • a four-way connector 7 that supports the outer cylinder shaft 3 and the inner cylinder shaft 4 is attached to the rear end of the balloon catheter 1.
  • the liquid supply path 6A is connected to the liquid supply device 6 via a four-way connector 7.
  • the high-frequency power supply leads 12A and 12B are connected to the high-frequency power supply 10 via the four-way connector 7.
  • the lead wires 2 OA and 20 B for deriving the potential information are connected to the electrocardiograph 21 via the four-way connector 7.
  • the catheter shaft CS of the balloon catheter 1 of this embodiment is a double-tube catheter shaft that also has a force with the outer cylinder shaft 3 and the inner cylinder shaft 4;
  • the shape of the balloon 2 can be variously changed by moving the inner cylindrical shaft 4 in the axial direction. Therefore, the catheter shaft used in the embodiment of the present invention is a preferable embodiment.
  • the catheter shaft used in the practice of the present invention is not necessarily limited to a double-tube catheter shaft, but may be a single-tube catheter shaft depending on the type of treatment.
  • the length of the outer cylinder shaft 3 and the inner cylinder shaft 4 is usually about lm to about 1.4m.
  • the outer diameter of the outer cylindrical shaft 3 is about 3 mm to about 5 mm, and the inner diameter is about 2 mm to about 4 mm.
  • the outer diameter of the inner cylinder shaft 4 is about lmm to about 3 mm, and the inner diameter is about 0.5 mm to about 2 mm.
  • a flexible material having excellent antithrombotic properties is also selected.
  • examples of such a material include fluorine resin, polyamide resin, and polyimide resin.
  • the norain 2 has a conical (conical shape) with a smaller diameter at the distal end 2F in the inflated state.
  • the length d of the balloon 2 (the length along the balloon central axis 2a that virtually connects the balloon front end 2F and the balloon rear end 2R) is about 20 mm to about 40 mm.
  • the maximum outer diameter of the rear end 2R is about 10 mm to about 40 mm.
  • the thickness of the balloon 2 is 100 ⁇ m to 300 ⁇ m. If balloon 2 has a conical profile with a converging cone, nolane 2 is prevented from entering the pulmonary vein.
  • the entire annular peripheral portion of the pulmonary vein ostium is reliably ablated.
  • the material for forming the noren 2 is an electrically high-resistance material. It is desirable.
  • a polyurethane polymer material is particularly preferable. Specifically, for example, there are thermoplastic polyether urethane, polyether polyurethane urea, fluorine polyether urethane urea, polyether polyurethane urea resin, and polyether polyurethane urea amide.
  • thermoplastic polyether urethane polyether polyurethane urea
  • fluorine polyether urethane urea polyether polyurethane urea resin
  • polyether polyurethane urea amide polyether polyurethane urea amide.
  • the high-frequency electrodes 5A and 5B shown in Fig. 1 are formed by winding an electric wire into a coil shape.
  • the electrode for high-frequency conduction is not limited to a coil-like electrode, but may have any shape. However, among them, a coil-shaped or cylindrical electrode for high-frequency current supply is preferred.
  • each of the surface areas SA and SB force of the high-frequency current-carrying electrodes 20 m m 2 or more is important.
  • Surface area, and more preferably is preferable instrument 40 m m 2 or more is at 30 mm 2 or more.
  • the surface area is preferably not more than 400 mm 2 .
  • the surface area of the electrode means the total surface area including the area of the outer surface, the area of the inner surface, and the area of both end surfaces (the area of the thickness portion) when the electrode is a cylindrical sheet.
  • the shape of the electrode is a cylindrical coil, the surface area of the electrode is approximated by the surface area of the electric wire forming the coil corresponding to the electrode portion.
  • the shortest distance Esd between the high-frequency electrodes is preferably 1 mm or more.
  • the shortest distance Esd between the high-frequency electrodes is preferably 30 mm or less.
  • the shortest distance Esd between the high-frequency energizing electrodes is, for example, in the case of a coil-shaped electrode, as shown in FIG. 2, the shortest distance between the points where the high-frequency energizing electrodes 5A and 5B are closest to each other. Refers to line distance.
  • the diameter of an electric wire used when formed by an S coil is not particularly limited. It is practical and preferred that the diameter be from about 0.1 mm to about lmm.
  • a high conductivity metal such as silver (wire), gold (wire), platinum (wire), and copper (wire) is used.
  • the high-frequency electrodes 5A and 5B are It is extrapolated concentrically to the cylindrical shaft 4.
  • the inner diameter of the high-frequency electrodes 5A and 5B is slightly larger than the outer diameter of the inner cylinder shaft 4, and there is a small gap between the inner surfaces of the high-frequency electrodes 5A and 5B and the outer surface of the inner cylinder shaft 4. You.
  • the center axes of the high-frequency electrodes 5A and 5B automatically match the center axis of the catheter 1.
  • the electrodes 5A and 5B for energizing the high frequency are substantially formed integrally with the inner cylindrical shaft 4. Further, since the high-frequency electrodes 5A and 5B do not restrict the movement of the inner cylinder shaft 4, the inner cylinder shaft 4 can move smoothly.
  • a gap is provided between the high-frequency energizing electrodes 5A and 5B.
  • the spacer 17 is inserted.
  • the shape of the spacer 17 is not particularly limited, but is preferably a cylindrical sheet shape having substantially the same diameter as the coil-like high-frequency conducting electrode.
  • the spacer 17 is, like the high-frequency electrodes 5A and 5B, concentrically externally attached to the inner cylinder shaft 4 without restraining the movement of the inner cylinder shaft 4. Thereby, the inner cylinder shaft 4 can move smoothly.
  • the spacer 17 and the high-frequency power supply electrodes 5A and 5B are in a form in which they are independently located without being particularly joined.
  • the high-frequency electrodes 5A and 5B are joined to both ends of the spacer 17 by bonding or other means, or one of the high-frequency electrodes 5A or 5B is joined to one end of the spacer 17. May be used.
  • the high-frequency electrodes 5A and 5B may be wound around the spacer 17 itself. It is important that the distance between the high-frequency electrodes 5A and 5B is maintained by a spacer to prevent the distance from being less than 1 mm.
  • a resin having low conductivity is used as a material for forming the spacer. Specifically, for example, there are fluorine resin, polyamide resin, and polyimide resin.
  • Suitable temperatures for tissue ablation based on high frequency dielectric heating and Joule heating are typically in the range of 50 ° C to 70 ° C.
  • the liquid supply device 6 is provided with a roller pump (not shown) for feeding liquid.
  • the liquid force supplied by the roller pump for sending liquid is a clearance between the outer cylindrical shaft 3 and the inner cylindrical shaft 4.
  • the liquid is supplied into the inside of the balloon 2 through the liquid supply port 6A (FIG. 3) through the liquid supply path 6A (FIG. 4) formed by the above. As the liquid is supplied to the inside of the balloon 2, the balloon 2 expands.
  • a diaphragm type liquid that agitates the liquid inside the balloon 2 by allowing the liquid inside the balloon 2 that is inflated by the liquid supply to flow in and out between the inside of the balloon 2 and the liquid supply path 6A.
  • a stirring device 8 is provided in addition to the liquid supply device 6. By the operation of the stirring device 8, the liquid inside the balloon 2 is stirred. As a result, liquids having different temperatures inside the balloon 2 mix with each other, and the liquid temperature inside the balloon 2 becomes uniform. As a result, uneven heating of the liquid inside the balloon 2 due to high-frequency dielectric heating and Joule heat is suppressed.
  • a temperature sensor 9 is provided inside the balloon 2, and a temperature information deriving lead wire 11 (FIG. 4) for deriving temperature information detected by the temperature sensor 9 is provided.
  • the temperature information deriving lead wire 11 is connected to a high frequency power supply 10 including a temperature information processing device. Thereby, the supply amount of high-frequency power supplied from the high-frequency power supply device 10 including the high-frequency power adjustment device to the first electrode 5A and the second electrode 5B is adjusted according to the temperature measurement result of the temperature sensor 9. You.
  • the frequency of the high frequency power is preferably ⁇ to 2.45 GHz.
  • the heating temperature is detected by the temperature sensor 9 inside the balloon 2 and fed back to the high-frequency power supply 10, and the temperature of the temperature sensor 9 is measured by the high-frequency power supply 10.
  • the heating temperature by high-frequency dielectric heating and Joule heat is controlled.
  • the high-frequency electrodes 5A and 5B are supported by a support 3B fixed to the outer cylinder shaft 3 to which the rear end 2R of the balloon 2 is attached.
  • Temperature sensor 9 is high Fixed to frequency energizing electrode 5A or 5B. This stabilizes the installation positions of the high-frequency electrodes 5A and 5B and the temperature sensor 9 inside the balloon 2.
  • the temperature sensor 9 is exemplified by a thermocouple, but is not limited to a thermocouple.
  • a semiconductor-type temperature measuring element can be used.
  • high-frequency power supply leads 12A and 12B for supplying high-frequency power to high-frequency power supply electrodes 5A and 5B and temperature information deriving lead 11 for extracting a temperature signal from temperature sensor 9 are lead wires with the electrically insulating protective coatings 13 and 14. These lead wires pass through the clearance between the outer cylinder shaft 3 and the inner cylinder shaft 4.
  • Each lead wire has an electrical insulating protective coating for V and deviation, so that there is no risk of short-circuiting between the lead wires. At the same time, leakage and intrusion of high-frequency power are suppressed. Thereby, heat generation of the outer cylinder shaft 3 and the inner cylinder shaft 4 due to leakage or intrusion of high-frequency power is suppressed. As a result, in the balloon catheter 1, the forced cooling mechanism is omitted. However, a forced cooling mechanism may be provided in the balloon catheter 1 if necessary.
  • Examples of the material of the temperature information deriving lead wire 11 and the high frequency power supply lead wires 12A and 12B include copper, silver, platinum, tungsten, and alloys.
  • the material of the electrically insulating protective coatings 13 and 14 include fluorine-based high-polymer materials such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene-tetrafluoropropylene copolymer (FEP).
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-tetrafluoropropylene copolymer
  • polyethylene, polypropylene, polyimide resin, polyamide resin and the like can be mentioned.
  • the same conductor is used for the conductors forming the coils of the high-frequency power supply leads 12A and 12B and the high-frequency electrodes 5A and 5B.
  • High-frequency power supply lead wires 12A and 12B separately manufactured may be connected to the conducting electrodes 5A and 5B.
  • a radiation shielding metal pipe 3 A is attached to the distal end 3 F of the outer cylinder shaft 3, and a radiation shielding metal pipe 3 A is attached to the distal end 4 F of the inner cylinder shaft 4.
  • Pipe 4A is installed.
  • the distal end portion 2F of the balloon 2 is fixed to the distal end portion 4F of the inner cylinder shaft 4 after being attached to a metal pipe 4A.
  • the rear end 2R of the balloon 2 is attached to a metal pipe 3A and fixed to the front end 3F of the outer cylindrical shaft 3.
  • the radiation shielding metal pipes 3A and 4A When the X-ray fluoroscopy is performed by providing the radiation shielding metal pipes 3A and 4A, the radiation shielding metal pipes 3A and 4A appear on the X-ray fluoroscopic image, so the position of the balloon 2 in the patient's body. Can be accurately grasped.
  • Examples of the material for the radiation shielding metal pipes 3A and 4A include gold, platinum, and stainless steel.
  • the norain catheter 1 has a potential detecting electrode 19A attached to the surface of the distal end portion of the inner cylindrical shaft 4 for detecting a potential around an ablation treatment site, and a potential detecting electrode 19A. It has a lead wire 20A for deriving potential information, which passes through a clearance between 3 and the inner cylinder shaft 4 and is connected to an electrocardiograph 21.
  • the balloon catheter 1 also derives a potential detection electrode 19B attached to the surface of the distal end of the outer cylindrical shaft 3 for detecting a potential around the ablation treatment site, and a potential detection electrode 19B. It has a lead wire 20B for deriving potential information which passes through a clearance between the cylindrical shaft 3 and the inner cylindrical shaft 4 and is connected to the electrocardiograph 21.
  • a potential detecting electrode 19A composed of two electrodes arranged at an interval and a potential detecting electrode 19B composed of two electrode caps arranged at an interval are provided.
  • the number of the electrodes forming the force potential detecting electrodes 19A and 19B used in the present invention may be one or three or more.
  • the potential detection electrode 19A is shaped into a short cylinder having a height (length) of about 1 mm.
  • a synthetic resin pipe 15 is added to the tip of the radiation shielding metal pipe 4A.
  • the potential detecting electrode 19A is directly and tightly fitted to the outer periphery of the synthetic resin pipe 15.
  • the potential detection electrode 19B is also shaped into a short cylinder with a height (length) of about 1 mm.
  • the potential detection electrode 19B is directly fitted on the outer periphery of the outer cylinder shaft 3.
  • platinum, silver, copper with silver plating, or the like is used as a material for the potential detection electrodes 19A and 19B.
  • the lead wires 20A and 20B for deriving the potential information are lead wires with an electrically insulating protective coating 18, as shown in FIG. These leads are connected to outer cylinder shaft 3 and inner cylinder shaft 4 And is connected to the electrocardiograph 21.
  • the lead wires 20A and 2OB may be led out through an elongated hole formed in a thick portion of at least one of the outer cylinder shaft 3 and the inner cylinder shaft 4. In this case, if the thick wires of the shafts 3 and 4 electrically insulate the lead wires 20A and 20B, it is not always necessary to cover the lead wires 2OA and 20B with the electrically insulating protective coating 18.
  • the potentials detected by the potential detecting electrodes 19A and 19B are checked by connecting the lead wires 20A and 20B for deriving potential information to a normal electrocardiograph 21 as shown in FIG.
  • the chart of the detected potential by 21 is displayed on a monitor screen or printed.
  • the deflated balloon 2 is pushed along the catheter shaft CS along the guide wire GW introduced percutaneously into the patient's body, and the balloon 2 is moved from the inferior vena cava QA. It reaches the right atrium Hb via the left atrium Ha and further through the atrial septum Hw. Thereafter, a liquid is supplied into the balloon 2, and the balloon 2 is inflated, applied to the periphery of the pulmonary vein opening Qa, and brought into close contact. Next, high-frequency current is applied between the high-frequency current applying electrodes 5A and 5B inside the balloon 2. As a result, the periphery of the pulmonary vein ostium Qa is heated and abraded. Abrasion is similarly performed on the periphery of the remaining three pulmonary vein openings.
  • the electrocardiograph 21 After the ablation of the periphery of the pulmonary vein ostium is completed, the electrocardiograph 21 reads potential information from the potential detection electrodes 19A and 19B. Based on the read result, the suitability of the abrasion is determined.
  • the potential detection electrode 19A When the potential detection electrode 19A is used, as shown in FIG. 6, without pulling out the balloon force table (ablation catheter with balloon) 1, the potential detection electrode 19A is moved around the ablation treatment site (without pulling out the balloon force table). (For example, the inner surface of the atrium). The potential information of this positional force is sent to the electrocardiograph 21 via the lead wire 20A for deriving the potential information. The result is displayed on the chart of the electrocardiograph 21. From the detection results displayed on the chart, the applicability of the abrasion is determined. If the judgment result is inappropriate, 2 is inflated and the abrasion process is repeated. FIG. 6 shows an example in which the balloon 2 is deflated after the first abrasion is completed.
  • the potential detection electrode 19B is moved around the ablation treatment site (for example, without pulling out the norain catheter (ablation catheter with balloon) 1). (The inner surface of the atrium).
  • This potential information is sent to the electrocardiograph 21 via the potential information deriving lead 20B.
  • the results are displayed on the ECG 21 chart. From the detection results displayed on the chart, the applicability of the abrasion is determined. If the determination result is inappropriate, the balloon 2 is inflated again, and the abrasion process is repeated.
  • FIG. 7 shows an example in which the balloon 2 is deflated after the first abrasion is completed.
  • the potential detecting electrode 19A and the potential detecting electrode 19B may be simultaneously operated to simultaneously detect the potentials of the two parts and check the detection results.
  • the balloon catheter (ablation catheter with balloon) 1 is pulled out of the body and the treatment is completed.
  • Balloon 2 tip force Balloon 2 having a conical shape with a tapered cone having a length to the rear end of balloon 2 of 30 mm, a maximum outer diameter of the rear end side of 3 Omm, and a film thickness of 160 ⁇ m is as follows. Created.
  • a glass balloon mold having a mold surface corresponding to a desired balloon shape is immersed in a 13% concentration polyurethane solution, and the solvent is evaporated by applying heat to form a urethane polymer film on the mold surface.
  • Balloon 2 was manufactured by the dive method.
  • the outer cylindrical shaft 3 of the catheter As the outer cylindrical shaft 3 of the catheter 1, a tube made of polyvinyl chloride and containing 30% of barium sulfate and having an inner diameter of 2.7mm and a total length of 800mm was prepared. A stainless steel pipe with a diameter of 2.8 mm, a length of 7 mm, and a sandblasted outer surface was prepared as the metal noise 3A. After partially inserting and fitting the metal pipe 3A inside the tip of the outer cylindrical shaft 3, It was tied and fixed with a nylon thread having a diameter of 0.1 mm. Two electrodes having an outer diameter of 4.
  • an inner diameter of 3.8 mm, and a width of lmm were extrapolated to the tip of the outer cylinder shaft 2 at lmm intervals and fixed with an adhesive to form a potential detection electrode 19B.
  • a potential information deriving lead wire 20B with an electrical insulation protective coating was passed through the inside of the outer cylinder shaft 3 at a portion covered with the potential detection electrode 19B, and was connected to the potential detection electrode 19B.
  • the four-way connector 7 was inserted and fitted into the rear end of the outer cylinder shaft 3, and the outside was tied and fixed with a nylon thread having a diameter of 0.1 mm.
  • a tube made of Nylon 11 having a length of 4 Fr, an inner diameter of 1 lmm and a total length of 900 mm was prepared.
  • the metal pipe 4A a stainless steel pipe having a diameter of 1.2 mm, a length of 6 mm, and a sandblasted outer surface was prepared.
  • a metal pipe 4A was partially inserted inside the tip of the inner cylindrical shaft 4 and fitted, and then tied and fixed with a nylon thread having a diameter of 0.1 mm.
  • a synthetic resin pipe 15 having an outer diameter of 2. Omm, an inner diameter of 1. lmm, and a length of about 10 mm was externally bonded to the metal pipe 4A and added.
  • Two electrodes with an outer diameter of 2.5 mm, an inner diameter of 2. Omm, and a width of lmm were extrapolated at the lmm interval to the end of a synthetic resin pipe 15 and fixed with an adhesive to form a potential detection electrode 19A.
  • a lead wire 20A for deriving potential information with an electrical insulation protective coating was connected to a potential detection electrode 19A.
  • the inner cylinder shaft 4 was passed through the through-hole of the inner cylinder shaft 4 of the four-way connector 7 while pulling out the potential information deriving leads 20A and 20B to the rear end side of the catheter 1. By tightening the cap of the four-way connector 7, the double-barreled catheter 1 was manufactured.
  • Electrodes 5A and 5B for high-frequency conduction were applied to a 0.5 mm diameter soft copper wire having a diameter of 0.5 mm with a silver plating of 0.1 ⁇ m by applying an inner diameter of 1.6 mm and an axial length of catheter 1 of 10 mm. It was fabricated by shaping it into a coil shape (that is, a width of 10 mm). Other portions than the coil shape were coated with tetrafluoroethylene / propylene hexafluoride copolymer (FEP) to form an electrical insulating protective coating 14. These were used as high-frequency power supply leads 12A and 12B to which high-frequency electrodes 5A and 5B were attached.
  • FEP tetrafluoroethylene / propylene hexafluoride copolymer
  • thermocouple double (copper-constantan) wire was prepared. This wire was coated with polytetrafluoroethylene to form an electrically insulating protective coating 13.
  • a temperature sensor 9 with a temperature information deriving lead wire 11 was manufactured.
  • the high-frequency energizing electrode 5A and the 5B was inserted into the tip of the inner cylinder shaft 4.
  • the lead wire 11 for deriving temperature information and the lead wires 12A and 12B for supplying high frequency power are passed through the clearance between the outer cylinder shaft 3 and the inner cylinder shaft 4, and the lead wire 11 for deriving temperature information and the high frequency power
  • the rear ends of the supply lead wires 12A and 12B were pulled out from the four-way connector 7.
  • the ends of the temperature information deriving lead wire 11 and the high-frequency power supply lead wires 12A and 12B are fixed at a distance of 2 mm between the high-frequency conducting electrodes 5A and 5B by means of a fixture made of aramid fiber. Thus, it was fixed to the metal knob 3A.
  • the tip 2F of the balloon 2 is tied and fixed to the metal pipe 4A with a nylon thread having a diameter of 0.1 mm, and the rear end 2R of the balloon 2 is fixed to the metal pipe 3A, and the nylon 2 having a diameter of 0.1 mm. It was tied and fixed with a yarn.
  • a balloon catheter (ablation catheter with balloon) 1 was completed. This catheter is hereinafter referred to as the ablation catheter of Example 1.
  • a conventional ablation catheter was prepared by removing one of the high-frequency electrodes 5B from the catheter 1 shown in Fig. 1. This catheter is referred to below as the ablation catheter of Comparative Example 1.
  • the abrasion catheter of Comparative Example 1 was immersed in a water tank filled with a physiological saline solution at 37 ° C.
  • the high-frequency power supply lead wire 12A was connected to the high-frequency power supply device 10.
  • Opposite pole The plate 54 was installed on the outer wall surface of the water tank and connected to the high-frequency power supply 10.
  • a solution obtained by diluting a contrast agent (ixadaric acid injection solution: Hexabrix 320) to 50% with physiological saline is injected into the inside of the balloon 2, and the maximum outer diameter at the rear end of the balloon 2 is 30 mm.
  • the balloon 2 was inflated so that
  • a SUS304 wire having a diameter of 0.025 inch (about 0.6 mm) and a length of 150 Omm was used as the guide wire.
  • a guide wire is inserted into the inner cylindrical shaft 4 of the abrasion catheter of Comparative Example 1, and a thermocouple is attached to the guide wire tip so that the tip of the guide wire has a tip force of about lcm.
  • a thermocouple is attached to the guide wire tip so that the tip of the guide wire has a tip force of about lcm.
  • the high-frequency power supply 10 was set to a frequency of 13.56 MHz, the temperature inside the balloon 2 was set to 70 ° C, and high-frequency power was supplied for 5 minutes. As a result, the temperature at one end of the guide wire rose to 50 ° C after about 60 seconds from the start of energization, and was still around 50 ° C (50 ° C ⁇ 3 ° C) after that.
  • Example 2 In the abrasion catheter of Example 1, a catheter in which a metal guide wire was inserted through the hollow portion of the inner cylindrical shaft 4 was prepared. This catheter is referred to below as the ablation catheter of Example 2. The heat generation state of the metal guide wire when the abrasion force table of Example 2 was used was investigated.
  • the abrasion catheter of Example 2 was immersed in a water tank filled with a physiological saline solution at 37 ° C.
  • the high frequency power supply leads 12A and 12B were connected to the high frequency power supply 10.
  • a solution prepared by diluting a contrast agent (ixadaric acid injection solution: Hexabrix 320) to a concentration of 50% with physiological saline is injected into the inside of balloon 2, and the maximum outer diameter of the rear end of Nolane 2 is 30 mm. Balloon 2 was inflated so that
  • a SUS304 wire having a diameter of 0.025 inch (about 0.6 mm) and a length of 150 Omm was used as the guide wire.
  • a guide wire is inserted into the inner cylindrical shaft 4 of the ablation catheter of the second embodiment, and the distal end of the guide wire is also reduced in the distal end force of the catheter. With the lcm extended, a thermocouple was attached to the tip of the guide wire.
  • the high-frequency power supply 10 was set to a frequency of 13.56 MHz, the temperature inside the balloon 2 was set to 75 ° C, and high-frequency power was supplied for 5 minutes. As a result, the temperature at the end of the guide wire was maintained at around 40 ° C (40 ° C 3 ° C) even after 5 minutes from the start of energization.
  • the electrodes for high-frequency power supply were both made of an electrically high-resistance material and were installed inside the balloon 2 which It is presumed that high-frequency current does not flow through the metal guide wire during the ablation, so that there is no danger of the blood vessels and tissues other than the target lesion being ablated due to the heating of the metal guide wire.
  • Example 3 The axial lengths of the force catheters of the high-frequency electrodes 5A and 5B in the abrasion catheter of Example 1 were each set to 0.5 mm.
  • the surface areas SA and SB of the high-frequency electrodes 5A and 5B in this catheter are about 10 mm 2 respectively.
  • This catheter is hereinafter referred to as the ablation catheter of Comparative Example 2.
  • Example 3
  • the axial length of the high-frequency electrodes 5A and 5B in the ablation catheter of Example 1 was set to 1 mm in the axial direction of the catheter 1.
  • the surface areas SA and SB of the high-frequency electrodes 5A and 5B in this catheter are about 20 mm 2 respectively.
  • This catheter is hereinafter referred to as the ablation catheter of Example 3.
  • Example 1 and Example 3 were immersed in a tank filled with physiological saline at 37 ° C, and the high-frequency power supply leads 12A and 12A were immersed. B was connected to the high frequency power supply 10.
  • a contrast agent ixoxadaric acid injection solution: Hexabrix 320
  • physiological saline was injected into the balloon 2 of each catheter, and the maximum outer diameter at the rear end of the balloon was reduced. Inflated to 30 mm.
  • the surface temperature of the balloon 2 was increased only to about 50 ° C, whereas in the ablation catheter of Example 1, the balloon 2 The surface temperature rose to about 60 ° C. This is because the high-frequency current is concentrated in the abrasion catheter of Example 3 because the surface area of the high-frequency electrode is smaller than that of the abrasion catheter of Example 1, and the high-frequency electrode 5A , Only around 5B to reach 75 ° C.
  • Example 3 In the abrasion catheter of Example 1, a catheter was prepared in which the distance between the high-frequency electrodes 5A and 5B was 0.5 mm. This catheter is hereinafter referred to as Comparative Example 3 ablation catheter.
  • Example 4 [0123] In the abrasion catheter of Example 1, a catheter in which the distance between the high-frequency electrodes 5A and 5B was 1 mm was prepared. This catheter is referred to below as the ablation catheter of Example 4.
  • the abrasion catheters of Comparative Example 3, Example 1 and Example 4 were immersed in a water tank filled with physiological saline at 37 ° C., and the high-frequency power supply leads 12A and 12A were immersed. B was connected to the high frequency power supply 10.
  • a contrast agent ixoxadaric acid injection solution: Hexabrix 320
  • physiological saline was injected into the balloon 2 of each catheter, and the maximum outer diameter at the rear end of the balloon was reduced. Inflated to 30 mm.
  • the frequency of the high-frequency power supply 10 was set to 13.56 MHz, the set temperature in the balloon 2 was set to 75 ° C, and high-frequency power was applied for 5 minutes.
  • the state where the liquid boils was not recognized. Also, in the abrasion catheter of Example 1, the state where the liquid boils was not recognized.
  • the shortest distance between the high-frequency electrodes 5A and 5B is preferably lmm or more where boiling is not recognized!
  • Example 1 In the abrasion catheter of Example 1, an abrasion catheter from which the spacer 17 was removed was prepared. In this catheter, the distance between the high-frequency electrodes 5A and 5B can be changed freely. This catheter was used in Comparative Example 4 below. Is referred to as an ablation catheter.
  • Each of the abrasion catheters of Comparative Example 4 and Example 1 was immersed in a water tank filled with physiological saline at 37 ° C, and the high-frequency power supply leads 12A and 12B were connected to the high-frequency power supply device 10. Connected. Inject a solution containing 50% of a contrast agent (Ioxadaric acid injection solution: Hexabrix 320) diluted with physiological saline into the balloon 2 of each catheter. Inflated to a diameter of 30 mm.
  • a contrast agent Ioxadaric acid injection solution: Hexabrix 320
  • the frequency of the high-frequency power supply 10 was set to 13.56 MHz, the set temperature in the balloon 2 was set to 75 ° C, and high-frequency power was applied for 5 minutes.
  • test subject (pig) to be subjected to potential detection was prepared in advance, and the lead wires 20 A and 20 B for deriving potential information were connected to the electrocardiograph 21.
  • the potential detection electrode 19A was applied to the body surface near the heart of the test subject, and the detected potential was recorded on a chart by the electrocardiograph 21.
  • the potential detection electrode 19B is placed near the heart of the test object. The detected potential was recorded on a chart with an electrocardiograph 21 by touching the body surface of the side. The recording result on the chart was!, And the deviation was normal.
  • the potential of the body surface of the test object is detected. However, if the potential of the body surface of the test object can be normally detected, the potential of the ablation site in the body of the test object is also measured. Can be detected normally. Accordingly, it was confirmed that both the potential detection electrode 19A and the potential detection electrode 19B can properly detect the potential in the patient.
  • Comparative Example 5 a catheter provided with a potential detection electrode was prepared. This catheter is hereinafter referred to as Comparative Example 5 abrasion catheter.
  • the return electrode plate 54 FIG. 8
  • the same return electrode plate as described in Comparative Example 1 was used.
  • the abrasion catheter of Comparative Example 5 was immersed in a water tank filled with physiological saline at 37 ° C, and the high-frequency power supply lead wire 12A was connected to the high-frequency power supply device 10.
  • the counter electrode plate 54 was installed on the outer wall surface of the water tank, and was connected to the high-frequency power supply 10.
  • a solution prepared by diluting a contrast agent (ixoxadaric acid injection solution: Hexabrix 320) to 50% with physiological saline is injected into the inside of the balloon 2, and the maximum outer diameter at the rear end of the balloon 2 is reduced to 30 mm.
  • the balloon 2 was inflated in such a state.
  • the frequency of the high-frequency power supply 10 was set to 13.56 MHz, the set temperature in the balloon 2 was set to 70 ° C, and high-frequency power was supplied for 5 minutes.
  • a thermocouple was attached just above the potential detection electrode 19B, and the temperature was measured.
  • the energization starting force was also about 30 seconds, and the temperature of the potential detection electrode 19B rose to 60 ° C, and thereafter, was constantly maintained at around 60 ° C (60 ° C ⁇ 3 ° C).
  • the abrasion catheter of Example 1 was immersed in a water tank filled with a physiological saline solution at 37 ° C.
  • the high-frequency power supply leads 12A and 12B were connected to the high-frequency power supply device 10.
  • a solution prepared by diluting a contrast agent (ixoxadaric acid injection solution: Hexabrix 320) to a concentration of 50% with physiological saline is injected into the balloon 2, and the maximum outer diameter at the rear end of the balloon 2 is 3 Omm. Balloon 2 was inflated so that
  • the frequency of the high-frequency power supply 10 was set to 13.56 MHz, the set temperature in the balloon 2 was set to 75 ° C, and high-frequency power was supplied for 5 minutes.
  • a thermocouple was attached just above the potential detection electrode 19B, and the temperature was measured. As a result, the temperature of the potential detection electrode was about 40 ° C (40 ° C 3 ° C) even after 5 minutes from the start of energization.
  • the high-frequency energizing electrode is installed inside the balloon 2 formed of an electrically high-resistance material for both bipolar electrodes. It is presumed that the high-frequency current does not sometimes flow to the potential detection electrode, so that the blood vessels and tissues other than the target lesion site may not be ablated due to the heating of the potential detection electrode.
  • the ablation catheter of Example 1 has a configuration including all of the liquid supply device 6, the high-frequency power supply device 10, and the electrocardiograph 21, but the liquid supply device 6, the high-frequency power supply device 10, and the Since the electrometer 21 can be separately procured and connected to the catheter 1 when the catheter 1 is used for actual treatment, the balloon catheter (ablation catheter with balloon) of the present invention is Anything may be included, including the liquid feeder 6, the high-frequency power supply 10 and the electrocardiograph 21!
  • a high-frequency current is applied between electrodes opposed to each other at an interval in the balloon to heat the liquid in the balloon, and the heating force is applied to the balloon through the balloon.
  • a balloon catheter ablation catheter with a balloon
  • abrasion which is safer for the patient and reduces the burden on the patient due to catheter invasion, by suppressing the heat generation of the guide wire and the electrode for potential detection is suppressed.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Vascular Medicine (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)
  • Electrotherapy Devices (AREA)

Abstract

 バルーン内に間隔をおいて対置された電極間に高周波電流を通電し、バルーン内の液体を加温せしめ、この加温が、バルーンを介し、バルーンに接している生体組織をアブレーションするバルーンカテーテルであり、前記それぞれの電極の表面積が20mm2以上であり、あるいは、アブレーション部位の電位を検出する電位検出用電極が、前記バルーンの前後の少なくとも一方において前記バルーンの外側に設けられていることを特徴とする。

Description

明 細 書
ノ レーン力テーテノレ
技術分野
[0001] 本発明は、バルーンカテーテルに関する。更に詳しくは、バルーンカテーテルを唐、 者の体内に挿入し、標的病変部位にバルーンを密着させた状態で、バルーンの内 部に注入された液体を高周波電流により高周波誘電加熱およびジュール熱で加熱 せしめ、この加熱によりバルーンを介して標的病変部位を加温せしめ、この加温によ り標的病変部位をアブレーシヨンするバルーンカテーテルに関する。このバルーン力 テーテルは、バルーン付きアブレーシヨンカテーテルと呼称されて!、る。
背景技術
[0002] 心臓不整脈治療を行う為のアブレーシヨンカテーテルが開発されている。特許文 献 1には、心臓不整脈治療を行うための肺静脈電気的隔離用バルーン付きアブレ一 シヨンカテーテルが記載されて 、る。このようなバルーン付きアブレーシヨン力テーテ ルを使って肺静脈の電気的隔離を行う場合、図 8に示されるように、カテーテル 51の 先端側に配置されている膨張 ·収縮可能なバルーン 52を経皮的に下大静脈 QAへ 導入し、カテーテル 51で後押ししながら、心臓 HAの右心房 Haから心房中隔 Hwを 刺貫して左心房 Hbへとバルーン 52を到達せしめる。そして、バルーン 52の内部へ の造影剤を含む液体の送給により膨張したバルーン 52を肺静脈口 Qaに当てがつて 密着させる。直径 0. 5mm程の断面真円形の丸電線を螺旋状に巻き回してコイル体 に整形した高周波通電用コイル電極 53が、バルーン 52内に設置されている。この高 周波通電用コイル電極 53に高周波電源 55より高周波電力が供給され、高周波通電 用コイル電極 53と患者の体外に配置されている高周波通電用外電極 (以下、対極板 と云う) 54との間で高周波通電が行われる。
[0003] 高周波通電用コイル電極 53と対極板 54との間の高周波通電に伴って起こる高周 波誘電加熱およびジュール熱による加温により、肺静脈口 Qaの環状周縁部が全体 的にアブレーシヨンされる。肺静脈口 Qaに対するアブレーシヨンに引き続き、左心房 Hbの内壁に開 ヽて 、る残りの 3個の肺静脈口 Qb、 Qcおよび Qdに対するアブレ一 シヨンが、順次同様にして実施される。
[0004] 各肺静脈口 Qa乃至 Qdの環状周縁部がアブレーシヨンされることで、 4個の各肺 静脈が全て電気的隔離状態となる。各肺静脈口 Qa乃至 Qdの環状周縁部がアブレ ーシヨンされて、 4個の各肺静脈がそれぞれ電気的隔離の状態になると、不整脈を引 き起こす電気信号が遮断され、心臓不整脈がほほ解消される。
[0005] このように、特許文献 1に記載のノ レーン付きアブレーシヨンカテーテルによれば、 各肺静脈口 Qa乃至 Qdの環状周縁部が全体的にアブレーシヨンされるので、何度も アブレーシヨンを繰り返さずに済む。また、アブレーシヨンされるのが各肺静脈口 Qa 乃至 Qdの環状周縁部だけであるので、余分な処 (例えば、健常部分)までアブレ一 シヨンされないで済む。
[0006] し力しながら、前記対極板を使用するバルーン付きアブレーシヨンカテーテルの場 合、アブレーシヨン時の高周波通電によって、患者の体表に貼り付けられた対極板 5 4が高周波通電に伴って発熱する可能性がある。
[0007] また、バルーン付きアブレーシヨンカテーテルを患者の体内の標的病変部位へ導 入するには、ガイドワイヤーが必要である力 対極板を使用するバルーン付きアブレ ーシヨンカテーテルの場合、金属コイルタイプゃ榭脂被覆の薄 、ガイドワイヤーを用 いると、アブレーシヨン時の高周波通電によって、ガイドワイヤーの先端へも高周波電 流が流れる。これにより、ガイドワイヤーの先端も加熱され、これによつても、標的病変 部位以外の血管、組織がアブレーシヨンされる恐れがある。
更に、上記バルーン付きアブレーシヨンカテーテルによってアブレーシヨンを行った 後、そのバルーン付きアブレーシヨンカテーテルを引き出してから、アブレーシヨン施 療部位まわりの電位を検出する別の電位検出用カテーテル(図示省略)が施療部位 へと挿入される。これにより、アブレーシヨンが適切に行われたか否力、すなわち、電 気的に隔離された力否かのチェックがなされる必要があった。もし、アブレーシヨンが 適切に行われていない場合は、再び、バルーン付きアブレーシヨンカテーテルと電位 検出用カテーテルの導入'引出が繰り返されることになる。
[0008] この煩雑な作業を回避するために、電位検出手段をバルーン付きアブレーシヨン力 テーテルに付設することが考えられるが、特許文献 1に記載されたような対極板を使 用するバルーン付きアブレーシヨンカテーテルの場合、アブレーシヨン時の高周波通 電によって、電位検出用電極へも高周波電流が流れて電位検出用電極も加熱され、 これによつても標的病変部位以外の血管、組織がアブレーシヨンされる恐れがある。
[0009] ノ レーンの内部を加熱する別の手段として、特許文献 2に記載された方法がある。
特許文献 2には、尖った先端を有するバルーンカテーテルを含む医療装置(200) ( この番号は、特許文献 2に記載されている番号。以下、このパラグラフにおいて、同じ )が開示されている。この装置は、バルーン (8)の内部に供給される液体(36)を温め る手段として、バルーン(8)の内部に設けられた双極の高周波通電用電極(22、 24) を有している。手術中バルーンを収縮状態にして、尖った先端を治療対象の器官に 穿刺し、治療部位に到達させる。そこにおいて、バルーン (8)の内部に液体(36)を 供給しバルーン (8)を膨張させる。この状態で、高周波通電用電極(22、 24)の間で 高周波通電が行われる。高周波通電用電極(22、 24)の間の高周波通電に伴って 起こる高周波誘電加熱およびジュール熱により、流体(36)が加温される。この加温 により、バルーン (8)を介して生体内部の望ましくない細胞が加熱され、細胞が破壊 される。標的とする組織は、悪性または良性腫瘍、嚢、外因的にその付近の体腔を 狭くする過剰形成組織とされて ヽる。
[0010] しかし、特許文献 2に記載の医療装置は、穿刺部周辺の細胞を全体的に加熱壊死 させるのみであり、肺静脈の電気的隔離のような微妙且つ繊細な操作に用い得るも のではない。更に、バルーンの内部に設けられる双方の高周波通電用電極の形状 やそれらの間隔によっては、バルーンの内部の液体が沸騰するという問題があった。 特許文献 1:特開 2002— 78809号公報
特許文献 2:特表平 10- 503407号公報
発明の開示
発明が解決しょうとする課題
[0011] 本発明は、上述した対極板使用による体表面の損傷または標的病変部位以外の アブレーシヨンを解消し、また、バルーンの内部での液体の沸騰を防止し、更に、上 述したノ レーン付きアブレーシヨンカテーテルと電位検出用カテーテルの導入'引出 の繰り返しによる患者の負担を解消するバルーンカテーテル (バルーン付きアブレ一 シヨンカテーテル)を提供することを課題とする。
課題を解決するための手段
[0012] 本発明のバルーンカテーテルは、カテーテルシャフト、該カテーテルシャフトに取り 付けられたバルーン、該バルーンの内部に位置し、前記カテーテルシャフトに沿って 間隔をおいて位置する第 1の電極と第 2の電極、これら第 1の電極と第 2の電極とに 高周波電力を供給する高周波電力供給用リード線、および、前記バルーン内に液体 を供給する液体供給路力 なり、前記第 1の電極の表面積 SAと前記第 2の電極の表 面積 SB力 それぞれ、 20mm2以上である。
[0013] 本発明のバルーンカテーテルは、カテーテルシャフト、該カテーテルシャフトに取り 付けられたバルーン、該バルーンの内部に位置し、前記カテーテルシャフトに沿って 間隔をおいて位置する第 1の電極と第 2の電極、これら第 1の電極と第 2の電極との 間に高周波電力を供給する高周波電力供給用リード線、および、前記バルーン内に 液体を供給する液体供給路力 なり、前記バルーンより先端側あるいは後端側の位 置において前記カテーテルシャフトに設けられた治療部位の電位を検出する電位検 出用電極と、該電位検出用電極が検出する電位情報を導出する電位情報導出用リ ード線とが設けられている。この本発明のバルーンカテーテルにおいて、前記第 1の 電極の表面積 SAと前記第 2の電極の表面積 SB力 それぞれ、 20mm2以上であるこ とが好ましい。
[0014] 本発明のバルーンカテーテルにおいて、前記第 1の電極と前記第 2の電極との間 の最短距離 Esdが、 1mm以上であることが好ましい。
[0015] 本発明のバルーンカテーテルにおいて、前記第 1の電極と前記第 2の電極との前 記間隔を維持するスぺーサ一力 これら電極の間に設けられていることが好ましい。
[0016] 本発明のバルーンカテーテルは、前記バルーンの内部あるいは外表面に設けられ た温度センサと、該温度センサが検出する温度情報を導出する温度情報導出用リー ド線とを有することが好まし 、。
[0017] 本発明のバルーンカテーテルにおいて、前記カテーテルシャフトが、外筒シャフトと
、該外筒シャフトの内側において該外筒シャフトに沿って移動可能に設けられた内筒 シャフトとからなり、前記バルーンの先端部が、前記内筒シャフトの先端部に固定され 、前記バルーンの後端部が、前記外筒シャフトの先端部に固定され、前記内筒シャ フトの前記外筒シャフトに対する移動により、前記バルーンが変形可能とされ、前記 第 1の電極および前記第 2の電極力 前記内筒シャフトに沿って間隔をおいて位置し ていることが好ましい。
[0018] 本発明のバルーンカテーテルにおいて、前記カテーテルシャフトが、外筒シャフトと 、該外筒シャフトの内側において該外筒シャフトに沿って移動可能に設けられた内筒 シャフトとからなり、前記バルーンの先端部が、前記内筒シャフトの先端部に固定され 、前記バルーンの後端部が、前記外筒シャフトの先端部に固定され、前記内筒シャ フトの前記外筒シャフトに対する移動により、前記バルーンが変形可能とされ、前記 第 1の電極および前記第 2の電極力 前記内筒シャフトに沿って間隔をおいて位置し 、前記電位検出用電極が前記バルーンより先端側に位置する場合は、当該電位検 出用電極が前記内筒シャフトに設けられ、あるいは、前記電位検出用電極が前記バ ルーンより後端側に位置する場合は、当該電位検出用電極が前記外筒シャフトに設 けられていることが好ましい。
[0019] 本発明のバルーンカテーテルにおいて、前記液体供給路が、前記外筒シャフトと 前記内筒シャフトとの間のクリアランスにより形成されていることが好ましい。
[0020] 本発明のバルーンカテーテルにおいて、前記温度情報導出用リード線に結合され た温度情報処理装置と、前記高周波電力供給用リード線に結合された高周波電力 調節装置とが設けられ、前記温度情報処理装置により判定される温度に応じて、前 記高周波電力調節装置により、前記第 1の電極と前記第 2の電極に供給される高周 波電力が調節されるように構成されて 、ることが好ま 、。
[0021] 本発明のバルーンカテーテルにおいて、前記第 1の電極と第 2の電極に供給される 前記高周波電力の周波数が ΙΟΟΚΗζ乃至 2. 45GHzであり、この高周波電力により 、前記液体供給路力 前記バルーン内に供給され、前記バルーン内に充填される液 体力 50°C乃至 80°Cの温度に加熱されるように構成されて 、ることが好まし!/、。
[0022] 本発明のバルーンカテーテルにおいて、前記液体供給路に結合された液体攪拌 装置が設けられ、該液体攪拌装置により、前記液体供給路から前記バルーン内に供 給され、前記バルーン内に充填される液体を、前記液体供給路と前記バルーン内と の間で出入りさせ、前記バルーン内の液体を攪拌するように構成されていることが好 ましい。
発明の効果
[0023] 本発明によれば、高周波通電用の電極の双極がともに、バルーンの内部に設置さ れるため、従来患者の体外に設けられていた対極板が不要となり、対極板の発熱の 可能性がないアブレーシヨン用のバルーンカテーテルが提供される。
[0024] 電気的高抵抗素材からなるバルーンの内部に、高周波通電用の電極の双極が位 置しているため、アブレーシヨン時に、ガイドワイヤー先端へ高周波電流が流れること がない。従って、ガイドワイヤー先端の加熱による標的病変部位以外の血管、組織が アブレーシヨンされる恐れがないアブレーシヨン用のバルーンカテーテルが提供され る。
[0025] 高周波通電用の双方の電極の表面積が、それぞれ 20mm2以上あることにより、好 ましくは、これに加えて、双方の電極間の最短距離力 1mm以上とされることにより、 バルーンの内部で液体が沸騰することなぐバルーンの内部の温度を上げることがで きるアブレーシヨン用のバルーンカテーテルが提供される。
[0026] バルーンの内部あるいは外表面に温度センサが設けられることにより、バルーンの 内部あるいは表面の温度を正確に検出することができるアブレーシヨン用のバルーン カテーテルが提供される。
[0027] 高周波通電用の双方の電極間にスぺーサ一が設けられることにより、患者へのバ ルーンカテーテルの導入中や治療中に、高周波通電用電極の間隔が近づくことが 無くなり、高周波通電用電極周辺の液体が沸騰したり、高周波通電用電極同士の短 絡によって加熱が不可能になるという問題が回避される。これにより、ノ レーンの内 部の温度を安定して制御することができるアブレーシヨン用のバルーンカテーテルが 提供される。
[0028] ノ レーンより先端側あるいは後端側の位置においてカテーテルシャフトに、アブレ ーシヨン施療部位まわりの電位を検出する電位検出用電極が設けられることにより、 標的病変部位のアブレーシヨンが済むと、バルーンカテーテルを引き出さないままで 、電位検出用電極を使ってアブレーシヨン施療部位まわりの電位を検出して、アブレ ーシヨンの適否を判定することが可能とされる。また、判定結果が不適当である場合 は、直ちにバルーンを再度膨張させて、アブレーシヨンプロセスを繰り返し行うことが できる。その結果、電位検出用カテーテルの導入やアブレーシヨン用のバルーンカテ 一テルの再導入が不要となる。患者は、電位検出用カテーテルの導入やアブレーシ ヨン用のバルーンカテーテルの再導入による侵襲負担から開放される。従って、カテ 一テル侵襲に起因する患者の負担を軽減することができるアブレーシヨン用のバル ーンカテーテルが提供される。
[0029] 高周波通電用の電極の双極ともに、電気的高抵抗素材で形成されているバルーン の内部に設置されるため、アブレーシヨン時に電位検出用電極へ高周波電流が流れ ることがなくなる。従って、電位検出用電極の加熱による標的病変部位以外の血管、 組織がアブレーシヨンされる恐れがないアブレーシヨン用のバルーンカテーテルが提 供される。
[0030] 本発明のバルーンカテーテル(バルーン付きアブレーシヨンカテーテル)を用いた アブレーシヨンでは、一度のアブレーシヨンでバルーンの全周囲に沿って輪状に広範 囲のアブレーシヨンが行える。従って、アブレーシヨン異常の個所を従来のように個々 に特定する必要がない。アブレーシヨンされた領域で、異常があるか否力、すなわち 、所定の電位が検出された力否かを判断するだけで良い。異常があれば、その領域 をもう一度アブレーシヨンすれば良い。従来のように、カテーテルに電位検出用電極 を多数設ける必要がない。また、異常個所を特定する必要がないから、従来のように 、電位検出用電極を特定個所に接触させる必要もなぐ輪状にアブレーシヨンされた 領域の近傍に電位検出電極を位置させるだけで良い。その結果、高価な電位検出 用電極の設置個数を減らすことができ、バルーンカテーテルのコスト低減および小型 ィ匕が図られるアブレーシヨン用のバルーンカテーテルが提供される。
[0031] カテーテルシャフトを外筒シャフトと内筒シャフトとから形成し、内筒シャフトを外筒 シャフトの軸方向に移動させることにより、バルーンの形状を多様に変化させることが できる。また、高周波通電用の双方の電極が内筒シャフトに同心的に外挿されること で、高周波通電用の双方の電極が実質的に内筒シャフトに一体ィ匕された形にするこ とができる。その結果、バルーンカテーテルの患者の体内への導入がよりスムーズで あるアブレーシヨン用のバルーンカテーテルが提供される。
[0032] 温度情報導出用リード線に結合された温度情報処理装置と高周波電力供給用リー ド線に結合された高周波電力調節装置が設けられることにより、温度センサの測温結 果に応じた供給量で高周波電力を供給させることができる。その結果、高周波誘電 加熱およびジュール熱による加温温度を的確にコントロールすることができるアブレ ーシヨン用のバルーンカテーテルが提供される。
[0033] 液体供給路に結合された液体攪拌装置が設けられることにより、高周波誘電加熱 およびジュール熱による加温実行中、液体の導入で膨張状態にあるバルーンの内の 液体を、液体供給路とバルーン内の間で出入りさせることができる。これにより、バル ーン内の液体が攪拌され、温度の違う液体が交じり合ってバルーン内の液温が均一 となり、高周波誘電加熱およびジュール熱による加温ムラを抑えることができるアブレ ーシヨン用のバルーンカテーテルが提供される。
図面の簡単な説明
[0034] [図 1]図 1は、本発明のバルーンカテーテルの一実施形態の側面概略図である。
[図 2]図 2は、図 1に示されたバルーンカテーテルのバルーンおよびその近傍の縦断 面図である。
[図 3]図 3は、図 1に示されたバルーンカテーテルのバルーンの膨張時の外形を示す 縦断面図である。
[図 4]図 4は、図 2に示されたバルーンカテーテルにおける X— X矢視横断面図である
[図 5]図 5は、図 1に示されたバルーンカテーテルによる肺静脈口のアブレーシヨン時 の状態を示す側面模式図である。
[図 6]図 6は、図 1に示されたバルーンカテーテルおける先端側の電位検出用電極に よる治療部位の電位検出時の状態を示す側面模式図である。
[図 7]図 7は、図 1に示されたバルーンカテーテルおける後端側の電位検出用電極に よる治療部位の電位検出時の状態を示す側面模式図である。
[図 8]図 8は、患者の体外に設けられた対極板を使用する従来のノ レーン付きアブレ ーシヨンカテーテルによる肺静脈口のアブレーシヨンの状態を説明する縦断面模式 図である。
符号の説明
1 バルーンカテーテル(バルーン付きアブレーシヨンカテーテル) 2 バルーン
2A 液体導入口
2R バルーンの後端部
2F バルーンの先端部
3 外筒シャフト
3A 金属パイプ
3B 支持体
3F 外筒シャフトの先端部
4 内筒シャフト
4A 金属パイプ
4F 内筒シャフトの先端部
5A 第 1の電極(高周波通電用電極)
5B 第 2の電極(高周波通電用電極)
6 液体供給装置
6A 液体供給路
7 四方コネクタ
8 液体攪拌装置
9 温度センサ
10 高周波電源装置
11 温度情報導出用リード線
12A、 12B 高周波電力供給用リード線
13 電気絶縁性保護皮膜
14 電気絶縁性保護皮膜
15 合成樹脂製パイプ
17 スぺーサー 18 電気絶縁性保護被覆
19A、 19B 電位検出用電極
20A、 20B 電位情報導出用リード線
21 心電計
51 カテーテル
52 バルーン
53 高周波通電用コイル電極
54 高周波通電用外電極 (対極板)
55 高周波電源
CS 力テーテノレシャフト
Esd 高周波電極間の最短距離
GW ガイドワイヤー
HA 心臓
Ha 右心房
Hb 左心房
Hw 心房中隔
QA 下大静脈
Qa、Qb、Qc、Qd 肺静脈口
SA 第 1の電極の表面積
SB 第 2の電極の表面積
発明を実施するための最良の形態
[0036] 本発明の一実施形態に基づき本発明が更に詳細に説明される。
[0037] 図 1において、本発明のバルーンカテーテル(バルーン付きアブレーシヨンカテー テル) 1は、カテーテルシャフト CSを有する。カテーテルシャフト CSは、外筒シャフト 3 と、外筒シャフト 3の内側において外筒シャフト 3に沿って移動可能に設けられた内筒 シャフト 4とからなる。
[0038] バルーンカテーテル 1は、それに取り付けられたバルーン 2を有する。バルーン 2 は、形状変形が可能であり、膨張および収縮が可能な電気的高抵抗な素材で形成さ れている。バルーン 2の先端部 2Fは、内筒シャフト 4の先端部 4Fに固定され、ノ レー ン 2の後端部 2Rは、外筒シャフト 3の先端部 3Fに固定されている。
[0039] バルーンカテーテル 1は、バルーン 2の内部に位置し、内筒シャフト 4に沿って間 隔をお 、て位置する第 1の電極 5 Aおよび第 2の電極 5Bを有する。第 1の電極 5 Aお よび第 2の電極 5Bは、以下において、高周波通電用電極 5Aおよび 5Bと呼称される 場合がある。第 1の電極 5Aから、高周波電力を供給する高周波電力供給用リード線 12A (図 4)が導出されている。第 2の電極 5Bから、高周波電力を供給する高周波電 力供給用リード線 12B (図 4)が導出されている。
[0040] バルーンカテーテル 1は、バルーン 2内に液体を供給する液体供給路 6A (図 4) を有する。この液体供給路 6Aは、外筒シャフト 3と内筒シャフト 4との間のクリアランス を用いて形成されている。ノ レーン 2の後端部 2Rは、液体供給路 6Aに繋がる液体 導入口 2A (図 3)を有する。
[0041] バルーンカテーテル 1において、第 1の電極 5Aの表面積 SAが、 20mm2以上とさ れ、また、第 2の電極 5Bの表面積 SBが、同じく 20mm2以上とされている。
[0042] バルーンカテーテル 1において、バルーン 2より先端側の位置において、内筒シャ フト 4に、治療部位の電位を検出する電位検出用電極 19Aが設けられ、バルーン 2よ り後端側の位置において、内筒シャフト 4に、治療部位の電位を検出する電位検出 用電極 19Bが設けられている。電位検出用電極 19Aから、電位検出用電極 19Aが 検出する電位情報を導出する電位情報導出用リード線 20A (図 4)が導出されている 。電位検出用電極 19Bから、電位検出用電極 19Bが検出する電位情報を導出する 電位情報導出用リード線 20B (図 4)が導出されている。
[0043] バルーンカテーテル 1の後端部には、外筒シャフト 3と内筒シャフト 4とを支持する 四方コネクタ 7が取り付けられている。液体供給路 6Aは、四方コネクタ 7を経て、液体 供給装置 6に接続されている。高周波電力供給用リード線 12Aおよび 12Bは、四方 コネクタ 7を経て、高周波電源装置 10に接続されている。電位情報導出用リード線 2 OAおよび 20Bは、四方コネクタ 7を経て、心電計 21に接続されている。
[0044] この実施態様のバルーンカテーテル 1におけるカテーテルシャフト CSは、外筒シャ フト 3と内筒シャフト 4と力もなる二重筒式のカテーテルシャフトであり、外筒シャフト 3 あるいは内筒シャフト 4を軸方向に移動させることにより、バルーン 2の形状を多様に 変化させることができる。従って、本発明の実施において用いられるカテーテルシャ フトとしては、好ましい態様である。しかし、本発明の実施において用いられるカテー テルシャフトは、必ずしも二重筒式のカテーテルシャフトに限られるものではなぐ治 療の種類によっては単一管式カテーテルシャフトであっても良い。
[0045] 外筒シャフト 3と内筒シャフト 4の長さは、通常、約 lm乃至約 1. 4mである。外筒シ ャフト 3の外径は、約 3mm乃至約 5mmであり、内径は、約 2mm乃至約 4mmである。 内筒シャフト 4の外径は、約 lmm乃至約 3mmであり、内径は、約 0. 5mm乃至約 2 mmである。
[0046] 外筒シャフト 3や内筒シャフト 4の形成材料は、抗血栓性に優れる可撓性のある材 料力も選択される。そのような材料として、例えば、フッ素榭脂、ポリアミド榭脂、あるい は、ポリイミド榭脂がある。
[0047] ノ レーン 2は、図 3に示されるように、膨張状態において先端側 2Fで直径が小さく なる円錐状 (先すぼみ円錐状)の外形を有している。バルーン 2の長さ (バルーン先 端 2Fとバルーン後端 2Rを仮想的に結ぶバルーン中心軸 2aに沿う長さ) dは、約 20 mm乃至約 40mmである。後端側 2Rの最大外直径は、約 10mm乃至約 40mmであ る。バルーン 2の膜厚みは、 100 μ m乃至 300 μ mである。バルーン 2が先すぼみの 円錐状の外形を有する場合、ノ レーン 2が肺静脈内部に入り込むことが防止される。 また、バルーン 2の先端が肺静脈口に少し挿し込まれることにより、バルーン 2が肺静 脈口にきつちり密着するので、肺静脈口の環状周縁部の全体が確実にアブレーショ ンされる。
[0048] ノ レーン 2の形成材料は、抗血栓性に優れた伸縮性のある材料力 選択される。
更に、高周波通電用電極 5Aおよび 5Bに高周波電流が通電された場合に、バル一 ン 2の外部へ高周波電流が漏れるのを防ぐために、ノ レーン 2の形成材料は、電気 的高抵抗素材であることが望ましい。バルーン 2の形成材料として、ポリウレタン系の 高分子材料が特に好ましい。具体的には、例えば、熱可塑性ポリエーテルウレタン、 ポリエーテルポリウレタンゥレア、フッ素ポリエーテルウレタンゥレア、ポリエーテルポリ ウレタンウレァ榭脂、あるいは、ポリエーテルポリウレタンゥレアアミドがある。 [0049] 本発明において、高周波通電用電極は、図 1に示される高周波通電用電極 5Aお よび 5Bのように、バルーン 2の内部に高周波通電用電極の双極が位置していること が重要である。
[0050] 図 1に示される高周波通電用電極 5Aおよび 5Bは、電線を巻き回してコイル状に整 形したものである。しかし、高周波通電用電極は、コイル状のものに限られるものでは なぐどのような形状であっても良い。しかし、なかでもコイル状、円筒状などの筒状の 高周波通電用電極が好まし 、。
[0051] 本発明において、それぞれの高周波通電用電極の表面積 SAおよび SB力 20m m2以上であることが重要である。表面積は、 30mm2以上であることが好ましぐ 40m m2以上であることが更に好ましい。表面積は、 400mm2以下であることが好ましい。
[0052] 電極の表面積とは、電極の形状が筒状のシートの場合は、外表面の面積、内表 面の面積および両端表面の面積 (厚み部分の面積)を含む全表面積を云う。電極の 形状が筒状のコイルの場合は、電極の表面積は、電極部分に相当するコイルを形成 して 、る電線の表面積で近似される。
[0053] 高周波通電用電極間の最短距離 Esdは、 1mm以上であることが好ましい。高周 波通電用電極間の最短距離 Esdは、 30mm以下であることが好ましい。
[0054] 高周波通電用電極間の最短距離 Esdとは、例えば、コイル状の電極の場合、図 2に 示されるように、高周波通電用電極 5Aおよび 5Bが最も接近している点を結んだ直 線距離を云う。
[0055] 高周波通電用電極の表面積 SAおよび SB、ならびに、最短距離 Esdが上に述べ た範囲にお!、て選択されることにより、バルーン 2の内部の液体の良好な加熱効率が 得られる。
[0056] 高周波通電用電極力 Sコイルで形成される場合に用いられる電線の直径は、特に限 定されない。し力し、直径は、約 0. 1mm乃至約 lmmであることが、実用的であり好 ましい。
[0057] 高周波通電用電極の材料としては、銀 (線)、金 (線)、プラチナ (線)、銅 (線)などの 高導電率金属 (線)が用いられる。
[0058] 高周波通電用電極 5Aおよび 5Bは、内筒シャフト 4の移動を拘束しない状態で、内 筒シャフト 4に同心的に外挿されている。高周波通電用電極 5Aおよび 5Bの内径が 内筒シャフト 4の外径より僅かに大きくて、高周波通電用電極 5Aおよび 5Bの内面と 内筒シャフト 4の外面の間に少し隙間が空!ヽて 、る。
[0059] このように、高周波通電用電極 5Aおよび 5Bが内筒シャフトに同心的に外挿されて いると、高周波通電用電極 5Aおよび 5Bの中心軸がカテーテル 1の中心軸に自動的 に合うことになるのに加え、高周波通電用電極 5Aおよび 5Bが実質的に内筒シャフト 4に一体ィ匕した形となる。また高周波通電用電極 5Aおよび 5Bは、内筒シャフト 4の移 動を拘束しないので、内筒シャフト 4は、スムーズに移動できる。
[0060] 高周波通電用電極間の最短距離 Esdを lmm以上に維持し、使用中に最短距離 E sdが lmm未満になることを防止するために、高周波通電用電極 5Aおよび 5Bの間 に、スぺーサー 17が挿入されていることが好ましい。スぺーサー 17の形状は、特に 限定されないが、コイル状の高周波通電用電極とほぼ同じ径の円筒状のシート形状 が好ましい。このスぺーサー 17も、高周波通電用電極 5Aおよび 5Bと同様に、内筒 シャフト 4の移動を拘束しない状態で、内筒シャフト 4に同心的に外挿されている。こ れにより、内筒シャフト 4は、スムーズに移動ができる。
[0061] バルーンカテーテル 1においては、スぺーサー 17と高周波通電用電極 5Aおよび 5 Bとは、特に接合されず独立して位置する形態となっている。しかし、スぺーサー 17 の両端に高周波通電用電極 5Aおよび 5Bを接着などの手段により接合させた形態 や、スぺーサー 17の一方の端に高周波通電用電極 5Aまたは 5Bのいずれかを接合 させた形態であっても良い。または、高周波通電用電極 5Aおよび 5Bをコイル状とす る場合は、スぺーサー 17自体に高周波通電用電極 5Aおよび 5Bを巻き付けた形態 でも良い。高周波通電用電極 5Aおよび 5Bの距離をスぺーサ一によつて維持して、 1 mm未満になることを防止することが重要である。
[0062] スぺーサ一の形成材料としては、導電性の低い樹脂が用いられる。具体的には、 例えば、フッ素榭脂、ポリアミド榭脂、ポリイミド榭脂がある。
[0063] 本発明のバルーンカテーテル 1が患者の治療に使用される場合におけるアブレ一 シヨン時の高周波通電は、バルーン 2の内部の高周波通電用電極 5Aと 5Bの間で行 われる。これにより、バルーン 2の内部の液体力 高周波誘電加熱およびジュール熱 により、加温される。高周波誘電加熱およびジュール熱の加温に基づく組織のアブレ ーシヨンの適温は、通常、 50°C乃至 70°Cの範囲にある。
[0064] 液体供給装置 6は、送液用ローラポンプ(図示省略)を備えて!/、て、送液用ローラポ ンプにより供給される液体力 外筒シャフト 3と内筒シャフト 4の間のクリアランスで形 成される液体供給路 6A (図 4)を通って、液体導入口 2A (図 3)カゝらバルーン 2の内 部に供給される。液体がバルーン 2の内部に供給されるのに伴って、バルーン 2は膨 張する。
[0065] 液体供給により膨張状態にあるバルーン 2の内部の液体を、バルーン 2の内部と液 体供給路 6Aとの間で出入りさせることにより、バルーン 2の内部の液体を攪拌するダ ィャフラム式液体攪拌装置 8が、液体供給装置 6に併設されている。この攪拌措置 8 の作動により、バルーン 2の内部の液体が攪拌される。これにより、バルーン 2の内部 の温度の違う液体が交じり合って、バルーン 2の内部の液温が均一となる。その結果 、高周波誘電加熱およびジュール熱によるバルーン 2の内部の液体の加温ムラが抑 制される。
[0066] バルーンカテーテル 1において、バルーン 2の内部に温度センサ 9が設けられ、温 度センサ 9が検出する温度情報を導出する温度情報導出用リード線 11 (図 4)が設け られている。温度情報導出用リード線 11は、温度情報処理装置を含む高周波電源 装置 10に接続されている。これにより、温度センサ 9の測温結果に応じて、高周波電 力調整装置を含む高周波電源装置 10から第 1の電極 5Aおよび第 2の電極 5Bに供 給される高周波電力の供給量が調節される。
[0067] 高周波電力の周波数は、 ΙΟΟΚΗζ乃至 2. 45GHzであることが好ましい。高周波 誘電加熱およびジュール熱による加温実行中、加温温度がバルーン 2の内部の温度 センサ 9によって検出されて高周波電源装置 10へフィードバックされると共に、高周 波電源装置 10により温度センサ 9の測温結果に応じた供給量で高周波電力が供給 されることによって、高周波誘電加熱およびジュール熱による加温温度がコントロー ノレされる。
[0068] 高周波通電用電極 5Aおよび 5Bは、バルーン 2の後端部 2Rが取り付けられている 外筒シャフト 3に固定されている支持体 3Bにより支持されている。温度センサ 9は、高 周波通電用電極 5Aまたは 5Bに固定されている。これにより、バルーン 2の内部にお ける高周波通電用電極 5Aおよび 5B、ならびに、温度センサ 9の設置位置が安定す る。
[0069] 温度センサ 9としては、熱電対が例示されるが、熱電対に限られるものではなぐ 例えば、半導体タイプの測温素子なども使用可能である。
[0070] 図 4に示されるように、温度センサ 9から温度信号を取り出す温度情報導出用リード 線 11と高周波通電用電極 5Aおよび 5Bに高周波電力を送給する高周波電力供給 用リード線 12Aおよび 12Bとは、いずれも電気絶縁性保護被覆 13、 14付きのリード 線である。これらのリード線は、外筒シャフト 3と内筒シャフト 4の間のクリアランスに引 き通されている。
[0071] それぞれのリード線は、 V、ずれも電気絶縁性保護被覆を有して!/、るので、リード線 同士のショートが起こる心配はない。それとともに、高周波電力の漏れや侵入が抑制 される。これにより、高周波電力の漏れや侵入による外筒シャフト 3や内筒シャフト 4の 発熱が抑えられる。その結果、バルーンカテーテル 1にあっては、強制冷却機構が省 かれている。しかし、必要に応じて、強制冷却機構が、バルーンカテーテル 1に内設 されていても良い。
[0072] 温度情報導出用リード線 11や高周波電力供給用リード線 12Aおよび 12Bの材料 としては、銅、銀、白金、タングステン、合金などの線材が挙げられる。
[0073] 電気絶縁性保護被覆 13、 14の材料の具体的なものには、ポリ 4フッ化工チレン (P TFE)や 4フッ化工チレン 6フッ化プロピレン共重合体(FEP)などのフッ素系高分子 化合物の他、ポリエチレン、ポリプロピレン、ポリイミド榭脂、ポリアミド榭脂などが挙げ られる。
[0074] ノ レーンカテーテル 1においては、高周波電力供給用リード線 12Aおよび 12Bと 高周波通電用電極 5Aおよび 5Bのコイルを形成している導線には、同一の導線が使 用されているが、高周波通電用電極 5Aおよび 5Bに、別途製作された高周波電力供 給用リード線 12Aおよび 12Bが接続されても良 、。
[0075] ノ レーンカテーテル 1においては、外筒シャフト 3の先端部 3Fには、放射線遮蔽性 金属パイプ 3Aが取り付けられ、内筒シャフト 4の先端部 4Fには、放射線遮蔽性金属 パイプ 4Aが取り付けられている。バルーン 2の先端部 2Fは、金属パイプ 4Aに取り付 けられた上で内筒シャフト 4の先端部 4Fに固定されている。バルーン 2の後端部 2R は、金属パイプ 3Aに取り付けられた上で外筒シャフト 3の先端部 3Fに固定されてい る。放射線遮蔽性金属パイプ 3A、 4Aを具備することにより、 X線透視を行った場合、 X線透視画像上に放射線遮蔽性金属パイプ 3 A、 4Aが出現するので、患者体内に おけるバルーン 2の位置を正確に把握することが可能となる。放射線遮蔽性金属パイ プ 3A、 4Aの材料としては、金、プラチナ、ステンレス等が挙げられる。
[0076] ノ レーンカテーテル 1は、内筒シャフト 4の先端部表面に取り付けられたアブレーシ ヨン施療部位まわりの電位を検出する電位検出用電極 19Aと、電位検出用電極 19A 力も導出され、外筒シャフト 3と内筒シャフト 4との間のクリアランスを通り、心電計 21に 接続される電位情報導出用リード線 20Aを有している。
[0077] また、バルーンカテーテル 1は、外筒シャフト 3の先端部表面に取り付けられたアブ レーシヨン施療部位まわりの電位を検出する電位検出用電極 19Bと、電位検出用電 極 19B力も導出され、外筒シャフト 3と内筒シャフト 4との間のクリアランスを通り、心電 計 21に接続される電位情報導出用リード線 20Bを有している。
[0078] バルーンカテーテル 1においては、間隔をおいて配列された 2個の電極からなる 電位検出用電極 19Aと、間隔をおいて配列された 2個の電極カゝらなる電位検出用電 極 19Bとが用いられている力 電位検出用電極 19Aおよび 19Bを形成する電極は、 1個あるいは 3個以上でも構わな 、。
[0079] 電位検出用電極 19Aは、 1mm前後の高さ (長さ)の短円筒形に整形されている。
内筒シャフト 4の先端部 4Fにお 、て、放射線遮蔽性金属パイプ 4Aの先に合成樹脂 製パイプ 15が継ぎ足されている。電位検出用電極 19Aは、合成樹脂製パイプ 15の 外周に直接ぴったり嵌着されている。電位検出用電極 19Bも、 1mm前後の高さ (長 さ)の短円筒形に整形されている。電位検出用電極 19Bは、外筒シャフト 3の外周に 直接嵌着されている。電位検出用電極 19Aおよび 19Bの材料としては、プラチナや 銀、あるいは銀メツキ付き銅などが用いられる。
[0080] 電位情報導出用リード線 20Aおよび 20Bは、図 4に示されるように、電気絶縁性保 護被覆 18付きのリード線である。これらのリード線は、外筒シャフト 3と内筒シャフト 4 の間のクリアランスに引き通され、心電計 21に接続されている。リード線 20Aおよび 2 OBは、外筒シャフト 3および内筒シャフト 4の少なくともいずれかのシャフトの肉厚部 に形成された細長い孔を通して導出されても良い。この場合、各シャフト 3、 4の肉厚 部で、リード線 20Aおよび 20Bを電気的に絶縁するようにすれば、必ずしもリード線 2 OAおよび 20Bを電気絶縁性保護被覆 18で覆う必要はない。
[0081] 電位検出用電極 19Aおよび 19Bによって検出される電位のチェックは、図 1に示さ れるように、電位情報導出用リード線 20Aおよび 20Bが通常の心電計 21に接続され 、心電計 21による検出電位のチャートがモニタ画面に表示され、あるいは、プリントァ ゥ卜されること〖こより行われる。
[0082] 次に、バルーンカテーテル 1の使い方力 心臓の肺静脈口の周縁をアブレーシヨン する場合を例にとって、説明される。
[0083] 図 5に示されるように、先に経皮的に患者体内に導入されたガイドワイヤー GWに 沿って、収縮状態のバルーン 2が、カテーテルシャフト CSで押し進められながら、下 大静脈 QAから左心房 Ha、更に、心房中隔 Hwを経て、右心房 Hbへ到達する。その 後、バルーン 2の内部に液体が供給され、バルーン 2は膨張し、肺静脈口 Qaの周縁 に当てられ、密着せしめられる。次いで、バルーン 2の内部の高周波通電用電極 5A と 5Bの間で高周波通電を行わせる。これにより、肺静脈口 Qaの周縁が加温され、ァ ブレーシヨンされる。残りの 3個の肺静脈口の周縁についても、同様にして、アブレ一 シヨンがなされる。
[0084] 肺静脈口の周縁のアブレーシヨンが済んだ後、電位検出用電極 19Aや電位検出 用電極 19Bからの電位情報を心電計 21で読み取る。読み取り結果に基づき、アブレ ーシヨンの適否が判定される。
[0085] 電位検出用電極 19Aを用いる場合は、図 6に示されるように、バルーン力テーテ ル (バルーン付きアブレーシヨンカテーテル) 1を引き出さないまま、電位検出用電極 19Aをアブレーシヨン施療部位まわり(たとえば心房の内面)の近傍に位置させる。こ の位置力もの電位情報は、電位情報導出用リード線 20Aを経て心電計 21に送られ る。心電計 21のチャート上に結果が表示される。チャート上に表示された検出結果か ら、アブレーシヨンの適否が判定される。判定結果が不適当な場合は、再度、バル一 ン 2が膨張せしめられ、アブレーシヨンプロセスが繰り返される。なお、図 6においては 、最初のアブレーシヨン終了後、バルーン 2が収縮せしめられた例が示されている。
[0086] 電位検出電極 19Bを用いる場合も、図 7に示されるように、ノ レーンカテーテル (バ ルーン付きアブレーシヨンカテーテル) 1を引き出さないまま、電位検出用電極 19Bを アブレーシヨン施療部位まわり(たとえば心房の内面)の近傍に位置させる。この位置 力もの電位情報は、電位情報導出用リード線 20Bを経て心電計 21に送られる。心電 計 21のチャート上に結果が表示される。チャート上に表示された検出結果から、アブ レーシヨンの適否が判定される。判定結果が不適当な場合は、再度、バルーン 2が膨 張せしめられ、アブレーシヨンプロセスが繰り返される。なお、図 7においては、最初 のアブレーシヨン終了後、バルーン 2が収縮せしめられた例が示されている。
[0087] 電位を検出する部位によっては、電位検出用電極 19Aと電位検出電極 19Bとを同 時に作動させて、二つの部位の電位を同時に検出し、それぞれの検出結果をチエツ クすることち可會である。
[0088] 施したアブレーシヨンが全て適当と判定されると、バルーンカテーテル (バルーン付 きアブレーシヨンカテーテル) 1は、体外に引き出され治療が終了する。
[0089] 次に、本発明のバルーンカテーテル(バルーン付きアブレーシヨンカテーテル)のよ り具体的な実施形態が、実施例および比較例をもって説明される。
実施例 1
[0090] バルーン 2先端力 バルーン 2後端までの長さが 30mm、後端側の最大外直径が 3 Omm、膜厚みが 160 μ mの先すぼみの円錐形状を有するバルーン 2を次のようにし て作成した。
[0091] 所望のバルーン形状に対応する型面を有するガラス製バルーン成形型を濃度 13 %のポリウレタン溶液に浸漬し、熱をかけて溶媒を蒸発させて、成形型表面にウレタ ンポリマー被膜を形成するデイツビング法によりバルーン 2を製作した。
[0092] カテーテル 1の外筒シャフト 3として、 12Fr、内径 2. 7mm、全長 800mmの硫酸バ リウム 30%含有のポリ塩ィ匕ビニル製チューブを用意した。金属ノイブ 3Aとして、直径 2. 8mm、長さ 7mmでサンドブラスト仕上げの外表面を有するステンレスパイプを用 意した。金属パイプ 3Aを外筒シャフト 3の先端部の内側に一部挿入し嵌着した後、 直径 0. 1mmのナイロン製糸で縛り固定した。外径 4. Omm、内径 3. 8mm、幅 lmm の電極 2個を lmm間隔で外筒シャフト 2の先端部に外挿し接着剤で固定し、電位検 出用電極 19Bを形成した。電気絶縁保護被覆付きの電位情報導出用リード線 20B を、電位検出用電極 19Bで覆われた部分の外筒シャフト 3の内側カゝら貫通させて、電 位検出用電極 19Bに接続した。四方コネクタ 7を外筒シャフト 3の後端部に内挿嵌合 し、その外側を直径 0. lmmのナイロン製糸で縛り固定した。
[0093] 他方、カテーテル 1の内筒シャフト 4として、 4Fr、内径 1. lmm、全長 900mmのナ ィロン 11製チューブを用意した。金属パイプ 4Aとして、直径 1. 2mm、長さ 6mmで サンドブラスト仕上げの外表面を有するステンレスパイプを用意した。金属パイプ 4A を内筒シャフト 4の先端部の内側に一部挿入し嵌着した後、直径 0. lmmのナイロン 製糸で縛り固定した。外径 2. Omm、内径 1. lmm、長さ約 10mmの合成樹脂製パ ィプ 15を金属パイプ 4Aに外揷接着して継ぎ足した。外径 2. 5mm、内径 2. Omm、 幅 lmmの電極 2個を lmm間隔で合成樹脂製パイプ 15の先端部に外挿し接着剤で 固定し、電位検出用電極 19Aを形成した。電気絶縁保護被覆付きの電位情報導出 用リード線 20Aを、電位検出用電極 19Aに接続した。電位情報導出用リード線 20A 、 20Bをカテーテル 1の後端側に引き出すようにしながら、内筒シャフト 4を四方コネク タ 7の内筒シャフト 4の貫通孔に揷通した。四方コネクタ 7のキャップを締め付けて二 重筒式のカテーテル 1を製作した。
[0094] 高周波通電用電極 5Aおよび 5Bを、銀メツキを 0. 1 μ m施した直径 0. 5mmの電気 用軟銅線の先端部分を、内径 1. 6mm,カテーテル 1の軸方向の長さ 10mm (すな わち、幅 10mm)のコイル状に整形することにより作製した。 4フッ化工チレン 6フッ 化プロピレン共重合体 (FEP)を用いて、コイル状以外の他の部分を被覆し、電気絶 縁性保護被覆 14を形成した。これを、高周波通電用電極 5Aおよび 5Bが付けられた 高周波電力供給用リード線 12Aおよび 12Bとした。
[0095] 温度センサ 9として、極細熱電対ダブル (銅ーコンスタンタン)線を用意した。この線 をポリ 4フッ化工チレンを用いて被覆し、電気絶縁性保護被覆 13を形成した。ここ〖こ、 温度情報導出用リード線 11付きの温度センサ 9を製作した。
[0096] 温度センサ 9を高周波通電用電極 5Aに固定した後、高周波通電用電極 5Aおよび 5Bを内筒シャフト 4の先端に嵌挿した。次いで、温度情報導出用リード線 11と高周 波電力供給用リード線 12Aおよび 12Bを外筒シャフト 3と内筒シャフト 4の間のクリア ランスを引き通して温度情報導出用リード線 11と高周波電力供給用リード線 12Aお よび 12Bとの後端を、四方コネクタ 7より引っ張り出した。更に、温度情報導出用リー ド線 11と高周波電力供給用リード線 12Aおよび 12Bとの先端のところを、ァラミド繊 維製の固定具でもって、高周波通電用電極 5Aおよび 5Bの距離が 2mmとなるように して、金属ノィプ 3Aに固定した。
[0097] 高周波通電用電極 5Aおよび 5Bを固定する際に、高周波通電用電極 5Aと高周波 通電用電極 5Bとの間の最短距離 Esdが、 1mm未満にならないように、ポリプロピレ ン製パイプ(軸方向長さ 2mm)のスぺーサー 17を内筒シャフト 4の外挿した。
[0098] 最後に、バルーン 2の先端部 2Fを金属パイプ 4Aに、直径 0. 1mmのナイロン製糸 で縛り固定すると共に、バルーン 2の後端部 2Rを金属パイプ 3Aに、直径 0. 1mmの ナイロン製糸で縛り固定した。
[0099] ここに、バルーンカテーテル(バルーン付きアブレーシヨンカテーテル) 1を完成さ せた。このカテーテルを、以下において、実施例 1のアブレーシヨンカテーテルと呼称 する。
[0100] 金属製ガイドワイヤーの発熱テスト:
実施例 1のアブレーシヨンカテーテルと従来のアブレーシヨンカテーテルとについて
、金属製ガイドワイヤーの発熱状況を比較した。
比較例 1
[0101] まず、従来のアブレーシヨンカテーテルにおいて、金属製ガイドワイヤーを使用した 場合の金属製ガイドワイヤーの発熱状況を調査した。
[0102] 従来のアブレーシヨンカテーテルとして、図 1に示されるカテーテル 1から一方の高 周波通電用電極 5Bを除去したものを用意した。このカテーテルを、以下において、 比較例 1のアブレーシヨンカテーテルと呼称する。対極板 54 (図 8)として、縦 7. 5cm 、横 15cm、厚さ 100 mのアルミニウムシートを用意した。
[0103] 37°Cの生理食塩水で満たした水槽に、比較例 1のアブレーシヨンカテーテルを浸 漬させた。高周波電力供給用リード線 12Aを、高周波電源装置 10に接続した。対極 板 54は、水槽の外壁面に設置し、高周波電源装置 10に接続した。バルーン 2の内 部に、造影剤 (ィォキサダル酸注射液:商品名へキサブリックス 320)を生理食塩水に て 50%に希釈した液を注入し、バルーン 2の後端側の最大外径が 30mmになる状 態にバルーン 2を膨張させた。
[0104] ガイドワイヤーとして、 SUS304製の、直径 0. 025インチ(約 0. 6mm)、長さ 150 Ommのワイヤーを使用した。比較例 1のアブレーシヨンカテーテルの内筒シャフト 4の 内部に、ガイドワイヤーを挿入し、該ガイドワイヤーの先端をカテーテルの先端力も約 lcm出した状態にして、ガイドワイヤー先端に熱電対を貼り付けた。
[0105] 高周波電源装置 10の周波数を 13. 56MHz,バルーン 2内の設定温度を 70°Cとし 、 5分間高周波を通電した。結果は、通電開始力も約 60秒後において、ガイドワイヤ 一先端の温度は 50°Cまで上昇し、その後も 50°C前後(50°C± 3°C)の温度を示した
[0106] この実験により、比較例 1のアブレーシヨンカテーテルを使用するアブレーシヨンで は、高周波通電によって、金属製ガイドワイヤーへ高周波電流が流れて、金属製ガイ ドワイヤーも加熱されることが推定される。
実施例 2
[0107] 実施例 1のアブレーシヨンカテーテルにおいて、内筒シャフト 4の中空部に金属製ガ イドワイヤーを挿通させたカテーテルを用意した。このカテーテルを、以下において、 実施例 2のアブレーシヨンカテーテルと呼称する。実施例 2のアブレーシヨン力テーテ ルを使用した場合の金属製ガイドワイヤーの発熱状況を調査した。
[0108] 37°Cの生理食塩水で満たした水槽に、実施例 2のアブレーシヨンカテーテルを浸 漬させた。高周波電力供給用リード線 12Aおよび 12Bを高周波電源装置 10に接続 した。バルーン 2の内部に、造影剤 (ィォキサダル酸注射液:商品名へキサブリックス 320)を生理食塩水にて 50%に希釈した液を注入し、ノ レーン 2の後端側の最大外 径が 30mmになる状態にバルーン 2を膨張させた。
[0109] ガイドワイヤーとして、 SUS304製の、直径 0. 025インチ(約 0. 6mm)、長さ 150 Ommのワイヤーを使用した。実施例 2のアブレーシヨンカテーテルの内筒シャフト 4の 内部に、ガイドワイヤーを挿入し、該ガイドワイヤーの先端をカテーテルの先端力も約 lcm出した状態にして、ガイドワイヤー先端に熱電対を貼り付けた。
[0110] 高周波電源装置 10の周波数を 13. 56MHz、バルーン 2内の設定温度を 75°Cとし 、 5分間高周波を通電した。結果は、通電開始から 5分経過しても、ガイドワイヤー先 端の温度は 40°C前後(40°C士 3°C)を維持した。
[0111] この実験により、実施例 2のアブレーシヨンカテーテルを使用するアブレーシヨンで は、高周波通電用電極が双極とも電気的高抵抗素材で形成されて 、るバルーン 2の 内部に設置されるため、アブレーシヨン時に、金属製ガイドワイヤーへ高周波電流が 流れることがなぐ従って、金属製ガイドワイヤーが加熱されることによる標的病変部 位以外の血管、組織がアブレーシヨンされる恐れがな 、ことが推定される。
[0112] 高周波通電用電極である第 1の電極 5Aの表面積 SAおよび第 2の電極 5Bの表面 積 SBの検討:
比較例 2
[0113] 実施例 1のアブレーシヨンカテーテルにおける高周波通電用電極 5Aおよび 5Bの力 テーテルの軸方向長さを、それぞれ 0. 5mmとした。このカテーテルにおける高周波 通電用電極 5Aおよび 5Bの表面積 SAおよび SBは、それぞれ約 10mm2である。こ のカテーテルを、以下において、比較例 2のアブレーシヨンカテーテルと呼称する。 実施例 3
[0114] 実施例 1のアブレーシヨンカテーテルにおける高周波通電用電極 5Aおよび 5Bの カテーテル 1の軸方向長さを、それぞれ lmmとした。このカテーテルにおける高周波 通電用電極 5Aおよび 5Bの表面積 SAおよび SBは、それぞれ約 20mm2である。こ のカテーテルを、以下において、実施例 3のアブレーシヨンカテーテルと呼称する。
[0115] 37°Cの生理食塩水で満たした水槽に、比較例 2、実施例 1および実施例 3のそれ ぞれのアブレーシヨンカテーテルを、浸漬させ、高周波電力供給用リード線 12A、 12 Bを高周波電源装置 10に接続した。いずれのカテーテルにおけるバルーン 2にも、 造影剤 (ィォキサダル酸注射液:商品名へキサブリックス 320)を生理食塩水にて 50 %に希釈した液を注入し、バルーンの後端側の最大外径が 30mmになるまで膨張さ せた。
[0116] 高周波電源装置 10の周波数を 13. 56MHzとして、バルーン 2内の設定温度を 75 °Cに設定し、 5分間高周波通電を行った。
[0117] その結果、比較例 2のアブレーシヨンカテーテルでは、高周波通電用電極の表面 積が小さいために、高周波電流が集中し、高周波通電用電極 5A、 5Bの周囲のみが 温度 100°Cに達するため、バルーン 2内の電極周辺の液体が沸騰し、気泡が発生す る様子が認められた。患者の体内で沸騰が起きるほど高温となるのは患者にとって好 ましくない。また、沸騰が起こることにより、電極間のインピーダンスが激しく変化し、 高周波発生装置とインピーダンス整合をとるのが難しくなつた。
[0118] これに対し、実施例 3のアブレーシヨンカテーテルでは、液体が沸騰する様子は 認められな力つた。また、実施例 1のアブレーシヨンカテーテルにおいても、液体が沸 騰する様子は認められな力つた。高周波通電用電極 5A、 5Bの表面積は、沸騰が認 められな 、20mm2以上であることが必要である。
[0119] 実施例 3のアブレーシヨンカテーテルでは、バルーン 2の表面温度は 50°C程度まで しか昇温しな力つたのに対して、実施例 1のアブレーシヨンカテーテルでは、バル一 ン 2の表面温度は 60°C程度まで昇温した。これは、実施例 3のアブレーシヨンカテー テルでは、実施例 1のアブレーシヨンカテーテルと比較して、高周波通電用電極の表 面積が小さいために、高周波電流が集中し、高周波通電用電極 5A、 5Bの周囲のみ 75°Cに達するためである。
[0120] 実施例 3のアブレーシヨンカテーテルにおいて、バルーン 2の表面温度を 60°Cに するためには、バルーン 2内の設定温度を 90°Cに設定する必要があることを確認し た。患者体内では安全性の点から、最高到達温度は低い方が望ましい。実施例 3の アブレーシヨンカテーテルよりも、実施例 1のアブレーシヨンカテーテルの方が安全性 の点力 優れていると云える。
[0121] 高周波通電用電極の最短距離 Esdの検討:
比較例 3
[0122] 実施例 1のアブレーシヨンカテーテルにおいて、高周波通電用電極 5A、 5Bの距離 を 0. 5mmにしたカテーテルを用意した。このカテーテルを、以下において、比較例 3のアブレーシヨンカテーテルと呼称する。
実施例 4 [0123] 実施例 1のアブレーシヨンカテーテルにおいて、高周波通電用電極 5A、 5Bの距 離を lmmにしたカテーテルを用意した。このカテーテルを、以下において、実施例 4 のアブレーシヨンカテーテルと呼称する。
[0124] 37°Cの生理食塩水で満たした水槽に、比較例 3、実施例 1および実施例 4のそれ ぞれのアブレーシヨンカテーテルを、浸漬させ、高周波電力供給用リード線 12A、 12 Bを高周波電源装置 10に接続した。いずれのカテーテルにおけるバルーン 2にも、 造影剤 (ィォキサダル酸注射液:商品名へキサブリックス 320)を生理食塩水にて 50 %に希釈した液を注入し、バルーンの後端側の最大外径が 30mmになるまで膨張さ せた。
[0125] 高周波電源装置 10の周波数を 13. 56MHzとして、バルーン 2内の設定温度を 75 °Cに設定し、 5分間高周波通電を行った。
[0126] その結果、比較例 3のアブレーシヨンカテーテルでは、高周波通電用電極の表面 積は 200mm2と大きいにも関わらず、高周波通電用電極の最短距離 Esdが短いため に、高周波電流が集中し、高周波通電用電極 5A、 5Bの周囲(特に互いの高周波通 電用電極に近い側)の温度力 100°Cに達するため、バルーン 2内の電極周辺の液 体が沸騰し、気泡が発生する様子が認められた。患者の体内で沸騰が起きるほど高 温となるのは、患者にとって好ましくない。また、沸騰が起こることにより、電極間のィ ンピーダンスが激しく変化し、高周波発生装置とインピーダンス整合をとるのが難しく なった。
[0127] これに対し、実施例 4のアブレーシヨンカテーテルでは、液体が沸騰する様子は 認められな力つた。また、実施例 1のアブレーシヨンカテーテルにおいても、液体が沸 騰する様子は認められな力つた。高周波通電用電極 5A、 5Bの最短距離は、沸騰が 認められない lmm以上であることが好まし!/、。
[0128] スぺーサ一の有効性の検討:
比較例 4
[0129] 実施例 1のアブレーシヨンカテーテルにおいて、スぺーサー 17を取り外したアブレ ーシヨンカテーテルを用意した。このカテーテルにおいては、高周波通電用電極 5A および 5Bの距離力 自由に変わり得る。このカテーテルを、以下において、比較例 4 のアブレーシヨンカテーテルと呼称する。
[0130] 37°Cの生理食塩水で満たした水槽に、比較例 4および実施例 1のそれぞれのアブ レーシヨンカテーテルを、浸漬させ、高周波電力供給用リード線 12A、 12Bを高周波 電源装置 10に接続した。いずれのカテーテルにおけるバルーン 2にも、造影剤 (ィォ キサダル酸注射液:商品名へキサブリックス 320)を生理食塩水にて 50%に希釈した 液を注入し、バルーンの後端側の最大外径が 30mmになるまで膨張させた。
[0131] 高周波電源装置 10の周波数を 13. 56MHzとして、バルーン 2内の設定温度を 75 °Cに設定し、 5分間高周波通電を行った。
[0132] 比較例 4のアブレーシヨンカテーテルの高周波通電用電極 5Aおよび 5Bの最短距 離 Esdを 2mm、 0. 5mm、 Omm (短絡)と変化させた。
[0133] その結果、高周波通電用電極 5Aおよび 5Bの距離が 2mmの場合は、液体が沸騰 する様子は認められなかった。高周波通電用電極 5Aおよび 5Bの距離が 0. 5mmの 場合では、電極周辺の液体が沸騰し、気泡が発生する様子が認められた。高周波通 電用電極 5Aおよび 5Bの距離が Omm (短絡)の場合は、バルーン 2が加熱されなか つた。更に、高周波電力供給用リード線 12A、 12Bが発熱した。
[0134] 以上の結果より、スぺーサー 17が設置されずに、高周波通電用電極 5Aおよび 5B の最短距離 Esdが短か過ぎると、高周波通電用電極周辺の液体が沸騰したり、高周 波通電用電極同士の短絡によって加熱が不可能になるということが判った。スぺーサ 一 17を設置して、高周波通電用電極 5Aおよび 5Bの最短距離 Esdを確実に維持で きるようにすることが好まし!/、。
[0135] アブレーシヨン部位の電位検出テスト:
実施例 5
[0136] 実施例 1のアブレーシヨンカテーテルについて、電位検出用電極 19Aと電位検出 用電極 19Bの電位検出機能をチェックする電位検出テストを実施した。
[0137] 電位検出対象の被試験体 (豚)を予め用意すると共に、電位情報導出用リード線 2 0A、 20Bを心電計 21に接続した。
[0138] 先ず、電位検出用電極 19Aを被試験体の心臓近傍の体表に当てて、心電計 21で 検出電位をチャート上に記録した。次に、電位検出用電極 19Bを被試験体の心臓近 傍の体表に当てて、心電計 21で検出電位をチャート上に記録した。チャート上の記 録結果は!、ずれも正常であった。
[0139] この電位検出テストは、被試験体の体表の電位を検出するようにしたが、被試験 体の体表の電位が正常に検出できれば、被試験体の体内のアブレーシヨン部位の 電位も正常に検出できる。これにより、電位検出用電極 19Aと電位検出用電極 19B は、いずれも患者体内の電位を適正に検出できるものであることが、確認された。
[0140] 電位検出用電極の発熱テスト:
比較例 5
[0141] 比較例 1のアブレーシヨンカテーテルにおいて、電位検出用電極を付設したカテー テルを用意した。このカテーテルを、以下において、比較例 5のアブレーシヨンカテー テルと呼称する。対極板 54 (図 8)は、比較例 1に記載のものと同じ対極板を用いた。
[0142] 37°Cの生理食塩水で満たした水槽に、比較例 5のアブレーシヨンカテーテルを浸 漬させ、高周波電力供給用リード線 12Aを、高周波電源装置 10に接続した。対極板 54は、水槽の外壁面に設置し、高周波電源装置 10に接続した。バルーン 2の内部 に、造影剤 (ィォキサダル酸注射液:商品名へキサブリックス 320)を生理食塩水にて 50%に希釈した液を注入し、バルーン 2の後端側の最大外径が 30mmになる状態 にバルーン 2を膨張させた。
[0143] 高周波電源装置 10の周波数を 13. 56MHz,バルーン 2内の設定温度を 70°Cとし 、 5分間高周波を通電した。電位検出用電極 19Bの真上に熱電対を貼り付け、温度 を測定した。結果は、通電開始力も約 30秒で電位検出用電極 19Bの温度は、 60°C まで上昇し、その後も常に 60°C前後(60°C± 3°C)の温度を維持した。
[0144] 以上より、比較例 5のアブレーシヨンカテーテルを用いたアブレーシヨンでは、高周 波通電によって、電位検出用電極へ高周波電流が流れて電位検出用電極も加熱さ れることが推定される。
実施例 6
[0145] 実施例 1のアブレーシヨンカテーテルの電位検出用電極の発熱を調査した。
[0146] 37°Cの生理食塩水で満たした水槽に、実施例 1のアブレーシヨンカテーテルを浸 漬させた。高周波電力供給用リード線 12A、 12Bを高周波電源装置 10に接続した。 バルーン 2の内部に、造影剤 (ィォキサダル酸注射液:商品名へキサブリックス 320) を生理食塩水にて 50%に希釈した液を注入し、バルーン 2の後端側の最大外径が 3 Ommになる状態にバルーン 2を膨張させた。
[0147] 高周波電源装置 10の周波数を 13. 56MHz,バルーン 2内の設定温度を 75°Cとし 、 5分間高周波を通電した。電位検出用電極 19Bの真上に熱電対を貼り付け、温度 を測定した。結果は、通電開始から 5分経過しても、電位検出用電極の温度は、 40 °C前後(40°C士 3°C)であった。
[0148] 以上より、実施例 1のアブレーシヨンカテーテルを用いたアブレーシヨンでは、高周 波通電用電極が双極とも電気的高抵抗素材で形成されているバルーン 2の内部に 設置されるため、アブレーシヨン時に、電位検出用電極へ高周波電流が流れることが なぐ従って、電位検出用電極の加熱による標的病変部位以外の血管、組織がアブ レーシヨンされる恐れがな 、ことが推定される。
[0149] 本発明は、上記の実施例に限られるものではなぐ以下のような形態で実施するこ とも可能である。
[0150] 例えば、実施例 1のアブレーシヨンカテーテルは、液体供給装置 6、高周波電源装 置 10や心電計 21を全て備えた構成を有するが、液体供給装置 6、高周波電源装置 10や心電計 21は、カテーテル 1を実際の治療に使用する際に、別途調達し、カテー テル 1に接続することが可能であるので、本発明のバルーンカテーテル (バルーン付 きアブレーシヨンカテーテル)は、液体送給装置 6、高周波電源 10や心電計 21を含 まな 、ものであっても良!、。
産業上の利用可能性
[0151] 本発明のバルーンカテーテルは、バルーン内に間隔をおいて対置された電極間 に高周波電流を通電し、バルーン内の液体をカ卩温せしめ、この加温力 バルーンを 介し、ノ レーンに接して 、る生体組織をアブレーシヨンするバルーンカテーテルであ り、それぞれの電極の表面積が 20mm2以上とされ、あるいは、アブレーシヨン部位の 電位を検出する電位検出用電極が、バルーンの前後の少なくとも一方においてバル ーンの外側に設けられていることを特徴とする。この本発明のバルーンカテーテルに よれば、従来必要とされた対極板が不要となるため、それによる発熱の問題がなく、 あるいは、ガイドワイヤーの発熱や電位検出用電極の発熱が抑制され、患者にとって より安全な、また、カテーテル侵襲に起因する患者の負担を軽減したアブレーシヨン 用のバルーンカテーテル(バルーン付きアブレーシヨンカテーテル)が提供される。

Claims

請求の範囲
[1] カテーテルシャフト、該カテーテルシャフトに取り付けられたバルーン、該バルーン の内部に位置し、前記カテーテルシャフトに沿って間隔をおいて位置する第 1の電極 と第 2の電極、これら第 1の電極と第 2の電極とに高周波電力を供給する高周波電力 供給用リード線、および、前記バルーン内に液体を供給する液体供給路力 なり、前 記第 1の電極の表面積 S Aと前記第 2の電極の表面積 SB力 それぞれ、 20mm2以 上であるバルーンカテーテル。
[2] 前記第 1の電極と前記第 2の電極との間の最短距離 Esdが、 1mm以上である請求 の範囲第 1項に記載のバルーンカテーテル。
[3] 前記第 1の電極と前記第 2の電極との前記間隔を維持するスぺーサ一が、これら電 極間に設けられている請求の範囲第 1項に記載のバルーンカテーテル。
[4] 前記ノ レーンの内部あるいは外表面に設けられた温度センサと、該温度センサが 検出する温度情報を導出する温度情報導出用リード線とを有する請求の範囲第 1項 に記載のバルーンカテーテル。
[5] カテーテルシャフト、該カテーテルシャフトに取り付けられたバルーン、該バルーン の内部に位置し、前記カテーテルシャフトに沿って間隔をおいて位置する第 1の電極 と第 2の電極、これら第 1の電極と第 2の電極との間に高周波電力を供給する高周波 電力供給用リード線、および、前記バルーン内に液体を供給する液体供給路からな り、前記バルーンより先端側ある 、は後端側の位置にぉ ヽて前記カテーテルシャフト に設けられた治療部位の電位を検出する電位検出用電極と、該電位検出用電極が 検出する電位情報を導出する電位情報導出用リード線とが設けられているバルーン 力テーテノレ。
[6] 前記第 1の電極の表面積 SAと前記第 2の電極の表面積 SB力 それぞれ、 20mm2 以上である請求の範囲第 5項に記載のバルーンカテーテル。
[7] 前記第 1の電極と前記第 2の電極との間の最短距離 Esdが、 1mm以上である請求 の範囲第 5項に記載のバルーンカテーテル。
[8] 前記第 1の電極と前記第 2の電極との前記間隔を維持するスぺーサ一が、これら電 極間に設けられている請求の範囲第 5項に記載のバルーンカテーテル。
[9] 前記ノ レーンの内部あるいは外表面に設けられた温度センサと、該温度センサが 検出する温度情報を導出する温度情報導出用リード線とを有する請求の範囲第 5項 に記載のバルーンカテーテル。
[10] 前記カテーテルシャフトが、外筒シャフトと、該外筒シャフトの内側において該外筒 シャフトに沿って移動可能に設けられた内筒シャフトとからなり、前記バルーンの先端 部が、前記内筒シャフトの先端部に固定され、前記バルーンの後端部が、前記外筒 シャフトの先端部に固定され、前記内筒シャフトの前記外筒シャフトに対する移動に より、前記バルーンが変形可能とされ、前記第 1の電極および前記第 2の電極が、前 記内筒シャフトに沿って間隔をおいて位置している請求の範囲第 1項に記載のバル ーンカテーテル。
[11] 前記液体供給路が、前記外筒シャフトと前記内筒シャフトとの間のクリアランスにより 形成されている請求の範囲第 10項に記載のバルーンカテーテル。
[12] 前記カテーテルシャフトが、外筒シャフトと、該外筒シャフトの内側において該外筒 シャフトに沿って移動可能に設けられた内筒シャフトとからなり、前記バルーンの先端 部が、前記内筒シャフトの先端部に固定され、前記バルーンの後端部が、前記外筒 シャフトの先端部に固定され、前記内筒シャフトの前記外筒シャフトに対する移動に より、前記バルーンが変形可能とされ、前記第 1の電極および前記第 2の電極が、前 記内筒シャフトに沿って間隔をお 、て位置し、前記電位検出用電極が前記バルーン より先端側に位置する場合は、当該電位検出用電極が前記内筒シャフトに設けられ 、あるいは、前記電位検出用電極が前記バルーンより後端側に位置する場合は、当 該電位検出用電極が前記外筒シャフトに設けられている請求の範囲第 5項に記載の ノ レーン力テーテノレ。
[13] 前記液体供給路が、前記外筒シャフトと前記内筒シャフトとの間のクリアランスにより 形成されている請求の範囲第 12項に記載のバルーンカテーテル。
[14] 前記温度情報導出用リード線に結合された温度情報処理装置と、前記高周波電力 供給用リード線に結合された高周波電力調節装置とが設けられ、前記温度情報処理 装置により判定される温度に応じて、前記高周波電力調節装置により、前記第 1の電 極と前記第 2の電極に供給される高周波電力が調節されるように構成されている請 求の範囲第 4項に記載のバルーンカテーテル。
[15] 前記温度情報導出用リード線に結合された温度情報処理装置と、前記高周波電力 供給用リード線に結合された高周波電力調節装置とが設けられ、前記温度情報処理 装置により判定される温度に応じて、前記高周波電力調節装置により、前記第 1の電 極と前記第 2の電極に供給される高周波電力が調節されるように構成されている請 求の範囲第 9項に記載のバルーンカテーテル。
[16] 前記第 1の電極と第 2の電極に供給される前記高周波電力の周波数が ΙΟΟΚΗζ乃 至 2. 45GHzであり、この高周波電力により、前記液体供給路から前記バルーン内 に供給され、前記バルーン内に充填される液体力 50°C乃至 80°Cの温度に加熱さ れるように構成されている請求の範囲第 1項に記載のバルーンカテーテル。
[17] 前記第 1の電極と第 2の電極に供給される前記高周波電力の周波数が ΙΟΟΚΗζ乃 至 2. 45GHzであり、この高周波電力により、前記液体供給路から前記バルーン内 に供給され、前記バルーン内に充填される液体力 50°C乃至 80°Cの温度に加熱さ れるように構成されて 、る請求の範囲第 5項に記載のバルーンカテーテル。
[18] 前記液体供給路に結合された液体攪拌装置が設けられ、該液体攪拌装置により、 前記液体供給路力 前記バルーン内に供給され、前記バルーン内に充填される液 体を、前記液体供給路と前記バルーン内との間で出入りさせ、前記バルーン内の液 体を攪拌するように構成されている請求の範囲第 1項に記載のバルーンカテーテル
[19] 前記液体供給路に結合された液体攪拌装置が設けられ、該液体攪拌装置により、 前記液体供給路力 前記バルーン内に供給され、前記バルーン内に充填される液 体を、前記液体供給路と前記バルーン内との間で出入りさせ、前記バルーン内の液 体を攪拌するように構成されて 、る請求の範囲第 5項に記載のバルーンカテーテル
PCT/JP2004/019053 2004-01-06 2004-12-21 バルーンカテーテル WO2005065559A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/583,730 US20070149963A1 (en) 2004-01-06 2004-12-21 Balloon catheter
JP2005516828A JPWO2005065559A1 (ja) 2004-01-06 2004-12-21 バルーンカテーテル
CN2004800399590A CN1901844B (zh) 2004-01-06 2004-12-21 球囊导管
EP04807410A EP1709922A4 (en) 2004-01-06 2004-12-21 BALLOON CATHETER
CA002551752A CA2551752A1 (en) 2004-01-06 2004-12-21 Balloon catheter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-000874 2004-01-06
JP2004000874 2004-01-06
JP2004047730 2004-02-24
JP2004-047730 2004-02-24

Publications (1)

Publication Number Publication Date
WO2005065559A1 true WO2005065559A1 (ja) 2005-07-21

Family

ID=34752070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019053 WO2005065559A1 (ja) 2004-01-06 2004-12-21 バルーンカテーテル

Country Status (8)

Country Link
US (1) US20070149963A1 (ja)
EP (1) EP1709922A4 (ja)
JP (1) JPWO2005065559A1 (ja)
KR (1) KR20060115900A (ja)
CN (1) CN1901844B (ja)
CA (1) CA2551752A1 (ja)
TW (1) TW200531714A (ja)
WO (1) WO2005065559A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448407C (zh) * 2006-05-17 2009-01-07 马长生 治疗房颤的消融装置及其探头
WO2013172600A1 (ko) * 2012-05-18 2013-11-21 (주) 태웅메디칼 고주파 열치료용 중첩형 바이폴라 전극
WO2013172599A1 (ko) * 2012-05-18 2013-11-21 (주) 태웅메디칼 소작 겸용 스텐트 시술장치
JP5913739B2 (ja) * 2013-10-04 2016-04-27 有限会社日本エレクテル バルーンカテーテルアブレーションシステム
JP2017063869A (ja) * 2015-09-28 2017-04-06 有限会社日本エレクテル 高周波バルーンカテーテルシステム

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306132B1 (en) 1999-06-17 2001-10-23 Vivant Medical Modular biopsy and microwave ablation needle delivery apparatus adapted to in situ assembly and method of use
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US7197363B2 (en) 2002-04-16 2007-03-27 Vivant Medical, Inc. Microwave antenna having a curved configuration
US6752767B2 (en) 2002-04-16 2004-06-22 Vivant Medical, Inc. Localization element with energized tip
US7311703B2 (en) 2003-07-18 2007-12-25 Vivant Medical, Inc. Devices and methods for cooling microwave antennas
DE202004021947U1 (de) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Auswählbare exzentrische Remodellierung und/oder Ablation von atherosklerotischem Material
WO2005115117A2 (en) * 2004-05-24 2005-12-08 The Trustees Of Columbia University In The City Of New York Steerable devices
US9713730B2 (en) 2004-09-10 2017-07-25 Boston Scientific Scimed, Inc. Apparatus and method for treatment of in-stent restenosis
US8396548B2 (en) 2008-11-14 2013-03-12 Vessix Vascular, Inc. Selective drug delivery in a lumen
EP1865870B8 (en) 2005-03-28 2012-04-04 Vessix Vascular, Inc. Intraluminal electrical tissue characterization and tuned rf energy for selective treatment of atheroma and other target tissues
US8019435B2 (en) 2006-05-02 2011-09-13 Boston Scientific Scimed, Inc. Control of arterial smooth muscle tone
WO2007140278A2 (en) * 2006-05-24 2007-12-06 Rush University Medical Center High temperature thermal therapy of breast cancer
US8068921B2 (en) 2006-09-29 2011-11-29 Vivant Medical, Inc. Microwave antenna assembly and method of using the same
JP5312337B2 (ja) 2006-10-18 2013-10-09 べシックス・バスキュラー・インコーポレイテッド 標的組織の選択的な処置のための調節されたrfエネルギーおよび電気的な組織の特徴付け
ES2560006T3 (es) 2006-10-18 2016-02-17 Vessix Vascular, Inc. Inducción de efectos de temperatura deseables sobre tejido corporal
EP2076194B1 (en) 2006-10-18 2013-04-24 Vessix Vascular, Inc. System for inducing desirable temperature effects on body tissue
US8496653B2 (en) 2007-04-23 2013-07-30 Boston Scientific Scimed, Inc. Thrombus removal
US20100191151A1 (en) * 2007-06-15 2010-07-29 Taewoong Medical Co., Ltd. Bipolar electrode type guide wire and catheter system
DE102007043732A1 (de) * 2007-09-13 2009-04-02 Siemens Ag Herzmuskelgewebe-Ablationsvorrichtung zur Behandlung von Herzrhythmusstörungen durch Ablation von Herzmuskelgewebe bei einem Patienten sowie zugehöriger Katheter und zugehöriges Verfahren
US8292880B2 (en) 2007-11-27 2012-10-23 Vivant Medical, Inc. Targeted cooling of deployable microwave antenna
US20090248011A1 (en) * 2008-02-28 2009-10-01 Hlavka Edwin J Chronic venous insufficiency treatment
JP4649506B2 (ja) * 2008-09-16 2011-03-09 有限会社日本エレクテル 高周波加温バルーンカテーテル
CA2743992A1 (en) 2008-11-17 2010-05-20 Minnow Medical, Inc. Selective accumulation of energy with or without knowledge of tissue topography
ITMI20090106U1 (it) * 2009-04-02 2010-10-03 Finella Medical S P A Dispositivo con elettro-catetere per indurre una neurolesione epidurale reversibile
US8551096B2 (en) 2009-05-13 2013-10-08 Boston Scientific Scimed, Inc. Directional delivery of energy and bioactives
JP5444840B2 (ja) 2009-05-21 2014-03-19 東レ株式会社 バルーン付きアブレーションカテーテル及びバルーン付きアブレーションカテーテルシステム
CA2795229A1 (en) 2010-04-09 2011-10-13 Vessix Vascular, Inc. Power generating and control apparatus for the treatment of tissue
US9192790B2 (en) 2010-04-14 2015-11-24 Boston Scientific Scimed, Inc. Focused ultrasonic renal denervation
JP5870694B2 (ja) * 2010-06-08 2016-03-01 東レ株式会社 電位測定用カテーテル
US8473067B2 (en) 2010-06-11 2013-06-25 Boston Scientific Scimed, Inc. Renal denervation and stimulation employing wireless vascular energy transfer arrangement
US9358365B2 (en) 2010-07-30 2016-06-07 Boston Scientific Scimed, Inc. Precision electrode movement control for renal nerve ablation
US9155589B2 (en) 2010-07-30 2015-10-13 Boston Scientific Scimed, Inc. Sequential activation RF electrode set for renal nerve ablation
US9084609B2 (en) 2010-07-30 2015-07-21 Boston Scientific Scime, Inc. Spiral balloon catheter for renal nerve ablation
US9463062B2 (en) 2010-07-30 2016-10-11 Boston Scientific Scimed, Inc. Cooled conductive balloon RF catheter for renal nerve ablation
US9408661B2 (en) 2010-07-30 2016-08-09 Patrick A. Haverkost RF electrodes on multiple flexible wires for renal nerve ablation
US9084610B2 (en) 2010-10-21 2015-07-21 Medtronic Ardian Luxembourg S.A.R.L. Catheter apparatuses, systems, and methods for renal neuromodulation
US8974451B2 (en) 2010-10-25 2015-03-10 Boston Scientific Scimed, Inc. Renal nerve ablation using conductive fluid jet and RF energy
US9220558B2 (en) 2010-10-27 2015-12-29 Boston Scientific Scimed, Inc. RF renal denervation catheter with multiple independent electrodes
US9028485B2 (en) 2010-11-15 2015-05-12 Boston Scientific Scimed, Inc. Self-expanding cooling electrode for renal nerve ablation
US9089350B2 (en) 2010-11-16 2015-07-28 Boston Scientific Scimed, Inc. Renal denervation catheter with RF electrode and integral contrast dye injection arrangement
US9668811B2 (en) 2010-11-16 2017-06-06 Boston Scientific Scimed, Inc. Minimally invasive access for renal nerve ablation
US9326751B2 (en) 2010-11-17 2016-05-03 Boston Scientific Scimed, Inc. Catheter guidance of external energy for renal denervation
US9060761B2 (en) 2010-11-18 2015-06-23 Boston Scientific Scime, Inc. Catheter-focused magnetic field induced renal nerve ablation
US9023034B2 (en) 2010-11-22 2015-05-05 Boston Scientific Scimed, Inc. Renal ablation electrode with force-activatable conduction apparatus
US9192435B2 (en) 2010-11-22 2015-11-24 Boston Scientific Scimed, Inc. Renal denervation catheter with cooled RF electrode
US20120150107A1 (en) * 2010-12-14 2012-06-14 Boston Scientific Scimed, Inc. Balloon catheter shafts and methods of manufacturing
US20120157993A1 (en) 2010-12-15 2012-06-21 Jenson Mark L Bipolar Off-Wall Electrode Device for Renal Nerve Ablation
WO2012100095A1 (en) 2011-01-19 2012-07-26 Boston Scientific Scimed, Inc. Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury
US9492190B2 (en) 2011-02-09 2016-11-15 Covidien Lp Tissue dissectors
CN103517731B (zh) 2011-04-08 2016-08-31 柯惠有限合伙公司 用于去除肾交感神经和离子电渗式药物传递的离子电渗式药物传递***和方法
WO2012148969A2 (en) 2011-04-25 2012-11-01 Brian Kelly Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
JP5853426B2 (ja) * 2011-06-08 2016-02-09 東レ株式会社 バルーン付きアブレーションカテーテル
AU2012283908B2 (en) 2011-07-20 2017-02-16 Boston Scientific Scimed, Inc. Percutaneous devices and methods to visualize, target and ablate nerves
JP6106669B2 (ja) 2011-07-22 2017-04-05 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. ヘリカル・ガイド内に配置可能な神経調節要素を有する神経調節システム
WO2013055826A1 (en) 2011-10-10 2013-04-18 Boston Scientific Scimed, Inc. Medical devices including ablation electrodes
US9420955B2 (en) 2011-10-11 2016-08-23 Boston Scientific Scimed, Inc. Intravascular temperature monitoring system and method
EP2765940B1 (en) 2011-10-11 2015-08-26 Boston Scientific Scimed, Inc. Off-wall electrode device for nerve modulation
US9364284B2 (en) 2011-10-12 2016-06-14 Boston Scientific Scimed, Inc. Method of making an off-wall spacer cage
US9162046B2 (en) 2011-10-18 2015-10-20 Boston Scientific Scimed, Inc. Deflectable medical devices
US9079000B2 (en) 2011-10-18 2015-07-14 Boston Scientific Scimed, Inc. Integrated crossing balloon catheter
CN104023662B (zh) 2011-11-08 2018-02-09 波士顿科学西美德公司 孔部肾神经消融
US9119600B2 (en) 2011-11-15 2015-09-01 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
US9119632B2 (en) 2011-11-21 2015-09-01 Boston Scientific Scimed, Inc. Deflectable renal nerve ablation catheter
US9265969B2 (en) 2011-12-21 2016-02-23 Cardiac Pacemakers, Inc. Methods for modulating cell function
CN104254291B (zh) 2011-12-23 2018-02-13 维西克斯血管公司 重建身体通道的组织或身体通路附近的组织的方法及设备
US9433760B2 (en) 2011-12-28 2016-09-06 Boston Scientific Scimed, Inc. Device and methods for nerve modulation using a novel ablation catheter with polymeric ablative elements
US9050106B2 (en) 2011-12-29 2015-06-09 Boston Scientific Scimed, Inc. Off-wall electrode device and methods for nerve modulation
WO2013162722A1 (en) * 2012-04-27 2013-10-31 Medtronic Ardian Luxembourg Sarl Methods and devices for localized disease treatment by ablation
US10660703B2 (en) 2012-05-08 2020-05-26 Boston Scientific Scimed, Inc. Renal nerve modulation devices
CN104540465A (zh) * 2012-08-24 2015-04-22 波士顿科学西美德公司 带有含单独微孔隙区域的球囊的血管内导管
CN104780859B (zh) 2012-09-17 2017-07-25 波士顿科学西美德公司 用于肾神经调节的自定位电极***及方法
US10549127B2 (en) 2012-09-21 2020-02-04 Boston Scientific Scimed, Inc. Self-cooling ultrasound ablation catheter
US10398464B2 (en) 2012-09-21 2019-09-03 Boston Scientific Scimed, Inc. System for nerve modulation and innocuous thermal gradient nerve block
US20140088586A1 (en) * 2012-09-26 2014-03-27 Boston Scientific Scimed, Inc. Renal nerve modulation devices
EP2906135A2 (en) 2012-10-10 2015-08-19 Boston Scientific Scimed, Inc. Renal nerve modulation devices and methods
US9044575B2 (en) 2012-10-22 2015-06-02 Medtronic Adrian Luxembourg S.a.r.l. Catheters with enhanced flexibility and associated devices, systems, and methods
US20140121657A1 (en) * 2012-10-26 2014-05-01 Biosense Webster (Israel) Ltd. Irrrigated ablation catheter with deformable head
CN103932676A (zh) * 2013-01-23 2014-07-23 四川锦江电子科技有限公司 柔性电路电极
US9693821B2 (en) 2013-03-11 2017-07-04 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
WO2014163987A1 (en) 2013-03-11 2014-10-09 Boston Scientific Scimed, Inc. Medical devices for modulating nerves
US9808311B2 (en) 2013-03-13 2017-11-07 Boston Scientific Scimed, Inc. Deflectable medical devices
US10265122B2 (en) 2013-03-15 2019-04-23 Boston Scientific Scimed, Inc. Nerve ablation devices and related methods of use
US9297845B2 (en) 2013-03-15 2016-03-29 Boston Scientific Scimed, Inc. Medical devices and methods for treatment of hypertension that utilize impedance compensation
EP2967734B1 (en) 2013-03-15 2019-05-15 Boston Scientific Scimed, Inc. Methods and apparatuses for remodeling tissue of or adjacent to a body passage
DE102013104948A1 (de) 2013-05-14 2014-11-20 Acandis Gmbh & Co. Kg Medizinischer Katheter zur hypothermischen Behandlung, Behandlungssystem mit einem derartigen Katheter und Herstellungsverfahren
US10548663B2 (en) 2013-05-18 2020-02-04 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods
WO2014189887A2 (en) 2013-05-20 2014-11-27 Mayo Foundation For Medical Education And Research Devices and methods for ablation of tissue
EP3010436A1 (en) 2013-06-21 2016-04-27 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation having rotatable shafts
CN105473091B (zh) 2013-06-21 2020-01-21 波士顿科学国际有限公司 具有可一起移动的电极支撑件的肾脏去神经球囊导管
US9707036B2 (en) * 2013-06-25 2017-07-18 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation using localized indifferent electrodes
AU2014284558B2 (en) 2013-07-01 2017-08-17 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
CN105377170A (zh) 2013-07-11 2016-03-02 波士顿科学国际有限公司 具有可伸展电极组件的医疗装置
US10660698B2 (en) 2013-07-11 2020-05-26 Boston Scientific Scimed, Inc. Devices and methods for nerve modulation
WO2015010074A1 (en) 2013-07-19 2015-01-22 Boston Scientific Scimed, Inc. Spiral bipolar electrode renal denervation balloon
EP3024406B1 (en) 2013-07-22 2019-06-19 Boston Scientific Scimed, Inc. Medical devices for renal nerve ablation
US10695124B2 (en) 2013-07-22 2020-06-30 Boston Scientific Scimed, Inc. Renal nerve ablation catheter having twist balloon
EP3035879A1 (en) 2013-08-22 2016-06-29 Boston Scientific Scimed, Inc. Flexible circuit having improved adhesion to a renal nerve modulation balloon
US9895194B2 (en) 2013-09-04 2018-02-20 Boston Scientific Scimed, Inc. Radio frequency (RF) balloon catheter having flushing and cooling capability
CN105530885B (zh) 2013-09-13 2020-09-22 波士顿科学国际有限公司 具有气相沉积覆盖层的消融球囊
US11246654B2 (en) 2013-10-14 2022-02-15 Boston Scientific Scimed, Inc. Flexible renal nerve ablation devices and related methods of use and manufacture
WO2015057521A1 (en) 2013-10-14 2015-04-23 Boston Scientific Scimed, Inc. High resolution cardiac mapping electrode array catheter
US9770606B2 (en) 2013-10-15 2017-09-26 Boston Scientific Scimed, Inc. Ultrasound ablation catheter with cooling infusion and centering basket
US9962223B2 (en) 2013-10-15 2018-05-08 Boston Scientific Scimed, Inc. Medical device balloon
US10945786B2 (en) 2013-10-18 2021-03-16 Boston Scientific Scimed, Inc. Balloon catheters with flexible conducting wires and related methods of use and manufacture
JP2016534842A (ja) 2013-10-25 2016-11-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 除神経フレックス回路における埋め込み熱電対
EP3091922B1 (en) 2014-01-06 2018-10-17 Boston Scientific Scimed, Inc. Tear resistant flex circuit assembly
EP3099377B1 (en) 2014-01-27 2022-03-02 Medtronic Ireland Manufacturing Unlimited Company Neuromodulation catheters having jacketed neuromodulation elements and related devices
EP3424453A1 (en) 2014-02-04 2019-01-09 Boston Scientific Scimed, Inc. Alternative placement of thermal sensors on bipolar electrode
US11000679B2 (en) 2014-02-04 2021-05-11 Boston Scientific Scimed, Inc. Balloon protection and rewrapping devices and related methods of use
EP3134018B1 (en) 2014-04-24 2024-05-29 Medtronic Ardian Luxembourg S.à.r.l. Neuromodulation catheters having braided shafts and associated systems and methods
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
JP6282209B2 (ja) * 2014-10-08 2018-02-21 日本ライフライン株式会社 ケミカルアブレーション装置およびケミカルアブレーションシステム
JP6673598B2 (ja) 2014-11-19 2020-03-25 エピックス セラピューティクス,インコーポレイテッド ペーシングを伴う組織の高分解能マッピング
CN107148249B (zh) 2014-11-19 2022-02-22 Epix 疗法公司 使用高分辨率电极组件的消融装置、***和方法
AU2015350007A1 (en) 2014-11-19 2017-06-29 Epix Therapeutics, Inc. Systems and methods for high-resolution mapping of tissue
US10413240B2 (en) 2014-12-10 2019-09-17 Staton Techiya, Llc Membrane and balloon systems and designs for conduits
US10231770B2 (en) 2015-01-09 2019-03-19 Medtronic Holding Company Sárl Tumor ablation system
US9636164B2 (en) 2015-03-25 2017-05-02 Advanced Cardiac Therapeutics, Inc. Contact sensing systems and methods
EP3429462B1 (en) 2016-03-15 2022-08-03 EPiX Therapeutics, Inc. Improved devices and systems for irrigated ablation
US10265111B2 (en) 2016-04-26 2019-04-23 Medtronic Holding Company Sárl Inflatable bone tamp with flow control and methods of use
US20170347896A1 (en) * 2016-06-02 2017-12-07 Biosense Webster (Israel) Ltd. Balloon catheter and related impedance-based methods for detecting occlusion
CN106691676A (zh) * 2017-02-22 2017-05-24 上海导向医疗***有限公司 冷冻球囊导管冷冻消融肺静脉过程中保护食道的保温装置
WO2018200865A1 (en) 2017-04-27 2018-11-01 Epix Therapeutics, Inc. Determining nature of contact between catheter tip and tissue
CN109953810A (zh) * 2017-12-25 2019-07-02 四川锦江电子科技有限公司 一种标测冷冻消融一体式装置
WO2019179447A1 (zh) * 2018-03-19 2019-09-26 杭州诺生医疗科技有限公司 经导管介入的房间隔造口装置
WO2020035918A1 (ja) * 2018-08-15 2020-02-20 日本ライフライン株式会社 バルーン型電極カテーテル
WO2020035919A1 (ja) * 2018-08-15 2020-02-20 日本ライフライン株式会社 バルーン型電極カテーテル
CN111374751B (zh) * 2018-12-28 2021-05-28 上海微创电生理医疗科技股份有限公司 电生理导管及消融***
US20230038069A1 (en) * 2019-12-24 2023-02-09 Japan Lifeline Co., Ltd. Balloon-type electrode catheter
US11484355B2 (en) 2020-03-02 2022-11-01 Medtronic Holding Company Sàrl Inflatable bone tamp and method for use of inflatable bone tamp
CN118159215A (zh) * 2021-10-26 2024-06-07 美敦力爱尔兰制造无限公司 导管***
CN116158833A (zh) * 2021-11-24 2023-05-26 杭州德诺电生理医疗科技有限公司 消融***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535033A (ja) * 1999-01-20 2002-10-22 デイグ・コーポレイション 心房性不整脈の治療器具
JP2003102850A (ja) * 2001-09-28 2003-04-08 Shutaro Satake 高周波加温バルーンカテーテル

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706688A (en) * 1981-05-18 1987-11-17 Don Michael T Anthony Non-invasive cardiac device
US5174290A (en) * 1982-03-22 1992-12-29 Mountpelier Investments, S.A. Tonometric catheter combination
US5151100A (en) * 1988-10-28 1992-09-29 Boston Scientific Corporation Heating catheters
US5191883A (en) * 1988-10-28 1993-03-09 Prutech Research And Development Partnership Ii Device for heating tissue in a patient's body
US4955377A (en) * 1988-10-28 1990-09-11 Lennox Charles D Device and method for heating tissue in a patient's body
US5056532A (en) * 1989-07-25 1991-10-15 Medtronic, Inc. Esophageal pacing lead
US5439446A (en) * 1994-06-30 1995-08-08 Boston Scientific Corporation Stent and therapeutic delivery system
US5209749A (en) * 1990-05-11 1993-05-11 Applied Urology Inc. Fluoroscopically alignable cutter assembly and method of using the same
US5190540A (en) * 1990-06-08 1993-03-02 Cardiovascular & Interventional Research Consultants, Inc. Thermal balloon angioplasty
CA2109793A1 (en) * 1991-05-24 1992-12-10 Stuart D. Edwards Combination monophasic action potential/ablation catheter and high-performance filter system
US6277112B1 (en) * 1996-07-16 2001-08-21 Arthrocare Corporation Methods for electrosurgical spine surgery
US5304214A (en) * 1992-01-21 1994-04-19 Med Institute, Inc. Transurethral ablation catheter
US5529574A (en) * 1992-08-21 1996-06-25 Frackelton; James P. Method and apparatus for treatment of the prostate
US5571088A (en) * 1993-07-01 1996-11-05 Boston Scientific Corporation Ablation catheters
JP3898754B2 (ja) * 1993-07-01 2007-03-28 ボストン サイエンティフィック リミテッド 像形成、電位検出型及び切除カテーテル
US5630837A (en) * 1993-07-01 1997-05-20 Boston Scientific Corporation Acoustic ablation
US5405322A (en) * 1993-08-12 1995-04-11 Boston Scientific Corporation Method for treating aneurysms with a thermal source
US5397308A (en) * 1993-10-22 1995-03-14 Scimed Life Systems, Inc. Balloon inflation measurement apparatus
US6405732B1 (en) * 1994-06-24 2002-06-18 Curon Medical, Inc. Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors
US5681308A (en) * 1994-06-24 1997-10-28 Stuart D. Edwards Ablation apparatus for cardiac chambers
US5857998A (en) * 1994-06-30 1999-01-12 Boston Scientific Corporation Stent and therapeutic delivery system
EP0723786A1 (en) * 1995-01-30 1996-07-31 Cardiovascular Concepts, Inc. Lesion measurement catheter and method
US6139527A (en) * 1996-03-05 2000-10-31 Vnus Medical Technologies, Inc. Method and apparatus for treating hemorrhoids
US5697965A (en) * 1996-04-01 1997-12-16 Procath Corporation Method of making an atrial defibrillation catheter
NL1002898C2 (nl) * 1996-04-18 1997-10-21 Cordis Europ Katheter met markeerhuls.
US5891134A (en) * 1996-09-24 1999-04-06 Goble; Colin System and method for applying thermal energy to tissue
US5910129A (en) * 1996-12-19 1999-06-08 Ep Technologies, Inc. Catheter distal assembly with pull wires
US6347247B1 (en) * 1998-05-08 2002-02-12 Genetronics Inc. Electrically induced vessel vasodilation
JP2002078809A (ja) * 2000-09-07 2002-03-19 Shutaro Satake 肺静脈電気的隔離用バルーンカテーテル
US6743226B2 (en) * 2001-02-09 2004-06-01 Cosman Company, Inc. Adjustable trans-urethral radio-frequency ablation
EP1599232B1 (en) * 2003-02-21 2013-08-14 Electro-Cat, LLC System for measuring cross-sectional areas and pressure gradients in luminal organs
US7720521B2 (en) * 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535033A (ja) * 1999-01-20 2002-10-22 デイグ・コーポレイション 心房性不整脈の治療器具
JP2003102850A (ja) * 2001-09-28 2003-04-08 Shutaro Satake 高周波加温バルーンカテーテル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1709922A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100448407C (zh) * 2006-05-17 2009-01-07 马长生 治疗房颤的消融装置及其探头
WO2013172600A1 (ko) * 2012-05-18 2013-11-21 (주) 태웅메디칼 고주파 열치료용 중첩형 바이폴라 전극
WO2013172599A1 (ko) * 2012-05-18 2013-11-21 (주) 태웅메디칼 소작 겸용 스텐트 시술장치
KR101415902B1 (ko) 2012-05-18 2014-07-08 신경민 소작 겸용 스텐트 시술장치
KR101415900B1 (ko) 2012-05-18 2014-07-08 신경민 고주파 열치료용 중첩형 바이폴라 전극
JP2015517357A (ja) * 2012-05-18 2015-06-22 テウン メディカル カンパニー リミテッド 高周波熱治療用重畳型バイポーラ電極
JP2015521065A (ja) * 2012-05-18 2015-07-27 テウン メディカル カンパニー リミテッド 焼灼兼用ステント施術装置
JP5913739B2 (ja) * 2013-10-04 2016-04-27 有限会社日本エレクテル バルーンカテーテルアブレーションシステム
JPWO2015049784A1 (ja) * 2013-10-04 2017-03-09 有限会社日本エレクテル バルーンカテーテルアブレーションシステム
JP2017063869A (ja) * 2015-09-28 2017-04-06 有限会社日本エレクテル 高周波バルーンカテーテルシステム

Also Published As

Publication number Publication date
CN1901844B (zh) 2011-10-12
CA2551752A1 (en) 2005-07-21
CN1901844A (zh) 2007-01-24
EP1709922A4 (en) 2008-06-11
US20070149963A1 (en) 2007-06-28
EP1709922A1 (en) 2006-10-11
TW200531714A (en) 2005-10-01
KR20060115900A (ko) 2006-11-10
JPWO2005065559A1 (ja) 2007-12-20

Similar Documents

Publication Publication Date Title
WO2005065559A1 (ja) バルーンカテーテル
US20200261151A1 (en) Devices and methods for nerve modulation
JP6571217B2 (ja) 医療装置
US10660703B2 (en) Renal nerve modulation devices
US10945786B2 (en) Balloon catheters with flexible conducting wires and related methods of use and manufacture
JP6297970B2 (ja) アブレーション装置、システムおよび方法
US20180206911A1 (en) Multi-rate fluid flow and variable power delivery for ablation electrode assemblies used in catheter ablation procedures
JP4790236B2 (ja) 心房性細動を治療するための改善された切除処置およびマッピング用カテーテルおよび方法
KR101319899B1 (ko) 벌룬이 부착된 어블레이션 카테터 및 벌룬이 부착된 어블레이션 카테터 시스템
US20060217701A1 (en) Ablation probe with heat sink
US20150018817A1 (en) Multiple electrode conductive balloon
JP4222152B2 (ja) バルーン付きアブレーションカテーテル
JP4618237B2 (ja) 温度上昇時間調節可能なバルーン付きアブレーションカテーテルシステム
JP4062935B2 (ja) バルーン付アブレーションカテーテル
JP2006198209A (ja) バルーン付きアブレーションカテーテル
JP2005192725A (ja) バルーン付きアブレーションカテーテル
JP4140483B2 (ja) バルーン付きアブレーションカテーテル
JP2004073570A (ja) 肺静脈電気的隔離用バルーンカテーテル
JP2004305251A (ja) 肺静脈電気的隔離用バルーンカテーテル
JP2005058505A (ja) 心臓不整脈治療用バルーン付きアブレーションカテーテル
JP2005058506A (ja) バルーン付きアブレーションカテーテル
JP2005058507A (ja) バルーン付きアブレーションカテーテル
JP2005058504A (ja) バルーン付きアブレーションカテーテル
JP2005058503A (ja) バルーン付きアブレーションカテーテル

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007149963

Country of ref document: US

Ref document number: 10583730

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067012387

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004807410

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2551752

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2461/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200480039959.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2004807410

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005516828

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020067012387

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10583730

Country of ref document: US