WO2005031899A1 - リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 - Google Patents

リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 Download PDF

Info

Publication number
WO2005031899A1
WO2005031899A1 PCT/JP2004/014090 JP2004014090W WO2005031899A1 WO 2005031899 A1 WO2005031899 A1 WO 2005031899A1 JP 2004014090 W JP2004014090 W JP 2004014090W WO 2005031899 A1 WO2005031899 A1 WO 2005031899A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
particles
secondary battery
lithium secondary
Prior art date
Application number
PCT/JP2004/014090
Other languages
English (en)
French (fr)
Inventor
Koji Shima
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP04788186A priority Critical patent/EP1667260A4/en
Publication of WO2005031899A1 publication Critical patent/WO2005031899A1/ja
Priority to US11/316,526 priority patent/US20060134521A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to lithium composite oxide particles used as a positive electrode material of a lithium secondary battery, and a positive electrode for a lithium secondary battery and a lithium secondary battery using the same.
  • the positive electrode material according to the present invention has good applicability and provides a secondary battery positive electrode having excellent load characteristics even at low temperatures.
  • Lithium secondary batteries usually have a high output and a high energy density, and as the positive electrode active material of the positive electrode, for example, the standard composition is LiCoO
  • lithium transition metal composite oxides from the viewpoints of safety and raw material cost, they have the same layered structure as LiCoO or LiNiO as the positive electrode active material, and a part of the transition metal is man-made.
  • Non-patent Documents 13 and 13 and Patent Document 1 a part of the Ni site of LiNiO is replaced with Mn.
  • Non-patent Documents 13 and 13 or Patent Document 1 when a lithium transition metal oxide as described in Non-patent Documents 13 and 13 or Patent Document 1 is used as a positive electrode active material, such a lithium transition metal composite oxide is formed into fine particles, The load characteristics are improved by increasing the contact area between the positive electrode active material surface and the electrolyte. However, when the lithium transition metal oxide is made into fine particles, the filling rate of the positive electrode active material into the positive electrode plate is restricted, and the battery capacity is restricted.
  • Patent Document 2 discloses that porous particles composed of a lithium composite oxide mainly containing lithium and at least one element selected from the group powers of Co, Ni, and Mn. And mercury injection In the range average pore diameter 0.5 l of pore distribution measurement by law, the total pore volume having a diameter of 0.1 01- 1 mu m is at 0. 01cm 3 / g or more It is disclosed that the particles are used as a positive electrode active material for a non-aqueous secondary battery, and it is described that this can improve the load characteristics of the battery without impairing the filling property of the positive electrode active material into the positive electrode. I have.
  • Patent Document 3 discloses that the average diameter of primary particles is 3.0 ⁇ m or less and the specific surface area is 0 ⁇ m.
  • lithium secondary batteries With high discharge capacity and excellent cycle performance can be obtained. It is disclosed that it can be obtained!
  • Patent Literature 4 discloses that Li Mn—Ni—Co composite oxide particles produced by spray-drying a Li-Mn—Ni—Co slurry and then firing the same are used as a positive electrode material for a lithium secondary battery. It is disclosed that a lithium secondary battery having a high discharge capacity and excellent cycle performance can be obtained by using the same.
  • Non-Patent Document 1 Journal of Materials Chemistry, Vol. 6, 1996, p. 1149
  • Non-Patent Document 2 Journal of the Electrochemical Society, Vol. 145, 1998, p. 11 13
  • Non-Patent Document 3 Proceedings of the 41st Battery Symposium, 2000, p. 460
  • Patent document 1 Japanese Patent Application Laid-Open No. 2003-17052
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-323123
  • Patent Document 3 JP-A-2003-68299
  • Patent Document 4 JP-A-2003-51308
  • Ni Mn: ratio of Co is l-Q; - J 8: a: ⁇ ( where, alpha and j8 are each Represents a number that satisfies 0.05 ⁇ ⁇ ⁇ 0.5 and 0.05 ⁇ ⁇ ⁇ 0.5. ;)).
  • the lithium composite oxide particles for a lithium secondary battery cathode material described in Patent Document 3 still have a problem that the load characteristics at low temperatures are not sufficient.
  • the force density of the particles was low, and there was a problem in the applicability immediately.
  • an object of the present invention is to improve the low-temperature load characteristics of a lithium secondary battery and to provide a lithium composite oxide for a positive electrode material of a lithium secondary battery, which is excellent in applicability when producing a positive electrode. To provide particles.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, in the measurement by the mercury intrusion method, (A) the mercury intrusion amount under a specific high pressure load condition is equal to or less than a predetermined upper limit value. Lithium composite oxide particles, and (B) the amount of mercury intrusion is equal to or greater than a predetermined lower limit, or (C) the average pore radius is within a predetermined range. In addition to the conventional main peak in the distribution curve, the lithium composite oxide particles have a sub-peak having a peak top in a specific pore radius region. The present inventors have found that the low-temperature load characteristics of the secondary battery can be improved, and the coating properties during the production of the positive electrode are excellent, and that the lithium secondary battery can be used as a suitable positive electrode material. Thus, the present invention has been completed.
  • the gist of the present invention is to satisfy the following condition (A) and at least one of the following conditions (B) and (C) in the measurement by the mercury intrusion method.
  • Characterized in that the lithium composite oxide particles for a lithium secondary battery positive electrode material are characterized by the following.
  • the mercury pressure at the time of pressure increase from 50MPa to 150MPa
  • the input amount is 0.02 cm 3 Zg or less.
  • the mercury intrusion at the time of pressure increase from 50 MPa to 150 MPa is 0.01 cm 3 Zg or more.
  • the average pore radius is lOnm or more and lOOnm or less
  • the pore distribution curve has a main peak having a peak top at a pore radius of not less than 0 and 50 m or less, and a sub-peak having a peak top at a pore radius of not less than 80 nm and not more than 300 nm.
  • the above-mentioned lithium composite oxide particles preferably contain at least Ni and Co.
  • the above-mentioned lithium composite oxide particles preferably have a composition represented by the following composition formula (1).
  • M represents at least one element selected from Mn, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb.
  • X represents 0 ⁇ 1 .
  • Another aspect of the present invention is a positive electrode for a lithium secondary battery including a current collector and a positive electrode active material layer provided on the current collector, wherein the positive electrode active material layer is A positive electrode for a lithium secondary battery characterized by containing at least the lithium composite oxide particles for a lithium secondary battery positive electrode material described above and a binder.
  • another object of the present invention is a lithium secondary battery including a positive electrode and a negative electrode capable of inserting and extracting lithium, and an organic electrolytic solution containing a lithium salt as an electrolyte, wherein the positive electrode is
  • the present invention also provides a lithium secondary battery characterized in that it is the positive electrode for a lithium secondary battery described above.
  • the lithium composite oxide particles of the present invention improve the low-temperature load characteristics of a lithium secondary battery. It is excellent in coatability at the time of producing a positive electrode and can be suitably used as a positive electrode material for a lithium secondary battery. Further, by using the lithium composite oxide particles of the present invention as a positive electrode material, a positive electrode for lithium secondary batteries and a lithium secondary battery having excellent low-temperature load characteristics can be obtained.
  • FIG. 1 is a graph showing pore distribution curves of lithium composite oxide particles (positive electrode material) of Example 1 and Comparative Examples 1 and 2.
  • FIG. 2 is a graph showing a part of the graph of FIG. 1 in an enlarged manner.
  • lithium composite oxide particles for a positive electrode material of a lithium secondary battery of the present invention are obtained by a mercury intrusion method. It is characterized in that a specific condition is satisfied in the measurement. Therefore, before describing the particles of the present invention, the mercury intrusion method will first be briefly described.
  • mercury intrusion method mercury penetrates into pores of a sample such as porous particles while applying pressure, and information such as specific surface area and pore size distribution is obtained from the relationship between pressure and the amount of mercury injected. It is a technique of obtaining.
  • the inside of the container containing the sample is evacuated, and then the container is filled with mercury.
  • Mercury does not penetrate into the pores on the sample surface as it has a high surface tension
  • 1S mercury is pressurized and gradually pressurized, the pore force increases with increasing diameter to smaller pores in order.
  • Mercury gradually penetrates into the pores. If the change in the mercury liquid level (that is, the amount of mercury injected into the pores) is detected while continuously increasing the pressure, a mercury intrusion curve showing the relationship between the pressure applied to mercury and the amount of mercury injected can be obtained.
  • the pore force is the magnitude of the force in the direction to push out mercury. Is 2 ⁇ ⁇ ⁇ (cos ⁇ ) (If 0> 90 °, this value will be positive.) That represented by o
  • the pore radius of the sample is determined based on the obtained mercury intrusion curve.
  • a pore distribution curve representing the relationship between size and volume can be obtained. For example, if the pressure P is changed from 0. IMPa to 100MPa, it will be possible to measure pores in the range of about 7500nm force to about 7.5nm.
  • the approximate measurement limit of the pore radius by the mercury intrusion method is that the lower limit is about 3 nm or more and the upper limit is about 200 m or less, and the pore radius is relatively large as compared with the nitrogen adsorption method described later. It can be said that it is suitable for analyzing the pore distribution in the range.
  • the measurement by the mercury intrusion method can be performed using a device such as a mercury porosimeter.
  • mercury porosimeter examples include an autopore manufactured by Micromeritics, and a pore master manufactured by Cantachrome.
  • the particles of the present invention are characterized by satisfying the following condition (A) and at least one of the conditions (B) and (C) in the measurement by the mercury intrusion method.
  • the amount of mercury intrusion when the pressure is increased from 50 MPa to 150 MPa is 0.02 cm 3 Zg or less.
  • the mercury intrusion at the time of pressure increase from 50 MPa to 150 MPa is 0.01 cm 3 Zg or more.
  • the average pore radius is lOnm or more and lOOnm or less
  • the pore distribution curve has a main peak having a peak top at a pore radius of not less than 0 and 50 m or less, and a sub-peak having a peak top at a pore radius of not less than 80 nm and not more than 300 nm.
  • the region of the pressure of 50 MPa to 150 MPa in the mercury intrusion curve is the region of the pore radius of 15 nm to 5 nm in the pore distribution curve, That is, it corresponds to a region having an extremely fine pore radius.
  • this pore radius region is a region close to the lower limit of measurement by the mercury intrusion method, it is not always necessary that the particles of the present invention have a specific range of mercury intrusion in the above pressure range. It does not lead to having a pore radius.
  • the particles of the present invention have a very small total volume of pores having a radius of 50 nm or less measured by the nitrogen adsorption method of usually 0.01 cm 3 Zg or less. It is determined that they have little. Therefore, it is considered that the characteristics of the mercury intrusion in the pressure range of 50 MPa to 150 MPa are not based on the existence of fine pores.
  • the region of the pressure of 50 MPa to 150 MPa in the above mercury intrusion curve is considered to correspond to a pressure region where the particle structure changes due to a high pressure load. Therefore, the fact that the mercury intrusion amount in this pressure range satisfies the above-mentioned specification means that the strength of the particle structure of the present invention with respect to pressure is neither too high nor too low, and falls within a specific range. This is considered to be However, it is presumed that the particles of the present invention are preferred as a positive electrode material and cause the characteristics to be exhibited.
  • the upper limit of the mercury intrusion amount when the pressure is increased to 50 to 150 MPa in the mercury intrusion curve is usually 0.02 cm 3 Zg or less as shown in the above condition (A). but among them 0. 0195cm 3 / g or less, particularly preferably 0. 019cm 3 / g. If the mercury intrusion exceeds this upper limit, the particle strength is weak, so that the fineness of the particles tends to proceed excessively, resulting in poor applicability and hardening and embrittlement of the mechanical properties of the positive electrode coating film. This is not preferable because the coating film is apt to be peeled off during the winding step during assembly.
  • the lower limit of the mercury intrusion volume is above condition (B) are shown as typically 0. 01cm 3 Zg than on even in preferred tool in 0. 011cm 3 / g or more, in particular 0. 012cm 3 / g The above is preferable.
  • the mercury intrusion amount is less than the lower limit, the effective contact area between the positive electrode particles and the electrolyte is not sufficiently secured, so that the load characteristics of the battery tend to deteriorate.
  • the average pore radius of the particles of the present invention is usually not less than lOnm, preferably not less than 12 nm, and usually not more than 100 nm, preferably not more than 50 nm, as shown in the above condition (C).
  • the average pore radius force S falling within this range means that the particle force of the present invention has pores of an appropriate size between primary particles, which will be described later, as compared with conventionally known lithium composite oxide particles. Means that.
  • the average pore radius exceeds the upper limit of this range, the pore area per pore volume decreases, so that when the particles of the present invention are used as a cathode active material, the contact area between the cathode active material surface and the electrolyte solution Is decreased, and when a battery is manufactured using this, the load characteristics of the battery are apt to deteriorate, which is not preferable.
  • the average pore radius is below the lower limit of this range, when the particles of the present invention are used as a positive electrode active material, diffusion of lithium ions into the pores of the positive electrode active material becomes insufficient.
  • the battery is manufactured by the above method, the load characteristics of the battery are liable to be deteriorated, which is also not preferable.
  • the average pore radius determined by the mercury intrusion method is applied to pores having a radius of 0.005 ⁇ ⁇ -0. Use the calculated value [0038] ⁇ Pore distribution curve:
  • the “pore distribution curve” refers to the total pore volume per unit weight (usually lg) of pores having a radius equal to or larger than the radius of the pores on the horizontal axis.
  • the value obtained by differentiating the logarithm of the pore radius with the logarithm is plotted on the vertical axis, and the plotted points are usually represented as a connected graph.
  • a pore distribution curve obtained by measuring the particles of the present invention by a mercury intrusion method is appropriately referred to as a “pore distribution curve for the present invention” in the following description.
  • the "main peak” refers to the largest peak among the peaks of the pore distribution curve, and the peak corresponding to the void between the secondary particles, which will be described later.
  • “sub-peak” refers to a peak other than the main peak of the pore distribution curve.
  • peak top means a point at which the coordinate value on the vertical axis is the largest and takes the value V at each peak of the pore distribution curve.
  • the main peak of the pore distribution curve that works in the present invention has a peak top having a pore radius of usually 0.5 ⁇ m or more, preferably 0.7 ⁇ m or more, and usually 50 ⁇ m or less, It is preferably in the range of 20 ⁇ m or less, more preferably 15 ⁇ m or less. If the upper limit of the range is exceeded, when a battery is manufactured using the porous particles of the present invention as a cathode material, lithium diffusion in the cathode material is inhibited, or a conductive path is insufficient, and load characteristics deteriorate. There is a risk of doing so.
  • the pore volume of the main peak with a force Cal pore distribution curve to the invention preferably is generally 0. lcm 3 Zg or more, preferably 0. 15cm 3 Zg or more, and usually 0. 5 cm 3 Zg or less, preferably 0.4 cm 3 / g or less. If the upper limit of this range is exceeded, the voids between the secondary particles become excessively large, and when the particles of the present invention are used as a positive electrode material, the positive electrode active material The filling rate is reduced, and the battery capacity is restricted.
  • the pore distribution curve according to the present invention in addition to the main peak described above, within a specific pore radius range, specifically usually 80 nm or more, preferably 100 nm or more, more preferably 120 ⁇ m or more, It is preferable to have a subpeak where a peak exists (hereinafter, appropriately referred to as “specific subpeak”) within a pore radius of usually 300 nm or less, preferably 250 nm or less.
  • specific subpeak indicates that voids having a pore radius within the above range exist between the primary particles (described later) of the particles of the present invention. It is presumed that the particles of the present invention, having such voids, make it possible to achieve both low-temperature load characteristics and good coating properties.
  • the peak top of the specific sub-peak is located at a position exceeding the upper limit of the above range, when the particles of the present invention are used as a positive electrode active material V, the contact area between the positive electrode active material surface and the electrolyte decreases, and this When a battery is manufactured using the battery, the load characteristics of the battery are likely to be deteriorated, which is not preferable.
  • the load characteristics of the battery are likely to be deteriorated, which is not preferable.
  • it exists at a position below the lower limit of the above range when a lithium secondary battery is manufactured using the porous particles of the present invention, diffusion of lithium ions in the pores is inhibited, and the load characteristics are reduced. It is not preferable because there is a possibility.
  • the above pore volume of a particular sub peak (coordinate values of the vertical axis of the peak top of the particular sub peak) is usually 0. 005cm 3 Zg or more, preferably 0. 01cm 3 Zg or more, and usually 0. 05cm 3 / g or less, preferably 0.03 cm 3 / g or less. If the upper limit of this range is exceeded, the mechanical properties of the coating film at the time of coating become hard or brittle, and the coating film is likely to be peeled off during the winding step at the time of battery assembly. It is not preferable because of the dagger. On the other hand, when the value is below the lower limit, when a battery is manufactured using the porous particles of the present invention as a positive electrode material, lithium diffusion in the positive electrode material is hindered, and the load characteristics are liable to be deteriorated.
  • the ratio of the pore volume of the main peak to the specific sub-peak (the ratio of the vertical axis coordinate values of the respective peak tops of the main peak and the specific sub-peak) is represented by the sub-peak: main peak Is usually 1: 100 or more, preferably 1:50 or more, and usually 1: 2 or less, preferably 1: 5 or less. If the ratio of the pore volume of the sub-peak to the main peak is too large, the coatability tends to deteriorate, which is not preferable. On the other hand, if the ratio of the pore volume of the sub-peak to the main peak is too small, the low-temperature load characteristics are deteriorated, which is not preferable immediately.
  • the particles of the present invention may have some pores having a pore radius outside the range of the main peak and the subpeak as long as the above requirements are satisfied.
  • the specific sub-peak characterizing the present invention is a sub-peak having a maximum pore volume in a region having a smaller pore radius than the peak top of the main peak.
  • the lithium composite oxide particles of the present invention have an appropriate strength in the particle structure, they have been conventionally used as a positive electrode material of lithium secondary batteries. Unlike conventional lithium composite oxide particles, the fineness of the particles progresses appropriately as the volume of the particles changes due to charge and discharge, the effective contact area with the electrolyte increases, and the load characteristics required as battery characteristics, In particular, since the load characteristics at low temperatures are improved, it is estimated that as a result, both the load characteristics at low temperatures and the applicability can be achieved.
  • the lithium composite oxide particles of the present invention have pores of an appropriate size between the primary particles, unlike the conventional method, it is difficult to significantly increase the pore volume.
  • the contact area between the surface of the positive electrode active material and the electrolyte can be increased, so that the load characteristics required for the positive electrode active material, especially at low temperatures, are improved. As a result, it is estimated that both applicability and low-temperature load characteristics can be achieved.
  • the condition (A) is always satisfied.
  • the condition (B) and the condition (C) should be satisfied.
  • the particles of the present invention have, in addition to the features relating to the mercury intrusion method described above, a total volume force of pores having a pore radius of 50 nm or less according to a BJH method measured by a nitrogen adsorption method and 0.01 per unit weight of the particles. It is preferably not more than cm 3 Zg.
  • the nitrogen adsorption method is a method in which nitrogen is adsorbed on a sample such as porous particles, and information such as the specific surface area and the pore size distribution of the sample is obtained from the relationship between the pressure of nitrogen and the amount of adsorption. is there.
  • a nitrogen adsorption pore distribution measuring device is used for the measurement by the nitrogen adsorption method.
  • a nitrogen adsorption pore distribution measuring device is used.
  • the nitrogen adsorption pore distribution measuring device an auto soap manufactured by Cantachrome Co., Ltd. and the like can be mentioned.
  • the total volume of pores having a pore radius of 50 nm or less measured by the nitrogen adsorption method is generally within the range of 0.05 cm 3 Zg or less, as described above.
  • 0. 01cm 3 / g or less ranges preferably tool especially 0. 008cm 3 / g preferably in the following range. If the total pore volume is larger than the upper limit, the number of pores having an excessively small pore size increases, and the filling rate of the active material in the positive electrode plate becomes low, which is not preferable because the battery capacity is restricted.
  • the shape of the particles of the present invention is not particularly limited, usually, as in the case of general lithium composite oxide particles conventionally used as a positive electrode active material of a lithium secondary battery, the primary particles are aggregated or sintered. Thus, larger secondary particles are formed.
  • the term “particles of the present invention” simply refers to secondary particles.
  • the specific surface area of the particles of the present invention is not particularly limited, but is usually at least 0.1 lm 2 / g, especially at least 0.2 m 2 / g, and usually at most 2 m 2 / g, especially at most 1.8 m 2 / g. It is preferred that The specific surface area of the particles is mainly affected by the primary particle diameter ⁇ and the degree of sintering between the primary particles. If the specific surface area of the particles exceeds the upper limit of this range, the amount of the dispersing medium required during coating is increased, and the required amount of the conductive material and the binder is also increased, so that the positive electrode is filled with the active material. The rate tends to decrease and battery capacity is constrained. On the other hand, if the specific surface area of the particles is less than the lower limit of this range, the contact area between the particle surface and the electrolyte in the positive electrode decreases, and the load characteristics of the battery tend to decrease.
  • specific surface area refers to a specific surface area (BET specific surface area) measured by a BET (Brunauer, Emmett, and Teller) method using a nitrogen adsorption method.
  • BET Brunauer, Emmett, and Teller
  • the BET method is a technique for calculating the specific surface area (BET specific surface area) of a sample by determining the amount of nitrogen adsorbed on a monolayer on the adsorption isotherm, determining the sectional area force and surface area of the adsorbed nitrogen molecules.
  • the measurement by the BET method can be performed using various BET measuring devices.
  • the diameter of the primary particles constituting the particles (secondary particles) of the present invention is not particularly limited, it is usually in the range of not less than 0, especially not less than 0, and usually not more than 1.8, especially not more than 1.8 m. preferable.
  • the primary particle size is affected by the crushed particle size of the raw material divided by the firing temperature, atmosphere, and the like. If the primary particle diameter exceeds the upper limit of this range, the diffusion of lithium ions and the electron conduction in the primary particles are rate-determining, and the load characteristics tend to deteriorate. On the other hand, if the primary particle diameter is below the lower limit of this range, the amount of the dispersing medium required for coating is increased, and the necessary amount of the conductive material and the binder is increased. The battery charging rate tends to decrease, and the battery capacity is restricted.
  • the primary particle size is measured by observation using a scanning electron microscope (SEM). Specifically, for example, in a photograph at a magnification of 10,000 times, the longest value of the section between the left and right borders of the primary particle with respect to the horizontal straight line is obtained for any 50 primary particles, and the average value is obtained. It is required by
  • the tap density of the particles of the present invention is not particularly limited, usually 1. 4gZcm 3 or more and preferably 1. 5 g / cm 3 or more and usually 2. 5 g / cm 3 or less, preferably 2. 3 g / cm 3 or less, further Is preferably in the range of 2 g / cm 3 or less.
  • the “tap density” indicates a value obtained by measuring the weight of a powder at the time of tapping and filling the powder. Particles with a higher tap density can be considered to have better filling properties.
  • the tap density of the particles exceeds the upper limit of this range, diffusion of lithium ions in the positive electrode plate using the electrolyte as a medium is rate-determining, and the load characteristics tend to deteriorate.
  • the tap density of the particles is less than the lower limit of this range, the amount of the dispersing medium required for forming the coating increases, and the required amount of the conductive material and the binder increases. There is a tendency that the filling rate of the active material is reduced and the battery capacity is restricted.
  • the tap density of the particles can be determined by a method specified in JIS K5101, or a method of placing a certain weight of particles in a measuring cylinder, measuring the volume after tapping.
  • the median value of the particle diameter (secondary particle diameter) of the particles of the present invention (hereinafter, appropriately referred to as “median diameter”) is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 20 ⁇ m or more.
  • a range of 15 ⁇ m or less is preferable.
  • the median diameter exceeds the upper limit of this range, when a battery is manufactured using the particles of the present invention as a cathode material, lithium diffusion in the cathode material is hindered, or a conductive path is insufficient, and the load characteristics of the battery are reduced. It is not preferable because it tends to decrease.
  • the required amount of the conductive material and the binder is increased when manufacturing the positive electrode, and the filling rate of the active material in the positive electrode plate (current collector of the positive electrode) is restricted, and the battery The capacity may be restricted.
  • the mechanical properties of the coating film at the time of forming the coating material become hard or brittle, and the coating film is easily peeled off in the winding step at the time of assembling the battery.
  • the measurement of the median diameter of the particles can be performed by using, for example, a laser diffraction-scattering method.
  • composition of the particles of the present invention is not particularly limited, but preferably contains at least Ni and Co from the viewpoints of energy density and stability of the crystal structure.
  • the particles of the present invention preferably have a composition represented by the following composition formula (1).
  • M represents at least one element selected from Mn, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn and Nb. Among them, Mn and Z or A1 are preferred, and Mn is particularly preferred.
  • X represents a number generally larger than 0, preferably 0.1 or more, and usually 1.2 or less, preferably 1.1 or less.
  • the particles do not form a single crystal phase and lithium may substitute for transition metal sites, so the charge / discharge capacity of a lithium secondary battery using this as the positive electrode active material Tend to decrease.
  • the lower limit of this range corresponds to the state of charge at which lithium has a dinter power. However, if the charge is reduced to a value smaller than the lower limit, the crystal structure of the particles may be deteriorated, which is not preferable.
  • y generally represents a number of 0.05 or more, preferably 0.1 or more, and usually 0.5 or less, preferably 0.4 or less. Above the upper limit of this range, the capacity of the battery tends to decrease when used as a positive electrode material, and Co is a rare and effective raw material in terms of resources, which is not preferable in terms of cost. On the other hand, when the value is below the lower limit of this range, the stability of the crystal structure of the particles tends to decrease, which is not preferable.
  • z represents a number of usually 0.01 or more, preferably 0.02 or more, and usually 0.5 or less, preferably 0.4 or less.
  • Exceeding the upper limit of this range is not preferable because the particles tend to become a single crystal phase and the charge / discharge capacity of a lithium secondary battery using the particles as a positive electrode active material tends to decrease. Further, when the value falls below the lower limit of this range, the stability of the crystal structure of the particles tends to decrease, which is also not preferable.
  • the production method of the present invention a method for producing particles having the composition represented by the composition formula (1) (hereinafter referred to as “the production method of the present invention”) will be described.
  • the particles of the present invention are not limited to those produced by the following method.
  • the method for producing particles having the composition represented by the composition formula (1) is limited to the following production method. It is not something to be done.
  • the particles of the present invention are produced using a lithium raw material, a nickel raw material, a cobalt raw material, and a raw material of the element M as raw materials.
  • the lithium raw material is not particularly limited as long as the material contains lithium.
  • Specific examples of lithium raw materials include inorganic lithium salts such as Li CO and LiNO; LiOH, Li
  • Lithium hydroxides such as ⁇ ⁇ ⁇ ;; Lithium halides such as LiCl and Lil; Li O etc.
  • inorganic lithium compounds organic lithium compounds such as alkyllithium and fatty acid lithium.
  • organic lithium compounds such as alkyllithium and fatty acid lithium.
  • Li CO, LiNO, LiOH and Li acetate are preferable.
  • Li CO and LiOH do not contain nitrogen and sulfur
  • One of the above-mentioned lithium raw materials may be used alone, or two or more thereof may be used in combination at an arbitrary type and in any ratio.
  • Nickel raw material [0068]
  • the nickel raw material is not particularly limited as long as it is a substance containing nickel.
  • Specific examples of nickel raw materials include Ni (OH), NiO, NiOOH, NiCO2 ⁇ ( ⁇ )
  • NiCO2 ⁇ ( ⁇ ) 4 ⁇ 0 Nitrogen and sulfur-free such as NiCO2 O2O
  • Ni (OH), NiO, and NiOOH are particularly preferred from the viewpoint that they can be obtained at low cost as industrial raw materials and have high reactivity during firing.
  • One of the above nickel raw materials may be used alone, or two or more of them may be used in combination at any kind and in any ratio.
  • cobalt raw material there is no particular limitation on the cobalt raw material as long as it contains cobalt.
  • specific examples of the cobalt raw material include CoO, Co O, Co O, Co (OH), CoOOH, Co (NO) ⁇ 6 ⁇ 0, CoSO-7H0, organic cobalt compounds, cobalt halides, etc.
  • One of the above-mentioned cobalt raw materials may be used alone, or two or more thereof may be used in combination at an arbitrary kind and in any ratio.
  • the raw material of the element M is not particularly limited as long as it is a substance containing the element M described in the description of the composition formula (1).
  • the raw material of the element M include oxides, hydroxides, oxyhydric compounds, fatty acid salts, halogen compounds, and the like of the element M as in the case of the nickel raw material and the cobalt raw material described above. Among them, oxides, hydroxides and oxyhydroxides are preferred.
  • one type may be used alone, or two or more types may be used in combination at an arbitrary type and in any ratio.
  • the nickel raw material, the cobalt raw material, and the raw material of the element M are nickel, cobalt, and coprecipitated hydroxides and coprecipitated carbonates of two or more elements selected from M, and the like.
  • the composite oxide obtained by firing is used as part or all of each raw material.
  • a nickel raw material, a cobalt raw material, and a raw material of the element M are dispersed in a dispersion medium, pulverized and mixed by a wet method to form a slurry. Note that a part of the necessary lithium raw material may be preliminarily mixed at this stage, and may be present in the slurry in the form of an aqueous solution or particles.
  • any liquid can be used as the dispersion medium used here, and water is particularly preferable from the viewpoint of environmental load.
  • a water-soluble material as a nickel raw material, a cobalt raw material, or a raw material of the element M
  • the granulated particles become hollow particles during the spray drying described later, and the active material of the positive electrode plate is formed. Since the filling rate may be restricted, it is preferable to select a liquid in which none of the nickel raw material, the cobalt raw material, and the raw material of the element M are dissolved as the dispersion medium.
  • the apparatus used for crushing and mixing the raw materials is not particularly limited, and any apparatus can be used.
  • the Specific examples thereof include devices such as a bead mill, a ball mill, and a vibration mill.
  • the degree to which the nickel raw material, the cobalt raw material, and the raw material of the element M are pulverized is generally 2 ⁇ m or less, preferably 1 ⁇ m or less, as the median diameter of the particles in the slurry after the pulverization. Preferably, it is pulverized until it becomes 0.5 m or less. If the median diameter is larger than the above range, the reactivity in the firing step decreases. In addition, the sphericity of the dried powder in spray drying described below tends to decrease, and the final powder packing density tends to decrease.
  • the dispersed particles in the slurry are aggregated to form larger particulate matter (agglomerated particles, secondary particles).
  • the granulation and drying methods are excellent in uniformity, powder flowability, powder abrasion, and dring performance of the generated particulate matter (agglomerated particles).
  • Spray drying using a spray drier or the like is preferable from the viewpoint that particles can be efficiently formed.
  • the particle size of the particulate matter obtained by spray drying becomes almost the same as the final secondary particle size of the particles of the present invention. Therefore, the particle size of the particulate matter obtained by drying is usually 1 ⁇ m or more, preferably 2 ⁇ m or more, and usually 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • the particle size can be controlled by appropriately selecting a spray type, a pressurized gas flow supply speed, a slurry supply speed, a drying temperature, and the like.
  • granulation and drying may be performed by using a method other than spray drying.
  • An example of another granulation method is a coprecipitation method.
  • the stirring speed, pH, and temperature are appropriately set when an aqueous solution of nickel, cobalt, and M is reacted with an aqueous alkali solution to obtain a hydroxide.
  • filtration is performed, washing is performed, and then drying is performed in a drying furnace or the like.
  • the particulate matter obtained by the above granulation and drying steps is dry-mixed with a lithium raw material to obtain a mixed powder.
  • the average particle diameter of the lithium raw material is generally 500 / zm or less, preferably 100 ⁇ m or less, from the viewpoint of improving the mixing property with the particulate matter obtained by spray drying and improving the battery performance of the battery. It is more preferably at most 50 ⁇ m, most preferably at most 20 ⁇ m. However, if the average particle size is too small, the stability in the atmosphere may be reduced, so the lower limit of the average particle size is usually 0.01 ⁇ m or more, preferably 0.1 ⁇ m or more, more preferably Is at least 0.2 m, most preferably at least 0.5 m.
  • the method of the dry mixing is not particularly limited, but it is preferable to use a powder mixing apparatus generally used for industrial use.
  • the mixing composition ratio of the powders to be mixed is arbitrary, and is appropriately selected according to the composition of the target porous particles.
  • the obtained mixed powder is subjected to a baking treatment to obtain secondary particles formed by sintering the primary particles.
  • the firing method is optional, but for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln and the like can be used.
  • the calcination process is generally divided into three parts: raising the temperature, maintaining the maximum temperature, and lowering the temperature. Further, the second maximum temperature holding portion is not always performed once, but may be performed in two or more stages depending on the purpose.
  • the steps of raising the temperature, maintaining the maximum temperature, and lowering the temperature may be repeated twice or more.
  • a crushing step which means that coagulation is eliminated to such an extent that the secondary particles are not broken, may be interposed between the baking treatments.
  • the firing temperature in the maximum temperature holding part depends on the type of lithium raw material, nickel raw material, cobalt raw material, and raw material of element M used, their composition ratio, the mixing order of lithium raw material and other raw materials, and the like. It is usually at least 500 ° C, preferably at least 600 ° C, more preferably at least 800 ° C, and usually at most 1200 ° C, preferably at most 1100 ° C. When the firing temperature is lower than the lower limit of the above range, a long firing time tends to be required to obtain particles having good crystallinity and appropriate strength.
  • the firing temperature is higher than the upper limit, the particle structure of the particles becomes excessively strong, or porous particles having many defects such as oxygen vacancies are generated, and the obtained particles are used as a positive electrode active material.
  • the low-temperature load characteristics of the used lithium secondary battery may be reduced, or charging and discharging may cause deterioration of the crystal structure of the particles of the present invention due to collapse.
  • the holding time at the maximum temperature holding portion is generally selected from a wide range of 1 hour to 100 hours. If the firing time is too short, it is difficult to obtain particles having good crystallinity and appropriate strength.
  • the furnace In the cooling section, the furnace is cooled at a cooling rate of 0.1 ° CZ / 20 ° CZ. If it is too slow, it takes a long time to be industrially disadvantageous, and if it is too early, the uniformity of the target product tends to be lacking, and the container tends to deteriorate faster.
  • the strength of the particles of the present invention changes depending on the firing atmosphere.
  • the lower the oxygen concentration the stronger the particle structure becomes. Therefore, it is necessary to appropriately select the atmosphere during firing depending on the combination with the firing temperature.
  • an atmosphere such as air having an oxygen concentration of 10% by volume or more is preferable. If the oxygen concentration is too low, many defects such as oxygen deficiency will occur, resulting in the generation of particles.
  • the lithium composite oxide obtained by the calcination is, if necessary, crushed and classified to obtain particles of the present invention.
  • a known method such as a vibrating sieve containing a tapping ball can be used for the method of crushing and classifying.
  • the nickel raw material, the cobalt raw material, and the raw material of the element M were granulated by the coprecipitation method, most of the lithium raw material in the mixed powder was outside the granulated particles. Even so, the particles after the firing treatment tend to have an excessively strong particle structure. Therefore, when a coprecipitated raw material is used as a nickel raw material, a cobalt raw material, and a raw material of the element M, the raw material is pulverized by a wet method, granulated to produce granulated particles, and dry-mixed with a lithium raw material. This is very important. Thereby, the particles of the present invention can be obtained.
  • the particles after the calcination treatment are used. Tends to have an excessively weak particle structure. Even in this case, it is possible to improve the particle strength by mixing a sintering accelerator, but if the sintering agent is mixed, control becomes difficult and the particle structure tends to be excessively strong.
  • the specific procedure for obtaining the particles of the present invention is not particularly limited, and may be appropriately adjusted depending on the type of each raw material to be used.
  • NiO is used as a nickel raw material
  • a cobalt raw material is used.
  • Co (OH) a manganese raw material such as Mn O is used as a raw material for element M.
  • the positive electrode for a lithium secondary battery of the present invention contains the particles of the present invention described above and a binder. A positive electrode active material layer on a current collector.
  • the positive electrode for a lithium secondary battery of the present invention is produced by forming a positive electrode active material layer containing the particles of the present invention and a binder on a current collector.
  • the production of a positive electrode using the particles of the present invention can be performed by a conventional method. That is, the particles and the binder of the present invention, and the conductive material and the thickener, if necessary, are dry-mixed to form a sheet, and the sheet is pressed on the positive electrode current collector, or these materials are dispersed.
  • a positive electrode active material layer can be formed on the current collector by dissolving or dispersing in a medium to form a slurry, applying the slurry to a positive electrode current collector, and drying the slurry.
  • the particles of the present invention are used in such a manner that they usually contain 10% by weight or more, preferably 30% by weight or more, more preferably 50% by weight or more, and usually 99.9% by weight or less in the positive electrode active material layer. U, which is desirable. If the content is lower than this range, the electric capacity may be insufficient. Conversely, if the content is higher than this range, the strength of the positive electrode may be insufficient.
  • Any binder can be used as long as it is stable to the dispersion medium.
  • Specific examples include polyethylene, polypropylene, polyethylene terephthalate, polymethinolemethallate, resin-based polymers such as aromatic polyamide, cellulose, and nitrocellulose; SBR (styrene butadiene rubber); Rubber), rubbery polymers such as fluoro rubber, isoprene rubber, butadiene rubber, ethylene propylene rubber, etc .; styrene 'butadiene.
  • EPDM ethylene propylene terpolymer
  • Thermoplastic elastomeric polymers such as styrene, ethylene, butadiene, ethylene copolymer, styrene, isoprene styrene block copolymer and hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyacetate Tylene / vinyl acetate copolymer Soft, fatty high-molecular-weight polymers such as propylene and ⁇ -olefin copolymer; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinyl fluoride, polytetrafluoroethylene, ethylene copolymer Fluorinated polymers such as coalescence; polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions); One of these may be used alone, or two or more thereof may be used in any combination
  • the binder is contained in the positive electrode active material layer in an amount of usually at least 0.1% by weight, preferably at least 1% by weight, More preferably, it is used in an amount of not less than 5% by weight, usually not more than 80% by weight, preferably not more than 60% by weight, more preferably not more than 40% by weight. If the content is lower than this range, the positive electrode active material cannot be sufficiently retained, the mechanical strength of the positive electrode becomes insufficient, and the battery performance such as cycle characteristics may be deteriorated. Conversely, if the content is higher than this range, the battery capacity and conductivity may decrease.
  • a known conductive material can be arbitrarily used.
  • metal materials such as copper and nickel: natural graphite, black ships (graphite) such as artificial black ships; carbon blacks such as acetylene black; carbon materials such as amorphous carbon such as needle coats.
  • metal materials such as copper and nickel: natural graphite, black ships (graphite) such as artificial black ships; carbon blacks such as acetylene black; carbon materials such as amorphous carbon such as needle coats.
  • metal materials such as copper and nickel: natural graphite, black ships (graphite) such as artificial black ships; carbon blacks such as acetylene black; carbon materials such as amorphous carbon such as needle coats.
  • graphite black ships
  • carbon blacks such as acetylene black
  • carbon materials such as amorphous carbon such as needle coats.
  • amorphous carbon such as needle coats.
  • the conductive material is usually 0.01% by weight or more, preferably 0.1% by weight or more, more preferably 1% by weight or more, and usually 50% by weight or less, preferably 30% by weight in the positive electrode active material. %, More preferably 15% by weight or less. If the content is lower than this range, the conductivity may be insufficient. Conversely, if the content force is higher than this range, the battery capacity may decrease.
  • the dispersion medium used for preparing the slurry is not particularly limited as long as it can dissolve or disperse the positive electrode material and the binder, and the conductive material and the thickener. Either a medium or an organic medium may be used.
  • aqueous medium examples include water, alcohol, and the like.
  • organic medium examples include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; acetone and methylethylketone.
  • ketones such as cyclohexanone; esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine, N—N-dimethylaminopropylamine; dimethyl ether, ethylene oxide, tetrahydrofuran (THF) Ethers such as N-methylpyrrolidone (NMP), dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.
  • a dispersion medium in addition to the thickener and to form a slurry using a latex such as SBR. Note that this One of these dispersion media may be used alone, or two or more thereof may be used in any combination and in any ratio.
  • the thickness of the positive electrode active material layer is preferably from 10 ⁇ m to 200 ⁇ m.
  • the material of the positive electrode current collector is not particularly limited, and any known material can be used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Among them, a metal material, particularly aluminum is preferable.
  • Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punched metal, and foamed metal in the case of a metal material.
  • Examples include a plate, a carbon thin film, and a carbon column.
  • metal thin films are preferred.
  • the thin film may be appropriately formed in a mesh shape.
  • the thickness of the thin film is arbitrary, but is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. It is as follows. If the thin film is thinner than this range, the strength required as a current collector may be insufficient. Conversely, it is difficult to handle the thin film as being thicker than this range.
  • the positive electrode active material layer obtained by coating and drying is preferably compacted by a roller press or the like to increase the packing density of the positive electrode active material.
  • the lithium secondary battery of the present invention is a lithium secondary battery including a positive electrode and a negative electrode capable of inserting and extracting lithium, and an organic electrolytic solution containing a lithium salt as an electrolyte. It is characterized in that it is a positive electrode for a lithium secondary battery manufactured by using.
  • the negative electrode used in the lithium secondary battery of the present invention is not particularly limited as long as it can occlude and release lithium. Further, the method for producing the same is not limited. For example, it may be produced by forming a negative electrode active material layer on a negative electrode current collector.
  • the material of the negative electrode current collector a known material can be arbitrarily used. Specific examples include metal materials such as copper, nickel, stainless steel, and nickel plating steel; Carbon materials such as mono-bon paper may be used. Examples of the shape of the metal material include a metal foil, a metal column, a metal coil, a metal plate, and a metal thin film. Examples of the shape of the carbon material include a carbon plate, a carbon thin film, and a carbon column. Of these, metal thin films are preferred. Note that the thin film may be formed in a mesh shape as appropriate.
  • the thickness of the thin film is arbitrary, but is usually at least, preferably at least 3 ⁇ m, more preferably at least 5 ⁇ m, and usually at most lmm, preferably at most 100 m, more preferably at most 50 m. . If the thin film is thinner than this range, the strength required as a current collector may be insufficient. Conversely, if it is thicker than this range, it will be difficult to handle.
  • the negative electrode active material contained in the negative electrode active material layer is arbitrary as long as it can electrochemically occlude and release lithium ions. Normally, a high safety surface force. A releasable carbon material is used.
  • Examples of the carbon material include graphite (graphite) such as artificial graphite and natural graphite, and thermally decomposed products of organic substances under various pyrolysis conditions.
  • Examples of the thermal decomposition products of organic substances include charcoal coats, petroleum coaters, charcoal-based pitch carbides, petroleum-based pitch carbides, charcoal-based or petroleum-based pitch-treated carbides, needle coaters, and pitchcoats.
  • Examples thereof include carbides such as tass, phenolic resin, and crystalline cellulose, and carbon materials partially graphitized of these, furnace black, acetylene black, pitch-based carbon fibers, and the like.
  • graphite particularly graphite-easy pitch obtained from various raw materials to high-temperature heat treatment, or graphite materials containing pitch in these graphites, etc.
  • Surface-treated ones are preferred.
  • Each of these carbon materials may be used alone or in combination of two or more.
  • the d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method is usually 0.335 nm or more and 0.34 nm or less, and particularly 0.333 nm or less. Some are preferred.
  • the ash content of the graphite material is usually at most 1% by weight, preferably at most 0.5% by weight, more preferably at most 0.1% by weight, based on the weight of the graphite material.
  • the crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more.
  • the median diameter of the graphite material determined by the laser diffraction 'scattering method is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and particularly preferably. It is usually at least 7 ⁇ m, usually at most 100 ⁇ m, preferably at most 50 ⁇ m, more preferably at most 40 ⁇ m, particularly preferably at most 30 ⁇ m.
  • the graphite material has a BET specific surface area of usually 0.5 m 2 / g or more, preferably 0.7 m / g or more, more preferably 1.Om 2 Zg or more, and particularly preferably 1.5 m 2 Zg or more. or more, usually 25. Om 2 / g or less, preferably 20. Om 2 / g or less, more preferably 15. Om 2 / g or less, particularly preferably 10. it Om 2 / g or less.
  • prayer Raman spectra min using argon laser light 1580cm- 1 - and the intensity I of the peak P detected by 1620Cm- 1 range, 1350- 13
  • the half-value width of peak P is preferably 26 cm 1 or less, particularly preferably 25 cm 1 or less.
  • Examples of the negative electrode active material other than the carbon material include metal oxides such as tin oxide and silicon oxide; lithium alone and lithium alloys such as lithium aluminum alloy. These may be used alone or in combination of two or more, or may be used in combination with a carbon material.
  • the negative electrode active material layer may be formed in the same manner as the positive electrode active material layer. That is, the negative electrode active material and the binder, and if necessary, a thickener and a conductive material, which are made into a slurry with a dispersion medium, are applied to the negative electrode current collector, and then dried. .
  • the dispersing medium, the binder, the conductive material, and the thickener the same materials as those for the positive electrode active material can be used.
  • Examples of the electrolyte include an organic electrolyte, a polymer solid electrolyte, a gel electrolyte, and an inorganic solid electrolyte. Of these, the organic electrolyte is preferable.
  • organic solvent used for the organic electrolytic solution any of known organic solvents can be used.
  • carbonates such as dimethinolecarbonate, jetinole carbonate, propylene carbonate, ethylene carbonate, bi-lene carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1 Ethers such as 1,2-diethoxytan, 1,3-dioxolane, 4-methinolate 1,3-dioxolane, and ethenoleatenole; ketones such as 4-methyl-2-pentanone; sulfolane-based compounds such as sulfolane and methylsulfolane; Sulfoxide compounds such as dimethyl sulfoxide; ⁇ -butyrolataton Ratatones; acetonitrile, propio-tolyl, benzo-tolyl, butyral-tolyl, valer
  • the organic electrolytic solution preferably contains a high dielectric constant solvent having a relative dielectric constant of 20 or more at 25 ° C in order to dissociate the electrolyte.
  • a high dielectric constant solvent having a relative dielectric constant of 20 or more at 25 ° C in order to dissociate the electrolyte.
  • the proportion of the electrolyte of the high dielectric constant solvent in the whole organic electrolyte is usually 20% by weight or more, preferably 30% by weight or more, and more preferably 40% by weight or more.
  • the organic electrolyte contains gases such as CO, N0, CO, and SO.
  • polysulfide s 2 such as lithium ion to the negative electrode surface effectively good charging and discharging that enables to form a good film additives, it may also be added in any proportion ⁇ .
  • lithium salt to be a solute any conventionally known lithium salt can be used. Specific examples include LiClO, LiAsF, LiPF, LiBF, LiB (CH), LiCl, LiBr ⁇ CH SO Li ⁇ CF
  • the concentration of the lithium salt in the electrolytic solution is usually 0.5 molZL or more and 1.5 molZL or less. Regardless of whether the concentration is high or low, the conductivity may be reduced and the battery characteristics may be reduced. Therefore, the lower limit is preferably 0.75 molZL or more and the upper limit is 1.25 molZL or less.
  • any crystalline or amorphous material known to be used as an electrolyte can be used.
  • amorphous inorganic solid electrolyte for example, 4.9L1I-34.
  • Oxide glass such as -61B O and 33.3Li O-66.7SiO. These are optional
  • the secondary battery preferably includes a separator that holds a nonaqueous electrolyte between the positive electrode and the negative electrode in order to prevent a short circuit between the electrodes.
  • the material and shape of the separator are arbitrary as long as they are stable with respect to the organic electrolyte to be used, have excellent liquid retention properties, and can reliably prevent a short circuit between electrodes.
  • microporous films, sheets, nonwoven fabrics and the like made of various polymer materials can be used.
  • the high molecular material include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene.
  • Polyolefin-based polymers are preferred from the viewpoint of chemical and electrochemical stability, and polyethylene is preferred from the viewpoint of battery self-closing temperature.
  • the molecular weight of polyethylene is preferably from 500,000 to 5,000,000. If the molecular weight is small, the shape at high temperatures may not be maintained. Therefore, the molecular weight is preferably 1,000,000 or more, particularly preferably 1.5 million. Conversely, if the molecular weight is too large, the fluidity will decrease, and the holes in the separator may not be closed during heating. Therefore, the molecular weight is preferably 4,000,000 or less, particularly preferably 3,000,000 or less.
  • the shape of the lithium secondary battery can be appropriately selected from various generally employed shapes according to the intended use.
  • Examples of the shape include a cylinder type in which a sheet electrode and a separator are formed in a spiral shape, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, and a coin type in which a pellet electrode and a separator are stacked.
  • the lithium secondary battery may be assembled by a known method according to the shape of the intended battery.
  • NiO nickel raw material
  • Co (OH) cobalt raw material
  • the slurry was spray-dried with a spray drier to obtain roughly spherical granulated particles having a particle diameter of about 5 m, which consisted of only the nickel raw material, the cobalt raw material, and the manganese raw material.
  • LiOH powder having a median diameter of 3 ⁇ m was added so that the ratio of the number of moles of Li to the total number of moles of Ni, Co, and Mn was 1.05.
  • a mixed powder of granulated particles of a nickel raw material a cobalt raw material, a manganese raw material and a lithium raw material.
  • lithium composite oxide particles of Example 1 This mixed powder was calcined at 950 ° C for 12 hours in an air flow (elevation rate 5 ° CZmin), then crushed, passed through a sieve with an opening of 45 m, and mixed with lithium composite oxide particles ( Hereinafter, this is referred to as “lithium composite oxide particles of Example 1”.)
  • NiO as nickel raw material
  • Co (OH) as cobalt raw material
  • Mn O manganese raw material
  • Ni: Co: Mn: Li 0.33: 0.33: 0.33: 0.05
  • the mixture was weighed so as to have a molar ratio, pure water was added to the mixture to form a slurry, and the slurry was wet-pulverized to a median diameter of 0.20 m using a circulating medium-agitating wet bead mill with stirring.
  • the slurry was spray-dried with a spray drier to obtain approximately spherical granulated particles having a particle size of about 6 / zm, which were composed of a nickel raw material, a cobalt raw material, a manganese raw material, and a lithium raw material.
  • a LiOH powder having a median diameter of 3 ⁇ m is added to the obtained granulated particles so that the ratio of the number of moles of Li to the total number of moles of Ni, Co, and Mn is 1.00, and the mixture is dried.
  • the mixture was mixed with a speed mixer to obtain a mixed powder of the granulated particles and a lithium raw material.
  • lithium composite oxide particles of Example 2 Particles (hereinafter, referred to as “lithium composite oxide particles of Example 2”) were obtained.
  • lithium composite oxide particles of Example 3 were manufactured in the same manner as in Example 2. ).
  • the mixture was weighed so as to have a molar ratio of 33: 0.33, and wet-pulverized as a slurry in the same manner as in Example 1.
  • This slurry was spray-dried with a spray drier, and NiO, Co (OH), MnO and Li
  • lithium composite oxide particles of Comparative Example 1 are fired and pulverized in the same manner as in Example 1 under the flow of air to obtain lithium composite oxide particles (hereinafter referred to as “lithium composite oxide particles of Comparative Example 1!”). Obtained.
  • Substantially spherical granulated particles having a particle size of about 10 ⁇ m containing 234 and LiOH′H 2 O were obtained.
  • the mixture was added so that the molar ratio became 0.01, mixed with a high-speed mixer, and mixed powder of the granulated particles containing NiO, Co (OH), MnO, and LiOH'HO and the BiO powder was obtained. Obtained.
  • This mixed powder was calcined at 900 ° C for 12 hours under air circulation (temperature rise / fall rate 5 ° CZmin), then crushed, passed through a sieve with a mesh of 45 m, and passed through lithium composite oxide particles (hereinafter referred to as ⁇ comparison This is referred to as “lithium composite oxidized product particles of Example 2”).
  • LiOH powder with a median diameter of 3 ⁇ m compared to particles produced by the coprecipitation method with an average particle diameter of 15 ⁇ m containing nickel, conoint, and manganese in a molar ratio of 0.33: 0.33: 0.33 was added and mixed such that the ratio of the number of moles of Li to the total number of moles of Ni, Co, and Mn was 1.05, and mixed to obtain a mixed powder of the granulated particles and the lithium raw material.
  • the mixed powder is fired in a tunnel furnace at 900 ° C. for 12 hours under an air flow, and then passed through a sieve having an opening of 45 ⁇ m to pass through the lithium composite oxide particles (hereinafter referred to as “the lithium composite oxide particles of Comparative Example 3”). Particle) ”).
  • FIGS. 1 and 2 The pore distribution curves of the lithium composite oxide particles of Example 1 and Comparative Examples 1 and 2 are shown by solid lines in FIGS. 1 and 2.
  • the measured pore radius of the lithium composite oxide particles is plotted on the horizontal axis, and the total volume of pores with pores larger than the radius shown on the horizontal axis is plotted as the pore size.
  • It is a pore distribution curve in which the value differentiated by the logarithm of the radius is taken on the vertical axis.
  • FIG. 2 is a partially enlarged view of FIG.
  • the pore distribution of the lithium composite oxide particles of Example 13 and Comparative Example 13 was measured by nitrogen adsorption BJH (Barrett, Joyner, Halenda) method. Nitrogen adsorption The measurement was performed at a liquid nitrogen temperature using an autosoap 1 manufactured by Cantachrome Co., Ltd. as a measuring device for the BJH method.
  • the particle size distribution of the particles was measured using a particle size distribution analyzer (LA-920 manufactured by HORIBA), and the force was also used to determine the median diameter of the particles.
  • the lithium composite oxide particles of Examples 13 and 13 and Comparative Examples 13 and 13 were determined from the above pore distribution curves based on the above formula (A).
  • the average pore radius determined by the mercury intrusion method was a value obtained for pores with a radius of 0.005 ⁇ ⁇ -0.5 ⁇ m in order to exclude the effect of voids between secondary particles. .
  • the median diameter, BET specific surface area, primary particle diameter, and tap density of the lithium composite oxide particles of Example 13 and Comparative Example 13 were measured.
  • the median diameter is measured by the particle size distribution.
  • the measurement was performed using a total (LA-920 manufactured by HORIBA).
  • the measurement of the BET specific surface area was performed using Autosoap 1 manufactured by Kantachrome.
  • the tap density was measured by placing 5 g of particles in a 10 ml glass female cylinder and tapping 200 times.
  • the measurement of the primary particle diameter was performed by SEM observation. Table 1 shows the results.
  • the lithium composite oxide particles of Example 13 and Comparative Example 13 above (hereinafter described without distinguishing the lithium composite oxide particles of Example 13 and Comparative Example 13) And the “positive electrode material” as appropriate), and batteries were manufactured by the following methods, and the low-temperature load characteristics were measured.
  • a material obtained by weighing 75% by weight of the positive electrode material, 20% by weight of acetylene black, and 5% by weight of polytetrafluoroethylene powder was sufficiently mixed in a mortar to form a thin sheet. Was punched into a 12 mm ⁇ disk. At this time, the total weight was adjusted to be about 17 mg. This was pressed against an A1 expanded metal to form a positive electrode.
  • a graphite powder (d 3.35A) having an average particle size of about 8-10 / zm was used as the negative electrode active material
  • Polyvinylidene fluoride was used as the solder. These were weighed in a weight ratio (negative electrode active material: binder) of 92.5: 7.5 and mixed in an N-methylpyrrolidone solvent to obtain a negative electrode mixture slurry. The obtained slurry was applied to one side of a copper foil having a thickness of 20 m, dried, punched out into a circular shape having a diameter of 12 mm, and subjected to a press treatment at 0.5 tonZcm 2 to obtain a negative electrode.
  • the capacity balance ratio R between the positive electrode and the negative electrode was designed to be within the range of 1.2-1.5.
  • the capacity balance ratio R the capacity to occlude Li ion without precipitating negative utmost SLi metal Q (mAhZg), the capacity to release a positive utmost s Li-ion and Q (mAhZg), further negative ac
  • a value represented by R (Q XW) / (Q XW) was used.
  • a positive electrode or negative electrode, a counter electrode Li metal, a separator, and an electrolyte are used, and a 2032-type coin cell is assembled.
  • the current density is as low as possible, for example, 20 mAZg (active material) or less.
  • the discharge (Li occlusion) capacity from the potential to the lower limit of 5 mV was measured by measuring the charge capacity of the positive electrode up to the natural potential force of 4.2 V.
  • Table 1 shows resistance values measured for batteries using the positive electrode materials of Examples 13 and 13 and Comparative Examples 13 to 13 as positive electrode active materials. The lower the resistance value, the better the low-temperature load characteristics.
  • the viscosity at a shear rate of 20 s- 1 at 5 ° C was measured with an E-type viscometer. The measurement was performed on the day of preparation of the slurry (the first day), and a part was also performed on the day after the preparation (the second day). Product The slurry after the production was sealed and stored at room temperature under normal pressure.
  • Table 1 shows the viscosity values measured according to the above-described procedure. The lower the viscosity, the better the coatability.
  • the lithium composite oxide particles of Comparative Example 1 have a fine pore distribution curve as shown in FIG. And the power at which a main peak having a peak top at a radius of 1200 nm is observed. The presence of a distinct subpeak that can be identified was not recognized. Further, as is clear from Table 1, the mercury intrusion amount at the time of increasing the pressure from 50 MPa to 150 MPa was 0.0213 cm 3 Zg, which was larger than the specified range of the present invention. That is, the lithium composite oxide particles of Comparative Example 1 satisfy the conditions (A) and (C) of the present invention.
  • the lithium composite oxide particles of Comparative Example 1 have a good resistance value at -30 ° C, but the slurry viscosity is high particularly from the first day to the second day. Greatly increased the slurry viscosity. This indicates that the lithium composite oxide particles of Comparative Example 1 were not sufficiently coated.
  • the lithium composite oxide particles of Comparative Example 2 As shown in FIG. 1, the presence of a sub-peak in addition to the main peak having a peak top at a radius of 2000 nm in the pore distribution curve was recognized. However, the peak top had a radius of 400 nm, which was larger than the specified range of the present invention. Further, as is apparent from Table 1, the above-mentioned mercury intrusion amount was 0.0094 cm 3 Zg, which was a force satisfying the specified range of the present invention. That is, the lithium composite oxide particles of Comparative Example 2 satisfy the conditions (B) and (C) of the present invention.
  • the lithium composite oxide particles of Comparative Example 2 have a high resistance value at ⁇ 30 ° C. of 535 ⁇ , and thus have insufficient low-temperature load characteristics.
  • the lithium composite oxide particles of Comparative Example 3 had a force at which the presence of a sub-peak was observed in addition to the main peak having a peak at a radius of 2900 nm in the pore distribution curve.
  • the force was smaller than the specified range of the present invention.
  • the above-mentioned mercury intrusion amount was 0.0090 cm 3 / g, which was below the specified range of the present invention. That is, the lithium composite oxide particles of Comparative Example 3 also satisfy the conditions (B) and (C) of the present invention.
  • the lithium composite oxide particles of Comparative Example 3 have a high resistance value at -30 ° C. of 516 ⁇ , and the low-temperature load characteristics are not sufficient.
  • the lithium composite oxide particles of Example 1 had a fine pore distribution curve in addition to the main peak having a peak top at a pore radius of 950 nm. A sub-peak having a peak top at a pore radius of 170 nm is shown.
  • the above mercury pressure The input amount was 0.0183 cm 3 / g, which was within the range specified in the present invention.
  • the lithium composite oxide particles of Example 2 and Example 3 also have a sub-peak within the specified range of the present invention in the pore distribution curve, and the mercury intrusion amount described above. was also within the specified range of the present invention. That is, all of the lithium composite oxide particles of Examples 13 to 13 satisfy all of the conditions (A) to (C) of the present invention.
  • the lithium composite oxide particles of Examples 13 to 13 exhibited low values of both the resistance value at ⁇ 30 ° C. and the slurry viscosity. It is clear that both sexes are excellent.
  • the lithium composite oxide particles for a positive electrode material for a lithium secondary battery of the present invention can be used in a portable device by forming an active material layer on a current collector together with a binder to form a positive electrode for a lithium secondary battery. Since it can be used for various lithium secondary batteries such as electronic devices, communication devices and power sources for automobiles, its industrial value is extremely large!

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電池の低温負荷特性を向上させ、併せて正極作製時の塗布性も改善する、優れたリチウム二次電池用正極材を提供する。  水銀圧入法による測定において、以下の条件(A)を満たし、且つ、以下の条件(B)及び条件(C)のうち少なくとも一方の条件を満たすようにする。 ・条件(A):  水銀圧入曲線において、圧力50MPaから150MPaまでの昇圧時における水銀圧入量が0.02cm3/g以下である。 ・条件(B):  水銀圧入曲線において、圧力50MPaから150MPaまでの昇圧時における水銀圧入量が、0.01cm3/g以上である。 ・条件(C):  平均細孔半径が10nm以上、100nm以下であり、且つ、  細孔分布曲線が、細孔半径0.5μm以上、50μm以下にピークトップが存在するメインピークと、細孔半径80nm以上、300nm以下にピークトップが存在するサブピークとを有する。                                                                                 

Description

リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用い たリチウム二次電池用正極及びリチウム二次電池
技術分野
[0001] 本発明は、リチウム二次電池の正極材として用いられるリチウム複合酸ィ匕物粒子、 並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池に関する。本 発明にかかる正極材は、良好な塗布性を有し、低温でも優れた負荷特性が得られる 二次用電池正極を与える。
背景技術
[0002] 近年、小型化及び軽量化が進む携帯用電子機器や通信機器の電源、又は、自動 車用の動力源などとして、リチウム二次電池が注目されている。リチウム二次電池は 通常、高出力、高エネルギー密度であり、その正極の正極活物質としては、例えば、 標準組成が LiCoO
2、 LiNiO
2、 LiMn O等で表わされるリチウム遷移金属複合酸化 2 4
物が用いられている。
[0003] リチウム遷移金属複合酸化物のなかでも、安全性や原料コストの観点から、正極活 物質として LiCoOや LiNiOと同じ層状構造を有し、且つ、遷移金属の一部をマン
2 2
ガン等で置換したものが注目されている。その具体例としては、例えば非特許文献 1 一 3や特許文献 1に記載されているような、 LiNiOの Niサイトの一部を Mnで置換し
2
た LiNi Mn Oや、 Niサイトの一部を Mnと Coで置換した LiNi Mn Co O
(l-a) a 2 (l- α- β ) a β 2 などが挙げられる。
[0004] 更に、非特許文献 1一 3や特許文献 1に記載されているようなリチウム遷移金属酸 化物を正極活物質として用いる場合には、このようなリチウム遷移金属複合酸化物を 微粒子化し、正極活物質表面と電解液との接触面積を増大させて、負荷特性を改良 することがなされる。しかし、リチウム遷移金属酸化物を微粒子化すると、正極板への 正極活物質の充填率が制約され、電池容量が制約されてしまう。
[0005] これに対し、特許文献 2には、 Co、 Ni、 Mnの群力 選ばれる 1種以上の元素とリチ ゥムとを主成分とするリチウム複合酸ィ匕物からなる多孔質の粒子であって、水銀圧入 法による細孔分布測定での細孔平均径が 0. 1— の範囲内であり、 0. 01— 1 μ mの径をもつ細孔の容積の合計が 0. 01cm3/g以上である粒子を非水系二次電 池用正極活物質に用いることが開示されており、これにより、正極への正極活物質の 充填性を損なうことなく電池の負荷特性を高めることができると記載されている。
[0006] また、特許文献 3には、一次粒子の平均直径が 3. 0 μ m以下であり、比表面積が 0
. 2m2/g以上である Li Mn— Ni— Co複合酸化物粒子を、リチウム二次電池の正極 材として用いることによって、高い放電容量を有するとともに、サイクル性能にも優れ たリチウム二次電池を得られることが開示されて!、る。
また、特許文献 4には、 Li-Mn-Ni-Coスラリーを噴霧乾燥した後、焼成することに より製造した Li Mn— Ni— Co複合酸ィ匕物粒子を、リチウム二次電池の正極材として 用いることによって、高い放電容量を有し、サイクル性能に優れたリチウム二次電池 を得られることが開示されて ヽる。
[0007] 非特許文献 1: Journal of Materials Chemistry, Vol.6, 1996年、 p. 1149
非特許文献 2 Journal of the Electrochemical Society, Vol.145、 1998年、 p. 11 13 非特許文献 3 :第 41回電池討論会予稿集、 2000年、 p. 460
特許文献 1:特開 2003— 17052号公報
特許文献 2:特開 2000— 323123号公報
特許文献 3:特開 2003-68299号公報
特許文献 4:特開 2003— 51308号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しながら、非特許文献 1一 3や特許文献 1に記載の技術では、上記のようにリチ ゥム遷移金属酸化物を微粒子化した場合、正極板への正極活物質の充填率が制約 され、十分な負荷特性を得ることができな 、と 、う課題があった。
[0009] また、微粒子化に伴い塗料ィ匕時の塗膜の機械的性質が硬化'脆ィ匕し、電池組立時 の捲回工程にぉ 、て塗膜の剥離が生じやすくなつてしまうことから、塗布性が充分で な ヽと ヽぅ課題があった。この課題は、特に、リチウム遷移金属酸化物 LiNi Mn α - β )
Co Oにおいて、 Ni : Mn : Coの比がl—Q;— J8 : a : β (但し、 α及び j8はそれぞれ 0. 05≤ α≤0. 5、 0. 05≤ β≤0. 5を満たす数を表わす。;)の付近にある場合に顕 著である。
[0010] また、特許文献 2に記載されたリチウム複合酸化物粒子にぉ ヽては、塗布性は改善 されるものの、依然として低温における負荷特性 (低温負荷特性)が十分でないという 課題があった。
[0011] また、特許文献 3に記載のリチウム二次電池正極材用リチウム複合酸化物粒子に おいても、依然として、低温における負荷特性が十分でないという課題を抱えていた また、特許文献 4に記載のリチウム二次電池正極材用リチウム複合酸化物粒子に おいては、粒子の力さ密度が低くなりやすぐ塗布性に問題があった。
[0012] 即ち、本発明の目的は、リチウム二次電池の低温負荷特性を改善することができ、 且つ、正極作製時の塗布性にも優れた、リチウム二次電池正極材用リチウム複合酸 化物粒子を提供することにある。
課題を解決するための手段
[0013] 本発明者らは、上記の課題を解決すべく鋭意検討した結果、水銀圧入法による測 定において、(A)特定の高圧負荷条件下における水銀圧入量が所定の上限値以下 であるリチウム複合酸ィ匕物粒子であって、且つ、(B)前記の水銀圧入量が所定の下 限値以上であるか、(C)平均細孔半径が所定の範囲内であるとともに、細孔分布曲 線において従来のメインピークの他に、特定の細孔半径領域にピークトップが存在す るサブピークを有するリチウム複合酸ィ匕物粒子力 リチウム二次電池の正極材として 利用した場合にリチウム二次電池の低温負荷特性を改善することができるとともに、 正極作製時の塗布性にも優れ、好適なリチウム二次電池正極材となり得ることを見出 し、本発明を完成した。
[0014] 即ち、本発明の趣旨は、水銀圧入法による測定において、以下の条件 (A)を満た し、且つ、以下の条件 (B)及び条件 (C)のうち少なくとも一方の条件を満たすことを 特徴とする、リチウム二次電池正極材用リチウム複合酸化物粒子に存する。
•条件 (A) :
水銀圧入曲線において、圧力 50MPaから 150MPaまでの昇圧時における水銀圧 入量が 0. 02cm3Zg以下である。
•条件 (B) :
水銀圧入曲線において、圧力 50MPaから 150MPaまでの昇圧時における水銀圧 入量が、 0. 01cm3Zg以上である。
•条件 (C) :
平均細孔半径が lOnm以上、 lOOnm以下であり、且つ、
細孔分布曲線が、細孔半径 0. 以上、 50 m以下にピークトップが存在する メインピークと、細孔半径 80nm以上、 300nm以下にピークトップが存在するサブピ 一クとを有する。
[0015] また、上述のリチウム複合酸ィ匕物粒子は、少なくとも Ni及び Coを含有することが好 ましい。
[0016] また、上述のリチウム複合酸ィ匕物粒子は、下記組成式(1)で表わされる組成を有す ることが好ましい。
Li Ni Co M O 組成式(1)
x (l~y- z y z 2
(組成式(1)において、 Mは、 Mn, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn及び Nbから 選ばれる少なくとも 1種の元素を表わす。また、 Xは 0< χ≤1. 2を満たす数を表わし、 yiま 0. 05≤y≤0. 5を満たす数を表わし、 ζίま 0. 01≤ζ≤0. 5を満たす数を表わす ο )
[0017] また、本発明の別の趣旨は、集電体と、該集電体上に設けられた正極活物質層と を備えるリチウム二次電池用正極であって、該正極活物質層が、少なくとも、上述のリ チウムニ次電池正極材用リチウム複合酸化物粒子と、結着剤とを含有することを特徴 とする、リチウム二次電池用正極に存する。
[0018] 更に、本発明の別の趣旨は、リチウムを吸蔵'放出可能な正極及び負極、並びに、 リチウム塩を電解質として含有する有機電解液を備えたリチウム二次電池であって、 該正極が、上述のリチウム二次電池用正極であることを特徴とする、リチウム二次電 池に存する。
発明の効果
[0019] 本発明のリチウム複合酸ィ匕物粒子は、リチウム二次電池の低温負荷特性を改善す ることができるとともに、正極作製時の塗布性にも優れ、リチウム二次電池用の正極 材として好適に用いることができる。また、本発明のリチウム複合酸ィ匕物粒子を正極 材として用いることにより、優れた低温負荷特性を有するリチウム二次電池用正極及 びリチウム二次電池を得ることができる。
図面の簡単な説明
[0020] [図 1]実施例 1及び比較例 1, 2のリチウム複合酸ィ匕物粒子 (正極材)の細孔分布曲線 を示すグラフである。
[図 2]図 1のグラフの一部を拡大して示すグラフである。
発明を実施するための最良の形態
[0021] 以下、本発明の実施の形態について詳細に説明する力 本発明は以下の説明に 限定されるものではなぐその要旨の範囲内で種々変形して実施することができる。
[0022] [I.リチウム複合酸化物粒子〕
<水銀圧入法 >
本発明のリチウム二次電池正極材用リチウム複合酸化物粒子 (以下、適宜「本発明 のリチウム複合酸ィ匕物粒子」或いは単に「本発明の粒子」と略称する。)は、水銀圧入 法による測定において、特定の条件を満たすことを特徴としている。よって、本発明 の粒子について説明する前に、まず水銀圧入法について簡単に説明する。
[0023] 水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀 を浸入させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布などの 情報を得る手法である。
[0024] 具体的には、まず、試料の入った容器内を真空排気した上で、容器内に水銀を満 たす。水銀は表面張力が高ぐそのままでは試料表面の細孔には水銀は浸入しない 1S 水銀に圧力を力ゝけ、徐々に昇圧していくと、径の大きい細孔力 順に径の小さい 孔へと、徐々に細孔の中に水銀が浸入していく。圧力を連続的に増加させながら水 銀液面の変化(つまり細孔への水銀圧入量)を検出していけば、水銀に加えた圧力と 水銀圧入量との関係を表わす水銀圧入曲線が得られる。
[0025] ここで、細孔の形状を円筒状と仮定し、その半径を!:、水銀の表面張力を δ、接触 角を Θとすると、細孔力 水銀を押し出す方向への力の大きさは 2 π ν δ (cos θ )で 表わされる( 0 >90° なら、この値は正となる。 )oまた、圧力 P下で細孔へ水銀を押 し込む方向への力の大きさは πΓ2Ρで表わされることから、これらの力の釣り合いから 以下の数式(1)、数式(2)が導かれることになる。
[0026] [数 1]
- 2 Κ Ϊ δ (c o s 0) =π τ 2Ρ 数式 (1 )
P r =- 25 (c o s Θ) 数式 (2)
[0027] 水銀の場合、表面張力 δ =480dynZcm程度,接触角 Θ =140° 程度の値が一 般的に良く用いられる。これらの値を用いた場合、圧力 P下で水銀が圧入される細孔 の半径は以下の式 (A)で表わされる。
[0028] [数 2]
, λ 7.5xl08
r(nm) = 、
) P(Pa) 式 (A)
[0029] すなわち、水銀にカ卩えた圧力 Pと水銀が浸入する細孔の半径 rとの間には相関があ ることから、得られた水銀圧入曲線に基づいて、試料の細孔半径の大きさとその体積 との関係を表わす細孔分布曲線を得ることができる。例えば、圧力 Pを 0. IMPaから lOOMPaまで変化させると、 7500nm程度力ら 7.5nm程度までの範囲の細孔につ いて測定が行なえることになる。
[0030] なお、水銀圧入法による細孔半径のおおよその測定限界は、下限が約 3nm以上、 上限が約 200 m以下であり、後述する窒素吸着法に比べて、細孔半径が比較的 大きな範囲における細孔分布の解析に向いていると言える。
[0031] 水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行なうことができる。
水銀ポロシメータの具体例としては、 Micromeritics社製オートポア、カンタクローム 社製ポアマスター等が挙げられる。
[0032] 本発明の粒子は、この水銀圧入法による測定において、以下の条件 (A)と、条件( B)及び条件 (C)のうち少なくとも一方とを満たすことを、その特徴としている。 •条件 (A) :
水銀圧入曲線において、圧力 50MPaから 150MPaまでの昇圧時における水銀圧 入量が 0. 02cm3Zg以下である。
•条件 (B) :
水銀圧入曲線において、圧力 50MPaから 150MPaまでの昇圧時における水銀圧 入量が、 0. 01cm3Zg以上である。
•条件 (C) :
平均細孔半径が lOnm以上、 lOOnm以下であり、且つ、
細孔分布曲線が、細孔半径 0. 以上、 50 m以下にピークトップが存在する メインピークと、細孔半径 80nm以上、 300nm以下にピークトップが存在するサブピ 一クとを有する。
[0033] <水銀圧入曲線に関する条件 (条件 (A)及び (B) ) >
本発明の粒子について、水銀圧入法により水銀圧入曲線及び細孔分布曲線を測 定した場合、水銀圧入曲線における圧力 50MPa— 150MPaの領域は、細孔分布 曲線における細孔半径 15nm— 5nmの領域、すなわち、極めて微細な細孔半径の 領域に相当する。上述のように、この細孔半径領域は水銀圧入法による測定下限に 近い領域であることから、本発明の粒子が上記圧力範囲で特定範囲の水銀圧入量 を有することは、必ずしもこの範囲の細孔半径を有することにはつながらない。また、 後述するように、本発明の粒子は、窒素吸着法により測定した半径 50nm以下の細 孔の合計体積が通常 0. 01cm3Zg以下と極めて少ないことから、このような微細な細 孔をほとんど有していないものと判断される。従って、上述の 50MPa— 150MPaの 圧力領域における水銀圧入量の特徴は、微細な細孔の存在に基づくものではないと 考えられる。
[0034] 本発明者等の検討でも未だ明らかではないが、上述の水銀圧入曲線における圧力 50MPa— 150MPaの領域は、粒子構造が高圧負荷により構造変化する圧力領域 に相当すると見られる。従って、この圧力範囲における水銀圧入量が上記の規定を 満たすということは、本発明の粒子構造の圧力に対する強度が高過ぎず低過ぎず、 特定の範囲内に収まって 、ることを表わして 、るものと考えられ、これが後述のように 、本発明の粒子が正極材として好ま 、特性を発揮する原因となって 、るものと推定 される。
[0035] 具体的に、本発明の粒子において、水銀圧入曲線における圧力 50— 150MPaの 昇圧時の水銀圧入量の上限は、上記条件 (A)に示すように通常 0. 02cm3Zg以下 であるが、中でも 0. 0195cm3/g以下、特に 0. 019cm3/g以下が好ましい。当該 水銀圧入量がこの上限値を超えると、粒子強度が弱いため、粒子の微細化が過度に 進行し易ぐ塗布性の悪化を招き、正極塗膜の機械的性質が硬化,脆化し、電池組 立時の捲回工程で塗膜の剥離が生じ易 、ためやはり好ましくな 、。
[0036] 一方、当該水銀圧入量の下限は、上記条件 (B)に示すように通常 0. 01cm3Zg以 上が好ましぐ中でも 0. 011cm3/g以上、特に 0. 012cm3/g以上が好ましい。当 該水銀圧入量がこの下限値を下回ると、正極粒子と電解液との有効な接触面積が充 分に確保されないため、電池の負荷特性が低下し易くなる傾向がある。
[0037] く細孔半径に関する特徴 (条件 (C) ) >
•平均細孔半径:
本発明の粒子の平均細孔半径は、上記条件 (C)に示すように、通常 lOnm以上で あるが、好ましくは 12nm以上、また、通常 lOOnm以下、好ましくは 50nm以下の範 囲である。平均細孔半径力 Sこの範囲内に収まるということは、本発明の粒子力 従来 公知のリチウム複合酸ィ匕物粒子と比較して、後述する一次粒子間に適切な大きさの 細孔を有することを意味する。平均細孔半径がこの範囲の上限を超えると、細孔体積 当たりの細孔面積が減少するため、本発明の粒子を正極活物質として用いた場合に 正極活物質表面と電解液との接触面積が減少し、これを用いて電池を作製した場合 に電池の負荷特性が低下し易くなつてしまい好ましくない。一方、平均細孔半径がこ の範囲の下限を下回ると、本発明の粒子を正極活物質として用いた場合に正極活物 質の細孔内へのリチウムイオンの拡散不充分となり、これを用いて電池を作製した場 合に電池の負荷特性が低下し易くなつてしまい、やはり好ましくない。但し、本発明に おいて、水銀圧入法による平均細孔半径は、二次粒子間の空隙の影響を除くため、 半径 0. 005 ^ πι-0. 5 /z mの範囲の細孔を対象として求めた値を用いるものとする [0038] ·細孔分布曲線:
また、本発明の粒子は、後述の水銀圧入法によって細孔分布曲線を測定した場合 に、通常、以下に説明する特定のメインピーク及びサブピークが現れる。
なお、本明細書において「細孔分布曲線」とは、細孔の半径を横軸に、その半径以 上の半径を有する細孔の単位重量 (通常は lg)当たりの細孔体積の合計を、細孔半 径の対数で微分した値を縦軸にプロットしたものであり、通常はプロットした点を結ん だグラフとして表わす。特に、本発明の粒子を水銀圧入法により測定して得られた細 孔分布曲線を、以下の記載では適宜「本発明に力かる細孔分布曲線」という。
[0039] また、本明細書において「メインピーク」とは、細孔分布曲線が有するピークの内で 最も大き 、ピークを!、 、、通常は後述する二次粒子間の空隙に対応したピークを表 わし、「サブピーク」とは、細孔分布曲線が有するメインピーク以外のピークを表わす。 また、本明細書において「ピークトップ」とは、細孔分布曲線が有する各ピークにお V、て縦軸の座標値が最も大き 、値をとる点を!、う。
[0040] ·メインピーク:
本発明に力かる細孔分布曲線が有するメインピークは、そのピークトップが、細孔半 径が通常 0. 5 μ m以上、好ましくは 0. 7 μ m以上、また、通常 50 μ m以下、好ましく は 20 μ m以下、更に好ましくは 15 μ m以下の範囲に存在する。この範囲の上限を超 えると、本発明の多孔質粒子を正極材として電池を作製した場合に、正極材内でのリ チウム拡散が阻害され、又は導電パスが不足して、負荷特性が低下する虞がある。 一方、この範囲の下限を下回ると、本発明の多孔質粒子を用いて正極を作製した場 合に、導電材ゃ結着剤の必要量が増加し、正極板 (正極の集電体)への活物質の充 填率が制約され、電池容量が制約される虞がある。また、微粒子化に伴い、塗料ィ匕 時の塗膜の機械的性質が硬ぐ又は脆くなり、電池組立時の捲回工程で塗膜の剥離 が生じ易くなる。
[0041] また、本発明に力かる細孔分布曲線が有するメインピークの細孔体積は、好適には 、通常 0. lcm3Zg以上、好ましくは 0. 15cm3Zg以上、また、通常 0. 5cm3Zg以下 、好ましくは 0. 4cm3/g以下である。この範囲の上限を超えると二次粒子間の空隙 が過大となり、本発明の粒子を正極材として用いる際に、正極板への正極活物質の 充填率が低くなつてしまい、電池容量が制約されてしまう。一方、この範囲の下限を 下回ると、二次粒子間の空隙が過小となってしまうため、本発明の粒子を正極材とし て電池を作製した場合に、二次粒子間のリチウム拡散が阻害され、負荷特性が低下 する虞がある。
[0042] ·サブピーク:
本発明にカゝかる細孔分布曲線は、上述のメインピークに加えて、特定の細孔半径 範囲内、具体的には通常 80nm以上、好ましくは lOOnm以上、更に好ましくは 120η m以上、また、通常 300nm以下、好ましくは 250nm以下の細孔半径の範囲内に、ピ ークトップが存在するサブピーク(以下、適宜「特定サブピーク」という。)を有すること が好ましい。この特定サブピークの存在は、本発明の粒子の一次粒子 (後述)間に、 上記範囲に収まる大きさの細孔半径を有する空隙が存在することを示している。本発 明の粒子は、このような空隙を有することによって、低温負荷特性と良好な塗布性を 両立させることが可能になっているものと推測される。特定サブピークのピークトップ が上記範囲の上限を超えた位置に存在すると、本発明の粒子を正極活物質として用 V、た場合に正極活物質表面と電解液との接触面積が減少し、これを用いて電池を作 製した場合に電池の負荷特性が低下し易くなつてしまうため、好ましくない。一方、上 記範囲の下限を下回る位置に存在すると、本発明の多孔質粒子を用いてリチウム二 次電池を作製した場合、細孔内のリチウムイオンの拡散が阻害され、負荷特性が低 下するおそれがあるので好ましくな 、。
[0043] 上記の特定サブピークの細孔体積 (特定サブピークのピークトップの縦軸の座標値 )は、通常 0. 005cm3Zg以上、好ましくは 0. 01cm3Zg以上、また、通常 0. 05cm3 /g以下、好ましくは 0. 03cm3/g以下である。この範囲の上限を超えると、塗料ィ匕 時の塗膜の機械的性質が硬ぐ又は脆くなり、電池組立時の捲回工程で塗膜の剥離 が生じ易くなるなどして、塗布性が悪ィ匕するため好ましくない。一方、下限を下回ると 、本発明の多孔質粒子を正極材として電池を作製した際に、正極材内のリチウム拡 散が阻害され、負荷特性が低下し易くなるので、やはり好ましくない。
[0044] また、上記のメインピークと特定サブピークとの細孔体積の比 (メインピークと特定サ ブピークのそれぞれのピークトップの縦軸座標値の比)は、サブピーク:メインピーク の値で、通常 1 : 100以上、好ましくは 1 : 50以上、また、通常 1 : 2以下、好ましくは 1 : 5以下である。メインピークに対するサブピークの細孔体積の比が大き過ぎると、塗布 性が悪ィ匕しやすく好ましくない。一方、メインピークに対するサブピークの細孔体積の 比が小さ過ぎると、低温負荷特性が悪化しやすぐやはり好ましくない。
[0045] ·その他:
なお、本発明の粒子は、上記規定を満たす限りにおいて、上記メインピーク及びサ ブピークの範囲外の細孔半径を有する若干の細孔を備えていてもよい。但し、その 場合でも、本発明を特徴付ける上記の特定サブピークは、メインピークのピークトップ よりも細孔半径の小さい領域において最大の細孔体積を有するサブピークであること が好ましい。
[0046] <本発明の効果が得られる理由 >
本発明の粒子が、電池の低温負荷特性の向上及び正極作製時の塗布性の改善と いう効果をもたらす理由は、未だ本発明者等にも明らかではないが、大まかには以下 のように推測される。
[0047] すなわち、本発明のリチウム複合酸ィ匕物粒子は、その粒子構造が適度な強度を有 して 、ることから、リチウム二次電池の正極材として従来用いられて!/、る一般的なリチ ゥム複合酸化物粒子と異なり、充放電による粒子の体積変化に伴って適度に微細化 が進行し、電解液との有効な接触面積が増加し、電池特性として必要な負荷特性、 特に低温での負荷特性が改良されるため、結果として低温での負荷特性と塗布性の 両立が達成できるものと推定される。
[0048] また、本発明のリチウム複合酸ィ匕物粒子は、一次粒子間に適切な大きさの細孔を 有していることから、従来と異なり、細孔体積を著しく増カロさせることなぐこれを用い て電池を作製した場合に正極活物質表面と電解液との接触面積を増カロさせることが 可能となるため、正極活物質として必要な、負荷特性、特に、低温における負荷特性 が改良され、結果として、塗布性と低温負荷特性を両立させることができるものと推定 される。
[0049] なお、上述の効果 (電池の低温負荷特性の向上及び正極作製時の塗布性の改善 )を得る観点から、条件 (A)—(C)のうち、条件 (A)については常に満たしている必 要があるが、条件 (B)及び条件 (C)については、少なくとも何れか一方を満たしてい れば良い。但し、上述の効果を顕著に得るためには、条件 (A)に加えて少なくとも条 件 (B)を満たして 、ることが好ま 、。
[0050] <その他の好ましい態様 >
以下の記載では、本発明の粒子のその他の特性についても詳説するが、これらは あくまでも好ましい態様であって、上述の特徴を備えるものであれば、本発明の粒子 のその他の特性にっ ヽては特に制限されるものではな!/、。
[0051] ,窒素吸着法に関する物性:
本発明の粒子は、上述の水銀圧入法に関する特徴に加えて、窒素吸着法により計 測される BJH法による細孔半径 50nm以下の細孔の合計体積力 該粒子の単位重 量当たり 0. 01 cm3Zg以下であることが好ましい。
[0052] 窒素吸着法 (BJH法)は、多孔質粒子等の試料に窒素を吸着させて、窒素の圧力と 吸着量の関係から、試料の比表面積や細孔径分布などの情報を得る手法である。
[0053] 窒素吸着法による測定は、具体的な細孔径分布の解析の手法に応じて、各種の装 置を用いることができるが、代表的なものとしては、窒素吸着細孔分布測定装置が挙 げられる。窒素吸着細孔分布測定装置の具体例としては、カンタクローム社製オート ソープなどが挙げられる。
[0054] 本発明の粒子において、窒素吸着法により計測される細孔半径 50nm以下の細孔 の合計体積は、上述のように通常 0. 05cm3Zg以下の範囲が好適である力 中でも
0. 01cm3/g以下の範囲が好ましぐ特に 0. 008cm3/g以下の範囲が好ましい。 当該合計細孔体積がこの上限値よりも大きいと、過度に孔径の小さい細孔が多くなる ため、正極板への活物質の充填率が低くなり、電池容量が制約されるので好ましくな い。
[0055] ·粒子の形状:
本発明の粒子の形状は特に制限されないが、通常は、リチウム二次電池の正極活 物質として従来用いられている一般的なリチウム複合酸ィ匕物粒子と同様、一次粒子 が凝集又は焼結して、より大きな二次粒子を構成したものである。なお、以下の記載 において単に「本発明の粒子」という場合には、二次粒子のことを指すものとする。 [0056] ·比表面積:
本発明の粒子の比表面積は特に制限されないが、通常 0. lm2/g以上、中でも 0 . 2m2/g以上、また、通常 2m2/g以下、中でも 1. 8m2/g以下の範囲であることが 好ましい。粒子の比表面積は、主に一次粒子径ゃ、一次粒子間の焼結の度合の影 響を受ける。粒子の比表面積がこの範囲の上限を超えると、塗料化時に必要な分散 媒量が増加すると共に、導電材ゃ結着剤の必要量も増カロしてしまい、正極板への活 物質の充填率が低下して、電池容量が制約されてしまう傾向がある。一方、粒子の比 表面積がこの範囲の下限に満たないと、正極内において粒子表面と電解液との接触 面積が減少し、電池とした場合の負荷特性が低下し易くなる傾向がある。
[0057] なお、本明細書において「比表面積」は、窒素吸着法を利用した BET(Brunauer, Emmett, and Teller)法によって測定した比表面積 (BET比表面積)をいうものとする 。 BET法とは、吸着等温線上で窒素の単分子層吸着量を求め、吸着窒素分子の断 面積力 表面積を決定して試料の比表面積 (BET比表面積)を算出する手法である 。 BET法による測定は、各種の BET測定装置を用いて測定することができる。
[0058] ·一次粒子径:
本発明の粒子(二次粒子)を構成する一次粒子の径は特に制限されないが、通常 0 . 以上、中でも 0. 以上、また、通常 以下、中でも 1. 8 m以下の範 囲であることが好ましい。一次粒子径は、原料の粉砕粒子径ゃ焼成時の温度、雰囲 気等の影響を受ける。一次粒子径がこの範囲の上限を超えると、一次粒子内のリチ ゥムイオンの拡散や電子伝導が律速となって、負荷特性が低下し易くなる傾向がある 。一方、一次粒子径がこの範囲の下限を下回ると、塗料ィヒ時に必要な分散媒量が増 加すると共に、導電材ゃ結着剤の必要量が増加してしまい、正極板への活物質の充 填率が低下して、電池容量が制約されてしまう傾向がある。
なお、一次粒子径は、走査電子顕微鏡 (SEM)を用いた観察により測定される。具 体的には、例えば、 10000倍の倍率の写真で、水平方向の直線に対する一次粒子 の左右の境界線による切片の最長の値を、任意の 50個の一次粒子について求め、 平均値を採ることにより求められる。
[0059] ·タップ密度: 本発明の粒子のタップ密度は特に制限されないが、通常 1. 4gZcm3以上、中でも 1. 5g/cm3以上、また、通常 2. 5g/cm3以下、中でも 2. 3g/cm3以下、更には 2g /cm3以下の範囲であることが好ましい。本明細書において「タップ密度」は、粉体を タッピングして充填した際の粉体の重量を力さから求めた値を表す。タップ密度が高 い粒子ほど、充填性が良いものとみなすことができる。粒子のタップ密度がこの範囲 の上限を超えると、正極板中の電解液を媒体としたリチウムイオンの拡散が律速とな り、負荷特性が低下し易くなる傾向がある。一方、粒子のタップ密度がこの範囲の下 限に満たないと、塗料化時に必要な分散媒量が増加すると共に、導電材ゃ結着剤の 必要量が増加してしま 、、正極板への活物質の充填率が低下して電池容量が制約 されてしまう傾向がある。
なお、粒子のタップ密度は、 JIS K5101に規定されている方法や、メスシリンダー に一定重量の粒子を入れ、タップした上で容積を測定する方法等により求めることが できる。
[0060] ·メジアン径:
本発明の粒子における粒子径(二次粒子径)のメジアン値 (以下、適宜「メジアン径 」と 、う。)は、通常 1 μ m以上、好ましくは 2 μ m以上、また、通常 20 μ m以下、好まし くは 15 μ m以下の範囲が好適である。メジアン径がこの範囲の上限を超えると、本発 明の粒子を正極材として電池を作製した際に、正極材内のリチウム拡散が阻害され、 又は導電パスが不足して、電池の負荷特性が低下し易くなつてしまうので好ましくな い。一方、この範囲の下限を下回ると、正極を作製する際に導電材ゃ結着剤の必要 量が増加し、正極板 (正極の集電体)への活物質の充填率が制約され、電池容量が 制約される虞がある。また、微粒子化に伴い、塗料化時の塗膜の機械的性質が硬ぐ 又は脆くなり、電池組立時の捲回工程において塗膜の剥離が生じ易くなつてしまい、 やはり好ましくない。なお、粒子のメジアン径の測定は、例えばレーザー回折'散乱 法等の手法を用いて行なうことができる。
[0061] *組成:
本発明の粒子の組成としては、特に制限は無いが、エネルギー密度、結晶構造の 安定性の観点からは、少なくとも Ni及び Coを含有することが好ま 、。 [0062] 中でも、本発明の粒子としては、下記組成式(1)で表わされる組成を有するものが 好ましい。
Li Ni Co M O 組成式(1)
X (l~y- z y z 2
[0063] 上記組成式(1)において、 Mは、 Mn, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn及び Nb カゝら選ばれる少なくとも 1種の元素を表わす。中でも Mn及び Z又は A1が好ましぐ特 に Mnが好ましい。
また、上記組成式(1)において、 Xは通常 0より大きぐ好ましくは 0. 1以上、また、 通常 1. 2以下、好ましくは 1. 1以下の数を表わす。この範囲の上限を上回ると、粒子 が単一の結晶相とならず、またリチウムが遷移金属サイトに置換する可能性があるた め、これを正極活物質とするリチウム二次電池の充放電容量が低下する傾向がみら れる。また、この範囲の下限側はリチウムがディンター力レートした充電状態に対応 するが、この下限を下回るほど小さな値となるまで充電すると、粒子の結晶構造が劣 化する場合があり、やはり好ましくない。
[0064] また、上記組成式(1)において、 yは通常 0. 05以上、好ましくは 0. 1以上、また、 通常 0. 5以下、好ましくは 0. 4以下の数を表わす。この範囲の上限を上回ると、正極 材に用いた場合に電池の容量が低下し易ぐまた、 Coは資源的に希少で効果な原 料であるため、コストの点でも好ましくない。一方、この範囲の下限を下回ると、粒子 の結晶構造の安定性が低下し易ぐやはり好ましくない。
[0065] また、上記組成式(1)において、 zは通常 0. 01以上、好ましくは 0. 02以上、また、 通常 0. 5以下、好ましくは 0. 4以下の数を表わす。この範囲の上限を上回ると、粒子 が単一の結晶相とならな力つたり、これを正極活物質とするリチウム二次電池の充放 電容量が低下したりし易くなるため、好ましくない。また、この範囲の下限を下回ると、 粒子の結晶構造の安定性が低下し易くなるため、やはり好ましくない。
[0066] [II.リチウム複合酸化物粒子の製造方法〕
以下、本発明の粒子の製造方法の一例として、組成式(1)で表わされる組成の粒 子を製造する方法 (以下「本発明の製造方法」という。 )について説明する。もちろん、 本発明の粒子が、以下の方法によって製造されるものに限定される訳ではない。また 、組成式(1)で表わされる組成の粒子を製造する方法が、以下の製造方法に限定さ れるものでもない。
本発明の製造方法では、リチウム原料、ニッケル原料、コバルト原料、及び、元素 M の原料を原料として、本発明の粒子を製造する。
[0067] <原料 >
'リチウム原料:
リチウム原料としては、リチウムを含有する物質であれば特に制限はない。 リチウム原料の具体例としては、 Li CO、 LiNOなどの無機リチウム塩; LiOH、 Li
2 3 3
ΟΗ·Η Οなどのリチウムの水酸化物; LiCl、 Lilなどのリチウムハロゲン化物; Li O等
2 2 の無機リチウム化合物、アルキルリチウム、脂肪酸リチウム等の有機リチウム化合物等 を挙げることができる。中でも好ましいのは、 Li CO、 LiNO、 LiOH、酢酸 Liである
2 3 3
。その中でも、 Li CO及び LiOHは、窒素及び硫黄を含まないので、焼成の際に、 N
2 3
o及び SO等の有害物質を発生させない利点をも有する。
なお、上記のリチウム原料は、 1種を単独で用いてもよぐ 2種以上を任意の種類及 び比率で併用してもよい。
[0068] ·ニッケル原料:
ニッケル原料としては、ニッケルを含有する物質であれば特に制限は無 、。 ニッケル原料の具体例としては、 Ni (OH) 、 NiO、 NiOOH、 NiCO · 2Νί (ΟΗ) ·
2 3 2
4H 0、 NiC O · 2Η 0、 Ni (NO ) · 6Η 0、 NiSO、 NiSO - 6H 0、脂肪酸-ッケ
2 2 4 2 3 2 2 4 4 2
ル、ニッケルハロゲン化物等を挙げることができる。その中でも、 Ni(OH)、 NiO、 Ni
2
OOH、 NiCO · 2Νί (ΟΗ) ·4Η 0、 NiC O · 2Η Oのような窒素及び硫黄を含まな
3 2 2 2 4 2
い化合物は、焼成工程において NO及び SO等の有害物質を発生させないので好 ましい。工業原料として安価に入手でき、かつ焼成を行なう際に反応性が高いという 観点から、特に好ましいのは Ni (OH) 、 NiO、 NiOOHである。
2
なお、上記のニッケル原料は、 1種を単独で用いてもよぐ 2種以上を任意の種類及 び比率で併用してもよい。
[0069] ·コバルト原料:
コバルト原料としては、コバルトを含有する物質であれば特に制限は無 、。 コバルト原料の具体例としては、 CoO、 Co O、 Co O、 Co (OH) 、 CoOOH、 Co (NO ) · 6Η 0、 CoSO - 7H 0、有機コバルト化合物、コバルトハロゲン化物等を挙
3 2 2 4 2
げることができる。これらコバルト化合物の中でも、 CoO、 Co O、 Co O、 Co (OH)
2 3 3 4 2
、 CoOOHが好ましい。
なお、上記のコバルト原料は、 1種を単独で用いてもよぐ 2種以上を任意の種類及 び比率で併用してもよい。
[0070] ·元素 Mの原料:
元素 Mの原料は、上記組成式(1)の説明にお 、て述べた元素 Mを含有する物質 であれば特に制限は無い。
元素 Mの原料の具体例としては、上述のニッケル原料、コバルト原料と同様、元素 Mの酸化物、水酸化物、ォキシ水酸ィヒ物、脂肪酸塩、ハロゲンィヒ物等を挙げることが できる。中でも酸化物、水酸化物、ォキシ水酸ィ匕物が好ましい。
なお、上記の元素 Mの原料は、 1種を単独で用いてもよぐ 2種以上を任意の種類 及び比率で併用してもよ!、。
[0071] また、上記のニッケル原料、コバルト原料、及び元素 Mの原料は、ニッケル、コバル ト、及び、 Mから選ばれる 2種類以上の元素の共沈水酸化物、共沈炭酸塩等、及び これらを焼成して得られる複合酸化物を、それぞれの原料の一部又は全部として使 用してちょい。
[0072] <ニッケル原料、コバルト原料、及び元素 Mの原料の粉砕'混合 >
ニッケル原料、コバルト原料、及び元素 Mの原料を、分散媒に分散させ、湿式法に より粉砕'混合し、スラリー化する。なお、必要なリチウム原料の一部をこの段階で予 め混合し、スラリー中に水溶液又は粒子の形で存在させてぉ ヽても良 、。
ここで用いる分散媒としては任意の液体を用いることができ、環境負荷の点で、特 に水が好適である。ただし、例えばニッケル原料、コバルト原料、又は元素 Mの原料 として水溶性のものを使用する際は、後述する噴霧乾燥の際に、造粒された粒子が 中空粒子となり、正極板への活物質の充填率が制約される虞があるため、ニッケル原 料、コバルト原料、及び元素 Mの原料のいずれもが溶解しない液体を分散媒として 選択することが好ましい。
原料の粉砕'混合に用いる装置は特に限定されず、任意の装置を用いることができ る。その具体例としては、ビーズミル、ボールミル、振動ミル等の装置が挙げられる。
[0073] ニッケル原料、コバルト原料、及び元素 Mの原料を粉砕する程度としては、粉砕後 のスラリー中の粒子の粒径力 メジアン径として通常 2 μ m以下、好ましくは 1 μ m以 下、更に好ましくは 0. 5 m以下となるまで粉砕する。メジアン径が上記範囲よりも大 きいと、焼成工程における反応性が低下する。また、後述する噴霧乾燥における乾 燥粉体の球状度が低下し、最終的な粉体充填密度が低くなる傾向にある。この傾向 は、メジアン径で 20 m以下の造粒粒子を製造しょうとした場合に、特に顕著になる なお、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、メジアン 径カ S通常 0. 01 /z m以上、好ましくは 0. 02 /z m以上、更に好ましくは 0. 1 m以上と なるように粉砕すればょ 、。
[0074] <造粒 ·乾燥 >
次いで、ニッケル原料、コバルト原料、及び元素 Mの原料の湿式粉砕'混合により 得られたスラリーについて、スラリー中の分散粒子を凝集させ、より大きな粒子状物( 凝集粒子、二次粒子)を作成する作業、即ち造粒を行なうとともに、併せて粒子状物 の乾燥を行なう。造粒及び乾燥の手法としては、生成する粒子状物 (凝集粒子)の均 一性や粉体流動性、粉体ノ、ンドリング性能に優れる、造粒と同時に乾燥を行なうこと ができ、二次粒子を効率よく形成できる等の観点から、スプレードライヤー等を用い た噴霧乾燥が好ましい。
[0075] 噴霧乾燥により得られる粒子状物の粒子径は、ほぼそのまま、最終的な本発明の 粒子の二次粒子の粒子径となる。このため、乾燥により得られる粒子状物の粒子径 は、通常は 1 μ m以上、好ましくは 2 μ m以上、また、通常 20 μ m以下、好ましくは 15 μ m以下である。また、この粒子径は、噴霧形式、加圧気体流供給速度、スラリー供 給速度、乾燥温度等を適宜選定することによって制御することができる。
[0076] なお、噴霧乾燥以外の手法を用いて造粒 ·乾燥を行なっても良 、。他の造粒法の 例としては、共沈法が挙げられる。共沈法を用いて造粒を行なう場合、ニッケル、コバ ルト及び Mの水溶液を、アルカリ水溶液と反応させて水酸ィ匕物を得る際に、撹拌速 度、 pH、温度を適宜設定する。 この場合、共沈法により造粒した後に濾別し、洗浄等を行なった後、乾燥炉等によ り乾燥を行なう。
[0077] <リチウム原料との混合 >
上記の造粒 ·乾燥工程により得られた粒子状物を、リチウム原料と乾式混合して、混 合粉とする。
リチウム原料の平均粒子径は、噴霧乾燥で得られた粒子状物との混合性を上げる ため、且つ、電池の電池性能を向上させる観点から、通常 500 /z m以下、好ましくは 100 μ m以下、更に好ましくは 50 μ m以下、最も好ましくは 20 μ m以下である。但し 、平均粒子径があまりに小さいものは、大気中での安定性が低くなる虞があるので、 平均粒子径の下限は通常 0. 01 μ m以上、好ましくは 0. 1 μ m以上、更に好ましくは 0. 2 m以上、最も好ましくは 0. 5 m以上である。
上記乾式混合の手法に特に制限はないが、一般的に工業用として使用されている 粉体混合装置を使用するのが好ましい。混合する粉体の混合組成比は任意であり、 目的とする多孔質粒子の組成等に応じて適宜選択される。
[0078] <分級 ·焼成 >
次に、得られた混合粉を焼成処理し、一次粒子が焼結して形成された二次粒子を 得る。
焼成処理の手法は任意であるが、例えば箱形炉、管状炉、トンネル炉、ロータリー キルン等を使用することができる。焼成処理は、通常、昇温'最高温度保持'降温の 三部分に分けられる。また、二番目の最高温度保持部分は必ずしも一回とは限らず 、目的に応じて二段階又はそれ以上の段階を踏ませてもよい。
更に、上記の焼成処理は昇温 ·最高温度保持 ·降温の工程を 2回又はそれ以上繰 り返し行なってもよい。また、焼成処理と焼成処理との間に、二次粒子を破壊しない 程度に凝集を解消することを意味する解砕工程を挟んで行なってもよい。
[0079] ,昇温部分:
昇温部分では、通常 0. 2°CZ分一 20°CZ分の昇温速度で炉内を昇温させる。あ まり遅すぎても時間が力かって工業的に不利であるが、あまり速すぎても炉によって は炉内温度が設定温度に追従しなくなる。 [0080] ,最高温度保持部分:
最高温度保持部分における焼成温度は、使用するリチウム原料、ニッケル原料、コ バルト原料及び元素 Mの原料それぞれの種類、及びその組成比、リチウム原料とそ の他の原料との混合順序などによって異なる力 通常 500°C以上、好ましくは 600°C 以上、より好ましくは 800°C以上、また、通常 1200°C以下、好ましくは 1100°C以下 である。焼成温度が上記範囲の下限より低いと、結晶性の良い、適切な強度を有す る粒子を得るために長時間の焼成時間を要する傾向にある。また、焼成温度が上限 より高いと、粒子の粒子構造が過度に強固なものとなったり、あるいは酸素欠損等の 欠陥が多い多孔質粒子を生成する結果となり、得られた粒子を正極活物質として使 用したリチウム二次電池の低温負荷特性が低下したり、あるいは充放電によって本発 明の粒子の結晶構造の崩壊による劣化を招いたりすることがある。
[0081] 最高温度保持部分での保持時間は、通常 1時間以上 100時間以下の広い範囲か ら選択される。焼成時間が短すぎると、結晶性の良い、適切な強度を有する粒子が 得られ難い。
[0082] ,降温部分:
降温部分では、通常 0. 1°CZ分一 20°CZ分の降温速度で炉内を降温させる。あ まり遅すぎても時間が力かって工業的に不利な方向であり、あまり早すぎても目的物 の均一性に欠けたり、容器の劣化を早めたりする傾向にある。
[0083] ·その他:
また、焼成雰囲気によっても本発明の粒子の強度は変化する。同じ温度で焼成し た場合、酸素濃度が低い程、粒子構造は強固となるため、焼成温度との組み合わせ により、焼成時の雰囲気を適宜選択する必要がある。通常は、空気などの酸素濃度 が 10体積%以上である雰囲気が好ましい。酸素濃度が低すぎると、酸素欠損等の欠 陥が多!、粒子を生成する結果となる。
[0084] 焼成により得られたリチウム複合酸化物は、必要に応じ、解砕'分級され、本発明の 粒子となる。解砕'分級の方法は、例えば、タッピングボール入りの振動篩等、公知の 方法を使用することができる。
[0085] <製造時の注意点 > 本発明の粒子を得るには、次のような作製上の工夫を行なうことが重要である。 湿式で粉砕したニッケル原料、コバルト原料、及び元素 Mの原料と、リチウム原料と の混合状態を制御することが重要である。詳しくは、焼成処理前の混合粉中におい て、リチウム原料の大部分力 湿式で粉砕されたニッケル原料、コバルト原料、元素 Mの原料が造粒されてなる造粒粒子の外部にあることが重要である。このような混合 粉を焼成処理することにより、適切な強度を有する粒子を得ることができる。
[0086] ただし、ニッケル原料、コバルト原料、及び元素 Mの原料が共沈法により造粒され た粒子である場合には、混合粉中のリチウム原料の大部分が造粒粒子の外にあった としても、焼成処理後の粒子は過度に強固な粒子構造となり易い。従って、ニッケル 原料、コバルト原料、及び元素 Mの原料として、共沈原料を使用する場合には、これ を湿式で粉砕した後、造粒して造粒粒子を作製し、リチウム原料と乾式混合すること が重要である。これにより、本発明の粒子を得ることができる。
[0087] また、湿式で粉砕されたニッケル原料、コバルト原料、及び元素 Mの原料が造粒さ れてなる造粒粒子内部にリチウム原料の大部分が存在する場合には、焼成処理後 の粒子が過度に弱い粒子構造となり易い。この場合でも、焼結促進剤を混合すること により粒子強度を向上させることは可能であるが、焼結促進剤を混合すると制御が困 難となり、粒子構造が過度に強固になりやすい。
従って、本発明の粒子を得るためには、湿式粉砕したニッケル原料、コバルト原料 、及び元素 Mの原料、又は、湿式粉砕した共沈原料を造粒した造粒粒子に、リチウ ム原料を乾式混合することが重要である。
[0088] 本発明の粒子を得るための具体的な手順は特に制限されず、使用する各原料の 種類に応じて適宜調整すればよいが、例えばニッケル原料として NiOを使用し、コバ ルト原料として Co (OH)を使用し、元素 Mの原料として Mn O等のマンガン原料を
2 3 4
使用する場合には、後述の実施例に示すように、 NiOをコバルト原料及びマンガン 原料と湿式混合して力も噴霧乾燥し、その後にリチウム原料を乾式混合するという手 順が挙げられる。
[0089] [II.リチウム二次電池用正極〕
本発明のリチウム二次電池用正極は、上述した本発明の粒子と結着剤とを含有す る正極活物質層を、集電体上に有することを特徴とする。
また、本発明のリチウム二次電池用正極は、本発明の粒子と結着剤とを含有する正 極活物質層を、集電体上に形成して作製される。
[0090] 本発明の粒子を用いる正極の製造は、常法により行なうことができる。すなわち、本 発明の粒子及び結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合し てシート状にしたものを正極集電体に圧着するか、又はこれらの材料を分散媒に溶 解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、 正極活物質層を集電体上に形成させることができる。
[0091] 本発明の粒子は、正極活物質層中に、通常 10重量%以上、好ましくは 30重量% 以上、より好ましくは 50重量%以上、また通常 99. 9重量%以下含有するように用い ることが望ま U、。含有量がこの範囲よりも低 、と電気容量が不十分となることがある 。逆に含有量がこの範囲よりも高 、と正極の強度が不足することがある。
[0092] 結着剤は、分散媒に対して安定であれば任意のものを用いることができる。具体例 としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチノレメタタリ レート、芳香族ポリアミド、セルロース、ニトロセルロース等の榭脂系高分子、 SBR (ス チレン ブタジエンゴム)、 NBR (アタリ口-トリノレーブタジエンゴム)、フッ素ゴム、イソ プレンゴム、ブタジエンゴム、エチレン ·プロピレンゴム等のゴム状高分子;スチレン' ブタジエン.スチレンブロック共重合体及びその水素添加物、 EPDM (エチレン プロ ピレン ジェン三元共重合体)、スチレン'エチレン'ブタジエン 'エチレン共重合体、 スチレン 'イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性ェ ラストマー状高分子;シンジオタクチック—1, 2—ポリブタジエン、ポリ酢酸ビュル、ェチ レン ·酢酸ビニル共重合体、プロピレン. α—才レフイン共重合体等の軟質榭脂状高 分子;ポリフッ化ビ-リデン、ポリテトラフルォロエチレン、フッ素化ポリフッ化ビ -リデ ン、ポリテトラフルォロエチレン 'エチレン共重合体等のフッ素系高分子;アルカリ金属 イオン (特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。 なお、これらは、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率 で併用してもよい。
[0093] 結着剤は、正極活物質層中に、通常 0. 1重量%以上、好ましくは 1重量%以上、よ り好ましくは 5重量%以上、また、通常 80重量%以下、好ましくは 60重量%以下、よ り好ましくは 40重量%以下含有するように用いることが望ま 、。含有量がこの範囲 よりも低いと正極活物質を十分保持できず、正極の機械的強度が不足し、サイクル特 性等の電池性能を悪ィ匕させてしまうことがある。逆に、含有量がこの範囲よりも高いと 電池容量や導電性が低下することがある。
[0094] 導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、 ニッケル等の金属材料:天然黒鉛、人造黒船等の黒船 (グラフアイト);アセチレンブラ ック等のカーボンブラック;ニードルコータス等の無定形炭素等の炭素材料などが挙 げられる。なお、これらは、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ 及び比率で併用してもよ!、。
[0095] 導電材は、正極活物質中に、通常 0. 01重量%以上、好ましくは 0. 1重量%以上、 より好ましくは 1重量%以上、また、通常 50重量%以下、好ましくは 30重量%以下、 より好ましくは 15重量%以下含有するように用いるのが好ま 、。含有量がこの範囲 よりも低いと導電性が不十分となることがある。逆に、含有量力この範囲よりも高いと 電池容量が低下することがある。
[0096] スラリーの調製に用いる分散媒としては、正極材及び結着剤、並びに導電材及び 増粘剤を溶解又は分散することが可能なものであれば、その種類に特に制限はなく 、水系媒体と有機系媒体のどちらを用いてもよい。
水系媒体としては、例えば、水、アルコール等が挙げられる。
有機系媒体としては、例えば、へキサン等の脂肪族炭化水素類;ベンゼン、トルェ ン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環 化合物;アセトン、メチルェチルケトン、シクロへキサノン等のケトン類;酢酸メチル、ァ クリル酸メチル等のエステル類;ジエチレントリァミン、 N— N—ジメチルァミノプロピルァ ミン等のアミン類;ジメチルエーテル、エチレンォキシド、テトラヒドロフラン (THF)等 のエーテル類; N—メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルァセトアミ ド等のアミド類;へキサメチルホスフアルアミド、ジメチルスルホキシド等の非プロトン性 極性溶媒などを挙げることができる。特に水系媒体を用いる場合、増粘剤に併せて 分散媒を加え、 SBR等のラテックスを用いてスラリー化するのが好ましい。なお、これ らの分散媒は、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で 併用してちょい。
正極活物質層の厚さとしては、 10 μ m— 200 μ mが好ましい。
[0097] 正極集電体の材質としては特に制限は無ぐ公知のものを任意に用いることができ る。具体例としては、アルミニウム、ステンレス鋼、ニッケルメツキ、チタン、タンタル等 の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも 金属材料、特にアルミニウムが好ましい。
[0098] 集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板 、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料 の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好 ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、 通常 1 μ m以上、好ましくは 3 μ m以上、より好ましくは 5 μ m以上、また、通常 lmm 以下、好ましくは 100 μ m以下、より好ましくは 50 μ m以下である。薄膜がこの範囲よ りも薄いと集電体として必要な強度が不足することがある。逆に、薄膜がこの範囲より も厚 、と取り扱 、づらくなる。
[0099] なお、塗布'乾燥によって得られた正極活物質層は、ローラープレス等により圧密し て正極活物質の充填密度を上げるのが好ま U、。
[0100] [III.リチウム二次電池〕
次に、本発明のリチウム二次電池について説明する。
本発明のリチウム二次電池は、リチウムを吸蔵'放出可能な正極及び負極、並びに 、リチウム塩を電解質として含有する有機電解液を備えたリチウム二次電池であって 、正極が、本発明の粒子を用いて作製されたリチウム二次電池用正極であることを特 徴とする。
[0101] 本発明のリチウム二次電池に用いる負極は、リチウムを吸蔵 ·放出することが可能な ものであれば他に制限は無い。また、その製造方法も任意であるが、例えば、負極集 電体上に負極活物質層を形成させることにより製造すればよい。
[0102] 負極集電体の材質としては公知のものを任意に用いることができる。具体例として は、銅、ニッケル、ステンレス鋼、ニッケルメツキ鋼等の金属材料;カーボンクロス、力 一ボンペーパー等の炭素材料が挙げられる。金属材料の形状としては、金属箔、金 属円柱、金属コイル、金属板、金属薄膜等が挙げられ、炭素材料の形状としては、炭 素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。な お、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常 以上、好ましくは 3 μ m以上、より好ましくは 5 μ m以上、また、通常 lmm以下、好まし くは 100 m以下、より好ましくは 50 m以下である。薄膜がこの範囲よりも薄いと集 電体として必要な強度が不足することがある。逆に、この範囲よりも厚いと取り扱いづ らくなる。
[0103] 負極活物質層に含まれる負極活物質は、電気化学的にリチウムイオンを吸蔵'放 出可能なものであれば任意である力 通常は安全性の高さの面力 リチウムを吸蔵、 放出できる炭素材料が用いられる。
[0104] 炭素材料としては、例えば、人造黒鉛、天然黒鉛等の黒鉛 (グラフアイト)や、様々 な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石 炭系コータス、石油系コータス、石炭系ピッチの炭化物、石油系ピッチの炭化物、石 炭系又は石油系のピッチを酸ィ匕処理したものの炭化物、ニードルコータス、ピッチコ 一タス、フエノール榭脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した 炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。 これらのうち、黒鉛、特に種々の原料から得た易黒鉛性ピッチに高温熱処理を施すこ とによって製造された人造黒鉛若しくは精製天然黒鉛又はこれらの黒鉛にピッチを 含む黒鉛材料等であって種々の表面処理を施したものが好ましい。これらの炭素材 料は、それぞれ 1種を単独で用いても、 2種以上を組み合わせて用いてもよい。
[0105] 黒鉛材料としては、学振法による X線回折で求めた格子面 (002面)の d値 (層間距 離)が、通常 0. 335nm以上 0. 34nm以下、特に 0. 337nm以下であるものが好まし い。黒鉛材料の灰分は、黒鉛材料の重量に対して、通常 1重量%以下、好ましくは 0 . 5重量%以下、より好ましくは 0. 1重量%以下である。学振法による X線回折で求め た黒鉛材料の結晶子サイズ (Lc)は、通常 30nm以上、好ましくは 50nm以上、より好 ましくは lOOnm以上である。レーザー回折'散乱法により求めた黒鉛材料のメジアン 径は、通常 1 μ m以上、好ましくは 3 μ m以上、より好ましくは 5 μ m以上、特に好まし くは 7 μ m以上であり、通常 100 μ m以下、好ましくは 50 μ m以下、より好ましくは 40 μ m以下、特に好ましくは 30 μ m以下である。
[0106] また、黒鉛材料の BET法比表面積は、通常 0. 5m2/g以上、好ましくは 0. 7m /g 以上、より好ましくは 1. Om2Zg以上、特に好ましくは 1. 5m2Zg以上であり、通常 25 . Om2/g以下、好ましくは 20. Om2/g以下、より好ましくは 15. Om2/g以下、特に 好ましくは 10. Om2/g以下である。アルゴンレーザー光を用いたラマンスペクトル分 祈で、 1580cm— 1— 1620cm— 1の範囲で検出されるピーク Pの強度 Iと、 1350— 13
A A
70cm 1の範囲で検出されるピーク Pの強度 Iとの強度比 I 以上 0. 5以下
B B A /\力 0
B
であるものが好ましぐピーク Pの半価幅は 26cm 1以下、特に 25cm 1以下が好まし
A
い。
[0107] 炭素材料以外の負極活物質としては、例えば、酸化錫や酸化ケィ素などの金属酸 化物;リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。こ れらは、それぞれ 1種を単独で用いてもよいし、 2種以上を組み合わせて用いてもよく 、炭素材料と組み合わせて用いてもよい。
[0108] 負極活物質層は、正極活物質層と同様にして形成させればよい。すなわち、前述 の負極活物質及び結着剤、並びに所望により増粘剤及び導電材を、分散媒でスラリ 一化したものを負極集電体に塗布し、乾燥すること〖こより形成させることができる。分 散媒、結着剤、導電材及び増粘剤としては、正極活物質と同じものを用いることがで きる。
[0109] 電解質としては、例えば、有機電解液、高分子固体電解質、ゲル状電解質、無機 固体電解質等が挙げられ、これらのうち有機電解液が好ましい。
[0110] 有機電解液に用いる有機溶媒には公知のいずれのものも用いることができる。例え ば、ジメチノレカーボネート、ジェチノレカーボネート、プロピレンカーボネート、エチレン カーボネート、ビ-レンカーボネート等のカーボネート類;テトラヒドロフラン、 2—メチル テトラヒドロフラン、 1 , 4 ジ才キサン、 1 , 2—ジメトキシェタン、 1 , 2—ジエトキシェタン 、 1 , 3—ジォキソラン、 4ーメチノレー 1 , 3—ジォキソラン、ジェチノレエーテノレ等のエーテ ル類; 4ーメチルー 2 ペンタノン等のケトン類;スルホラン、メチルスルホラン等のスルホ ラン系化合物;ジメチルスルホキシド等のスルホキシド化合物; γ ブチロラタトン等の ラタトン類;ァセトニトリル、プロピオ-トリル、ベンゾ-トリル、ブチ口-トリル、バレロ-ト リル等の-トリル類; 1, 2—ジクロロェタン等の塩素化炭化水素類;アミン類;エステル 類;ジメチルホルムアミド等のアミド類;リン酸トリメチル、リン酸トリェチル等のリン酸ェ ステルイ匕合物等が挙げられる。これらは単独で用いても、 2種類以上を併用してもよ い。
[0111] 有機電解液は、電解質を解離させるため、 25°Cにおける比誘電率が 20以上である 高誘電率溶媒を含んでいるのが好ましい。中でも、エチレンカーボネート、プロピレン カーボネート、及びそれらの水素原子をノ、ロゲン等の他の元素又はアルキル基等で 置換した有機溶媒を含んで ヽるのが好ま ヽ。有機電解液全体に占める高誘電率 溶媒の電解液の割合は、通常 20重量%以上、好ましくは 30重量%以上、より好まし くは 40重量%以上である。また、有機電解液には、 CO、 N 0、 CO、 SO等のガス
2 2 2 やポリサルファイド s 2など負極表面にリチウムイオンの効率良い充放電を可能にす る良好な被膜を形成する添加剤を、任意の割合で添加してもよ ヽ。
[0112] 溶質となるリチウム塩は、従来公知の任意のものを用いることができる。具体例とし ては、 LiClO、 LiAsF、 LiPF、 LiBF , LiB (C H ) 、 LiCl、 LiBrゝ CH SO Liゝ CF
4 6 6 4 6 5 4 3 3
SO Liゝ LiN (SO CF ) 、 LiN (SO C F ) 、 LiC (SO CF ) 、 LiN (SO CF )等が
3 3 2 3 2 2 2 5 2 2 3 3 3 3 2 挙げられる。これらの溶質は 1種を単独で用いても、 2種以上を任意の組み合わせ及 び比率で併用してもよい。
[0113] 電解液中におけるリチウム塩の濃度は、通常 0. 5molZL以上 1. 5molZL以下で ある。この濃度が、高くても低くても伝導度が低下し、電池特性が低下することがある 。従って、下限が 0. 75molZL以上、上限が 1. 25molZL以下が好ましい。
[0114] 有機電解液に用いる無機固体電解質としては、電解質として用いることが知られて いる結晶質'非晶質の任意のものを用いることができる。結晶質の無機固体電解質と しては、例えば、 Lil、 Li N、 Li M1 Ti (PO ) (M1 =A1、 Scゝ Y、 La)、 Li
3 (1+ % ) % (2- x ) 4 3 (0.5-3 %
RE TiO (RE=La、 Pr、 Nd、 Sm)等が挙げられる(なお、%は 0≤ %≤ 2を満た
) (0.5+ % ) 3
す数を表わす。 ) o非晶質の無機固体電解質としては、例えば、 4. 9L1I-34. ILi O
2
-61B O、 33. 3Li O— 66. 7SiO等の酸化物ガラス等が挙げられる。これらは任意
2 5 2 2
の 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で用いてもょ ヽ [0115] 二次電池は、電極同士の短絡を防止するため正極と負極の間に非水電解質を保 持するセパレータを備えて 、るのが好ま U、。
[0116] セパレータの材質や形状は、使用する有機電解液に対して安定で、かつ保液性に 優れ、更に電極同士の短絡を確実に防止できるものであれば任意である。例えば、 各種の高分子材料力 なる微多孔性のフィルム、シート、不織布等が挙げられる。高 分子材料としては、例えば、ナイロン、セルロースアセテート、ニトロセルロース、ポリス ルホン、ポリアクリロニトリル、ポリフッ化ビ-リデン、ポリプロピレン、ポリエチレン、ポリ ブテン等のポリオレフイン高分子が挙げられる。化学的及び電気化学的な安定性の 点からはポリオレフイン系高分子が好ましぐ電池の自己閉塞温度の点からはポリエ チレンが好ましい。ポリエチレンとしては、高温形状維持性に優れる超高分子ポリエ チレンが好ましい。ポリエチレンの分子量は、 50万以上 500万以下が好ましい。分子 量が小さいと高温時の形状が維持できなくなることがある。従って、分子量は 100万 以上、特に 150万が好ましい。逆に、分子量が大きすぎると流動性が低くなり、加熱 時セパレータの穴が閉塞しないことがある。従って、分子量は 400万以下、特に 300 万以下が好ましい。
[0117] リチウム二次電池の形状は、一般的に採用されている各種形状の中から、その用 途に応じて適宜選択することができる。形状としては、例えば、シート電極及びセパレ ータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わ せたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層した コインタイプ等が挙げられる。リチウム二次電池は、 目的とする電池の形状に合わせ 公知の方法により組み立てればよい。
実施例
[0118] 以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を逸脱し ない限り、以下の実施例に制約されるものではない。
[0119] 〔リチウム複合酸ィ匕物粒子の製造〕
<実施例 1 >
ニッケル原料として NiO、コバルト原料として Co (OH)、及び、マンガン原料として Mn Oを、 Ni: Co : Mn=0. 33 : 0. 33 : 0. 33のモル比となるように秤量し、これに純
3 4
水を加えてスラリーとし、攪拌しながら、循環式媒体攪拌型湿式ビーズミルを用いて、 スラリー中の固形分をメジアン径 0. 3 μ mに湿式粉砕した。
[0120] スラリーをスプレードライヤーにより噴霧乾燥し、ニッケル原料、コバルト原料、マン ガン原料のみカゝらなる、粒径約 5 mのほぼ球状の造粒粒子を得た。得られた造粒 粒子に、メジアン径 3 μ mの LiOH粉末を、 Ni、 Co、及び Mnの合計モル数に対する Liのモル数の比が 1. 05となるように添加し、ハイスピードミキサーにて混合して、 -ッ ケル原料、コバルト原料、マンガン原料の造粒粒子とリチウム原料との混合粉を得た
[0121] この混合粉を空気流通下、 950°Cで 12時間焼成 (昇降温速度 5°CZmin)した後、 解砕し、 目開き 45 mの篩を通し、リチウム複合酸ィ匕物粒子 (以下「実施例 1のリチウ ム複合酸ィ匕物粒子」という。)を得た。
[0122] <実施例 2>
ニッケル原料として NiO、コバルト原料として Co (OH)、マンガン原料として Mn O
2 3 4
、及びLi原料としてLiOH·H OをNi: Co : Mn:Li=0. 33 : 0. 33 : 0. 33 : 0. 05の
2
モル比となるように秤量し、これに純水をカ卩えてスラリーとし、撹拌しながら、循環式媒 体撹拌型湿式ビーズミルを用いて、スラリーをメジアン径 0. 20 mに湿式粉砕した。
[0123] スラリーをスプレードライヤーにより噴霧乾燥し、ニッケル原料、コバルト原料、マン ガン原料、リチウム原料カゝらなる粒径約 6 /z mのほぼ球状の造粒粒子を得た。得られ た造粒粒子に対して、メジアン径 3 μ mの LiOH粉末を、 Ni、 Co、 Mnの合計モル数 に対する Liのモル数の比が 1. 00となるように添カ卩し、ハイスピードミキサーにて混合 して、造粒粒子とリチウム原料との混合粉を得た。この混合粉を空気流通下、トンネル 炉で 955°Cで 15時間焼成したのち、得られた粗粉を解砕し、 目開き 45 μ mの篩を通 すことにより、リチウム複合酸ィ匕物粒子 (以下「実施例 2のリチウム複合酸ィ匕物粒子」と いう。)を得た。
[0124] <実施例 3 >
Co原料として CoOOHを用いた以外は、実施例 2と同じ方法にて製造を行なうこと により、リチウム複合酸化物粒子 (以下「実施例 3のリチウム複合酸ィ匕物粒子」と 、う。 )を得た。
[0125] <比較例 1 >
LiOH-H O, NiO, Co (OH)及び Mn Oを、 Li:Ni: Co : Mn= l. 05 : 0. 33 : 0.
2 2 3 4
33 : 0. 33のモル比となるように秤量し、実施例 1と同様にスラリーとして湿式粉砕した このスラリーをスプレードライヤーにより噴霧乾燥し、 NiO、 Co (OH) 、 Mn Oと Li
2 3 4
OH-H Oを含む、粒径約 10 μ mのほぼ球状の造粒粒子を得た。
2
この造粒粒子を空気流通下、実施例 1と同様に焼成、解砕することにより、リチウム 複合酸化物粒子 (以下「比較例 1のリチウム複合酸ィ匕物粒子」と!、う。)を得た。
[0126] <比較例 2>
比較例 1と同様に原料を秤量、湿式粉砕、噴霧乾燥し、 NiO、 Co (OH) 、 Mn O
2 3 4 及び LiOH'H Oを含む、粒径約 10 μ mのほぼ球状の造粒粒子を得た。
2
得られた造粒粒子に、 Bi O粉末を、 Ni、 Co、及び Mnの合計モル数に対する Biの
2 3
モル数の比が 0. 01となるように添加し、ハイスピードミキサーにて混合し、 NiO、 Co ( OH) 、 Mn O及び LiOH' H Oを含む造粒粒子と Bi O粉末との混合粉を得た。
2 3 4 2 2 3
この混合粉を空気流通下、 900°Cで 12時間焼成 (昇降温速度 5°CZmin)した後、 解砕し、目開き 45 mの篩を通し、リチウム複合酸ィ匕物粒子 (以下「比較例 2のリチウ ム複合酸ィ匕物粒子」という。)を得た。
[0127] <比較例 3 >
ニッケル、コノルト、マンガンを 0. 33 : 0. 33 : 0. 33のモル比で含有する、平均粒 径 15 μ mの共沈法で製造した粒子に対して、メジアン径 3 μ mの LiOH粉末を Ni、 C o、 Mnの合計モル数に対する Liのモル数の比が 1. 05となるように加えて混合し、造 粒粒子とリチウム原料との混合粉を得た。
この混合粉を空気流通下、トンネル炉で 900°Cで 12時間焼成したのち、目開き 45 μ mの篩を通し、リチウム複合酸ィ匕物粒子 (以下「比較例 3のリチウム複合酸ィ匕物粒 子」という。)を得た。
[0128] 〔リチウム複合酸化物粒子の評価〕
<水銀圧入法等による各種物性の測定 > 得られた実施例 1一 3及び比較例 1一 3のリチウム複合酸ィ匕物粒子について、水銀 圧入法による細孔分布曲線を測定した。なお、水銀圧入法による測定装置としては、 Micromeritics社製オートポア ΠΙ9420型を用いた。また、水銀圧入法の測定条件 としては、室温で、 3. 8kPaから 410MPaまで昇圧しながら測定を行なった。なお、 水銀の表面張力の値としては 480dynZcm、接触角の値としては 141. 3° を用い た。
[0129] 実施例 1及び比較例 1 , 2のリチウム複合酸ィ匕物粒子の細孔分布曲線を、図 1及び 図 2に実線で示す。なお、図 1及び図 2はいずれも、計測されたリチウム複合酸化物 粒子の細孔半径を横軸にとり、横軸に示された半径以上の細孔による細孔の合計体 積を、細孔半径の対数で微分した値を縦軸にとった細孔分布曲線である。また、図 2 は図 1の部分拡大図である。
[0130] また、実施例 1一 3及び比較例 1一 3のリチウム複合酸ィ匕物粒子について、窒素吸 着 BJH (Barrett, Joyner, Halenda)法による細孔分布の測定を行なった。窒素吸着 BJ H法の測定装置としては、カンタクローム社製オートソープ 1を用い、液体窒素温度 で測定を行なった。
更に、粒度分布計 (HORIBA製 LA-920)を用いて、粒子の粒度分布を測定し、 そこ力も粒子のメジアン径を求めた。
[0131] 表 1に、実施例 1一 3及び比較例 1一 3のリチウム複合酸ィ匕物粒子について、上述 の細孔分布曲線から上述の式 (A)に基づ!/、て求めた圧力 50MPaから 150MPaま での昇圧時における水銀圧入量、上述の細孔分布曲線から求めたメインピーク及び サブピークそれぞれの細孔体積並びに平均細孔半径、窒素吸着 BJH法により測定 したリチウム複合酸ィ匕物多孔質粒子 lg当たりの細孔半径 50nm以下の細孔の細孔 体積、 BET比表面積、粒度分布計によるメジアン径を示す。但し、水銀圧入法による 平均細孔半径は、二次粒子間の空隙の影響を除くため、半径 0. 005 ^ πι-0. 5 μ mの範囲の細孔を対象として求めた値を示した。
[0132] <その他の物性の測定 >
実施例 1一 3及び比較例 1一 3のリチウム複合酸ィ匕物粒子について、メジアン径、 B ET比表面積、一次粒子径、タップ密度を測定した。メジアン径の測定は、粒度分布 計 (HORIBA社製 LA-920)を用いて行なった。 BET比表面積の測定は、カンタク ローム社製オートソープ 1を用いて行なった。タップ密度の測定は、 10mlガラス製メ スシリンダーに粒子 5gを入れ、 200回タップして行なった。一次粒子径の測定は、 S EM観察によって行なった。結果を表 1に示す。
[0133] <低温負荷特性の測定 >
上記の実施例 1一 3及び比較例 1一 3のリチウム複合酸ィ匕物粒子(以下、実施例 1 一 3及び比較例 1一 3のリチウム複合酸ィヒ物粒子を区別せずに述べる場合、適宜「正 極材」という)を用いて、以下の方法でそれぞれ電池を作製し、低温負荷特性を測定 した。
[0134] 正極材を 75重量%、アセチレンブラックを 20重量%、ポリテトラフルォロエチレンパ ウダ一を 5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたも のを 12mm φの円盤状に打ち抜いた。この際、全体の重量が約 17mgになるように 調整した。これを A1のエキスパンドメタルに圧着して正極とした。
[0135] 負極活物質として平均粒径約 8— 10 /z mの黒鉛粉末 (d = 3. 35A)を用い、バイ
002
ンダ一としてポリフッ化ビ-リデンを用いた。これらを重量比 (負極活物質:バインダー )で 92. 5 : 7. 5の割合となるように秤量し、 N—メチルピロリドン溶媒中で混合して、負 極合材スラリーを得た。得られたスラリーを 20 m厚さの銅箔の片面に塗布して乾燥 し、直径 12 φ mmの円形に打ち抜き 0. 5tonZcm2でプレス処理したものを負極とし た。
[0136] 正極と負極との容量バランス比 Rは、 1. 2-1. 5の範囲内となるように設計した。容 量バランス比 Rとしては、負極力 SLi金属を析出することなく Liイオンを吸蔵できる容量 を Q (mAhZg)、正極力 sLiイオンを放出できる容量を Q (mAhZg)とし、更に負極 a c
及び正極の活物質の重量をそれぞれ W (g)、 W (g)とした場合に、 R= (Q XW ) / (Q XW )で表わされる値を用いた。 Q及び Qの測定法としては、正極ないし負極と 、対極 Li金属、セパレータ、電解液を使用し、 2032型コインセルを組み、出来る限り 低い電流密度、例えば 20mAZg (活物質)以下で、負極は自然電位から下限 5mV までの放電 (Li吸蔵)容量、正極は自然電位力 4. 2Vまでの充電容量を測定するこ とで求めた。 [0137] 上記正極、負極を組み合わせ、非水電解液溶液としてはエチレンカーボネート (E C) +ジメチルカーボネート(DMC) +ェチルメチルカーボネート(EMC) (体積比 3 : 3 :4)の混合溶媒に、 LiPFを 1モル ZLとなるように溶解したものを用いて、コインセ
6
ルを組んだ。得られたコインセルについて、出来る限り低い電流密度で、充電上限電 圧 4. IV、放電下限電圧 3. OVとして、充放電 2サイクルの初期コンディショニングを 行い、その際の 2サイクル目における正極活物質単位重量当たりの放電容量〔Qd (m AhZg)〕を測定した。
[0138] 引き続いて、電池を十分緩和した後、 1時間率電流値〔lC (mA)〕 = [Q (mAh/g
d
) X正極活物質重量 (g)として、 1Z (3C)の定電流により 72分間充電を行なった。次 いで、 1時間静置した後、— 30°Cの低温雰囲気に 1時間以上保持した。その後、 1Z 4Cで 10秒間放電したときの電流値 (1)、及び、放電直前の OCV (Open Circuit Voltage)と放電 10秒後の OCVとの差( Δ V)を測定し、次式により抵抗 (R)を算出し た。
R= Δν/Ι
[0139] 表 1に、実施例 1一 3、比較例 1一 3の正極材をそれぞれ正極活物質として使用した 電池について測定した抵抗値を示す。抵抗値が小さいほど、低温負荷特性が良好 であることを表わす。
[0140] <塗布性の測定 >
実施例 1一 3及び比較例 1, 2の正極材について、それぞれの塗布性を以下の方法 により測定した。
正極材を 85重量%、アセチレンブラックを 10重量%、ポリビ-リデンフルオライドを 5重量%、更に正極材に対して 0. 3重量%のシユウ酸二水和物を、 Ν—メチルピロリド ンに混合、分散し、スラリーとした。ポリビ-リデンフルオライドとシユウ酸二水和物は、 予め Ν—メチルピロリドンに溶解させたものを用いた。正極材、アセチレンブラック及び ポリビ-リデンフルオライドの合計重量の全スラリー重量に対する割合力 それぞれ 表 1に記載の値 (42重量%又は 43重量%)となるように調整し、得られたスラリーの 2 5°Cにおけるせん断速度 20s— 1での粘度を、 E型粘度計にて測定した。測定はスラリ 一作製当日(初日)に行ない、一部については作製の翌日(2日目)にも行なった。作 製後のスラリーは密閉して、室温、常圧条件下で保存した。
上述の手順により測定された粘度の値を表 1に示す。粘度が低い程、塗布性が良 好であることを表す。
[表 1]
表 1
Figure imgf000037_0001
※注 1. . . サブピークが特定できず。
※注 2. . . データ無し。 <データの評価 >
比較例 1のリチウム複合酸化物粒子は、図 1から分力るように、細孔分布曲線にお いて半径 1200nmにピークトップを有するメインピークが見受けられる力 特定し得る ような明確なサブピークの存在は認められな力つた。また、表 1から明らかなように、圧 力 50MPaから 150MPaまでの昇圧時における水銀圧入量が 0. 0213cm3Zgと、本 発明の規定範囲よりも大き力つた。即ち、この比較例 1のリチウム複合酸ィ匕物粒子は 、本発明の条件 (A)及び (C)を満たして 、な 、ことになる。
そして、この比較例 1のリチウム複合酸ィ匕物粒子は、表 1から明らかなように、 -30°C での抵抗値は良好であるものの、スラリー粘度が高ぐ特に初日から 2日目にかけて のスラリー粘度が大幅に上昇している。このことは、比較例 1のリチウム複合酸ィ匕物粒 子力 塗布性が十分でないことを示している。
[0143] 比較例 2のリチウム複合酸ィ匕物粒子は、図 1から分力るように、細孔分布曲線にお いて半径 2000nmにピークトップを有するメインピークの他に、サブピークの存在が 認められるが、そのピークトップは半径 400nmであり、本発明の規定範囲よりも大き かった。また、表 1から明らかなように、上記の水銀圧入量は 0. 0094cm3Zgと、本 発明の規定範囲に満たな力つた。即ち、この比較例 2のリチウム複合酸ィ匕物粒子は、 本発明の条件 (B)及び (C)を満たして 、な 、ことになる。
この比較例 2のリチウム複合酸ィ匕物粒子は、表 1から明らかなように、— 30°Cでの抵 抗値が 535 Ωと高ぐ低温負荷特性が十分でないことが分かる。
[0144] 比較例 3のリチウム複合酸ィ匕物粒子は、細孔分布曲線において半径 2900nmにピ ークトップを有するメインピークの他に、サブピークの存在が認められる力 そのピー タトップは半径 73nmであり、本発明の規定範囲よりも小さ力つた。また、表 1から明ら かなように、上記の水銀圧入量は 0. 0090cm3/gと、本発明の規定範囲に満たなか つた。即ち、この比較例 3のリチウム複合酸ィ匕物粒子も、本発明の条件 (B)及び (C) を満たして ヽな 、ことになる。
そして、この比較例 3のリチウム複合酸ィ匕物粒子も、表 1から明らかなように、 -30°C での抵抗値が 516 Ωと高ぐ低温負荷特性が十分でないことが分かる。
[0145] これに対して、実施例 1のリチウム複合酸ィ匕物粒子は、図 1から分かるように、細孔 分布曲線において、細孔半径 950nmにピークトップを有するメインピークの他に、細 孔半径 170nmにピークトップを有するサブピークを示している。また、上記の水銀圧 入量は 0. 0183cm3/gと、本発明の規定範囲内の値であった。更に、実施例 2及び 実施例 3のリチウム複合酸ィ匕物粒子も、表 1に示すように、細孔分布曲線において本 発明の規定範囲内のサブピークを有し、また、上記の水銀圧入量も本発明の規定範 囲内の値であった。即ち、実施例 1一 3のリチウム複合酸ィ匕物粒子はいずれも、本発 明の条件 (A)— (C)の全てを満たして 、ることになる。
そして、これら実施例 1一 3のリチウム複合酸ィ匕物粒子は、表 1から明らかなように、 —30°Cでの抵抗値、スラリー粘度ともに低い値を示しており、低温負荷特性及び塗布 性の双方に優れて 、ることが分かる。
[0146] 以上、本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離 れることなく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2003年 9月 26日付で出願された日本特許出願 (特願 2003— 33 6335号、特願 2003— 336336号及び特願 2003— 336337号各明細書)、並びに 2 004年 9月 27日付で出願された日本特許出願 (特願 2004— 278953号明細書)に 基づいており、その全体が引用により援用される。
産業上の利用可能性
[0147] 本発明のリチウム二次電池用正極材用リチウム複合酸化物粒子は、結着剤と共に 集電体上に活物質層を形成させてリチウム二次電池用正極とすることによって、携帯 用電子機器、通信機器及び自動車用動力源などの各種リチウム二次電池用途に用 V、ることができるので、その工業的価値は極めて大き!/、。

Claims

請求の範囲
[1] 水銀圧入法による測定にお!、て、以下の条件 (A)を満たし、且つ、以下の条件 (B) 及び条件 (C)のうち少なくとも一方の条件を満たす
ことを特徴とする、リチウム二次電池正極材用リチウム複合酸ィ匕物粒子。
•条件 (A) :
水銀圧入曲線において、圧力 50MPaから 150MPaまでの昇圧時における水銀圧 入量が 0. 02cm3Zg以下である。
•条件 (B) :
水銀圧入曲線において、圧力 50MPaから 150MPaまでの昇圧時における水銀圧 入量が、 0. 01cm3Zg以上である。
•条件 (C) :
平均細孔半径が 10nm以上、 lOOnm以下であり、且つ、
細孔分布曲線が、細孔半径 0. 以上、 50 m以下にピークトップが存在する メインピークと、細孔半径 80nm以上、 300nm以下にピークトップが存在するサブピ 一クとを有する。
[2] 窒素吸着法により計測される、半径 50nm以下の細孔の合計体積が、該リチウム複 合酸ィ匕物粒子 lg当たり 0. 01cm3以下である
ことを特徴とする、請求項 1記載のリチウム二次電池正極材用リチウム複合酸ィ匕物粒 子。
[3] 少なくとも Ni及び Coを含有する
ことを特徴とする、請求項 1又は請求項 2に記載のリチウム二次電池正極材用リチウ ム複合酸化物粒子。
[4] 下記組成式(1)で表わされる組成を有する
Li Ni Co M O 組成式(1)
x (1-y-z) y z 2
(組成式(1)において、 Mは、 Mn、 Al、 Fe、 Ti、 Mg、 Cr、 Ga、 Cu、 Zn及び Nbから 選ばれる少なくとも 1種の元素を表わし、 Xは 0< χ≤1. 2を満たす数を表わし、 yは 0 . 05≤y≤0. 5を満たす数を表わし、 zは 0. 01≤z≤0. 5を満たす数を表わす。 ) ことを特徴とする、請求項 1一 3の何れか一項に記載のリチウム二次電池正極材用リ チウム複合酸ィ匕物粒子。
[5] 集電体と、該集電体上に設けられた正極活物質層とを備えるリチウム二次電池用 正極であって、
該正極活物質層が、少なくとも、請求項 1一 4の何れか一項に記載のリチウム二次 電池正極材用リチウム複合酸化物粒子と、結着剤とを含有する
ことを特徴とする、リチウム二次電池用正極。
[6] リチウムを吸蔵'放出可能な正極及び負極、並びに、リチウム塩を電解質として含有 する有機電解液を備えたリチウム二次電池であって、
該正極力 請求項 5記載のリチウム二次電池用正極である
ことを特徴とする、リチウム二次電池。
PCT/JP2004/014090 2003-09-26 2004-09-27 リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池 WO2005031899A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04788186A EP1667260A4 (en) 2003-09-26 2004-09-27 LITHIUM COMPOSITE OXIDE PARTICLE FOR POSITIVE ELECTRODE MATERIAL WITH LITHIUM ACCUMULATOR CONTAINING SAME, POSITIVE ELECTRODE FOR LITHIUM ACCUMULATOR, AND LITHIUM ACCUMULATOR
US11/316,526 US20060134521A1 (en) 2003-09-26 2005-12-22 Lithium composite oxide particle for positive electrode material of lithium secondary battery, and lithium secondary battery positive electrode and lithium secondary battery using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-336336 2003-09-26
JP2003336335 2003-09-26
JP2003336337 2003-09-26
JP2003336336 2003-09-26
JP2003-336337 2003-09-26
JP2003-336335 2003-09-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/316,526 Continuation US20060134521A1 (en) 2003-09-26 2005-12-22 Lithium composite oxide particle for positive electrode material of lithium secondary battery, and lithium secondary battery positive electrode and lithium secondary battery using the same

Publications (1)

Publication Number Publication Date
WO2005031899A1 true WO2005031899A1 (ja) 2005-04-07

Family

ID=34396837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014090 WO2005031899A1 (ja) 2003-09-26 2004-09-27 リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池

Country Status (4)

Country Link
US (1) US20060134521A1 (ja)
EP (1) EP1667260A4 (ja)
KR (1) KR100727332B1 (ja)
WO (1) WO2005031899A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309376B2 (en) 2007-10-26 2012-11-13 E I Du Pont De Nemours And Company Process and materials for making contained layers and devices made with same
US9070930B2 (en) 2006-02-16 2015-06-30 Lg Chem, Ltd. Organic/inorganic composite electrolyte and electrochemical device prepared thereby
CN104752642A (zh) * 2005-10-20 2015-07-01 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
US9225005B2 (en) 2010-04-01 2015-12-29 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary-battery, process for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
WO2018181158A1 (ja) * 2017-03-31 2018-10-04 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2485306A1 (en) * 2003-05-13 2012-08-08 Mitsubishi Chemical Corporation Layered lithium nickel composite oxide powder and process for producing the same
US8535829B2 (en) * 2006-04-07 2013-09-17 Mitsubishi Chemical Corporation Lithium transition metal-based compound powder for positive electrode material in lithium rechargeable battery, method for manufacturing the powder, spray dried product of the powder, firing precursor of the powder, and positive electrode for lithium rechargeable battery and lithium rechargeable battery using the powder
KR101222381B1 (ko) * 2006-05-12 2013-01-15 파나소닉 주식회사 축전 디바이스
JP2008021614A (ja) * 2006-07-14 2008-01-31 Nissan Motor Co Ltd 電池用電極
JP4936440B2 (ja) 2006-10-26 2012-05-23 日立マクセルエナジー株式会社 非水二次電池
CN101536220B (zh) * 2006-12-26 2013-07-10 三菱化学株式会社 锂过渡金属类化合物粉末、其制造方法、及锂二次电池
JP5251024B2 (ja) * 2007-07-26 2013-07-31 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
EP2202828B1 (en) * 2007-09-04 2013-12-11 Mitsubishi Chemical Corporation Lithium transition metal-type compound powder, method for manufacturing the same and lithium secondary battery positive electrode and lithium secondary battery using the same
AU2008319749B2 (en) * 2007-11-01 2012-10-18 Agc Seimi Chemical Co., Ltd. Granulated powder of transition metal compound for raw material for positive electrode active material of lithium secondary battery, and method for producing the same
EP2239230A4 (en) * 2007-12-25 2017-01-04 Kao Corporation Burned composite metal oxide and process for producing the same
WO2009098835A1 (ja) 2008-02-04 2009-08-13 Panasonic Corporation リチウム含有遷移金属酸化物の製造方法
US8968820B2 (en) * 2008-04-25 2015-03-03 Nanotek Instruments, Inc. Process for producing hybrid nano-filament electrodes for lithium batteries
CN102203987B (zh) * 2008-10-27 2014-04-09 花王株式会社 锂复合氧化物烧结体
US9099738B2 (en) * 2008-11-03 2015-08-04 Basvah Llc Lithium secondary batteries with positive electrode compositions and their methods of manufacturing
CN102067362B (zh) * 2008-12-05 2013-12-25 Jx日矿日石金属株式会社 锂离子二次电池用正极活性物质、使用其的二次电池用正极及使用该正极的锂离子二次电池
KR20110039809A (ko) * 2009-10-12 2011-04-20 삼성에스디아이 주식회사 리튬 이차 전지 음극 활물질용 리튬 티탄 산화물, 이의 제조 방법 및 이를 구비한 리튬 이차 전지
US20120280435A1 (en) * 2009-11-02 2012-11-08 Basvah, Llc Active materials for lithium-ion batteries
JP5175826B2 (ja) * 2009-12-02 2013-04-03 トヨタ自動車株式会社 活物質粒子およびその利用
WO2011089701A1 (ja) 2010-01-21 2011-07-28 トヨタ自動車株式会社 リチウム二次電池
TW201136837A (en) * 2010-01-29 2011-11-01 Basf Se Producing oxidic compounds
CN103038931B (zh) 2010-08-31 2016-01-20 株式会社艾迪科 非水电解液二次电池
CN103098271B (zh) 2010-09-08 2016-03-09 Sk新技术株式会社 用于锂二次电池的阳极活性物质及其制备方法
KR101432628B1 (ko) * 2010-09-30 2014-08-22 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
WO2012049778A1 (ja) * 2010-10-15 2012-04-19 トヨタ自動車株式会社 二次電池
WO2012117557A1 (ja) * 2011-03-03 2012-09-07 トヨタ自動車株式会社 非水電解液二次電池
EP2706599B1 (en) * 2011-05-06 2021-03-03 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary cell
JP5741932B2 (ja) * 2011-06-01 2015-07-01 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の前駆体となる遷移金属複合水酸化物とその製造方法、及び非水系電解質二次電池用正極活物質の製造方法
EP3141528B1 (en) * 2011-08-16 2019-09-04 Tiax Llc Polycrystalline metal oxide, methods of manufacture thereof, and articles comprising the same
JP5701343B2 (ja) * 2013-07-10 2015-04-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
DE102013111356B4 (de) 2013-10-15 2019-04-18 Lemken Gmbh & Co. Kg Säherz für Einzelkornsämaschine
JP6570843B2 (ja) * 2014-07-31 2019-09-04 株式会社東芝 非水電解質電池及び電池パック
JP6179499B2 (ja) 2014-11-27 2017-08-16 トヨタ自動車株式会社 リチウムイオン二次電池用正極の製造方法
CN107615530B (zh) 2015-06-02 2020-12-11 住友化学株式会社 锂二次电池用正极活性物质、锂二次电池用正极和锂二次电池
US10749165B2 (en) * 2015-08-25 2020-08-18 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery and method of producing the same
KR102019838B1 (ko) * 2015-09-30 2019-09-10 주식회사 엘지화학 비수성 전해액을 포함하는 리튬 이차 전지
US11239458B2 (en) * 2016-09-07 2022-02-01 Gs Yuasa International Ltd. Energy storage device and method for manufacturing energy storage device
JP6381606B2 (ja) * 2016-10-31 2018-08-29 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
KR102352108B1 (ko) * 2016-11-08 2022-01-18 혼다 기켄 고교 가부시키가이샤 비수계 전해질 2차 전지용 전극 및 이것을 구비하는 비수계 전해질 2차 전지
WO2018150843A1 (ja) 2017-02-14 2018-08-23 パナソニックIpマネジメント株式会社 非水電解質二次電池
JP6368022B1 (ja) 2017-05-31 2018-08-01 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JPWO2019193873A1 (ja) * 2018-04-06 2021-04-08 パナソニックIpマネジメント株式会社 非水電解質二次電池の正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
US11923541B2 (en) 2018-07-18 2024-03-05 Asahi Kasei Kabushiki Kaisha Lithium ion secondary battery
JP7281091B2 (ja) 2020-02-10 2023-05-25 トヨタ自動車株式会社 二次電池の正極材料、および二次電池
JPWO2021172442A1 (ja) * 2020-02-27 2021-09-02

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315502A (ja) * 1999-04-30 2000-11-14 Dowa Mining Co Ltd 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000323123A (ja) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd 非水系二次電池用正極活物質および正極
JP2001135314A (ja) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料並びにこれを用いた正極及びリチウム二次電池
WO2001092158A1 (fr) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Oxyde composite de metal de transition de lithium
JP2003059489A (ja) * 2001-08-09 2003-02-28 Toyota Motor Corp リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池並びにリチウム二次電池用正極活物質の製造方法
JP2003277062A (ja) * 2002-03-26 2003-10-02 Japan Science & Technology Corp 新規なテンプレート除去法によりコントロールされた細孔を持つミクロ−メソポーラス金属酸化物の製造方法
JP2003336337A (ja) 2002-05-20 2003-11-28 Sanki Eng Co Ltd 間仕切り用金具、間仕切り構造およびフィルタ天井内間仕切り構造
JP2003336336A (ja) 2002-05-23 2003-11-28 Matsushita Electric Works Ltd 壁パネルの建て込み構造
JP2003336335A (ja) 2002-05-20 2003-11-28 Katou Sangyo Kk 収納及び取出し可能な壁構造
JP2004278953A (ja) 2003-03-17 2004-10-07 Daikin Ind Ltd 空気調和機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075878Y2 (ja) * 1988-03-16 1995-02-15 三菱マテリアル株式会社 かんがい用散水制御装置
JP2585954B2 (ja) * 1993-06-16 1997-02-26 株式会社コルグ 自動伴奏装置
JP2996927B2 (ja) * 1997-03-11 2000-01-11 株式会社東芝 非水電解液二次電池及びその製造方法
DE19849343A1 (de) * 1997-10-30 1999-06-02 Samsung Display Devices Co Ltd Lithiumcompositoxid, dessen Herstellung und sekundäre Lithiumionzelle mit Lithiumcompositoxid als aktives Material der positiven Elektrode
DE19935090A1 (de) * 1999-07-27 2001-02-08 Emtec Magnetics Gmbh Lithiumoxid enthaltende Lithiuminterkalationsverbindungen
CA2388936C (en) * 2001-06-07 2006-07-18 Kawatetsu Mining Co., Ltd. Cathode material for use in lithium secondary battery and manufacturing method thereof
TW200423458A (en) * 2002-11-29 2004-11-01 Seimi Chem Kk Method for preparing positive electrode active material for lithium secondary cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315502A (ja) * 1999-04-30 2000-11-14 Dowa Mining Co Ltd 正極活物質と該正極活物質を用いたリチウム二次電池
JP2000323123A (ja) * 1999-05-06 2000-11-24 Dowa Mining Co Ltd 非水系二次電池用正極活物質および正極
JP2001135314A (ja) * 1999-11-05 2001-05-18 Mitsubishi Chemicals Corp リチウム二次電池用正極材料並びにこれを用いた正極及びリチウム二次電池
WO2001092158A1 (fr) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Oxyde composite de metal de transition de lithium
JP2003059489A (ja) * 2001-08-09 2003-02-28 Toyota Motor Corp リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池並びにリチウム二次電池用正極活物質の製造方法
JP2003277062A (ja) * 2002-03-26 2003-10-02 Japan Science & Technology Corp 新規なテンプレート除去法によりコントロールされた細孔を持つミクロ−メソポーラス金属酸化物の製造方法
JP2003336337A (ja) 2002-05-20 2003-11-28 Sanki Eng Co Ltd 間仕切り用金具、間仕切り構造およびフィルタ天井内間仕切り構造
JP2003336335A (ja) 2002-05-20 2003-11-28 Katou Sangyo Kk 収納及び取出し可能な壁構造
JP2003336336A (ja) 2002-05-23 2003-11-28 Matsushita Electric Works Ltd 壁パネルの建て込み構造
JP2004278953A (ja) 2003-03-17 2004-10-07 Daikin Ind Ltd 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1667260A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752642A (zh) * 2005-10-20 2015-07-01 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
CN104752642B (zh) * 2005-10-20 2018-04-20 三菱化学株式会社 锂二次电池以及其中使用的非水电解液
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9070930B2 (en) 2006-02-16 2015-06-30 Lg Chem, Ltd. Organic/inorganic composite electrolyte and electrochemical device prepared thereby
US8309376B2 (en) 2007-10-26 2012-11-13 E I Du Pont De Nemours And Company Process and materials for making contained layers and devices made with same
US9225005B2 (en) 2010-04-01 2015-12-29 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary-battery, process for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
WO2018181158A1 (ja) * 2017-03-31 2018-10-04 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018174106A (ja) * 2017-03-31 2018-11-08 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池

Also Published As

Publication number Publication date
US20060134521A1 (en) 2006-06-22
KR100727332B1 (ko) 2007-06-12
EP1667260A4 (en) 2007-10-03
KR20060066120A (ko) 2006-06-15
EP1667260A1 (en) 2006-06-07

Similar Documents

Publication Publication Date Title
WO2005031899A1 (ja) リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP4475326B2 (ja) リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前駆体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5343347B2 (ja) リチウム二次電池用正極活物質材料及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP4613943B2 (ja) リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5359140B2 (ja) リチウム遷移金属系化合物粉体、その製造方法並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
KR101858763B1 (ko) 리튬 이차 전지용 정극 재료 및 그 제조 방법, 그리고 리튬 이차 전지용 정극 및 리튬 이차 전지
JP5428251B2 (ja) リチウム遷移金属系化合物粉体、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP4752244B2 (ja) リチウム二次電池正極材料用層状リチウムニッケルマンガン系複合酸化物粉体及びそれを用いたリチウム二次電池正極、並びにリチウム二次電池
JP2005123179A (ja) リチウム二次電池正極材用リチウム複合酸化物粒子、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP4301875B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物及びそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP4591717B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP5157071B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2008270161A5 (ja)
JP2009164140A5 (ja)
JP2009117261A (ja) リチウム二次電池用正極活物質材料並びにそれを用いた正極及びリチウム二次電池
JP2011108554A (ja) リチウム遷移金属系化合物粉体、その製造方法、及びそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP4826877B2 (ja) 電気化学素子用電極およびそれを用いたリチウム二次電池
KR20130029041A (ko) 리튬 이차 전지 정극 재료용 분체 및 그 제조 방법, 그리고 그것을 사용한 리튬 이차 전지용 정극 및 리튬 이차 전지
WO2007116971A1 (ja) リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池
JP2011105594A (ja) ニッケルマンガンコバルト系複合酸化物、層状リチウムニッケルマンガンコバルト系複合酸化物及びリチウム二次電池正極材料とそれを用いたリチウム二次電池用正極、並びにリチウム二次電池
JP4997700B2 (ja) リチウム二次電池正極材料用リチウムニッケルマンガン系複合酸化物粉体及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2010278015A (ja) リチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体、その製造方法、及び噴霧乾燥粉体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2013093171A (ja) リチウム二次電池用正極およびそれを用いたリチウム二次電池
JP4591716B2 (ja) リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、噴霧乾燥体、および焼成前駆体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池
JP2005123180A (ja) リチウム二次電池正極材用リチウム複合酸化物粒子及びその製造方法、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027209.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11316526

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004788186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067005878

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004788186

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067005878

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11316526

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020067005878

Country of ref document: KR