WO2005031714A1 - 磁気記録媒体及びその製造方法 - Google Patents

磁気記録媒体及びその製造方法 Download PDF

Info

Publication number
WO2005031714A1
WO2005031714A1 PCT/JP2004/013968 JP2004013968W WO2005031714A1 WO 2005031714 A1 WO2005031714 A1 WO 2005031714A1 JP 2004013968 W JP2004013968 W JP 2004013968W WO 2005031714 A1 WO2005031714 A1 WO 2005031714A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
soft magnetic
substrate
recording medium
magnetic layer
Prior art date
Application number
PCT/JP2004/013968
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Hattori
Mitsuru Takai
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to JP2005514218A priority Critical patent/JP3848672B2/ja
Priority to US10/571,481 priority patent/US20070031705A1/en
Publication of WO2005031714A1 publication Critical patent/WO2005031714A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/667Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers including a soft magnetic layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/736Non-magnetic layer under a soft magnetic layer, e.g. between a substrate and a soft magnetic underlayer [SUL] or a keeper layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/736Non-magnetic layer under a soft magnetic layer, e.g. between a substrate and a soft magnetic underlayer [SUL] or a keeper layer
    • G11B5/7364Non-magnetic single underlayer comprising chromium
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/855Coating only part of a support with a magnetic layer

Definitions

  • the present invention relates to a magnetic recording medium such as a node disk and a method for manufacturing the same.
  • the base surface on both sides or one side of a substrate is polished by a CMP (Chemical Mechanical Polishing) method or the like, flattened, and recorded on the base surface of the substrate.
  • CMP Chemical Mechanical Polishing
  • the surface roughness of the entire magnetic recording medium is made as small as possible (for example, JP-A-5-314471, JP-A-9231562). Gazette).
  • the conventional flattening of the substrate requires repeated polishing of the base surface of the substrate a plurality of times in order to achieve a desired surface roughness, resulting in a problem of low production efficiency.
  • the surface roughness gradually increases in the process of laminating the orientation layer, the soft magnetic layer, and the like, and the final surface roughness of the entire magnetic recording medium is within an allowable range. May be exceeded.
  • a magnetic recording medium candidate that can further improve the areal recording density
  • a magnetic recording medium such as a discrete type in which a recording layer is formed in an uneven pattern has been attracting attention.
  • the surface roughness of the recording layer formed by the pattern tends to be further increased.
  • the flying height of the magnetic head tends to decrease with an increase in the surface recording density, and as the flying height decreases, even if the surface roughness is of a size that has not conventionally been a problem, The recording and reading accuracy of the magnetic recording medium may be greatly reduced.
  • the present invention has been made in view of the above problems, and has as its object to provide a low-cost magnetic recording medium having a small surface roughness and a method for manufacturing the magnetic recording medium.
  • the surface roughness on the recording layer side is smaller than the surface roughness on the base surface of the substrate between the substrate and the recording layer, whereby the surface roughness is reduced.
  • This realizes a low-cost magnetic recording medium. That is, by providing a flat intermediate layer closer to the surface of the magnetic recording medium than the substrate, a magnetic recording medium having a small surface roughness can be manufactured efficiently and at low cost. Also, since the recording layer is formed in a flat shape following the flat intermediate layer, processing for flattening the surface of the recording layer is unnecessary. Since the amount of processing can be suppressed, it is possible to prevent the recording layer from deteriorating.
  • the soft magnetic layer also serves as an intermediate layer. Since the soft magnetic layer is much thicker than the recording layer, even if the surface of the soft magnetic layer is processed for flattening, the influence on the magnetic properties is suppressed to a small extent.
  • ion beam etching and reactive ion etching do not depend on a wet process such as the CMP method.
  • a dry process such as ion etching or reactive ion beam etching, deterioration of the characteristics of the intermediate layer such as the soft magnetic layer can be further suppressed.
  • a soft magnetic layer as an intermediate layer includes a first soft magnetic layer and a second soft magnetic layer formed on the first soft magnetic layer.
  • the surface roughness of the second soft magnetic layer is smaller than the surface roughness of the surface of the first soft magnetic layer on the recording layer side and smaller than the surface roughness of the base surface of the substrate.
  • the first soft magnetic layer on the base surface of the substrate by a sputtering method or a plating method
  • a soft magnetic layer significantly thicker than other layers can be efficiently formed.
  • a second soft magnetic layer on the first soft magnetic layer by a film forming technique of applying a bias power such as a bias sputtering method
  • a convex portion of the second soft magnetic layer is selected.
  • the film formation of the second soft magnetic layer proceeds while performing the etching, and the second soft magnetic layer having a small surface roughness can be formed.
  • a recording layer or the like on the second soft magnetic layer having a small surface roughness in this way, a magnetic recording medium having a small surface roughness can be efficiently manufactured at low cost.
  • a magnetic recording medium having a small surface roughness can be produced efficiently and at low cost.
  • the present invention provides a method of forming an intermediate layer by a film forming method of applying bias power, or performing dry etching such as ion beam etching, reactive ion etching, and reactive ion beam etching on the surface of the intermediate layer.
  • dry etching such as ion beam etching, reactive ion etching, and reactive ion beam etching on the surface of the intermediate layer.
  • a magnetic recording medium formed in the order of a soft magnetic layer and a recording layer on the base surface of a substrate having at least one surface as a base surface, wherein the substrate, the recording layer, Between A magnetic recording medium provided with an intermediate layer, wherein a surface roughness of a surface on the recording layer side of the intermediate layer is smaller than a surface roughness of a base surface of the substrate.
  • the soft magnetic layer has a configuration in which a first soft magnetic layer on the substrate side and a second soft magnetic layer on the recording layer side are stacked,
  • the surface roughness of the surface on the recording layer side of the second soft magnetic layer is smaller than the surface roughness of the base surface of the substrate, and the surface roughness of the surface on the recording layer side of the first soft magnetic layer.
  • a magnetic recording medium characterized by having a smaller surface roughness.
  • a magnetic recording medium in which a recording layer is formed on the base surface of a substrate having at least one surface serving as a base surface, wherein the intermediate layer is provided between the substrate and the recording layer.
  • a magnetic recording medium provided in contact with a recording layer, wherein a surface roughness of a surface of the intermediate layer on the recording layer side is smaller than a surface roughness of a base surface of the substrate.
  • a method for manufacturing a magnetic recording medium in which a soft magnetic layer and a recording layer are formed in this order on a base surface of a substrate having at least one surface serving as a base surface comprising: Forming an intermediate layer on the base surface of the substrate so that the surface roughness of the intermediate layer is smaller than the surface roughness of the base surface of the substrate while applying power to the substrate.
  • a method for manufacturing a magnetic recording medium comprising: a recording layer forming step of forming a layer.
  • a method for manufacturing a magnetic recording medium in which a soft magnetic layer and a recording layer are formed in this order on the base surface of a substrate having at least one surface serving as a base surface comprising: An intermediate layer forming step of forming an intermediate layer on the substrate, and an intermediate layer formed by drying the surface of the intermediate layer by dry etching so that the surface roughness is smaller than the surface roughness of the base surface of the substrate.
  • a method for manufacturing a magnetic recording medium comprising: a flattening step; and a recording layer forming step of forming the recording layer on the intermediate layer.
  • the intermediate layer may be formed as the intermediate layer in the intermediate layer forming step.
  • a method for manufacturing a magnetic recording medium comprising forming a soft magnetic layer.
  • the surface of the intermediate layer is flattened by dry etching between the intermediate layer forming step and the recording layer forming step.
  • a method for producing a magnetic recording medium comprising a dani process.
  • a method for producing a magnetic recording medium comprising:
  • a method for manufacturing a magnetic recording medium in which a soft magnetic layer and a recording layer are formed in this order on the base surface of a substrate having at least one surface serving as a base surface comprising: A first soft magnetic layer forming step of forming a first soft magnetic layer by forming a soft magnetic material into a film by any one of a sputtering method and a plating method, and applying a bias power in the direction of the substrate. A second soft magnetic layer forming step of forming a soft magnetic material on the first soft magnetic layer and forming a second soft magnetic layer having a smaller surface roughness than the surface roughness of the base surface of the substrate; A recording layer forming step of forming the recording layer on the second soft magnetic layer. And a method for manufacturing a magnetic recording medium.
  • a method for manufacturing a magnetic recording medium in which a soft magnetic layer and a recording layer are formed in this order on the base surface of a substrate having at least one surface serving as a base surface comprising: A first soft magnetic layer forming step of forming a first soft magnetic layer by forming a soft magnetic material by any one of a sputtering method and a plating method, and applying a bias power in the direction of the substrate. A second soft magnetic layer forming step of forming a second soft magnetic layer by forming a soft magnetic material on the first soft magnetic layer, and drying the surface of the second soft magnetic layer by dry etching.
  • the term “ion beam etching” is used as a general term for a processing method for irradiating a workpiece with an ion-irradiated gas, such as ion milling, for example.
  • the present invention is not limited to a processing method in which an ion beam is focused and irradiated.
  • magnetic recording medium is not limited to a hard disk, a floppy (registered trademark) disk, a magnetic tape, or the like that uses only magnetism for recording and reading information.
  • Magneto-optical recording media such as MO (Magneto Optical) and heat-assisted recording media that use both magnetism and heat are also used.
  • FIG. 1 is a side sectional view schematically showing a structure of a magnetic recording medium according to a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing an outline of a manufacturing process of the magnetic recording medium.
  • FIG. 3 is a side sectional view schematically showing a shape of the substrate of the magnetic recording medium after press molding.
  • FIG. 4 is a side sectional view schematically showing a state where an underlayer is formed on the substrate.
  • FIG. 5 is a side sectional view schematically showing a state in which a first soft magnetic layer is formed on the underlayer.
  • FIG. 6 is a side sectional view schematically showing a state in which a second soft magnetic layer is formed on the first soft magnetic layer.
  • FIG. 9 is a flowchart showing an outline of a manufacturing process of the magnetic recording medium according to the first embodiment of the present invention.
  • FIG. 10 is a side sectional view schematically showing the structure of the magnetic recording medium.
  • FIG. 11 is a side cross-sectional view schematically showing a state where the second soft magnetic layer is flattened in the manufacturing process of the magnetic recording medium.
  • FIG. 12 is a side sectional view schematically showing a structure of a magnetic recording medium according to a third embodiment of the present invention.
  • FIG. 14 is a side sectional view schematically showing a state in which the soft magnetic layer is flattened in the process of manufacturing the magnetic recording medium.
  • FIG. 15 is a side sectional view schematically showing a structure of a magnetic recording medium according to a fourth embodiment of the present invention.
  • FIG. 16 is an AFM photograph showing an enlarged surface state of the base surface of the substrate of the magnetic recording medium according to the first embodiment of the present invention.
  • FIG. 20 is an AFM photograph showing a surface state of a second soft magnetic layer of a magnetic recording medium according to a sixth embodiment of the present invention in an enlarged manner.
  • FIG. 21 is a flowchart showing an outline of another example of the manufacturing process of the magnetic recording medium according to the third embodiment of the present invention.
  • the magnetic recording medium 10 has an underlayer 14 and a soft magnetic layer (intermediate layer) on a base surface 12 A of a substrate 12 having one surface as a base surface 12 A.
  • This is a perpendicular recording type in which 16, an orientation layer 18, a recording layer 20, a protective layer 22, and a lubricating layer 24 are formed in this order.
  • the magnetic recording medium 10 has a configuration in which the soft magnetic layer 16 is formed by laminating a first soft magnetic layer 26 on the substrate 12 side and a second soft magnetic layer 28 on the recording layer 20 side.
  • the surface roughness of the surface 28A on the recording layer 20 side of the second soft magnetic layer 28 is smaller than the surface roughness of the base surface 12A of the substrate 12, and the surface roughness of the first soft magnetic layer 26 on the recording layer 20 side. It is characterized by being smaller than the surface roughness of the surface 26A.
  • the other configuration is the same as that of the conventional magnetic recording medium, and the description will be appropriately omitted.
  • the substrate 12 is made of glass and has a thickness of 0.2 to 2 mm.
  • the underlayer 14 is made of Ta (tantalum), Cr (chromium), or a Cr alloy and has a thickness of 0 to 2000 nm.
  • the first soft magnetic layer 26 and the second soft magnetic layer 28 are both made of a Fe (iron) alloy or a Co (cobalt) alloy, and the first soft magnetic layer 26 and the second The total thickness of the second soft magnetic layer 28 is 50-300 nm.
  • the first soft magnetic layer 26 is formed thicker than the second soft magnetic layer 28.
  • the orientation layer 18 is made of Cr, a nonmagnetic CoCr (cobalt chromium) alloy, MgO (magnesium oxide), Ti (titanium), or the like, and has a thickness of 3 to 30 nm.
  • the recording layer 20 is made of a Co (cobalt) alloy and has a thickness of 5 to 30 nm.
  • the protective layer 22 is made of diamond-like carbon and has a thickness of 115 nm.
  • DLC diamond-like carbon
  • a material exhibiting a hardness of about Zmm 2 is used in the meaning.
  • the lubricating layer 24 is made of PFPE (perfluoropolyether) and has a thickness of 11 to 12 nm.
  • the substrate 12 is formed (S102). Specifically, the glass is heated to a molten state, and formed into a plate by press molding. As a result, a substrate 12 having a center line average roughness of the base surface 12A of about 10 to 20 nm as shown in FIG. 3 is obtained.
  • an underlayer 14 is formed on the base surface 12A of the substrate 12 by a sputtering method (S104).
  • the underlayer 14 is formed in a shape following the surface shape of the base surface 12A of the surface force substrate 12.
  • the first soft magnetic layer 26 is formed on the underlayer 14 by a sputtering method or a plating method (S106).
  • the first soft magnetic layer 26 is formed to have a surface 26A force and a shape following the surface shape of the underlayer 14.
  • a second soft magnetic layer 28 is formed on the first soft magnetic layer 26 by a bias snuttering method (S108).
  • the film forming action by sputtering and the etching action of etching a part of the second soft magnetic layer 28 that has already been formed by the sputtering gas energized by the bias power simultaneously proceed, and the film forming is performed.
  • the film formation proceeds when the action exceeds the etching action.
  • the film forming effect by sputtering is a force that tends to form the second soft magnetic layer 28 according to the shape of the surface 26A of the first soft magnetic layer 26.
  • the second soft magnetic layer 28 Since the second soft magnetic layer 28 has a tendency to be selectively removed earlier than the portion, the second soft magnetic layer 28 is formed by this etching action while suppressing surface irregularities.
  • the center line average roughness of the surface 28A of the second soft magnetic layer 28 is about 0.5-2 nm, which is smaller than the surface roughness of the base surface 12A of the substrate 12, and It becomes smaller than the surface roughness of the surface 26A on the recording layer 20 side in 6.
  • the orientation layer 18 is formed on the surface 28A of the second soft magnetic layer 28 by a sputtering method (S110).
  • the orientation layer 18 is formed to have a flat surface following the shape of the surface 28A of the second soft magnetic layer 28.
  • a recording layer 20 is formed on the alignment layer 18 by a sputtering method (S112).
  • the orientation layer 18 and the recording layer 20 are formed to have flat surfaces according to the shape of the surface 28A of the second soft magnetic layer 28.
  • a protective layer 22 is formed on the recording layer 20 by a CVD (Chemical Vapor Deposition) method (S114), and a lubricating layer 24 is formed on the protective layer 22 by a dive method (S116). .
  • CVD Chemical Vapor Deposition
  • S116 dive method
  • the magnetic recording medium 10 has the soft magnetic layer 16 having the two-layer structure and the first soft magnetic layer 26 having the second soft magnetic layer 26 regardless of the conventional polishing of the substrate.
  • the soft magnetic layer 28 By forming the soft magnetic layer 28 by the bias sputtering method, the surface roughness of the recording layer 42, the protective layer 22, and the lubricating layer 24 is suppressed to be small, and the production efficiency is good and the cost is low.
  • the surface roughness of the soft magnetic layer 16 disposed closer to the surface of the magnetic recording medium 10 than the other layers is reduced. The effect has been enhanced.
  • the flat second soft magnetic layer 28 is formed by the bias sputtering method, and the recording layer 20 is flattened or a bias power is applied to form the recording layer 20.
  • the recording layer 20 can be prevented from deteriorating.
  • the film forming rate is slower by the amount of the etching action.
  • the film is formed at a higher deposition rate than the noise sputtering method, and the sputtering method or the plating method is used, so that the production efficiency is high.
  • the force of forming the second soft magnetic layer 28 by using the bias sputtering method is not limited to this.
  • the present invention is not limited to this.
  • the method of forming the film is not particularly limited as long as the soft magnetic material can be formed on the surface of the substrate while pressing the surface of the substrate.
  • the second soft magnetic layer 28 is formed by using a film forming technique.
  • the second embodiment is different from the first embodiment as shown in the flowchart of FIG.
  • the surface 28A of the second soft magnetic layer 28 is removed by ion beam etching.
  • a second soft magnetic layer flattening step (S202) for flattening is provided, and the surface roughness is smaller than that of the magnetic recording medium 10 according to the first embodiment.
  • the recording medium 50 is obtained.
  • Other configurations are the same as those in the first embodiment, and thus the same reference numerals as in FIGS.
  • the underlayer 14 and the first soft magnetic layer 26 are formed on the base surface 12A of the substrate 12 as in the first embodiment, and the second soft magnetic layer 28 is formed by the bias sputtering method. Film (see Figure 6).
  • the surface roughness of the surface 28A is smaller than the surface roughness of the base surface 12A of the substrate 12, and the surface of the surface 26A of the first soft magnetic layer 26 on the recording layer 20 side. It is formed smaller than the roughness.
  • the second soft magnetic layer 28 (see FIG. 6) is irradiated with an ion beam such as Ar (argon) from a direction inclined with respect to the surface 28 A of the second soft magnetic layer 28 (see FIG. 6). Planarize while removing surface 28 of layer 28.
  • the angle of incidence of the ion beam is preferably in the range of ⁇ 10 to 15 °.
  • the “incident angle” is an incident angle with respect to the surface 28A of the second soft magnetic layer 28, and is used in the meaning of the angle formed between the surface of the target body and the central axis of the ion beam. Shall decide. For example, when the central axis of the ion beam is parallel to the surface 28A of the second soft magnetic layer 28, the incident angle is 0 °.
  • the second soft magnetic layer 28 has a surface 28A having a surface 28A.
  • the center line average roughness Ra is about 0.1-1 nm.
  • the orientation layer 18 S110
  • the recording layer 20 S112
  • the protective layer 22 S114
  • the lubricating layer 24 S116
  • the surface roughness of the magnetic recording medium 50 can be reduced.
  • the surface roughness of the magnetic recording medium 10 according to the first embodiment can be suppressed to be smaller than the surface roughness.
  • the soft magnetic layer 16 has a two-layer structure in which the second soft magnetic layer 28 is formed on the first soft magnetic layer 26.
  • the present invention is not limited to this, and a soft magnetic layer having three or more layers may be used.
  • the force of flattening the surface 28 A of the second soft magnetic layer 28 by an ion beam etching method is not limited to this.
  • the surface 28A of the second soft magnetic layer 28 may be flattened using other dry etching techniques such as reactive ion etching and reactive ion beam etching.
  • the magnetic recording medium 60 according to the third embodiment is such that the magnetic recording media 10 and 50 according to the first and second embodiments are each composed of a two-layer soft magnetic layer.
  • 16 has a single-layer soft magnetic layer (intermediate layer) 62, and the surface roughness of the surface 62 A of the single-layer soft magnetic layer 62 is lower than the surface of the base surface 12 A of the substrate 12. It is characterized by being controlled to be smaller than the roughness.
  • the magnetic recording medium 60 is obtained by the manufacturing method shown in the flowchart of FIG. First, the underlayer 14 and the soft magnetic layer 62 are formed on the base surface 12A of the substrate 12 by the sputtering method or the plating method as in the first embodiment (S302, see FIG. 5).
  • the surface 62 A of the soft magnetic layer 62 is removed by ion beam etching in the same manner as in the second soft magnetic layer flattening step (S 202) in the second embodiment, and FIG. As shown, the single soft magnetic layer 32 is flattened (S304). As a result, the center line average roughness Ra of the surface 62A of the soft magnetic layer 62 is about 0.1-1 nm, which is / J lower than the surface roughness of the base surface 12A of the substrate 12.
  • the alignment layer 18 (S110), the recording layer 20 (S112), the protective layer 22 (S114), and the lubricating layer 24 ( By forming S116), the magnetic recording medium 60 shown in FIG. 12 is obtained.
  • the soft magnetic layer 32 is flattened by a dry process (ion beam etching), so that the manufacturing method using a wet process like the conventional CMP method is not used. Magnetic recording media can be manufactured efficiently and at low cost. Further, since the formation of the soft magnetic layer is sufficient if a single soft magnetic layer is formed, the production efficiency can be improved also in this respect.
  • the force of flattening the surface 62A of the single-layer soft magnetic layer 62 by the ion beam etching method is not limited to this.
  • the surface 62A of the single-layer soft magnetic layer 62 may be flattened by using another dry etching technique such as ion etching or reactive ion beam etching.
  • a single soft magnetic layer 62 is formed by sputtering or plating (S302), and the surface 62A of the soft magnetic layer 62 is flattened by ion beam etching (S304).
  • a single-layer soft magnetic layer 62 having a flat surface 62A may be formed by bias sputtering (S306).
  • the single soft magnetic layer 62 may be further flattened by dry etching such as ion beam etching.
  • the fourth embodiment relates to a magnetic recording medium 70 as shown in FIG. 15, and the magnetic recording medium 70 is different from the magnetic recording medium 50 according to the second embodiment in the recording layer 72 is divided into a large number of recording elements 72A, and is a discrete track type in which a concave portion between the recording elements 72A is filled with a non-magnetic material 74. Note that a diaphragm 76 is formed on the side and bottom surfaces of the concave portion between the recording elements 72A.
  • Other configurations are the same as those in the second embodiment, and therefore, the same reference numerals as those in FIGS. 10 and 11 will be used, and description thereof will be omitted.
  • the material of the non-magnetic material 74 is SiO (silicon dioxide) or the like.
  • the diaphragm 76 is made of material
  • the magnetic recording medium 70 has an underlayer 14, a soft magnetic layer 16, an orientation layer 18, a continuous recording layer (not shown), a substrate 12, in the same manner as in the first and second embodiments. And a plurality of mask layers (not shown), a resist layer (not shown), etc. are formed, and the continuous recording layer is divided into a large number of recording elements 72A using lithography and dry etching techniques to form the recording layer 72. Since A barrier film 76 is formed by a CVD method or the like, a non-magnetic material 74 is filled in a concave portion between the recording elements 72A by a bias sputtering method or the like, and is flattened by an ion beam etching or the like. It can be obtained by forming the protective layer 22 and the lubricating layer 24 in the same manner as in the second embodiment.
  • the magnetic recording medium 70 can be manufactured efficiently and at low cost while keeping the surface roughness small.
  • the material of the soft magnetic layer is Fe (iron) alloy or Co
  • the present invention is not limited to this, but the present invention is not limited to this.
  • a soft magnetic material suitable for processing by dry etching and a soft magnetic material suitable for dry etching can be used.
  • the material is not particularly limited.
  • each of the magnetic recording media 10, 50, 60, and 70 has a base 12A having a base surface 12A and a recording layer or the like formed on one surface.
  • the present invention is not limited to this.
  • the first soft magnetic layer is formed on both surfaces of the substrate by plating or sputtering using both surfaces of the substrate as base surfaces, and the second soft magnetic layer is formed by bias sputtering or the like. If a magnetic layer is formed and a recording layer or the like is formed, a magnetic recording medium having small surface roughness on both surfaces can be manufactured efficiently and at low cost.
  • the surface of the second soft magnetic layer may be further flattened by dry etching such as ion beam etching.
  • a recording layer or the like may be formed by forming a soft magnetic layer on both sides of the substrate and flattening the layer by dry etching such as ion beam etching.
  • a single-layer soft magnetic layer may be formed on one base surface of the substrate and flattened by dry etching, and a two-layer soft magnetic layer may be formed on the other base surface.
  • the first to fourth embodiments show some application examples of the present invention, and the present invention relates to magnetic recording media of various other structures having a soft magnetic layer.
  • the present invention relates to magnetic recording media of various other structures having a soft magnetic layer.
  • it is possible to manufacture efficiently and at low cost while suppressing surface roughness.
  • the material of the substrate 12 is glass.
  • Akira is not limited to these materials, but Al 2 O 3 (alumina), Si (silicon)
  • Non-magnetic materials including SiO2, SiO2, glassy carbon, resin and the like may be used.
  • the material of the recording layer 20 (72) is a CoCr alloy.
  • the present invention is not limited to this.
  • iron group elements Co, Fe ( The present invention can also be applied to the manufacture of a magnetic recording medium composed of a recording layer of another material such as another alloy containing iron) and Ni) and a laminate thereof.
  • the underlayer 14 is formed between the substrate 12 and the soft magnetic layer 16 (62).
  • the present invention is not limited to this.
  • the configuration of the layer provided between the substrate 12 and the soft magnetic layer 16 (62) may be appropriately changed according to the type of the magnetic recording medium.
  • a plurality of layers may be formed between the substrate 12 and the soft magnetic layer 16 (62).
  • the soft magnetic layer may be formed directly on the substrate.
  • the alignment layer 18 is formed between the soft magnetic layer 16 (62) and the recording layer 20 (72), but the present invention is not limited to this.
  • the configuration of the layer provided between the soft magnetic layer 16 (62) and the recording layer 20 (72) may be appropriately changed according to the type of the magnetic recording medium. For example, a plurality of layers may be formed between the soft magnetic layer 16 (62) and the recording layer 20 (72). Further, the recording layer 20 (72) may be formed directly on the soft magnetic layer 16 (62) as the intermediate layer.
  • the surface roughness of the surface 2 8 (6 2 8) of the soft magnetic layer 16 (62) is smaller than the surface roughness of the base surface 12A of the substrate 12.
  • a magnetic recording medium 10 (50, 60, 70) having a small surface roughness For example, other forces between the substrate 12 and the recording layer 20 (72) such as the underlayer 14 and the orientation layer 18
  • a magnetic recording medium having a small surface roughness may be realized. Also in this case, a magnetic recording medium having a small surface roughness can be manufactured efficiently and at low cost, and deterioration of the recording layer can be prevented.
  • the intermediate layer is preferably smaller than the surface roughness of the base surface 12A of the plate 12. If the soft magnetic layer is provided with an intermediate layer, which is significantly thicker than other layers, on the substrate side relative to the soft magnetic layer, the effect of reducing the surface roughness of the magnetic recording medium is reduced.
  • the layer closer to the surface of the magnetic recording medium than the layer or the soft magnetic layer itself is an intermediate layer whose surface roughness is smaller than the surface roughness of the base surface 12A of the substrate 12.
  • an intermediate layer having a surface roughness smaller than the surface roughness of the base surface 12A of the substrate 12 is a layer provided at a position in contact with the recording layer. More preferably, there is.
  • the magnetic recording medium 70 is a perpendicular recording type discrete track type magnetic recording medium in which recording elements 72 A are juxtaposed at a fine interval in a track radial direction.
  • the present invention is not limited to this.
  • the present invention is naturally applicable to the manufacture of magnetic disks arranged side by side at intervals and magnetic disks in which recording elements form a spiral shape.
  • the present invention is also applicable to a magneto-optical disk such as an MO and a thermally assisted recording disk using both magnetism and heat.
  • the magnetic recording medium 10 (50, 60, 70) is also applicable to an in-plane recording type recording disk which is a perpendicular recording type recording disk. Is applicable.
  • the magnetic recording medium 10 was manufactured, and the surface roughness of the second soft magnetic layer 28 was measured during the manufacturing process. Specifically, first, a glass substrate 12 having a center hole having a diameter of about 21.6 mm, a thickness of about 0.38 mm, and an inner diameter of about 6.0 mm was press-formed. When an image of the base surface 12A of the substrate 12 was taken with an AFM (atomic force microscope), an image as shown in FIG. 16 was obtained. Based on FIG. 16, the center line average roughness Ra of the surface of the base surface 12A of the substrate 12 was found to be about 12.37 nm.
  • an underlayer 14 of Ta was formed to a thickness of about 30 nm on the base surface 12A of the substrate 12 by a sputtering method. Further, an electrode film made of Cr is formed to a thickness of about 20 nm on the underlayer 14 by sputtering, and then the first soft magnetic layer 26 is formed by electrolytic plating. Was deposited. Specifically, a film having a thickness of about 150 nm was formed at a temperature of 50 ° C. using a mixed solution of nickel sulfamate and iron sulfamate having a pH of 4. When the surface 26A of the first soft magnetic layer 26 was imaged with an AFM (atomic force microscope), an image as shown in FIG. 17 was obtained. Based on FIG. 17, the center line average roughness Ra of the surface 26A of the first soft magnetic layer 26 was found to be about 7.64 nm. That is, the first soft magnetic layer 26 had a smaller surface roughness than the base surface 12A of the substrate 12.
  • a second soft magnetic layer 28 was formed on the first soft magnetic layer 26 to a thickness of about 100 nm by a bias sputtering method.
  • Ar gas was used for bias sputtering, and the bias sputtering conditions were set as follows.
  • the surface of the second soft magnetic layer 28 is imaged with an AFM (atomic force microscope), and the center line average roughness of the surface of the second soft magnetic layer 28 is determined based on the captured image (not shown). Ra was found to be about 0.72 nm. That is, it was confirmed that the surface roughness of the second soft magnetic layer 28 was significantly reduced compared to the surface roughness of the base surface 12A of the substrate 12.
  • the magnetic recording medium 50 was manufactured, and the surface roughness of the second soft magnetic layer 28 was measured during the manufacturing process.
  • the first soft magnetic layer 26 and the second soft magnetic layer 28 are formed in the same process as in the first embodiment, and the surface of the second soft magnetic layer 28 is flattened by ion beam etching. did.
  • Ar gas was used for ion beam etching, ion beam etching conditions were set as follows, and processing was performed while rotating the substrate 12.
  • the center line average roughness Ra of the surface of the second soft magnetic layer 28 was determined to be about 0.46 nm. That is, it was confirmed that the surface roughness of the second soft magnetic layer 28 was further reduced as compared with Example 1.
  • the first soft magnetic layer 26 was formed to a thickness of about 150 nm by a sputtering method. Note that no electrode film was formed on the underlayer 14. Other conditions were the same as in Example 1 above.
  • the surface 26A of the first soft magnetic layer 26 was imaged with an AFM (atomic force microscope), an image as shown in FIG. 19 was obtained. Based on FIG. 19, the center line average roughness Ra of the surface 26A of the first soft magnetic layer 26 was determined to be about 14.12 nm. That is, the surface roughness of the first soft magnetic layer 26 was larger than that of the base surface 12A of the substrate 12.
  • a second soft magnetic layer 28 having a thickness of about 100 nm was formed on the first soft magnetic layer 26 by the bias sputtering method in the same manner as in Example 1.
  • the surface of the layer 28 was imaged with an AFM (atomic force microscope), and the center line average roughness Ra of the surface of the second soft magnetic layer 28 was determined based on this image (not shown). It was 88nm. That is, it was confirmed that the surface roughness of the second soft magnetic layer 28 was significantly reduced compared to the surface roughness of the base surface 12A of the substrate 12.
  • the first soft magnetic layer 26 and the second soft magnetic layer 28 were formed in the same steps as in the third embodiment (instead of the first embodiment), and The surface of the soft magnetic layer 28 was flattened by ion beam etching to produce a magnetic recording medium 50, and the surface roughness of the second soft magnetic layer 28 was measured during the fabrication process.
  • Other conditions were the same as in Example 2 above.
  • the surface of the second soft magnetic layer 28 is imaged by an AFM (atomic force microscope), and the center line average roughness of the surface of the second soft magnetic layer 28 is determined based on the captured image (not shown).
  • AFM atomic force microscope
  • Ra it was about 0.55 nm. That is, it was confirmed that the surface roughness of the second soft magnetic layer 28 was further reduced as compared with Example 3.
  • Example 5 As in the third embodiment, a magnetic recording medium 60 having a single-layer soft magnetic layer 62 was manufactured, and the surface roughness of the soft magnetic layer 62 was measured during the manufacturing process. Specifically, the steps up to the formation of the soft magnetic layer 62 are the same as the steps up to the formation of the first soft magnetic layer 26 in the first embodiment, and the surface of the soft magnetic layer 62 It was flattened by ion beam etching.
  • the surface of the soft magnetic layer 62 is imaged with an AFM (atomic force microscope), and the center line average roughness Ra of the surface of the second soft magnetic layer 28 is determined based on the image (not shown). It was about 0.72 nm. That is, it was confirmed that the surface roughness of the soft magnetic layer 62 was significantly reduced with respect to the surface roughness of the base surface 12A of the substrate 12.
  • the steps up to the formation of the soft magnetic layer 62 are the same as those of the third embodiment (instead of the first embodiment) until the formation of the first soft magnetic layer 26 in the third embodiment.
  • the surface of the formed soft magnetic layer 62 was flattened by ion beam etching to produce a magnetic recording medium 60, and the surface roughness of the soft magnetic layer 62 was measured during the production process.
  • Other conditions were the same as in Example 5 above.
  • the center line average roughness Ra of the surface of the second soft magnetic layer 28 was found to be about 0.76 nm. That is, it was confirmed that the surface roughness of the soft magnetic layer 62 was significantly reduced compared to the surface roughness of the base surface 12A of the substrate 12.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
  • the second soft magnetic layer 28 is formed by using a bias sputtering method, and is further flattened by ion beam etching to form the second soft magnetic layer 28.
  • the soft magnetic layer Even if the soft magnetic layer is a single layer, if the surface of the soft magnetic layer is flattened by ion beam etching, the soft magnetic layer has a two-layer structure before flattening by ion beam etching. It can be seen that the surface roughness can be reduced by / J ⁇ .
  • the first soft magnetic layer 26 after the film formation can be used more effectively than when the nottering method is used. It is possible to reduce the surface roughness of the 26 (soft magnetic layer 62), thereby reducing the surface roughness of the second soft magnetic layer 28 (soft magnetic layer 62).
  • the present invention is intended to efficiently produce a magnetic recording medium having a small surface roughness at low cost.

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 表面粗さが小さく低コストな磁気記録媒体及び磁気記録媒体の製造方法を提供する。軟磁性層16を、基板12側の第1の軟磁性層26と、記録層20側の第2の軟磁性層28と、を積層してなる構成とし、第2の軟磁性層28における記録層20側の面28Aの表面粗さが、基板12のベース面12Aの表面粗さよりも小さく、且つ、第1の軟磁性層26における記録層20側の面26Aの表面粗さよりも小さくなるように第2の軟磁性層28を形成する。

Description

明 細 書
磁気記録媒体及びその製造方法
技術分野
[0001] 本発明は、例えばノヽードディスク等の磁気記録媒体及びその製造方法に関する。
背景技術
[0002] 磁気記録媒体は、記録,読取精度を高めるため、表面粗さを極力小さくすることが 重要である。例えば、ハードディスクの場合、浮上式ヘッドが主流となっており、良好 な記録 ·読取精度を得るためには、表面粗さを極力小さくし、浮上式ヘッドと磁気記 録媒体とのギャップを微小範囲内に保持することが重要である。
[0003] 従来、ハードディスク等の磁気記録媒体の製造工程では、基板の両面又は片面の ベース面を CMP (Chemical Mechanical Polishing)法等で研磨して平坦に仕 上げ、この基板のベース面上に記録層、保護層等をスパッタリング法等で積層するこ とにより、磁気記録媒体全体としての表面粗さを極力小さくするようにしている(例え ば、特開平 5— 314471号公報、特開平 9 231562号公報参照)。
発明の開示
[0004] し力しながら、従来の基板の平坦化は、所望の表面粗さに仕上げるために基板の ベース面を複数回繰り返し研磨する必要があり、生産効率が低いという問題があった
[0005] 特に、 CMP法を用いる場合、基板のベース面を複数回繰り返し研磨する毎にスラリ 一を除去するための洗浄を行う必要があり、生産効率を大幅に低下させる要因となつ ていた。
[0006] 更に、従来の基板は生産効率が低いため、磁気記録媒体のコストのうち、基板のコ ストの比率が高力つた。
[0007] 又、基板のベース面を平坦に仕上げても配向層、軟磁性層等を積層する過程で表 面粗さが次第に大きくなり、最終的な磁気記録媒体全体の表面粗さが許容範囲を超 えてしまうことがある。
[0008] 例えば、近年、面記録密度の向上を図るベぐ垂直記録タイプのハードディスクが 増加しており、このような垂直記録型のハードディスクは基板と記録層との間に記録 層よりも厚い軟磁性層が設けられるため、磁気記録媒体全体としての表面粗さが大き くなりやすい傾向がある。
[0009] 更に、面記録密度の一層の向上を実現しうる磁気記録媒体の候補として、例えば、 記録層が凹凸パターンで形成されたディスクリートタイプ等の磁気記録媒体が注目さ れているが、凹凸パターンで形成された記録層は表面粗さが更に大きくなりやすい。
[0010] 尚、記録層の表面を CMP法等で研磨することにより、記録層が凹凸パターンで形 成された磁気記録媒体の表面粗さを小さくしうるが、薄い記録層の研磨は実際上、制 御等が困難であると共に液剤の化学的作用等により、記録層が変質して磁気特性が 悪ィ匕しうるという問題がある。更に、このような研磨工程を採用すると生産効率が低下 するという問題がある。
[0011] 又、面記録密度の向上に伴い磁気ヘッドの浮上高さは低くなる傾向にあり、浮上高 さが低くなるにつれて従来は問題とならなかった大きさの表面粗さであっても、磁気 記録媒体の記録,読取精度を大きく低下させることがある。
[0012] 本発明は、以上の問題点に鑑みてなされたものであって、表面粗さが小さく低コスト な磁気記録媒体及び磁気記録媒体の製造方法を提供することをその課題とする。
[0013] 本発明は、基板と、記録層と、の間に、記録層側の面の表面粗さが、基板のベース 面の表面粗さよりも小さい中間層を設けることにより表面粗さが小さく低コストな磁気 記録媒体を実現したものである。即ち、基板よりも磁気記録媒体の表面に近いところ に平坦な中間層を設けることで、表面粗さが小さい磁気記録媒体を効率良ぐ低コス トで製造することができる。又、記録層は、平坦な中間層に倣って平坦な形状で形成 されるので、記録層の表面を平坦ィヒするための加工が不要であり、又、仮に加工が 必要な場合でも、その加工量を抑制することができるので、記録層の劣化を防止する ことができる。
[0014] 尚、軟磁性層を備える垂直記録型の磁気記録媒体の場合、軟磁性層が中間層を 兼ねる構成とするとよい。軟磁性層は、記録層よりも著しく厚いので、軟磁性層の表 面を平坦ィ匕のために加工しても、磁気特性に対する影響は小さく抑制される。
[0015] 尚、 CMP法のようなウエットプロセスによらず、イオンビームエッチング、反応性ィォ ンエッチング、反応性イオンビームエッチング等のドライプロセスを用いて平坦ィ匕する ことで、軟磁性層等の中間層の特性の劣化を更に抑制することができる。
[0016] 又、本発明は、中間層である軟磁性層が、第 1の軟磁性層と、該第 1の軟磁性層上 に形成された第 2の軟磁性層と、を有してなる構成とし、第 2の軟磁性層の表面粗さ を、第 1の軟磁性層における前記記録層側の面の表面粗さよりも小さぐ且つ、前記 基板のベース面の表面粗さよりも小さくすることで、表面粗さが小さく低コストな磁気 記録媒体を実現したものである。
[0017] 例えば、基板のベース面上にスパッタリング法又はメツキ法により第 1の軟磁性層を 形成することで、他の層よりも著しく厚い軟磁性層を効率良く形成することができる。 又、例えばバイアススパッタリング法等のバイアスパワーを印加する成膜手法により、 第 1の軟磁性層上に第 2の軟磁性層を形成することで、第 2の軟磁性層の凸部を選 択的にエッチングしつつ第 2の軟磁性層の成膜が進行し、表面粗さが小さい第 2の 軟磁性層を形成することができる。このように表面粗さが小さい第 2の軟磁性層上に 記録層等を形成することで、表面粗さが小さい磁気記録媒体を効率良ぐ低コストで 製造することができる。更に、第 2の軟磁性層をイオンビームエッチング等で平坦ィ匕 することで、表面粗さが小さい磁気記録媒体を効率良ぐ低コストで確実に製造する ことができる。
[0018] 又、本発明は、バイアスパワーを印加する成膜手法で中間層を形成したり、中間層 の表面をイオンビームエッチング、反応性イオンエッチング、反応性イオンビームエツ チング等のドライエッチングで平坦ィ匕することで表面粗さが小さく低コストな磁気記録 媒体を実現したものである。即ち、ウエットプロセスによらず、バイアスパワーを印加す る成膜手法で平坦な中間層を形成したりドライエッチングにより中間層を平坦ィ匕する ことで、表面粗さが小さい磁気記録媒体を効率良ぐ低コストで製造することができる 。又、これらの加工手法を記録層の形成や記録層の加工のために用いないので記 録層の劣化を抑制することができる。
[0019] 即ち、次のような本発明により、上記課題の解決を図ったものである。
[0020] (1)少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層 力 の順で形成された磁気記録媒体であって、前記基板と、前記記録層と、の間に 中間層が設けられ、該中間層における前記記録層側の面の表面粗さが、前記基板 のベース面の表面粗さよりも小さいことを特徴とする磁気記録媒体。
[0021] (2) (1)において、前記軟磁性層が前記中間層を兼ねることを特徴とする磁気記録 媒体。
[0022] (3) (2)において、前記軟磁性層は、前記基板側の第 1の軟磁性層と、前記記録層 側の第 2の軟磁性層と、が積層された構成とされ、該第 2の軟磁性層における前記記 録層側の面の表面粗さが、前記基板のベース面の表面粗さよりも小さぐ且つ、前記 第 1の軟磁性層における前記記録層側の面の表面粗さよりも小さいことを特徴とする 磁気記録媒体。
[0023] (4)少なくとも片面がベース面とされた基板の前記ベース面上に記録層が形成され た磁気記録媒体であって、前記基板と、前記記録層と、の間に中間層が前記記録層 に接して設けられ、該中間層における前記記録層側の面の表面粗さが、前記基板の ベース面の表面粗さよりも小さいことを特徴とする磁気記録媒体。
[0024] (5) (1)乃至 (4)のいずれかにおいて、前記中間層における前記記録層側の面の 中心線平均粗さが lnm以下であることを特徴とする磁気記録媒体。
[0025] (6)少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層 力 の順で形成された磁気記録媒体の製造方法であって、前記基板の方向にバイ ァスパワーを印加しつつ該基板のベース面上に中間層を、その表面粗さが前記基板 のベース面の表面粗さよりも小さくなるように形成する中間層形成工程と、該中間層 上に前記記録層を形成する記録層形成工程と、を含んでなることを特徴とする磁気 記録媒体の製造方法。
[0026] (7)少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層 力 の順で形成された磁気記録媒体の製造方法であって、前記基板のベース面上 に中間層を形成する中間層形成工程と、該中間層の表面をドライエッチングによりカロ ェし、その表面粗さが前記基板のベース面の表面粗さよりも小さくなるように平坦ィ匕 する中間層平坦化工程と、該中間層上に前記記録層を形成する記録層形成工程と 、を含んでなることを特徴とする磁気記録媒体の製造方法。
[0027] (8) (6)又は(7)において、前記中間層形成工程において前記中間層として前記 軟磁性層を形成することを特徴とする磁気記録媒体の製造方法。
[0028] (9)少なくとも片面がベース面とされた基板の前記ベース面上に記録層が形成され た磁気記録媒体の製造方法であって、前記基板の方向にバイアスパワーを印加しつ っ該基板のベース面上に中間層を、その表面粗さが前記基板のベース面の表面粗 さよりも小さくなるように形成する中間層形成工程と、該中間層上に接して前記記録 層を形成する記録層形成工程と、を含んでなることを特徴とする磁気記録媒体の製 造方法。
[0029] (10) (6)又は(9)において、前記中間層形成工程と、前記記録層形成工程と、の 間に、前記中間層の表面をドライエッチングにより平坦ィ匕する中間層平坦ィ匕工程が 設けられたことを特徴とする磁気記録媒体の製造方法。
[0030] (11)少なくとも片面がベース面とされた基板の前記ベース面上に記録層が形成され た磁気記録媒体の製造方法であって、前記基板のベース面上に中間層を形成する 中間層形成工程と、該中間層の表面をドライエッチングにより加工し、その表面粗さ が前記基板のベース面の表面粗さよりも小さくなるように平坦ィ匕する中間層平坦ィ匕ェ 程と、該中間層上に接して前記記録層を形成する記録層形成工程と、を含んでなる ことを特徴とする磁気記録媒体の製造方法。
[0031] (12) (6)、(7)、(9)、(11)のいずれかにおいて、中心線平均粗さが lnm以下とな るように前記中間層の表面を仕上げるようにしたことを特徴とする磁気記録媒体の製 造方法。
[0032] (13) (8)において、中心線平均粗さが lnm以下となるように前記中間層の表面を 仕上げるようにしたことを特徴とする磁気記録媒体の製造方法。
[0033] (14)少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層 力 の順で形成された磁気記録媒体の製造方法であって、前記基板のベース面上 にスパッタリング法及びメツキ法のいずれかにより軟磁性材料を成膜して第 1の軟磁 性層を形成する第 1の軟磁性層形成工程と、前記基板の方向にバイアスパワーを印 カロしつつ前記第 1の軟磁性層上に軟磁性材料を成膜し、前記基板のベース面の表 面粗さよりも表面粗さが小さい第 2の軟磁性層を形成する第 2の軟磁性層形成工程と 、該第 2の軟磁性層上に前記記録層を形成する記録層形成工程と、を含んでなるこ とを特徴とする磁気記録媒体の製造方法。
[0034] (15)少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層 力 の順で形成された磁気記録媒体の製造方法であって、前記基板のベース面上 にスパッタリング法及びメツキ法のいずれかにより軟磁性材料を成膜して第 1の軟磁 性層を形成する第 1の軟磁性層形成工程と、前記基板の方向にバイアスパワーを印 加しつつ前記第 1の軟磁性層上に軟磁性材料を成膜して第 2の軟磁性層を形成す る第 2の軟磁性層形成工程と、該第 2の軟磁性層の表面をドライエッチングによりカロ ェして、表面粗さが前記基板のベース面の表面粗さよりも小さくなるように該第 2の軟 磁性層の表面を平坦ィ匕する軟磁性層平坦ィ匕工程と、該第 2の軟磁性層上に前記記 録層を形成する記録層形成工程と、を含んでなることを特徴とする磁気記録媒体の 製造方法。
[0035] (16) (14)又は(15)において、中心線平均粗さが lnm以下となるように前記第 2の 軟磁性層の表面を仕上げるようにしたことを特徴とする磁気記録媒体の製造方法。
[0036] 尚、本出願において、「イオンビームエッチング」という用語は、例えばイオンミリング 等の、イオンィ匕したガスを被加工体に照射して除去する加工方法の総称と 、う意義 で用いることとし、イオンビームを絞って照射する加工方法に限定しない。
[0037] 又、本出願において「磁気記録媒体」という用語は、情報の記録、読み取りに磁気 のみを用いるハードディスク、フロッピー(登録商標)ディスク、磁気テープ等に限定さ れず、磁気と光を併用する MO (Magneto Optical)等の光磁気記録媒体、磁気と 熱を併用する熱アシスト型の記録媒体も含む意義で用いることとする。
図面の簡単な説明
[0038] [図 1]本発明の第 1実施形態に係る磁気記録媒体の構造を模式的に示す側断面図 である。
[図 2]同磁気記録媒体の製造工程の概要を示すフローチャートである。
[図 3]同磁気記録媒体の基板のプレス成形後の形状を模式的に示す側断面図であ る。
[図 4]同基板上に下地層を形成した状態を模式的に示す側断面図である。
[図 5]同下地層上に第 1の軟磁性層を形成した状態を模式的に示す側断面図である [図 6]同第 1の軟磁性層上に第 2の軟磁性層を形成した状態を模式的に示す側断面 図である。
圆 7]同第 2の軟磁性層上に配向層を形成した状態を模式的に示す側断面図である 圆 8]同配向層上に記録層を形成した状態を模式的に示す側断面図である。
[図 9]本発明の第 1実施形態に係る磁気記録媒体の製造工程の概要を示すフローチ ヤートである。
圆 10]同磁気記録媒体の構造を模式的に示す側断面図である。
圆 11]同磁気記録媒体の製造過程における第 2の軟磁性層を平坦ィ匕した状態を模 式的に示す側断面である。
[図 12]本発明の第 3実施形態に係る磁気記録媒体の構造を模式的に示す側断面図 である。
圆 13]同磁気記録媒体の製造工程の概要を示すフローチャートである。
[図 14]同磁気記録媒体の製造過程における軟磁性層を平坦化した状態を模式的に 示す側断面である。
[図 15]本発明の第 4実施形態に係る磁気記録媒体の構造を模式的に示す側断面図 である。
圆 16]本発明の第 1実施例に係る磁気記録媒体の基板のベース面の表面状態を拡 大して示す AFM写真である。
圆 17]同磁気記録媒体の第 1の軟磁性層の表面状態を拡大して示す AFM写真で める。
圆 18]本発明の第 1実施例に係る磁気記録媒体の第 2の軟磁性層の表面状態を拡 大して示す AFM写真である。
圆 19]本発明の第 3実施例に係る磁気記録媒体の第 1の軟磁性層の表面状態を拡 大して示す AFM写真である。
圆 20]本発明の第 6実施例に係る磁気記録媒体の第 2の軟磁性層の表面状態を拡 大して示す AFM写真である。 [図 21]本発明の第 3実施形態に係る磁気記録媒体の他の製造工程例の概要を示す フローチャートである。
発明を実施するための最良の形態
[0039] 以下、本発明の好ましい実施形態について図面を参照して詳細に説明する。
[0040] 図 1に示されるように、本実施形態に係る磁気記録媒体 10は、片面がベース面 12 Aとされた基板 12のベース面 12A上に、下地層 14、軟磁性層(中間層) 16、配向層 18、記録層 20、保護層 22、潤滑層 24がこの順で形成された垂直記録型である。
[0041] 磁気記録媒体 10は、軟磁性層 16が、基板 12側の第 1の軟磁性層 26と、記録層 2 0側の第 2の軟磁性層 28と、が積層された構成とされ、該第 2の軟磁性層 28における 記録層 20側の面 28Aの表面粗さ力 基板 12のベース面 12Aの表面粗さよりも小さく 、且つ、第 1の軟磁性層 26における記録層 20側の面 26Aの表面粗さよりも小さいこ とを特徴としている。他の構成については従来の磁気記録媒体と同様であるので、説 明を適宜省略することとする。
[0042] 基板 12は、材料がガラスで、厚さが 0. 2— 2mmである。
[0043] 下地層 14は、材料が Ta (タンタル)、 Cr (クロム)又は Cr合金で、厚さ力 0— 2000 nmである o
[0044] 軟磁性層 16は、第 1の軟磁性層 26及び第2の軟磁性層 28の材料が共に Fe (鉄) 合金又は Co (コバルト)合金で、第 1の軟磁性層 26及び第 2の軟磁性層 28の合計の 厚さが 50— 300nmである。第 1の軟磁性層 26は、第 2の軟磁性層 28よりも厚く形成 されている。
[0045] 配向層 18は、材料が Cr、非磁性の CoCr (コバルト クロム)合金、 MgO (酸化マグ ネシゥム)、 Ti (チタン)等で、厚さが 3— 30nmである。
[0046] 記録層 20は、材料が Co (コバルト)合金で、厚さが 5— 30nmである。
[0047] 保護層 22は、材料がダイヤモンドライクカーボンで、厚さが 1一 5nmである。尚、本 出願において「ダイヤモンドライクカーボン(以下、「DLC」という)」という用語は、炭 素を主成分とし、アモルファス構造であって、ビッカース硬度測定で 200— 8000kgf
Zmm2程度の硬さを示す材料と ヽぅ意義で用いることとする。
[0048] 潤滑層 24は、材料が PFPE (パーフロロポリエーテル)で、厚さが 1一 2nmである。 [0049] 次に、図 2のフローチャートを参照しつつ、磁気記録媒体 10の製造方法について 説明する。
[0050] まず、基板 12を成形する(S102)。具体的には、ガラスを加熱して溶融状態とし、 プレス成形により板状に成形する。これにより、図 3に示されるような、ベース面 12A の中心線平均粗さが約 10— 20nmの基板 12が得られる。
[0051] 次に、図 4に示されるように、基板 12のベース面 12A上にスパッタリング法により、 下地層 14を形成する(S 104)。下地層 14は表面力 基板 12のベース面 12Aの表面 形状に倣った形状に形成される。
[0052] 次に、図 5に示されるように、下地層 14上にスパッタリング法又はメツキ法により、第 1の軟磁性層 26を形成する(S106)。第 1の軟磁性層 26は表面 26A力、下地層 14 の表面形状に倣った形状に形成される。
[0053] 次に、図 6に示されるように、第 1の軟磁性層 26上にバイアススノッタリング法により 、第 2の軟磁性層 28を形成する(S108)。この際、スパッタリングによる成膜作用と、 既に成膜された第 2の軟磁性層 28の一部をバイアスパワーで付勢されるスパッタリン グガスがエッチングするエッチング作用と、が同時に進行し、成膜作用がエッチング 作用を上回ることで成膜が進行する。スパッタリングによる成膜作用は、第 1の軟磁性 層 26の表面 26Aの形状に倣って第 2の軟磁性層 28を成膜する傾向がある力 エツ チング作用は、膜の突出した部位を他の部位よりも選択的に早く除去する傾向があ るので、このエッチング作用により第 2の軟磁性層 28は表面の凹凸が抑制されて成 膜される。これにより、第 2の軟磁性層 28の表面 28Aの中心線平均粗さは約 0. 5— 2nmとなり、基板 12のベース面 12Aの表面粗さよりも小さぐ且つ、第 1の軟磁性層 2 6における記録層 20側の面 26Aの表面粗さよりも小さくなる。
[0054] 次に、スパッタリング法により、図 7に示されるように、第 2の軟磁性層 28の表面 28A 上に配向層 18を形成する(S110)。配向層 18は、第 2の軟磁性層 28の表面 28Aの 形状に倣って、表面が平坦な形状に形成される。更に、スパッタリング法により、図 8 に示されるように、配向層 18上に記録層 20を形成する(S112)。配向層 18、記録層 20は、第 2の軟磁性層 28の表面 28Aの形状に倣って、表面が平坦な形状に形成さ れる。 [0055] 次に、記録層 20上に CVD (Chemical Vapor Deposition)法により保護層 22 を形成し (S114)、保護層 22上に、デイツビング法により潤滑層 24を形成する(S 11 6)する。これにより、前記図 1に示される磁気記録媒体 10が完成する。保護層 22、 潤滑層 24も、第 2の軟磁性層 28の表面 28Aの形状に倣って、表面が平坦な形状に 形成される。
[0056] このように、本実施形態に係る磁気記録媒体 10は、従来のような基板の研磨によら ず、軟磁性層 16を二層構成とし、第 1の軟磁性層 26に第 2の軟磁性層 28をバイアス スパッタリング法で成膜することで、記録層 42、保護層 22、潤滑層 24の表面粗さを 小さく抑制しており、生産効率が良ぐ低コストである。
[0057] 特に、他の層よりも厚ぐ磁気記録媒体 10の表面に近い位置に配設される軟磁性 層 16の表面粗さを抑制することで、磁気記録媒体の表面粗さを低減する効果が高め られている。
[0058] 又、バイアススパッタリング法により平坦な第 2の軟磁性層 28を形成しており、記録 層 20を平坦ィ匕したり、記録層 20を形成するためにバイアスパワーを印加する、エツ チング作用がある成膜手法を用いて 、な 、ので記録層 20の劣化を防止することがで きる。
[0059] 尚、第 2の軟磁性層 28の形成に用いるバイアススパッタリング法は平坦ィ匕効果を有 する反面、エッチング作用がある分だけ成膜速度が遅いが、第 1の軟磁性層 26の形 成には、ノィァススパッタリング法よりも成膜速度が速 、スパッタリング法又はメツキ法 を用いて 、るので生産効率が良 、。
[0060] 尚、本第 1実施形態において、バイアススパッタリング法を用いて第 2の軟磁性層 2 8を形成している力 本発明はこれに限定されるものではなぐ基板の方向にバイアス ノ ヮ一を印カロしつつ基板の表面に軟磁性材を成膜できれば成膜手法は特に限定さ れず、例えばバイアスパワーを印加する CVD (Chemical Vapor Deposition)、 I BD (lon Beam Deposition)等の他の成膜手法を用いて第 2の軟磁性層 28を形 成してちょい。
[0061] 次に本発明の第 2実施形態について説明する。
[0062] 本第 2実施形態は、図 9のフローチャートに示されるように、前記第 1実施形態にお ける第 2の軟磁性層成膜工程 (S 108)と、記録層形成工程 (S110)との間に、第 2の 軟磁性層 28の表面 28Aをイオンビームエッチングでカ卩ェして、更に平坦化する第 2 の軟磁性層平坦ィ匕工程 (S202)を設けたことを特徴としており、前記第 1実施形態に 係る磁気記録媒体 10よりも表面粗さが小さい、図 10に示される磁気記録媒体 50を 得るようにしたものである。他の構成については、前記第 1実施形態と同様であるの で図 1一図 8と同一符号を付することとして説明を適宜省略する。
[0063] まず、前記第 1実施形態と同様に基板 12のベース面 12A上に下地層 14、第 1の軟 磁性層 26を形成し、更にバイアススパッタリング法により第 2の軟磁性層 28を成膜す る(図 6参照)。第 2の軟磁性層 28は、表面 28Aの表面粗さが、基板 12のベース面 1 2Aの表面粗さよりも小さぐ且つ、第 1の軟磁性層 26における記録層 20側の面 26A の表面粗さよりも小さく形成される。
[0064] 次に、成膜された第 2の軟磁性層 28 (図 6参照)の表面 28Aに対して傾斜した方向 から Ar (アルゴン)等のイオンビームを照射して、第 2の軟磁性層 28の表面 28を除去 しつつ平坦化する。この際、イオンビームの入射角は- 10— 15° の範囲とすることが 好ましい。ここで「入射角」とは、第 2の軟磁性層 28の表面 28Aに対する入射角度で あって、被カ卩ェ体の表面とイオンビームの中心軸とが形成する角度と 、う意義で用い ることとする。例えば、イオンビームの中心軸が第 2の軟磁性層 28の表面 28Aと平行 である場合、入射角は 0° である。
[0065] イオンビームエッチングは、表面の突出した部位を他の部位よりも選択的に早く除 去する傾向があるので、図 11に示されるように、第 2の軟磁性層 28は表面 28Aが更 に平坦ィ匕されて中心線平均粗さ Raは、約 0. 1— lnmとなる。
[0066] この第 2の軟磁性層 28の表面 28A上に、上記第 1実施形態と同様に、配向層 18 ( S 110)、記録層 20 (S 112)、保護層 22 (S 114)、潤滑層 24 (S 116)を形成すること により、前記図 10に示される磁気記録媒体 50が完成する。
[0067] このように、ノィァススパッタリング法で成膜した第 2の軟磁性層 28の表面 28Aをィ オンビームエッチング法で更に平坦ィ匕することで、磁気記録媒体 50の表面粗さを前 記第 1実施形態に係る磁気記録媒体 10の表面粗さよりも小さく抑制することができる [0068] 尚、前記第 1及び第 2実施形態は、軟磁性層 16が、第 1の軟磁性層 26上に第 2の 軟磁性層 28を形成した二層構成である力 本発明はこれに限定されるものではなく 、三層以上の構成の軟磁性層としてもよい。
[0069] 又、本第 2実施形態において、第 2の軟磁性層 28の表面 28 Aをイオンビームエツ チング法で平坦ィ匕している力 本発明はこれに限定されるものではなぐ例えば反応 性イオンエッチング、反応性イオンビームエッチング等の他のドライエッチングの手法 を用いて第 2の軟磁性層 28の表面 28Aを平坦ィ匕してもょ 、。
[0070] 次に本発明の第 3実施形態について説明する。
[0071] 図 12に示されるように、本第 3実施形態に係る磁気記録媒体 60は、前記第 1実施 形態、第 2実施形態に係る磁気記録媒体 10、 50が二層構成の軟磁性層 16を有して いるのに対し、単層の軟磁性層(中間層) 62を有し、該単層の軟磁性層 62の表面 62 Aの表面粗さが基板 12のベース面 12Aの表面粗さよりも小さく抑制されたことを特徴 としている。
[0072] 他の構成については、前記第 1及び第 2実施形態と同様であるので図 1一図 11と 同一符号を付することとして説明を適宜省略する。
[0073] 磁気記録媒体 60は、図 13のフローチャートに示される製造方法により得られる。ま ず、前記第 1実施形態と同様に基板 12のベース面 12A上にスパッタリング法又はメ ツキ法により下地層 14、軟磁性層 62を形成する(S302、図 5参照)。
[0074] 次に、前記第 2実施形態における第 2の軟磁性層平坦化工程 (S202)と同様の要 領で軟磁性層 62の表面 62Aをイオンビームエッチングでカ卩ェし、図 14に示されるよ うに、単層の軟磁性層 32を平坦ィ匕する(S304)。これにより、軟磁性層 62の表面 62 Aの中心線平均粗さ Raは、約 0. 1— lnmとなり、基板 12のベース面 12Aの表面粗 さよりも/ J、さくなる。
[0075] この軟磁性層 62上に、上記第 1及び第 2実施形態と同様に、配向層 18 (S110)、 記録層 20 (S 112)、保護層 22 (S 114)、潤滑層 24 (S 116)を形成することにより、前 記図 12に示される磁気記録媒体 60が得られる。
[0076] 本第 3実施形態も、ドライプロセス (イオンビームエッチング)で軟磁性層 32を平坦 化しているので、従来の CMP法のようなウエットプロセスを用いる製造方法に対し、 磁気記録媒体用を効率良ぐ低コストで製造することができる。又、軟磁性層の形成 は単層の軟磁性層の成膜で足りるので、この点でも生産効率を高めることができる。
[0077] 尚、本第 3実施形態において、単層の軟磁性層 62の表面 62Aをイオンビームエツ チング法で平坦ィ匕している力 本発明はこれに限定されるものではなぐ例えば反応 性イオンエッチング、反応性イオンビームエッチング等の他のドライエッチングの手法 を用いて単層の軟磁性層 62の表面 62Aを平坦ィ匕してもょ 、。
[0078] 又、本第 3実施形態において、スパッタリング法又はメツキ法により単層の軟磁性層 62を形成し(S302)、軟磁性層 62の表面 62Aをイオンビームエッチングで平坦ィ匕( S304)している力 図 21のフローチャートに示されるように、バイアススパッタリング法 により表面 62Aが平坦な単層の軟磁性層 62を形成(S306)してもよい。又、この場 合、更にイオンビームエッチング等のドライエッチングで単層の軟磁性層 62を平坦ィ匕 してちよい。
[0079] 以上説明した第 1一第 3実施形態のうち、いずれの製造方法を採用するかは、要求 される磁気記録媒体の表面粗さ等に応じて適宜選択すればよい。
[0080] 次に、本発明の第 4実施形態について説明する。
[0081] 本第 4実施形態は、図 15に示されるような磁気記録媒体 70に係るものであり、この 磁気記録媒体 70は、前記第 2実施形態に係る磁気記録媒体 50に対し、記録層 72 が多数の記録要素 72Aに分割された構成とされ、記録要素 72Aの間の凹部に非磁 性材 74が充填されたディスクリートトラックタイプである。尚、記録要素 72Aの間の凹 部の側面及び底面には隔膜 76が形成されている。他の構成については前記第 2実 施形態と同様であるので、図 10及び図 11と同じ符号を付することとして説明を省略 することとする。
[0082] 非磁性材 74は、材料が SiO (二酸化ケイ素)等である。又、隔膜 76は、材料が前
2
述の DLCと呼称される硬質炭素膜である。
[0083] この磁気記録媒体 70は、前記第 1及び第 2実施形態と同様の要領で、基板 12上に 、下地層 14、軟磁性層 16、配向層 18、連続記録層(図示省略)、及び複数のマスク 層(図示省略)、レジスト層(図示省略)等を形成し、リソグラフィ、ドライエッチングの手 法を用いて連続記録層を多数の記録要素 72Aに分割して記録層 72を形成してから 、 CVD法等により隔膜 76を形成し、更にバイアススパッタリング法等により非磁性材 74を記録要素 72Aの間の凹部に充填し、イオンビームエッチング等により平坦ィ匕し てから、前記第 1及び第 2実施形態と同様の要領で、保護層 22、潤滑層 24を形成す ることにより得られる。
[0084] 尚、本発明の理解に特に必要とは思われな 、ため、連続記録層を分割加工するた めのマスク層、レジスト層の材料、リソグラフィ、ドライエッチング等の手法等について は説明を省略する。
[0085] 磁気記録媒体 70も、前記第 2実施形態に係る磁気記録媒体 50と同様に、表面粗 さを小さく抑制しつつ効率良く低コストで製造することが可能である。
[0086] 尚、前記第 1一第 4実施形態において、軟磁性層の材料として Fe (鉄)合金又は Co
(コバルト)合金が例示されている力 本発明はこれに限定されるものではなぐノ^ァ スパワーを印加する成膜手法、ドライエッチングによる加工に適した軟磁性材料であ れば、軟磁性層の材料は特に限定されな 、。
[0087] 又、前記第 1一第 4実施形態において、磁気記録媒体 10、 50、 60、 70は、基板 12 の片面がベース面 12Aとされ、片面に記録層等が形成されている力 本発明はこれ に限定されるものではなぐ基板の両面をベース面として、基板の両面にメツキ法又 はスパッタリング法により第 1の軟磁性層を形成し、更にバイアススパッタリング法等に より第 2の軟磁性層を形成して、記録層等を形成すれば、両面の表面粗さが小さい 磁気記録媒体を効率良く低コストで製造することができる。第 2の軟磁性層の表面は 更にイオンビームエッチング等のドライエッチングで平坦ィ匕してもよい。
[0088] 又、基板の両面に軟磁性層を形成してイオンビームエッチング等のドライエツチン グで平坦ィ匕して、記録層等を形成してもよい。又、基板の一方のベース面上に単層 の軟磁性層を形成してドライエッチングで平坦ィ匕し、他方のベース面上に二層構成 の軟磁性層を形成してもよ 、。
[0089] 又、前記第 1一第 4実施形態は、本発明の一部の適用例を示したものであり、本発 明は、軟磁性層を有する他の種々の構成の磁気記録媒体も、表面粗さを抑制しつつ 効率良く低コストで製造することができる。
[0090] 例えば、前記第 1一第 4実施形態において、基板 12の材料はガラスであるが、本発 明はこれに限定されるものではなぐ基板の材料として Al O (アルミナ)、 Si (ケィ素)
2 3
、 SiO (二酸ィ匕ケィ素)、グラシ一カーボン、榭脂等を含む非磁性材料を用いてもよ
2
い。
[0091] 又、前記第 1一第 4実施形態において、記録層 20 (72)の材料は CoCr合金である 力 本発明はこれに限定されるものではなぐ例えば、鉄属元素(Co、 Fe (鉄)、 Ni) を含む他の合金、これらの積層体等の他の材料の記録層で構成される磁気記録媒 体の製造のためにも本発明を適用可能である。
[0092] 又、前記第 1一第 4実施形態において、基板 12と軟磁性層 16 (62)との間に下地 層 14が形成されているが、本発明はこれに限定されるものではなぐ基板 12と軟磁 性層 16 (62)との間に設ける層の構成は、磁気記録媒体の種類に応じて適宜変更す ればよい。例えば基板 12と軟磁性層 16 (62)との間に複数の層を形成してもよい。又 、軟磁性層を基板上に直接形成してもよい。
[0093] 又、前記第 1一第 4実施形態において、軟磁性層 16 (62)と記録層 20 (72)との間 に配向層 18が形成されているが、本発明はこれに限定されるものではなぐ軟磁性 層 16 (62)と記録層 20 (72)との間に設ける層の構成は、磁気記録媒体の種類に応 じて適宜変更すればょ 、。例えば軟磁性層 16 (62)と記録層 20 (72)との間に複数 の層を形成してもよい。又、中間層である軟磁性層 16 (62)上に記録層 20 (72)を直 接形成してもよい。
[0094] 又、前記第 1一第 4実施形態において、軟磁性層 16 (62)の表面28八(62八)の表 面粗さを基板 12のベース面 12Aの表面粗さよりも小さくすることで、表面粗さが小さ い磁気記録媒体 10 (50、 60、 70)を得ている力 例えば、下地層 14や配向層 18等 の、基板 12と記録層 20 (72)との間の他の中間層の表面粗さを、基板 12のベース面 12Aの表面粗さよりも小さくすることで、表面粗さが小さい磁気記録媒体を実現しても よい。この場合も、表面粗さが小さい磁気記録媒体を効率良ぐ低コストで製造するこ とができ、又、記録層の劣化を防止することができる。尚、表面粗さが基板 12のべ一 ス面 12Aの表面粗さよりも小さい中間層が設けられる位置が磁気記録媒体の表面に 近い程、磁気記録媒体の表面粗さを小さくする効果が高いと考えられるので、軟磁 性層 16や配向層 18のように、記録層に近い位置に設けられる層力 表面粗さが基 板 12のベース面 12Aの表面粗さよりも小さい中間層であることが好ましい。尚、軟磁 性層は他の層と比較して著しく厚ぐ中間層を軟磁性層よりも基板側に設けると、磁 気記録媒体の表面粗さを小さくする効果が減殺されるため、軟磁性層よりも磁気記録 媒体の表面に近い層、又は軟磁性層自体が、表面粗さが基板 12のベース面 12Aの 表面粗さよりも小さい中間層であることが望ましい。又、磁気記録媒体の表面粗さを 小さくする効果を高めるためには、表面粗さが基板 12のベース面 12Aの表面粗さよ りも小さい中間層は、記録層と接する位置に設けられる層であることがより好ましい。
[0095] 又、前記第 4実施形態にぉ ヽて、磁気記録媒体 70は記録要素 72Aがトラックの径 方向に微細な間隔で並設された垂直記録型のディスクリートトラックタイプの磁気記 録媒体であるが、本発明はこれに限定されるものではなぐ記録要素がトラックの周 方向(セクタの方向)に微細な間隔で並設された磁気ディスク、トラックの径方向及び 周方向の両方向に微細な間隔で並設された磁気ディスク、記録要素が螺旋形状を なす磁気ディスクの製造についても本発明は当然適用可能である。又、 MO等の光 磁気ディスク、磁気と熱を併用する熱アシスト型の記録ディスクに対しても本発明は 適用可能である。
[0096] 又、前記第 1一第 4実施形態において、磁気記録媒体 10 (50、 60、 70)は、垂直 記録型の記録ディスクである力 面内記録型の記録ディスクに対しても本発明は適用 可能である。
実施例 1
[0097] 前記第 1実施形態のとおり、磁気記録媒体 10を作製し、作製過程において第 2の 軟磁性層 28の表面粗さを測定した。具体的には、まず、直径が約 21. 6mm,厚さが 約 0. 38mmで内径が約 6. Ommの中心孔を有するガラス製の基板 12をプレス成形 した。この基板 12のベース面 12Aを AFM (原子間力顕微鏡)で撮像したところ図 16 に示されるような画像が得られた。図 16に基づいて、基板 12のベース面 12Aの表面 の中心線平均粗さ Raを求めたところ、約 12. 37nmだった。
[0098] 次に、スパッタリング法により、基板 12のベース面 12A上に、材料が Taの下地層 1 4を約 30nmの厚さで成膜した。更に、スパッタリング法により、下地層 14上に材料が Crの電極膜を約 20nmの厚さで成膜してから、電解メツキ法により第 1の軟磁性層 26 を成膜した。具体的には、 pH4のスルファミン酸ニッケル及びスルファミン酸鉄の混 合液を用い、温度 50°Cで約 150nmの厚さに成膜した。第 1の軟磁性層 26の表面 2 6Aを AFM (原子間力顕微鏡)で撮像したところ図 17に示されるような画像が得られ た。図 17に基づいて、第 1の軟磁性層 26の表面 26Aの表面の中心線平均粗さ Raを 求めたところ、約 7. 64nmだった。即ち、第 1の軟磁性層 26は、基板 12のベース面 1 2Aよりも表面粗さが小さ力つた。
[0099] 次に、バイアススパッタリング法により、第 1の軟磁性層 26上に、第 2の軟磁性層 28 を約 lOOnmの厚さで成膜した。バイアススパッタリングには Arガスを用い、バイアス スパッタリング条件を以下のように設定した。
[0100] Ar流量 : lOOsccm
ガス圧 : 1. OPa
投入電力 : 500W
基板バイアス電圧: 250W
[0101] 第 2の軟磁性層 28の表面を AFM (原子間力顕微鏡)で撮像し、この撮像画像(図 示省略)に基づいて、第 2の軟磁性層 28の表面の中心線平均粗さ Raを求めたところ 、約 0. 72nmだった。即ち、基板 12のベース面 12Aの表面粗さに対して、第 2の軟 磁性層 28の表面粗さが大幅に低減されていることが確認された。
実施例 2
[0102] 前記第 2実施形態のとおり、磁気記録媒体 50を作製し、作製過程において第 2の 軟磁性層 28の表面粗さを測定した。具体的には、上記実施例 1と同様の工程で第 1 の軟磁性層 26、第 2の軟磁性層 28を成膜し、第 2の軟磁性層 28の表面をイオンビ ームエッチングで平坦ィ匕した。イオンビームエッチングには Arガスを用い、イオンビ ームエッチング条件は以下のように設定し、基板 12を回転させながら加工した。
[0103] Arガス流量 : l lsccm
ガス圧 : 0. 05Pa
ビーム電圧 : 500V
ビーム電流 : 500mA
サプレッサー電圧 :400W イオンビーム人射角:3°
[0104] 第 2の軟磁性層 28の表面を AFM (原子間力顕微鏡)で撮像したところ図 18に示さ れるような画像が得られた。図 18に基づいて、第 2の軟磁性層 28の表面の中心線平 均粗さ Raを求めたところ、約 0. 46nmだった。即ち、実施例 1よりも、第 2の軟磁性層 28の表面粗さが更に低減されていることが確認された。
実施例 3
[0105] 上記実施例 1に対し、第 1の軟磁性層 26をスパッタリング法により約 150nmの厚さ に成膜した。尚、下地層 14上に電極膜は成膜しなかった。他の条件は、上記実施例 1と同様とした。第 1の軟磁性層 26の表面 26Aを AFM (原子間力顕微鏡)で撮像し たところ図 19に示されるような画像が得られた。図 19に基づいて、第 1の軟磁性層 2 6の表面 26Aの表面の中心線平均粗さ Raを求めたところ、約 14. 12nmだった。即 ち、第 1の軟磁性層 26は、基板 12のベース面 12Aよりも表面粗さが大き力つた。
[0106] 次に、実施例 1と同様にバイアススパッタリング法により、第 1の軟磁性層 26上に、 第 2の軟磁性層 28を約 lOOnmの厚さで成膜し、第 2の軟磁性層 28の表面を AFM ( 原子間力顕微鏡)で撮像し、この撮像画像 (図示省略)に基づいて、第 2の軟磁性層 28の表面の中心線平均粗さ Raを求めたところ、約 0. 88nmだった。即ち、基板 12 のベース面 12Aの表面粗さに対して、第 2の軟磁性層 28の表面粗さが大幅に低減 されて 、ることが確認された。
実施例 4
[0107] 上記実施例 2に対し、第 1の軟磁性層 26、第 2の軟磁性層 28を (上記実施例 1に代 えて)上記実施例 3と同様の工程で成膜し、第 2の軟磁性層 28の表面をイオンビーム エッチングで平坦ィ匕して、磁気記録媒体 50を作製し、作製過程において第 2の軟磁 性層 28の表面粗さを測定した。他の条件は、上記実施例 2と同様とした。
[0108] 第 2の軟磁性層 28の表面を AFM (原子間力顕微鏡)で撮像し、この撮像画像(図 示省略)に基づいて、第 2の軟磁性層 28の表面の中心線平均粗さ Raを求めたところ 、約 0. 55nmだった。即ち、実施例 3よりも、第 2の軟磁性層 28の表面粗さが更に低 減されて!ヽることが確認された。
実施例 5 [0109] 前記第 3実施形態のとおり、単層の軟磁性層 62を有する磁気記録媒体 60を作製し 、作製過程において軟磁性層 62の表面粗さを測定した。具体的には、軟磁性層 62 を成膜するまでの工程は、上記実施例 1における第 1の軟磁性層 26を形成するまで の工程と同様とし、成膜した軟磁性層 62の表面をイオンビームエッチングで平坦ィ匕し た。
[0110] 軟磁性層 62の表面を AFM (原子間力顕微鏡)で撮像し、この撮像画像(図示省略 )に基づいて、第 2の軟磁性層 28の表面の中心線平均粗さ Raを求めたところ、約 0. 72nmだった。即ち、基板 12のベース面 12Aの表面粗さに対して、軟磁性層 62の表 面粗さが大幅に低減されていることが確認された。
実施例 6
[0111] 上記実施例 5に対し、軟磁性層 62を成膜するまでの工程は、(上記実施例 1に代え て)上記実施例 3における第 1の軟磁性層 26を形成するまでの工程と同様とし、成膜 した軟磁性層 62の表面をイオンビームエッチングで平坦ィ匕して、磁気記録媒体 60を 作製し、作製過程において軟磁性層 62の表面粗さを測定した。他の条件は、上記 実施例 5と同様とした。
[0112] 軟磁性層 62の表面を AFM (原子間力顕微鏡)で撮像したところ図 20に示されるよ うな画像がえられた。図 20に基づいて、第 2の軟磁性層 28の表面の中心線平均粗さ Raを求めたところ、約 0. 76nmだった。即ち、基板 12のベース面 12Aの表面粗さに 対して、軟磁性層 62の表面粗さが大幅に低減されていることが確認された。
[0113] 以上の実施例 1一 6の測定結果を表 1に対比して示す。
[0114] [表 1]
実施例 1 実施例 2 実施例 3 実施例 4 実施例 5 実施例 6
加工方法 プレス成形
基板 表面粗さ
1 2. 37
Ra (nm)
スノ ツ^ メツキ
リング +
加工方法 メツキ スパッタリング + 第 1の軟磁性層 ィ才ンビーム Iィ才ンビ' ム I エッチング ツチング (軟磁性層)
表面粗さ
64 1 4. 1 2 0. 63 0. 76 Ra (nm)
バイアスス ノ、'ィァスス
パッタリング バッタリング
バイアスス バイアスス
加工方法 +
ぺッタリング +
ッタリング
第 2の軟磁性層 イオンビーム イオンビ一ム
エッチング エッチング
表面粗さ
0. 72 0. 46 0. 88 0. 55
Ra (nm
[0115] 表 1より、実施例 1一 6はいずれも、第 2の軟磁性層 28 (軟磁性層 62)の表面の中心 線平均粗さが lnm以下に抑制されており、良好なヘッド浮上が得られるだけの充分 な平坦性を有して 、ることがわ力^)。
[0116] 又、軟磁性層を二層構成とし、第 2の軟磁性層 28をバイアススパッタリング法を用い て成膜してから、更に、イオンビームエッチングで平坦ィ匕することで、第 2の軟磁性層
28の表面粗さを特に小さくできることがわかる。
[0117] 又、軟磁性層が単層でも、軟磁性層の表面をイオンビームエッチングで平坦ィ匕す れば、イオンビームエッチングで平坦ィ匕する前の二層構成の軟磁性層よりも、表面粗 さを/ Jヽさくできることがわかる。
[0118] 又、第 1の軟磁性層 26 (軟磁性層 62)の成膜手法としてメツキ法を用いることで、ス ノ ッタリング法を用いる場合よりも、成膜後の第 1の軟磁性層 26 (軟磁性層 62)の表 面粗さを小さくでき、これにより、第 2の軟磁性層 28 (軟磁性層 62)の表面粗さを小さ くでさることがゎカゝる。
産業上の利用可能性
[0119] 本発明は、表面粗さが小さい磁気記録媒体を効率良ぐ低コストで製造するために
3 隱 CT0/l700Zdf/X3d IZ tUUO/SOOZ OAV

Claims

請求の範囲
[1] 少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層がこ の順で形成された磁気記録媒体であって、
前記基板と、前記記録層と、の間に中間層が設けられ、該中間層における前記記 録層側の面の表面粗さ力 前記基板のベース面の表面粗さよりも小さいことを特徴と する磁気記録媒体。
[2] 請求項 1において、
前記軟磁性層が前記中間層を兼ねることを特徴とする磁気記録媒体。
[3] 請求項 2において、
前記軟磁性層は、前記基板側の第 1の軟磁性層と、前記記録層側の第 2の軟磁性 層と、が積層された構成とされ、該第 2の軟磁性層における前記記録層側の面の表 面粗さが、前記基板のベース面の表面粗さよりも小さぐ且つ、前記第 1の軟磁性層 における前記記録層側の面の表面粗さよりも小さいことを特徴とする磁気記録媒体。
[4] 少なくとも片面がベース面とされた基板の前記ベース面上に記録層が形成された 磁気記録媒体であって、
前記基板と、前記記録層と、の間に中間層が前記記録層に接して設けられ、該中 間層における前記記録層側の面の表面粗さが、前記基板のベース面の表面粗さより も小さ!/ゝことを特徴とする磁気記録媒体。
[5] 請求項 1乃至 4のいずれかにおいて、
前記中間層における前記記録層側の面の中心線平均粗さが lnm以下であることを 特徴とする磁気記録媒体。
[6] 少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層がこ の順で形成された磁気記録媒体の製造方法であって、
前記基板の方向にバイアスパワーを印加しつつ該基板のベース面上に中間層を、 その表面粗さが前記基板のベース面の表面粗さよりも小さくなるように形成する中間 層形成工程と、該中間層上に前記記録層を形成する記録層形成工程と、を含んで なることを特徴とする磁気記録媒体の製造方法。
[7] 少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層がこ の順で形成された磁気記録媒体の製造方法であって、
前記基板のベース面上に中間層を形成する中間層形成工程と、該中間層の表面 をドライエッチングにより加工し、その表面粗さが前記基板のベース面の表面粗さより も小さくなるように平坦ィ匕する中間層平坦ィ匕工程と、該中間層上に前記記録層を形 成する記録層形成工程と、を含んでなることを特徴とする磁気記録媒体の製造方法
[8] 請求項 6又は 7において、
前記中間層形成工程において前記中間層として前記軟磁性層を形成することを特 徴とする磁気記録媒体の製造方法。
[9] 少なくとも片面がベース面とされた基板の前記ベース面上に記録層が形成された 磁気記録媒体の製造方法であって、
前記基板の方向にバイアスパワーを印加しつつ該基板のベース面上に中間層を、 その表面粗さが前記基板のベース面の表面粗さよりも小さくなるように形成する中間 層形成工程と、該中間層上に接して前記記録層を形成する記録層形成工程と、を含 んでなることを特徴とする磁気記録媒体の製造方法。
[10] 請求項 6又は 9において、
前記中間層形成工程と、前記記録層形成工程と、の間に、前記中間層の表面をド ライエッチングにより平坦ィ匕する中間層平坦ィ匕工程が設けられたことを特徴とする磁 気記録媒体の製造方法。
[11] 少なくとも片面がベース面とされた基板の前記ベース面上に記録層が形成された 磁気記録媒体の製造方法であって、
前記基板のベース面上に中間層を形成する中間層形成工程と、該中間層の表面 をドライエッチングにより加工し、その表面粗さが前記基板のベース面の表面粗さより も小さくなるように平坦ィ匕する中間層平坦ィ匕工程と、該中間層上に接して前記記録 層を形成する記録層形成工程と、を含んでなることを特徴とする磁気記録媒体の製 造方法。
[12] 請求項 6、 7、 9、 11のいずれかにおいて、
中心線平均粗さが lnm以下となるように前記中間層の表面を仕上げるようにしたこ とを特徴とする磁気記録媒体の製造方法。
[13] 請求項 8において、
中心線平均粗さが lnm以下となるように前記中間層の表面を仕上げるようにしたこ とを特徴とする磁気記録媒体の製造方法。
[14] 少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層がこ の順で形成された磁気記録媒体の製造方法であって、
前記基板のベース面上にスパッタリング法及びメツキ法のいずれか〖こより軟磁性材 料を成膜して第 1の軟磁性層を形成する第 1の軟磁性層形成工程と、前記基板の方 向にバイアスパワーを印カロしつつ前記第 1の軟磁性層上に軟磁性材料を成膜し、前 記基板のベース面の表面粗さよりも表面粗さが小さい第 2の軟磁性層を形成する第 2 の軟磁性層形成工程と、該第 2の軟磁性層上に前記記録層を形成する記録層形成 工程と、を含んでなることを特徴とする磁気記録媒体の製造方法。
[15] 少なくとも片面がベース面とされた基板の前記ベース面上に軟磁性層、記録層がこ の順で形成された磁気記録媒体の製造方法であって、
前記基板のベース面上にスパッタリング法及びメツキ法のいずれか〖こより軟磁性材 料を成膜して第 1の軟磁性層を形成する第 1の軟磁性層形成工程と、前記基板の方 向にバイアスパワーを印カロしつつ前記第 1の軟磁性層上に軟磁性材料を成膜して第 2の軟磁性層を形成する第 2の軟磁性層形成工程と、該第 2の軟磁性層の表面をド ライエッチングにより加工して、表面粗さが前記基板のベース面の表面粗さよりも小さ くなるように該第 2の軟磁性層の表面を平坦ィ匕する軟磁性層平坦ィ匕工程と、該第 2の 軟磁性層上に前記記録層を形成する記録層形成工程と、を含んでなることを特徴と する磁気記録媒体の製造方法。
[16] 請求項 14又は 15において、
中心線平均粗さが lnm以下となるように前記第 2の軟磁性層の表面を仕上げるよう にしたことを特徴とする磁気記録媒体の製造方法。
PCT/JP2004/013968 2003-09-26 2004-09-24 磁気記録媒体及びその製造方法 WO2005031714A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005514218A JP3848672B2 (ja) 2003-09-26 2004-09-24 磁気記録媒体及びその製造方法
US10/571,481 US20070031705A1 (en) 2003-09-26 2004-09-24 Magnetic recording medium and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003335061 2003-09-26
JP2003-335061 2003-09-26

Publications (1)

Publication Number Publication Date
WO2005031714A1 true WO2005031714A1 (ja) 2005-04-07

Family

ID=34386049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013968 WO2005031714A1 (ja) 2003-09-26 2004-09-24 磁気記録媒体及びその製造方法

Country Status (4)

Country Link
US (1) US20070031705A1 (ja)
JP (1) JP3848672B2 (ja)
CN (1) CN100411016C (ja)
WO (1) WO2005031714A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260700A (ja) * 2005-03-18 2006-09-28 Fujitsu Ltd 磁気記録媒体及び磁気記録装置
CN100555418C (zh) * 2006-01-24 2009-10-28 鸿富锦精密工业(深圳)有限公司 垂直磁记录介质、及其制造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090110962A1 (en) * 2007-10-31 2009-04-30 Hitachi Global Storage Technologies Netherlands Bv System, method and apparatus for eliminating adhesion layers between substrates and soft underlayers in perpendicular media
US8377722B2 (en) 2010-02-10 2013-02-19 International Business Machines Corporation Methods of forming structures with a focused ion beam for use in atomic force probing and structures for use in atomic force probing
US8945732B1 (en) * 2010-08-05 2015-02-03 WD Media, LLC Dual-magnetic layer high anisotropy media with orientation initialization layer
US9349407B2 (en) 2011-12-12 2016-05-24 HGST Netherlands B.V. Data storage medium surface smoothing method and associated apparatus
US9685184B1 (en) 2014-09-25 2017-06-20 WD Media, LLC NiFeX-based seed layer for magnetic recording media
DE102022102338A1 (de) * 2021-02-16 2022-08-18 Mitutoyo Corporation Skala und Verfahren zu ihrer Herstellung

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076026A (ja) * 1983-09-30 1985-04-30 Fuji Xerox Co Ltd 垂直磁気記録媒体の製造方法
JPS6113431A (ja) * 1984-06-29 1986-01-21 Fuji Photo Film Co Ltd 磁気記録媒体
JPH05258272A (ja) * 1991-03-06 1993-10-08 Nippon Digital Equip Kk 垂直磁気記録媒体及びその製造方法
JPH0628661A (ja) * 1992-07-10 1994-02-04 Sony Corp 磁気記録媒体用のマスキング層付き非磁性支持体、磁気記録媒体及びその製造方法
JPH09147344A (ja) * 1995-11-21 1997-06-06 Kao Corp 磁気記録媒体用基板及び磁気記録媒体
JPH09161258A (ja) * 1995-12-07 1997-06-20 Kao Corp 磁気記録媒体用基板及び磁気記録媒体
JPH11203654A (ja) * 1998-01-09 1999-07-30 Nec Corp 垂直磁気記録媒体及びその製造方法
WO2002054390A1 (fr) * 2000-12-28 2002-07-11 Hitachi Maxell, Ltd. Support d'enregistrement magnetique et son procede de fabrication, dispositif de stockage magnetique
JP2002260219A (ja) * 2000-12-28 2002-09-13 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法並びに磁気記憶装置
JP2003099912A (ja) * 2001-09-21 2003-04-04 Ken Takahashi 垂直磁気記録媒体、その製造方法及び製造装置、並びに磁気記録装置
JP2003151128A (ja) * 2001-11-07 2003-05-23 Mitsubishi Chemicals Corp 軟磁性層を形成した基板の製造方法、軟磁性層を形成した基板、磁気記録媒体及び磁気記録装置
JP2004146033A (ja) * 2002-08-26 2004-05-20 Shin Etsu Chem Co Ltd 誘導異方性垂直磁気記録ハードディスク用基板及びその製造方法
JP2004146032A (ja) * 2002-08-26 2004-05-20 Shin Etsu Chem Co Ltd 垂直磁気記録ハードディスク用媒体基板及びその製造方法
JP2004199725A (ja) * 2002-12-16 2004-07-15 Fujitsu Ltd 情報記録媒体および情報記録媒体の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG91343A1 (en) * 2000-07-19 2002-09-17 Toshiba Kk Perpendicular magnetic recording medium and magnetic recording apparatus
US7166375B2 (en) * 2000-12-28 2007-01-23 Showa Denko K.K. Magnetic recording medium utilizing a multi-layered soft magnetic underlayer, method of producing the same and magnetic recording and reproducing device
JP4707265B2 (ja) * 2001-05-30 2011-06-22 富士電機デバイステクノロジー株式会社 垂直磁気記録媒体

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076026A (ja) * 1983-09-30 1985-04-30 Fuji Xerox Co Ltd 垂直磁気記録媒体の製造方法
JPS6113431A (ja) * 1984-06-29 1986-01-21 Fuji Photo Film Co Ltd 磁気記録媒体
JPH05258272A (ja) * 1991-03-06 1993-10-08 Nippon Digital Equip Kk 垂直磁気記録媒体及びその製造方法
JPH0628661A (ja) * 1992-07-10 1994-02-04 Sony Corp 磁気記録媒体用のマスキング層付き非磁性支持体、磁気記録媒体及びその製造方法
JPH09147344A (ja) * 1995-11-21 1997-06-06 Kao Corp 磁気記録媒体用基板及び磁気記録媒体
JPH09161258A (ja) * 1995-12-07 1997-06-20 Kao Corp 磁気記録媒体用基板及び磁気記録媒体
JPH11203654A (ja) * 1998-01-09 1999-07-30 Nec Corp 垂直磁気記録媒体及びその製造方法
WO2002054390A1 (fr) * 2000-12-28 2002-07-11 Hitachi Maxell, Ltd. Support d'enregistrement magnetique et son procede de fabrication, dispositif de stockage magnetique
JP2002260219A (ja) * 2000-12-28 2002-09-13 Hitachi Maxell Ltd 磁気記録媒体及びその製造方法並びに磁気記憶装置
JP2003099912A (ja) * 2001-09-21 2003-04-04 Ken Takahashi 垂直磁気記録媒体、その製造方法及び製造装置、並びに磁気記録装置
JP2003151128A (ja) * 2001-11-07 2003-05-23 Mitsubishi Chemicals Corp 軟磁性層を形成した基板の製造方法、軟磁性層を形成した基板、磁気記録媒体及び磁気記録装置
JP2004146033A (ja) * 2002-08-26 2004-05-20 Shin Etsu Chem Co Ltd 誘導異方性垂直磁気記録ハードディスク用基板及びその製造方法
JP2004146032A (ja) * 2002-08-26 2004-05-20 Shin Etsu Chem Co Ltd 垂直磁気記録ハードディスク用媒体基板及びその製造方法
JP2004199725A (ja) * 2002-12-16 2004-07-15 Fujitsu Ltd 情報記録媒体および情報記録媒体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260700A (ja) * 2005-03-18 2006-09-28 Fujitsu Ltd 磁気記録媒体及び磁気記録装置
CN100555418C (zh) * 2006-01-24 2009-10-28 鸿富锦精密工业(深圳)有限公司 垂直磁记录介质、及其制造方法

Also Published As

Publication number Publication date
US20070031705A1 (en) 2007-02-08
CN100411016C (zh) 2008-08-13
CN1856824A (zh) 2006-11-01
JPWO2005031714A1 (ja) 2006-12-07
JP3848672B2 (ja) 2006-11-22

Similar Documents

Publication Publication Date Title
JP3686067B2 (ja) 磁気記録媒体の製造方法
US20060292400A1 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
JP2012069173A (ja) 磁気記録媒体
US7273563B2 (en) Method for manufacturing a magnetic recording medium
JP2006092632A (ja) 磁気記録媒体及びその製造方法並びに磁気記録媒体用中間体
US7616404B2 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
US7682713B2 (en) Magnetic recording medium with recording layer having a predetermined concavo-convex pattern and magnetic recording and reproducing apparatus
JP2006012285A (ja) 磁気記録媒体及び磁気記録媒体の製造方法
JP3844755B2 (ja) 磁気記録媒体の製造方法
JP4008420B2 (ja) 磁気記録媒体の製造方法
JP3881350B2 (ja) 磁気記録媒体及び磁気記録再生装置
WO2005031714A1 (ja) 磁気記録媒体及びその製造方法
US20110212270A1 (en) Magnetic recording medium manufacturing method
US8284520B2 (en) Magnetic recording medium, method for producing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2010140544A (ja) 磁気記録媒体の製造方法及び磁気記録媒体、並びに磁気記録再生装置
JP2005235358A (ja) 磁気記録媒体
JP5062208B2 (ja) 磁気記録媒体及び磁気記録再生装置
JP2006252772A (ja) 磁気記録媒体の製造方法
JP2005235356A (ja) 磁気記録媒体の製造方法
JP3657196B2 (ja) 磁気記録媒体及び磁気ディスク装置
JP2007026628A (ja) 磁気記録媒体およびその製造方法並びに磁気記録再生装置
US20050089725A1 (en) Substrate for magnetic recording medium, magnetic recording medium, and method of manufacturing the same
US7940494B2 (en) Magnetic recording medium, magnetic recording and reproducing apparatus, and method for manufacturing magnetic recording medium
JP2010272183A (ja) 垂直磁気記録媒体及びディスクリートトラックメディア等の製造方法
JP2010086582A (ja) 樹脂型スタンパ製造方法、樹脂型スタンパ、磁気記録媒体製造方法および磁気記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480027882.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005514218

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007031705

Country of ref document: US

Ref document number: 10571481

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10571481

Country of ref document: US