WO2005010970A1 - 基板処理装置及び基板処理方法 - Google Patents

基板処理装置及び基板処理方法 Download PDF

Info

Publication number
WO2005010970A1
WO2005010970A1 PCT/JP2004/008603 JP2004008603W WO2005010970A1 WO 2005010970 A1 WO2005010970 A1 WO 2005010970A1 JP 2004008603 W JP2004008603 W JP 2004008603W WO 2005010970 A1 WO2005010970 A1 WO 2005010970A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
substrate
predicted
zone
heating
Prior art date
Application number
PCT/JP2004/008603
Other languages
English (en)
French (fr)
Inventor
Kazuo Tanaka
Masaaki Ueno
Masashi Sugishita
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Priority to JP2005511979A priority Critical patent/JP4285759B2/ja
Priority to US10/550,202 priority patent/US7346273B2/en
Publication of WO2005010970A1 publication Critical patent/WO2005010970A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1927Control of temperature characterised by the use of electric means using a plurality of sensors
    • G05D23/1928Control of temperature characterised by the use of electric means using a plurality of sensors sensing the temperature of one space
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
    • G05D23/22Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature the sensing element being a thermocouple
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Definitions

  • the present invention relates to a substrate processing apparatus for processing a substrate such as a silicon wafer.
  • Patent Document 1 discloses that the output of a heater is controlled based on thermal interference of a substrate in a reaction chamber from a plurality of heaters and an error of the substrate temperature with respect to a set temperature.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-175123
  • the present invention has been made in view of the above background, and has as its object to provide a substrate processing apparatus capable of easily controlling the temperature of a substrate.
  • a first substrate processing apparatus includes a heating unit that heats a substrate housed in a processing chamber, and a temperature detection unit that detects a temperature in the processing chamber.
  • a substrate temperature estimating means for periodically estimating the temperature of the substrate; a temperature in the processing chamber detected by the temperature detecting means; and a predicted temperature estimated by the substrate temperature estimating means in a previous cycle.
  • control means for predicting the temperature in the next cycle of the previous cycle by the substrate temperature prediction means, and controlling the heating means using the predicted temperature.
  • the second substrate processing apparatus heats a substrate housed in a processing chamber. Heating means, a first temperature detecting means for detecting a temperature near the heating means, a second temperature detecting means for detecting a temperature near the substrate, and the first temperature detecting means. A first predicted temperature of the substrate calculated from the temperature is mixed with a second predicted temperature of the substrate calculated from the temperature detected by the second temperature detecting means, and the mixed predicted temperature is used by using the mixed predicted temperature. Control means for controlling the heating means.
  • the heating unit has a plurality of zone heating units corresponding to a plurality of heating zones, respectively, and the substrate temperature prediction unit is a target of the predicted temperature for each of the plurality of zone heating units. Based on the degree of interference with the temperature of the substrate, a predicted value detected by the virtual temperature detecting means corresponding to each of the substrates targeted for the predicted temperature is calculated, and the detected predicted value and The temperature in the next cycle of the previous cycle is predicted using the predicted temperature.
  • control means is configured to mix the first predicted temperature and the second predicted temperature of the substrate with the magnitude of the change in the temperature detected by the second temperature detecting means. Change the ratio
  • the heating means has a plurality of zone heating means
  • the temperature detection means has zone temperature detection means corresponding to each of the zone heating means
  • the control means The virtual temperature detecting means is set at a position where the substrate whose temperature is to be predicted is closer to the other substrates, and the correspondence between the virtual temperature detecting means and the zone temperature detecting means, and the zone temperature detecting means measures.
  • a detected value of the virtual temperature detecting means is calculated based on the measured value, and the calculated detected value and the substrate temperature in the previous cycle predicted by the virtual temperature detecting means are used for the calculation.
  • the substrate temperature in the next cycle of the previous cycle is predicted, and each of the zone heating means is controlled based on the predicted substrate temperature.
  • the heating unit has a plurality of zone heating units
  • the temperature detection unit includes a first zone temperature detection unit and a second zone temperature corresponding to each of the zone heating units.
  • Detecting means wherein the control means sets the virtual temperature detecting means at a position where a substrate whose temperature is to be predicted is closer to other substrates, and the virtual temperature detecting means and the first zone temperature are set.
  • the corresponding relationship with the detecting means or the second zone temperature detecting means and The detected value of the virtual temperature detecting means is calculated based on the measurement value measured by the first zone temperature detecting means or the second zone temperature detecting means, and the calculated detected value is calculated by the virtual temperature detecting means.
  • the substrate temperature in the next cycle of the previous cycle is predicted using the predicted substrate temperature of the previous cycle, and each of the zone heating units is controlled based on the predicted substrate temperature.
  • the temperature detected by the temperature detecting means is displayed and recorded in substantially the same cycle as that in which the control means controls the output of the heating means, or an output which is output by any of these displays. Further comprising means.
  • the first substrate processing method includes a step of heating a substrate housed in a processing chamber, a step of detecting a temperature in the processing chamber, and a step of periodically changing the temperature of the substrate. Predicting, mixing the detected temperature in the processing chamber and the predicted temperature predicted in the cycle immediately before the periodically predicted temperature to form a next cycle of the immediately preceding cycle. Estimating the temperature in the substrate and controlling the heating of the substrate using the estimated temperature.
  • the second substrate processing method includes a reaction chamber for processing a substrate, a heating unit for heating the reaction chamber, a control unit for controlling the heating unit, the heating unit,
  • a substrate processing apparatus comprising: first temperature detecting means for detecting a temperature between the substrate and a second temperature detecting means for detecting a temperature closer to the substrate than the first temperature detecting means; Measuring the temperature with the first temperature detecting means, calculating the first substrate predicted temperature from the temperature measured by the first temperature detecting means, and measuring the temperature with the second temperature detecting means; Measuring the temperature of the second substrate, calculating the second substrate predicted temperature from the temperature measured by the second temperature detecting means, and mixing the first substrate predicted temperature and the second substrate predicted temperature. Controlling the heating means.
  • the present invention since the temperature of the substrate is predicted, it is possible to easily control and control the temperature of the substrate.
  • FIG. 1 is a diagram showing an overall configuration of a semiconductor processing apparatus to which the present invention is applied.
  • FIG. 2 is a diagram illustrating a reactor and its surroundings in a state in which the boat shown in FIG. 1 is housed.
  • FIG. 3 is a diagram showing a configuration of a device operation unit.
  • FIG. 4 is a diagram showing a configuration of a temperature controller.
  • FIG. 5 is a flowchart (S10) illustrating a process corresponding to a temperature change of a reactor in a processing sequence by the semiconductor processing apparatus.
  • FIG. 6 is a graph showing an outline of a change in the temperature of the reaction furnace, corresponding to S10 shown in FIG.
  • FIG. 7 is a diagram showing an example of changes in the temperature of the internal thermocouple and the temperature of the substrate when the reactor is ramped up.
  • FIG. 8 is a diagram showing a temperature detection position of a temperature monitor board.
  • FIG. 9 is a schematic diagram showing an example of a substrate arrangement in a boat.
  • FIG. 10 is a graph showing an example of a change in temperature of an external thermocouple indicated by an external thermocouple added to an example of a change in temperature of an internal thermocouple or the like shown in FIG. 7;
  • FIG. 12 is a chart showing the amount of change of the substrate edge temperature W shown in FIG. 11 based on the time when the temperature in the reactor is stable.
  • FIG. 14 is a graph showing an example of temperature data necessary for adjusting a predicted substrate edge temperature W'top (t) for an upper temperature monitor.
  • FIG. 15 is a flowchart (S20) showing a procedure for determining a temperature prediction parameter “K1, Tl, ⁇ 2, ⁇ 2, b, C”.
  • FIG. 16 is a table showing changes in the substrate edge temperature W with respect to step-up for each of the upper temperature monitor, the lower temperature monitor, and the center temperature monitor.
  • FIG. 17 In addition to the change in the board edge temperature W with respect to the step-up shown in FIG. 16, the change in the board edge temperature W of the virtual upper monitor board with respect to the step-up is additionally shown. It is a chart.
  • FIG. 18 is a view showing a parameter setting screen displayed when the input unit accepts a parameter on the display of the device operation unit.
  • FIG. 19 is a diagram showing an example of a temperature control setting screen displayed at a stage of preparing for substrate prediction control in a display ′ input unit of the device operation unit.
  • FIG. 20 is a diagram showing an example of a temperature control setting screen displayed at a stage of executing substrate prediction control in a display ′ input unit of the device operation unit.
  • FIG.21 Switch to the mode to prepare for board predictive control. Board edge when the heater output is controlled by PID calculation etc. so that the temperature response of the internal thermocouple approaches the set temperature change.
  • 6 is a graph illustrating a response between a temperature and a substrate center temperature.
  • FIG. 22 is a graph illustrating a response of a substrate edge temperature and a substrate center temperature to a change in a set temperature in a mode in which the substrate temperature prediction control is executed, in which a substrate temperature prediction control is set as a substrate edge temperature.
  • FIG. 23 Response of board edge temperature and board center temperature to set temperature change in board temperature predictive control mode in which board temperature predictive control is performed with the average temperature of board edge temperature and board center temperature as the target.
  • FIG. 1 is a diagram showing an overall configuration of a semiconductor processing apparatus 1 to which the present invention is applied.
  • FIG. 2 is a diagram exemplifying a reaction furnace (processing chamber) 3 in which the boat 108 shown in FIG. 1 is housed and its periphery.
  • the semiconductor processing apparatus 1 includes a cassette transfer device 100, a cassette stocker 102 provided on the back side of the cassette transfer device 100, and a transfer shelf provided below the cassette stocker 102. 104, a substrate transfer machine 106 provided on the back side of the transfer shelf 104, an elevator 110 provided on the back side of the substrate transfer machine 106, for raising and lowering a boat 108 on which a plurality of substrates are set. , A reactor 3 provided above the elevator 110, a temperature controller 4 for controlling the temperature in the reactor 3, and control of the components constituting the semiconductor processing apparatus 1 by accepting an operation from an operator. It is composed of a device operation unit 2.
  • the reactor 3 shown in FIG. 1 includes a cylindrical inner tube 30, for example, an outer tube 32 made of quartz, a heater 34 formed in a cylindrical shape around the outer tube 32, Other components such as a gas inlet 320, a gas outlet 322, a seal cap 324, and a gas flow regulator (not shown) are also configured and covered by the heat insulator 36.
  • the heater 34 includes zone heaters 340-1-340-4 capable of setting and adjusting the temperature, respectively.
  • the zone heater 340-1 340-4 may be, for example, by pulling out a plurality of taps from one continuous heater 34 winding, or by providing four heaters each having an independent winding. Is realized by:
  • each of the zone heaters 340-1-340-4 of the heater 34 is connected to the apparatus operation section 2 via the temperature controller 4, and heats the inside of the reaction furnace 3 based on the control of the apparatus operation section 2.
  • the external thermocouples 342-1-342-4 sample and detect the temperature near each of the zone heaters 340-1-340-4.
  • the inner tube 30 has a reaction chamber 300 formed therein.
  • Internal thermocouples 302-1 and 302-4 are installed at positions corresponding to the temperature control zones (U, CU, CL, and L) in the reaction chamber 300, respectively.
  • the internal thermocouple 302-1 302-4 samples and detects the temperature near the substrate in each of the temperature control zones (U, CU, CL, L).
  • the outer tube 32 and the inner tube 30 are provided concentrically with the heater 34, and a closed cylindrical space is formed between them.
  • the boat 108 is installed in the reaction furnace 3 so as to rotate in the circumferential direction of the substrate when the substrate is processed. Also, the internal thermocouple 302-1-1302-4 and the external thermocouple 342-111-342-4 can each detect temperature when the substrate is processed.
  • thermocouple 302-1-1 and 302-4 are indicated without being specified, it is simply abbreviated as the internal thermocouple 302. There is power S.
  • the four temperature control zones (U, CU, CL, L) are defined as U zone (U), CU zone (CU), CL zone (CL), and L zone (L), respectively. May be abbreviated.
  • FIG. 3 is a diagram showing a configuration of the device operation unit 2.
  • the device operation unit 2 includes an operation control unit 20, a display / input unit 22, a recording output unit 24, a storage unit 26, and a communication unit 28.
  • the operation control unit 20 includes a CPU 200, a memory 202, and the like, controls each unit constituting the device operation unit 2, and controls a unit constituting the semiconductor processing device 1 via the communication unit 28.
  • the display 'input unit 22 includes, for example, a touch panel, and includes a cycle changing unit 220 for receiving settings, set temperatures (target values), instructions, and the like for the semiconductor processing apparatus 1 from an operator and operating the semiconductor processing apparatus 1. Display information etc.
  • the cycle changing unit 220 stores the temperature data received by the temperature controller 4 from the internal thermocouple 302 and the external thermocouple 342 and the like into the recording output unit 24 and the storage unit. Change the cycle output to the unit 26 via the operation control unit 20.
  • the cycle changing unit 220 receives the temperature controller 4 from the internal thermocouple 302 and the external thermocouple 342 at substantially the same cycle as the cycle in which the operation control unit 20 controls the heater 34 via the temperature controller 4.
  • the temperature data is output to the recording output unit 24 and the storage unit 26.
  • the recording output unit 24 records the detection results of the internal thermocouple 302 and the external thermocouple 342 and the like on a graph sheet, for example, according to the cycle set by the cycle changing unit 220, and outputs the result.
  • the storage unit 26 includes, for example, an HDD, a CD, and the like, and stores processing sequence information (recipe) performed by the semiconductor processing device 1 and information received via the communication unit 28 and the recording medium 260.
  • the recipe is set by the operator via the device operation unit 2 and stored in the storage unit 26.
  • the device operation unit 2 includes components as a general computer that can control the semiconductor processing device 1.
  • the device operation unit 2 controls the respective components of the semiconductor processing device 1 by using these components to perform processing on the substrate.
  • FIG. 4 is a diagram showing a configuration of the temperature controller 4.
  • the temperature controller 4 includes a CPU 40 and a memory 42, receives temperature data from each of the internal thermocouple 302-1 302-4 and the external thermocouple 342-1 342-4, and receives the zone heater 340.
  • a CPU 40 receives temperature data from each of the internal thermocouple 302-1 302-4 and the external thermocouple 342-1 342-4, and receives the zone heater 340.
  • -1— 340-4 Each of the power values is accepted, the set temperature S (target value) set by the operator and the control signals such as the parameters described later are received from the device operation unit 2, and the power values (operation amount Z ) Is output to the zone heaters 340-1—340-4 to change the amount of heat generated by the zone heaters 340-1—340—4.
  • the temperature controller 4 outputs the temperature data received from the internal thermocouple 302 and the external thermocouple 342 and the electric power value received from each of the zone heaters 340-1 and 340-4 to the device operation unit 2.
  • the semiconductor processing apparatus 1 is, for example, a vertical CVD apparatus, and is controlled by these components in accordance with an operation from an apparatus operation unit 2 (FIG. 1).
  • the cassette transfer machine 100 transfers a cassette containing a plurality of substrates to a cassette stocker 102 for storage, and further transfers the cassette to a transfer shelf 104 for taking out substrates from the cassette.
  • the substrate transfer device 106 takes out the substrate from the cassette placed on the transfer shelf 104 and places the substrate on the boat 108.
  • the boat 108 When a predetermined number of substrates are placed on the boat 108, the boat 108 is moved into the reaction chamber 300 by the elevator 110.
  • reaction furnace 3 is sealed by a seal cap 324.
  • the processing gas is introduced from the gas inlet 320.
  • the temperature controller 4 determines the temperature detected by each of the external thermocouples 342-1 and 342-4 and the internal thermocouples 302-1-1 and 302-4, the control signal received from the device operation unit 2, and The power value for the zone heaters 340-1-340-4 is controlled based on Then, the processing gas rises toward the substrate placed on the boat 108 located in the reaction chamber 300, and the substrate is processed.
  • the processing gas after the processing is discharged from the gas exhaust port 322.
  • the boat 108 When the processing of the substrates is completed, for example, after lowering the temperature in the reactor 3, the boat 108 is unloaded from the reactor 3, and the boat 108 is cooled until all the substrates supported by the boat 108 are cooled. Wait at a predetermined position.
  • the substrate transfer device 106 When the substrate is cooled to a predetermined temperature, the substrate transfer device 106 removes the substrate from the boat 108 and stores it in the cassette on the transfer shelf 104.
  • the cassette in which the processed substrates are stored is carried out by the cassette transfer device 100 and is completed.
  • FIG. 5 is a flowchart illustrating steps corresponding to the temperature change of the reaction furnace 3 in the processing sequence by the semiconductor processing apparatus 1 described above. (S10).
  • FIG. 6 is a graph showing an outline of the temperature change of the reactor 3 corresponding to S10 shown in FIG.
  • step 100 the heater 34 is activated by the boat 108.
  • the reactor 3 Before being inserted into the furnace 3, the reactor 3 is heated so as to maintain the temperature of the reactor 3 at a temperature Ts lower than the temperature set during the processing.
  • step 102 the substrate placed on the boat 108 is inserted into the reaction furnace 3.
  • the temperature in the reaction furnace 3 is lowered to Ts by the introduction of the boat 108 and then lowered to Ts by the heater 34 (see FIG. 6).
  • step 104 based on the power value received from the temperature controller 4, the heater 34 controls the temperature in the reaction furnace 3 to a set temperature Tp for performing a process such as a film forming process. Is gradually raised (ramp-up).
  • step 106 the heater 34 maintains the temperature in the reaction furnace 3 at the set temperature Tp so that a process such as a film forming process is performed on the substrate.
  • step 108 the heater 34 gradually lowers the temperature in the reactor 3 from Tp to Ts again based on the electric power value received from the temperature controller 4 (ramp down). .
  • step 110 the substrate placed on the boat 108 is pulled out of the reaction furnace 3.
  • the temperature in the reactor 3 falls below Ts due to the boat 108 being pulled out of the reactor 3.
  • the productivity of the processing can be improved by executing each step in a short time.
  • a difference may occur between the temperature change detected in the reaction chamber 300 and the temperature change of the substrate.
  • FIG. 7 is a diagram showing an example of changes in the temperature of the internal thermocouple 302 and the temperature of the substrate when the reactor 3 is ramped up.
  • the substrate temperature when any of the temperatures detected at different positions on the substrate, such as the substrate center temperature C and the substrate edge temperature W, is indicated without specifying it, it is simply abbreviated as the substrate temperature. Sometimes.
  • FIG. 8 is a diagram showing a temperature detection position of the temperature monitor board 400.
  • the temperature monitor board 400 includes, for example, a center thermocouple 402 at the center on the temperature monitor board 400, four inner thermocouples 404-1 404-4 at the inner periphery, and an outer thermocouple at the outer periphery.
  • a center thermocouple 402 at the center on the temperature monitor board 400
  • four inner thermocouples 404-1 404-4 at the inner periphery
  • an outer thermocouple at the outer periphery.
  • Nine thermocouples 406-1 and 406-4 are provided, and each thermocouple outputs a detected temperature to, for example, the temperature controller 4.
  • the temperature monitor substrate 400 by mounting the temperature monitor substrate 400 on the boat 108, the temperature of the substrate when the substrate is processed in the reaction furnace 3 can be detected at the same position before the processing. Let's do it.
  • the substrate edge temperature W is equal to the outer peripheral thermocouple 406-1. It is the average value of the temperature detected from each one of 406-4.
  • FIG. 9 is a schematic diagram showing an example of a substrate arrangement in the boat 108.
  • an upper dummy substrate 50 and a lower dummy substrate 52 are disposed near the top and bottom of the boat 108, respectively. Have been.
  • the upper dummy substrate 50 and the lower dummy substrate 52 for example, when performing a film forming process, it is difficult to form a film near the top and bottom of the boat 108 so that the substrate becomes a product.
  • the number of sheets to be arranged is changed depending on the type of processing and the type of apparatus.
  • an upper monitor substrate 54 is disposed below the upper dummy substrate 50, and a lower monitor substrate 56 is disposed above the lower dummy substrate 52, and the upper monitor substrate 54 and the lower monitor substrate 56 A plurality of substrates 5 for a product are arranged in between.
  • a central monitor substrate 58 is disposed near the center of the plurality of substrates 5 disposed between the upper monitor substrate 54 and the lower monitor substrate 56.
  • the upper monitor substrate 54, the lower monitor substrate 56, and the central monitor substrate 58 are disposed, for example, one by one when processing the substrate 5, and are used as indicators for confirming the film formation result of the substrate 5.
  • the above-mentioned substrate center temperature C and substrate edge temperature W are such that the temperature monitor substrates 400 are respectively arranged at the positions of the upper monitor substrate 54, the lower monitor substrate 56, and the central monitor substrate 58 before processing. As a result, detection is performed at the respective positions of the upper monitor board 54, the lower monitor board 56, and the center monitor board 58.
  • the substrate center temperature C and the substrate edge temperature W change as shown in FIG.
  • the temperature monitor boards 400 arranged at the positions of the upper monitor board 54, the lower monitor board 56, and the central monitor board 58 of the boat 108 will be referred to as the upper temperature monitor,
  • the lower temperature monitor and the central temperature monitor may be abbreviated to each other.
  • any of the upper temperature monitor, the lower temperature monitor, and the central temperature monitor is indicated without being specified, it may be simply abbreviated to the temperature monitor.
  • the board edge temperature W rises immediately after the start of the ramp-up while the temperature is higher than the set temperature S.
  • the set temperature S rises to 800 ° C
  • the temperature slowly drops and stabilizes at about 800 ° C. ing.
  • the substrate center temperature C rises later than the internal thermocouple temperature P, and is stable at about 800 ° C. after becoming higher than the internal thermocouple temperature P.
  • the substrate edge temperature W and the substrate center temperature C may vary with different properties than the internal thermocouple temperature P.
  • a temperature monitor substrate 400 is arranged at each position of the upper monitor substrate 54, the lower monitor substrate 56, and the central monitor substrate 58, and the substrate center temperature C
  • the semiconductor processing apparatus 1 for detecting the substrate edge temperature W is shown as a specific example.
  • the temperature monitor board 400 disposed at each position of the monitor board 56 and the center monitor board 58, and the internal thermocouple 302-1—302-4 and the external thermocouple 342-1—342-4, respectively, are connected. By accepting the temperature change at the position where the thermocouple is arranged, the temperature of the substrate 5 when a plurality of substrates 5 (see FIG. 9) are processed is predicted.
  • the semiconductor processing apparatus 1 predicts the substrate temperature, and controls the output of the heater 34 so that the predicted substrate temperature approaches the set temperature, and performs prediction control of the substrate temperature.
  • the semiconductor processing apparatus 1 includes a temperature controller 4 for acquiring temperature data required for the substrate temperature prediction control, input of parameters required for the substrate temperature prediction control, and an instruction for executing the substrate temperature prediction control. It has a device operation unit 2 for receiving the information.
  • the following describes the substrate temperature prediction, substrate temperature prediction control based on the predicted substrate temperature, acquisition of temperature data required for substrate temperature prediction control, input of parameters required for substrate temperature prediction control, and execution of substrate temperature prediction control. An example will be described.
  • Figure 10 shows an example of the temperature change of the internal thermocouple 302 shown in Fig. 7 and the external thermocouple 342.
  • 5 is a graph showing an example of a change in the external thermocouple temperature H shown in FIG.
  • the response of the external thermocouple temperature H to a change in the set temperature S set in the zone heater 340 is The response is faster than the substrate edge temperature W response.
  • the response of the internal thermocouple temperature P to a change in the set temperature S is slower than the response of the substrate edge temperature W.
  • the external thermocouple temperature H responds fastest to the temperature change of the zone heater 340, followed by the external thermocouple temperature H, the substrate edge temperature W, the internal thermocouple temperature P, and the substrate center temperature.
  • the temperature controller 4 controls the temperature detected by each thermocouple and the set temperature S based on the control of the apparatus operation unit 2, for example, every control cycle of several hundred ms and several seconds. Then, the power value (operating amount) to the zone heater 340 is calculated by PID calculation or the like, and the heat value of the zone heater 340 is controlled (digitally controlled).
  • the value of the predicted substrate edge temperature W is defined as W (t), and the substrate edge temperature W in the t-th control cycle is calculated. Let the value be W (tl).
  • the value of the internal thermocouple temperature P in the t-th control cycle from the start of the ramp-up is P (t)
  • the value of the internal thermocouple temperature P in the t-th control cycle is P (t-1). .
  • the substrate edge temperature W can be regarded as changing with a delay with respect to the external thermocouple temperature H.
  • the substrate edge temperature W is the temperature of one system
  • the substrate edge temperature W (t) is expressed by performing a first-order lag operation on the external thermocouple temperature H (t).
  • T1 indicates a time constant of the substrate edge temperature W.
  • the internal thermocouple temperature P can be regarded as changing with a delay with respect to the external thermocouple temperature H.
  • the internal thermocouple temperature P is the temperature of one system
  • the internal thermocouple temperature P (t) is expressed by performing a first-order lag operation on the external thermocouple temperature H (t).
  • T2 of the temperature P By adjusting the mixing ratio between the internal thermocouple temperature P (t-1) and the external thermocouple temperature H (t-1) by the time constant T2 of the temperature P, it can be set as shown in Equation 2 below. it can.
  • thermocouple temperature H (K2xH (t-1) + T2 P (t-1)) ⁇ (1 + T2) ⁇ (2)
  • K2 is the external thermocouple temperature H with respect to the internal thermocouple temperature P. Indicates the gain.
  • T2 indicates a time constant of the internal thermocouple temperature P.
  • Equation 3 the external thermocouple temperature H (t ⁇ 1) is expressed as shown in Equation 3 below.
  • H (t-1) ⁇ (T1 +1) xW (t) -T1 xW (t-1) ⁇ ⁇ K1
  • Equation 3 When Equation 3 is substituted into Equation 2, the substrate edge temperature W (t) is expressed as shown in Equation 4 below.
  • the substrate edge temperature W (t) shown in Equation 1 and predicted from the external thermocouple temperature H is defined as an external predicted temperature HW (t).
  • the substrate edge temperature W (t) predicted from the internal thermocouple temperature P shown in Expression 4 is set as the predicted internal temperature PW (t).
  • the substrate edge temperature W is predicted from the internal thermocouple temperature P that changes with a change in the set temperature S later than the response of the substrate edge temperature W.
  • the external predicted temperature HW (t) predicted from the external thermocouple temperature H is weighted, and the variation of the internal thermocouple temperature P is small.
  • the mixing ratio between the external predicted temperature HW (t) and the internal predicted temperature PW (t) is calculated using the weights described later so that the internal predicted temperature PW (t) predicted from the internal thermocouple temperature P is weighted.
  • the weighted predicted substrate edge temperature W '(t) is expressed as shown in the following Expression 5.
  • the weight a (t) indicates the magnitude of the change (rate of change) of the internal thermocouple temperature P, and is expressed as shown in the following Expression 6.
  • II in Equation 6 indicates an absolute value.
  • b is a filter time constant of weight a (t) c
  • the predicted substrate edge temperature W ′ (t) can be obtained from the predicted external temperature HW (t) and the predicted internal temperature PW (t).
  • temperature prediction parameters “K1, Tl, ⁇ 2, ⁇ 2, b, C” need to be set individually for each semiconductor processing apparatus 1 that performs predictive control of the substrate temperature.
  • the number of temperature monitor boards 400 arranged on the boat 108 is equal to the number of zone heaters 340, and the measurement position (the height direction) of the external thermocouple 342 and the internal thermocouple 302 is set for each temperature control zone. ) And the number, and the arrangement (placement) position (height direction) and number of the temperature monitor board 400, respectively, match the values corresponding to Equation 1 to Equation 6 to estimate the board edge.
  • the temperature W '(t) can be calculated.
  • thermocouple temperature H and the internal thermocouple temperature P that serve as virtual temperature detection means corresponding to each of the 400.
  • the virtual temperature detecting means means that the number of measurement points of the internal thermocouple 302 and the external thermocouple 342 is usually limited to a limited number, and the position of the substrate to be measured and predicted (height direction, vertical with respect to the main surface of the substrate).
  • Direction (height direction, vertical direction to the main surface of the board), the internal thermocouple 302 or the external thermocouple 342 and the interference relationship between each board and the temperature control zone are used.
  • the optimal position (height direction, main direction of the board) near the internal thermocouple 302 or external thermocouple 342 corresponding to the position of the board to be measured and predicted (height direction, vertical direction to the main surface of the board) (Vertical direction with respect to the surface) is the detection means obtained.
  • the present invention can be applied as long as the interference relationship between the substrate to be predicted and the temperature adjustment zone described in the internal thermocouple 302 or the external thermocouple 342 can be calculated.
  • an external thermocouple 342-1 342-4 and an internal thermocouple 302-1-302-4 respectively When the temperatures of the upper temperature monitor, the lower temperature monitor, and the center temperature monitor are predicted from the detected temperatures, the external thermocouple temperature H and the internal thermocouple temperature P corresponding to each temperature monitor board 400 Calculated based on the degree to which each of the heaters 340-1 and 340-4 interferes with the temperature of each of the three temperature monitor boards 400.
  • the set temperatures S of the four temperature control zones are each increased by 5 ° C (step-up) one by one.
  • Each of the zone heaters 340-1 340-4 is determined by the change in the board edge temperature W detected via the outer thermocouples 406-1-406-4 of the upper, lower, and center temperature monitors. The degree of interference with the temperature of each temperature monitor board 400 can be calculated.
  • Fig. 11 shows the upper temperature when the set temperature S for the internal thermocouples 302-1-302-4 in the four temperature control zones was raised (stepped up) by 5 ° C for each zone.
  • 9 is a chart showing an example in which the board edge temperature W of the temperature monitor, the lower temperature monitor, and the center temperature monitor has changed.
  • FIG. 12 is a chart showing the amount of change in the substrate edge temperature W shown in FIG. 11 based on the time when the temperature in the reactor 3 is stable.
  • the substrate edge temperature W of the upper temperature monitor is 852.4 ° C.
  • the board edge temperature W of the upper temperature monitor becomes 854.0 ° C and 852 ° C, respectively. 1 ° C, 852.3 ° C, and the respective “changes” with respect to the stable state are 1.6 ° C, -0.3 ° C, and -0.1 ° C.
  • the U zone, CU zone, CL zone, and L zone are heated one by 5 ° C, 3.2 ° C, 1.6 ° C, -0.3 ° C, -0 A temperature change of C occurs at the substrate edge temperature W of the upper temperature monitor.
  • the board edge temperature W This shows the change in the “sum of changes” (Fig. 12), which is the sum of the temperature changes in Fig. 12, and the temperature is increased by 4.4 ° C.
  • the board edge temperature W (Fig. 11) when the lower temperature monitor and the center temperature monitor are stable, and the set temperature S for each of the four temperature control zones is set to 5
  • the substrate edge temperature W when the temperature is raised by ° C and the “change amount” of each substrate edge temperature W with respect to the stable state (FIG. 12) are shown.
  • FIG. 13 shows the ratio of the “change amount” of each of the four temperature control zones to the “total change amount” shown in FIG. 12 of each of the upper temperature monitor, the lower temperature monitor, and the center temperature monitor (change amount ⁇ change amount).
  • 3 is a chart showing the sum of the amounts.
  • each of the zone heaters 340-1 to 340-4 changes.
  • the ratio (interference ratio) of interference between the upper edge temperature monitor, the lower temperature monitor, and the center temperature monitor with respect to a change in the substrate edge temperature W is shown.
  • the internal thermocouple temperature ⁇ ⁇ corresponding to each of the upper temperature monitor, lower temperature monitor, and center temperature monitor is calculated based on the interference ratio, and is used to predict the predicted substrate edge temperature W ′ (t).
  • thermocouple temperature Ptop (t) used for predicting the predicted substrate edge temperature W ′ top (t) of the upper temperature monitor is expressed by the following equation 7. It is represented as shown.
  • thermocouple temperature P becomes substantially the same as the set temperature S within a few minutes after the ramp-up, as shown in FIG. 10, for example.
  • Pu (t), Pcu (t), Pcl (t), Pl (t) are U zone, CU zone, CL zone
  • thermocouple temperature Ptop (t) calculated by Expression 7 is substituted into Expression 4, and used for calculating the internal predicted temperature PWtop (t) of the upper temperature monitor.
  • the external thermocouple temperature H corresponding to each of the upper temperature monitor, the lower temperature monitor, and the center temperature monitor is also calculated based on the interference ratio calculated based on the set temperature S with respect to the internal thermocouple 302-1-1-302-4. It can be calculated based on Fig. 13).
  • the external thermocouple temperature Htop (t) used to predict the predicted board edge temperature W 'top (t) of the upper temperature monitor is calculated based on the interference ratio shown in Fig. 13 as expressed.
  • Htop (t) ⁇ Hu (t) XO.727 ⁇ + ⁇ Hcu (t) XO. 364 ⁇ + ⁇ Hcl (t) x (— 0.068) ⁇
  • Hu (t), Hcu (t), Hcl (t), Hl (t) are U zone, CU zone, CL Indicates the external thermocouple temperature of each zone and L zone.
  • the external thermocouple temperature Htop (t) calculated by Expression 8 is used in calculation of the external predicted temperature HWtop (t) of the upper temperature monitor by being substituted into Expression 1.
  • the external thermocouple temperatures H of the four temperature control zones are increased (stepped up) by 5 ° C for each zone, and the upper temperature monitor and the lower temperature are monitored.
  • the interference ratio between the external thermocouple temperature H and the substrate edge temperature W may be obtained from the change in the substrate edge temperature W of each of the temperature monitor and the central temperature monitor.
  • the internal thermocouple temperature P and the external thermocouple temperature H of each of the four temperature control zones the internal thermocouple temperature P and the external thermocouple corresponding to the upper temperature monitor, lower temperature monitor, and central temperature monitor respectively.
  • the internal predicted temperature PW (t) and the external predicted temperature HW (t) can be obtained respectively.
  • the closest position of the internal thermocouple 302 and the external thermocouple 342 at the position where each monitor board 400 is arranged is determined. It can be calculated by determining the degree of interference.
  • virtual temperature detecting means which is the optimal position of the internal thermocouple 302 and the external thermocouple 342 corresponding to each substrate in each temperature control zone, can be derived from the interference relationship, and the obtained internal thermocouple 302 and the external thermocouple 342 determine In addition, the predicted substrate temperature can be obtained.
  • FIG. 14 is a graph showing an example of temperature data necessary for adjusting the predicted substrate edge temperature W 'top (t) for the upper temperature monitor.
  • Figure 14 shows the upper temperature monitor using Equation 1 from the internal thermocouple temperature Ptop (t) and the external thermocouple temperature Htop (t) and the external thermocouple temperature Htop (t) calculated as described above. It is calculated from the calculated external predicted temperature HWtop (t) and the internal thermocouple temperature Ptop (t) using the internal predicted temperature PWtop (t) calculated using Equation 4, and the internal thermocouple temperature Ptop (t) using Equation 6.
  • the graph shows the weight atop (t), the predicted board edge temperature W 'top (t) calculated from Equation 5 from these values, and the board edge temperature Wtop detected by the upper temperature monitor. .
  • the temperature prediction parameters “K1, Tl, ⁇ 2, ⁇ 2, b, C” correspond to the substrate edge predicted temperature W ′ top (FIG. 14) for the upper temperature monitor, the lower temperature monitor, and the center temperature monitor, respectively.
  • An operator sequentially adjusts and determines the gain K1 so that t) approaches the substrate edge temperature Wtop.
  • FIG. 15 is a flowchart (S20) showing a procedure for determining the temperature prediction parameters “K1, Tl, ⁇ 2, ⁇ 2, b, C”.
  • step 200 the externally predicted temperature HWt op with respect to the substrate edge temperature Wtop at the start of the ramp-up shown in FIG.
  • the operator determines the value of the gain K1 in Equation 1 from the ratio of (t).
  • the value of the gain K1 is determined so that the external predicted temperature HWtop (t) is substantially equal to the substrate edge temperature Wtop.
  • step 202 the worker sets the external prediction temperature HWtop (t) as close as possible to the response of the board edge temperature Wtop during the ramp-up (for the period of 15 minutes in Fig. 14). Determines the value of the time constant T1 in Equation 1.
  • step 204 the internal predicted temperature PWtop (t) and the substrate edge temperature Wtop are substantially reduced in a state where the temperature change of the substrate edge temperature Wtop becomes small after the ramp-up (after 10 minutes in FIG. 14).
  • the operator determines the value of the gain K2 in Equation 2 so as to be equal.
  • the value of the gain K2 is adjusted with the value of the gain K1 determined in S200 as an initial value.
  • step 206 the operator determines the value of the time constant T2 in Equation 2 so that the response of the internal predicted temperature PWtop (t) approaches the response of the substrate edge temperature Wtop as a whole.
  • step 208 the operator sets the weight gain C to 1.0, sets the filter time constant b to 10, and checks the change in the weight atop (t).
  • the filter time constant b is set to, for example, 10, 20, 30,
  • step 210 the response of the predicted substrate edge temperature W ′ top (t) after the completion of the ramp-up (after 5 minutes in FIG. 14) approaches the response of the substrate edge temperature Wtop.
  • the temperature prediction parameter is adjusted according to the procedure of S20, a large difference of, for example, 10 ° C. or more between the response of the substrate edge predicted temperature W ′ to p (t) and the response of the substrate edge temperature Wtop If there is, the value of the weight gain C set in S208 may be changed so as to gradually decrease, for example, 0.9, 0.8, and the time constants Tl, T2 may be finely adjusted. In other words, by weighting the internal predicted temperature PWtop (t) rather than the external predicted temperature HWtop (t), the difference between the response of the substrate edge predicted temperature W 'top (t) and the substrate edge temperature Wtop J, you can cut it.
  • the temperature prediction parameters “K1, Tl, K2, ⁇ 2, b, C” can be determined for each of the lower monitor board 56 and the center monitor board 58 in S20.
  • the temperature controller 4 predicts the substrate temperature as described above, and controls the output of the heater 34 based on the control of the apparatus operation unit 2 so that the substrate temperature approaches the set temperature.
  • zone heaters 340-1 340-4 power S are provided for three temperature monitor boards 400, an upper temperature monitor, a lower temperature monitor, and a central temperature monitor. Controls the outputs of the four zone heaters 340 according to the temperature data received from the three temperature monitor boards 400.
  • the temperature controller 4 calculates four operation amounts in order to control the outputs of the zone heaters 340-1-340-4.
  • the four manipulated variables are calculated, for example, based on the ratio (interference ratio) at which the zone heaters 340-1 340-4 thermally interfere with the upper temperature monitor, the lower temperature monitor, and the central temperature monitor, and the interference matrix described later. May be calculated based on the result of the inverse matrix operation.
  • the predicted temperature for each temperature monitor board 400 and the deviation from the set temperature of each temperature monitor board 400 Is assigned to each temperature control zone (U, CU, CL, L) according to the interference ratio.
  • the upper temperature monitor is set.
  • the deviation of the substrate edge predicted temperature W ′ top (t) from the temperature is 5 ° C. (850 ° C-845. C).
  • Equation 9_1 Equation 9-14 the allocation amount of the deviation to each temperature adjustment zone (U, CU, CL, L) at the predicted substrate edge temperature W ′ top (t) is expressed by Equation 9_1 Equation 9-14.
  • the temperature controller 4 similarly calculates the amount of deviation assigned to the lower temperature monitor and the center temperature monitor, and obtains the sum of the deviations assigned to each temperature control zone. Then, the temperature controller 4 calculates an operation amount for each of the zone heaters 340-1 340-4 by a PID calculation or the like using the sum of the deviations allocated to each of the temperature control zones, and is assigned to each of the temperature control zones. Control the output of zone heaters 340-1 340-4 so that the sum of the deviations becomes zero (0).
  • the interference matrix is obtained.
  • the amount of change in the substrate edge temperature W with respect to the change in the internal thermocouple temperature P is based on the value shown in Fig. 12 based on the stable temperature in the reactor 3. Suppose they are the same.
  • FIG. 16 shows the result of the above-described calculation in which the row and column are exchanged with respect to the change amount of the substrate edge temperature W with respect to the step-up.
  • FIG. 16 is a chart showing the change amount of the substrate edge temperature W with respect to the step-up for each of the upper temperature monitor, the lower temperature monitor, and the center temperature monitor. Assuming that the values shown in FIG. 16 are matrices, they are not square matrices, so a virtual upper monitor board is virtually placed above the upper temperature monitor as shown in FIG. 17 to perform the inverse matrix operation. Provide.
  • FIG. 17 is a table showing, in addition to the change in the substrate edge temperature W with respect to the step-up shown in FIG. 16, the change in the substrate edge temperature W of the virtual upper monitor substrate with respect to the step-up.
  • the amount of change of the virtual upper monitor board changes by 1 ° C, and other temperatures
  • the temperature of the virtual upper monitor board does not change depending on the adjustment zone.
  • the number of temperature control zones is two or more than the number of temperature monitor boards 400
  • the number of virtual monitor boards to be virtually provided is further increased, and the number of temperature control zones and the number of temperature monitor boards 400 are increased. May be arranged to form a square matrix.
  • the interference matrix M shows that the substrate edge temperature W in each of the upper temperature monitor, the lower temperature monitor, and the center temperature monitor changes. Represents the amount of change.
  • the inverse matrix operation for calculating the amount of change in the internal thermocouple temperature P is expressed as [ ⁇ ⁇ ⁇ ⁇ ] — ⁇ ⁇ "using the interference matrix M. ( ⁇ : transposed matrix)
  • Equation 11 The result of the inverse matrix operation of the interference matrix ⁇ shown in Equation 10 is shown in Equation 11.
  • represents a transposed matrix
  • ⁇ 1 represents an inverse matrix operation
  • the amount by which the internal thermocouple temperature ⁇ of each temperature control zone should change is calculated by multiplying the result of the inverse matrix operation shown in Equation 11 by the deviation of each temperature monitor board 400, respectively.
  • Equation 12 shows the result obtained by multiplying the result of the inverse matrix operation shown in equation 11 by the deviation of each temperature monitor board 400.
  • the internal thermocouple temperatures P of the internal thermocouples 302-1 and 302-4 change.
  • the power changes should be 5 ° C, 7.0 ° C, 4.9 ° C, and 7.0 ° C, respectively.
  • the temperature controller 4 determines the internal thermocouple of each of the internal thermocouples 302-1-302-4.
  • the amount of operation for each of the zone heaters 340-1-340-4 is calculated by, for example, PID calculation so that the amount of change in the temperature P to be changed becomes zero (0), and the zone heaters 340-1-1-1 340- Control the output of 4.
  • the example of controlling the substrate temperature in such a manner that the substrate edge temperature W approaches the set temperature S has been described in the predictive control of the substrate temperature.However, the present invention is not limited to the case where the substrate center temperature C is controlled to approach the set temperature S. Can be similarly controlled.
  • the interference ratio of the zone heaters 340-1 340-4 or the inverse matrix of the interference matrix M is calculated from the temperature inside the reaction furnace 3 detected by the external thermocouple 342 and the internal thermocouple 302. Based on the results, the predicted temperatures of the upper monitor board 54, the lower monitor board 56, and the center monitor board 58 are calculated, and the zone heaters 340-1 340 are set so that the calculated predicted temperature of the board matches the set temperature S. Calculate the manipulated variable for each of these and control the output of zone heaters 340-1 and 340-4.
  • the temperature controller 4 periodically controls the output of the zone heaters 340-1-340-4 so that the temperatures of the upper monitor board 54, the lower monitor board 56, and the center monitor board 58 change according to the set temperature S. Can be controlled.
  • the predicted temperature of the temperature monitor board 400 is calculated by performing a first-order lag operation using the external thermocouple temperature H and the internal thermocouple temperature P as described above.
  • the temperature prediction parameters “K1, Tl, ⁇ 2, ⁇ 2, b, C” need to be adjusted before processing the substrate for each semiconductor manufacturing apparatus that controls the temperature of the substrate.
  • the external thermocouple temperature H obtained at the same cycle as the cycle (control cycle) at which the temperature control is performed during processing is performed.
  • the internal thermocouple temperature P is adjusted.
  • the apparatus operation unit 2 controls the temperature control cycle (control cycle) via the temperature controller 4 and the display / input unit 22 or the recording output unit 24.
  • the cycle for displaying or recording temperature data is different.
  • temperature controller 4 (FIG. 2) accepts temperature data via internal thermocouples 302-1-302-4 and external thermocouples 342-1 342-4 before the zone heaters 340-1-340.
  • the operation amount (control period) for calculating the operation amount for each of the zone heaters 340-1 to 340-4 is 0.5 seconds.
  • the period in which the operation control unit 20 receives temperature data from the temperature controller 4 via the communication unit 28 and outputs it to the display / input unit 22 or the recording output unit 24 is 4 seconds. ing.
  • the CPU 200 of the device operation unit 2 mainly performs processing using recipes
  • the CPU 40 of the temperature controller 4 mainly processes the board. This is because a process for controlling the temperature can be performed.
  • the cycle at which the display / input unit 22 or the recording output unit 24 outputs the temperature data is different.
  • the temperature prediction parameters “K1, Tl, ⁇ 2, ⁇ 2, b, C” are used to calculate the predicted temperature. In order to adjust the temperature, it is necessary to output the temperature data in a 0.5 second cycle from the display / input unit 22 or the recording output unit 24.
  • the operator can obtain a graph as shown in FIG. 14 by outputting the 0.5-second cycle temperature data from the recording output unit 24 or the like.
  • the 0.5-second cycle temperature data can be used, for example, so that the cycle change unit 220 of the device operation unit 2 can change the communication cycle between the device operation unit 2 and the temperature controller 4, The user may be able to select either 4 seconds or 0.5 seconds for the cycle of the temperature data acquired from the device operation unit 2.
  • the device operation unit 2 generates temperature data of a 0.5 second cycle from the temperature data acquired in a 4 second cycle, and performs an internal process of inserting between the temperature data of the 4 second cycle. It may be.
  • the temperature is reduced.
  • the prediction parameter may be adjusted.
  • the operator uses parameters such as the temperature prediction parameters “K1, Tl, ⁇ 2, ⁇ 2, b, C” and the parameters such as the interference ratio or the result of the inverse matrix operation of the interference matrix M. It must be set via operation unit 2.
  • the apparatus operation unit 2 accepts parameters necessary for the substrate temperature prediction control, as well as parameters for performing PID control on the set temperature S of the internal thermocouple temperature P.
  • the parameters necessary for the temperature prediction control of the substrate are adjusted for each temperature zone in which the substrate is processed, and are set as individual parameter tables.
  • an individual parameter table may be set according to the number of substrates to be processed in the reactor 3.
  • a temperature prediction parameter “K1, ⁇ 1, ⁇ 2, ⁇ 2, b, C” adjusted by placing 100 substrates on the boat 108 and a temperature prediction parameter adjusted by mounting 50 substrates on the boat 108 Parameter 1, Tl, K2, T2, b, C '' are set so that the parameter table is selected via the device operation unit 2 according to the number of substrates to be processed in the reactor 3.
  • FIG. 18 is a diagram showing a parameter setting screen displayed when the display / input unit 22 of the device operation unit 2 accepts parameters.
  • the meter setting screen includes a table selection unit 222, a monitor board number input unit 224, a prediction parameter input unit 226, an interference degree, and an input unit 228.
  • the table selection unit 222 receives from the operator an instruction to select a parameter table according to the temperature zone in which the substrate is processed.
  • the monitor board number input unit 224 receives the number of temperature monitor boards 400 to be used from the operator.
  • the number of the temperature monitor substrates 400 may be more than three.
  • the number of temperature monitor boards 400 may be:! Or two.
  • the prediction parameter input unit 226 receives a temperature prediction parameter “K1, Tl, K2, ⁇ 2, b, C” for each temperature monitor board 400 from an operator.
  • the interference degree input section 228 outputs the interference ratio or the inverse matrix operation result of the interference matrix for each temperature monitor board 400 to the external thermocouple 342-1 342-4 and the internal thermocouple 302-1 302. -Accept 4 from each worker.
  • the substrate prediction control is performed by setting the temperature for the internal thermocouple 302 and the external thermocouple 342 provided in the reactor 3 and checking the temperature change of the temperature monitor substrate 400 to predict the temperature.
  • the stage is divided into a stage of preparing a substrate prediction control for determining parameters and the like, and a stage of actually processing the substrate by performing the substrate temperature prediction control using the prepared temperature prediction parameters and the like.
  • FIG. 19 is a diagram showing an example of a temperature control setting screen displayed on the display / input unit 22 of the apparatus operation unit 2 at the stage of preparing for the board prediction control.
  • FIG. 20 is a diagram illustrating an example of a temperature control setting screen displayed at the stage of processing a substrate by executing substrate prediction control in the display / input unit 22 of the apparatus operation unit 2.
  • the temperature control setting screen is displayed on, for example, a touch panel, and has a mode selection unit 230, a temperature setting unit 232, and a parameter setting unit 234, so that display and acceptance of instructions are performed in combination.
  • Mode selection section 230 accepts an instruction to select a setting target on the temperature control setting screen, and displays the accepted instruction.
  • the setting target on the temperature control setting screen is, for example, the internal thermocouple 302, the external thermocouple 342, the temperature monitor board 400, and the like.
  • the temperature control setting screen is set to the mode for preparing for the board prediction control, and the selected thermocouple is set.
  • the temperature setting unit 232 displays a display for accepting the instruction of the set temperature and the gradient of the temperature increase for each zone.
  • the temperature control setting screen is set to the mode for executing the substrate prediction control, and the set temperature for each temperature monitor substrate 400 is set.
  • a display for accepting the instruction of the inclination of the temperature rise is displayed on the temperature setting section 232.
  • Temperature setting section 232 displays a display for accepting the instruction of the set temperature and the gradient of the temperature increase according to the mode selected in mode selection section 230.
  • temperature setting section 232 displays the accepted instruction.
  • Parameter setting section 234 includes PID selection section 236 and prediction control selection section 238.
  • the PID selection unit 236 determines, for example, parameters for PID control, a temperature band of the set temperature, and the number of substrates to be processed according to the set temperature and the inclination of the temperature rise set by the temperature setting unit 232. Accepts an instruction to select a parameter table containing parameters adjusted accordingly and displays the accepted instruction.
  • the prediction control selection unit 238 determines that the temperature prediction parameters “K1, Tl, ⁇ 2, ⁇ 2, b, C” are not used when the mode for preparing the substrate prediction control is selected in the mode selection unit 230. indicate.
  • the prediction control selection section 238 determines the optimum value according to the setting by the temperature setting section 232 and the number of boards.
  • the display indicates that the operation control unit 20 automatically switches the meter so that the appropriate temperature prediction parameter “K1, Tl, ⁇ 2, ⁇ 2, b, C” is selected.
  • the selection of the temperature prediction parameters “K1, Tl, K2, b2, b, C” can be performed by the operator instructing the prediction control display section 238 in the case of error, deviation, or deviation. .
  • the operator can select, through the apparatus operation unit 2, to prepare for the substrate prediction control and to perform the substrate temperature prediction control and actually process the substrate. it can.
  • the device operation unit 2 receives the substrate temperature predicted by the temperature controller 4 and displays the substrate temperature on the display input unit 22, or displays the substrate temperature on the storage unit 26. The operator can check the status of the predicted temperature during or after processing the substrate.
  • Fig. 21 shows the board edge when the output of the zone heater 340 is controlled by PID calculation or the like so that the temperature response of the internal thermocouple 302 approaches the change of the set temperature S in the mode for preparing for board predictive control.
  • a graph illustrating the response of the temperature W and the substrate center temperature C is shown.
  • FIG. 22 is a graph illustrating the response of the substrate edge temperature W and the substrate center temperature C to a change in the set temperature S in a mode in which the substrate temperature prediction control is executed, in which the substrate temperature prediction control is performed on the substrate edge temperature W. It is.
  • the temperature controller 4 controls the output of the zone heater 340 by PID calculation or the like based on the control of the device operation unit 2 so that the temperature response of the internal thermocouple 302 approaches the change of the set temperature S.
  • the substrate edge temperature W and the substrate center temperature C stabilize at the set temperature S after greatly overshoot the set temperature S (800 ° C), respectively.
  • the substrate temperature prediction control when executed with the target of the substrate temperature prediction control as the substrate edge temperature W with respect to the change of the set temperature S, the substrate edge temperature W and the substrate center temperature C become , Respectively, and stabilizes at the set temperature S without significantly overshooting the set temperature S.
  • the target of the board temperature prediction control is the board edge temperature W
  • the response of the board edge temperature W prediction control is the board edge temperature W detected at the stage of preparing the board prediction control.
  • the temperature prediction parameters ⁇ K1, Tl, ⁇ 2, ⁇ 2, b, C '' are adjusted so as to approach the response of the substrate temperature.
  • the substrate center temperature C rises with a delay, and reaches the set temperature S later than the substrate edge temperature W and stabilizes.
  • FIG. 23 is a graph showing the relationship between the set temperature S and the change in the board edge temperature in the mode in which the board temperature predictive control is executed with the target of the board temperature predictive control being the average temperature of the board edge temperature W and the board center temperature C.
  • 9 is a graph showing the response of W and the substrate center temperature C.
  • the target of the substrate temperature prediction control was the average temperature of the substrate edge temperature W and the substrate center temperature C, and the response of the average temperature prediction control was detected at the stage of preparing for the substrate prediction control. Since the temperature prediction parameters “K1, Tl, K2, ⁇ 2, b, C” are adjusted so as to approach the average temperature of the board edge temperature W and the board center temperature C, the response of the board edge temperature W is set. The overshoot is smaller than the response of the substrate edge temperature W shown in Fig. 21 with respect to the temperature S, and the response of the substrate center temperature C is about 1 minute earlier than the response of the substrate center temperature C shown in Fig. 22. It has reached the set temperature S and is stable.
  • the target of the substrate temperature prediction control may be the substrate center temperature C, the outer peripheral thermocouple 406 -1-406-4, the inner peripheral thermocouple 404-1-1 404-4, and the central thermocouple 402. The average temperature may be used.
  • the target of the substrate temperature prediction control is freely selected, and the temperature prediction parameter “K1” is set so that the response of the predicted temperature of the selected target approaches the response of the temperature detected in the preparation stage of the selected target. , Tl, ⁇ 2, ⁇ 2, b, C ”, the substrate temperature response can be changed based on the target of the substrate temperature prediction control.
  • the predicted temperature of the temperature monitor substrate 400 may be calculated by performing a first-order lag operation between the internal thermocouple temperature P without using the external thermocouple temperature H and the substrate temperature.
  • the present invention is not limited to this, and a heat processing apparatus such as a diffusion apparatus of a batch type semiconductor processing apparatus or a single-wafer processing apparatus. And other general substrate processing apparatuses.
  • the present invention can be used for processing a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明は、基板の温度を予測し、容易に基板の温度を制御することが出来る基板処理装置を提供することを目的とする。反応炉(処理室)3には、ゾーンヒータ340−1~340−4により、それぞれ温度の設定および調節が可能な4つの温度調節ゾーンが形成されている。温度コントローラ4は、ゾーンヒータ340−1~340−4によって加熱された基板の温度の時定数に基づいて、内部熱電対302−1~302−4および外部熱電対342−1~342−4が検出した温度を混合して基板の予測温度を一次遅れ演算により算出する。また、温度コントローラ4は、ゾーンヒータ340−1~340−4に対する電力値(操作量)を基板の予測温度を用いて算出し、ゾーンヒータ340−1~340−4に対して出力する。

Description

基板処理装置及ぴ基板処理方法 技術分野
[0001] 本発明は、シリコンウェハ等の基板を処理する基板処理装置に関する。
背景技術
[0002] 縦型熱処理炉などによって、シリコンウェハ等の基板を熱処理する場合、基板温度 を設定温度(目標値)に近づけるために、反応室の周囲に設けられたヒータの出力を 明
制御することは周知である。
例えば、特許文献 1は、反応室内の基板が複数のヒータから受ける熱干渉と、設定 温度に対する基板温度の誤差とに基づいて、ヒータの出力を制御することを開示す る。
し力しながら、処理される基板のサイズが大きい場合などに、反応室内で検出され る温度変化と基板の温度変化との間に大きな違いが生じることがある。
[0003] 特許文献 1 :特開 2002 - 175123号公報
発明の開示 発明が解決しょうとする課題
[0004] 本発明は、上述した背景からなされたものであり、基板の温度を容易に制御するこ とができる基板処理装置を提供することを目的としている。
課題を解決するための手段
[0005] 上記目的を達成するために、本発明に係る第 1の基板処理装置は、処理室内に収 容された基板を加熱する加熱手段と、前記処理室内の温度を検出する温度検出手 段と、前記基板の温度を周期的に予測する基板温度予測手段と、前記温度検出手 段が検出した前記処理室内の温度と、前記基板温度予測手段が 1回前の周期で予 測した予測温度とを混合して、前記基板温度予測手段により前記 1回前の周期の次 回の周期における温度を予測し、該予測温度を用いて前記加熱手段を制御する制 御手段とを有する。
[0006] また、本発明に係る第 2の基板処理装置は、処理室内に収容された基板を加熱す る加熱手段と、前記加熱手段の近傍の温度を検出する第 1の温度検出手段と、前記 基板の近傍の温度を検出する第 2の温度検出手段と、前記第 1の温度検出手段が 検出した温度から算出する前記基板の第 1の予測温度と、前記第 2の温度検出手段 が検出した温度から算出する前記基板の第 2の予測温度とを混合させ、該混合した 予測温度を用いて前記加熱手段を制御する制御手段とを有する。
[0007] 好適には、前記加熱手段は、複数の加熱ゾーンそれぞれに対応する複数のゾーン 加熱手段を有し、前記基板温度予測手段は、前記複数のゾーン加熱手段それぞれ が予測温度の対象となる前記基板の温度に対して干渉する度合いにより、前記予測 温度の対象となる前記基板ごとに対応する仮想温度検出手段の検出予測値を算出 し、該検出予測値と、前記 1回前の周期の予測温度とを用いて、前記 1回前の周期の 次回の周期における温度を予測する。
[0008] また、好適には、前記制御手段は、前記第 2の温度検出手段が検出した温度の変 動の大きさにより、前記基板の第 1の予測温度と第 2の予測温度との混合比を変える
[0009] また、好適には、前記加熱手段は、複数のゾーン加熱手段を有し、前記温度検出 手段は、前記ゾーン加熱手段それぞれに対応するゾーン温度検出手段を有し、前記 制御手段は、温度を予測しょうとする基板が他の基板よりも近くなる位置に仮想温度 検出手段を設定し、該仮想温度検出手段と前記ゾーン温度検出手段との対応関係 と、前記ゾーン温度検出手段が測定する測定値に基づいて、前記仮想温度検出手 段の検出値を算出し、算出された検出値と、前記仮想温度検出手段により予測され た 1回前の周期での基板温度とを用いて、前記 1回前の周期の次回の周期における 基板温度を予測し、該基板予測温度に基づいて、前記ゾーン加熱手段それぞれを 制御する。
[0010] また、好適には、前記加熱手段は、複数のゾーン加熱手段を有し、前記温度検出 手段は、前記ゾーン加熱手段それぞれに対応する第 1のゾーン温度検出手段と第 2 のゾーン温度検出手段とを有し、前記制御手段は、温度を予測しょうとする基板が他 の基板よりも近くなる位置に仮想温度検出手段を設定し、該仮想温度検出手段と前 記第 1のゾーン温度検出手段または第 2のゾーン温度検出手段との対応関係と、前 記第 1のゾーン温度検出手段または第 2のゾーン温度検出手段が測定する測定値 に基づいて、前記仮想温度検出手段の検出値を算出し、算出された検出値と、前記 仮想温度検出手段により予測された 1回前の周期の基板温度とを用いて、前記 1回 前の周期の次回の周期における基板温度を予測し、該基板予測温度に基づいて、 前記ゾーン加熱手段それぞれを制御する。
[0011] また、好適には、前記制御手段が前記加熱手段の出力を制御する周期と略同一の 周期で前記温度検出手段が検出する温度を表示および記録またはこれらのいずれ 力、によって出力する出力手段をさらに有する。
[0012] また、本発明に係る第 1の基板処理方法は、処理室内に収容された基板を加熱す る工程と、前記処理室内の温度を検出する工程と、前記基板の温度を周期的に予測 する工程と、前記検出した前記処理室内の温度と、前記周期的に予測した温度の 1 回前の周期で予測した予測温度とを混合して、前記 1回前の周期の次回の周期にお ける温度を予測し、該予測温度を用いて基板の加熱を制御する工程とを有する。
[0013] また、本発明に係る第 2の基板処理方法は、基板を処理する反応室と、前記反応 室内を加熱する加熱手段と、前記加熱手段を制御する制御手段と、前記加熱手段と 前記基板との間の温度を検出する第 1の温度検出手段と、前記第 1の温度検出手段 よりも前記基板の近傍で温度を検出する第 2の温度検出手段とを有する基板処理装 置において、前記第 1の温度検出手段で温度を測定する工程と、前記第 1の温度検 出手段によって測定された温度から第 1の基板予測温度を算出する工程と、前記第 2の温度検出手段で温度を測定する工程と、前記第 2の温度検出手段によって測定 された温度から第 2の基板予測温度を算出する工程と、前記第 1の基板予測温度と 前記第 2の基板予測温度とを混合し、前記加熱手段を制御する工程とを有する。 発明の効果
[0014] 本発明によれば、基板の温度を予測するようにしたので、容易に基板の温度を制 ί卸すること力 Sできる。
図面の簡単な説明
[0015] [図 1]本発明が適応される半導体処理装置の全体構成を示す図である。
[図 2]図 1に示したボートを収容した状態の反応炉およびその周辺を例示する図であ る。
[図 3]装置操作部の構成を示す図である。
[図 4]温度コントローラの構成を示す図である。
[図 5]半導体処理装置による処理のシーケンスにおいて、反応炉の温度変化に対応 する工程を例示するフローチャート(S10)である。
[図 6]反応炉の温度変化の概略を図 5に示した S 10に対応させて示すグラフである。
[図 7]反応炉のランプアップ時における内部熱電対の温度および基板の温度の変化 例を示す図である。
[図 8]温度モニタ基板の温度検出位置を示す図である。
[図 9]ボート内の基板配置例を示す模式図である。
[図 10]図 7に示した内部熱電対などの温度変化例に対し、外部熱電対の示す外部熱 電対温度 Hの変化例を追加して示したグラフである。
[図 11]4つの温度調節ゾーンにおいて、内部熱電対に対する設定温度 Sを、 1ゾーン ずつ 5° Cの昇温 (ステップアップ)をさせた場合に、上部温度モニタ、下部温度モニ タおよび中央温度モニタの基板エッジ温度 Wが変化した例を示す図表である。
[図 12]図 11に示した基板エッジ温度 Wについて、反応炉内の温度の安定時を基準 とした変化量を示す図表である。
[図 13]上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれの図 12に 示した「変化量の合計」に対する 4つの温度調節ゾーンそれぞれによる「変化量」の 比 (変化量 ÷変化量の合計)を示す図表である。
[図 14]上部温度モニタに対する基板エッジ予測温度 W'top (t)の調整に必要な温度 データの例を示すグラフである。
[図 15]温度予測パラメータ「K1, Tl, Κ2, Τ2, b, C」を決定する手順を示すフロー チャート(S20)である。
[図 16]上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれについて、 ステップアップに対する基板エッジ温度 Wの変化量を示す図表である。
[図 17]図 16に示したステップアップに対する基板エッジ温度 Wの変化量に対し、ステ ップアップに対する仮想上部モニタ基板の基板エッジ温度 Wの変化量を追加して示 す図表である。
[図 18]装置操作部の表示 ·入力部がパラメータを受入れる場合に表示するパラメータ 設定画面を示す図である。
[図 19]装置操作部の表示'入力部において、基板予測制御の準備をする段階に表 示される温度制御設定画面の例を示す図である。
[図 20]装置操作部の表示'入力部において、基板予測制御を実行する段階に表示さ れる温度制御設定画面の例を示す図である。
[図 21]基板予測制御の準備をするモードにぉレ、て、内部熱電対の温度の応答が設 定温度の温度変化に近づくようにヒータの出力を PID演算などによって制御した場合 の基板エッジ温度と基板中心温度の応答を例示するグラフである。
[図 22]基板温度予測制御を実行するモードにおいて、基板温度予測制御の対象を 基板エッジ温度とし、設定温度の変化に対する基板エッジ温度および基板中心温度 の応答を例示するグラフである。
[図 23]基板温度予測制御の対象を基板エッジ温度と基板中心温度との平均温度とし て基板温度予測制御を実行するモードにおいて、設定温度の変化に対する基板ェ ッジ温度および基板中心温度の応答を示すグラフである。
発明を実施するための最良の形態
[0016] [本発明の背景]
本発明の理解を助けるために、実施形態の説明に先立って、まず、本発明がなさ れるに至った背景を説明する。
[0017] [半導体処理装置 1]
図 1は、本発明が適応される半導体処理装置 1の全体構成を示す図である。
図 2は、図 1に示したボート 108を収容した状態の反応炉(処理室) 3およびその周 辺を例示する図である。
[0018] 図 1に示すように、半導体処理装置 1は、カセット移載機 100、カセット移載機 100 の背面側に設けられたカセットストッカ 102、カセットストッカ 102の下方に設けられた 移載棚 104、移載棚 104の背面側に設けられた基板移載機 106、基板移載機 106 の背面側に設けられ、複数の基板がセットされたボート 108を昇降させる昇降機 110 、昇降機 110の上方に設けられた反応炉 3、反応炉 3内の温度を制御する温度コント ローラ 4、および、作業者からの操作を受け入れて、半導体処理装置 1を構成する各 部を制御する装置操作部 2から構成される。
[0019] 図 2に示すように、図 1に示した反応炉 3は、円筒状のインナーチューブ 30、例えば 石英からなるアウターチューブ 32、アウターチューブ 32の周囲に円筒状に形成され たヒータ 34、ガス導入口 320、ガス排気口 322、シールキャップ 324およびガス流量 調整器(図示せず)などのその他の構成部分力も構成され、断熱材 36により覆われ ている。
[0020] ヒータ 34は、それぞれ温度の設定および調節が可能なゾーンヒータ 340—1— 340 —4を含む。
ゾーンヒータ 340—1 340—4は、例えば、 1つの連続したヒータ 34の卷線から、複 数のタップを引き出すことにより、あるいは、それぞれ独立した卷線を有する 4個のヒ ータを設けることにより実現される。
このように、反応炉 3には、ゾーンヒータ 340— 1一 340— 4により、それぞれ温度の設 定および調節が可能な 4つの温度調節ゾーン (U, CU, CL, L)が形成されている。 ヒータ 34のゾーンヒータ 340—1— 340— 4それぞれは、温度コントローラ 4を介して 装置操作部 2に接続され、装置操作部 2の制御に基づいて反応炉 3内を加熱する。 外部熱電対 342—1— 342—4は、ゾーンヒータ 340—1— 340—4それぞれの近傍の 温度をサンプリングして検出する。
[0021] インナーチューブ 30は、内部に反応室 300が形成されている。
反応室 300の温度調節ゾーン (U, CU, CL, L)それぞれに対応する位置に内部 熱電対 302—1 302—4を配設する。
内部熱電対 302—1 302—4は、温度調節ゾーン(U, CU, CL, L)それぞれにお いて、基板近傍の温度をサンプリングして検出する。
アウターチューブ 32とインナーチューブ 30とは、ヒータ 34と同心に設けられ、これら の間には、閉塞された筒状空間が形成されている。
ボート 108は、反応炉 3内において、基板が処理される際に、基板の周方向に回転 するように設置されている。 また、内部熱電対 302 - 1一 302 - 4および外部熱電対 342 - 1一 342 - 4は、それぞ れ基板が処理される際にも温度を検出することができる。
[0022] なお、以下の説明においては、内部熱電対 302— 1一 302— 4など、複数ある構成 部分のいずれかを特定せずに示す場合には、単に、内部熱電対 302と略記すること 力 Sある。
また、以下の説明においては、 4つの温度調節ゾーン(U, CU, CL, L)は、それぞ れ Uゾーン(U)、 CUゾーン(CU)、 CLゾーン(CL)および Lゾーン(L)と略記するこ とがある。
[0023] [装置操作部 2]
図 3は、装置操作部 2の構成を示す図である。
図 3に示すように、装置操作部 2は、操作制御部 20、表示 ·入力部 22、記録出力部 24、記憶部 26、および、通信部 28から構成される。
[0024] 操作制御部 20は、 CPU200およびメモリ 202などを含み、装置操作部 2を構成す る各部を制御し、通信部 28を介して半導体処理装置 1を構成する部分を制御する。 表示'入力部 22は、例えばタツチパネルからなり、周期変更部 220を含んで作業者 からの半導体処理装置 1に対する設定、設定温度(目標値)および指示などを受入 れると共に、半導体処理装置 1の動作情報等を表示する。
周期変更部 220は、例えば作業者から出力周期を変更する指示を受入れると、温 度コントローラ 4が内部熱電対 302および外部熱電対 342などから受入れた温度デ ータを、記録出力部 24および記憶部 26などに操作制御部 20を介して出力する周期 を変更する。
例えば、周期変更部 220は、操作制御部 20が温度コントローラ 4を介してヒータ 34 を制御する周期に対し、略同一の周期で温度コントローラ 4が内部熱電対 302および 外部熱電対 342などから受入れた温度データが記録出力部 24および記憶部 26など 力 出力されるようにする。
記録出力部 24は、内部熱電対 302および外部熱電対 342などの検出結果を、周 期変更部 220によって設定された周期に従って、例えばグラフ用紙に記録し、出力 する。 記憶部 26は、例えば HDD、 CDなどからなり、半導体処理装置 1が行う処理シーケ ンス情報(レシピ)並びに通信部 28および記録媒体 260を介して受入れた情報を記 憶する。
レシピは、作業者により装置操作部 2を介して設定され、記憶部 26に記憶される。
[0025] つまり、装置操作部 2は、半導体処理装置 1を制御可能な一般的なコンピュータとし ての構成部分を含む。
このように、装置操作部 2は、これらの構成部分により、半導体処理装置 1の各構成 部分を制御して基板に対する処理を行わせる。
[0026] [温度コントローラ 4]
図 4は、温度コントローラ 4の構成を示す図である。
図 4に示すように、温度コントローラ 4は、 CPU40およびメモリ 42などを含み、内部 熱電対 302—1 302—4および外部熱電対 342—1 342—4それぞれから温度デー タを受け入れ、ゾーンヒータ 340-1— 340-4それぞれの電力値を受入れ、作業者が 設定した設定温度 S (目標値)および後述するパラメータなどの制御信号を装置操作 部 2から受け入れて、後述する電力値 (操作量 Z)をゾーンヒータ 340-1— 340— 4に 対して出力し、ゾーンヒータ 340-1— 340— 4が発生させる熱量を変化させる。
また、温度コントローラ 4は、内部熱電対 302および外部熱電対 342から受入れた 温度データ、並びに、ゾーンヒータ 340— 1一 340— 4それぞれから受入れた電力値を 装置操作部 2に対して出力する。
[0027] [半導体処理装置 1による処理の概要]
半導体処理装置 1は、例えば、縦型 CVD装置であって、これらの構成部分により、 装置操作部 2 (図 1)からの操作にしたがって制御され、反応炉 3内のボート 108に所 定の間隔で載置された基板に対し、 CVDにより、 Si N膜、 SiO膜、ポリシリコン (Po
3 4
ly-Si)膜の形成 (成膜処理)およびァニール処理などを行う。
[0028] 半導体処理装置 1による処理をさらに説明する。
まず、カセット移載機 100は、複数枚の基板を収納したカセットをカセットストッカ 10 2に移載して保管し、さらにカセットから基板を取り出すための移載棚 104に移載する 次に、基板移載機 106は、移載棚 104に載置されたカセットから基板を取り出し、 基板をボート 108に載置する。
ボート 108は、所定の枚数の基板を載置されると、昇降機 110によって反応室 300 に揷入される。
そして、反応炉 3は、シールキャップ 324によって密閉される。
[0029] 反応炉 3において、基板はゾーンヒータ 340—1 340—4によって処理温度まで加 熱されると、処理用ガスがガス導入口 320から導入される。
この加熱の際には、温度コントローラ 4は、外部熱電対 342—1 342—4および内 部熱電対 302 - 1一 302 - 4それぞれが検出する温度と、装置操作部 2から受入れた 制御信号とに基づいて、ゾーンヒータ 340—1— 340— 4に対する電力値を制御する。 そして、処理用ガスは、反応室 300内に位置するボート 108に載置された基板に向 けて上昇し、基板の処理が行われる。
処理後の処理用ガスは、ガス排気口 322から排出される。
[0030] 基板の処理が終了すると、例えば反応炉 3内の温度を降温させた後、ボート 108を 反応炉 3からアンロードし、ボート 108に支持された全ての基板が冷えるまで、ボート 108を所定位置で待機させる。
基板が所定温度まで冷却されると、基板移載機 106は、ボート 108から基板を取り 出し、移載棚 104のカセットに収納する。
処理後の基板を収納されたカセットは、カセット移載機 100によって搬出されて完 了する。
[0031] [処理における反応炉 3内の温度変化]
次に、半導体処理装置 1の処理における反応炉 3内の温度変化について説明する 図 5は、上述した半導体処理装置 1による処理のシーケンスにおいて、反応炉 3の 温度変化に対応する工程を例示するフローチャート(S10)である。
図 6は、反応炉 3の温度変化の概略を図 5に示した S10に対応させて示すグラフで める。
図 5に示すように、ステップ 100 (S100)におレ、て、ヒータ 34は、ボート 108が反応 炉 3内に挿入される以前に、反応炉 3の温度を処理の際に設定される温度よりも低い 温度 Tsに維持するように加熱する。
[0032] ステップ 102 (S102)において、ボート 108に載置された基板が反応炉 3内に挿入 される。
反応炉 3内の温度は、ボート 108が揷入されることにより Tsよりもー且低下(図 6参 照)した後に、ヒータ 34によって Tsに戻される。
[0033] ステップ 104 (S104)におレ、て、ヒータ 34は、温度コントローラ 4から受入れる電力 値に基づいて、成膜処理などの処理を施すための設定温度 Tpまで反応炉 3内の温 度を徐々に上昇させる(ランプアップ)。
[0034] ステップ 106 (S106)において、ヒータ 34は、基板に成膜処理などの処理が施され るように、反応炉 3内の温度を設定温度 Tpに維持する。
[0035] ステップ 108 (S108)におレ、て、ヒータ 34は、温度コントローラ 4から受入れる電力 値に基づいて、反応炉 3内の温度を Tpから再び Tsまで徐々に降下させる(ランプダ ゥン)。
[0036] ステップ 110 (S110)において、ボート 108に載置された基板が反応炉 3から引き 出される。
反応炉 3内の温度は、ボート 108が反応炉 3から引き出されることにより、 Tsよりも低 下する。
[0037] 半導体処理装置 1による処理のシーケンス(S10)は、繰り返し行われるので、各ス テツプを短時間で実行することにより、処理の生産性を向上させることができる。
[0038] し力しながら、基板の直径が 300mmの場合などに、反応室 300内で検出される温 度変化と基板の温度変化との間に違いが生じることがある。
図 7は、反応炉 3のランプアップ時における内部熱電対 302の温度および基板の温 度の変化例を示す図である。
図 7に示すように、反応炉 3 (図 2)において、例えば直径が 300mmの基板の温度 を上昇させる場合、作業者が装置操作部 2を介してヒータ 34に設定した設定温度 S の変化に対し、内部熱電対 302が検出する内部熱電対温度 P、および、基板の中心 の温度(基板中心温度 C)並びに基板のエッジ (外周)の温度(基板エッジ温度 W)は 異なる温度変化をする。
なお、以下の説明においては、基板中心温度 Cおよび基板エッジ温度 Wなど、基 板における異なった位置で検出された温度のいずれかを特定せずに示す場合には 、単に、基板温度と略記することがある。
[0039] 図 8は、温度モニタ基板 400の温度検出位置を示す図である。
図 8に示すように、温度モニタ基板 400には、例えば該温度モニタ基板 400上の中 心に中心熱電対 402、内周に 4つの内周熱電対 404—1 404— 4および外周に外 周熱電対 406—1 406—4の 9つの熱電対が設けられており、それぞれの熱電対は 検出した温度を例えば温度コントローラ 4に対して出力する。
つまり、温度モニタ基板 400は、ボート 108に載置されることにより、反応炉 3内にお いて基板が処理される際の基板の温度を、処理前に同じ位置で検出することができ るようにされてレ、る。
また、基板が実際に処理される際には、該基板はボート 108に載置された状態で回 転するので、例えば基板の外周の温度(基板エッジ温度 W)は、外周熱電対 406 - 1 一 406— 4それぞれから検出された温度の平均値とされている。
[0040] 図 9は、ボート 108内の基板配置例を示す模式図である。
図 9に示すように、反応炉 3内で製品用の基板 5が処理される際には、ボート 108の 最上部付近および最下部付近に、それぞれ上部ダミー基板 50および下部ダミー基 板 52が配置されている。
上部ダミー基板 50および下部ダミー基板 52は、例えば成膜処理を行う際に、ボー ト 108の最上部付近および最下部付近では、基板が製品になるように成膜をさせるこ とが困難であるために設けられ、処理の種類および装置の種類によって配置される 枚数が変更される。
[0041] また、ボート 108には、上部ダミー基板 50の下方に上部モニタ基板 54が、下部ダミ 一基板 52の上方に下部モニタ基板 56がそれぞれ配置され、上部モニタ基板 54と下 部モニタ基板 56との間に製品用の複数の基板 5が配置されている。
さらに、上部モニタ基板 54と下部モニタ基板 56との間に配置された複数の基板 5 の中央付近には、中央モニタ基板 58が配置されている。 上部モニタ基板 54、下部モニタ基板 56および中央モニタ基板 58は、基板 5を処理 する際に、例えばそれぞれ一枚ずつ配置され、基板 5の成膜結果を確認する指標に される。
[0042] 上述した基板中心温度 Cおよび基板エッジ温度 Wは、処理前に上部モニタ基板 54 、下部モニタ基板 56および中央モニタ基板 58の位置に、温度モニタ基板 400がそ れぞれ配置されることにより、上部モニタ基板 54、下部モニタ基板 56および中央モ ニタ基板 58それぞれの位置で検出される。
例えば、中央モニタ基板 58の位置において、基板中心温度 Cおよび基板エッジ温 度 Wは、図 7に示したように変化する。
[0043] なお、以下の説明においては、ボート 108の上部モニタ基板 54、下部モニタ基板 5 6および中央モニタ基板 58の位置それぞれに配置された温度モニタ基板 400を、そ れぞれ上部温度モニタ、下部温度モニタおよび中央温度モニタと略記することがある また、上部温度モニタ、下部温度モニタおよび中央温度モニタのいずれかを特定 せずに示す場合には、単に、温度モニタと略記することがある。
[0044] 図 7においては、設定温度 Sを 600° C力ら 800° Cまで、毎分 50° Cのレートで 変化させた場合、内部熱電対 302が示す内部熱電対温度 Pは、設定温度 Sに対して 遅れて上昇し、 800° Cを少し行き過ぎた後に約 800° Cで安定している。
一方、基板エッジ温度 Wは、ランプアップの開始直後から設定温度 Sよりも高温の 状態で昇温し、設定温度 Sが 800° Cまで昇温すると、ゆっくり降温して約 800° Cで 安定している。
また、基板中心温度 Cは、内部熱電対温度 Pよりもさらに遅れて昇温し、内部熱電 対温度 Pよりも高温になった後に約 800° Cで安定している。
[0045] このように、内部熱電対 302の内部熱電対温度 Pが設定温度 Sに近づくように、 PI D制御などによってヒータ 34の出力が制御された場合、基板エッジ温度 Wおよび基 板中心温度 Cは、内部熱電対温度 Pとは異なる特性で変化することがある。
例えば、基板 5 (図 9)の直径が 300mmの場合、ボート 108に載置する基板枚数が 少ない少量バッチ式の反応炉 3 (図 2)などにおいては、基板間の間隔が大きくなり、 基板 5よりも熱量を受けにくい内部熱電対 302が設定温度 Sに近づくように PID制御 などによって制御されると、基板エッジ温度 Wおよび基板中心温度 Cは、設定温度 S に対する行き過ぎ量 (オーバーシュート)が大きぐ安定するまでの時間が長くなること 力 Sある。
[0046] [実施形態]
以下、本発明の実施形態を説明する。
以下の実施形態においては、製品用の基板が処理される前に、上部モニタ基板 5 4、下部モニタ基板 56および中央モニタ基板 58それぞれの位置に温度モニタ基板 4 00を配置し、基板中心温度 Cおよび基板エッジ温度 Wを検出する半導体処理装置 1 が具体例として示されてレヽる。
[0047] 図 2に示した反応炉 3を有する半導体処理装置 1 (図 1)において、温度コントローラ
4は、装置操作部 2の制御に基づいて、製品用の基板 5が処理される前に、反応炉 3 の温度を基板 5を処理する際と同じように変化させ、上部モニタ基板 54、下部モニタ 基板 56および中央モニタ基板 58それぞれの位置に配置された温度モニタ基板 400 と、内部熱電対 302-1— 302-4および外部熱電対 342-1— 342-4とを介し、それ ぞれの熱電対が配置されている位置での温度変化を受け入れて、複数の基板 5 (図 9参照)が処理される際の基板 5の温度を予測する。
[0048] [半導体処理装置 1の基板温度予測制御]
半導体処理装置 1は、基板温度を予測し、予測された基板温度が設定温度に近づ くようにヒータ 34の出力を制御して基板温度の予測制御を行う。
また、半導体処理装置 1は、上述したように基板温度予測制御に必要な温度デー タを取得する温度コントローラ 4、並びに、基板温度予測制御に必要なパラメータの 入力、および基板温度予測制御の実行指示を受入れる装置操作部 2を有する。 以下、基板温度の予測および予測された基板温度に基づく基板温度予測制御、 並びに基板温度予測制御に必要な温度データの取得、基板温度予測制御に必要 なパラメータの入力および基板温度予測制御の実行について例を示して説明する。
[0049] [基板温度の予測]
図 10は、図 7に示した内部熱電対 302などの温度変化例に対し、外部熱電対 342 の示す外部熱電対温度 Hの変化例をカ卩えて示したグラフである。
外部熱電対 342は、熱源となるゾーンヒータ 340に最も近い位置で反応炉 3内の温 度を検出するので、ゾーンヒータ 340に設定した設定温度 Sの変化に対する外部熱 電対温度 Hの応答が基板エッジ温度 Wの応答よりも速くなつている。
また、内部熱電対 302は基板よりも熱量を受けにくいので、設定温度 Sの変化に対 する内部熱電対温度 Pの応答が基板エッジ温度 Wの応答よりも遅くなつている。 このように、ゾーンヒータ 340の温度変化に対し、外部熱電対温度 Hが最も速く応答 し、外部熱電対温度 Hの次に基板エッジ温度 W、内部熱電対温度 P、基板中心温度
Cの順に応答する。
[0050] 半導体処理装置 1において、温度コントローラ 4は、装置操作部 2の制御に基づい て、例えば、数百 ms 数秒の制御周期ごとに、各熱電対によって検出された温度と 、設定温度 Sとから、 PID演算などによりゾーンヒータ 340への電力値 (操作量)を算 出し、ゾーンヒータ 340の発熱量を制御(デジタル制御)してレ、る。
[0051] まず、ランプアップ開始から t回目(tは整数)の制御周期において、予測される基板 エッジ温度 Wの値を W (t)とし、 t一 1回目の制御周期における基板エッジ温度 Wの値 を W (t-l)とする。
ランプアップ開始から t回目の制御周期における外部熱電対温度 Hの値を H (t)と し、 t一 1回目の制御周期における外部熱電対温度 Hの値を H (t— 1)とする。
また、ランプアップ開始から t回目の制御周期における内部熱電対温度 Pの値を P ( t)とし、 t一 1回目の制御周期における内部熱電対温度 Pの値を P (t— 1)とする。
[0052] 図 10において、設定温度 Sの変化に対し、基板エッジ温度 Wの応答は、外部熱電 対温度 Hの応答よりも遅いとレ、う特性が示されてレ、る。
つまり、基板エッジ温度 Wは、外部熱電対温度 Hに対して遅れて変化するとみなす こと力 Sできる。
よって、基板エッジ温度 Wを 1つの系の温度とすると、基板エッジ温度 W (t)は、外 部熱電対温度 H (t)を一次遅れ演算することによって表され、さらに、基板エッジ温 度 Wの時定数 T1により、基板エッジ温度 W(t— 1)と外部熱電対温度 H (t— 1)との混 合比を調節して、下式 1に示すようにおくことができる。 [0053] [数 1]
W(t) = (K1 H(t-1)+T1 xW(t-1))÷(1 +T1) '■■ (1) 但し、 K1は、基板エッジ温度 Wに対する外部熱電対温度 Hのゲインを示す。
T1は、基板エッジ温度 Wの時定数を示す。
[0054] また、図 10において、内部熱電対温度 Pの応答は、外部熱電対温度 Hの応答より も遅いとレ、う特性が示されて!/、る。
つまり、内部熱電対温度 Pは、外部熱電対温度 Hに対して遅れて変化するとみなす こと力 Sできる。
よって、内部熱電対温度 Pを 1つの系の温度とすると、内部熱電対温度 P(t)は、外 部熱電対温度 H(t)を一次遅れ演算することによって表され、さらに、内部熱電対温 度 Pの時定数 T2により、内部熱電対温度 P(t— 1)と外部熱電対温度 H(t— 1)との混 合比を調節して、下式 2に示すようにおくことができる。
[0055] [数 2]
P(t) = (K2xH(t-1)+T2 P(t-1))÷(1 +T2) ■■■ (2) 但し、 K2は、内部熱電対温度 Pに対する外部熱電対温度 Hのゲインを示す。
T2は、内部熱電対温度 Pの時定数を示す。
[0056] 式 1を変形することにより、外部熱電対温度 H(t— 1)は、下式 3に示すように表され る。
[0057] [数 3]
H(t-1) = {(T1 +1) xW(t)-T1 xW(t-1)}÷K1 ·■■ (3)
[0058] また、式 3が式 2に代入されると、基板エッジ温度 W(t)は、下式 4に示すように表さ れる。
[0059] [数 4] W(t) = {K1 (T2 + 1) xP(t)-K1 XT2xP(t-1)+K2xT1 xW(t-1)} ÷{K2x (1 +T1)} … (4)
[0060] ここで、式 1に示し、外部熱電対温度 Hから予測した基板エッジ温度 W (t)を外部予 測温度 HW(t)とする。
また、式 4に示し、内部熱電対温度 Pから予測した基板エッジ温度 W(t)を内部予 測温度 PW(t)とする。
式 4においては、設定温度 Sの変化に対し、基板エッジ温度 Wの応答よりも遅れて 変化する内部熱電対温度 Pにより、基板エッジ温度 Wを予測することとなる。
[0061] そして、図 10における内部熱電対温度 Pの変動の大きい領域では、外部熱電対温 度 Hから予測した外部予測温度 HW(t)に重みをつけ、内部熱電対温度 Pの変動の 小さい領域では、内部熱電対温度 Pから予測した内部予測温度 PW(t)に重みがつ くように、外部予測温度 HW(t)と内部予測温度 PW(t)との混合比を、後述する重み a(t)によって補間することにより、重み付けされた基板エッジ予測温度 W' (t)が下式 5に示すように表される。
[0062] [数 5]
W (t) = (HW(t) Xa(t)+PW(t))÷(a(t) + 1) ■■■ (5)
[0063] 重み a(t)は、内部熱電対温度 Pの変動の大きさ(変化率)を示し、下式 6に示すよう に表される。
[0064] [数 6] a(t)= I {(P(t)-P(t-1)) + (a(t-1) Xb)}÷(1 +b) | XC ■■■ (6) 但し、式 6内の I Iは、絶対値を示す。
bは、重み a(t)のフィルタ時定数を示す c
Cは、 a(t)の重みゲインを示す。 [0065] 以上のように、外部予測温度 HW (t)および内部予測温度 PW (t)により、基板エツ ジ予測温度 W' (t)を求めることができる。
なお、温度予測パラメータ「K1, Tl , Κ2, Τ2, b, C」は、基板温度の予測制御を 行う半導体処理装置 1ごとに個別に設定することが必要である。
[0066] 次に、外部予測温度 HW (t)および内部予測温度 PW (t)の具体的な決定方法に ついて説明する。
例えば、ボート 108に配置される温度モニタ基板 400の枚数と、ゾーンヒータ 340の 数とがー致していて、温度調節ゾーンごとに外部熱電対 342、内部熱電対 302の測 定位置(高さ方向)および数と温度モニタ基板 400の配置 (載置)位置(高さ方向)お よび数がそれぞれ一致している場合には、式 1一式 6にそれぞれ対応する値を代入 することにより基板エッジ予測温度 W' (t)を算出することができる。
[0067] 一方、例えば本発明の実施形態に示した半導体処理装置 1においては、 4つの温 度調節ゾーン (U, CU, CL, L)が設けられており、ボート 108には上部モニタ基板 5 4、下部モニタ基板 56および中央モニタ基板 58の位置それぞれに 1枚ずつの温度 モニタ基板 400が配置されるので、 4つの外部熱電対温度 Hおよび内部熱電対温度 P力 、 3枚の温度モニタ基板 400それぞれに対応する仮想温度検出手段となる外 部熱電対温度 Hおよび内部熱電対温度 Pを算出する必要がある。
仮想温度検出手段とは、通常、内部熱電対 302および外部熱電対 342の測定ボイ ントは限られる数となっており、必ずしも測定予測したい基板の位置(高さ方向、基板 の主面に対し鉛直方向)の近傍の位置(高さ方向、基板の主面に対し鉛直方向)とな るわけではないため、内部熱電対 302または外部熱電対 342と、各基板と温度調節 ゾーンの干渉関係を用いて、測定予測したい基板の位置(高さ方向、基板の主面に 対し鉛直方向)に対応する内部熱電対 302または外部熱電対 342の最も近傍で最 適な位置(高さ方向、基板の主面に対し鉛直方向)を仮想し、求められた検出手段の ことである。
なお、ここでは、内部熱電対 302または外部熱電対 342で説明した力 予測したい 基板と温度調節ゾーンとの干渉関係が算出可能であれば適用できる。
[0068] 例えば、外部熱電対 342—1 342—4および内部熱電対 302—1— 302—4それぞ れにより検出された温度から、上部温度モニタ、下部温度モニタおよび中央温度モニ タの温度を予測する場合、それぞれの温度モニタ基板 400に対応する外部熱電対 温度 Hおよび内部熱電対温度 Pは、ゾーンヒータ 340— 1一 340— 4それぞれが 3枚の 温度モニタ基板 400それぞれの温度に干渉する度合いによって算出される。
[0069] 具体的には、例えば反応炉 3内の温度が安定している状態から、 4つの温度調節ゾ ーンの設定温度 Sを、 1つずつ、 5° C昇温 (ステップアップ)させ、上部温度モニタ、 下部温度モニタおよび中央温度モニタそれぞれの外周熱電対 406—1— 406—4を 介して検出される基板エッジ温度 Wの変化から、ゾーンヒータ 340—1 340— 4それ ぞれが各温度モニタ基板 400の温度に干渉する度合いを算出することができる。
[0070] 図 11は、 4つの温度調節ゾーンにおいて、内部熱電対 302—1— 302—4に対する 設定温度 Sを、 1ゾーンずつ 5° Cの昇温 (ステップアップ)をさせた場合に、上部温 度モニタ、下部温度モニタおよび中央温度モニタの基板エッジ温度 Wが変化した例 を示す図表である。
図 11に示すように、 4つの温度調節ゾーンそれぞれの設定温度 Sを、 1つずつ 5° Cの昇温をさせると、上部温度モニタ、下部温度モニタおよび中央温度モニタの基板 エッジ温度 Wは、それぞれ異なる温度変化を示す。
[0071] 図 12は、図 11に示した基板エッジ温度 Wについて、反応炉 3内の温度の安定時を 基準とした変化量を示す図表である。
まず、上部温度モニタの温度変化について説明する。
反応炉 3内の温度が安定している状態(図 11に示す安定時)において、上部温度 モニタの基板エッジ温度 Wは、 852· 4° Cとなっている。
まず、 Uゾーンのみの設定温度 Sを 5° C昇温させると、上部温度モニタの基板エツ ジ温度 Wは 855. 6° Cとなり、安定時を基準とした「変化量」(図 12)は 3. 2° Cとな つている。
同様に、 CUゾーン、 CLゾーンおよび Lゾーンについて、それぞれ順次 1つずっ設 定温度 Sを 5° C昇温させた場合、上部温度モニタの基板エッジ温度 Wはそれぞれ 8 54. 0° C, 852. 1° C, 852. 3° Cとなり、安定時を基準としたそれぞれの「変化量 」は 1. 6° C, -0. 3° C, -0. 1° Cとなっている。 [0072] つまり、 Uゾーン、 CUゾーン、 CLゾーンおよび Lゾーンを 1つずつ 5° C昇温させる と、それぞれ 3· 2° C, 1 · 6° C, -0. 3° C, -0. Cの温度変化が上部温度モニ タの基板エッジ温度 Wに生じる。
また、 4つの温度調節ゾーン全ての設定温度を 5° C昇温(ゾーンヒータ 340—1— 3 40— 4をそれぞれ 5° C昇温)させた場合、基板エッジ温度 Wは、各温度調節ゾーン の温度変化の和となる「変化量の合計」(図 12)の変化を示し、 4. 4° Cの昇温をす る。
下部温度モニタおよび中央温度モニタについても同様に、下部温度モニタおよび 中央温度モニタの安定時の基板エッジ温度 W (図 11)、 4つの温度調節ゾーンに対 して順次 1つずつ設定温度 Sを 5° C昇温させた場合の基板エッジ温度 W、および安 定時を基準としたそれぞれの基板エッジ温度 Wの「変化量」(図 12)が示されている。
[0073] 図 13は、上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれの図 12 に示した「変化量の合計」に対する 4つの温度調節ゾーンそれぞれの「変化量」の比( 変化量 ÷変化量の合計)を示す図表である。
つまり、図 13ίま、ゾーンヒータ 340—1— 340—4におレヽて内咅熱電対 302—1— 302 一 4に対する設定温度 Sが変化した場合、ゾーンヒータ 340— 1一 340— 4それぞれが、 上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれの基板エッジ温度 Wの温度変化に対して干渉する割合 (干渉比率)を示している。
上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれに対応する内部 熱電対温度 Ρは、干渉比率により算出され、基板エッジ予測温度 W' (t)の予測に使 用される。
[0074] 例えば、上部温度モニタの基板エッジ予測温度 W' top (t)の予測に用いられる内 部熱電対温度 Ptop (t)は、図 13に示した干渉比率に基づいて、下式 7に示すように 表される。
なお、内部熱電対温度 Pは、例えば図 10に示したように、ランプアップ後に数分で 設定温度 Sと略同じ温度となる。
[0075] [数 7] Ptop(t) = {Pu(t) XO.727} + {Pcu(t) XO.364} + {Pel (t) x (— 0.068)} + {PI(t) x (-0. 023)} ■■■ (7)
但し、 Pu(t), Pcu(t), Pcl(t), Pl(t)は、 Uゾーン、 CUゾーン、 CLゾーン
および Lゾーンそれぞれの内部熱電対温度を示す。
[0076] 式 7によって算出された内部熱電対温度 Ptop(t)は、式 4に代入され、上部温度モ ニタの内部予測温度 PWtop(t)の算出に用いられる。
[0077] また、上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれに対応す る外部熱電対温度 Hについても、内部熱電対 302— 1一 302— 4に対する設定温度 S によって算出された干渉比率(図 13)に基づレ、て算出してもよレ、。
例えば、上部温度モニタの基板エッジ予測温度 W' top (t)の予測に用いられる外 部熱電対温度 Htop(t)は、図 13に示した干渉比率に基づいて、下式 8に示すように 表される。
[0078] [数 8]
Htop(t) = {Hu(t) XO.727} + {Hcu(t) XO. 364} + {Hcl (t) x (— 0.068)}
+ {HI(t) x (— 0. 023)} ■■■ (8) 但し、 Hu(t), Hcu(t), Hcl(t), Hl(t)は、 Uゾーン、 CUゾーン、 CLゾーン および Lゾーンそれぞれの外部熱電対温度を示す。
[0079] 式 8によって算出された外部熱電対温度 Htop(t)は、式 1に代入されることにより、 上部温度モニタの外部予測温度 HWtop (t)の算出に用いられる。
[0080] また、外部熱電対温度 Hの算出には、例えば 4つの温度調節ゾーンの外部熱電対 温度 Hを 1ゾーンずつ 5° Cの昇温 (ステップアップ)をさせ、上部温度モニタ、下部温 度モニタおよび中央温度モニタそれぞれの基板エッジ温度 Wの変化から、それぞれ の外部熱電対温度 Hと基板エッジ温度 Wとの間の干渉比率を求めて用いてもよい。 以上のように、 4つの温度調節ゾーンそれぞれの内部熱電対温度 Pおよび外部熱 電対温度 Hから、上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれ に対応する内部熱電対温度 Pおよび外部熱電対温度 Hを算出することにより、それ ぞれ内部予測温度 PW (t)および外部予測温度 HW (t)を求めることができる。
また、 4つの温度調節ゾーンそれぞれに対応するモニタ基板 4枚がある場合におい ても、それぞれのモニタ基板 400の配置されている位置における内部熱電対 302お よび外部熱電対 342の最も近傍の位置を干渉具合を求めることにより算出できること になる。
つまり、各温度調節ゾーンにおける各基板に対応した内部熱電対 302および外部 熱電対 342の最適な位置である仮想温度検出手段を干渉関係により導き出せ、この 求めた内部熱電対 302および外部熱電対 342により、基板予測温度を求めることが できる。
[0081] 次に、基板エッジ予測温度 W' (t)を算出するための温度予測パラメータ「K1, T1 , Κ2, Τ2, b, C」を決定する手順について、上部温度モニタに対する手順を例とし て説明する。
図 14は、上部温度モニタに対する基板エッジ予測温度 W' top (t)の調整に必要な 温度データの例を示すグラフである。
図 14には、上部温度モニタに対し、上述したように算出された内部熱電対温度 Pto p (t)および外部熱電対温度 Htop (t)と、外部熱電対温度 Htop (t)から式 1によって 算出された外部予測温度 HWtop (t)と、内部熱電対温度 Ptop (t)から式 4によって 算出された内部予測温度 PWtop (t)と、内部熱電対温度 Ptop (t)から式 6によって 算出された重み atop (t)と、これらの値から式 5によって算出された基板エッジ予測 温度 W' top (t)と、上部温度モニタによって検出された基板エッジ温度 Wtopとがグ ラフによって示されている。
[0082] 温度予測パラメータ「K1, Tl, Κ2, Τ2, b, C」は、上部温度モニタ、下部温度モニ タおよび中央温度モニタそれぞれに対し、図 14に示した基板エッジ予測温度 W' top (t)が基板エッジ温度 Wtopに近づくように、作業者によってゲイン K1から順次調整 されて決定される。
よって、温度予測パラメータ「K1, Tl , K2, Τ2, b, C」を決定する場合には、図 14 に例示したグラフのように、上部温度モニタ、下部温度モニタおよび中央温度モニタ それぞれに対する基板エッジ予測温度 W' (t)などを示すグラフを用いることが好まし レ、。
[0083] 図 15は、温度予測パラメータ「K1 , Tl , Κ2, Τ2, b, C」を決定する手順を示すフ ローチャート(S20)である。
なお、図 14と対比させるために、上部温度モニタのパラメータを決定する手順を例 として説明する。
図 15に示すように、ステップ 200 (S200)におレ、て、図 14に示されたランプアップ 開始時(図 14の 1一 2分の間)の基板エッジ温度 Wtopに対する外部予測温度 HWt op (t)の比から、作業者は式 1のゲイン K1の値を決定する。
好ましくは、基板エッジ温度 Wtopに対し、外部予測温度 HWtop (t)が略等しくなる ようにゲイン K1の値を決める。
[0084] ステップ 202 (S202)におレヽて、ランプアップ中(図 14の 1一 5分の間)の外部予測 温度 HWtop (t)が基板エッジ温度 Wtopの応答にできるだけ近づくように、作業者は 式 1の時定数 T1の値を決定する。
[0085] ステップ 204 (S204)において、ランプアップ後に基板エッジ温度 Wtopの温度変 化が小さくなつた状態(図 14の 10分以降)で内部予測温度 PWtop (t)と基板エッジ 温度 Wtopとが略等しくなるように、作業者は式 2のゲイン K2の値を決定する。
この場合、 S200で決定したゲイン K1の値を初期値としてゲイン K2の値を調整す る。
[0086] ステップ 206 (S206)において、内部予測温度 PWtop (t)の応答が基板エッジ温 度 Wtopの応答に全体的に近づくように、作業者は式 2の時定数 T2の値を決定する
[0087] ステップ 208 (S208)において、作業者は重みゲイン Cを 1. 0とし、フィルタ時定数 bを 10として、重み atop (t)の変化を確認する。
重み atop (t)の変化が振動的な場合には、フィルタ時定数 bを例えば 10, 20, 30,
40のように順次変化させ、重み atop (t)の変化が振動的でなくなった場合にフィルタ 時定数 bの値が決定される。
[0088] ステップ 210 (S210)におレ、て、ランプアップ終了後(図 14の 5分以降)の基板エツ ジ予測温度 W' top (t)の応答が基板エッジ温度 Wtopの応答に近づくように時定数 Tl , T2を微調整する。
なお、基板の温度が早く設定温度で安定するように制御するために、ランプアップ 中(図 14の 1一 5分の間)よりも、ランプアップ終了後(図 14の 5分以降)におけるそれ ぞれの温度変化を重視してパラメータの調整を行うことが好ましい。
[0089] S20の手順に従って温度予測パラメータを調整しても、基板エッジ予測温度 W' to p (t)の応答と、基板エッジ温度 Wtopの応答との間に、例えば 10° C以上の大きな 差がある場合、 S208で設定した重みゲイン Cの値を例えば 0. 9, 0. 8のように順次 小さくなるように変化させ、さらに時定数 Tl , T2の微調整を行うようにしてもよい。 つまり、外部予測温度 HWtop (t)よりも内部予測温度 PWtop (t)に重みをおくこと により、基板エッジ予測温度 W' top (t)の応答と、基板エッジ温度 Wtopの応答との 差を/ J、さくしてもよレ、。
また、下部モニタ基板 56および中央モニタ基板 58に対しても同様に、 S20によつ てそれぞれ温度予測パラメータ「K1, Tl , K2, Τ2, b, C」を決定することができる。
[0090] [基板温度予測制御]
温度コントローラ 4は、上述したように基板温度を予測し、基板温度が設定温度に近 づくように、装置操作部 2の制御に基づいてヒータ 34の出力を制御する。
半導体処理装置 1においては、上部温度モニタ、下部温度モニタおよび中央温度 モニタの 3つの温度モニタ基板 400に対し、 4つのゾーンヒータ 340— 1一 340— 4力 S 設けられているので、温度コントローラ 4は、 3つの温度モニタ基板 400から受入れる 温度データにより、 4つのゾーンヒータ 340の出力を制御している。
[0091] つまり、温度コントローラ 4は、ゾーンヒータ 340—1— 340—4それぞれの出力を制御 するために 4つの操作量を算出する。
4つの操作量は、例えばゾーンヒータ 340—1 340—4が上部温度モニタ、下部温 度モニタおよび中央温度モニタに対して熱干渉する比率 (干渉比率)によって算出さ れる場合と、後述する干渉行列の逆行列演算結果によって算出される場合とがある。
[0092] まず、 4つの操作量が干渉比率によって算出される場合について説明する。
4つの操作量を干渉比率によって算出する場合には、それぞれの温度モニタ基板 400に対する予測温度と、それぞれの温度モニタ基板 400の設定温度に対する偏差 とをそれぞれの温度調節ゾーン (U, CU, CL, L)に干渉比率に合わせて割り振る。
[0093] 例えば、図 13に示した干渉比率において、設定温度 Sが 850° Cであり、上部温度 モニタに対する基板エッジ予測温度 W' top (t)が 845° Cの場合、上部温度モニタ の設定温度に対する基板エッジ予測温度 W' top (t)の偏差は、 5° C (850° C-84 5。 C)となっている。
ここで、基板エッジ予測温度 W' top (t)における各温度調節ゾーン (U, CU, CL, L)への偏差の割り振り量は、式 9_1一式 9一 4のように表される。
[0094] [数 9]
U ゾーンへの偏差の割り振り量 =5° C X 0. 727 = 3. 635° C ■■■ (9— 1 )
CUゾーンへの偏差の割り振り量 =5° C X 0. 364 = 1 . 820° C ■■■ (9-2)
CLゾーンへの偏差の割り振り量 =5° C ( -0. 068) = —0. 340。 C . ·■ (9— 3) L ゾーンへの偏差の割り振り量 =5° C X (— 0. 023) = —0. 1 1 5° C ■■■ (9-4)
[0095] 温度コントローラ 4は、下部温度モニタおよび中央温度モニタに対しても同様に偏 差の割り振り量を算出し、温度調節ゾーンごとに割り振られた偏差の合計を求める。 そして、温度コントローラ 4は、温度調節ゾーンごとに割り振られた偏差の合計を用 いて PID演算などにより、ゾーンヒータ 340—1 340—4それぞれに対する操作量を 算出し、温度調節ゾーンごとに割り振られた偏差の合計が零(0)になるようにゾーンヒ ータ 340—1 340—4の出力を制御する。
[0096] 次に、 4つの操作量が干渉行列の逆行列演算結果によって算出される場合につい て説明する。
操作量を干渉行列の逆行列演算結果によって算出するために、まず、干渉行列を 求める。
上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれにおいて、内部 熱電対温度 Pの変化に対する基板エッジ温度 Wの変化量は、反応炉 3内の温度の 安定時を基準として図 12に示した値と同じになってレ、るとする。
[0097] まず、各温度調節ゾーン (U, CU, CL, L)において、内部熱電対温度 Pに対する 設定温度 Sが 1° C変化 (ステップアップ)することに対して、上部温度モニタ、下部温 度モニタおよび中央温度モニタの基板エッジ温度 Wの変化量を算出する。
つまり、図 12に示された各温度調節ゾーンの変化量の値をそれぞれ偏差(5° C) で割ることにより、ステップアップに対する基板エッジ温度 wの変化量が算出される。
[0098] ステップアップに対する基板エッジ温度 Wの変化量について、上述したように算出 された結果の行と列とを入れ替えたものが図 16に示されている。
つまり、図 16は、上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれ につレ、て、ステップアップに対する基板エッジ温度 Wの変化量を示す図表である。 図 16に示された値を行列とすると、正方行列になっていないので、逆行列演算を するために、図 17に示すように上部温度モニタの上方に、仮想上部モニタ基板を仮 想的に設ける。
つまり、図 17は、図 16に示したステップアップに対する基板エッジ温度 Wの変化量 に対し、ステップアップに対する仮想上部モニタ基板の基板エッジ温度 Wの変化量 を追加して示す図表である。
なお、仮想的に設けた仮想上部モニタ基板は、簡略化して表現するために、例え ば Uゾーンが 1° C変化すると、仮想上部モニタ基板の変化量が 1° C変化し、その 他の温度調節ゾーンによっては仮想上部モニタ基板の温度は変化しないこととして いる。
また、温度調節ゾーンの数が温度モニタ基板 400の数よりも 2つ以上多い場合には 、仮想的に設ける仮想モニタ基板の数をさらに増やして、温度調節ゾーンの数と温度 モニタ基板 400の数とを揃えて正方行列を構成できるようにしてもよい。
[0099] 図 17に示した値を行列として示すと、下式 10のように示され、行列 Mを干渉行列と する。
[0100] [数 10]
( 1 0)
Figure imgf000027_0001
[0101] つまり、干渉行列 Mは、各温度調節ゾーンの内部熱電対温度 Pが 1° C変化した場 合に、上部温度モニタ、下部温度モニタおよび中央温度モニタそれぞれにおける基 板エッジ温度 Wが変化する変化量を表している。
[0102] なお、本願出願人による他の出願(特願 2001— 272218;平成 13 (2001)年 9月 7 日出願)の第 [0060]段落などにおいても説明されているように、式 10に示した干渉 行列 Mを用いて、最小二乗法に基づいた逆行列演算をすることは、各温度モニタ基 板 400の基板エッジ温度 Wを変化させるための内部熱電対温度 Pの変化量を算出 することに相当する。
内部熱電対温度 Pの変化量を算出するための逆行列演算は、干渉行列 Mを用い て表すと、 [ΜΤ Χ Μ]— Χ Μ"となる。 (Τ:転置行列)
式 10に示した干渉行列 Μの逆行列演算結果は、式 11に示されてレ、る。
[0103] [数 11]
( 1 1 )
Figure imgf000028_0001
但し、 τは転置行列、 - 1 は逆行列演算を表す。
[0104] また、各温度調節ゾーンの内部熱電対温度 Ρが変化すべき変化量は、式 11に示し た逆行列演算結果に各温度モニタ基板 400の偏差をそれぞれ乗じることによって算 出される。
式 11に示した逆行列演算結果に対し、各温度モニタ基板 400の偏差をそれぞれ 乗じた結果が式 12に示されている。
[0105] [数 12]
Figure imgf000028_0002
[0106] つまり、各温度モニタ基板 400の偏差が例えば全て 5° Cの場合には、式 12に示し たように、内部熱電対 302—1 302— 4それぞれの内部熱電対温度 Pが変化すべき 変化量は、それぞれ 5° C, 7. 0° C, 4. 9° C, 7. 0° Cになる。
そして、温度コントローラ 4は、内部熱電対 302—1— 302-4それぞれの内部熱電 対温度 Pが変化すべき変化量が零(0)になるように、例えば PID演算などにより、ゾ ーンヒータ 340—1— 340—4それぞれに対する操作量を算出し、ゾーンヒータ 340—1 一 340—4の出力を制御する。
なお、基板温度の予測制御について、基板エッジ温度 Wが設定温度 Sに近づくよう に制御する例について説明したが、これに限ることなぐ基板中心温度 Cなどを設定 温度 Sに近づくように制御する場合においても同様に制御することができる。
[0107] 基板の処理時においては、外部熱電対 342および内部熱電対 302が検出する反 応炉 3内の温度から、ゾーンヒータ 340—1 340—4の干渉比率または干渉行列 M の逆行列演算結果に基づいて、上部モニタ基板 54、下部モニタ基板 56および中央 モニタ基板 58の予測温度を算出し、算出された基板の予測温度が設定温度 Sに一 致するように、ゾーンヒータ 340—1 340— 4それぞれに対する操作量を算出し、ゾ ーンヒータ 340—1 340—4の出力を制御する。
温度コントローラ 4は、ゾーンヒータ 340—1— 340—4の出力を周期的に制御するの で、上部モニタ基板 54、下部モニタ基板 56および中央モニタ基板 58の温度が設定 温度 Sに従って変化するように制御することができる。
[0108] [基板温度予測制御に必要な温度データの取得]
温度モニタ基板 400の予測温度は、上述したように、外部熱電対温度 Hと内部熱 電対温度 Pとを用いて一次遅れ演算することにより算出されている。
温度予測パラメータ「K1, Tl, Κ2, Τ2, b, C」は、基板の温度制御を行う半導体 製造装置ごとに、基板の処理を行う以前に調整をしておく必要がある。
これらの温度予測パラメータの調整において、特に、時定数 Tl , T2を調整する場 合には、温度制御を処理時に行う際の周期(制御周期)と同じ周期で取得された外 部熱電対温度 Hと、内部熱電対温度 Pとが必要になっている。
[0109] また、半導体処理装置 1におレ、て、装置操作部 2は、温度コントローラ 4を介して温 度制御を行う周期(制御周期)と、表示 ·入力部 22または記録出力部 24によって温 度データを表示または記録する周期とが異なっている。
例えば、温度コントローラ 4 (図 2)が内部熱電対 302—1— 302—4および外部熱電 対 342—1 342—4を介して温度データを受入れてから、ゾーンヒータ 340—1— 340 -4それぞれに対する操作量を算出し、ゾーンヒータ 340-1— 340-4に対して電力 値を出力する周期(制御周期)は 0. 5秒になってレ、る。
一方、装置操作部 2において、操作制御部 20が通信部 28を介し、温度コントローラ 4から温度データなどを受信し、表示 ·入力部 22または記録出力部 24に出力する周 期は 4秒になっている。
これは、装置操作部 2および温度コントローラ 4が通信処理に費やす時間を少なくし 、装置操作部 2の CPU200は主にレシピを使用する処理を行レ、、温度コントローラ 4 の CPU40は主に基板を温度制御する処理を行うことができるようにしてあるためであ る。
[0110] このように、表示 ·入力部 22または記録出力部 24が温度データを出力する周期が
4秒であり、温度コントローラ 4が基板の温度を制御する周期が 0. 5秒である場合に は、予測温度を算出するための温度予測パラメータ「K1, Tl, Κ2, Τ2, b, C」を調 整するために、 0. 5秒周期の温度データが表示 ·入力部 22または記録出力部 24か ら出力されるようにすることが必要である。
つまり、作業者は、 0. 5秒周期の温度データを記録出力部 24などから出力させるこ とにより、図 14に示したようなグラフを得ることが可能となる。
[0111] 0. 5秒周期の温度データは、例えば、装置操作部 2の周期変更部 220によって、 装置操作部 2と温度コントローラ 4との間の通信周期を変更することができるようにし、 作業者が装置操作部 2から取得する温度データの周期を 4秒または 0. 5秒のいずれ 力を選択することができるようにしてもよい。
[0112] また、装置操作部 2が 4秒周期で取得した温度データから 0. 5秒周期の温度デー タを生成し、 4秒周期の温度データの間に揷入する内揷処理を行うようにしてもよい。
[0113] さらに、半導体処理装置 1に対するオプションとなる装置に 0. 5秒周期の温度デー タを生成させ、 4秒周期の温度データの間に揷入する内揷処理を行わせることにより 、温度予測パラメータを調整することができるようにしてもよい。
[0114] [基板温度予測制御に必要なパラメータの入力]
基板温度予測制御には、温度予測パラメータ「K1, Tl, Κ2, Τ2, b, C」、および 干渉比率または干渉行列 Mの逆行列演算結果などのパラメータを、作業者が装置 操作部 2を介して設定する必要がある。
例えば内部熱電対温度 Pの設定温度 Sに対し PID制御を行う際のパラメータなどと 同様に、装置操作部 2は、基板温度予測制御に必要なパラメータを受入れることが好 ましい。
また、基板の温度予測制御に必要なパラメータは、基板を処理する温度帯ごとに調 整され、それぞれ個別のパラメータテーブルとして設定されることが好ましい。
さらに、パラメータテーブルは、反応炉 3内で処理される基板の枚数に応じて、個別 のパラメータテーブルが設定されるようにしてもょレ、。
例えばボート 108に 100枚の基板を載置して調整した温度予測パラメータ「K1, Τ 1 , Κ2, Τ2, b, C」と、ボート 108に 50枚の基板を載置して調整した温度予測パラメ 一タ 1, Tl, K2, T2, b, C」とをそれぞれ設定し、反応炉 3内で処理される基板の 枚数に応じてパラメータテーブルが装置操作部 2を介して選択されるようにしてもよい
[0115] 図 18は、装置操作部 2の表示 ·入力部 22がパラメータを受入れる場合に表示する パラメータ設定画面を示す図である。
図 18に示すように、ノ メータ設定画面は、テーブル選択部 222、モニタ基板数入 力部 224、予測パラメータ入力部 226および干渉度合レ、入力部 228を有する。
[0116] テーブル選択部 222は、基板を処理する温度帯などに応じたパラメータテーブルを 選択する指示を作業者から受け入れる。
モニタ基板数入力部 224は、使用される温度モニタ基板 400の枚数を作業者から 受入れる。
このように、半導体処理装置 1には、温度モニタ基板 400の枚数が 3枚よりも多く用 レ、られてもよレ、。
また、温度モニタ基板 400の枚数は、:!枚でも、 2枚でもよい。
予測パラメータ入力部 226は、温度モニタ基板 400ごとに温度予測パラメータ「K1 , Tl , K2, Τ2, b, C」を作業者から受入れる。
干渉度合い入力部 228は、温度モニタ基板 400ごとに干渉比率または干渉行列の 逆行列演算結果を、外部熱電対 342—1 342 - 4および内部熱電対 302—1 302 - 4それぞれに対して作業者から受入れる。
また、干渉比率または干渉行列の逆行列演算結果のいずれのパラメータによって 制御されるかをパラメータ設定画面内に表示し、切替え設定可能としてもよい。
[0117] [基板温度予測制御の実行]
基板予測制御の実行は、上述したように、反応炉 3に設けられた内部熱電対 302お よび外部熱電対 342に対して温度を設定し、温度モニタ基板 400の温度変化を確認 して温度予測パラメータなどを決定する基板予測制御の準備の段階と、準備された 温度予測パラメータなどを用いて基板温度予測制御を行って基板を実際に処理する 段階とに分けられる。
[0118] 図 19は、装置操作部 2の表示 ·入力部 22において、基板予測制御の準備をする段 階に表示される温度制御設定画面の例を示す図である。
図 20は、装置操作部 2の表示 ·入力部 22において、基板予測制御を実行して基板 を処理する段階に表示される温度制御設定画面の例を示す図である。
温度制御設定画面は、例えばタツチパネルなどに表示され、モード選択部 230、温 度設定部 232およびパラメータ設定部 234を有し、表示と指示の受け入れとを合わ せて行うようにしてある。
[0119] モード選択部 230は、温度制御設定画面における設定の対象を選択する指示を受 け入れ、受入れた指示を表示する。
温度制御設定画面における設定の対象は、例えば内部熱電対 302、外部熱電対 3 42および温度モニタ基板 400などである。
モード選択部 230において、例えば内部熱電対 302または外部熱電対 342が選択 されると(図 19参照)、温度制御設定画面は、基板予測制御の準備をするモードとな り、選択された熱電対に対して各ゾーンごとに設定温度および昇温の傾きの指示を 受け入れる表示を温度設定部 232に表示する。
また、モード選択部 230において、例えば基板温度予測制御をすることが選択され ると(図 20参照)、温度制御設定画面は、基板予測制御を実行するモードとなり、各 温度モニタ基板 400に対する設定温度および昇温の傾きの指示を受け入れる表示 を温度設定部 232に表示する。 [0120] 温度設定部 232は、モード選択部 230において選択されたモードに応じて、設定 温度および昇温の傾きの指示を受け入れる表示をする。
さらに、温度設定部 232は、受入れた指示を表示する。
[0121] パラメータ設定部 234は、 PID選択部 236と、予測制御選択部 238とを有する。
PID選択部 236は、温度設定部 232で設定された設定温度および昇温の傾きに応 じて、例えば PID制御のためのパラメータ、並びに設定温度の温度帯および処理の 対象となる基板の枚数に応じて調整されたパラメータを含むパラメータテーブルを選 択する指示を受け入れ、受入れた指示を表示する。
予測制御選択部 238は、モード選択部 230において基板予測制御の準備をする モードが選択されている場合には、温度予測パラメータ「K1 , Tl, Κ2, Τ2, b, C」が 使用されないことを表示する。
また、予測制御選択部 238は、モード選択部 230におレ、て基板予測制御を実行す るモードが選択されている場合には、温度設定部 232による設定および基板の枚数 などに応じた最適な温度予測パラメータ「K1 , Tl , Κ2, Τ2, b, C」が選択されるよう に、ノ メータが操作制御部 20によって自動的に切り替えられることを表示する。 温度予測パラメータ「K1, Tl, K2, Τ2, b, C」の選択は、予測制御表示部 238に ぉレ、て、レ、ずれの場合にも作業者が指示するようにしてもょレ、。
[0122] このように、作業者は、基板予測制御の準備をすることと、基板温度予測制御を実 行して基板を実際に処理することとを装置操作部 2を介して選択することができる。 また、基板温度予測制御を行って基板を実際に処理する場合には、温度コントロー ラ 4が予測した基板温度を装置操作部 2が受信し、表示'入力部 22によって表示させ たり、記憶部 26に記憶させることができ、作業者は予測温度の状況を基板の処理中 または処理後に確認することができる。
[0123] 次に、基板温度予測制御を実行した場合の基板の温度変化について説明する。
図 21は、基板予測制御の準備をするモードにおいて、内部熱電対 302の温度の 応答が設定温度 Sの変化に近づくようにゾーンヒータ 340の出力を PID演算などによ つて制御した場合の基板エッジ温度 Wと基板中心温度 Cの応答を例示するグラフで める。 図 22は、基板温度予測制御を実行するモードにおいて、基板温度予測制御の対 象を基板エッジ温度 Wとし、設定温度 Sの変化に対する基板エッジ温度 Wおよび基 板中心温度 Cの応答を例示するグラフである。
図 21に示すように、温度コントローラ 4が装置操作部 2の制御に基づいて、内部熱 電対 302の温度の応答が設定温度 Sの変化に近づくようにゾーンヒータ 340の出力 を PID演算などによって変化させると、基板エッジ温度 Wおよび基板中心温度 Cは、 それぞれ設定温度 S (800° C)に対して大きくオーバーシュートした後に、設定温度 Sで安定する。
[0124] 一方、図 22に示すように、設定温度 Sの変化に対し、基板温度予測制御の対象を 基板エッジ温度 Wとして基板温度予測制御を実行すると、基板エッジ温度 Wおよび 基板中心温度 Cは、それぞれ設定温度 Sを大きくオーバーシュートすることなく設定 温度 Sで安定する。
図 22に示した例においては、基板温度予測制御の対象を基板エッジ温度 Wとして 、基板エッジ温度 Wの予測制御による応答が、基板予測制御の準備をする段階で検 出された基板エッジ温度 Wの応答に近づくように温度予測パラメータ「K1, Tl, Κ2 , Τ2, b, C」が調整されているので、基板エッジ温度 Wが設定温度 Sに対してオーバ 一シュートすることなく設定温度 Sに達して安定し、基板中心温度 Cは遅れて昇温し、 基板エッジ温度 Wよりも遅れて設定温度 Sに達して安定する。
[0125] 図 23は、基板温度予測制御の対象を基板エッジ温度 Wと基板中心温度 Cとの平 均温度として基板温度予測制御を実行するモードにおいて、設定温度 Sの変化に対 する基板エッジ温度 Wおよび基板中心温度 Cの応答を示すグラフである。
図 23に示すように、基板温度予測制御の対象を基板エッジ温度 Wと基板中心温度 Cとの平均温度として、この平均温度の予測制御による応答が基板予測制御の準備 をする段階で検出された基板エッジ温度 Wと基板中心温度 Cとの平均温度に近づく ように温度予測パラメータ「K1, Tl , K2, Τ2, b, C」が調整されているので、基板ェ ッジ温度 Wの応答は設定温度 Sに対して図 21に示した基板エッジ温度 Wの応答より もオーバーシュートが小さくなり、かつ、基板中心温度 Cの応答は図 22に示し基板中 心温度 Cの応答よりも 1分程度早く設定温度 Sに達して安定している。 [0126] 基板温度予測制御の対象は、基板中心温度 Cであってもよいし、外周熱電対 406 -1-406-4,内周熱電対 404— 1一 404— 4および中心熱電対 402の平均温度など であってもよい。
このように、基板温度予測制御の対象を自由に選択し、選択された対象の予測温 度の応答を選択された対象の準備段階で検出された温度の応答に近づくように温度 予測パラメータ「K1 , Tl, Κ2, Τ2, b, C」を調整することにより、基板温度の応答を 基板温度予測制御の対象に基づいて変化させることができる。
また、温度モニタ基板 400の予測温度は、外部熱電対温度 Hを用いることなぐ内 部熱電対温度 Pと、基板の温度とを一次遅れ演算することにより算出するようにしても よい。
[0127] 尚、本発明は、前記実施形態に限定されるものではなぐその要旨を逸脱しない範 囲で種々の変更が可能であることはいうまでもない。
本実施形態では、バッチ式の半導体処理装置の減圧 CVD装置の場合について説 明したが、本発明はこれに限らず、バッチ式の半導体処理装置の拡散装置等の熱処 理装置や枚葉装置、その他の基板処理装置全般に適用することができる。
産業上の利用可能性
[0128] 本発明は、基板の処理のために利用可能である。

Claims

請求の範囲
[1] 処理室内に収容された基板を加熱する加熱手段と、
前記処理室内の温度を検出する温度検出手段と、
前記基板の温度を周期的に予測する基板温度予測手段と、
前記温度検出手段が検出した前記処理室内の温度と、前記基板温度予測手段が
1回前の周期で予測した予測温度とを混合して、前記基板温度予測手段により前記 1回前の周期の次回の周期における温度を予測し、該予測温度を用いて前記加熱 手段を制御する制御手段と
を有する基板処理装置。
[2] 処理室内に収容された基板を加熱する加熱手段と、
前記加熱手段の近傍の温度を検出する第 1の温度検出手段と、
前記基板の近傍の温度を検出する第 2の温度検出手段と、
前記第 1の温度検出手段が検出した温度から算出する前記基板の第 1の予測温度 と、前記第 2の温度検出手段が検出した温度から算出する前記基板の第 2の予測温 度とを混合させ、該混合した予測温度を用いて前記加熱手段を制御する制御手段と を有する基板処理装置。
[3] 前記加熱手段は、
複数の加熱ゾーンそれぞれに対応する複数のゾーン加熱手段を有し、 前記基板温度予測手段は、
前記複数のゾーン加熱手段それぞれが予測温度の対象となる前記基板の温度に 対して干渉する度合いにより、前記予測温度の対象となる前記基板ごとに対応する 仮想温度検出手段の検出予測値を算出し、該検出予測値と、前記 1回前の周期の 予測温度とを用いて、前記 1回前の周期の次回の周期における温度を予測する 請求項 1記載の基板処理装置。
[4] 前記制御手段は、前記第 2の温度検出手段が検出した温度の変動の大きさにより 、前記基板の第 1の予測温度と第 2の予測温度との混合比を変える
請求項 2記載の基板処理装置。
[5] 前記加熱手段は、複数のゾーン加熱手段を有し、 前記温度検出手段は、前記ゾーン加熱手段それぞれに対応するゾーン温度検出 手段を有し、
前記制御手段は、
温度を予測しょうとする基板が他の基板よりも近くなる位置に仮想温度検出手段を 設定し、該仮想温度検出手段と前記ゾーン温度検出手段との対応関係と、前記ゾー ン温度検出手段が測定する測定値に基づいて、前記仮想温度検出手段の検出値を 算出し、算出された検出値と、前記仮想温度検出手段により予測された 1回前の周 期での基板温度とを用いて、前記 1回前の周期の次回の周期における基板温度を予 測し、該基板予測温度に基づいて、前記ゾーン加熱手段それぞれを制御する 請求項 1記載の基板処理装置。
[6] 前記加熱手段は、複数のゾーン加熱手段を有し、
前記温度検出手段は、前記ゾーン加熱手段それぞれに対応する第 1のゾーン温度 検出手段と第 2のゾーン温度検出手段とを有し、
前記制御手段は、
温度を予測しょうとする基板が他の基板よりも近くなる位置に仮想温度検出手段を 設定し、該仮想温度検出手段と前記第 1のゾーン温度検出手段または第 2のゾーン 温度検出手段との対応関係と、前記第 1のゾーン温度検出手段または第 2のゾーン 温度検出手段が測定する測定値に基づいて、前記仮想温度検出手段の検出値を 算出し、算出された検出値と、前記仮想温度検出手段により予測された 1回前の周 期の基板温度とを用いて、前記 1回前の周期の次回の周期における基板温度を予 測し、該基板予測温度に基づいて、前記ゾーン加熱手段それぞれを制御する 請求項 2記載の基板処理装置。
[7] 前記制御手段が前記加熱手段の出力を制御する周期と略同一の周期で前記温度 検出手段が検出する温度を表示および記録またはこれらのいずれかによつて出力す る出力手段をさらに有する
請求項 1記載の基板処理装置。
[8] 前記制御手段が前記加熱手段の出力を制御する周期と略同一の周期で前記温度 検出手段が検出する温度を表示および記録またはこれらのいずれかによつて出力す る出力手段をさらに有する
請求項 2記載の基板処理装置。
[9] 前記制御手段が前記加熱手段の出力を制御する周期と略同一の周期で前記温度 検出手段が検出する温度を表示および記録またはこれらのいずれかによつて出力す る出力手段をさらに有する
請求項 3記載の基板処理装置。
[10] 前記制御手段が前記加熱手段の出力を制御する周期と略同一の周期で前記温度 検出手段が検出する温度を表示および記録またはこれらのいずれかによつて出力す る出力手段をさらに有する
請求項 5記載の基板処理装置。
[11] 前記制御手段が前記加熱手段の出力を制御する周期と略同一の周期で前記温度 検出手段が検出する温度を表示および記録またはこれらのいずれかによつて出力す る出力手段をさらに有する
請求項 6記載の基板処理装置。
[12] 処理室内に収容された基板を加熱する工程と、
前記処理室内の温度を検出する工程と、
前記基板の温度を周期的に予測する工程と、
前記検出した前記処理室内の温度と、前記周期的に予測した温度の 1回前の周期 で予測した予測温度とを混合して、前記 1回前の周期の次回の周期における温度を 予測し、該予測温度を用いて基板の加熱を制御する工程と
を有する基板処理方法。
[13] 基板を処理する反応室と、前記反応室内を加熱する加熱手段と、前記加熱手段を 制御する制御手段と、前記加熱手段と前記基板との間の温度を検出する第 1の温度 検出手段と、前記第 1の温度検出手段よりも前記基板の近傍で温度を検出する第 2 の温度検出手段とを有する基板処理装置において、
前記第 1の温度検出手段で温度を測定する工程と、
前記第 1の温度検出手段によって測定された温度から第 1の基板予測温度を算出 する工程と、 前記第 2の温度検出手段で温度を測定する工程と、
前記第 2の温度検出手段によって測定された温度から第 2の基板予測温度を算出 する工程と、
前記第 1の基板予測温度と前記第 2の基板予測温度とを混合し、前記加熱手段を 制御する工程と
を有する基板処理方法。
PCT/JP2004/008603 2003-07-28 2004-06-18 基板処理装置及び基板処理方法 WO2005010970A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005511979A JP4285759B2 (ja) 2003-07-28 2004-06-18 基板処理装置及び基板処理方法
US10/550,202 US7346273B2 (en) 2003-07-28 2004-06-18 Substrate processing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-202433 2003-07-28
JP2003202433 2003-07-28

Publications (1)

Publication Number Publication Date
WO2005010970A1 true WO2005010970A1 (ja) 2005-02-03

Family

ID=34100579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008603 WO2005010970A1 (ja) 2003-07-28 2004-06-18 基板処理装置及び基板処理方法

Country Status (3)

Country Link
US (1) US7346273B2 (ja)
JP (1) JP4285759B2 (ja)
WO (1) WO2005010970A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083498A1 (ja) * 2006-01-19 2007-07-26 Yamatake Corporation 温度推定方法および装置
JP2008084960A (ja) * 2006-09-26 2008-04-10 Hitachi Kokusai Electric Inc 基板処理装置
JP2008244449A (ja) * 2007-02-27 2008-10-09 Tokyo Electron Ltd 被処理体の熱処理装置及び熱処理方法
JP2009081415A (ja) * 2007-09-06 2009-04-16 Hitachi Kokusai Electric Inc 半導体製造装置及び基板処理方法
JP2009117646A (ja) * 2007-11-07 2009-05-28 Hitachi Kokusai Electric Inc 基板処理装置及びベーキング方法
JP2010141060A (ja) * 2008-12-10 2010-06-24 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法
US8089031B2 (en) 2007-02-27 2012-01-03 Tokyo Electron Limited Heating apparatus for heating objects to be heated, heating method for heating the objects to be heated, and storage medium in which computer-readable program is stored
JP2012222036A (ja) * 2011-04-05 2012-11-12 Tokyo Electron Ltd 熱処理装置および熱処理方法
CN104460764A (zh) * 2014-11-28 2015-03-25 广东工业大学 一种基于去伪控制的模糊pid的挤出机机筒温度控制方法
JP2016136598A (ja) * 2015-01-23 2016-07-28 東京エレクトロン株式会社 熱処理システム、熱処理方法、及び、プログラム
CN106158623A (zh) * 2015-05-13 2016-11-23 Soitec公司 用于热处理单元的校正方法
US9758871B2 (en) 2008-12-10 2017-09-12 Sumco Techxiv Corporation Method and apparatus for manufacturing epitaxial silicon wafer
CN109581870A (zh) * 2018-11-27 2019-04-05 中国工程物理研究院化工材料研究所 含能材料反应釜的釜内温度动态矩阵控制方法
KR20190126243A (ko) 2018-05-01 2019-11-11 도쿄엘렉트론가부시키가이샤 온도 감시 장치, 열처리 장치 및 온도 감시 방법
CN111174564A (zh) * 2018-11-09 2020-05-19 深圳龙澄高科技环保股份有限公司 一种超高热值垃圾干燥过程智能控制***
JP2020086524A (ja) * 2018-11-15 2020-06-04 TUI Solutions株式会社 温度制御方法及び温度制御装置
JP6933286B1 (ja) * 2020-09-17 2021-09-08 オムロン株式会社 温度制御方法、温度制御装置およびプログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7577493B2 (en) * 2004-12-27 2009-08-18 Hitachi Kokusai Electric Inc. Temperature regulating method, thermal processing system and semiconductor device manufacturing method
JP5203612B2 (ja) * 2007-01-17 2013-06-05 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP4553266B2 (ja) * 2007-04-13 2010-09-29 東京エレクトロン株式会社 熱処理装置、制御定数の自動調整方法及び記憶媒体
US20090095422A1 (en) * 2007-09-06 2009-04-16 Hitachi Kokusai Electric Inc. Semiconductor manufacturing apparatus and substrate processing method
US8380360B2 (en) * 2007-10-19 2013-02-19 Hitachi Kokusai Electric Inc. Temperature control method, method of obtaining a temperature correction value, method of manufacturing a semiconductor device and substrate treatment apparatus
JP5026549B2 (ja) * 2010-04-08 2012-09-12 シャープ株式会社 加熱制御システム、それを備えた成膜装置、および温度制御方法
JP5734081B2 (ja) * 2010-10-18 2015-06-10 株式会社日立国際電気 基板処理装置、基板処理装置の温度制御方法、及び基板処理装置の加熱方法
JP6301083B2 (ja) * 2012-09-12 2018-03-28 株式会社日立国際電気 基板処理装置、半導体装置の製造方法、及びレシピの作成方法
CN108624871B (zh) * 2018-05-11 2024-07-23 中晟光电设备(上海)股份有限公司 一种温度控制***、薄膜沉积设备及温度控制方法
GB2576947B (en) * 2018-09-10 2020-09-09 Dyson Technology Ltd A method of controlling a haircare appliance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283158A (ja) * 1994-04-11 1995-10-27 Tokyo Electron Ltd 熱処理装置およびその温度制御方法
JP2002091574A (ja) * 2000-09-13 2002-03-29 Tokyo Electron Ltd バッチ式熱処理装置及びその制御方法
JP2002175123A (ja) * 2000-09-29 2002-06-21 Hitachi Kokusai Electric Inc 温度制御方法、熱処理装置、及び半導体装置の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW266230B (ja) * 1993-09-09 1995-12-21 Tokyo Electron Co Ltd
US6495805B2 (en) * 2000-06-30 2002-12-17 Tokyo Electron Limited Method of determining set temperature trajectory for heat treatment system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283158A (ja) * 1994-04-11 1995-10-27 Tokyo Electron Ltd 熱処理装置およびその温度制御方法
JP2002091574A (ja) * 2000-09-13 2002-03-29 Tokyo Electron Ltd バッチ式熱処理装置及びその制御方法
JP2002175123A (ja) * 2000-09-29 2002-06-21 Hitachi Kokusai Electric Inc 温度制御方法、熱処理装置、及び半導体装置の製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658818B2 (ja) * 2006-01-19 2011-03-23 株式会社山武 温度推定方法および装置
JP2007192661A (ja) * 2006-01-19 2007-08-02 Yamatake Corp 温度推定方法および装置
WO2007083498A1 (ja) * 2006-01-19 2007-07-26 Yamatake Corporation 温度推定方法および装置
KR101026432B1 (ko) 2006-01-19 2011-04-07 가부시키가이샤 야마다케 온도추정방법 및 장치
JP2008084960A (ja) * 2006-09-26 2008-04-10 Hitachi Kokusai Electric Inc 基板処理装置
US8089031B2 (en) 2007-02-27 2012-01-03 Tokyo Electron Limited Heating apparatus for heating objects to be heated, heating method for heating the objects to be heated, and storage medium in which computer-readable program is stored
JP2008244449A (ja) * 2007-02-27 2008-10-09 Tokyo Electron Ltd 被処理体の熱処理装置及び熱処理方法
JP2009081415A (ja) * 2007-09-06 2009-04-16 Hitachi Kokusai Electric Inc 半導体製造装置及び基板処理方法
JP2014042042A (ja) * 2007-09-06 2014-03-06 Hitachi Kokusai Electric Inc 半導体製造装置及び基板処理方法
JP2009117646A (ja) * 2007-11-07 2009-05-28 Hitachi Kokusai Electric Inc 基板処理装置及びベーキング方法
JP2010141060A (ja) * 2008-12-10 2010-06-24 Sumco Techxiv株式会社 エピタキシャルウェーハの製造方法
US9758871B2 (en) 2008-12-10 2017-09-12 Sumco Techxiv Corporation Method and apparatus for manufacturing epitaxial silicon wafer
JP2012222036A (ja) * 2011-04-05 2012-11-12 Tokyo Electron Ltd 熱処理装置および熱処理方法
CN104460764A (zh) * 2014-11-28 2015-03-25 广东工业大学 一种基于去伪控制的模糊pid的挤出机机筒温度控制方法
JP2016136598A (ja) * 2015-01-23 2016-07-28 東京エレクトロン株式会社 熱処理システム、熱処理方法、及び、プログラム
CN106158623A (zh) * 2015-05-13 2016-11-23 Soitec公司 用于热处理单元的校正方法
CN106158623B (zh) * 2015-05-13 2021-07-06 Soitec公司 用于热处理单元的校正方法
KR20190126243A (ko) 2018-05-01 2019-11-11 도쿄엘렉트론가부시키가이샤 온도 감시 장치, 열처리 장치 및 온도 감시 방법
US11257697B2 (en) 2018-05-01 2022-02-22 Tokyo Electron Limited Temperature monitoring apparatus, heat treatment apparatus, and temperature monitoring method
CN111174564A (zh) * 2018-11-09 2020-05-19 深圳龙澄高科技环保股份有限公司 一种超高热值垃圾干燥过程智能控制***
JP2020086524A (ja) * 2018-11-15 2020-06-04 TUI Solutions株式会社 温度制御方法及び温度制御装置
CN109581870A (zh) * 2018-11-27 2019-04-05 中国工程物理研究院化工材料研究所 含能材料反应釜的釜内温度动态矩阵控制方法
CN109581870B (zh) * 2018-11-27 2022-01-25 中国工程物理研究院化工材料研究所 含能材料反应釜的釜内温度动态矩阵控制方法
JP6933286B1 (ja) * 2020-09-17 2021-09-08 オムロン株式会社 温度制御方法、温度制御装置およびプログラム

Also Published As

Publication number Publication date
JP4285759B2 (ja) 2009-06-24
US7346273B2 (en) 2008-03-18
US20060188240A1 (en) 2006-08-24
JPWO2005010970A1 (ja) 2006-09-14

Similar Documents

Publication Publication Date Title
WO2005010970A1 (ja) 基板処理装置及び基板処理方法
TWI382485B (zh) 熱處理裝置、自動調整控制常數之方法及儲存媒體
KR101005518B1 (ko) 기판 처리 장치 및 기판 처리 방법 및 막 형성 방법
TWI409851B (zh) Adjust the gas flow processing system, processing methods and memory media
KR101103096B1 (ko) 열처리 시스템, 열처리 방법 및 컴퓨터 판독가능한 기억 매체
KR100850396B1 (ko) 열처리 방법, 열처리 장치 및 그 교정 방법
CN107230654B (zh) 控制装置、基板处理***、基板处理方法以及存储介质
JPH10154665A (ja) 適応温度コントローラおよび操作方法
JP5788355B2 (ja) 熱処理システム、熱処理方法、及び、プログラム
CN107236936B (zh) 控制装置、基板处理***、基板处理方法以及存储介质
JP2009260262A (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
KR100882633B1 (ko) 열처리 장치, 열처리 방법, 제어 장치 및 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
US6780795B2 (en) Heat treatment apparatus for preventing an initial temperature drop when consecutively processing a plurality of objects
JP5049302B2 (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
KR20130111388A (ko) 열처리 시스템, 열처리 방법 및 기록 매체
CN114384946B (zh) 半导体热处理设备的补偿参数获取方法和设备
US6850322B2 (en) Method and apparatus for controlling wafer thickness uniformity in a multi-zone vertical furnace
JP4222461B2 (ja) バッチ式熱処理方法
KR20040101197A (ko) 성막 방법
WO2022070310A1 (ja) 基板処理装置、温度制御プログラム、半導体装置の製造方法及び温度制御方法
JP6335128B2 (ja) 熱処理システム、熱処理方法、及び、プログラム
US20230422348A1 (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511979

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006188240

Country of ref document: US

Ref document number: 10550202

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10550202

Country of ref document: US

122 Ep: pct application non-entry in european phase