WO2005024313A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2005024313A1
WO2005024313A1 PCT/JP2004/011770 JP2004011770W WO2005024313A1 WO 2005024313 A1 WO2005024313 A1 WO 2005024313A1 JP 2004011770 W JP2004011770 W JP 2004011770W WO 2005024313 A1 WO2005024313 A1 WO 2005024313A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcooling
refrigerant
flow path
compressor
sub
Prior art date
Application number
PCT/JP2004/011770
Other languages
English (en)
French (fr)
Inventor
Kaname Otsuka
Hiromichi Ueno
Kenichi Masaki
Kyo Tomikawa
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/570,326 priority Critical patent/US7640762B2/en
Priority to EP04771731A priority patent/EP1669694A4/en
Publication of WO2005024313A1 publication Critical patent/WO2005024313A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/047Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to, for example, a refrigeration apparatus in which a compressor, a condenser, an expansion section, and an evaporator are sequentially connected.
  • a supercooling heat exchanger was arranged between the condenser and the expansion valve.
  • the liquid refrigerant from the condenser is branched, one of the liquid refrigerants is used as a mainstream liquid, and the other liquid refrigerant passes through the subcooling expansion valve and then passes through the supercooling heat exchanger.
  • the mainstream liquid was supercooled and guided to the compression chamber of the compressor (Japanese Patent Application Laid-Open No. 11-248264: Patent Document 1).
  • Patent Document 1 JP-A-11-248264 (FIG. 1)
  • an object of the present invention is to provide a refrigeration apparatus capable of improving the refrigeration capacity and energy efficiency (COP) by further increasing the degree of subcooling of the refrigerant immediately before the expansion section.
  • COP refrigeration capacity and energy efficiency
  • a refrigeration apparatus of the present invention includes:
  • the compressor, the condenser, the expansion section, and the evaporator are sequentially connected, and are branched from a main flow path between the condenser and the expansion section to be connected to the compressor. At least two sub-channels;
  • a subcooling expansion section provided in each of the sub-flow paths,
  • It is characterized by including a supercooling heat exchanger that exchanges heat between the refrigerant on the outlet side of the subcooling expansion section and the refrigerant in the main flow path.
  • the refrigerant in the main flow path is provided with the plurality of supercooling heat exchangers.
  • the degree of subcooling (SC) of the refrigerant can be increased.
  • the refrigeration apparatus of the present invention has a so-called three-stage or more expansion economizer cycle, compared to a refrigeration system having a conventional two-stage expansion economizer cycle, the refrigeration system immediately before the expansion section is provided.
  • the refrigeration capacity and energy efficiency (COP) can be further improved by further increasing the degree of subcooling of the refrigerant.
  • the compressor is a single stalled compressor having a screw rotor and a pair of gate rotors that sandwich the screw rotor so as to sandwich both sides of the screw rotor.
  • One of the sub-flow paths is connected to one side of the pair of gate rotors as a boundary, and the other sub-flow path is connected to the other side of the pair of gate rotors as a boundary.
  • the compressor is divided into two parts by the pair of gate rotors as boundaries.
  • An economizer cycle can be applied to each compressed space, and a so-called three-stage expansion economizer cycle can be achieved, thereby improving performance.
  • the refrigerating apparatus detects the temperature and pressure of the refrigerant on the discharge side of the compressor, and based on the detection result, opens the subcooling expansion section of one of the sub-flow paths.
  • a sub-cooling control section for controlling the temperature and a temperature and a pressure of the refrigerant on the suction side of the compressor in the other sub-flow path, and based on the detection result, the sub-cooling of the other sub-flow path.
  • a suction-side subcooling control unit that controls the opening degree of the expansion unit.
  • the one subcooling expansion section is controlled by the discharge side subcooling control section, and the other subcooling expansion section is controlled by the suction side subcooling control.
  • the two supercooling expansion sections are controlled at different temperatures and different temperatures. And pressure can be controlled.
  • FIG. 1 is a simplified configuration diagram showing one embodiment of a refrigeration apparatus of the present invention.
  • FIG. 2 is a PH diagram comparing a refrigeration apparatus of the present invention with a conventional refrigeration apparatus.
  • FIG. 3 is a flowchart showing control of a discharge side subcooling control unit and a suction side subcooling control unit.
  • FIG. 1 shows a simplified configuration diagram which is an embodiment of the refrigeration apparatus of the present invention.
  • a compressor 1 a condenser 2, an expansion section 3, and an evaporator 4 are sequentially connected in a ring shape to form a refrigeration cycle using a refrigerant.
  • the gas-phase refrigerant discharged from the compressor 1 is deprived of heat in the condenser 2, and becomes a liquid phase.
  • the pressure is reduced by the expansion section 3 to a two-phase state of a gas phase and a liquid phase.
  • the two-phase refrigerant (wet gas) is given heat in the evaporator 4 to be in a gaseous state, and the gaseous refrigerant is sucked by the compressor 1 and pressurized. After that, it is discharged again by the compressor 1.
  • the compressor 1 for example, a single screw compressor is used. More specifically, the compressor 1 includes a screw rotor la, and a pair of gate rotors lb, lb that engage with each other so as to sandwich the screw rotor la from both sides. A compression chamber is formed by the engagement between the gears and the teeth of the pair of gate rotors lb, lb, and the refrigerant is compressed to a high pressure in the compression chamber.
  • the condenser 2 includes a fan 7, and the refrigerant is cooled by air cooling of the fan 7.
  • the expansion section 3 for example, an electronically controlled expansion valve or a capillary tube is used.
  • the evaporator 4 for example, a heat exchanger that cools water (liquid heat medium) with the refrigerant is used.
  • the refrigerating apparatus includes two sub-flow paths 11, 11 branched from a main flow path 10 between the condenser 2 and the expansion section 3 and connected to the compressor 1.
  • the main flow path 10 and the sub flow path 11 are configured by piping.
  • an upstream sub flow path 11 and a downstream sub flow path 11 are formed.
  • the upstream sub flow path 11 is connected to one side of the pair of gate rotors lb, lb as a boundary, and the downstream sub flow path 11 Is connected to the other side with the pair of gate rotors lb, lb as boundaries.
  • the upstream sub flow path 11 communicates with a middle part of the compression chamber existing on one side of the pair of gate rotors lb, lb as a boundary, and the downstream sub flow path 11
  • the pair of gate rotors lb, lb communicates with the middle part of the compression chamber on the other side of the boundary.
  • each of the sub-flow paths 11 a sub-cooling expansion section 12, and a sub-cooling heat exchange section that exchanges heat between the refrigerant on the outlet side of the sub-cooling expansion section 12 and the refrigerant in the main flow path 10.
  • the container 13 is installed.
  • an upstream subcooling heat exchanger (high-stage economizer) 13 and a downstream subcooling heat exchanger (low-stage economizer) 13 are arranged along the main flow path 10.
  • the sub-flow path 11 is branched from the main flow path 10 on the downstream side of the subcooling heat exchanger 13, but the subcooling heat The branch may be branched from the main flow path 10 on the upstream side of the exchanger 13.
  • the liquid-phase refrigerant in the main flow path 10 coming out of the condenser 2 first flows into the upstream sub-flow path. It is diverted to the flow path 11.
  • the liquid-phase refrigerant in the upstream sub-flow path 11 is decompressed by the supercooling expansion section 12 to become a two-phase refrigerant of a gas phase and a liquid phase.
  • the liquid phase refrigerant heat of the main flow path 10 is deprived to become a gaseous phase refrigerant, which is sucked into the compressor 1 .
  • the liquid-phase refrigerant in the main flow path 10 is cooled through the upstream subcooling heat exchanger 13.
  • the cooled liquid-phase refrigerant in the main flow path 10 is diverted to the downstream sub flow path 11.
  • the liquid-phase refrigerant in the downstream sub-flow path 11 is decompressed in the supercooling expansion section 12 to become a two-phase refrigerant of a gas phase and a liquid phase.
  • Heat is taken from the liquid-phase refrigerant in the main flow path 10 through the subcooling heat exchanger 13 on the side of the main passage 10 to become a gas-phase refrigerant, which is sucked into the compressor 1 .
  • the liquid-phase refrigerant in the main flow path 10 is cooled via the subcooling heat exchanger 13 on the downstream side.
  • the two supercooling heat exchangers 13 and 13 are provided. Therefore, every time the refrigerant in the main flow path 10 passes through the two subcooling heat exchangers 13, 13, the degree of liquid subcooling of the refrigerant can be increased.
  • the refrigerating apparatus of the present invention since the refrigerating apparatus of the present invention has a three-stage expansion economizer cycle including three expansion sections 3, 12, 12 and two supercooling heat exchangers 13, 13, the conventional refrigerating apparatus has a conventional structure. As compared with a refrigeration system having a two-stage expansion economizer cycle consisting of two expansion valves and one supercooling heat exchanger, the degree of subcooling of the refrigerant immediately before the expansion section 3 is further increased. Thus, refrigeration capacity and energy efficiency (C ⁇ P) can be further improved.
  • C ⁇ P refrigeration capacity and energy efficiency
  • the upstream-side supercooling heat exchanger (three-stage expansion ECO upper stage)
  • the subcooling heat exchanger on the downstream side increases the degree of liquid subcooling (SC) compared to the conventional refrigeration system (two-stage expansion) indicated by the dotted line, The refrigeration capacity is improved.
  • the refrigeration apparatus of the present invention detects the temperature and pressure of the refrigerant on the discharge side of the compressor 1 and, based on the detection result, the downstream subcooling expansion section 1.
  • a discharge-side supercooling control unit 14 that controls the opening degree of the compressor 2 and the temperature and pressure of the refrigerant on the suction side of the compressor 1 in the upstream sub-flow path 11 are detected.
  • An intake side subcooling control unit 15 that controls the opening degree of the subcooling expansion unit 12 is provided.
  • the discharge side subcooling control unit 14 calculates the current current SH value from the temperature and the high pressure value of the refrigerant in the discharge pipe of the compressor 1 and sets a predetermined target SH value. Opening control is performed by comparing with the SH value.
  • the suction side subcooling control unit 15 calculates the current current SH value from the temperature and pressure value of the refrigerant in the outlet pipe of the upstream side subcooling heat exchanger 13, and sets a preset target SH value.
  • the opening degree control is performed by comparing with.
  • the SH value is a degree of superheat (superheat), and is a temperature indicating a difference from a temperature in a saturated state.
  • a temperature-sensitive expansion valve is used, which can be inexpensive as compared with an electronic expansion valve.
  • an electronic expansion valve may be used as the subcooling expansion section 12.
  • the downstream-side subcooling expansion unit 12 is controlled by the discharge-side subcooling control unit 14, and the upstream-side subcooling expansion unit 12 is controlled by the suction-side subcooling control unit 15. Therefore, the two supercooling expansion sections 12 and 12 can be individually controlled based on different temperatures and pressures.
  • the upstream subcooling expansion section 12 is controlled by the discharge side subcooling control section 14, and the downstream subcooling expansion section 12 is controlled by the downstream subcooling expansion section 12.
  • the control may be performed by a suction side subcooling control unit 15 provided separately in the flow path 11.
  • three or more sub-flow paths 11, the subcooling expansion section 12, and the supercooling heat exchanger 13 may be provided, respectively.
  • one subcooling expansion section may be provided. 12 is controlled by the discharge side subcooling control unit 14, and the other subcooling expansion units 12 are controlled by the suction side subcooling control unit 15 provided in each of the sub-flow paths 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

 冷凍装置は、凝縮器2と膨張部3との間の主流路10から分岐されて圧縮機1へ接続される二つの副流路11,11を備える。この各副流路11において、過冷却用膨張部12と、この過冷却用膨張部12の出口側の冷媒と上記主流路10の冷媒とを熱交換する過冷却用熱交換器13とを設けているので、主流路10の冷媒が、二つの過冷却用熱交換器13,13を通過する毎に、この冷媒の液過冷却度を大きくすることができる。これにより、膨張部3直前の冷媒の液過冷却度をさらに大きくして、冷凍能力およびエネルギー効率を向上できる冷凍装置を提供する。

Description

技術分野
[0001] この発明は、例えば、圧縮機と凝縮器と膨張部と蒸発器とを順次接続した冷凍装置 に関する。
背景技術
[0002] 従来の冷凍装置では、圧縮機と凝縮器と膨張弁と蒸発器とを順次環状に接続し、 明
上記凝縮器と上記膨張弁との間に過冷却用熱交換器が配置されていた。そして、上 田
記凝縮器からの液冷媒は分岐されて、一方の液冷媒は、主流液とされ、他方の液冷 媒は、過冷却用膨張弁を通った後に、上記過冷却用熱交換器を介して上記主流液 を過冷却し、上記圧縮機の圧縮室へ導かれてレ、た(特開平 11-248264号公報:特 許文献 1参照)。
[0003] し力しながら、上記従来の冷凍装置では、上記膨張弁直前の冷媒の液過冷却度を さらに大きくすることはできず、冷凍能力およびエネルギー効率(COP)の向上に限 度があった。
特許文献 1 :特開平 11—248264号公報(図 1)
発明の開示 発明が解決しょうとする課題
[0004] そこで、この発明の課題は、膨張部直前の冷媒の液過冷却度をさらに大きくして、 冷凍能力およびエネルギー効率(COP)を向上できる冷凍装置を提供することにある
課題を解決するための手段
[0005] 上記課題を解決するため、この発明の冷凍装置は、
圧縮機と、凝縮器と、膨張部と、蒸発器とを備え、
上記圧縮機、上記凝縮器、上記膨張部および上記蒸発器は、順次接続されており 上記凝縮器と上記膨張部との間の主流路から分岐されて上記圧縮機へ接続される 少なくとも二つの副流路と、
この各副流路に設けられた過冷却用膨張部と、
この過冷却用膨張部の出口側の冷媒と上記主流路の冷媒とを熱交換する過冷却 用熱交換器とを備えることを特徴としている。
[0006] この発明の冷凍装置によれば、上記過冷却用熱交換器を上記主流路に沿って少 なくとも二つ設けているので、上記主流路の冷媒が上記複数の過冷却用熱交換器を 通過する毎に、この冷媒の液過冷却度(SC)を大きくすることができる。
[0007] すなわち、この発明の冷凍装置は、いわゆる、三段以上の膨張のェコノマイザサイ クルを有するので、従来の二段膨張のェコノマイザサイクルを有する冷凍装置に比 ベて、上記膨張部直前の冷媒の液過冷却度をさらに大きくして、冷凍能力およびェ ネルギー効率(COP)を一層向上できる。
[0008] また、一実施形態の冷凍装置では、上記圧縮機は、スクリューロータとこのスクリュ 一ロータを両側力 挟むように嚙み合う一対のゲートロータとを有するシングルスタリ ユー圧縮機であり、上記副流路は、二つ存在し、
一方の上記副流路は、上記一対のゲートロータを境界とした一方側に接続され、他 方の上記副流路は、上記一対のゲートロータを境界とした他方側に接続されている。
[0009] この一実施形態の冷凍装置によれば、上記副流路および上記過冷却用熱交換器 は、二つ存在するので、上記圧縮機において、上記一対のゲートロータを境界として 二分割された圧縮空間毎に、ェコノマイザサイクルを適用でき、いわゆる、三段膨張 のェコノマイザサイクルとすることができ、性能の向上が図れる。
[0010] また、一実施形態の冷凍装置では、上記圧縮機の吐出側の冷媒の温度および圧 カを検知しこの検知結果に基づいて一方の上記副流路の上記過冷却用膨張部の 開度制御を行なう吐出側過冷却制御部と、他方の上記副流路における上記圧縮機 の吸入側の冷媒の温度および圧力を検知しこの検知結果に基づいてこの他方の副 流路の上記過冷却用膨張部の開度制御を行なう吸入側過冷却制御部とを備える。
[0011] この一実施形態の冷凍装置によれば、上記一方の過冷却用膨張部を上記吐出側 過冷却制御部にて制御し、上記他方の過冷却用膨張部を上記吸入側過冷却制御 部にて制御しているので、上記二つの過冷却用膨張部を、それぞれ、異なる温度お よび圧力に基づレ、て制御することができる。
[0012] したがって、上記二つの過冷却用膨張部において、共通の温度および圧力に基づ いて制御することにより生じる開閉動作のハンチングを回避して、安定した冷却効果 を得ること力できる。
発明の効果
[0013] この発明の冷凍装置によれば、上記過冷却用熱交換器を上記主流路に沿って少 なくとも二つ設けているので、上記膨張部直前の冷媒の液過冷却度を大きくして、冷 凍能力およびエネルギー効率を向上できる。
[0014] また、一実施形態の冷凍装置によれば、上記圧縮機の二分割された圧縮空間毎に ェコノマイザサイクルを適用するので、性能の向上が図れる。
[0015] また、一実施形態の冷凍装置によれば、上記二つの過冷却用膨張部を、それぞれ 、異なる温度および圧力に基づいて制御しているので、上記二つの過冷却用膨張部 における開閉動作の競り合いを防止して、安定した冷却効果を得ることができる。 図面の簡単な説明
[0016] [図 1]本発明の冷凍装置の一実施形態を示す簡略構成図である。
[図 2]本発明の冷凍装置と従来の冷凍装置とを比較した PH線図である。
[図 3]吐出側過冷却制御部および吸入側過冷却制御部の制御を示すフローチャート である。
符号の説明
[0017] 1 圧縮機
la スクリューロータ
lb ゲートロータ
2 凝縮器
3 膨張部
4 蒸発器
10 主流路
11 副流路
12 過冷却用膨張部 13 過冷却用熱交換器
14 吐出側過冷却制御部
15 吸入側過冷却制御部
発明を実施するための最良の形態
[0018] 以下、この発明を図示の実施の形態により詳細に説明する。
[0019] 図 1は、この発明の冷凍装置の一実施形態である簡略構成図を示している。この冷 凍装置は、圧縮機 1と凝縮器 2と膨張部 3と蒸発器 4とを順次環状に接続して、冷媒を 用レ、た冷凍サイクルを構成する。
[0020] この冷凍サイクルを説明すると、上記圧縮機 1にて吐出される気相の冷媒は、上記 凝縮器 2において熱を奪われて、液相状態になり、この液相の冷媒は、上記膨張部 3 により、減圧されて、気相と液相の二相状態になる。その後、この二相の冷媒 (湿りガ ス)は、上記蒸発器 4において熱を与えられて、気相状態になり、この気相の冷媒は、 上記圧縮機 1にて吸入されて加圧された後に、再び、上記圧縮機 1にて吐出される。
[0021] 上記圧縮機 1としては、例えば、シングルスクリュー圧縮機を用いる。具体的に述べ ると、上記圧縮機 1は、スクリューロータ laと、このスクリューロータ laを両側から挟む ように嚙み合う一対のゲートロータ lb, lbとを備え、上記スクリューロータ laのスクリュ 一溝と上記一対のゲートロータ lb, lbの歯部との嚙み合いにより圧縮室が形成され 、この圧縮室にて上記冷媒が高圧に圧縮される。
[0022] 上記凝縮器 2は、ファン 7を備え、このファン 7の空冷により、上記冷媒が冷却される 。上記膨張部 3としては、例えば、電子制御された膨張弁や、キヤピラリーチューブを 用いる。上記蒸発器 4としては、例えば、上記冷媒にて水 (液熱媒体)を冷却する熱 交換器を用いる。
[0023] そして、この冷凍装置は、上記凝縮器 2と上記膨張部 3との間の主流路 10から分岐 されて上記圧縮機 1へ接続される二つの副流路 11 , 11を備える。なお、上記主流路 10および上記副流路 1 1は、配管にて構成される。
[0024] 具体的に述べると、上記主流路 10の上流側と下流側とからの分岐により、上流側 の副流路 11と下流側の副流路 11とが形成される。この上流側の副流路 11は、上記 一対のゲートロータ lb, lbを境界とした一方側に接続され、この下流側の副流路 11 は、上記一対のゲートロータ lb, lbを境界とした他方側に接続されている。すなわち 、上記上流側の副流路 11は、上記一対のゲートロータ lb, lbを境界とした一方側に 存在する上記圧縮室の中途部に連通し、上記下流側の副流路 11は、上記一対のゲ ートロータ lb, lbを境界とした他方側に存在する上記圧縮室の中途部に連通する。
[0025] また、この各副流路 11において、過冷却用膨張部 12と、この過冷却用膨張部 12 の出口側の冷媒と上記主流路 10の冷媒とを熱交換する過冷却用熱交換器 13とを設 けている。
[0026] 具体的に述べると、上記主流路 10に沿って、上流側の過冷却用熱交換器(高段の ェコノマイザ) 13と下流側の過冷却用熱交換器 (低段のェコノマイザ) 13とが配置さ れる。なお、図 1では、上記各副流路 11において、上記副流路 11は、上記過冷却用 熱交換器 13の下流側にて上記主流路 10から分岐されているが、上記過冷却用熱 交換器 13の上流側にて上記主流路 10から分岐されるようにしてもよい。
[0027] 次に、上記二つの過冷却用熱交換器 13, 13の作用を説明すると、上記凝縮器 2か ら出た上記主流路 10における液相の冷媒は、まず、上記上流側の副流路 11に分流 される。この上流側の副流路 11における液相の冷媒は、上記過冷却用膨張部 12に て減圧されて、気相と液相の二相の冷媒になり、この二相の冷媒は、上記上流側の 過冷却用熱交換器 13を介して、上記主流路 10の液相の冷媒カ 熱を奪って、気相 の冷媒になり、この気相の冷媒は、上記圧縮機 1に吸入される。このとき、上記主流 路 10における液相の冷媒は、上記上流側の過冷却用熱交換器 13を介して、冷却さ れる。
[0028] その後、この冷却された上記主流路 10における液相の冷媒は、上記下流側の副 流路 11に分流される。この下流側の副流路 11における液相の冷媒は、上記過冷却 用膨張部 12にて減圧されて、気相と液相の二相の冷媒になり、この二相の冷媒は、 上記下流側の過冷却用熱交換器 13を介して、上記主流路 10の液相の冷媒から熱 を奪って、気相の冷媒になり、この気相の冷媒は、上記圧縮機 1に吸入される。このと き、上記主流路 10における液相の冷媒は、上記下流側の過冷却用熱交換器 13を 介して、冷却される。
[0029] 上記構成の冷凍装置によれば、上記二つの過冷却用熱交換器 13, 13を設けてい るので、上記主流路 10の冷媒が上記二つの過冷却用熱交換器 13, 13を通過する 毎に、この冷媒の液過冷却度を大きくすることができる。
[0030] すなわち、この発明の冷凍装置は、三つの膨張部 3, 12, 12と二つの過冷却用熱 交換器 13, 13とから成る三段膨張のェコノマイザサイクルを有するので、従来の、二 つの膨張弁と一つの過冷却用熱交換器とから成る二段膨張のェコノマイザサイクノレ を有する冷凍装置に比べて、上記膨張部 3直前の冷媒の液過冷却度をさらに大きく して、冷凍能力およびエネルギー効率(C〇P)を一層向上できる。
[0031] 具体的に述べると、図 2に示すように、実線にて示した上記発明の冷凍装置(三段 膨張)では、上流側の過冷却用熱交換器 (三段膨張 ECO上段)と下流側の過冷却 用熱交換器 (三段膨張 ECO下段)とにより、点線にて示した上記従来の冷凍装置( 二段膨張)に比べて、液過冷却度(SC)が大きくなつて、冷凍能力が向上する。
[0032] さらに、この発明の冷凍装置は、図 1に示すように、上記圧縮機 1の吐出側の冷媒 の温度および圧力を検知しこの検知結果に基づいて上記下流の過冷却用膨張部 1 2の開度制御を行なう吐出側過冷却制御部 14と、上記上流側の副流路 11における 上記圧縮機 1の吸入側の冷媒の温度および圧力を検知しこの検知結果に基づいて 上記上流の過冷却用膨張部 12の開度制御を行なう吸入側過冷却制御部 15とを備 える。
[0033] 具体的に述べると、上記吐出側過冷却制御部 14は、上記圧縮機 1の吐出配管内 の冷媒の温度および高圧圧力値から現在の現 SH値を算出し、予め設定された目標 SH値と比較することで開度制御を行なう。上記吸入側過冷却制御部 15は、上記上 流側の過冷却用熱交換器 13の出口配管内の冷媒の温度および圧力値から現在の 現 SH値を算出し、予め設定された目標 SH値と比較することで開度制御を行なう。こ こで、上記 SH値とは、過熱度 (スーパーヒート)であり、飽和状態の温度との差を示す 温度をいう。
[0034] 上記過冷却用膨張部 12としては、感温式膨張弁を用いており、電子膨張弁に比べ て安価なものにできる。もちろん、上記過冷却用膨張部 12として、電子膨張弁を用い てもよい。
[0035] 次に、図 3にて、上記吐出側過冷却制御部 14および上記吸入側過冷却制御部 15 の作用を説明する。
[0036] まず、上記吐出側過冷却制御部 14の制御動作について説明する。制御動作がス タートすると(S101)、上記現 SH値 (B)が上記目標 SH値 (A)よりも大きレ、か否かを 判断し (S102)、大きい場合は、上記下流側の感温式膨張弁 12の開動作を行ない( S103)、逆に、大きくない場合は、上記現 SH値 (B)が上記目標 SH値 (A)よりも小さ いか否かを判断する(S104)。そして、小さい場合は、上記下流側の感温式膨張弁 1 2の閉動作を行ない(S105)、逆に、小さくない場合は、上記下流側の感温式膨張弁 12の動作を行なわなレ、(S 106)。
[0037] 次に、上記吸入側過冷却制御部 15の制御動作について説明する。制御動作がス タートすると(S201)、上記現 SH値 (D)が上記目標 SH値(C)よりも大きレ、か否かを 判断し (S202)、大きい場合は、上記上流側の感温式膨張弁 12の開動作を行ない( S203)、逆に、大きくない場合は、上記現 SH値 (D)が上記目標 SH値 (C)よりも小さ いか否かを判断する(S204)。そして、小さい場合は、上記上流側の感温式膨張弁 1 2の閉動作を行ない(S205)、逆に、小さくない場合は、上記上流側の感温式膨張弁 12の動作を行なわなレ、(S206)。
[0038] このように、上記下流側の過冷却用膨張部 12を上記吐出側過冷却制御部 14にて 制御し、上記上流側の過冷却用膨張部 12を上記吸入側過冷却制御部 15にて制御 しているので、上記二つの過冷却用膨張部 12, 12を、それぞれ、異なる温度および 圧力に基づレヽて制御することができる。
[0039] したがって、上記二つの過冷却用膨張部 12, 12において、共通の温度および圧 力に基づいて制御することにより生じる開閉動作のハンチングを回避して、安定した 冷却効果を得ることができる。例えば、上記二つの過冷却用膨張部 12, 12を上記吐 出側過冷却制御部 14にて制御する場合、上記二つの過冷却用膨張部 12, 12は、 共通の圧力および温度により制御されることになるので、開閉動作がハンチングして 、安定した冷却効果が得られなレ、可能性がある。
[0040] なお、この発明は上述の実施形態に限定されず、この発明の要旨を逸脱しない範 囲で設計変更可能である。例えば、上記上流側の過冷却用膨張部 12を上記吐出側 過冷却制御部 14にて制御し、上記下流側の過冷却用膨張部 12を上記下流側の副 流路 11に別途設けた吸入側過冷却制御部 15にて制御するようにしてもよい。また、 上記副流路 11と上記過冷却用膨張部 12と上記過冷却用熱交換器 13とを、それぞ れ、三つ以上設けてもよぐこの場合、一つの上記過冷却用膨張部 12を上記吐出側 過冷却制御部 14にて制御し、その他の上記過冷却用膨張部 12を、それぞれ、各上 記副流路 11に設けた吸入側過冷却制御部 15にて制御するようにする。

Claims

請求の範囲
[1] 圧縮機(1)と、
凝縮器 (2)と、
膨張部(3)と、
蒸発器 (4)と
を備え、
上記圧縮機(1)、上記凝縮器 (2)、上記膨張部(3)および上記蒸発器 (4)は、順次 接続されており、
上記凝縮器 (2)と上記膨張部(3)との間の主流路(10)から分岐されて上記圧縮機 (1)へ接続される少なくとも二つの副流路(11)と、
この各副流路(11 )に設けられた過冷却用膨張部(12)と、
この過冷却用膨張部(12)の出口側の冷媒と上記主流路(10)の冷媒とを熱交換す る過冷却用熱交換器(13)と
を備えることを特徴とする冷凍装置。
[2] 請求項 1に記載の冷凍装置において、
上記圧縮機(1)は、スクリューロータ(la)とこのスクリューロータ(l a)を両側から挟 むように嚙み合う一対のゲートロータ(lb, lb)とを有するシングルスクリュー圧縮機で あり、上記副流路(11 )は、二つ存在し、
一方の上記副流路(11)は、上記一対のゲートロータ(lb, lb)を境界とした一方側 に接続され、他方の上記副流路(11)は、上記一対のゲートロータ(lb, lb)を境界と した他方側に接続されていることを特徴とする冷凍装置。
[3] 請求項 2に記載の冷凍装置において、
上記圧縮機(1)の吐出側の冷媒の温度および圧力を検知しこの検知結果に基づ レ、て一方の上記副流路(11)の上記過冷却用膨張部(12)の開度制御を行なう吐出 側過冷却制御部(14)と、
他方の上記副流路(11)における上記圧縮機(1)の吸入側の冷媒の温度および圧 カを検知しこの検知結果に基づいてこの他方の副流路(11)の上記過冷却用膨張 部(12)の開度制御を行なう吸入側過冷却制御部(15)と を備えることを特徴とする冷凍装置。
PCT/JP2004/011770 2003-09-05 2004-08-17 冷凍装置 WO2005024313A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/570,326 US7640762B2 (en) 2003-09-05 2004-08-17 Refrigeration apparatus
EP04771731A EP1669694A4 (en) 2003-09-05 2004-08-17 FREEZING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003313439A JP4433729B2 (ja) 2003-09-05 2003-09-05 冷凍装置
JP2003-313439 2003-09-05

Publications (1)

Publication Number Publication Date
WO2005024313A1 true WO2005024313A1 (ja) 2005-03-17

Family

ID=34269770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011770 WO2005024313A1 (ja) 2003-09-05 2004-08-17 冷凍装置

Country Status (6)

Country Link
US (1) US7640762B2 (ja)
EP (1) EP1669694A4 (ja)
JP (1) JP4433729B2 (ja)
CN (1) CN100476316C (ja)
TW (1) TWI285249B (ja)
WO (1) WO2005024313A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039332A (ja) * 2006-08-09 2008-02-21 Mitsubishi Heavy Ind Ltd マルチ型ヒートポンプ式空気調和機
KR101333984B1 (ko) * 2006-10-17 2013-11-27 엘지전자 주식회사 공기조화기
CN101573579A (zh) 2006-12-29 2009-11-04 开利公司 经济器热交换器
DE102007013485B4 (de) * 2007-03-21 2020-02-20 Gea Refrigeration Germany Gmbh Verfahren zur Regelung einer CO2-Kälteanlage mit zweistufiger Verdichtung
JP4969287B2 (ja) * 2007-03-28 2012-07-04 三菱電機株式会社 冷凍サイクル装置
JP4989507B2 (ja) * 2008-02-15 2012-08-01 三菱電機株式会社 冷凍装置
JP4931848B2 (ja) * 2008-03-31 2012-05-16 三菱電機株式会社 ヒートポンプ式給湯用室外機
EP2314953B1 (en) * 2008-06-13 2018-06-27 Mitsubishi Electric Corporation Refrigeration cycle device and control method therefor
US9121627B2 (en) * 2010-09-14 2015-09-01 Johnson Controls Technology Company System and method for controlling an economizer circuit
KR101252173B1 (ko) * 2010-11-23 2013-04-05 엘지전자 주식회사 히트 펌프 및 그 제어방법
KR101382084B1 (ko) * 2011-09-07 2014-04-04 엘지전자 주식회사 공기 조화기
JP5792585B2 (ja) * 2011-10-18 2015-10-14 サンデンホールディングス株式会社 冷凍機、冷蔵ショーケース及び自動販売機
KR101873597B1 (ko) * 2012-02-23 2018-07-31 엘지전자 주식회사 공기 조화기
US9733005B2 (en) 2013-03-15 2017-08-15 Johnson Controls Technology Company Subcooling system with thermal storage
KR102103360B1 (ko) * 2013-04-15 2020-05-29 엘지전자 주식회사 공기조화기 및 그 제어방법
CN103344067B (zh) * 2013-06-17 2015-09-09 江苏科立德制冷设备有限公司 一种低温涡旋并联压缩冷凝机组
CN103307817B (zh) * 2013-06-17 2015-08-05 江苏科立德制冷设备有限公司 一种涡旋并联压缩冷凝机组
US10595535B2 (en) * 2014-02-10 2020-03-24 Ibex Bionomics Llc Bio-derived compositions for use in agriculture
US10595536B2 (en) * 2014-02-10 2020-03-24 Ibex Bionomics Llc Bio-derived compositions
US10047985B2 (en) 2014-03-10 2018-08-14 Johnson Controls Technology Company Subcooling system with thermal energy storage
WO2017203642A1 (ja) * 2016-05-25 2017-11-30 三菱電機株式会社 スクリュー圧縮機及び冷凍サイクル装置
WO2019084870A1 (zh) * 2017-11-02 2019-05-09 太仓富华特种电机有限公司 一种冷却力可调的工业用冷却机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287058A (ja) * 1989-04-26 1990-11-27 Daikin Ind Ltd スクリュー冷凍機
JPH0460348A (ja) * 1990-06-27 1992-02-26 Daikin Ind Ltd スクリュー冷凍装置
JPH05322334A (ja) * 1992-05-20 1993-12-07 Hitachi Ltd 多段圧縮冷凍サイクルおよびその起動方法
JPH09210480A (ja) * 1996-01-31 1997-08-12 Mitsubishi Heavy Ind Ltd 二段圧縮式冷凍装置
JP2000220893A (ja) * 1999-02-01 2000-08-08 Ebara Corp 半密閉形スクリュー冷凍機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2024323A (en) * 1932-07-01 1935-12-17 Baldwin Southwark Corp Apparatus for compressing gaseous fluids
US2463881A (en) * 1946-07-06 1949-03-08 Muncie Gear Works Inc Heat pump
US2677944A (en) * 1950-12-01 1954-05-11 Alonzo W Ruff Plural stage refrigeration apparatus
US2897659A (en) * 1954-08-09 1959-08-04 Ckd Stalingrad Narodni Podnik Apparatus for gas and liquid cooling in compressor plants with two- or multistage cooling circuit
GB1555330A (en) * 1978-03-21 1979-11-07 Hall Thermotank Prod Ltd Rotary fluid machines
US4602485A (en) * 1983-04-23 1986-07-29 Daikin Industries, Ltd. Refrigeration unit including a hot gas defrosting system
JP3443443B2 (ja) 1993-12-24 2003-09-02 株式会社神戸製鋼所 スクリュ式冷凍機
US6058727A (en) * 1997-12-19 2000-05-09 Carrier Corporation Refrigeration system with integrated oil cooling heat exchanger
JPH11248264A (ja) 1998-03-04 1999-09-14 Hitachi Ltd 冷凍装置
JP2001099498A (ja) * 1999-09-30 2001-04-13 Dairei:Kk 非共沸系混合冷媒を用いた冷凍システム
US6718781B2 (en) * 2001-07-11 2004-04-13 Thermo King Corporation Refrigeration unit apparatus and method
US6694750B1 (en) * 2002-08-21 2004-02-24 Carrier Corporation Refrigeration system employing multiple economizer circuits
WO2005119141A1 (en) * 2004-05-28 2005-12-15 York International Corporation System and method for controlling an economizer circuit
US20060064257A1 (en) * 2004-09-21 2006-03-23 Graham Packaging Company, L.P. Test device for measuring a container response
CN101501415B (zh) * 2006-08-01 2012-09-05 开利公司 制冷***及其操作方法
KR20090041846A (ko) * 2007-10-25 2009-04-29 엘지전자 주식회사 공기 조화기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287058A (ja) * 1989-04-26 1990-11-27 Daikin Ind Ltd スクリュー冷凍機
JPH0460348A (ja) * 1990-06-27 1992-02-26 Daikin Ind Ltd スクリュー冷凍装置
JPH05322334A (ja) * 1992-05-20 1993-12-07 Hitachi Ltd 多段圧縮冷凍サイクルおよびその起動方法
JPH09210480A (ja) * 1996-01-31 1997-08-12 Mitsubishi Heavy Ind Ltd 二段圧縮式冷凍装置
JP2000220893A (ja) * 1999-02-01 2000-08-08 Ebara Corp 半密閉形スクリュー冷凍機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1669694A4 *

Also Published As

Publication number Publication date
JP4433729B2 (ja) 2010-03-17
JP2005083609A (ja) 2005-03-31
US20070017249A1 (en) 2007-01-25
US7640762B2 (en) 2010-01-05
TWI285249B (en) 2007-08-11
CN100476316C (zh) 2009-04-08
EP1669694A1 (en) 2006-06-14
CN1846099A (zh) 2006-10-11
EP1669694A4 (en) 2009-04-08
TW200513620A (en) 2005-04-16

Similar Documents

Publication Publication Date Title
WO2005024313A1 (ja) 冷凍装置
JP5611353B2 (ja) ヒートポンプ
US6698217B2 (en) Freezing device
JP3861912B2 (ja) 冷凍装置
EP3217121B1 (en) Outdoor unit for air conditioner and method for controlling air conditioner
WO2006013861A1 (ja) 冷凍装置
AU2019457803B2 (en) Refrigeration cycle device
KR20070007771A (ko) 냉동장치
WO2009139187A1 (ja) 冷凍装置
JP5235925B2 (ja) 冷凍装置
EP1526345A1 (en) Refrigeration equipment
JP2023503192A (ja) 空気調和装置
JP2009293899A (ja) 冷凍装置
US7451615B2 (en) Refrigeration device
JP5237157B2 (ja) 空気熱源ターボヒートポンプ
JP4767340B2 (ja) ヒートポンプ装置の制御装置
JP2009293887A (ja) 冷凍装置
JP4023386B2 (ja) 冷凍装置
KR100821729B1 (ko) 공기 조화 시스템
JP6554903B2 (ja) 空気調和装置
JPH10176869A (ja) 冷凍サイクル装置
JP2013204952A (ja) 冷凍サイクル装置
JP2010255884A (ja) 熱源機およびその制御方法
JP2009115336A (ja) 冷凍装置
JP5194842B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025527.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2004771731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004771731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007017249

Country of ref document: US

Ref document number: 10570326

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004771731

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570326

Country of ref document: US