WO2005021816A1 - 軟窒化用非調質鋼 - Google Patents

軟窒化用非調質鋼 Download PDF

Info

Publication number
WO2005021816A1
WO2005021816A1 PCT/JP2004/012372 JP2004012372W WO2005021816A1 WO 2005021816 A1 WO2005021816 A1 WO 2005021816A1 JP 2004012372 W JP2004012372 W JP 2004012372W WO 2005021816 A1 WO2005021816 A1 WO 2005021816A1
Authority
WO
WIPO (PCT)
Prior art keywords
bainite
steel
ferrite
pearlite
nitrocarburizing
Prior art date
Application number
PCT/JP2004/012372
Other languages
English (en)
French (fr)
Inventor
Naoyuki Sano
Takayuki Nakatani
Yoshihiko Kamada
Original Assignee
Sumitomo Metal Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries, Ltd. filed Critical Sumitomo Metal Industries, Ltd.
Priority to JP2005513473A priority Critical patent/JP4257539B2/ja
Publication of WO2005021816A1 publication Critical patent/WO2005021816A1/ja
Priority to US11/312,498 priority patent/US7416616B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a non-heat treated steel for nitrocarburizing. More specifically, the present invention relates to a non-heat treated steel for nitrocarburizing, which is used as a material for machine parts such as crankshafts and connecting rods of automobiles, industrial machines and construction machines.
  • the nitrocarburizing treatment causes distortion. Since the distortion impairs the dimensional accuracy of the component, bending correction is often performed after nitrocarburizing. Therefore, the components after soft nitriding are required to have high fatigue strength and excellent bending straightness.
  • excellent bending correctability means that the surface of a component does not crack until a large amount of bending displacement is reached, and that the fatigue strength after bending correction is reduced. This is smaller than before bending.
  • normalization will be described as a representative example of the tempering process. Even if the normalizing process is omitted, a method for obtaining a non-heat treated steel for nitrocarburizing, which can be a component with high fatigue strength and excellent “bend straightening” after nitriding, has been used until now. Also have some suggestions. They are roughly divided into the following two.
  • Patent Document 1 A method of avoiding coarsening of the structure by hot forging as much as possible while maintaining the microstructure of the steel as ferritic and pearlite as in the tempered steel (for example, Patent Document 1, Patent Document 2, Patent Document 3, Patent Reference 4).
  • Patent Document 5 Patent Document 6, Patent Document 7, Patent Document 8, and Patent Document 9.
  • Patent Document 1 JP-A-9-291339
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-324258
  • Patent Document 3 JP-A-9-324241
  • Patent document 4 JP-A-10-46287
  • Patent Document 5 JP-A-5-65592
  • Patent Document 6 JP-A-2000-309846
  • Patent Document 7 JP-A-7-157842
  • Patent Document 8 JP-A-8-176733
  • Patent Document 9 JP-A-2000-160287
  • Patent Document 1 states that "the content of alloying elements is% by mass, C: 0.15 to 0.40%, Si ⁇ 0.50%, Mn: 0.20 to 1.50%. , Cr: 0.05 to 0.50%, balance Fe and unavoidable impurities, the structure after hot working is substantially ferrite 'pearlite structure, A nitrided steel characterized by having an area ratio of 30% or more, a ferrite grain size number of 5 or more, and an average pearlite size of 50 m or less is disclosed. It is described that this steel is excellent in fatigue strength and bending straightenability after nitriding even if normalizing is omitted.
  • Patent Document 2 discloses a "nitrided part obtained by nitriding steel, wherein the steel alloy component is C: 0.15-0.40%, Si: 0.50% or less, and Mn: 0.20% by mass%. -Containing 1.50%, Cr: 0.05-0.50%, the balance being Fe and unavoidable impurities, and the steel has a mixed structure of ferrite and pearlite as it is hot worked, and has a crystal structure of the ferrite.
  • the average size of the grains is 50 m or less
  • the average size of the pearlite crystal grains is 50 m or less
  • the average hardening depth by the nitriding treatment is 0.3 mm or more
  • the hardening depth varies. Is characterized in that the thickness is within 0.1 mm.
  • this part is excellent in fatigue strength and bending straightenability even if the part is subjected to nitriding treatment without normalizing treatment after hot forging.
  • Patent Document 3 states that "by weight, C: 0.20 to 0.60%, Si: 0.05 to 1.0%, Mn: 0.3 to 1.0%, P: 0.05% or less, S: 0.005 to 0.10%, Cr: 0.3% or less, A1: 0.08% or less, Ti: 0.03% or less, N: 0.008 to 0.020%, Ca: 0.005% or less, Pb: 0.30% or less, Cu: 0.30% or less, Ni: 0.30% or less , Mo: 0.30% or less, V: 0.20% or less, Nb: 0.05% or less, and 221C (%) + 99.5Mn (%) + 52.5Cr (%)-304Ti (%) + 577N (%) + 25 ⁇ 150, and the balance is the chemical composition of Fe and unavoidable impurities, and the structure is composed of ferrite and pearlite, and the ferrite fraction is 10% or more. Te!
  • the fatigue strength is expressed as a regression equation of the contained elements, the factor of which is equal to or larger than a specific size, the structure is composed of ferrite and pearlite, and the ferrite fraction is 10%. If it is above, it is stated that even if the normalizing process is omitted, a nitrided component excellent in fatigue strength and bending straightenability can be obtained.
  • Patent Document 4 discloses that "by weight, C: 0.30-0.43%, Si: 0.05-0.40%, Mn: 0.
  • Patent Document 4 even when the normalizing treatment is omitted and the nitriding treatment is performed, a product having excellent fatigue strength and bending straightenability can be obtained by making the hardness gradient in the nitrided layer gentle. It is stated that.
  • Patent Document 5 “C: 0.1—0.35%, Si: 0.05—0.35%, Mn: 0.6—1.50%, P: 0.01% Below, S: 0.015% or less, Cr: l-1.0%, Mo: 0.5-1.0%, V: 0.03-0.13%, B: 0.0005-0 0030%, Ti: 0.01-0.04%, A1: 0.01-0.0
  • Patent Document 6 discloses that "in mass%, C: less than 0.1-0.3%, Si: 0.01-1.0%, Mn: l.
  • a non-heat-treating steel for nitrocarburizing which is characterized by containing 025%, with the balance being Fe and inevitable impurity power.
  • Patent Document 6 a steel having a bainite structure obtained by air-cooling with hot working temperature is said to have excellent toughness and excellent bending straightening properties after nitrocarburizing treatment. ing.
  • the C concentration is set to less than 0.3%.
  • the Mn concentration is specified as 1.5% or more.
  • 0.01 to 0.05% of Cr is added to increase the hardness of the nitride layer by strengthening the precipitation with Cr nitride. That is, in Patent Document 6, the improvement in the bending straightening property by the bainite structure is because bainite has higher toughness at the same hardness as compared to the fllite 'pearlite structure.
  • the C concentration is set to less than 0.3% so that the hardness of bainite does not become too hard.
  • the C concentration is less than 0.3%, insufficient wear resistance is a concern. Wear resistance is also a very important factor for mechanical parts such as crankshafts and connecting rods.
  • Patent Document 7 states that “by weight, C: 0.05 to 0.30%, Si: 1.20% or less, Mn: 0.60 to 1.30%, Cr: 0.70 to 1.50%, A1: 0.10% or less, : 0.006-0.020%, V: 0.05-0.20%, Mo: 0—1.00%, B: 0—0.0050%, S: 0—0.060%, Pb: 0—0.20%, Ca: 0—0.010 %, Power, 0.60 ⁇ C + 0.lSi + O.2Mn + 0.25Cr + 1.65V ⁇ 1.35 or 0.60 ⁇ C + 0.lSi + O.2Mn + 0.25Cr + l.65V + 0.55 Mo + 8B ⁇ l.35, the balance being Fe and unavoidable impurities, having a steel composition consisting of Hv200-300, with core hardness of Hv200-300, without heat treatment after cooling after hot rolling or hot forging.
  • a steel for nitrocarburizing characterized by having a mixed structure
  • Patent Document 7 As in Patent Document 5, the idea of improving the fatigue strength by using precipitation strengthening by Cr and V is adopted. However, as in Patent Document 6 described above, since the C concentration is specified to be less than 0.3%, concerns about wear resistance cannot be eliminated.
  • Patent Document 8 discloses that "by weight, C: 0.15 to 0.40%, Si: less than 20%, Mn: 0.60 to 1.80%, Cr: 0.20 to 2.00%, A1: 0.02 to 0.10%. %, N: 0.006-0.020%, V: 0.05-0.20%, the balance consisting of Fe and unavoidable impurities, and 0.60 ⁇ C + 0.lSi + O.2Mn + 0.25Cr + l.
  • a steel for nitrocarburizing characterized by having characteristics "is disclosed.
  • Patent Document 8 Since the steel of Patent Document 8 has a C concentration of 0.15 to 0.40%, it is expected that the wear resistance is improved. However, this steel is also similar to the invention of Patent Document 7 described above. The idea of improving the fatigue strength by using precipitation strengthening by Cr and V is adopted.
  • Patent Document 9 states that “nitriding steel has a ferrite-based structure or, if it is difficult, a single-phase structure of martensite or bainite is more preferable than a ferrite + pearlite structure”.
  • the idea is to use precipitation strengthening by Cu instead of a force that avoids precipitation strengthening by Cr and V. It also states that the Mn concentration must be at least 1.0% in order to obtain a bainite single-phase structure, and is aiming for a non-heat-treated bainite single-phase steel.
  • An object of the present invention is to provide a steel for nitrocarburizing, in which even when the nitrocarburizing treatment is performed in a state where the tempering treatment is omitted, the same fatigue strength as in the case where the nitrocarburized steel is subjected to nitrocarburizing.
  • Another object of the present invention is to provide a non-heat-treated soft-nitriding steel that can be a component having bending straightness.
  • the gist of the present invention resides in the following non-heat treated steel for soft nitriding (1) and (2).
  • a non-heat treated steel for nitrocarburizing characterized in that it has a bainite fraction in the mixed structure of 5 to 90%.
  • the present inventors produced various non-heat treated steels for nitrocarburizing in order to solve the above-mentioned problems, and examined fatigue strength and rectification after nitrocarburizing. Then, the correlation between them and the microstructure of the steel before nitrocarburizing was investigated. In addition, a detailed study was conducted on the microstructure developed by the nitrocarburizing treatment, and the effect of the microstructure of the steel after the nitrocarburizing treatment on the fatigue strength and bending straightness was investigated. As a result, the following findings were obtained.
  • the parts after the nitrocarburizing treatment can have excellent fatigue strength and bending straightening properties.
  • FIG. 1 shows a typical structure photograph of bainite + ferrite + pearlite.
  • “bainite” refers to “a mixed structure of ferrite and cementite having a structure different from the ordered (lamellar) pearlite and different from martensite and retained austenite”.
  • the bainite structure is characterized by the dispersion of bamboo leaf-like ferrite (referred to as peytic ferrite).
  • peytic ferrite Such bainite structure has a relatively random dispersion of cementite. The hardness is lower than that of coarse pearlite.
  • the ferrite Z cementite interface is regularly arranged like pearlite yarn, the structure has relatively high resistance to crack propagation. That is, the bainite structure is coarser than the aggregate of fine pearlite colonies, but has a better balance of strength and toughness than the coarse pearlite core.
  • N is an austenite-stabilizing element and combines with Ti to form TiN.
  • This TiN precipitates in a certain amount even at 1100 ° C or more and becomes pinjung particles that prevent austenite grains from becoming coarse. Therefore, by increasing the N content, it is necessary to suppress the coarsening of austenite grains and to form a bainite + ferrite structure in which bainite is appropriately mixed, and ⁇ to have a mixed structure of ⁇ bainite + ferrite + pearlite ''. Can be.
  • the fatigue strength is the same as when the soft-nitrided steel with fine ferrite + pearlite structure realized by tempering treatment such as normalizing treatment. Equivalent to the fatigue strength of
  • the fatigue strength can be increased with the Fe nitride by generating a nitride of Fe during the soft nitriding treatment.
  • the Fe nitride just under the compound layer on the surface of the nitrocarburized layer that is, the Fe nitride in the diffusion layer, is generated by a large amount of N entering into the atmosphere during the nitrocarburizing process. For example, precipitation was easy even in a diffusion layer having a depth of about 300 ⁇ m from the surface.
  • the “diffusion layer” here is JIS
  • G0562 it is a layer in which diffusion of nitrogen, carbon, etc. is observed, excluding the compound layer in the surface layer of the nitrocarburized component.
  • the steel of the present invention is soft-nitrided and the hardness profile in the depth direction directed from the surface to the inside is compared with the conventional steel containing Cr or Z and / or V, the hardness near the outermost surface is higher. It was found that the core hardness, which is smaller than that of conventional steel, is almost the same, but rather slightly higher. This is considered to be because the precipitation strengthening force due to Fe nitride is more mild than the precipitation strengthening force due to Cr or Z and V, and therefore, the decrease in ductility of ferrite is suppressed as compared with the conventional steel. As a result, the bending straightness does not decrease.
  • pinning particles suppress coarsening of austenite grains during hot working, impart hardenability such that moderate bainite is generated, and increase the size of fly grains near the surface.
  • Precipitation strengthening to the extent that excessive strengthening is not performed is an important point for achieving both high fatigue strength and bending straightenability after soft nitriding even if tempering treatment such as normalizing treatment is omitted. is there.
  • the present invention has been completed based on the above findings.
  • C is a combination of bainite + ferrite or bainite + ferrite + pearlite It is an essential element to obtain a weave.
  • a content of 0.30% or more is necessary for stabilizing austenite and ensuring the wear resistance of the material.
  • the content exceeds 0.45%, the hardenability is excessively increased and harmful martensite is easily formed. Therefore, the proper range of C content is 0.30-0.45%.
  • Si is added in the steelmaking process as a deoxidizing agent, but it is also effective for solid solution strengthening of ferrite, so a content of 0.1% or more is necessary. On the other hand, if the Si content exceeds 0.5%, the hot deformation resistance of the steel is increased, and the toughness and machinability are deteriorated. Therefore, the appropriate range for the Si content is 0.1-0.5%.
  • Mn is added in the steelmaking process as a deoxidizing agent like Si. It is also an essential element for stabilizing austenite to obtain a mixed structure of “bainite + ferrite” or a mixed structure of “bainite + ferrite + pearlite”. In addition, Mn combines with S in steel to form MnS, which is also effective in improving machinability.
  • the bainite fraction must be 5% or more. Then, in order to ensure the hardenability to generate bainite of this fraction, the content of Mn of 0.6% or more is necessary. On the other hand, if the content of Mn exceeds 1.0%, the hardenability becomes too high and the generation of harmful martensite tends to occur. Therefore, the appropriate range of the Mn content is 0.6-1.0%.
  • Ti is an essential element for forming pin-jung particles for suppressing coarsening of grains during hot working.
  • Pin Jung particles include Ti nitrides, carbides, and carbonitrides.
  • a content of 0.005% or more is required.
  • the Ti content must be kept below 0.1% in order to avoid the exhaustion of N in steel, which contributes to the increase in base metal strength by forming Fe nitride.
  • the appropriate range of Ti content is 0.005–0.1%. More desirable is 0.01-0.05%.
  • N 0. 015—0. 030 N forms pinning particles for suppressing crystal grain coarsening to stabilize austenite to obtain a mixed structure of “bainite + ferrite” or a mixed structure of “bainite + ferrite + pearlite”. Therefore, it is added to increase the strength of the base metal by contributing to the solid solution strengthening by forming Fe nitride and contributing to the precipitation strengthening or as solid solution nitrogen. Here, considering the amount consumed as pinjung particles, it is necessary to contain 0.015% or more. On the other hand, if N exceeds 0.030%, a bubble defect may be generated in the ingot and the material may be damaged. Therefore, the appropriate range of the N content is 0.015-0.030%. More desirable is 0.015-0.025%.
  • One of the non-heat treated steels for nitrocarburizing of the present invention is Mamaoka, in which, in addition to the above-mentioned elements, the balance consists of Fe and impurities.
  • Another non-heat treated steel for nitrocarburizing according to the present invention further includes, in addition to the above-mentioned elements, one or more elements selected from the first element group, or Z and the second element group.
  • the steel contains one or two selected elements, and the balance is Fe and impurities.
  • the elements belonging to the first group ie, Nb, Mo, Cu, Ni and B have a common effect of increasing the strength of the steel of the present invention.
  • the effects and the reasons for limiting the contents are as follows.
  • Nb is an element that can be used to form pinjung particles for suppressing crystal grain coarsening during hot working. In addition, it is effective in increasing the strength of the base material by forming into fine carbonitrides during the cooling of the steel after the hot working and during the powerful cooling. To obtain these effects, a content of 0.003% or more is required. On the other hand, even if the content exceeds 0.1%, the effect is saturated, and coarse undissolved carbonitrides are formed during steel making, which may degrade the quality of the slab. Therefore, when Nb is added, its content is preferably set to 0.003 to 0.1%. 0.005-0. 1% is more desirable, and 0.01-1. 05% is most desirable.
  • Mo is an element that enhances the hardenability of steel and contributes to high strength, and is also effective in improving toughness.
  • Mo is added, the mixed structure of “bainite + ferrite” or “ G + ferrite + pearlite ”. To obtain these effects, a content of 0.01% or more is required.
  • the content of Mo exceeds 1.0%, the hardenability is increased, so that the formation of martensite is promoted, and the bending straightening property and the toughness after the nitrocarburizing treatment are deteriorated. Therefore, when Mo is added, its content is preferably set to 0.01 to 1.0%. A more desirable content is 0.05-0.6%.
  • Cu When Cu is added, an increase in the bainite fraction due to solid solution strengthening and austenite stabilization is expected. Therefore, Cu contains 0.01% or more.
  • Cu and Ni do not have the effect of precipitation strengthening by carbonitride formation, but Cu can age precipitate in ferrite and contribute to precipitation strengthening.
  • the Cu content must be reduced in order to cause sufficient Cu precipitation. 1. Must be 0% or more.
  • the melting point of Cu is as low as 1085 ° C, the time during which it remains as a liquid phase during the solidification process in the steelmaking process is prolonged. In order to eliminate this adverse effect, the upper limit of the Cu content is set to 1.0% in the steel of the present invention.
  • Ni like Cu, is an austenite-stabilizing element and has an effect on solid solution strengthening and securing a desired bainite fraction, so that it is preferably contained at 0.01% or more. On the other hand, if the content exceeds 1.0%, the effect is saturated and only the material cost increases, so the upper limit was set to 1.0%. In addition, when used in combination with Cu, it is desirable to contain Ni at least 1/2 of the Cu content in order to ensure the effect of preventing the hot cracking.
  • B enhances the hardenability of steel and promotes the formation of a mixed structure of “bainite + ferrite” or a mixed structure of “bainite + ferrite + pearlite”. The effect is clearly exhibited at a content of 0.001% or more. On the other hand, if the B content exceeds 0.005%, the toughness of steel is impaired. Be done. Therefore, when B is added, its content is preferably 0.001 to 0.005%.
  • the elements of the second group are S and Ca, which improve the machinability of the steel of the present invention.
  • the reasons for limiting each content are as follows.
  • S and Ca are both elements that improve the machinability of steel materials. If added, the machinability will be further improved, so if necessary, one or two types of force are added. However, if added excessively, it causes segregation defects in the steel slab and deteriorates the hot workability, so the S content range is 0.01-0.1% and the Ca content is The appropriate range of amounts is 0.0001-0.005%. A desirable lower limit of Ca is 0.001%.
  • P promotes grain boundary brittle cracking by biasing toward the grain boundary, it is preferable to set P to 0.05% or less.
  • A1 is usually added as a deoxidizing agent during melting.
  • A1 remains in the steel as alumina particles and combines with N to form A1N.
  • Alumina is an oxide inclusion having a high hardness, and shortens the life of a tool used for cutting.
  • A1N precipitates in the vicinity of the surface during nitrocarburizing and promotes the growth of the surface compound layer, thereby significantly increasing the hardness of the surface layer and deteriorating the bending straightenability.
  • A1N forms a solid solution at the hot working temperature, it cannot be expected to function as pin-Jung particles and is hardly useful for refining crystal grains. Therefore, the lower the content of A1, the better.
  • minimizing the lower limit of the A1 content creates a restriction in the deoxidation step and leads to an increase in cost.Therefore, the bending correctability of the steel of the present invention is not impaired. Is preferred,.
  • Cr and V are not added to the steel of the present invention. These are impurities, and the lower the content, the better. This is because, as already mentioned, Cr and V precipitate nitrides, significantly increasing the hardness of the near-surface layer of the steel and impairing the straightness. The effect of the present invention is not impaired, and the cost of refining and the method of producing pieces by a method other than the blast furnace converter method Taking into account the purity of the raw material in the above, up to 0.15% for Cr and up to 0.02% for V are acceptable as impurities. It is more preferable that Cr is set to 0.1% or less.
  • the structure of the steel of the present invention is a mixed structure of bainite and ferrite or a mixed structure of bainite, ferrite and pearlite. And the bainite fraction in these mixed structures is 5-90%
  • bainite transformation makes it possible to avoid the formation of martensite and to obtain a finer structure than a coarse pearlite core.
  • This texture is characterized by the dispersion of bamboo leaf-like pay-tic 'ferrite, as shown in Figure 1.
  • Pay-tic 'ferrite is dispersed inside the former austenite grains, and the former austenite grain boundary force is smaller than that of the developed polygonal ferrite. That is, the bainite is “a structure in which the shape is a bamboo leaf-like shape but relatively fine frit is dispersed in the pearlite mouth”.
  • the fabric in which the pay-tic 'ferrite is dispersed that is, the above-mentioned perlite core is not a pearlite having an orderly lamellar structure.
  • Fig. 2 is an SEM image of old austenite grains in which pay-tic 'ferrite is dispersed. As is clear from this figure, the arrangement of cementite is disturbed in various places other than the orderly lamellar yarn. Such a structure has a lower strength than that of the former austenite grains wholly transformed with pearlite, but is superior to a coarse pearlite core in terms of crack propagation resistance. The reason is as follows.
  • the crack propagates directly into the inside without avoiding this region. Going inside, the pay-tic 'ferrite dispersed inside plays a role in preventing the growth of cracks. Also, since the size of the pay-tic 'ferrite is smaller than that of the ferrite or the pearlite core after normalizing, it becomes more frequent resistance to the growing crack and helps to improve the toughness. .
  • the crack growth resistance can be kept high even if the crystal grain structure is slightly coarsened.
  • the entire structure may be bainite, but in a structure with a bainite fraction of more than 90%, the mixing of martensite is unavoidable in reality. Since martensite deteriorates the bending straightening property and also deteriorates the machinability, it is not preferable to mix them. Therefore, in the present invention, the bainite fraction in the mixed structure is set to 5-90%. A more desirable bainite fraction is 10-80%.
  • the structure other than bainite of the steel of the present invention is substantially ferrite or ferrite and pearlite.
  • the material for hot forging may be any of a billet obtained by slab-rolling a lump, a billet obtained by slab-rolling a continuous material, or a steel bar obtained by hot-rolling these materials.
  • the heating temperature of these hot forging materials is 1100-1250 ° C. Cooling after hot forging is allowed to cool in the air or forced air cooling using a fan. In addition, for example, the temperature may be rapidly cooled to around the eutectoid transformation temperature and slowly cooled in the range of 700 to 500 ° C, or immediately after hot forging, cooled to about 500 to 300 ° C.
  • the bainite transformation may be promoted by maintaining the temperature.
  • gas nitrocarburizing gas nitrocarburizing, salt bath nitrocarburizing (tufftriding), ion nitriding, or the like can be used.
  • a compound layer (nitride layer) with a thickness of about 20 m and a diffusion layer immediately below it can be formed uniformly on the surface of the product.
  • treatment may be performed at 580 ° C. for 1 to 12 hours in an atmosphere in which RX gas and ammonia gas are mixed in a ratio of 1: 1.
  • the test piece was a columnar body having a diameter of 44mm, and a tapered neck portion (neck portion diameter 20mm). By fixing the head side of this test piece and applying a load to the opposite end, bending correction of a predetermined strain amount can be given to the neck part. Further, a round bar was sliced into a cylindrical sample, and a machinability test using a drill was performed.
  • the machinability was determined by drilling a blind hole (hole with a bottom) with a depth of 55mm (including a depth of 15mm previously drilled as a pilot hole) in the longitudinal direction of the above sample, and the maximum flank wear amount. The number of machined holes when the diameter reached 0.2 mm was evaluated as the drill life.
  • the tool used for the life evaluation was a gun drill with a diameter of 6.2 mm, the total length was 250 mm, and the material of the cutting edge was JIS.
  • the drilling was performed under the conditions of a rotation speed of 7200 rpm and a feed of 0.02 mm / rev, and lubrication was performed by applying a 20-fold diluted water-soluble emulsion at 4 MPa hydraulic pressure by internal lubrication.
  • the pilot hole had a diameter of 6.3 mm and a depth of 15 mm.
  • Use a soft-nitrided fatigue test specimen at room temperature A plane bending fatigue test was performed in the air.
  • Some of the fatigue test pieces were subjected to a bending test before the test and a force test was performed. Straightenability is attached a strain gauge on the neck portion of the specimen, the strain gauge readings went under load until Rutokoro such a 15000 X 10- 6 (corresponding to the bending straightening strain 1.5%).
  • a sample for microstructure observation was obtained by collecting a round bar force as it was hot forged, and image analysis of an optical micrograph was performed to determine a bainite fraction (area ratio).
  • area ratio area ratio
  • the area where bamboo leaf-like vinitic ferrite is present is surrounded by a continuous closed curve, and the area ratio power of the area with respect to the entire visual field is calculated.
  • Table 2 shows the fatigue strength of each test steel when subjected to a fatigue test without bending correction.
  • the bending straightness shown in Table 2 is the amount of decrease in fatigue strength ( ⁇ ⁇ ) when bending was given.
  • the machinability is shown as a relative value when the number of holes that can be machined for No. 1 steel is 100.
  • the fatigue strength without bending straightening was 550MPa, which is the fatigue strength of the current normalizing type steel indicated by No. 27. It is equal to or higher than that, and even when 1.5% bending straightening is applied, the fatigue strength is reduced only by 100-120MPa, which is equivalent to that of the current standardized steel.
  • the fatigue strengths without imparting bending straightness are equal to or higher than those of the steel types of the present invention.
  • the bending straightness is clearly inferior to the examples of the present invention due to fracture during straightening and a decrease in fatigue strength of 150 MPa or more due to bending.
  • the steel grade component No. 21 is originally used after normalization, so if normalization is omitted, coarse “ferrite + pearlite” yarns will be formed and straightening will be performed. While brittle fractured.
  • FIG. 1 is a typical structure photograph of a mixed structure of “bainite + ferrite + pearlite” of the steel of the present invention.
  • FIG. 2 is an SEM photograph of old austenite grains in which pay-tick ferrite is dispersed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

 調質処理を省略した状態で軟窒化処理を施した場合にも、高い疲労強度と優れた曲げ矯正性を有する部品となる非調質軟窒化用鋼を提供する。  質量%で、C:0.30~0.45%、Si:0.1~0.5%、Mn:0.6~1.0%、Ti:0.005~0.1%およびN:0.015~0.030%を含有し、残部がFe及び不純物よりなり、ベイナイト及びフェライトからなる混合組織またはベイナイト、フェライト及びパーライトからなる混合組織を有し、その混合組織中のベイナイト分率が5~90%であることを特徴とする軟窒化用非調質鋼。この鋼は、Nb:0.003~0.1%、Mo:0.01~1.0%、Cu:0.01~1.0%、Ni:0.01~1.0%、B:0.001~0.005%、S:0.01~0.1%、およびCa:0.0001~0.005%のうちの1種以上を含有してもよい。

Description

明 細 書
軟窒化用非調質鋼
技術分野
[0001] 本発明は軟窒化用非調質鋼に関する。詳しくは、自動車、産業機械及び建設機械 等のクランクシャフトやコネクティングロッド等の機械部品の素材となる軟窒化用非調 質鋼に関する。
背景技術
[0002] 従来、自動車、産業機械及び建設機械等のクランクシャフトやコネクティングロッド 等の機械部品は、熱間鍛造等の方法で熱間加工した後に調質処理 (焼入れ、焼戻 し、焼ならし (焼準)、焼鈍)を施して製造される。調質処理によって組織の均質化と微 細化力あたらされる。調質処理の後、主として疲労強度を高める目的で、軟窒化処理 が施される。
[0003] 軟窒化処理を施すことによってひずみが発生する。その歪は部品の寸法精度を害 するので、軟窒化処理を施した後には曲げ矯正が行われることが多い。従って、軟窒 化処理後の部品には、高い疲労強度と共に優れた曲げ矯正性が必要とされる。
[0004] 上記の「優れた曲げ矯正性」とは、大きな曲げ変位量に到るまで、部品の表面にき 裂が入らな 、こと、及び曲げ矯正を施した後での疲労強度の低下が曲げ矯正を施す 前に比べて小さ!/、ことを意味する。
[0005] 機械部品の製造にお!、ては、製造コスト削減および省エネルギーのために、調質 処理を省略することが望まれており、近年、その要求は特に強まってきている。
[0006] しかし、調質処理を省略すると、熱間加工時に生成した不均質な組織が残存しや すぐまた、熱間加工開始前の素材の加熱中に成長して粗大化した結晶粒が、その まま製品中に残存し製品の機械的性質が低下する。そこで、通常、熱間加工の後に 焼準処理を施してこの問題を解決して 、る。熱間加工後に焼準処理を行わな 、場合 には、結晶粒は粗大化したままであったり、熱間変形組織が部分的に残留した不均 質な組織になる。従って、焼準処理を省略した材料では、軟窒化処理を施しても所 望の疲労強度が得られない。 [0007] また、上記のように、軟窒化処理後の部品には曲げ矯正性が優れていることが必要 とされるが、調質処理を省略した場合には、上述した粗大結晶粒組織または Zおよ び不均一組織のために軟窒化後の部品の曲げ矯正性は著しく劣ったものとなること が多い。
[0008] 従って、コスト削減および省エネルギーを目的として調質処理を省略した場合にも、 高い疲労強度と優れた曲げ矯正性を備えた部品、及びそのような部品を得ることが できる軟窒化用非調質鋼の開発が望まれている。
[0009] 以下、調質処理の中の代表例として「焼準」を取り上げて説明する。焼準処理を省 略した場合にも窒化処理後に高 ヽ疲労強度および優れた「曲げ矯正性」を備えた部 品となり得る軟窒化用非調質鋼を得る方法にっ 、ては、これまでにも幾つかの提案 がある。それらは下記の二つに大別される。
(1)鋼の微細組織を調質鋼と同様にフェライトとパーライトに保ったままで熱間鍛造 での組織の粗大化をできるだけ避ける方法 (例えば、特許文献 1、特許文献 2、特許 文献 3及び特許文献 4参照)。
(2)鋼の微細組織をべイナイトにする方法 (例えば、特許文献 5、特許文献 6、特許 文献 7、特許文献 8及び特許文献 9参照)。
特許文献 1:特開平 9—291339号公報
特許文献 2:特開平 9— 324258号公報
特許文献 3:特開平 9— 324241号公報
特許文献 4:特開平 10-46287号公報
特許文献 5:特開平 5— 65592号公報
特許文献 6:特開 2000— 309846号公報
特許文献 7:特開平 7-157842号公報
特許文献 8:特開平 8— 176733号公報
特許文献 9:特開 2000-160287号公報
[0010] 上記の特許文献 1には、「合金元素の含有量が質量%で、 C : 0. 15-0. 40%、 Si ≤0. 50%, Mn: 0. 20—1. 50%、 Cr: 0. 05—0. 50%、残部 Fe及び不可避不純 物からなり、熱間加工後の組織が実質上フェライト'パーライト組織であり、フェライト 面積率が 30%以上、フェライト粒度番号が 5番以上の粒度であり、かつ、パーライトの 平均寸法が 50 m以下であることを特徴とする窒化鋼」が開示されている。この鋼は 、焼準処理を省略しても窒化処理後の疲労強度及び曲げ矯正性に優れていると記 載されている。
[0011] 特許文献 2には、「鋼に窒化処理してなる窒化処理部品であって、前記鋼力 合金 成分として質量%で、 C:0.15—0.40%、 Si:0.50%以下、 Mn:0.20—1.50% 、 Cr:0.05-0.50%を含有し、残部 Fe及び不可避的不純物からなり、かつ、前記 鋼は、熱間加工ままで、フェライトとパーライトからなる混合組織を有し、前記フェライト の結晶粒の平均寸法が 50 m以下であり、前記パーライトの結晶粒の平均寸法が 5 0 m以下であり、前記窒化処理による平均硬化深さが 0.3mm以上であり、かつ、 前記硬化深さの変動が 0.1mm以内であることを特徴とする窒化処理部品」が開示さ れている。そして、この部品が、熱間鍛造後の焼準処理を省略して窒化処理されたも のであっても、疲労強度及び曲げ矯正性に優れていると記載されている。
[0012] 特許文献 3には、「重量%で、 C:0.20—0.60%、 Si:0.05—1.0%、 Mn:0.3 一 1.0%、 P:0.05%以下、 S:0.005—0. 10%、 Cr:0.3%以下、 A1:0.08%以 下、 Ti:0.03%以下、 N:0.008—0.020%、 Ca:0.005%以下、 Pb:0.30%以 下、 Cu:0.30%以下、 Ni:0.30%以下、 Mo:0.30%以下、 V:0.20%以下、 Nb :0.05%以下、且つ、 221C(%)+99.5Mn(%)+52.5Cr (%)— 304Ti(%) + 577N(%) +25≥150を満たし、残部は Fe及び不可避不純物の化学組成であって 、組織が、フェライト及びパーライトからなり、そのフェライト分率が 10%以上であるこ とを特徴とする軟窒化用鋼材」等が開示されて!ヽる。
[0013] この特許文献 3には、疲労強度を含有元素の回帰式として表現して、その因子が特 定の大きさ以上であると共に、組織がフェライト及びパーライトからなりそのフェライト 分率が 10%以上であれば、焼準処理を省略しても疲労強度及び曲げ矯正性に優れ た窒化処理部品が得られると記載されて!、る。
[0014] 特許文献 4には、「重量%で、 C:0.30—0.43%、 Si:0.05—0.40%、 Mn:0.
20—0.60%、 P:0.08%以下、 S:0.10%以下、 sol. A1:0.010%以下、 Ti:0. 013%以下、 Ca:0.0030%以下、 Pb:0.20%以下および N:0.010—0.030% を含有し残部が Feおよび不純物からなり、不純物中の Crが 0. 10%以下、 Vが 0. 0 1%以下であることを特徴とする窒化用鋼」等が開示されている。
[0015] この特許文献 4には、焼準処理を省略して窒化処理を施しても、窒化層における硬 さ勾配をなだらかにすることにより、疲労強度及び曲げ矯正性に優れた製品が得られ ると記載されている。
[0016] 特許文献 5に ίま、「C : 0. 1—0. 35%, Si: 0. 05—0. 35%, Mn: 0. 6—1. 50% 、 P : 0. 01%以下、 S : 0. 015%以下、 Cr: l. 1—2. 0%、 Mo : 0. 5—1. 0%、 V: 0 . 03—0. 13%、B : 0. 0005—0. 0030%、 Ti: 0. 01—0. 04%、A1: 0. 01—0. 0
4%、残部: Feおよび不可避的不純物からなることを特徴とする高疲労強度構造用 鋼」等が開示されている。
[0017] この特許文献では、 Crは焼入れ性及び窒化硬化性を向上させるのに有効で、 Vは 析出する炭化物を微細化して疲労強度を高めるのに有効とされている。ここで、 に よる窒化硬化性は、 Cr窒化物の析出によるものであるので、ここでの疲労強度の向 上は Cr及び Vによる析出強化に基づくものである。しかし、特許文献 5では、いった ん製造された鋼材に対して再度加熱し冷却してベイナイト組織とするものであり、この 鋼は、調質鋼の範疇に含まれるものである。
[0018] 特許文献 6には、「質量%で、 C : 0. 1—0. 3%未満、 Si: 0. 01—1. 0%、 Mn: l.
5—3. 0%、 Cr: 0. 01—0. 5%、 Mo : 0. 1—1. 0%、酸可溶 A1: 0. 01—0. 045% 、N: 0. 005—0. 025%を含有し、残部 Feおよび不可避不純物力もなることを特徴 とする軟窒化用非調質鋼」等が開示されて!、る。
[0019] この特許文献 6では、熱間加工温度力 空冷することによって得られるベイナイト組 織を有する鋼は、強靭性に優れると共に、軟窒化処理を施した後に優れた曲げ矯正 性を有するとされている。ここで、ベイナイトの硬さが硬くなり過ぎて機械加工性を損 なわないようにするために C濃度は 0. 3%未満とされ、ベイナイトを生成させるための 鋼の焼入れ性を確保するために Mn濃度は 1. 5%以上と規定されている。また、 0. 0 1-0. 05%の Crを添加して、 Cr窒化物による析出強化で窒化層の硬さ増大を図る としている。即ち、特許文献 6では、ベイナイト組織によって曲げ矯正性が改善される のは、ベイナイトがフ ライト'パーライト組織に比べて、同じ硬さでは靭性が高いため であるとの理由で、上述したように、ベイナイトの硬さが硬くなり過ぎないように、 C濃 度を 0.3%未満としている。しかし、 C濃度が 0.3%未満では、耐摩耗性の不足が懸 念される。クランクシャフトやコネクティングロッド等の機械部品では耐摩耗性も非常 に重要な因子である。
[0020] 特許文献 7には、「重量%で、 C:0.05—0.30%、 Si:l.20%以下、 Mn:0.60 一 1.30%、Cr:0.70—1.50%、A1:0.10%以下、 N:0.006—0.020%、 V:0 .05—0.20%、 Mo:0— 1.00%、 B:0— 0.0050%、 S:0— 0.060%、 Pb:0— 0 .20%、Ca:0— 0.010%、力つ、 0.60≤C + 0. lSi+O.2Mn+0.25Cr+l.6 5V≤1.35、または、 0.60≤C + 0. lSi+O.2Mn+0.25Cr+l.65V+0.55 Mo + 8B≤l.35、残部 Feおよび不可避的不純物、から成る鋼組成を有し、熱間圧 延後あるいは熱間鍛造後冷却して、熱処理なしで、芯部硬さが Hv200— 300、組織 がべイナイトまたはフェライト分率が 80%未満の「フェライト +ベイナイト」の混合組織 としたことを特徴とする軟窒化用鋼」が開示されている。
[0021] この特許文献 7の発明でも、上記した特許文献 5と同様に Cr及び Vによる析出強化 を利用して疲労強度の向上を図るという思想が採用されている。しかし、上記した特 許文献 6と同様に、 C濃度が 0.3%未満と規定されているために、耐摩耗性の面での 懸念が拭いきれない。
[0022] 特許文献 8には、「重量%で、 C:0. 15—0.40%、 Si:l.20%以下、 Mn:0.60 一 1.80%、Cr:0.20—2.00%、A1:0.02—0.10%、N:0.006—0.020%、 V:0.05-0.20%を含有し、残部 Feおよび不可避的不純物から成る鋼、かつ、 0. 60≤C + 0. lSi+O.2Mn+0.25Cr+l.65V≤1.35、および、 0.25Cr+2V ≤0.85の条件を有する鋼を用い、熱間圧延あるいは熱間鍛造後冷却して、熱処理 なしで、芯部硬さが Hv200— 300、組織が「フ ライト +パーライト」または「ベイナイト 分率が 20%未満のフェライト +パーライト (+ベイナイト)」の混合組織を有し、それに 軟窒化処理を施すことにより、高い表面硬さと深い硬化深さ、さらに低い熱処理歪特 性を有することを特徴とする軟窒化用鋼」が開示されている。
[0023] この特許文献 8の鋼は、 C濃度が 0.15-0.40%であるから、耐摩耗性は向上し ていると予想される。しかし、この鋼についても、上記した特許文献 7の発明と同様に Cr及び Vによる析出強化を利用して疲労強度の向上を図るという思想が採用されて いる。
[0024] 特許文献 9には、「C : 0. 15—0. 35%、 Mn: l . 00—3. 00%、 Cr: 0— 0. 15%、 V: 0— 0. 02%、 Cu: 0. 50—1. 50%、 Ni: Cu含有量の 0. 4倍以上を含有し、 B、 Nおよび Tiの含有量力 Bsol = B-(l l/14) {N—(14Z48)Ti}で定義される Bsol で 0. 0010—0. 0030%であり、残部が Feおよび不可避的不純物元素からなること を特徴とする非調質窒化鍛造部品」が開示されて!ヽる。
[0025] 特許文献 9では「窒化用鋼としてはフェライト主体組織とするか、それが困難な場合 にはフェライト +パーライト組織よりもマルテンサイトあるいはべイナイトの単相組織が 望ましい」とされている。ここでは、 Cr及び Vによる析出強化は避けている力 代わり に Cuによる析出強化を利用するという思想である。また、ベイナイト単相組織を得る ために、 Mn濃度を 1. 0%以上にしなければならないとしており、ベイナイト単相の非 調質鋼を志向している。
[0026] 上記のとおり、ベイナイト糸且織を活用することによって、軟窒化処理の後に疲労強度 と曲げ矯正性に優れた部品となる軟窒化用非調質鋼を得る方法は既に知られている 。し力しながら、添加合金元素による析出強化で疲労強度を高めることは、一方で、 曲げ矯正性を低下させる。即ち、高い疲労強度と優れた曲げ矯正性を両立させると いう課題は、未だ解決されていない。
[0027] また、近年の更なる部品の高強度化の要請に応えるために、これまで以上に高い 疲労強度を有し、しかも曲げ矯正性にも優れた軟窒化処理部品用の非調質鋼が求 められている。しかし、上記した従来の「析出強化及び組織のベイナイト化」という技 術では、必ずしもそうした要請には応えることができない。
発明の開示
発明が解決しょうとする課題
[0028] 本発明の目的は、軟窒化用鋼であって、調質処理を省略した状態で軟窒化処理を 施した場合にも、調質鋼に軟窒化を施した場合と同等の疲労強度と曲げ矯正性を有 する部品となり得る非調質軟窒化用鋼を提供することにある。
課題を解決するための手段 [0029] 本発明の要旨は、下記(1)および (2)の軟窒化用非調質鋼にある。
[0030] (1) 質量%で、 C : 0. 30—0. 45%、 Si: 0. 1—0. 5%、 Mn: 0. 6—1. 0%、 Ti:
0. 005—0. 1%および N : 0. 015—0. 030%を含有し、残部力Fe及び不純物より なり、ベイナイト及びフェライトからなる混合組織またはべイナイト、フェライト及びパー ライトからなる混合組織を有し、その混合組織中のベイナイト分率が 5— 90%であるこ とを特徴とする軟窒化用非調質鋼。
[0031] (2)上記(1)に記載の合金元素にカ卩えて、下記の第 1元素群から選んだ 1種以上 の元素、または Zおよび第 2元素群力 選んだ 1種または 2種の元素を含有し、残部 が Fe及び不純物よりなり、ベイナイト及びフ ライトからなる混合組織またはべイナイト 、フェライト及びパーライトからなる混合組織を有し、その混合組織中のベイナイト分 率が 5— 90%であることを特徴とする軟窒化用非調質鋼。
[0032] 第 1元素群:
Nb : 0. 003—0. 1%、
Mo : 0. 01—1. 0%、
Cu: 0. 01—1. 0%、
Ni: 0. 01—1. 0%、および
B: 0. 001—0. 005%
第 2元素群:
S : 0. 01—0. 1%、および
Ca: 0. 001—0. 005%
[0033] 本発明者らは、上記した課題を解決するために様々な軟窒化用非調質鋼を作製し 、軟窒化後の疲労強度と曲げ矯正性を調べた。そして、それらと軟窒化前の鋼の微 細組織との相関について調査した。また、軟窒化処理によって発達する微細組織に ついても詳細に研究を行い、軟窒化処理後の鋼の微細組織が疲労強度と曲げ矯正 性に及ぼす影響を調査した。その結果、下記の知見が得られた。
[0034] (a)焼準処理は勿論、その他の調質処理を省略した鋼であっても、それを軟窒化し たときに優れた疲労強度と曲げ矯正性を兼ね備えた鋼を製造するには、組織の微細 ィ匕とフェライト地を過度に強化しない適度な強化との組合せが有効である。 (b) Crまたは Zおよび Vによる析出強化は不必要である。これらの元素の添カロは、 むしろ有害であり、製鋼工程での現実的な不純物レベルに抑えることが望ましい。
[0035] 具体的には、熱間加工時の結晶粒の粗大化を抑えると共に、ベイナイトを含む混 合組織とすることによって組織の微細化を図る。そして、フェライトでの固溶強化及び 軟窒化時に生成する鉄窒化物による析出強化を利用する。これらによって、軟窒化 処理後の部品に、優れた疲労強度と曲げ矯正性とを持たせることができる。
[0036] 以下、本発明者らが得た知見について更に詳しく説明する。
[0037] 図 1にべイナイト +フェライト +パーライトの代表的な組織写真を示す。なお、ここで 、「ベイナイト」とは、「整然とした (ラメラー状の)パーライトとは異なる組織であって、か つマルテンサイトや残留オーステナイトとも異なるフェライト +セメンタイトの混合組織 」を言う。
[0038] 図 1に示すように、ベイナイト組織は、笹の葉状のフェライト (ペイ-ティック ·フェライ トと称される)の分散で特徴付けられ、こうしたベイナイト組織は、セメンタイトが比較的 ランダムに分散しているために粗大なパーライトコ口-一よりも硬度が低い。また、フエ ライト Zセメンタイト界面がパーライト糸且織のように規則正しくそろって 、な 、ので、き 裂進展の抵抗が比較的高い組織である。即ち、ベイナイト組織は、微細なパーライト コロニーの集合体よりも組織は粗いが、粗大なパーライトコ口-一よりも強度と靭性の バランスに優れている。
[0039] 更に、 Nについても次のことが明らかになった。即ち、 Nは、オーステナイト安定ィ匕 元素であり、また Tiと結合して TiNを生成する。この TiNは 1100°C以上でも一定量 析出してオーステナイト粒の粗大化を防ぐピンユング粒子となる。従って、 Nの含有量 を多くすることによって、オーステナイト粒の粗大化を抑制しつつ、ベイナイトが適度 に混在するべイナイト +フェライト組織、ある ヽは「ベイナイト +フェライト +パーライト」 の混合組織とすることができる。この組織の鋼は、非調質のままで軟窒化を施した場 合でも、疲労強度は、焼準処理等の調質処理によって実現される微細なフェライト + パーライト組織の鋼を軟窒化した場合の疲労強度に匹敵する。
[0040] 更に、 Crおよび V等の合金元素が含有されていなくても、軟窒化処理時に Feの窒 化物を生成させることにより、この Fe窒化物で疲労強度を高くすることができる。 [0041] 軟窒化処理層の表面の化合物層直下、即ち、拡散層における Fe窒化物は、軟窒 化処理時に雰囲気力 入り込んでくる大量の Nによって生成する力 母材の窒素濃 度を高くすれば、表面から 300 μ m程度の深さの拡散層にお ヽても析出し易 、ことが 分力つた。ここでいう「拡散層」とは、 JIS
G0562で定義されているもので、軟窒化された部品の表面層のうちの化合物層を除 いた、窒素、炭素などの拡散が認められる層である。
[0042] 更に、本発明鋼を軟窒化して、表面から内部に向力つた深さ方向の硬度プロフアイ ルを Crまたは Zおよびや Vを含有する従来鋼と比較すると、最表面近傍での硬度は 従来鋼よりも小さぐ芯部硬度は殆ど同じ力 むしろ若干高くなることが明らかとなった 。これは、 Fe窒化物による析出強化力 Crまたは Zおよび Vによる析出強化よりもマ ィルドであり、従って、フェライトの延性低下が従来鋼よりも抑えられるからであると考 えられる。それによつて、曲げ矯正性が低下しないのである。
[0043] 上記のように、ピンユング粒子により熱間加工時のオーステナイト粒の粗大化を抑 えること、適度なベイナイトが発生するような焼入性を付与すること、及び表面近傍の フ ライト粒は、過度の強化を行わない程度に析出強化することが、焼準処理等の調 質処理を省略しても、軟窒化処理後に高 、疲労強度と曲げ矯正性を両立させるため の重要なポイントである。
[0044] 本発明は上記の知見に基づいて完成されたものである。
発明の効果
[0045] 本発明の軟窒化用非調質鋼を用いれば、熱間鍛造後の焼準処理等の調質処理を 省略しても、疲労強度及び曲げ矯正性に優れた高強度の軟窒化鋼部品を製造する ことができる。従って、部品製造コストの削減に大きく寄与する。
発明を実施するための最良の形態
[0046] 以下、本発明の各要件について説明する。なお、各元素の含有量の「%」表示は「 質量%」を意味する。
[0047] (A)化学組成
C : 0. 30—0. 45%
Cは、「ベイナイト +フェライト」または「ベイナイト +フェライト +パーライト」の混合組 織を得るための必須の元素である。オーステナイトの安定ィ匕及び材料の耐摩耗性の 確保のために 0. 30%以上の含有量が必要である。一方、 0. 45%を超えると焼入性 が上がり過ぎて有害なマルテンサイトの生成を招きやすくなる。従って、 C含有量の適 正範囲は、 0. 30—0. 45%である。
[0048] Si: 0. 1—0. 5%
Siは、脱酸剤として製鋼工程で添加されるが、フェライトの固溶強化にも効くので 0 . 1%以上の含有量が必要である。一方、 Si含有量が 0. 5%を超えると、鋼の熱間変 形抵抗を高めたり、靭性ゃ被削性を劣化させたりしてしまう。従って、 Si含有量の適 正範囲は 0. 1-0. 5%である。
[0049] Mn: 0. 6— 1. 0%
Mnは、 Siと同様に脱酸剤として製鋼工程で添加される。また、オーステナイトを安 定化して「ベイナイト +フェライト」の混合組織、または「ベイナイト +フェライト +パー ライト」の混合組織を得るための必須の元素である。さらに、 Mnは鋼中の Sと結合し て MnSを形成し、被削性改善にも効果がある。
[0050] 上記の混合糸且織にお!、て、ベイナイト分率は 5%以上でなければならな 、。そして 、この分率のベイナイトを生成させるような焼入性を確保するためには、 0. 6%以上 の Mnの含有量が必要である。一方、 Mnの含有量が 1. 0%を超えると焼入性が上 力 Sり過ぎて有害なマルテンサイトの生成を招きやすくなる。従って、 Mnの含有量の適 正範囲は 0. 6-1. 0%である。
[0051] Ti: 0. 005—0. 1%
Tiは、熱間加工時の結晶粒粗大化を抑えるためのピンユング粒子を形成させるた めに必須の元素である。ピンユング粒子としては Tiの窒化物、炭化物、炭窒化物があ り、充分な分布密度のピンユング粒子を生成させるためには、 0. 005%以上の含有 量が必要である。一方、 Fe窒化物を作って母材強度の増大に寄与する鋼中の Nを 消費し尽くさないためには、 Ti含有量を 0. 1%以下に抑える必要がある。以上の理 由で、 Ti含有量の適正範囲は 0. 005—0. 1%である。一層望ましいのは 0. 01— 0 . 05%である。
[0052] N: 0. 015—0. 030 Nは、オーステナイトを安定ィ匕して「ベイナイト +フェライト」の混合組織または「べィ ナイト +フェライト +パーライト」の混合組織を得るため、結晶粒粗大化を抑えるため のピン-ング粒子を構成するため、及び Fe窒化物を作って析出強化に寄与したり、 固溶窒素として固溶強化に寄与して母材強度を増大させたりするために添加する。 ここで、ピンユング粒子として消費される分を考慮すると 0. 015%以上の含有が必要 である。一方、 Nが 0. 030%を超えるとインゴット中で気泡欠陥が生成して材質を損 なうことがある。従って、 Nの含有量の適正範囲は、 0. 015—0. 030%である。より 望ましいのは 0. 015—0. 025%である。
[0053] 本発明の軟窒化用非調質鋼の一つは、上述の元素の他、残部が Feと不純物とか らなるま岡である。
[0054] 本発明の軟窒化用非調質鋼の他の一つは、上述の元素に加えて更に前記の第 1 元素群力 選んだ 1種以上の元素、または Zおよび第 2元素群力 選んだ 1種または 2種の元素を含み、残部が Feと不純物と力 なる鋼である。
[0055] 第 1群に属する元素、即ち、 Nb、 Mo、 Cu、 Niおよび Bは、本発明鋼の強度を高め るという共通の作用効果を有する。それぞれの作用効果および含有量の限定理由は 下記のとおりである。
[0056] Nb : 0. 003—0. 1%
Nbは、熱間加工時の結晶粒粗大化を抑えるためのピンユング粒子を形成させるた めに利用できる元素である。また、熱間加工を終えて力もの冷却中に微細な炭窒化 物となって析出し、母材の強度を高めるのにも効果がある。こうした効果を得るために は 0. 003%以上の含有量が必要である。一方、含有量が 0. 1%を超えても効果は 飽和する上、製鋼時に粗大な溶け残りの炭窒化物を形成して鋼片の品質を劣化させ ることがある。従って、 Nbを添加する場合には、その含有量を 0. 003—0. 1%とする のが良い。より望ましいのは 0. 005—0. 1%、最も望ましいのは 0. 01-0. 05%で ある。
[0057] Mo : 0. 01—1. 0%
Moは、鋼の焼入性を高めて高強度化に寄与し、かつ靭性の向上にも有効な元素 である。また、 Moを添加すると「ベイナイト +フェライト」の混合組織、または「べィナイ ト +フェライト +パーライト」の混合組織が得やすくなる。こうした効果を得るには、 0. 01%以上の含有量が必要である。一方、 Moの含有量が 1. 0%を超えると、焼入性 が高まるが故に、マルテンサイトの生成が促進されて、軟窒化処理後の曲げ矯正性 ゃ靭性を劣化させる。従って、 Moを添加する場合には、その含有量を 0. 01-1. 0 %とするのが良い。より望ましい含有量は 0. 05-0. 6%である。
[0058] Cu: 0. 01—1. 0%、 Ni: 0. 01—1. 0%
Cuを添加する場合は、その固溶強化及びオーステナイト安定ィ匕によるべイナイト分 率の増大を期待する。従って、 Cuは 0. 01%以上を含有させる。
[0059] Cu及び Niには、炭窒化物形成による析出強化の作用はないが、 Cuはフェライト中 に時効析出して析出強化に寄与し得る。ただし、一般的な軟窒化処理の温度(580 °C程度)と処理時間 (数時間程度)を時効処理に代わるものとしたとき、充分な Cuの 析出を起こさせるためには Cuの含有量を 1. 0%以上とする必要がある。ところ力 本 発明鋼を軟窒化処理した部品では、軟窒化処理時にことさら Cuの時効硬化作用を 期待する必要はない。さらに、 Cuの融点は 1085°Cと低いので、製鋼工程での凝固 過程で液相として残存する時間が長ぐ従って、鋼の粒界に偏祈して熱間割れを誘 起する。この弊害を除くために、本発明鋼においては、 Cu含有量の上限を 1. 0%と する。なお、 Cuを多く添加する場合は、これを防ぐために Niを添加するのが望ましい
[0060] Niも Cuと同様、オーステナイト安定ィ匕元素であり、固溶強化及び望ましいべィナイ ト分率の確保に効果があるので、 0. 01%以上含有させるのが好ましい。一方、 1. 0 %を超える量含有させても、その効果は飽和し、素材コストが増大するだけなので、 その上限を 1. 0%とした。なお、 Cuと併用する場合は、前記の熱間割れを防止する 効果を確実にするために、 Cuの含有量の 1/2以上の Niを含有させるのが望まし ヽ
[0061] B: 0. 001—0. 005%
Bは、鋼の焼入れ性を高めて、「ベイナイト +フェライト」の混合組織、または「ベイナ イト +フェライト +パーライト」の混合組織の生成を促す。 0. 001%以上の含有量で その効果が明瞭に発現する。一方、 Bの含有量が 0. 005%を超えると鋼の靭性が損 なわれる。従って、 Bを添加する場合には、その含有量を 0. 001—0. 005%とする のが良い。
[0062] 第 2群の元素は、 Sと Caであり、これらは本発明鋼の被削性を改善する。それぞれ の含有量の限定理由は下記のとおりである。
S : 0. 01—0. 1%、 Ca : 0. 0001—0. 005%
Sと Caは、いずれも鋼材の被削性を向上させる元素である。添加すれば被削性が より一層向上するので、必要に応じて、いずれ力 1種または 2種を添加する。しかしな がら、過剰に添加すると、鋼片内での偏析欠陥を発生させたり、熱間加工性を劣化さ せたりするので、 S含有量の範囲は 0. 01—0. 1%、 Ca含有量の範囲は 0. 0001— 0. 005%が適正である。 Caの望ましい下限は、 0. 001%である。
[0063] 以上に述べた元素以外は、本発明鋼においては不純物であるので、意図的には 添カ卩しない。しかし、製鋼工程でのいたずらなコストアップを招かないために、不純物 の許容量にっ ヽて述べる。
[0064] Pは、粒界に偏祈して粒界脆ィ匕割れを助長するので 0. 05%以下とするのが好まし い。
[0065] A1は、脱酸剤として、通常、溶製時に添加される。 A1は、アルミナ粒子として鋼中に 残存したり、また、 Nと結合して A1Nを形成したりする。アルミナは硬度の高い酸ィ匕物 系介在物であり、切削加工に使用される工具の寿命を短縮する。 A1Nは、軟窒化時 には表面近傍に析出したり、表面化合物層の成長を促進したりして表面層硬さを著 しく高めて、曲げ矯正性を劣化させる。また、 A1Nは熱間加工温度では固溶してしま うので、ピンユング粒子としての機能は期待できず、結晶粒の微細化には殆ど役に立 たない。従って、 A1の含有量は低い方が良い。ただし、 A1含有量の下限を極小にす ることは、脱酸工程での制約を生んでコスト増大につながるので、本発明鋼の曲げ矯 正性を阻害しな 、0. 05%以下とするのが好まし 、。
[0066] Crおよび Vも本発明鋼には添加しない。これらは不純物であり、その含有量は、少 ないほど良い。その理由は、既に述べたように、 Crおよび Vは窒化物を析出させて鋼 の表面近傍層の硬さを著しく高めて、曲げ矯正性を損なうからである。本発明の効果 を損なわないこと、および、精鍊コストや高炉 転炉法以外の方法による铸片製造法 における素材の純度等を勘案すると、 Crは 0. 15%まで、 Vは 0. 02%までは不純物 として許容される。なお、 Crは 0. 1%以下とするのが一層望ましい。
[0067] (B)組織
本発明鋼の組織は、ベイナイトとフェライトの混合組織、またはべイナイトとフェライト とパーライトの混合組織である。そしてこれらの混合組織中のベイナイト分率は 5— 9 0%である
[0068] 既述のとおり、ベイナイト変態を利用すればマルテンサイトの生成を避けることがで きると共に、粗大なパーライトコ口-一よりは微細な組織を得ることができる。この組織 は、図 1に示すように、笹の葉状のペイ-ティック 'フェライトの分散で特徴付けられる 。ペイ-ティック 'フェライトは旧オーステナイト粒の内部に分散しており、旧オーステ ナイト粒界力も発達したポリゴナルフェライトよりも小さい。即ち、ベイナイト 「パーラ イトコ口-一内に、形状は笹の葉状であるが、比較的微細なフ ライトが分散した組織 」である。ただし、ペイ-ティック'フェライトが分散した生地、即ち、上記のパーライトコ 口-一は、整然としたラメラー組織を有するパーライトではな 、。
[0069] 図 2は、ペイ-ティック 'フェライトが分散した旧オーステナイト粒の SEM像である。こ の図から明らかなように、セメンタイトの配列は整然としたラメラー糸且織ではなぐ各所 に乱れが認められるものとなっている。こうした組織は、旧オーステナイト粒が全体的 にパーライト変態したものよりも強度は低下するが、き裂進展抵抗という点では粗大な パーライトコ口-一よりも優れている。その理由は下記のとおりである。
[0070] き裂は硬いパーライトを避けて進展するので、パーライトコロニー同士の界面、ある いはパーライトコ口-一とフェライトの界面に沿って伝播しやすい。フェライトはパーラ イトに比べて軟らカ 、が、延性に富むので進展するき裂はフェライト内部に入るとフエ ライトを塑性変形させることで、そのエネルギーを消費する。従って、進展するき裂の 先端が鈍化して、更なるき裂の進展にはより多くの仕事、即ち、外部からの負荷が必 要となり、その結果、き裂の伝播抵抗が高まり疲労強度が増大する。
[0071] 焼準処理によって得られる微細な「フェライト +パーライト」混合組織が優れている のは、パーライトで全体の強度を担い、微細分散したフェライトがき裂の進展を頻繁 に妨害するためである。一方、パーライトコ口-一が大きい場合には、パーライトコ口 ニーに沿って、脆性的に破壊が進行する様にき裂が進展する。パーライトコ口-一が 大きいほど、き裂の進展速度は大きぐ大きく成長したき裂は、もはやその進展をフ ライトで停止させることが困難になる。
[0072] 粗大なパーライトコ口-一に代わって、ベイナイト組織が混在した組織とすれば、き 裂はべイナイト組織の部分に到達した時に、この領域を回避せず内部へそのまま進 展して行くが、内部に分散したペイ-ティック 'フェライトがき裂の進展を妨げる役割を する。また、ペイ-ティック 'フェライトの大きさは、焼準処理した時のフェライトやパー ライトコ口-一よりも小さいので、進展するき裂に対しては一層頻繁な抵抗となり、靭 性の向上に役立つ。
[0073] 以上に述べたとおり、ベイナイト組織を混在させることによって、結晶粒組織が多少 粗大化したとしても、き裂進展抵抗を高く保つことができる。そのためには、ベイナイト を面積率で 5%以上含有させることが必要である。ここで、組織全体をべイナイトとし ても構わないのであるが、ベイナイト分率が 90%を超える組織では、現実的にはマル テンサイトの混在が避けられない。マルテンサイトは、曲げ矯正性を劣化させ、機械 加工性をも悪ィ匕させるので、その混在は好ましくない。従って、本発明では混合組織 におけるべイナイト分率を 5— 90%としている。一層望ましいベイナイト分率は、 10— 80%である。本発明鋼のベイナイト以外の組織は、実質的にフェライトまたはフェライ トとパーライトである。
[0074] (C)本発明鋼の製造方法
本発明鋼の組織は、例えば、以下に示す方法によって得ることができる。 即ち、熱間鍛造の素材としては、铸塊を分塊圧延したビレット、連続铸造材を分塊 圧延したビレット等、あるいはこれらを熱間圧延した棒鋼のいずれでも良いが、規定し た化学成分範囲を有する素材を準備する。これらの熱間鍛造用素材の加熱温度は 1 100— 1250°Cとする。熱間鍛造後の冷却は大気中での放冷、あるいはファンを使つ た強制空冷程度とする。また、例えば、共析変態温度近傍までを速く冷却して、 700 一 500°Cの範囲を緩冷却しても良いし、熱間鍛造後、直ちに 500— 300°C程度まで 冷却して、この温度で保持してベイナイト変態を促進させても構わない。冷却速度の 調整は、事前に連続冷却変態図(CCT曲線図)を作成しておき、ベイナイト変態領域 を通過する冷却速度範囲を求め、求めた冷却速度範囲に調整すれば良い。
[0075] (D)軟窒化処理
軟窒化処理には、ガス軟窒化、塩浴軟窒化 (タフトライド処理)、イオン窒化等を用 いることができる。いずれの方法にしても、製品の表面に厚さ 20 m程度の化合物 層(窒化物層)とその直下の拡散層を均質に形成させ得る。
ガス軟窒化によって機械部品を得るためには、例えば、 RXガスとアンモニアガスを 1 : 1に混合した雰囲気中で 580°Cにて 1一 2時間処理を行えば良い。
実施例
[0076] 以下、実施例により本発明を詳しく説明する。
[0077] 表 1に示すィ匕学成分の鋼 180kgを真空溶解炉にて真空溶製した後、鋼片を 1200 °Cまで加熱し、鋼材温度が 1000°Cを下回らな 、様に熱間鍛造して直径 50mmの丸 棒とした。熱間鍛造後の冷却は大気中での放冷により行い、試験番号 16及び 26で 示す鋼種には扇風機を用いた強制空冷を施した。この丸棒力も平面曲げ疲労試験 用の試験片を採取した。
[0078] 試験片は直径 44mmの円柱状の胴体にテーパーのついたネック部(ネック部直径 は 20mm)をカ卩ェしたものである。この試験片の頭部側を固定して、反対側の端部に 荷重を負荷することでネック部に所定のひずみ量の曲げ矯正を与えることができる。 また、丸棒を輪切りにして円柱状試料とし、ドリルによる被削性試験を行った。
[0079] [表 1]
Figure imgf000018_0001
[0080] 被削性は、上記の試料の長手方向に深さ 55mm (事前に下穴として穿孔した深さ の 15mmを含む)の止まり穴(底付きの穴)をあけ、最大逃げ面摩耗量が 0. 2mmに 達したときの加工穴数をドリル寿命とすることで評価した。
[0081] 寿命評価に使用した工具は、直径 6. 2mmのガンドリルで、全長は 250mm、刃先 の材質は、 JIS
B4053の P20種の超硬合金である。穿孔は回転数 7200rpm、送り 0. 02mm/rev での条件で実施し、潤滑は 20倍に希釈した水溶性ェマルジヨンを油圧 4MPaで内部 給油により塗布した。なお、下穴を径 6. 3mm、深さ 15mmとした。
[0082] 疲労試験片は、 RXガス:アンモニアガス = 1: 1の雰囲気中で 580°Cにて 2時間軟 窒化処理した後、 100°Cに油冷した。軟窒化処理した疲労試験片を用いて室温、大 気中で平面曲げ疲労試験を行った。一部の疲労試験片については、試験前に曲げ 矯正を与えて力 試験を行った。曲げ矯正は、試験片のネック部にひずみゲージを 貼付し、ひずみゲージの読みが 15000 X 10— 6 (曲げ矯正ひずみ 1. 5%に相当)にな るところまで負荷をかけて行った。
[0083] ミクロ組織観察用のサンプルは熱間鍛造ままの丸棒力 採取し、光学顕微鏡写真 を画像解析して、ベイナイト分率 (面積率)を求めた。ベイナイトと定義した領域は、笹 の葉状のべィニティック'フェライトが存在する領域を連続的な閉曲線で囲み、その領 域の全視野面積に対する面積率力 算定した。
[0084] 表 2に、各供試鋼について、曲げ矯正を与えずに疲労試験した時の疲労強度、 1.
5%の曲げ矯正を与えて力 疲労試験した時の疲労強度、及び被削性試験で求め たドリル工具寿命をまとめて示す。
[0085] [表 2]
表 2 供 i鋼の疲労強度と切削性の 平価結果
Figure imgf000019_0001
[0086] 表 2に示す曲げ矯正性は、曲げ矯正を与えた時の疲労強度の低下分( Δ σ )であ る。この Δ σ力 S小さいほど、曲げ矯正性に優れていることになる。切削性は、 No.lの 鋼種の加工可能穴数を 100とした時の相対値で示している。
[0087] 表 2から明らかなように、 No.l— 20で示す本発明例では、曲げ矯正無しの場合の 疲労強度は、 No.27で示す現用の焼準処理型鋼の疲労強度である 550MPaと同等 であるか、またはそれ以上であり、 1. 5%曲げ矯正を加えた時でも現用の焼準処理 鋼と同等の 100— 120MPaしか疲労強度の低下はない。
[0088] 一方、 No.21— 26で示す比較例の鋼種では、曲げ矯正性を与えない場合の疲労 強度は、本発明例の鋼種と同等か、またはそれよりも高いものもあるが、曲げ矯正中 に破断したり、曲げ矯正による疲労強度の低下が 150MPa以上もあったりして、曲げ 矯正性は本発明例よりも明らかに劣っている。例えば、 No.21で示す鋼種の成分系 は、本来、焼準処理を行って使用するものであるため、焼準処理を省略すると粗大な 「フェライト +パーライト」糸且織となって、曲げ矯正中に脆性的に破壊した。
[0089] No.25で示す鋼種では Moの量が過剰であったためにマルテンサイトが混在して、 やはり曲げ矯正中に脆性的に破壊した。 No.26で示す鋼種は、化学成分は本発明 範囲を満足するものの、冷却速度が速ぐマルテンサイトが混在したために、曲げ強 制ができなかった。 No.22— 24で示す鋼種は、 Crまたは/および Vの析出強化が効 いているために曲げ矯正無しのときの疲労強度は高いが、曲げ矯正後の疲労強度 は低い。これは、曲げ矯正によって硬化した表面層にき裂が入りやすぐこのき裂が 疲労破壊の起点となって疲労強度の低下を招いたものと推察される。
[0090] 本発明例の No.4— 6および No.14— 17に見られるように、本発明で定める基本成 分系に Nbと Moを添加すると、曲げ矯正後の疲労強度は格段に増大する。また、本 発明鋼の基本成分系に Caや Sを添加すると、被削性がより一層改善され、クランクシ ャフト等の切削工程を経て製造される部品用素材として、より好適なものとなる。 図面の簡単な説明
[0091] [図 1]本発明鋼の「ベイナイト +フェライト +パーライト」混合組織の代表的な組織写 真である。
[図 2]ペイ-ティック 'フェライトが分散した旧オーステナイト粒の SEM写真である。

Claims

請求の範囲
[1] 質量0 /0で、 C:0.30—0.45%, Si:0.1—0.5%, Mn:0.6—1.0%、 Ti:0.0 05-0.1%および N:0.015—0.030%を含有し、残部力 及び不純物よりなり、 ベイナイト及びフェライトからなる混合組織またはべイナイト、フェライト及びパーライト 力もなる混合組織を有し、その混合組織中のベイナイト分率が 5— 90%であることを 特徴とする軟窒化用非調質鋼。
[2] 質量0 /0で、 C:0.30—0.45%, Si:0.1—0.5%, Mn:0.6—1.0%、 Ti:0.0 05—0.1%、N:0.015—0.030%、ならびに Nb:0.003—0.1%、Μο:0.01— 1.0%、 Cu:0.01—1.0%、 Ni:0.01—1.0%および B:0.001—0.005%の中 力も選んだ 1種以上を含有し、残部が Fe及び不純物よりなり、ベイナイト及びフェライ トからなる混合組織またはべイナイト、フェライト及びパーライトからなる混合組織を有 し、その混合組織中のベイナイト分率が 5— 90%であることを特徴とする軟窒化用非 調質鋼。
[3] 質量0 /0で、 C:0.30—0.45%, Si:0.1—0.5%, Mn:0.6—1.0%、 Ti:0.0 05—0.1%、N:0.015—0.030%、ならびに S:0.01—0.1%および Ca:0.00 01-0.005%のうち 1種または 2種を含有し、残部が Fe及び不純物よりなり、ベイナ イト及びフ ライトからなる混合組織またはべイナイト、フ ライト及びパーライトからな る混合組織を有し、その混合組織中のベイナイト分率が 5— 90%であることを特徴と する軟窒化用非調質鋼。
[4] 質量0 /0で、 C:0.30—0.45%, Si:0.1—0.5%、 Mn:0.6—1.0%、 Ti:0.0 05—0.1%、N:0.015—0.030%、ならびに Nb:0.003—0.1%、Μο:0.01— 1.0%、 Cu:0.01—1.0%、 Ni:0.01—1.0%および B:0.001—0.005%の中 力ら選んだ 1種以上と、 S:0.01—0.1%および Ca:0.0001—0.005%のうち 1種 または 2種を含有し、残部が Fe及び不純物よりなり、ベイナイト及びフ ライトからなる 混合組織またはべイナイト、フェライト及びパーライトからなる混合組織を有し、その混 合組織中のベイナイト分率が 5— 90%であることを特徴とする軟窒化用非調質鋼。
PCT/JP2004/012372 2003-09-01 2004-08-27 軟窒化用非調質鋼 WO2005021816A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005513473A JP4257539B2 (ja) 2003-09-01 2004-08-27 軟窒化用非調質鋼
US11/312,498 US7416616B2 (en) 2003-09-01 2005-12-21 Non-heat treated steel for soft-nitriding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-308877 2003-09-01
JP2003308877 2003-09-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/312,498 Continuation US7416616B2 (en) 2003-09-01 2005-12-21 Non-heat treated steel for soft-nitriding

Publications (1)

Publication Number Publication Date
WO2005021816A1 true WO2005021816A1 (ja) 2005-03-10

Family

ID=34269531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012372 WO2005021816A1 (ja) 2003-09-01 2004-08-27 軟窒化用非調質鋼

Country Status (4)

Country Link
US (1) US7416616B2 (ja)
JP (1) JP4257539B2 (ja)
CN (1) CN100374604C (ja)
WO (1) WO2005021816A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090604A1 (ja) * 2005-02-25 2006-08-31 Sumitomo Metal Industries, Ltd. 非調質鋼軟窒化処理部品
JP2008057036A (ja) * 2006-07-31 2008-03-13 Sumitomo Metal Ind Ltd 軟窒化非焼準機械部品の製造方法
WO2012081198A1 (ja) * 2010-12-13 2012-06-21 川崎重工業株式会社 駆動カム、及びエンジンの動弁装置
CN105463318A (zh) * 2015-11-27 2016-04-06 北大方正集团有限公司 非调质钢、其生产方法及利用其制造的涨断连杆
WO2022249349A1 (ja) * 2021-05-26 2022-12-01 日本製鉄株式会社 鋼材、及び、その鋼材を素材とするクランクシャフト

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380892B2 (ja) * 2007-05-29 2014-01-08 Jfeスチール株式会社 加工性に優れた耐磨耗鋼板およびその製造方法
US8808471B2 (en) 2008-04-11 2014-08-19 Questek Innovations Llc Martensitic stainless steel strengthened by copper-nucleated nitride precipitates
US10351922B2 (en) 2008-04-11 2019-07-16 Questek Innovations Llc Surface hardenable stainless steels
WO2012070349A1 (ja) * 2010-11-22 2012-05-31 住友金属工業株式会社 軟窒化用非調質鋼および軟窒化部品
JP5454740B2 (ja) * 2011-05-19 2014-03-26 新日鐵住金株式会社 非調質鋼および非調質鋼部材
CN103173691B (zh) * 2013-02-18 2014-12-10 无锡市派克重型铸锻有限公司 一种升船机安全机构锁定块及其制造工艺
WO2014209283A1 (en) * 2013-06-25 2014-12-31 Kalt Manufacturing Co. Improved tool durability methods
CN105256229B (zh) * 2015-10-29 2017-05-10 中北大学 一种高氮纳米贝氏体钢及其制备方法
CN107587073A (zh) * 2017-09-19 2018-01-16 北京科技大学 一种含钛、氮的汽车发动机曲轴用非调质钢及制备方法
CN108315654A (zh) * 2018-05-11 2018-07-24 攀钢集团攀枝花钢铁研究院有限公司 含V、Ti的非调质预硬型塑料模具钢及其制备方法
CN110055450B (zh) * 2019-04-18 2021-04-20 石钢京诚装备技术有限公司 一种非调质钢的冶炼方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162943A (ja) * 1997-08-18 1999-03-05 Sumitomo Metal Ind Ltd 軟窒化非調質クランク軸およびその製造方法
JP2979987B2 (ja) * 1994-12-20 1999-11-22 住友金属工業株式会社 軟窒化用鋼
JP2000008141A (ja) * 1998-06-23 2000-01-11 Sumitomo Metal Ind Ltd 非調質軟窒化鋼鍛造部品およびその製造方法
JP2001254143A (ja) * 2000-03-10 2001-09-18 Isuzu Motors Ltd 軟窒化非調質クランク軸とその製造方法
JP3267164B2 (ja) * 1996-08-01 2002-03-18 住友金属工業株式会社 窒化用鋼および窒化鋼製品の製造方法
JP3297500B2 (ja) * 1993-07-15 2002-07-02 新日本製鐵株式会社 被削性の優れた高強度棒鋼
JP2003147478A (ja) * 2001-11-12 2003-05-21 Sumitomo Metals (Kokura) Ltd 非調質鋼

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832946B2 (ja) * 1989-12-06 1996-03-29 大同特殊鋼株式会社 直接切削・高周波焼入用鋼材
JPH0565592A (ja) 1991-09-07 1993-03-19 Toyota Motor Corp 高疲労強度構造用鋼およびその鋼部材
JPH05279794A (ja) * 1992-03-31 1993-10-26 Sumitomo Metal Ind Ltd 軟窒化用鋼
JP2894184B2 (ja) 1993-12-03 1999-05-24 住友金属工業株式会社 軟窒化用鋼
JPH09291339A (ja) 1996-04-23 1997-11-11 Daido Steel Co Ltd 窒化鋼
JPH09324258A (ja) 1996-06-04 1997-12-16 Daido Steel Co Ltd 窒化処理部品
JP3239758B2 (ja) 1996-06-07 2001-12-17 住友金属工業株式会社 軟窒化用鋼材、軟窒化部品及びその製造方法
DE69811200T2 (de) * 1997-07-22 2003-10-09 Nippon Steel Corp Einsatzstahl mit hervorragender verhinderung der sekundärrekristallisation während der aufkohlung, verfahren zu dessen herstellung, halbzeug für aufzukohlende teile
JP3915284B2 (ja) 1998-11-20 2007-05-16 住友金属工業株式会社 非調質窒化鍛造部品およびその製造方法
JP2000309846A (ja) 1999-04-22 2000-11-07 Daido Steel Co Ltd 軟窒化用非調質鋼
JP3527154B2 (ja) * 1999-11-05 2004-05-17 株式会社住友金属小倉 非調質軟窒化鋼部品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297500B2 (ja) * 1993-07-15 2002-07-02 新日本製鐵株式会社 被削性の優れた高強度棒鋼
JP2979987B2 (ja) * 1994-12-20 1999-11-22 住友金属工業株式会社 軟窒化用鋼
JP3267164B2 (ja) * 1996-08-01 2002-03-18 住友金属工業株式会社 窒化用鋼および窒化鋼製品の製造方法
JPH1162943A (ja) * 1997-08-18 1999-03-05 Sumitomo Metal Ind Ltd 軟窒化非調質クランク軸およびその製造方法
JP2000008141A (ja) * 1998-06-23 2000-01-11 Sumitomo Metal Ind Ltd 非調質軟窒化鋼鍛造部品およびその製造方法
JP2001254143A (ja) * 2000-03-10 2001-09-18 Isuzu Motors Ltd 軟窒化非調質クランク軸とその製造方法
JP2003147478A (ja) * 2001-11-12 2003-05-21 Sumitomo Metals (Kokura) Ltd 非調質鋼

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090604A1 (ja) * 2005-02-25 2006-08-31 Sumitomo Metal Industries, Ltd. 非調質鋼軟窒化処理部品
EP1857563A1 (en) * 2005-02-25 2007-11-21 Sumitomo Metal Industries, Ltd. Non-tempered steel soft nitrided component
EP1857563A4 (en) * 2005-02-25 2010-08-04 Honda Motor Co Ltd NON-TEMPERED STEEL NITRIDE COMPONENT
JP2008057036A (ja) * 2006-07-31 2008-03-13 Sumitomo Metal Ind Ltd 軟窒化非焼準機械部品の製造方法
WO2012081198A1 (ja) * 2010-12-13 2012-06-21 川崎重工業株式会社 駆動カム、及びエンジンの動弁装置
JP5898092B2 (ja) * 2010-12-13 2016-04-06 川崎重工業株式会社 駆動カム、その製造方法、及びエンジンの動弁装置
CN105463318A (zh) * 2015-11-27 2016-04-06 北大方正集团有限公司 非调质钢、其生产方法及利用其制造的涨断连杆
CN105463318B (zh) * 2015-11-27 2017-11-03 苏州苏信特钢有限公司 非调质钢、其生产方法及利用其制造的涨断连杆
WO2022249349A1 (ja) * 2021-05-26 2022-12-01 日本製鉄株式会社 鋼材、及び、その鋼材を素材とするクランクシャフト

Also Published As

Publication number Publication date
CN1846010A (zh) 2006-10-11
US7416616B2 (en) 2008-08-26
JPWO2005021816A1 (ja) 2007-11-08
JP4257539B2 (ja) 2009-04-22
US20060096671A1 (en) 2006-05-11
CN100374604C (zh) 2008-03-12

Similar Documents

Publication Publication Date Title
US7416616B2 (en) Non-heat treated steel for soft-nitriding
JP5079788B2 (ja) マルテンサイト型熱間鍛造用非調質鋼及び熱間鍛造非調質鋼部品
EP2357260B1 (en) Case hardening steel, carburized component, and manufacturing method of case hardening steel
JP5620336B2 (ja) 高疲労強度、高靭性機械構造用鋼部品およびその製造方法
JP4500708B2 (ja) 非調質鋼軟窒化処理部品
JP5152441B2 (ja) 機械構造用鋼部品およびその製造方法
JP3562192B2 (ja) 高周波焼入用部品およびその製造方法
JP5801529B2 (ja) 曲げ疲労強度が高く、繰り返し応力による変形量の小さい熱間鍛造用非調質鋼およびその部品の製造方法
JP5152440B2 (ja) 機械構造用鋼部品およびその製造方法
JP3738003B2 (ja) 冷間加工性と浸炭時の粗大粒防止特性に優れた肌焼用鋼材およびその製造方法
JP2004027334A (ja) 高周波焼もどし用鋼およびその製造方法
JP2005220423A (ja) Ti含有肌焼き鋼
JP3978111B2 (ja) 捻り疲労特性に優れた浸炭用鋼
JP4757744B2 (ja) 表層細粒鋼部品とその製造方法
JP5206911B1 (ja) 熱間鍛造用非調質鋼および熱間鍛造非調質品、ならびにその製造方法
JP2008240129A (ja) 非調質鋼材
JP2004183065A (ja) 高強度高周波焼き入れ用鋼材及びその製造方法
JP4450217B2 (ja) 軟窒化用非調質鋼
JP4214043B2 (ja) 耐摩耗性および延性に優れた高炭素鋼レールの製造方法
JP6680406B1 (ja) 機械部品及び機械部品の製造方法
JP2004124190A (ja) ねじり特性に優れる高周波焼もどし鋼
JP3489655B2 (ja) 高強度高靭性快削非調質鋼材
JP3428282B2 (ja) 高周波焼入用の歯車用鋼材およびその製造方法
EP3252182A1 (en) Case hardening steel
JPH08302447A (ja) 冷間加工性および被削性に優れた肌焼鋼

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025099.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11312498

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005513473

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 11312498

Country of ref document: US

122 Ep: pct application non-entry in european phase