JP4969287B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP4969287B2
JP4969287B2 JP2007084738A JP2007084738A JP4969287B2 JP 4969287 B2 JP4969287 B2 JP 4969287B2 JP 2007084738 A JP2007084738 A JP 2007084738A JP 2007084738 A JP2007084738 A JP 2007084738A JP 4969287 B2 JP4969287 B2 JP 4969287B2
Authority
JP
Japan
Prior art keywords
refrigerant
state
temperature
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007084738A
Other languages
English (en)
Other versions
JP2008241192A (ja
Inventor
拓也 伊藤
史武 畝崎
一憲 村端
靖 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007084738A priority Critical patent/JP4969287B2/ja
Publication of JP2008241192A publication Critical patent/JP2008241192A/ja
Application granted granted Critical
Publication of JP4969287B2 publication Critical patent/JP4969287B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

この発明は冷凍サイクル装置に関し、特に冷凍サイクルの効率の向上に関するものである。
従来の冷凍サイクル装置としては、例えば「第2圧縮機(12)から吐出された冷媒は、四路切換弁(13)を通過して熱源側熱交換器(14)に流入し、熱媒体と対向流の状態で熱交換を行って凝縮し、高圧圧力の液冷媒(図2の点5)となる。熱源側熱交換器(14)を流出した高圧圧力の液冷媒は、第1膨張弁(15)で減圧され、中間圧力の二相冷媒(図2の点4’)となって気液分離器(16)に流入する。中間圧力の二相冷媒は、気液分離器(16)においてガス冷媒(図2の点3’)と液冷媒(図2の点5’)とに分離され、ガス冷媒はガス配管(19)を通じて第2圧縮機(12)に吸入される。一方、液冷媒は第2膨張弁(17)で減圧され、低圧圧力の二相冷媒(図2の点6)となる。上記低圧冷媒は、利用側熱交換器(18)において、所定の熱媒体と対向流の状態で熱交換を行って蒸発し、低圧圧力のガス冷媒となる(図2の点1)。」(例えば特許文献1参照)というものが提案されている。
特開2000−161805号公報(段落番号0029〜0031、図1,2)
近年、冷凍サイクルの効率の向上を目的とした冷媒回路が用いられるようになった。特に、環境問題に鑑み、非共沸冷媒の特性を積極的に活用した冷媒回路も多く用いられている。非共沸冷媒を用いた冷凍サイクルの効率を向上させる方法として、蒸発器の熱交換効率を向上させる方法がある(例えば特許文献1参照)。
蒸発器の熱交換効率を向上させるためには、蒸発器入り口の低温低圧二相状態の冷媒をできるだけ液状に近づける必要がある。このためには、膨張弁で減圧される前の高圧液冷媒の温度をできるだけ低下させる必要がある。従来の方法は、膨張弁前の高圧液冷媒を、中間圧に減圧した低温二相冷媒で冷却していた。したがって、膨張弁前の高圧液冷媒を、中間圧に減圧した低温二相冷媒の温度以下に冷却できないという問題があった。
この発明は上述のような課題を解決するためになされたものであり、膨張弁前の高圧液冷媒を、中間圧に減圧した低温二相冷媒の温度以下に冷却できる冷凍サイクル装置を得ることである。
この発明に係る冷凍サイクル装置は、圧縮機、凝縮器、第1の減圧装置及び蒸発器が順次接続した冷凍サイクル装置において、前記凝縮器と前記第1の減圧装置との間の冷媒を一部バイパスして、前記凝縮器と前記圧縮機内の圧縮室との間の冷媒に合流させる第1の副冷媒回路と、該第1の副冷媒回路に設けられた第2の減圧装置と、該第2の減圧装置で減圧された冷媒と、前記凝縮器と前記第1の減圧装置との間の冷媒とを熱交換する第1のサブクーラと、該第1のサブクーラと前記第1の減圧装置との間の冷媒を一部バイパスして、前記蒸発器と前記圧縮機との間の冷媒に合流させる第2の副冷媒回路と、該第2の副冷媒回路に設けられた第3の減圧装置と、該第3の減圧装置で減圧された冷媒と、前記第1のサブクーラと前記第1の減圧装置との間の冷媒とを熱交換する第2のサブクーラとを備え、前記第3の減圧装置の開度は、前記蒸発器を出た冷媒の温度に応じて制御されるものである。
この発明においては、凝縮器と第1の減圧装置との間に、第1のサブクーラと第2のサブクーラを備えたので、第1のサブクーラにおいて中間圧に減圧した低温二相冷媒によって冷却された第1の減圧装置前の高圧液冷媒を、さらに第2のサブクーラにおいて低圧に減圧した低温二相冷媒で冷却することができる。したがって、第1の減圧装置前の高圧液冷媒を、中間圧に減圧した低温二相冷媒の温度以下に冷却することができる。
実施の形態1.
図1は、この発明の実施の形態1における冷凍サイクル装置の冷媒回路である。冷凍サイクル装置は、本発明の圧縮機に相当するインジェクション圧縮機11、本発明の凝縮器に相当する空気側熱交換器12、第1のサブクーラ13、本発明の第2の減圧装置に相当する第2の膨張弁14、本発明の第1の副冷媒回路に相当するインジェクション回路100、第2のサブクーラ15、本発明の第3の減圧装置に相当する第3の膨張弁16、電磁弁17、第2の副冷媒回路101、本発明の第1の減圧装置に相当する第1の膨張弁18、及び本発明の蒸発器に相当する水側熱交換器19で構成されている。インジェクション圧縮機11は例えばスクロール形式であり、インジェクションポート11aを介して圧縮室内にインジェクション回路100から供給される冷媒をインジェクションすることが可能な構造となっている。第2の膨張弁14及び第1の膨張弁18は例えば開度を可変に制御することができる電子膨張弁である。第3の膨張弁16は例えば温度式膨張弁であり、水側熱交換器19を出た低圧ガス冷媒の温度を感温部16aで検出し、この検出温度に応じて弁の開度が制御される。空気側熱交換器12は、送風機等で送風される外気と熱交換する例えばフィンチューブ型熱交換器である。水側熱交換器は、所定の冷房領域(例えば、室内や列車の車両内等)の冷房に用いられる熱冷媒(例えば水等)と対向流の状態で熱交換する例えば二重管式の熱交換器である。この冷凍サイクル装置の冷媒としては、例えばR407C等の非共沸混合冷媒が用いられている。なお、R410A等の擬似共沸混合冷媒、又はR22等の単一冷媒等を用いることもできる。
また、冷凍サイクル装置には、制御装置401、圧縮機容量検知手段402、及び温度センサ403が設けられている。温度センサ403は、冷凍サイクル装置の周囲の外気温度Tを計測する。圧縮機容量検知手段402は、インジェクション圧縮機11の容量Qを計測する。制御装置401は、温度センサ403が計測した外気温度T、圧縮機容量検知手段402が計測したインジェクション圧縮機11の容量Q、設定温度T0及びインジェクション圧縮機11の設定容量Q0等の情報を格納する格納手段を有している。また、格納手段に格納されている情報等に基づき、インジェクション圧縮機11の回転数、第2の膨張弁14及び第1の膨張弁18の開度、及び電磁弁17の開閉等を制御する制御手段を有している。なお、この格納手段は制御装置401の外部に設けられてもよい。
始めに、本実施形態1の冷凍サイクル装置における冷凍サイクル動作について説明する。
図2は、本実施形態1の冷凍サイクル装置における冷凍サイクル動作を示すP−h線図の一例である。横軸は比エンタルピ[kJ/kg]、縦軸は冷媒圧力[MPa]となっている。図1及びこの図2を用いて冷凍サイクル動作について以下説明する。
インジェクション圧縮機11から吐出された高温高圧のガス冷媒(状態1)は、空気側熱交換器12へ流入する。その後、空気側熱交換器12において外気に放熱しながら凝縮液化し、高圧液冷媒(状態2)となる。空気側熱交換器12を出た高圧液冷媒は第1のサブクーラ13へ流入する。高圧液冷媒(状態2)は第1のサブクーラ13で、インジェクション回路100に分岐され第2の膨張弁14で中間圧に減圧され低温となった冷媒と熱交換し、冷却される(状態3)。第1のサブクーラ13を出た高圧液冷媒は、その一部がインジェクション回路100に分岐され、主流は第2のサブクーラ15へ流入する。高圧液冷媒(状態3)は第2のサブクーラ15で、第2の副冷媒回路101に分岐され第3の膨張弁16で低圧に減圧され低温となった冷媒と熱交換し、冷却される(状態4)。第2のサブクーラ15を出た高圧液冷媒は、その一部が第2の副冷媒回路101に分岐され、主流は第1の膨張弁18へ流入する。高圧液冷媒(状態4)は、第1の膨張弁18で減圧され、低圧二相状態となり(状態5)、水側熱交換器19へ流入する。水側熱交換器19では、水側熱交換器19の二重管の一方を冷媒流れ方向と対向して流れる熱冷媒(例えば水等)から吸熱し、蒸発して低圧ガス冷媒となる(状態6)。その後、第2の副冷媒回路101の低圧ガス冷媒(状態11)と合流し(状態12)、インジェクション圧縮機11に吸入される。
一方、インジェクション回路100に分岐された冷媒(状態3)は、第2の膨張弁14で中間圧まで減圧されて低温の二相冷媒となり(状態7)、第1のサブクーラ13へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態8)。その後、インジェクションポート11aを介してインジェクション圧縮機11にインジェクションされる。インジェクション圧縮機11では、低圧ガス冷媒(状態12)を吸入し、昇圧する過程で、インジェクション回路100よりインジェクションされる冷媒(状態8)を吸引し、それぞれを合流させる(状態9)。その後、高圧まで昇圧され吐出される(状態1)。
また、第2の副冷媒回路101に分岐された冷媒(状態4)は、第3の膨張弁16で低圧まで減圧されて低温の二相冷媒となり(状態10)、第2のサブクーラ15へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態11)。その後、第2の副冷媒回路101を介して水側熱交換器19を出た低圧ガス冷媒(状態6)と合流し(状態12)、インジェクション圧縮機11に吸入される。
なお、本実施形態1では、第3の膨張弁16で減圧された冷媒の圧力(状態10)は第1の膨張弁18で減圧された冷媒の圧力(状態5)よりも小さくなっているが、これはあくまでも一例である。これら圧力の大小関係は、インジェクション圧縮機11の容量、第3の膨張弁16の開度設定、冷凍サイクル装置の周囲の外気温度、冷房領域(例えば、室内や列車の車両内等)の温度、又はユーザーが希望する冷房領域の希望温度等の条件に応じて変化する。
冷凍サイクル装置の運転条件によって、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が変化する。例えば、冷房領域(例えば、室内や列車の車両内等)の温度が低い場合や冷房領域の希望温度が高い場合、熱媒体(例えば水等)と冷房領域の空気との熱交換は少ない。そのため、冷媒と熱交換するために水側熱交換器19内に流入する熱媒体の温度は低いままである。このとき、水側熱交換器19内での冷媒と熱媒体の熱交換は少ないので、インジェクション圧縮機11の容量は小さくなる。したがって、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量は少なくなる。また、例えば、冷凍サイクル装置の周囲の外気温度Tが低い場合、空気側熱交換器12で外気と熱交換する冷媒の過冷却度は大きくなる。そのため、冷媒の冷凍能力が大きくなるので、インジェクション圧縮機11の容量は小さくなる。したがって、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量は少なくなる。
空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が少なくなると、第2の副冷媒回路101を流れる冷媒量も少なくなり、第3の膨張弁16を作動するために必要な冷媒量が得られなくなる。また、水側熱交換器19に流れる冷媒量も少なくなり、冷凍サイクル装置の運転が不安定となる可能性がある。第3の膨張弁16を作動するために必要な冷媒量が得られなくなった場合、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を水側熱交換器19に流すことにより、冷凍サイクル装置の運転の安定化を図ることができる。
図3は、本実施形態1における電磁弁17の制御フローチャートである。制御装置401の格納手段には、あらかじめ設定温度T0及びインジェクション圧縮機11の設定容量Q0が格納されている。圧縮機容量検知手段402で計測されたインジェクション圧縮機11の容量Qが設定容量Q0以下、又は温度センサ403で計測された外気温度Tが設定温度T0以下になった場合、第3の膨張弁16を作動するために必要な冷媒量が第2の副冷媒回路101に流れないと判断して、制御装置401は電磁弁17の開閉を制御する。
ステップS201では、インジェクション圧縮機11の容量Qと設定容量Q0とを比較する。インジェクション圧縮機11の容量Qが設定容量Q0よりも大きいときは、ステップS202へ進む。インジェクション圧縮機11の容量Qが設定容量Q0よりも小さいときは、ステップS204へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS201に戻る。ステップS202では、外気温度Tと設定温度T0とを比較する。外気温度Tが設定温度T0よりも高いときは、ステップS203へ進み、電磁弁17を開く。その後、ステップS201に戻る。外気温度Tが設定温度T0よりも低いときは、ステップS204へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS201に戻る。
このように構成された冷凍サイクル装置においては、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができる。このため、第1の膨張弁18で減圧された水側熱交換器19入り口の低圧二相冷媒はより液状に近づくので、水側熱交換器19内でのエンタルピ差(状態5−6間)をより大きくできる。したがって、水側熱交換器19の熱交換効率、つまり冷凍サイクル装置の効率をより向上できる。
また、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を水側熱交換器19に流すので、冷凍サイクル装置の運転の安定化を図ることができる。
なお、本実施形態1では水側熱交換器19が蒸発器となる冷房運転時について説明してきたが、空気側熱交換器12と水側熱交換器19の配置を入れ替えた暖房運転時においても同様の効果が得られる。つまり、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができるので、第1の膨張弁18で減圧された空気側熱交換器12入り口の低圧二相冷媒はより液状に近づき、空気側熱交換器12内でのエンタルピ差を大きくすることができる。このため、空気側熱交換器12の吸熱能力が向上し、冷凍サイクル装置の効率を向上できる。
また、水側熱交換器19と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を空気側熱交換器12に流すので、冷凍サイクル装置の運転の安定化を図ることができる。
実施の形態2.
実施形態1では、冷房運転(又は暖房運転)を行う冷凍サイクル装置について説明してきたが、実施形態1の冷媒回路に四方弁及び逆止弁を設けることにより、本発明の効果を生かした冷暖房運転可能な冷凍サイクル装置を提供することができる。なお、本実施形態2において、特に記述しない項目については実施の形態1と同様とし、同一機能については同一の符号を用いて述べることとする。
図4は、この発明の実施の形態2における冷凍サイクル装置の冷媒回路である。実施形態1の冷媒回路に対し、四方弁20、逆止弁ユニット21、及び逆止弁ユニット22が設けられている。四方弁20は、インジェクション圧縮機11の冷媒吐出側に設けられている。逆止弁ユニット21は、空気側熱交換器12から第1のサブクーラ13への冷媒流れを許容する逆止弁21a及び水側熱交換器19から第1のサブクーラ13への冷媒流れを許容する逆止弁21bから構成されている。また、逆止弁ユニット22は、第1の膨張弁18から水側熱交換器19への冷媒流れを許容する逆止弁22a及び第1の膨張弁18から空気側熱交換器12への冷媒流れを許容する逆止弁22bから構成されている。
始めに、図4及び図2を用いて、本実施形態2の冷凍サイクル装置における冷房運転時の冷凍サイクル動作について説明する。冷房運転時には、四方弁20の冷媒流路は図4の実線方向となる。インジェクション圧縮機11から吐出された高温高圧のガス冷媒(状態1)は、四方弁20を経て空気側熱交換器12へ流入する。その後、空気側熱交換器12において外気に放熱しながら凝縮液化し、高圧液冷媒(状態2)となる。空気側熱交換器12を出た高圧液冷媒は、逆止弁21aを経て第1のサブクーラ13へ流入する。高圧液冷媒(状態2)は第1のサブクーラ13で、インジェクション回路100に分岐され第2の膨張弁14で中間圧に減圧され低温となった冷媒と熱交換し、冷却される(状態3)。第1のサブクーラ13を出た高圧液冷媒は、その一部がインジェクション回路100に分岐され、主流は第2のサブクーラ15へ流入する。高圧液冷媒(状態3)は第2のサブクーラ15で、第2の副冷媒回路101に分岐され第3の膨張弁16で低圧に減圧され低温となった冷媒と熱交換し、冷却される(状態4)。第2のサブクーラ15を出た高圧液冷媒は、その一部が第2の副冷媒回路101に分岐され、主流は第1の膨張弁18へ流入する。高圧液冷媒(状態4)は、第1の膨張弁18で減圧され、低圧二相状態となり(状態5)、逆止弁22aを経て水側熱交換器19へ流入する。水側熱交換器19では、水側熱交換器19内の二重管の一方を冷媒流れ方向と対向して流れる熱冷媒(例えば水等)から吸熱し、蒸発して低圧ガス冷媒となる(状態6)。その後、第2の副冷媒回路101の低圧ガス冷媒(状態11)と合流し(状態12)、インジェクション圧縮機11に吸入される。
一方、インジェクション回路100に分岐された冷媒(状態3)は、第2の膨張弁14で中間圧まで減圧されて低温の二相冷媒となり(状態7)、第1のサブクーラ13へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態8)。その後、インジェクションポート11aを介してインジェクション圧縮機11にインジェクションされる。インジェクション圧縮機11では、低圧ガス冷媒(状態12)を吸入し、昇圧する過程で、インジェクション回路100よりインジェクションされる冷媒(状態8)を吸引し、それぞれを合流させる(状態9)。その後、高圧まで昇圧され吐出される(状態1)。
また、第2の副冷媒回路101に分岐された冷媒(状態4)は、第3の膨張弁16で低圧まで減圧されて低温の二相冷媒となり(状態10)、第2のサブクーラ15へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態11)。その後、第2の副冷媒回路101を介して水側熱交換器19を出た低圧ガス冷媒(状態6)と合流し(状態12)、インジェクション圧縮機11に吸入される。
続いて、図4及び図2を用いて、本実施形態2の冷凍サイクル装置における暖房運転時の冷凍サイクル動作について説明する。厳密には、冷房運転時のP−h線図と暖房運転時のP−h線図では、各状態(状態1〜12)での冷媒圧力[MPa]や比エンタルピ[kJ/kg]の値は異なる。しかし、冷房運転時及び暖房運転時のP−h線図はほぼ同一形状となるため、図2を参照して以下暖房運転時の冷凍サイクル動作について説明する。暖房運転時には、四方弁20の冷媒流路は図4の破線方向となる。インジェクション圧縮機11から吐出された高温高圧のガス冷媒(状態1)は、四方弁20を経て水側熱交換器19へ流入する。水側熱交換器19では、水側熱交換器19内の二重管の一方を冷媒流れ方向と対向して流れる熱冷媒(例えば水等)に放熱し、凝縮液化し、高圧液冷媒(状態2)となる。水側熱交換器19を出た高圧液冷媒は、逆止弁21bを経て第1のサブクーラ13へ流入する。高圧液冷媒(状態2)は第1のサブクーラ13で、インジェクション回路100に分岐され第2の膨張弁14で中間圧に減圧され低温となった冷媒と熱交換し、冷却される(状態3)。第1のサブクーラ13を出た高圧液冷媒は、その一部がインジェクション回路100に分岐され、主流は第2のサブクーラ15へ流入する。高圧液冷媒(状態3)は第2のサブクーラ15で、第2の副冷媒回路101に分岐され第3の膨張弁16で低圧に減圧され低温となった冷媒と熱交換し、冷却される(状態4)。第2のサブクーラ15を出た高圧液冷媒は、その一部が第2の副冷媒回路101に分岐され、主流は第1の膨張弁18へ流入する。高圧液冷媒(状態4)は、第1の膨張弁18で減圧され、低圧二相状態となり(状態5)、逆止弁22bを経て空気側熱交換器12へ流入する。空気側熱交換器12では、低圧二相状態の冷媒は外気から吸熱しながら蒸発して低圧ガス冷媒となる(状態6)。その後、第2の副冷媒回路101の低圧ガス冷媒(状態11)と合流し(状態12)、インジェクション圧縮機11に吸入される。
一方、インジェクション回路100に分岐された冷媒(状態3)は、第2の膨張弁14で中間圧まで減圧されて低温の二相冷媒となり(状態7)、第1のサブクーラ13へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態8)。その後、インジェクションポート11aを介してインジェクション圧縮機11にインジェクションされる。インジェクション圧縮機11では、低圧ガス冷媒(状態12)を吸入し、昇圧する過程で、インジェクション回路100よりインジェクションされる冷媒(状態8)を吸引し、それぞれを合流させる(状態9)。その後、高圧まで昇圧され吐出される(状態1)。
また、第2の副冷媒回路101に分岐された冷媒(状態4)は、第3の膨張弁16で低圧まで減圧されて低温の二相冷媒となり(状態10)、第2のサブクーラ15へ流入して主流の高圧液冷媒に加熱されて比エンタルピを増大させる(状態11)。その後、第2の副冷媒回路101を介して空気側熱交換器12を出た低圧ガス冷媒(状態6)と合流し(状態12)、インジェクション圧縮機11に吸入される。
図5は、本実施形態2における電磁弁17の制御フローチャートである。冷房運転時と暖房運転時では設定温度及びインジェクション圧縮機11の設定容量が異なる。このため、制御装置401の格納手段には、あらかじめ冷房運転時の設定温度T0及び設定容量Q0、暖房運転時の設定温度T1及び設定容量Q1がそれぞれ格納されている。冷房運転時においては、圧縮機容量検知手段402で計測されたインジェクション圧縮機11の容量Qが設定容量Q0以下、又は温度センサ403で計測された外気温度Tが設定温度T0以下になった場合、第3の膨張弁16を作動するために必要な冷媒量が第2の副冷媒回路101に流れないと判断して、制御装置401は電磁弁17の開閉を制御する。また、暖房運転時においては、圧縮機容量検知手段402で計測されたインジェクション圧縮機11の容量Qが設定容量Q1以下、又は温度センサ403で計測された外気温度Tが設定温度T1以下になった場合、第3の膨張弁16を作動するために必要な冷媒量が第2の副冷媒回路101に流れないと判断して、制御装置401は電磁弁17の開閉を制御する。
ステップS501では、冷房運転か暖房運転かを判定する。冷房運転ならばステップS502へ進み、暖房運転ならばステップS506へ進む。冷房運転時、ステップS502では、インジェクション圧縮機11の容量Qと冷房運転時の設定容量Q0とを比較する。インジェクション圧縮機11の容量Qが冷房運転時の設定容量Q0よりも大きいときは、ステップS503へ進む。インジェクション圧縮機11の容量Qが冷房運転時の設定容量Q0よりも小さいときは、ステップS505へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。ステップS503では、外気温度Tと冷房運転時の設定温度T0とを比較する。外気温度Tが冷房運転時の設定温度T0よりも高いときは、ステップS504へ進み、電磁弁17を開く。その後、ステップS501に戻る。外気温度Tが冷房運転時の設定温度T0よりも低いときは、ステップS505へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。
暖房運転時、ステップS506では、インジェクション圧縮機11の容量Qと暖房運転時の設定容量Q1とを比較する。インジェクション圧縮機11の容量Qが暖房運転時の設定容量Q1よりも大きいときは、ステップS507へ進む。インジェクション圧縮機11の容量Qが暖房運転時の設定容量Q1よりも小さいときは、ステップS509へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。ステップS503では、外気温度Tと暖房運転時の設定温度T1とを比較する。外気温度Tが暖房運転時の設定温度T0よりも高いときは、ステップS508へ進み、電磁弁17を開く。その後、ステップS501に戻る。外気温度Tが暖房運転時の設定温度T1よりも低いときは、ステップS509へ進み、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断する。その後、ステップS501に戻る。
このように構成された冷凍サイクル装置においては、四方弁20を切り替えることにより、冷房運転時は、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができる。このため、第1の膨張弁18で減圧された水側熱交換器19入り口の低圧二相冷媒はより液状に近づくので、水側熱交換器19内でのエンタルピ差(状態5−6間)をより大きくできる。したがって、水側熱交換器19の熱交換効率、つまり冷凍サイクル装置の効率をより向上できる。
また、空気側熱交換器12と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を水側熱交換器19に流すので、冷凍サイクル装置の運転の安定化を図ることができる。
暖房運転時においては、第1のサブクーラ13において中間圧に減圧した低温二相冷媒によって冷却された高圧液冷媒を、さらに第2のサブクーラ15において低圧に減圧した低温二相冷媒で冷却することができるので、第1の膨張弁18で減圧された空気側熱交換器12入り口の低圧二相冷媒はより液状に近づき、空気側熱交換器12内でのエンタルピ差を大きくすることができる。このため、空気側熱交換器12の吸熱能力が向上し、冷凍サイクル装置の効率を向上できる。
また、水側熱交換器19と第1の膨張弁18との間を流れる冷媒量が少ないときは、電磁弁17を閉じて第2の副冷媒回路101への冷媒の流入を遮断し、すべての冷媒を空気側熱交換器12に流すので、冷凍サイクル装置の運転の安定化を図ることができる。
この発明の実施の形態1を示す冷凍サイクル装置の冷媒回路図である。 この発明の実施の形態1を示す冷凍サイクル装置の冷凍サイクル動作を示すP−h線図の一例である。 この発明の実施の形態1を示す電磁弁17の制御フローチャートである。 この発明の実施の形態2を示す冷凍サイクル装置の冷媒回路図である。 この発明の実施の形態2を示す冷凍サイクル装置の冷凍サイクル動作を示すP−h線図の一例である。
符号の説明
11 インジェクション圧縮機、11a インジェクションポート、12 空気側熱交換器、13 第1のサブクーラ、14 第2の膨張弁、15 第2のサブクーラ、16 第3の膨張弁、16a 感温部、17 電磁弁、18 第1の膨張弁、19 水側熱交換器、20 四方弁、21 逆止弁ユニット、21a,21b 逆止弁、22 逆止弁ユニット、22a,22b 逆止弁、100 インジェクション回路、101 第2の副冷媒回路、401 制御装置、402 圧縮機容量検知手段、403 温度センサ、Q 容量、Q0 設定容量(冷房運転時)、Q1 設定容量(暖房運転時)、T 外気温度、T0 設定温度(冷房運転時)、T1 設定温度(暖房運転時)。

Claims (3)

  1. 圧縮機、凝縮器、第1の減圧装置及び蒸発器が順次接続された冷凍サイクル装置において、
    前記凝縮器と前記第1の減圧装置との間の冷媒を一部バイパスして、前記蒸発器と前記圧縮機内の圧縮室との間の冷媒に合流させる第1の副冷媒回路と、
    該第1の副冷媒回路に設けられた第2の減圧装置と、
    該第2の減圧装置で減圧された冷媒と、前記凝縮器と前記第1の減圧装置との間の冷媒とを熱交換する第1のサブクーラと、
    該第1のサブクーラと前記第1の減圧装置との間の冷媒を一部バイパスして、前記蒸発器と前記圧縮機との間の冷媒に合流させる第2の副冷媒回路と、
    該第2の副冷媒回路に設けられた第3の減圧装置と、
    該第3の減圧装置で減圧された冷媒と、前記第1のサブクーラと前記第1の減圧装置との間の冷媒とを熱交換する第2のサブクーラと、
    を備え
    前記第3の減圧装置の開度は、前記蒸発器を出た冷媒の温度に応じて制御されることを特徴とする冷凍サイクル装置。
  2. 前記第3の減圧装置で減圧された冷媒は、
    前記第2の減圧装置で減圧された冷媒と比較して低圧であることを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記第2の副冷媒回路において、前記第3の減圧装置の冷媒流れ上流側に電磁弁を備えたことを特徴とする請求項1又は請求項2に記載の冷凍サイクル装置。
JP2007084738A 2007-03-28 2007-03-28 冷凍サイクル装置 Active JP4969287B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007084738A JP4969287B2 (ja) 2007-03-28 2007-03-28 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007084738A JP4969287B2 (ja) 2007-03-28 2007-03-28 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2008241192A JP2008241192A (ja) 2008-10-09
JP4969287B2 true JP4969287B2 (ja) 2012-07-04

Family

ID=39912757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007084738A Active JP4969287B2 (ja) 2007-03-28 2007-03-28 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP4969287B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452138B2 (ja) * 2009-09-01 2014-03-26 三菱電機株式会社 冷凍空調装置
KR101382084B1 (ko) * 2011-09-07 2014-04-04 엘지전자 주식회사 공기 조화기
JP6351494B2 (ja) 2014-12-12 2018-07-04 日立ジョンソンコントロールズ空調株式会社 空気調和機
JP6596541B2 (ja) * 2018-06-05 2019-10-23 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN111141050B (zh) * 2020-01-21 2024-03-26 天津商业大学 一种引射增压梯级过冷跨临界co2***及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06159826A (ja) * 1992-11-24 1994-06-07 Hitachi Ltd 多段圧縮冷凍装置
JPH09152195A (ja) * 1995-11-28 1997-06-10 Sanyo Electric Co Ltd 冷凍装置
JP3984489B2 (ja) * 2002-03-25 2007-10-03 三菱電機株式会社 冷凍装置
JP4433729B2 (ja) * 2003-09-05 2010-03-17 ダイキン工業株式会社 冷凍装置
JP2005315506A (ja) * 2004-04-28 2005-11-10 Kobe Steel Ltd 2段スクリュ冷凍機

Also Published As

Publication number Publication date
JP2008241192A (ja) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP5042058B2 (ja) ヒートポンプ式給湯用室外機及びヒートポンプ式給湯装置
JP5452138B2 (ja) 冷凍空調装置
JP4781390B2 (ja) 冷凍サイクル装置
JP5411643B2 (ja) 冷凍サイクル装置および温水暖房装置
WO2013111177A1 (ja) 空気調和装置
JP4375171B2 (ja) 冷凍装置
WO2007110908A9 (ja) 冷凍空調装置
JP2006112708A (ja) 冷凍空調装置
JP2008134031A (ja) 非共沸混合冷媒を用いた冷凍装置
WO2015140951A1 (ja) 空気調和装置
JP4462435B2 (ja) 冷凍装置
JP4550153B2 (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP4969287B2 (ja) 冷凍サイクル装置
JP4442237B2 (ja) 空気調和装置
JP2011196684A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP2018021730A (ja) 冷凍サイクル装置
JP2009243881A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP5659909B2 (ja) ヒートポンプ装置
JP4767340B2 (ja) ヒートポンプ装置の制御装置
JP2010002112A (ja) 冷凍装置
WO2019189838A1 (ja) 冷凍装置
JP2010159967A (ja) ヒートポンプ装置及びヒートポンプ装置の室外機
JP7367222B2 (ja) 冷凍サイクル装置
JP2009293887A (ja) 冷凍装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969287

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250