WO2005009900A2 - Method for producing graphitic carbon nanocomposites in particular nanopearls in bulk or in an individual manner - Google Patents

Method for producing graphitic carbon nanocomposites in particular nanopearls in bulk or in an individual manner Download PDF

Info

Publication number
WO2005009900A2
WO2005009900A2 PCT/FR2004/001979 FR2004001979W WO2005009900A2 WO 2005009900 A2 WO2005009900 A2 WO 2005009900A2 FR 2004001979 W FR2004001979 W FR 2004001979W WO 2005009900 A2 WO2005009900 A2 WO 2005009900A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
growth
ferromagnetic metal
powder
carbon
Prior art date
Application number
PCT/FR2004/001979
Other languages
French (fr)
Other versions
WO2005009900A3 (en
Inventor
Binh Vu Thien
Alexandra Levesque
Original Assignee
Universite Claude Bernard Lyon I
Centre National De La Recherche Scientifique (C.N.R.S.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Claude Bernard Lyon I, Centre National De La Recherche Scientifique (C.N.R.S.) filed Critical Universite Claude Bernard Lyon I
Publication of WO2005009900A2 publication Critical patent/WO2005009900A2/en
Publication of WO2005009900A3 publication Critical patent/WO2005009900A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/605Products containing multiple oriented crystallites, e.g. columnar crystallites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B5/00Single-crystal growth from gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Definitions

  • the present invention relates to a process for the production of graphitic carbon nanocomposites, in particular in the form of nanotubes and preferably nanopearls. More specifically, the invention relates to a process using, for the growth of graphitic carbon nanocomposites, nanoparticles of ferromagnetic metal in the form of calibrated powder, as catalyst.
  • Graphitic carbon nanocompounds have great potential in terms of application.
  • the term “graphitic carbon nanocompounds” means carbon compounds of nanometric size obtained from graphene, that is to say two-dimensional carbon structures having graphitic type bonds.
  • graphitic carbon nanocomposites are, for example, microelectronics, field emission devices such as screens. video or computers, nanoelectronics, radio frequency sources, X-ray sources, nanocomposites, catalyst supports.
  • Graphitic carbon nanocompounds have excellent mechanical, electrical and chemical properties, in particular in terms of electrical conductivity, mechanical resistance and thermal conductivity.
  • various techniques for manufacturing graphitic carbon nanocompounds For example, it is known to manufacture graphite nanotubes or nanofilaments by the method of depositing chemical compounds from their vapor phase, known as the CND method. This method consists in bringing ferromagnetic metal catalysts heated to a temperature between 500 and 1100 ° C.
  • the carbon nanoparticles are of quite diverse sizes and form after growth a surface deposit in the form of a thin film on the growth support.
  • the ferromagnetic catalyst particles used for the growth of graphitic carbon nanocomposites are generally obtained according to the following methods: - either by depositing thin layers of ferromagnetic metal on a metallic, ceramic or alumina support, followed by a heat treatment at high temperature for nanostructuring by thermal migration. It is difficult to control the size of the metallic nanoparticles obtained according to this process. - Either by depositing thin layers of ferromagnetic metal on a support followed by nanostructuring by lithographic methods. These physical lithography methods are expensive to implement.
  • the silica or alumina matrix of which comprises ferromagnetic nanoparticles are produced either by the sol-gel process, by mixing silica or alumina powder and a ferromagnetic precursor in a solvent (Kukovecz et al. Phys. Chem. Chem. Phys., 2000, 2, 3071-3076), or by chemical means such as chemical sonification, jet pyrolysis or the polyol process.
  • the methods of the prior art are not entirely satisfactory, given that it is difficult to control the size of the catalyst nanoparticles and consequently the size of the graphite nanocompounds obtained.
  • one of the objectives of the present invention is to provide a new process for manufacturing graphitic carbon compounds, this process having to be compatible with large-scale production and mass production.
  • the present invention therefore relates to a process for the manufacture of graphitic carbon nanocomposites comprising the following successive steps: a) preparation by sol-gel process of a powder of nanoparticles of ferromagnetic metal, b) filtration of the powder of metal nanoparticles ferromagnetic prepared previously, so as to obtain a calibrated powder of ferromagnetic metal nanoparticles whose average diameter is less than or equal to 200 nm, c) depositing the calibrated powder of ferromagnetic metal nanoparticles thus obtained on a growth support, d) growth of graphitic carbon nanocomposites on the growth support, by the technique known as CND of chemical vapor deposition, the ferromagnetic metal nanoparticles playing the role of catalyst.
  • Another object of the invention is to provide a process making it possible to obtain either discrete growth or bulk growth of carbon nanocomposites.
  • the present invention provides a method as defined above in which the deposition of calibrated powder of nanoparticles of ferromagnetic metal is carried out on a growth support, with control of the density of deposition.
  • the object of the present invention is to provide a process for the manufacture of particular graphitic carbon nanocomposites, capable of combining to form spongy three-dimensional structures, these nanocomposites having optimal characteristics for applications as a cold cathode in emission electronic fields, as a support for catalysts in chemical reaction where the presence of a high ratio between the surface and the volume is required, or even as a reinforcement for the manufacture of nanocomposites with an organic matrix to improve either their mechanical strength or their electrical conduction properties.
  • the invention therefore also relates to a process defined above, in which the CND technique is carried out on a growth support heated to a temperature of the order of 700 ° C., so as to obtain the growth of carbon nanobeads graphitic.
  • the present invention also relates to strings associating isodisperse nanopearls of graphitic carbon by Nan der Waals forces, of substantially spherical shape, of diameter between 80 and 150 nm, preferably of the order of 100 nm, and whose diffractogram of X-ray powder at small angles reveals the presence of elementary structures.
  • Figures 1 to 7 provide a better understanding of the invention.
  • FIG. 1 represents a view with a scanning electron microscope (magnification 540) of a powder of Ni nanoparticles obtained by the sol-gel process before stage b) of filtration.
  • Figure 2 represents a view with a scanning electron microscope (magnification 46000) of a discrete deposit of calibrated powder of Ni nanoparticles.
  • FIGS 3A and 3B show views with a scanning electron microscope (magnification 27 for Fig. 3A and 48 for Fig. 3B) of carbon nanocompounds obtained after CND growth.
  • FIG. 4 represents a view with a scanning electron microscope (magnification 10500) of carbon nanotubes discretely distributed on a growth support, obtained according to the method of the invention.
  • Figure 5 shows a scanning electron microscope view
  • FIG. 6 represents a view with a scanning electron microscope (magnification 65000) of strings of bulk carbon nanopearls, obtained according to the method of the invention.
  • Figure 7 shows a scanning electron microscope view (magnification 21000) of strings of carbon nanopearls entangled to form a three-dimensional spongy structure.
  • the scanning electron microscopy images presented in the above-mentioned figures are taken with a HITACHI S 800 FEG microscope.
  • the acceleration voltage used is 15 kN.
  • the first step of the process consists in the preparation of a powder of nanoparticles of ferromagnetic metal, in particular of cobalt, iron or preferably nickel, by the sol-gel process.
  • the sol-gel process consists in gelling a sol, that is to say a liquid solution consisting of an organic or inorganic precursor (metal salts or organometallic compounds of the alkoxide, acetate, nitrate type), a solvent and optionally of a catalyst.
  • This sol is most often in the form of a colloidal suspension obtained after a chemical reaction, generally of the hydrolysis or polymerization type. Then, the progressive evaporation of the solvent leads to more or less condensed compounds forming a gel, that is to say a quasi-solid.
  • the soil is prepared by dissolving metal salts, advantageously of acetate or nitrate type, in a solvent of alcohol type, in the presence of an agent allowing the reduction of metal ions made of metal.
  • metal salts advantageously of acetate or nitrate type
  • reducing agent it is possible to use, for example, derivatives of hydrazine such as acetolhydrazone, or, preferably, methylhydrazine.
  • a molar ratio between the reducing agent and the metal salts between 1 and 3 will be used and a molar concentration of metal salt of 0.2 to 1 mole per liter of solvent.
  • a particularly suitable solvent is for example propan-2-ol.
  • These three components metal salts, reducing agent and solvent are mixed and stirred until a dissolution of the metal salts and a reduction of these salts by the reducing agent. The reduction may, for example, result in a change in color of the solution.
  • the preparation of the gel in the form of dry powder is carried out by evaporation of the solvent at a temperature between 30 and 70 ° C.
  • the solvent is, for example, evaporated to ambient air in an oven at a temperature of 50 ° C.
  • the gel obtained is mechanically ground and heated to high temperature, preferably to a temperature between 270 and 400 ° C., under an inert atmosphere and at atmospheric pressure or optionally under reduced pressure.
  • nickel nanoparticles by the sol-gel process preferably used, for the formation of the soil, nickel acetate preferably in hydrated form and in particular nickel acetate tetrahydrate, [ ⁇ i (OAc). 4H 2 O], as the metal salt, methylhydrazine, as the reducing agent and propan-2-ol, as the solvent. After reduction of the metal salts, the solvent is evaporated, advantageously at a temperature of the order of 50 ° C.
  • the second essential step of the process for manufacturing carbon nanocompounds, according to the invention consists in filtering the powder of ferromagnetic nanoparticles obtained, in particular for eliminating agglomerates and obtaining a calibrated powder of elementary nanoparticles.
  • Fig. 1 represents a powder of nickel nanoparticles, obtained by the sol-gel process, before filtration. The agglomerates of nanoparticles appear very clearly.
  • the filtration of the ferromagnetic metal nanoparticle powder previously prepared by the sol-gel process is advantageously carried out by successive filtering through sieves.
  • This filtration can be carried out on the ground powder obtained in the previous step, either in suspension in an organic solvent, for example in an alcohol such as methanol, or in the dry powder, optionally in suspension in a carrier gas.
  • Filtration makes it possible to obtain a calibrated powder whose average diameter of the ferromagnetic metal nanoparticles is less than or equal to 200 nm, preferably less than or equal to 100 nm and preferably of the order of 100 nm.
  • average diameter of the nanoparticles is meant the average of the diameters of the nanoparticles obtained after filtration.
  • the diameter of the nanoparticles is determined by scanning electron microscopy. It can be considered that the catalyst nanoparticles obtained after filtration are monodispersed, that is to say that the size dispersion of the nanoparticles is tightened. For example, when the average diameter of the nanoparticles is of the order of 100 nm, this means that all the nanoparticles have a diameter of between 50 and 150 nm.
  • the use of calibrated nanoparticles of ferromagnetic catalyst is decisive for the rest of the process according to the invention and will make it possible to better control the subsequent growth of carbon nanocomposites and therefore to obtain nanocomposites of homogeneous size.
  • the next step is to deposit the calibrated powder of ferromagnetic metal nanoparticles on a substrate, called a growth support.
  • This support can be of any type, for example made of metal, ceramic or silica.
  • the support may be a flat substrate, or of any geometry, the method according to the invention being perfectly suited to any type of support.
  • the deposition can be carried out directly from a suspension of catalyst nanoparticles in a given solvent, by decantation of the nanoparticles on the surface of the growth support, accompanied by the evaporation of said solvent. Decanting and evaporation of the solvent can be carried out at room temperature or at a higher temperature to facilitate the evaporation of the solvent.
  • the temperature should not be too high to avoid the degradation of the nanocatalyst. It is also possible to use a dry powder, obtained after drying of such a suspension. In this case, the deposition of the ferromagnetic metal nanoparticles is then carried out by sputtering. At this stage of the process, it is possible and advantageous to control the density of deposition of the ferromagnetic metal nanoparticles.
  • deposition density is meant the mass of particles deposited per m 2 of surface of the growth support.
  • the deposition density of the ferromagnetic metal nanoparticles is determined by controlling on the one hand the height of the suspension above the surface of the support and its initial concentration of nanoparticles.
  • the deposition by decantation allows a discrete deposition of the nanoparticles of catalyst on the surface of the support. Decantation therefore authorizes the deposition of catalytic sites of nanometric dimensions without resorting to microfabrication techniques by lithography.
  • the process according to the invention only involves chemical methods which can easily be transposed to manufacturing processes in very large series and at very low production steps. It is also possible to deposit the nanoparticles by dusting a dry powder of nanoparticles obtained after evaporation of the solvent.
  • This deposition technique does not allow such precise control of the deposition density and will preferably be used for the manufacture of carbon nanocompounds which do not require dispersion on an individual scale of the catalysts but preferably for a so-called bulk deposition. .
  • a bulk deposit it is still possible to decant the powder on any support and recover the powder by scraping the support, or to decant directly on the growth support. It is said that the deposition of nanocatalysts is carried out in bulk when once deposited on the support, the nanocatalyst particles touch or even form a three-dimensional structure, that is to say that there are several layers of nanocatalysts on top of each other.
  • Fig. 2 is a scanning electron microscope view of a discrete deposit of nickel nanoparticles.
  • the deposition density of ferromagnetic metal nanoparticles will be, for example, greater than 1 g / m 2 and in the case of discrete deposition, for example, between 2.10 "3 and 0.5 g / m 2.
  • the growth of carbon nanocomposites is then carried out by the so-called CND technique.
  • CND method the PE-CND and HF-CND technique is included here.
  • the CND is intended to deposit a solid compound coming from chemical reactions from its vapor phase, on a generally heated substrate.
  • This process involves many mechanisms linked to different fields such as thermodynamics, fluid mechanics or kinetics.
  • the deposition process results from the succession of the following sequences: precursors of the desired solid are first generated in the gaseous state and are transported by diffusion into a reaction chamber in the vicinity of the heated substrate. Then, the gaseous species cross a boundary layer before arriving on the substrate on which the growth and possibly the crystallization are carried out. At the solid-gas interface, growth takes place by a heterogeneous chemical reaction initiated by a metal catalyst.
  • a sweeping is carried out using a gaseous mixture based on hydrocarbons (for example methane, ethylene, benzene, acetylene) and a carrier gas (inert such as nitrogen, hydrogen or reducing agent such as ammonia).
  • a carrier gas inert such as nitrogen, hydrogen or reducing agent such as ammonia.
  • the duration of the sweep is decisive for the growth density obtained.
  • the growth support and therefore the catalyst nanoparticles are heated to a temperature between 500 and 1100 ° C., preferably in the absence of oxygen, and at atmospheric pressure. This temperature is decisive for the nature of the graphitic carbon nanocompounds obtained. For example, CND at atmospheric pressure at a temperature of about 600 ° C, will allow the growth of nanotubes.
  • carbon nanotubes is meant nanoscale structures composed of a sheet of carbon atom in the graphene form wound to form a cylinder.
  • CND at atmospheric pressure and at a temperature of about 700 ° C will allow the growth of nanobeads.
  • graphitic carbon nanobeads is meant elements of substantially spherical shape, capable of associating with each other by Nan der Waals force to form a chain.
  • Other parameters easily adjustable by a person skilled in the art, such as the gaseous composition of hydrocarbons, the pressure, the electric field used are also liable to influence the nature of the nanocompound obtained.
  • the method according to the invention makes it possible to obtain a growth of localized carbon nanocomposites, specific in density and homogeneous in size.
  • Fig. 3A shows a growth carried out only on the section of a tube and FIG. 3B shows growth extending over its entire end.
  • the location of the growth is determined by the location of the deposition of nanocatalysts.
  • the density of deposition of the nanocatalysts on the growth support is a determining parameter in the growth of nanocomposites according to the method of the invention.
  • the density of nanocatalysts is important.
  • the deposition density of the nanocatalysts is very low, the nanoparticles are spaced a few ⁇ m apart.
  • the growth time is also influential, in particular in the case of the growth of nanobeads.
  • the growth time is high, preferably between a few minutes and ten minutes, which allows the formation of strings of nanopearls or nanotubes extending in three dimensions.
  • the growth time is shorter. In the case of nanobeads, it will preferably be less than 1 minute and advantageously of the order of 30 s. Even in the case of discrete growth, nanobeads tend to associate in strings by Nan der Waals interaction, these strings being strictly separated from each other.
  • the discrete growth localized on specific sites and of large surface would allow, for example, to manufacture planar cold cathodes with field emission and large emissive surfaces.
  • a particular form of carbon nanocomponents, in the form of nanobeads, is obtained according to the method of the invention, when, in step d) of growth by CND, the growth support is heated to a temperature of the order 700 ° C.
  • These graphitic carbon nanobeads, as defined above, have a diameter of between 80 and 150 nm, preferably of the order of 100 nm, of which the X-ray powder diffractogram at small angles reveals the presence of elementary structures. consistent.
  • coherent elementary structure is meant elementary structures whose periodicity is sufficient to allow their detection by X-rays.
  • the width at half height of an X-ray diffraction peak (corrected by l instrumental enlargement) can be related to the size of the coherent diffraction domains, using the formula of P. Scherrer (P. Scherrer, ⁇ achr. Gôttingen Gesell, 98 (1918) 295).
  • These coherent elementary structures have a dimension between 1 and 3 nm, in particular, are of the order of 2 nm.
  • These nanobeads are in fact formed by a Nan der Waals force association of crystallites, which can also be called graphite chips, superimposed on each other, concentrically.
  • the nanobeads are themselves most often obtained in the form of strings obtained by association of several nanobeads by Nan der Waals forces, as illustrated in particular in FIG. 5 for discrete growth and in FIG. 6 for bulk growth.
  • the term “strand” is intended to mean a chain of nanobeads in the form of a chain which can reach a length of 1 to 500 ⁇ m.
  • the subject of the invention is therefore these strings of nanobeads associated mainly in a linear fashion, said nanobeads being isodispersed within the same strand.
  • the majority of nanobeads are linked in a linear fashion, but some branches may nevertheless exist.
  • the isodisperse nature of the nanobeads within the same string appears clearly in FIGS. 5 and 6 in particular.
  • the diameter of the nanobeads is determined from scanning electron microscopy (SEM) images.
  • the isodisperse character can be defined by the fact that more than 90% of the nanobeads within the same rosary have a diameter which corresponds to the average diameter of the nanobeads (that is to say the average of the diameters of the nanobeads of the rosary) more or less 20%.
  • SEM scanning electron microscopy
  • the nanobeads according to the invention have, compared to nanotubes, a larger surface available for the envisaged applications: larger emission surface, larger absorption surface, greater number of sites of 'hanging available ...
  • this three-dimensional foam has on the surface linear chains of nanobeads of which the emerging part is greater than or equal to 500 nm.
  • the transverse SEM observations of the surface of the foam reveal a high density of potential emitting sites, which is estimated, according to SEM observations, greater than 10 7 sites per cm 2 .
  • the emerging rosaries are sufficiently spaced (a few hundred nanometers) to benefit from the important field amplification factor due to the morphology of the rosaries and in this case not favor the screening between close neighbors .
  • This large number of sites, showing an adequate morphology for field emission applications suggests first of all a uniform emission on a screen but, also strong emission currents, these properties being very sought after for a certain number of applications such as flat screens or electron sources in X-ray tubes.
  • the present invention also relates to the use of strings of nanobeads and three-dimensional foam according to the invention for the manufacture of cold cathodes in emission of electronic fields, of catalyst support, of reinforcements for the manufacture of nanocomposites with organic matrix.
  • strings of nanobeads and three-dimensional foam according to the invention for the manufacture of cold cathodes in emission of electronic fields, of catalyst support, of reinforcements for the manufacture of nanocomposites with organic matrix.
  • Example 1 discrete growth of carbon nanobeads I - Manufacture of nanoparticles of Ni: (1) Preparation of the soil: - a nickel precursor: Nickel acetate tetrahydrate [Ni (Oac). 4H 2 O] - a reducing agent: Methyl hydrazine CH 3 -NH-NH 2 (MH) - a solvent: propan-2-ol A molar ratio of nickel precursor acetate tetrahydrate was used
  • the ground powder obtained from the sol-gel process is dispersed by ultrasound in a methanol solution.
  • a pre-filtration of the particles in solution is carried out, in a vacuum flask equipped with a water pump, with a Duran filtration funnel with a filter of porosity 3 (16 to 40 ⁇ m).
  • the progressive filtration is done by Magna PCTE polycarbonate membranes with successive filtration thresholds of 10; 2; 0.2 and 0.1 ⁇ m (on the same system).
  • nickel nanoparticles will preferably be used as catalysts for the growth of graphite. It could also be envisaged to use nanoparticles of iron, cobalt and / or nickel as a mixture.
  • the deposition is carried out on a silicon support 1 cm ⁇ 1 cm in size.
  • the dispersion of nanoparticles represented in FIG. 1 can be obtained by having 1.5 cm of suspension on the support. Nanoparticles are spaced a few micrometers and the deposition density obtained is approximately 2.4.10 "g nanoparticles per m holder IV -.
  • Growth carbon nanoperles the various stages of the growth procedure CND at atmospheric pressure are following: The oven is firstly heated to 700 ° C., then the growth support on which the Ni nanoparticles are deposited.
  • a 10-minute sweep under nitrogen (N 2 ) atmosphere is carried out, then scanning with a gas mixture composed of acetylene C 2 H (20%) and nitrogen N 2 (80%) is maintained for 30 seconds corresponding to the duration of CND growth of these compounds, finally the CND growth is stopped by a final scan with nitrogen of ten minutes followed by a drop in temperature.
  • the nanobeads are therefore composed of a concentric superposition of graphite shavings whose lateral dimension is estimated at around 4 nm (detected by high resolution transmission microscopy). This superposition statistically defines a 3-dimensional crystallographic structure of (2 nm) 3 highlighted by X-ray diffraction measurements.
  • FIG. 5 shows the strings of carbon nanobeads obtained discreetly arranged on the support.
  • Example 2 Discrete Fa n Growth of Carbon Nanotubes The procedure is as described in paragraphs I to III of Example 1. The growth of the nanotubes is then carried out by PE-CND. (scanning with an acetylene / ammonia gas mixture under an electric field, for 30 minutes at 700 ° C., under a pressure of 13.3 Pa). Fig. 4 shows the nanotubes obtained, distributed discreetly on the growth support.
  • Example 3 Bulk Growth of Carbon Nanobeads The procedure is as described in paragraphs I to IN of Example 1, with the difference that in paragraph III, a density of 1 g of nanoparticles of Ni is deposited per m of support and in paragraph IV, the scanning with the acetylene / nitrogen mixture is maintained for 5 minutes.
  • Figs. 6 and 7 show the three-dimensional structure obtained.

Abstract

The invention relates a method for producing graphitic carbon nanocomposites consisting in a) preparing a powder of ferromagnetic metal nanoparticles by frozen-ground process, b) filtering the thus prepared powder of ferromagnetic metal nanoparticles in such a way that the calibrated powder of ferromagnetic metal nanoparticles whose mean diameter is equal to or less than 200 nm is obtained, c) deposing said calibrated powder of ferromagnetic metal nanoparticles on a growth medium and d) in growing the graphitic carbon nanocomposites on the growth medium by a chemical vapour deposition process (CDV) wherein the ferromagnetic metal nanoparticles are used in the form of a catalyst.

Description

PROCEDE DE FABRICATION DE NANOCOMPOSES DE CARBONE GRAPHITIQUE ET EN PARTICULIER DE NANOPERLES, EN VRAC OU DE FAÇON INDIVIDUALISÉE La présente invention a pour objet un procédé de fabrication de nanocomposés de carbone graphitique, en particulier sous forme de nanotubes et préférentiellement de nanoperles. De façon plus précise, l'invention concerne un procédé utilisant, pour la croissance des nanocomposés de carbone graphitique, des nanoparticules de métal ferromagnétique sous forme de poudre calibrée, en tant que catalyseur. Les nanocomposés de carbone graphitique présentent un grand potentiel en termes d'application. On entend par nanocomposés de carbone graphitique, des composés carbonés de taille nanométrique obtenus à partir du graphène, c'est à dire des structures bidimensionnelles de carbone possédant des liaisons de type graphitique. On pourra citer comme type de nanocomposés, les nanofîbres, nanotubes, nanoplaquettes, nanoparticules, nanoperles... Les applications potentielles des nanocomposés de carbone graphitique sont, par exemple, la micro-électronique, les dispositifs d'émission de champ tels que les écrans vidéo ou d'ordinateurs, la nanoélectronique, les sources radio-fréquences, les sources de rayons X, les nanocomposites, les supports de catalyseurs. Les nanocomposés de carbone graphitique présentent d'excellentes propriétés mécaniques, électriques et chimiques, en particulier en termes de conductivité électrique, de résistance mécanique et de conductivité thermique. Il existe déjà dans l'art antérieur différentes techniques de fabrication de nanocomposés de carbone graphitique. Par exemple, il est connu de fabriquer des nanotubes ou nanofilaments de graphite par la méthode de dépôt de composés chimiques à partir de leur phase vapeur, dite méthode CND. Cette méthode consiste à mettre en contact des catalyseurs métalliques ferromagnétiques chauffés à une température comprise entre 500 et 1100°C avec des hydrocarbures en phase gazeuse transportés par un courant de gaz inerte ou réducteur. Il a également été décrit d'effectuer des dépôts de nanoparticules de graphite en film mince par PE-CND (CND assistée par plasma) ou HF-CND (CND assistée par filament chaud) : on pourra se référer à I.Pocsik et al. Nacuum, 2003 ; J. Yu et al. Appl. Phys. Letters, avril 2001, 78, 2226-2228 ; M. Sharon et al. Carbon, 1998, 36, 507-511 ; P. Serp et al. Carbon letters, 2001, 39, 621-626 ; X. Y. Liu, B. C. Huang et Ν. J. Coville, Carbon, 2002, 40, 2791-2799. Néanmoins, dans toutes ces publications, les nanoparticules de carbone sont de tailles assez diverses et forment après croissance un dépôt de surface sous forme de film mince sur le support de croissance. Les particules de catalyseur ferromagnétique utilisées pour la croissance de nanocomposés de carbone graphitique sont en général obtenues selon les méthodes suivantes : - soit par dépôt de couches minces de métal ferromagnétique sur un support métallique, céramique ou alumine, suivi d'un traitement thermique à haute température pour une nanostructuration par migration thermique. Il est difficile de contrôler la taille des nanoparticules métalliques obtenues selon ce procédé. - soit par dépôt de couches minces de métal ferromagnétique sur un support suivi d'une nanostructuration par des méthodes lithographiques. Ces méthodes physiques de lithographie sont coûteuses à mettre en œuvre. - soit sous forme de composés solides de taille microscopique dont la matrice en silice ou alumine comporte des nanoparticules ferromagnétiques, ces composés étant élaborés soit par procédé sol-gel, en mélangeant de la poudre de silice ou d'alumine et un précurseur ferromagnétique dans un solvant (Kukovecz et al. Phys. Chem. Chem. Phys., 2000, 2, 3071-3076), soit par voies chimiques telles que la sonification chimique, le jet pyrolyse ou le procédé polyol. Les procédés de l'art antérieur ne donnent pas entière satisfaction, étant donné qu'il est difficile de contrôler la taille des nanoparticules de catalyseur et par conséquent la taille des nanocomposés de graphite obtenus. De plus, les méthodes physiques de type lithographiques sont difficilement réalisables sur des supports de forme variée. Il est également difficile, grâce aux techniques de l'art antérieur, d'obtenir des nanoparticules de catalyseurs disposées de façon discrète sur un support et de ce fait disponibles pour une croissance de nanocomposés de carbone graphitique localisée et spécifique en densité. Dans ce contexte, l'un des objectifs de la présente invention est de fournir un nouveau procédé de fabrication de composés de carbone graphitique, ce procédé se devant d'être compatible avec une production à grande échelle et une fabrication en grande série. La présente invention a donc pour objet un procédé de fabrication de nanocomposés de carbone graphitique comprenant les étapes successives suivantes : a) préparation par procédé sol-gel d'une poudre de nanoparticules de métal ferromagnétique, b) filtration de la poudre de nanoparticules de métal ferromagnétique préparée précédemment, de façon à obtenir une poudre calibrée de nanoparticules de métal ferromagnétique dont le diamètre moyen est inférieur ou égal à 200 nm, c) dépôt de la poudre calibrée de nanoparticules de métal ferromagnétique ainsi obtenue sur un support de croissance, d) croissance de nanocomposés de carbone graphitique sur le support de croissance, par la technique dite CND de dépôt de composés chimiques en phase vapeur, les nanoparticules de métal ferromagnétique jouant le rôle de catalyseur. Un autre objectif de l'invention est de fournir un procédé permettant d'obtenir soit une croissance discrète, soit une croissance en vrac de nanocomposés de carbone. Pour cela, la présente invention propose un procédé tel que défini précédemment dans lequel le dépôt de poudre calibrée de nanoparticules de métal ferromagnétique est effectué sur un support de croissance, avec contrôle de la densité de dépôt. Selon un autre aspect, la présente invention a pour but de fournir un procédé de fabrication de nanocomposés particuliers de carbone graphitique, capables de s'associer pour former des structures tridimensionnelles spongieuses, ces nanocomposés présentant des caractéristiques optimales pour les applications comme cathode froide en émission de champs électroniques, comme support de catalyseurs en réaction chimique où la présence d'un rapport élevé entre la surface et le volume est requise, ou encore en tant que renfort pour la fabrication de nanocomposites à matrice organique pour améliorer soit leur tenue mécanique, soit leurs propriétés de conduction électrique. L'invention a donc également pour objet un procédé ci-dessus défini, dans lequel la technique CND est réalisée sur un support de croissance chauffé à une température de l'ordre de 700°C, de façon à obtenir la croissance de nanoperles de carbone graphitique. La présente invention concerne également des chapelets associant des nanoperles isodisperses de carbone graphitique par forces de Nan der Waals, de forme sensiblement sphérique, de diamètre compris entre 80 et 150 nm, de préférence de l'ordre de 100 nm, et dont le diffractogramme de poudre aux rayons X aux petits angles révèle la présence de structures élémentaires. Les figures 1 à 7 permettent de mieux comprendre l'invention. La Figure 1 représente une vue au microscope électronique à balayage (grossissement 540) d'une poudre de nanoparticules de Ni obtenue par procédé sol- gel avant l'étape b) de filtration. La Figure 2 représente une vue au microscope électronique à balayage (grossissement 46000) d'un dépôt discret de poudre calibrée de nanoparticules de Ni. Les Figures 3A et 3B représentent des vues au microscope électronique à balayage (grossissement 27 pour la Fig. 3A et 48 pour la Fig. 3B) de nanocomposés de carbone obtenus après croissance CND. La Figure 4 représente une vue au microscope électronique à balayage (grossissement 10500) de nanotubes de carbone répartis de façon discrète sur un support de croissance, obtenus selon le procédé de l'invention. La Figure 5 représente une vue au microscope électronique à balayageThe present invention relates to a process for the production of graphitic carbon nanocomposites, in particular in the form of nanotubes and preferably nanopearls. More specifically, the invention relates to a process using, for the growth of graphitic carbon nanocomposites, nanoparticles of ferromagnetic metal in the form of calibrated powder, as catalyst. Graphitic carbon nanocompounds have great potential in terms of application. The term “graphitic carbon nanocompounds” means carbon compounds of nanometric size obtained from graphene, that is to say two-dimensional carbon structures having graphitic type bonds. As a type of nanocomponent, mention may be made of nanofibers, nanotubes, nanoplates, nanoparticles, nanobeads, etc. The potential applications of graphitic carbon nanocomposites are, for example, microelectronics, field emission devices such as screens. video or computers, nanoelectronics, radio frequency sources, X-ray sources, nanocomposites, catalyst supports. Graphitic carbon nanocompounds have excellent mechanical, electrical and chemical properties, in particular in terms of electrical conductivity, mechanical resistance and thermal conductivity. There are already in the prior art various techniques for manufacturing graphitic carbon nanocompounds. For example, it is known to manufacture graphite nanotubes or nanofilaments by the method of depositing chemical compounds from their vapor phase, known as the CND method. This method consists in bringing ferromagnetic metal catalysts heated to a temperature between 500 and 1100 ° C. into contact with hydrocarbons in the gas phase transported by a stream of inert or reducing gas. It has also been described to deposit graphite nanoparticles in thin film by PE-CND (CND assisted by plasma) or HF-CND (CND assisted by hot filament): reference may be made to I. Pocsik et al. Nacuum, 2003; J. Yu et al. Appl. Phys. Letters, April 2001, 78, 2226-2228; M. Sharon et al. Carbon, 1998, 36, 507-511; P. Serp et al. Carbon letters, 2001, 39, 621-626; XY Liu, BC Huang and Ν. J. Coville, Carbon, 2002, 40, 2791-2799. However, in all these publications, the carbon nanoparticles are of quite diverse sizes and form after growth a surface deposit in the form of a thin film on the growth support. The ferromagnetic catalyst particles used for the growth of graphitic carbon nanocomposites are generally obtained according to the following methods: - either by depositing thin layers of ferromagnetic metal on a metallic, ceramic or alumina support, followed by a heat treatment at high temperature for nanostructuring by thermal migration. It is difficult to control the size of the metallic nanoparticles obtained according to this process. - Either by depositing thin layers of ferromagnetic metal on a support followed by nanostructuring by lithographic methods. These physical lithography methods are expensive to implement. - Either in the form of solid compounds of microscopic size, the silica or alumina matrix of which comprises ferromagnetic nanoparticles, these compounds being produced either by the sol-gel process, by mixing silica or alumina powder and a ferromagnetic precursor in a solvent (Kukovecz et al. Phys. Chem. Chem. Phys., 2000, 2, 3071-3076), or by chemical means such as chemical sonification, jet pyrolysis or the polyol process. The methods of the prior art are not entirely satisfactory, given that it is difficult to control the size of the catalyst nanoparticles and consequently the size of the graphite nanocompounds obtained. In addition, physical methods of the lithographic type are difficult to carry out on supports of various shapes. It is also difficult, thanks to the techniques of the prior art, to obtain nanoparticles of catalysts arranged discreetly on a support and therefore available for growth of localized and density specific graphitic carbon nanocomposites. In this context, one of the objectives of the present invention is to provide a new process for manufacturing graphitic carbon compounds, this process having to be compatible with large-scale production and mass production. The present invention therefore relates to a process for the manufacture of graphitic carbon nanocomposites comprising the following successive steps: a) preparation by sol-gel process of a powder of nanoparticles of ferromagnetic metal, b) filtration of the powder of metal nanoparticles ferromagnetic prepared previously, so as to obtain a calibrated powder of ferromagnetic metal nanoparticles whose average diameter is less than or equal to 200 nm, c) depositing the calibrated powder of ferromagnetic metal nanoparticles thus obtained on a growth support, d) growth of graphitic carbon nanocomposites on the growth support, by the technique known as CND of chemical vapor deposition, the ferromagnetic metal nanoparticles playing the role of catalyst. Another object of the invention is to provide a process making it possible to obtain either discrete growth or bulk growth of carbon nanocomposites. For this, the present invention provides a method as defined above in which the deposition of calibrated powder of nanoparticles of ferromagnetic metal is carried out on a growth support, with control of the density of deposition. According to another aspect, the object of the present invention is to provide a process for the manufacture of particular graphitic carbon nanocomposites, capable of combining to form spongy three-dimensional structures, these nanocomposites having optimal characteristics for applications as a cold cathode in emission electronic fields, as a support for catalysts in chemical reaction where the presence of a high ratio between the surface and the volume is required, or even as a reinforcement for the manufacture of nanocomposites with an organic matrix to improve either their mechanical strength or their electrical conduction properties. The invention therefore also relates to a process defined above, in which the CND technique is carried out on a growth support heated to a temperature of the order of 700 ° C., so as to obtain the growth of carbon nanobeads graphitic. The present invention also relates to strings associating isodisperse nanopearls of graphitic carbon by Nan der Waals forces, of substantially spherical shape, of diameter between 80 and 150 nm, preferably of the order of 100 nm, and whose diffractogram of X-ray powder at small angles reveals the presence of elementary structures. Figures 1 to 7 provide a better understanding of the invention. FIG. 1 represents a view with a scanning electron microscope (magnification 540) of a powder of Ni nanoparticles obtained by the sol-gel process before stage b) of filtration. Figure 2 represents a view with a scanning electron microscope (magnification 46000) of a discrete deposit of calibrated powder of Ni nanoparticles. Figures 3A and 3B show views with a scanning electron microscope (magnification 27 for Fig. 3A and 48 for Fig. 3B) of carbon nanocompounds obtained after CND growth. FIG. 4 represents a view with a scanning electron microscope (magnification 10500) of carbon nanotubes discretely distributed on a growth support, obtained according to the method of the invention. Figure 5 shows a scanning electron microscope view
(grossissement 20000) de chapelets de nanoperles de carbone répartis de façon discrète sur un support de croissance, obtenus selon le procédé de l'invention. La Figure 6 représente une vue au microscope électronique à balayage (grossissement 65000) de chapelets de nanoperles de carbone en vrac, obtenus selon le procédé de l'invention. La Figure 7 représente une vue au microscope électronique à balayage (grossissement 21000) de chapelets de nanoperles de carbone enchevêtrés pour former une structure spongieuse tridimensionnelle. Les images en microscopie électronique à balayage présentées sur les figures ci-dessus mentionnées sont réalisées avec un microscope HITACHI S 800 FEG. La tension d'accélération utilisée est de 15 kN. La première étape du procédé consiste en la préparation d'une poudre de nanoparticules de métal ferromagnétique, en particulier de cobalt, fer ou de préférence nickel, par procédé sol-gel. Le procédé sol-gel consiste à gélifier un sol, c'est-à-dire une solution liquide constituée d'un précurseur organique ou inorganique (sels métalliques ou composés organométalliques de type alcoxydes, acétates, nitrates), d'un solvant et éventuellement d'un catalyseur. Ce sol se présente le plus souvent sous la forme d'une suspension colloïdale obtenue après réaction chimique, généralement de type hydrolyse ou polymérisation. Ensuite, l'évaporation progressive du solvant conduit à des composés plus ou moins condensés formant un gel, c'est-à-dire un quasi-solide. Un traitement thermique de séchage et de densification de gel conduit ensuite au matériau souhaité. Dans le cas de la préparation de particules ferromagnétiques selon l'invention, le sol est préparé par dissolution de sels métalliques, avantageusement de type acétate ou nitrate, dans un solvant de type alcool, en présence d'un agent permettant la réduction des ions métalliques en métal. En tant qu'agent réducteur, on pourra utiliser, par exemple, des dérivés de l'hydrazine comme l'acétolhydrazone, ou, de préférence, la méthylhydrazine. On utilisera de préférence un rapport molaire entre l'agent réducteur et les sels métalliques compris entre 1 et 3. et une concentration molaire en sel métallique de 0,2 à 1 mole par litre de solvant. Un solvant particulièrement approprié est par exemple le propan-2-ol. Ces trois composants (sels métalliques, agent réducteur et solvant) sont mélangés et agités jusqu'à l'obtention d'une dissolution des sels métalliques et d'une réduction de ces sels par l'agent réducteur. La réduction peut, par exemple, se traduire par un changement de couleur de la solution. La préparation du gel sous forme de poudre sèche est réalisée par évaporation du solvant à une température comprise entre 30 et 70 °C. Le solvant est par exemple évaporé à l'air ambiant sous étuve à une température de 50°C. Enfin, le gel obtenu est broyé mécaniquement et chauffé à haute température, de préférence à une température comprise entre 270 et 400°C, sous atmosphère inerte et à pression atmosphérique ou éventuellement sous pression réduite. Les temps de séchage et de traitement du gel varient, bien entendu, en fonction de la température utilisée. La poudre obtenue est alors broyée. Pour plus de détails sur la méthode sol-gel utilisée, on pourra se référer à Sol- gel matérials : chemistry and applications — Eds : Gordon and Breach Science Publishers - 2001 - Coll : Advance chemistry, en particulier à « A simple synthesis of métairie Ni and Ni-Co alloy fine powders from a mixed-metal acetat precursor » Syukri - Y. Ohya et Y. Takahashi, Materials Chemistry and Physics, 2002, 78(3), 645-649, et plus particulièrement à « Dip-coating of métal film from métal acétates - acetolhydrazone System » Syukri, T. Terazawa, T. Ban, Y. Ohya and Y. Takahashi, Ceramic Processing Science NI (Ceram. Trans. 112) - edited by S. Hirano - G. Messing and Ν. Claussen _ American Ceramic Society - Ohio, 2001, 329-334. Dans le cas de la préparation de nanoparticules de nickel par procédé sol-gel, on utilisera, de préférence, pour la formation du sol, du nickel acétate de préférence sous forme hydratée et en particulier du nickel acétate tétrahydrate, [Νi(OAc) .4H2O], en tant que sel métallique, de la méthylhydrazine, en tant qu'agent réducteur et du propan-2-ol, en tant que solvant. Après réduction des sels métalliques, le solvant est évaporé, avantageusement à une température de l'ordre de 50°C et le gel obtenu est soumis, après broyage, à un traitement thermique, de préférence réalisé à une température de l'ordre de 400°C pendant une heure, sous pression atmosphérique et atmosphère inerte (azote ou argon par exemple). La seconde étape essentielle du procédé de fabrication de nanocomposés de carbone, selon l'invention, consiste en la filtration de la poudre de nanoparticules ferromagnétiques obtenue, notamment pour éliminer les agglomérats et obtenir une poudre calibrée de nanoparticules élémentaires. La Fig. 1 représente une poudre de nanoparticules de nickel, obtenue par procédé sol-gel, avant filtration. Les agglomérats de nanoparticules apparaissent très nettement. La filtration de la poudre de nanoparticules de métal ferromagnétique précédemment préparée par procédé sol-gel est avantageusement effectuée par filtrages successifs à travers des tamis. Cette filtration peut être effectuée sur la poudre broyée obtenue à l'étape précédente, soit en suspension dans un solvant organique, par exemple dans un alcool tel que le méthanol, soit sur la poudre sèche, éventuellement en suspension dans un gaz porteur. La filtration permet d'obtenir une poudre calibrée dont le diamètre moyen des nanoparticules de métal ferromagnétique est inférieur ou égal à 200 nm, de préférence inférieur ou égal à 100 nm et préférentiellement de l'ordre de 100 nm. Par diamètre moyen des nanoparticules, on entend la moyenne des diamètres des nanoparticules obtenues après filtration. Le diamètre des nanoparticules est déterminé par microscopie électronique à balayage. On peut considérer que les nanoparticules de catalyseur obtenues après filtration sont monodisperses, c'est à dire que la dispersion en taille des nanoparticules est resserrée. Par exemple, lorsque le diamètre moyen des nanoparticules est de l'ordre de 100 nm, cela signifie que toutes les nanoparticules ont un diamètre compris entre 50 et 150 nm. L'utilisation de nanoparticules calibrées de catalyseur ferromagnétique est déterminante pour la suite du procédé selon l'invention et va permettre de mieux contrôler la croissance ultérieure des nanocomposés de carbone et donc d'obtenir des nanocomposés de taille homogène. L'étape suivante consiste à déposer la poudre calibrée de nanoparticules de métal ferromagnétique sur un substrat, nommé support de croissance. Ce support peut être de tout type, par exemple en métal, céramique ou silice. En fonction de l'application envisagée, le support peut être un substrat plan, ou de géométrie quelconque, le procédé selon l'invention étant parfaitement adapté à tout type de support. Le dépôt peut être réalisé directement à partir d'une suspension de nanoparticules de catalyseur dans un solvant donné, par décantation des nanoparticules en surface du support de croissance, accompagnée de l'évaporation dudit solvant. La décantation et l'évaporation du solvant peuvent être effectuées à température ambiante ou à une température plus élevée pour faciliter l'évaporation du solvant. Dans ce cas, la température ne devra pas être trop élevée pour éviter la dégradation du nanocatalyseur. Il est également possible d'utiliser une poudre sèche, obtenue après séchage d'une telle suspension. Dans ce cas, le dépôt des nanoparticules de métal ferromagnétique est alors réalisé par pulvérisation. A cette étape du procédé, il est possible et avantageux de contrôler la densité de dépôt des nanoparticules de métal ferromagnétique. Par densité de dépôt, on entend la masse de particules déposée par m2 de surface du support de croissance. Lorsque le dépôt est effectué par décantation d'une suspension de ces nanoparticules de catalyseur dans un solvant donné, la concentration initiale des nanoparticules est un paramètre facilement modulable qui influence la densité de nanoparticules déposée. La densité de dépôt des nanoparticules de métal ferromagnétique est déterminée par le contrôle d'une part de la hauteur de la suspension au-dessus de la surface du support et de sa concentration initiale en nanoparticules. Le dépôt par décantation permet un dépôt discret des nanoparticules de catalyseur à la surface du support. La décantation autorise dès lors le dépôt de sites catalytiques de dimensions nanométriques sans recourir aux techniques de microfabrication par lithographie. Le procédé selon l'invention fait uniquement intervenir des méthodes chimiques facilement transposables à des procédés de fabrication en très grandes séries et à très faibles coups de production. Il est également possible de déposer les nanoparticules par saupoudrage d'une poudre sèche de nanoparticules obtenue après evaporation du solvant. Cette technique de dépôt ne permet pas un contrôle aussi précis de la densité de dépôt et sera, de préférence, utilisée pour la fabrication de nanocomposés carbonés qui ne demandent pas une dispersion à l'échelle individuelle des catalyseurs mais préférentiellement pour un dépôt dit en vrac. Dans le cas d'un dépôt en vrac, il est encore possible d'effectuer la décantation de la poudre sur un support quelconque et de récupérer la poudre en raclant le support, ou d'effectuer la décantation directement sur le support de croissance. On dit que le dépôt des nanocatalyseurs est effectué en vrac lorsqu'une fois déposées sur le support, les particules de nanocatalyseurs se touchent ou même forment une structure en trois dimensions, c'est-à-dire qu'il y a plusieurs couches de nanocatalyseurs les unes sur les autres. On dit que le dépôt de particules de nanocatalyseurs est effectué de façon discrète, lorsque ces dernières sont déposées de manière strictement séparée ou individualisée, c'est-à-dire qu'il existe une certaine distance entre chaque particule de nanocatalyseur. La Fig. 2 est une vue au microscope électronique à balayage d'un dépôt discret de nanoparticules de nickel. Dans le cas d'un dépôt en vrac, la densité de dépôt de nanoparticules de métal ferromagnétique sera, par exemple, supérieure à 1 g/m2 et dans le cas d'un dépôt discret, par exemple, comprise entre 2.10"3 et 0,5 g/m2.La croissance des nanocomposés de carbone est ensuite réalisée par la technique dite CND. Par méthode dite CND, on englobe ici la technique PE-CND et HF-CND. On pourra notamment se référer à K. L. Choy « Chemical vapour déposition of coating », Progress in Materials Science, 2003, 48(2). La CND est destinée à déposer un composé solide provenant de réactions chimiques à partir de sa phase vapeur, sur un substrat généralement chauffé. Ce procédé met en jeu de nombreux mécanismes liés à différents domaines comme la thermodynamique, la mécanique des fluides ou la cinétique. Le processus de dépôt résulte de la succession des séquences suivantes : des précurseurs du solide souhaité sont tout d'abord générés à l'état gazeux et sont transportés par diffusion dans une chambre de réaction au voisinage du substrat chauffé. Puis, les espèces gazeuses traversent une couche limite avant d'arriver sur le substrat sur lequel la croissance et éventuellement la cristallisation sont réalisées. A l'interface solide-gaz, la croissance se fait par réaction chimique en phase hétérogène amorcée par un catalyseur métallique. Dans le cadre de l'invention, on utilise un balayage réalisé avec un mélange gazeux à base d'hydrocarbures (par exemple méthane, éthylène, benzène, acétylène) et d'un gaz porteur (inerte tel que l'azote, l'hydrogène ou réducteur tel que l'ammoniac). La durée du balayage est déterminant pour la densité de croissance obtenue. Le support de croissance et donc les nanoparticules de catalyseurs sont chauffés à une température comprise entre 500 et 1100 °C, de préférence en l'absence d'oxygène, et à pression atmosphérique. Cette température est déterminante pour la nature des nanocomposés de carbone graphitique obtenus. Par exemple, la CND à pression atmosphérique à une température d'environ 600°C, permettra d'obtenir la croissance de nanotubes. Par nanotubes de carbone, on entend des structures nanométriques composées d'une feuille d'atome de carbone dans la forme graphène enroulée pour former un cylindre. Il existe des nanotubes à paroi unique comportant une seule couche d'atomes de carbone et des nanotubes à parois multiples comprenant une centaine de couches de graphène cylindrique. La CND à pression atmosphérique et à une température d'environ 700 °C permettra d'obtenir la croissance de nanoperles. Par nanoperles de carbone graphitique, on entend des éléments de forme sensiblement sphérique, capables de s'associer entre eux par force de Nan der Waals pour former un chapelet. D'autres paramètres, facilement ajustables par l'homme du métier, comme la composition gazeuse d'hydrocarbures, la pression, le champ électrique utilisés sont également susceptibles d'influencer la nature du nanocomposé obtenu. Le procédé selon l'invention permet d'obtenir une croissance de nanocomposés de carbone localisée, spécifique en densité et homogène en taille. La Fig. 3A montre une croissance réalisée uniquement sur la section d'un tube et la Fig. 3B montre une croissance s'étendant sur toute son extrémité. La localisation de la croissance est déterminée par la localisation du dépôt de nanocatalyseurs. La densité de dépôt des nanocatalyseurs sur le support de croissance est un paramètre déterminant dans la croissance de nanocomposés selon le procédé de l'invention. Pour une croissance en vrac, la densité des nanocatalyseurs est importante. Pour une croissance discrète, la densité de dépôt des nanocatalyseurs est très faible, les nanoparticules sont espacées de quelques μm. Un autre paramètre, le temps de croissance, est également influent, en particulier dans le cas de la croissance de nanoperles. Pour une croissance en vrac, le temps de croissance est élevé, de préférence compris entre quelques minutes et une dizaine de minutes, ce qui permet la formation de chapelets de nanoperles ou nanotubes s'étendant dans les trois dimensions. Pour une croissance discrète, le temps de croissance est plus faible. Dans le cas des nanoperles, il sera de préférence inférieur à 1 minute et avantageusement de l'ordre de 30 s. Même dans le cas d'une croissance discrète, les nanoperles ont tendance à s'associer en chapelet par interaction de Nan der Waals, ces chapelets étant strictement séparés les uns des autres. Le choix entre une croissance en vrac, c'est à dire en grande quantité pour obtenir un volume de nanocomposés carboné de l'ordre de quelques cm3 à quelques dizaine de cm3, et une croissance discrète, c'est-à-dire sur des sites localisés et séparés les uns des autres, va dépendre essentiellement de l'utilisation envisagée des nanocomposés de carbone obtenus. La production en vrac s'adapte parfaitement à une utilisation comme support de catalyseurs ou d'adsorbats pour des réactions chimiques ou pour une adsorption sélective dans des applications en détection de traces, par exemple. Elle est aussi très favorable à une utilisation du carbone nanostructuré comme renfort dans la fabrication de nanocomposites organiques pour rendre conducteur un polymère ou encore renforcer certaines de leurs propriétés mécaniques. La croissance discrète localisée sur des sites spécifiques et de grande superficie permettrait, par exemple, de fabriquer des cathodes froides planaires à émission de champ et de grandes surfaces émissives. Une forme particulière de nanocomposés de carbone, sous la forme de nanoperles, est obtenue selon le procédé de l'invention, lorsque, dans l'étape d) de croissance par CND, le support de croissance est chauffé à une température de l'ordre de 700°C. Ces nanoperles de carbone graphitique, telles que définies ci-dessus, ont un diamètre compris entre 80 et 150 nm, de préférence de l'ordre de 100 nm, dont le diffractogramme de poudre aux rayons X aux petits angles révèle la présence de structures élémentaires cohérentes. Par structure élémentaire cohérente, on entend des structures élémentaires dont la périodicité est suffisante pour permettre leur détection aux rayons X. En première approximation, en diffraction des rayons X, la largeur à mi-hauteur d'un pic de diffraction X (corrigée de l'élargissement instrumental) peut être reliée à la taille des domaines cohérents de diffraction, à l'aide de la formule de P. Scherrer (P. Scherrer, Νachr. Gôttingen Gesell, 98 (1918) 295). Ces structures élémentaires cohérentes ont une dimension comprise entre 1 et 3 nm, en particulier, sont de l'ordre de 2 nm. Ces nanoperles sont en fait formées d'une association par force de Nan der Waals de cristallites, que l'on peut également nommer copeaux de graphite, superposés les uns sur les autres, de façon concentrique. Les nanoperles sont elles-mêmes obtenues le plus souvent sous forme de chapelets obtenus par association de plusieurs nanoperles par forces de Nan der Waals, tel qu'illustré notamment à la Fig. 5 pour une croissance discrète et à la Fig. 6 pour une croissance en vrac. Par chapelet, on entend un enchaînement de nanoperles sous la forme d'une chaîne qui peut atteindre une longueur de 1 à 500 μm. L'invention a donc pour objet ces chapelets de nanoperles associées majoritairement de façon linéaire, lesdites nanoperles étant isodisperses au sein d'un même chapelet. La majorité des nanoperles s'enchaîne, de façon linéaire, mais quelques embranchement peuvent néanmoins exister. Le caractère isodisperse des nanoperles au sein d'un même chapelet apparaît clairement sur les figures 5 et 6 notamment. Le diamètre des nanoperles est déterminé à partir des clichés de microscopie électronique à balayage (MEB). Le caractère isodisperse peut être défini par le fait que plus de 90 % des nanoperles au sein d'un même chapelet ont un diamètre qui correspond au diamètre moyen des nanoperles (c'est-à-dire la moyenne des diamètres des nanoperles du chapelet) à plus ou moins 20% près. Avec une croissance en vrac, on obtient un enchevêtrement de chapelet formant une mousse tridimensionnelle à nature spongieuse. La densité volumique de cette structure tridimensionnelle est très faible comparée à celle obtenue avec des nanotubes ou nanofîbres de carbone, notamment. De part leur structure particulière, les nanoperles selon l'invention, présentent, par rapport aux nanotubes, une plus grande surface disponible pour les applications envisagées : plus grande surface d'émission, plus grande surface d'absorption, plus grand nombre de sites d'accrochage disponibles... En effet, lorsque la mousse constituée des chapelets enchevêtrés, est déposée sur un substrat, celle-ci laisse apparaître à sa surface des chaînes linéaires émergentes constituant de bons candidats comme émetteurs d'électrons, comme le montre la figure 7. Avantageusement, cette mousse tridimensionnelle présente en surface des chaînes linéaires de nanoperles dont la partie émergente est supérieure ou égale à 500 nm. Ces chaînes linéaires de nanoperles émergent de façon pratiquement perpendiculaire à la surface de la mousse et présentent un rapport hauteur largeur de l'ordre de 10 (hauteur de l'ordre du μm, largeur de l'ordre du diamètre des nanoperles 100 nm). Ce rapport hauteur largeur propre à la morphologie des chapelets de nanoperles (linéarité) est supérieur à celui apporté par des nanoparticules de carbone structurées en grappe. Ce rapport de forme est important en émission à effet de champs puisqu'il permet d'obtenir un facteur d'amplification de champs très important, d'où l'application d'un potentiel électrique plus faible pour extraire des électrons à partir des nanoperles. Les observations tranversales MEB de la surface de la mousse laisse apparaître une densité importante de sites émetteurs potentiels, qui est estimée, d'après les observations MEB, supérieure à 107 sites par cm2. A la surface de la mousse, les chapelets émergeants sont suffisamment espacés (quelques centaines de nanomètres) pour bénéficier de l'important facteur d'amplification de champs dû à la morphologie des chapelets et dans ce cas ne pas favoriser l'écrantage entre proches voisins. Ce nombre de sites important, montrant une morphologie adéquate pour des applications émission de champ, laisse envisager tout d'abord une émission uniforme sur un écran mais, aussi de forts courants d'émission, ces propriétés étant très recherchées pour un certain nombre d'applications telles que les écrans plats ou les sources d'électrons dans les tubes à rayons X.(20000 magnification) of strings of carbon nanopearls discretely distributed on a growth support, obtained according to the method of the invention. FIG. 6 represents a view with a scanning electron microscope (magnification 65000) of strings of bulk carbon nanopearls, obtained according to the method of the invention. Figure 7 shows a scanning electron microscope view (magnification 21000) of strings of carbon nanopearls entangled to form a three-dimensional spongy structure. The scanning electron microscopy images presented in the above-mentioned figures are taken with a HITACHI S 800 FEG microscope. The acceleration voltage used is 15 kN. The first step of the process consists in the preparation of a powder of nanoparticles of ferromagnetic metal, in particular of cobalt, iron or preferably nickel, by the sol-gel process. The sol-gel process consists in gelling a sol, that is to say a liquid solution consisting of an organic or inorganic precursor (metal salts or organometallic compounds of the alkoxide, acetate, nitrate type), a solvent and optionally of a catalyst. This sol is most often in the form of a colloidal suspension obtained after a chemical reaction, generally of the hydrolysis or polymerization type. Then, the progressive evaporation of the solvent leads to more or less condensed compounds forming a gel, that is to say a quasi-solid. A gel drying and densification heat treatment then leads to the desired material. In the case of the preparation of ferromagnetic particles according to the invention, the soil is prepared by dissolving metal salts, advantageously of acetate or nitrate type, in a solvent of alcohol type, in the presence of an agent allowing the reduction of metal ions made of metal. As reducing agent, it is possible to use, for example, derivatives of hydrazine such as acetolhydrazone, or, preferably, methylhydrazine. Preferably, a molar ratio between the reducing agent and the metal salts between 1 and 3 will be used and a molar concentration of metal salt of 0.2 to 1 mole per liter of solvent. A particularly suitable solvent is for example propan-2-ol. These three components (metal salts, reducing agent and solvent) are mixed and stirred until a dissolution of the metal salts and a reduction of these salts by the reducing agent. The reduction may, for example, result in a change in color of the solution. The preparation of the gel in the form of dry powder is carried out by evaporation of the solvent at a temperature between 30 and 70 ° C. The solvent is, for example, evaporated to ambient air in an oven at a temperature of 50 ° C. Finally, the gel obtained is mechanically ground and heated to high temperature, preferably to a temperature between 270 and 400 ° C., under an inert atmosphere and at atmospheric pressure or optionally under reduced pressure. The drying and treatment times of the gel vary, of course, depending on the temperature used. The powder obtained is then ground. For more details on the sol-gel method used, we can refer to Sol-gel materials: chemistry and applications - Eds: Gordon and Breach Science Publishers - 2001 - Coll: Advance chemistry, in particular to "A simple synthesis of metairie Ni and Ni-Co alloy fine powders from a mixed-metal acetat precursor ”Syukri - Y. Ohya et Y. Takahashi, Materials Chemistry and Physics, 2002, 78 (3), 645-649, and more particularly to“ Dip-coating of metal film from metal acetates - acetolhydrazone System »Syukri, T. Terazawa, T. Ban, Y. Ohya and Y. Takahashi, Ceramic Processing Science NI (Ceram. Trans. 112) - edited by S. Hirano - G. Messing and Ν. Claussen _ American Ceramic Society - Ohio, 2001, 329-334. In the case of the preparation of nickel nanoparticles by the sol-gel process, preferably used, for the formation of the soil, nickel acetate preferably in hydrated form and in particular nickel acetate tetrahydrate, [Νi (OAc). 4H 2 O], as the metal salt, methylhydrazine, as the reducing agent and propan-2-ol, as the solvent. After reduction of the metal salts, the solvent is evaporated, advantageously at a temperature of the order of 50 ° C. and the gel obtained is subjected, after grinding, to a heat treatment, preferably carried out at a temperature of the order of 400 ° C for one hour, under atmospheric pressure and inert atmosphere (nitrogen or argon for example). The second essential step of the process for manufacturing carbon nanocompounds, according to the invention, consists in filtering the powder of ferromagnetic nanoparticles obtained, in particular for eliminating agglomerates and obtaining a calibrated powder of elementary nanoparticles. Fig. 1 represents a powder of nickel nanoparticles, obtained by the sol-gel process, before filtration. The agglomerates of nanoparticles appear very clearly. The filtration of the ferromagnetic metal nanoparticle powder previously prepared by the sol-gel process is advantageously carried out by successive filtering through sieves. This filtration can be carried out on the ground powder obtained in the previous step, either in suspension in an organic solvent, for example in an alcohol such as methanol, or in the dry powder, optionally in suspension in a carrier gas. Filtration makes it possible to obtain a calibrated powder whose average diameter of the ferromagnetic metal nanoparticles is less than or equal to 200 nm, preferably less than or equal to 100 nm and preferably of the order of 100 nm. By average diameter of the nanoparticles is meant the average of the diameters of the nanoparticles obtained after filtration. The diameter of the nanoparticles is determined by scanning electron microscopy. It can be considered that the catalyst nanoparticles obtained after filtration are monodispersed, that is to say that the size dispersion of the nanoparticles is tightened. For example, when the average diameter of the nanoparticles is of the order of 100 nm, this means that all the nanoparticles have a diameter of between 50 and 150 nm. The use of calibrated nanoparticles of ferromagnetic catalyst is decisive for the rest of the process according to the invention and will make it possible to better control the subsequent growth of carbon nanocomposites and therefore to obtain nanocomposites of homogeneous size. The next step is to deposit the calibrated powder of ferromagnetic metal nanoparticles on a substrate, called a growth support. This support can be of any type, for example made of metal, ceramic or silica. Depending on the application envisaged, the support may be a flat substrate, or of any geometry, the method according to the invention being perfectly suited to any type of support. The deposition can be carried out directly from a suspension of catalyst nanoparticles in a given solvent, by decantation of the nanoparticles on the surface of the growth support, accompanied by the evaporation of said solvent. Decanting and evaporation of the solvent can be carried out at room temperature or at a higher temperature to facilitate the evaporation of the solvent. In this case, the temperature should not be too high to avoid the degradation of the nanocatalyst. It is also possible to use a dry powder, obtained after drying of such a suspension. In this case, the deposition of the ferromagnetic metal nanoparticles is then carried out by sputtering. At this stage of the process, it is possible and advantageous to control the density of deposition of the ferromagnetic metal nanoparticles. By deposition density is meant the mass of particles deposited per m 2 of surface of the growth support. When the deposition is carried out by decantation of a suspension of these catalyst nanoparticles in a given solvent, the initial concentration of the nanoparticles is an easily adjustable parameter which influences the density of nanoparticles deposited. The deposition density of the ferromagnetic metal nanoparticles is determined by controlling on the one hand the height of the suspension above the surface of the support and its initial concentration of nanoparticles. The deposition by decantation allows a discrete deposition of the nanoparticles of catalyst on the surface of the support. Decantation therefore authorizes the deposition of catalytic sites of nanometric dimensions without resorting to microfabrication techniques by lithography. The process according to the invention only involves chemical methods which can easily be transposed to manufacturing processes in very large series and at very low production steps. It is also possible to deposit the nanoparticles by dusting a dry powder of nanoparticles obtained after evaporation of the solvent. This deposition technique does not allow such precise control of the deposition density and will preferably be used for the manufacture of carbon nanocompounds which do not require dispersion on an individual scale of the catalysts but preferably for a so-called bulk deposition. . In the case of a bulk deposit, it is still possible to decant the powder on any support and recover the powder by scraping the support, or to decant directly on the growth support. It is said that the deposition of nanocatalysts is carried out in bulk when once deposited on the support, the nanocatalyst particles touch or even form a three-dimensional structure, that is to say that there are several layers of nanocatalysts on top of each other. It is said that the deposition of nanocatalyst particles is carried out discretely, when the latter are deposited strictly separate or individualized, i.e. there is a certain distance between each nanocatalyst particle. Fig. 2 is a scanning electron microscope view of a discrete deposit of nickel nanoparticles. In the case of bulk deposition, the deposition density of ferromagnetic metal nanoparticles will be, for example, greater than 1 g / m 2 and in the case of discrete deposition, for example, between 2.10 "3 and 0.5 g / m 2. The growth of carbon nanocomposites is then carried out by the so-called CND technique. By so-called CND method, the PE-CND and HF-CND technique is included here. Reference may be made in particular to KL Choy " Chemical vapor deposition of coating ", Progress in Materials Science, 2003, 48 (2). The CND is intended to deposit a solid compound coming from chemical reactions from its vapor phase, on a generally heated substrate. This process involves many mechanisms linked to different fields such as thermodynamics, fluid mechanics or kinetics. The deposition process results from the succession of the following sequences: precursors of the desired solid are first generated in the gaseous state and are transported by diffusion into a reaction chamber in the vicinity of the heated substrate. Then, the gaseous species cross a boundary layer before arriving on the substrate on which the growth and possibly the crystallization are carried out. At the solid-gas interface, growth takes place by a heterogeneous chemical reaction initiated by a metal catalyst. In the context of the invention, a sweeping is carried out using a gaseous mixture based on hydrocarbons (for example methane, ethylene, benzene, acetylene) and a carrier gas (inert such as nitrogen, hydrogen or reducing agent such as ammonia). The duration of the sweep is decisive for the growth density obtained. The growth support and therefore the catalyst nanoparticles are heated to a temperature between 500 and 1100 ° C., preferably in the absence of oxygen, and at atmospheric pressure. This temperature is decisive for the nature of the graphitic carbon nanocompounds obtained. For example, CND at atmospheric pressure at a temperature of about 600 ° C, will allow the growth of nanotubes. By carbon nanotubes is meant nanoscale structures composed of a sheet of carbon atom in the graphene form wound to form a cylinder. There are single wall nanotubes with a single layer of atoms carbon and nanotubes with multiple walls comprising a hundred layers of cylindrical graphene. CND at atmospheric pressure and at a temperature of about 700 ° C will allow the growth of nanobeads. By graphitic carbon nanobeads is meant elements of substantially spherical shape, capable of associating with each other by Nan der Waals force to form a chain. Other parameters, easily adjustable by a person skilled in the art, such as the gaseous composition of hydrocarbons, the pressure, the electric field used are also liable to influence the nature of the nanocompound obtained. The method according to the invention makes it possible to obtain a growth of localized carbon nanocomposites, specific in density and homogeneous in size. Fig. 3A shows a growth carried out only on the section of a tube and FIG. 3B shows growth extending over its entire end. The location of the growth is determined by the location of the deposition of nanocatalysts. The density of deposition of the nanocatalysts on the growth support is a determining parameter in the growth of nanocomposites according to the method of the invention. For bulk growth, the density of nanocatalysts is important. For discrete growth, the deposition density of the nanocatalysts is very low, the nanoparticles are spaced a few μm apart. Another parameter, the growth time, is also influential, in particular in the case of the growth of nanobeads. For bulk growth, the growth time is high, preferably between a few minutes and ten minutes, which allows the formation of strings of nanopearls or nanotubes extending in three dimensions. For discrete growth, the growth time is shorter. In the case of nanobeads, it will preferably be less than 1 minute and advantageously of the order of 30 s. Even in the case of discrete growth, nanobeads tend to associate in strings by Nan der Waals interaction, these strings being strictly separated from each other. The choice between a growth in bulk, that is to say in large quantities to obtain a volume of carbonaceous nanocomposites of the order of a few cm 3 to a few tens of cm 3 , and a discrete growth, that is on localized sites and separated from each other, will essentially depend on the intended use of the carbon nanocomposites obtained. Bulk production is perfectly suited for use as a support for catalysts or adsorbates for chemical reactions or for selective adsorption in trace detection applications, for example. It is also very favorable to the use of nanostructured carbon as reinforcement in the manufacture of organic nanocomposites to make a polymer conductive or even to reinforce some of their mechanical properties. The discrete growth localized on specific sites and of large surface would allow, for example, to manufacture planar cold cathodes with field emission and large emissive surfaces. A particular form of carbon nanocomponents, in the form of nanobeads, is obtained according to the method of the invention, when, in step d) of growth by CND, the growth support is heated to a temperature of the order 700 ° C. These graphitic carbon nanobeads, as defined above, have a diameter of between 80 and 150 nm, preferably of the order of 100 nm, of which the X-ray powder diffractogram at small angles reveals the presence of elementary structures. consistent. By coherent elementary structure is meant elementary structures whose periodicity is sufficient to allow their detection by X-rays. As a first approximation, in X-ray diffraction, the width at half height of an X-ray diffraction peak (corrected by l instrumental enlargement) can be related to the size of the coherent diffraction domains, using the formula of P. Scherrer (P. Scherrer, Νachr. Gôttingen Gesell, 98 (1918) 295). These coherent elementary structures have a dimension between 1 and 3 nm, in particular, are of the order of 2 nm. These nanobeads are in fact formed by a Nan der Waals force association of crystallites, which can also be called graphite chips, superimposed on each other, concentrically. The nanobeads are themselves most often obtained in the form of strings obtained by association of several nanobeads by Nan der Waals forces, as illustrated in particular in FIG. 5 for discrete growth and in FIG. 6 for bulk growth. The term “strand” is intended to mean a chain of nanobeads in the form of a chain which can reach a length of 1 to 500 μm. The subject of the invention is therefore these strings of nanobeads associated mainly in a linear fashion, said nanobeads being isodispersed within the same strand. The majority of nanobeads are linked in a linear fashion, but some branches may nevertheless exist. The isodisperse nature of the nanobeads within the same string appears clearly in FIGS. 5 and 6 in particular. The diameter of the nanobeads is determined from scanning electron microscopy (SEM) images. The isodisperse character can be defined by the fact that more than 90% of the nanobeads within the same rosary have a diameter which corresponds to the average diameter of the nanobeads (that is to say the average of the diameters of the nanobeads of the rosary) more or less 20%. With a growth in bulk, one obtains a tangle of rosary forming a three-dimensional foam with spongy nature. The density of this three-dimensional structure is very low compared to that obtained with carbon nanotubes or nanofibers, in particular. Due to their particular structure, the nanobeads according to the invention have, compared to nanotubes, a larger surface available for the envisaged applications: larger emission surface, larger absorption surface, greater number of sites of 'hanging available ... In fact, when the foam made up of entangled strings is deposited on a substrate, it lets appear on its surface emerging linear chains constituting good candidates as electron emitters, as shown in the figure 7. Advantageously, this three-dimensional foam has on the surface linear chains of nanobeads of which the emerging part is greater than or equal to 500 nm. These linear chains of nanopereads emerge practically perpendicular to the surface of the foam and have a height-to-width ratio of the order of 10 (height of the order of μm, width of the order of diameter of the nanopereads 100 nm). This height-to-width ratio specific to the morphology of the nanopearl strings (linearity) is greater than that provided by carbon nanoparticles structured in a cluster. This aspect ratio is important in field effect emission since it makes it possible to obtain a factor very large field amplification, hence the application of a lower electrical potential to extract electrons from the nanobeads. The transverse SEM observations of the surface of the foam reveal a high density of potential emitting sites, which is estimated, according to SEM observations, greater than 10 7 sites per cm 2 . On the surface of the foam, the emerging rosaries are sufficiently spaced (a few hundred nanometers) to benefit from the important field amplification factor due to the morphology of the rosaries and in this case not favor the screening between close neighbors . This large number of sites, showing an adequate morphology for field emission applications, suggests first of all a uniform emission on a screen but, also strong emission currents, these properties being very sought after for a certain number of applications such as flat screens or electron sources in X-ray tubes.
La présente invention a également pour objet l'utilisation des chapelets de nanoperles et de la mousse tridimensionnelle selon l'invention pour la fabrication cathode froide en émission de champs électroniques, de support de catalyseurs, de renforts pour la fabrication de nanocomposites à matrice organique. Les exemples ci-après illustrent l'invention mais n'ont pas un caractère limitatif.The present invention also relates to the use of strings of nanobeads and three-dimensional foam according to the invention for the manufacture of cold cathodes in emission of electronic fields, of catalyst support, of reinforcements for the manufacture of nanocomposites with organic matrix. The examples below illustrate the invention but are not intended to be limiting.
Exemple 1 : croissance discrète de nanoperles de carbone I - Fabrication de nanoparticules de Ni : (1) Préparation du sol : - un précurseur du nickel : Nickel acétate tétrahydrate [Ni(Oac) .4H2O] - un agent réducteur : Méthyle hydrazine CH3-NH-NH2 (MH) - un solvant : propan-2-ol On utilisa un rapport molaire précurseur de nickel acétate tétrahydrateExample 1: discrete growth of carbon nanobeads I - Manufacture of nanoparticles of Ni: (1) Preparation of the soil: - a nickel precursor: Nickel acetate tetrahydrate [Ni (Oac). 4H 2 O] - a reducing agent: Methyl hydrazine CH 3 -NH-NH 2 (MH) - a solvent: propan-2-ol A molar ratio of nickel precursor acetate tetrahydrate was used
/méthylhydrazine égal à 1 et une concentration de 0,5 mole de nickel acétate tétrahydrate par litre de propan-2-ol. Pendant une journée, ces trois composants sont mélangés et agités jusqu'à dissolution des sels de nickel et réduction de ces sels de nickel par la méthyle hydrazine. La couleur de la solution change du bleu au bleu foncé, ce changement indique la substitution des ligands d'eau par la méthyle hydrazine. (2) Préparation du gel : Afin d'obtenir une poudre-gel sèche, le solvant de la solution est évaporé à l'air ambiant sous étuve à une température de 50°C. La composition du « powder-gel » est comparable à celle du composé : Ni(CH3COO) (H O)3MH avec - H=6.58 % - C=24.52% - Nl l.44% - Ni=23.96% (3) Combustion du gel Ce composé est broyé mécaniquement puis traité thermiquement à 400°C sous un flux d'azote (de 50 à 100 sccm) à pression atmosphérique pendant une heure afin d'obtenir le métal pur. La poudre obtenue est de nouveau broyée./ methylhydrazine equal to 1 and a concentration of 0.5 mol of nickel acetate tetrahydrate per liter of propan-2-ol. During one day, these three components are mixed and agitated until dissolution of the nickel salts and reduction of these nickel salts by methyl hydrazine. The color of the solution changes from blue to dark blue, this change indicates the substitution of the water ligands by methyl hydrazine. (2) Preparation of the gel: In order to obtain a dry powder-gel, the solvent for the solution is evaporated in ambient air in an oven at a temperature of 50 ° C. The composition of the "powder-gel" is comparable to that of the compound: Ni (CH 3 COO) (HO) 3 MH with - H = 6.58% - C = 24.52% - N l l.44% - Ni = 23.96% (3) Combustion of the gel This compound is mechanically ground and then heat treated at 400 ° C. under a flow of nitrogen (from 50 to 100 sccm) at atmospheric pressure for one hour in order to obtain the pure metal. The powder obtained is again ground.
II - Filtration La poudre broyée obtenue à partir du procédé sol-gel est dispersée aux ultrasons dans une solution de méthanol. Une préfiltration des particules en solution est réalisée, dans une fiole à vide équipée d'une trompe à eau, avec un entonnoir de filtration Duran avec un filtre de porosité 3 (16 à 40 μm). Ensuite, la filtration progressive se fait par des membranes polycarbonate Magna PCTE avec des seuils de filtration successifs de 10 ; 2 ; 0,2 et 0,1 μm (sur le même système). Dans le procédé selon l'invention, on utilisera de préférence des nanoparticules de nickel, en tant que catalyseurs de croissance du graphite. Il pourrait également être envisagé d'utiliser des nanoparticules de fer, cobalt et/ou nickel en mélange. III - Dépôt par décantation Le dépôt est réalisé sur un support de silicium de 1cm x 1 cm de dimension. Dans le cas de l'utilisation d'environ 1 mm de poudre non filtré obtenu par le procédé sol-gel, après filtration dans un volume de méthanol d'environ 150 ml, la dispersion de nanoparticules représentée sur la figure 1 peut être obtenue en disposant 1 ,5 cm de suspension sur le support. Les nanoparticules sont espacées de quelques micromètres et la densité de dépôt obtenue est d'environ 2,4.10" g de nanoparticules par m de support. IV - Croissance des nanoperles de carbone Les différentes étapes de la procédure de croissance CND à pression atmosphérique sont les suivantes : Le four est tout d'abord chauffé à 700°C, puis le support de croissance sur lequel les nanoparticules de Ni sont déposées est mis en place. Un balayage de 10 minutes sous atmosphère d'azote (N2) est effectué, ensuite un balayage avec un mélange gazeux composé d'acétylène C2H (20 %) et d'azote N2 (80 %) est maintenu durant 30 secondes correspondant à la durée de croissance CND de ces composés, enfin la croissance CND est arrêtée par un balayage final à l'azote d'une dizaine de minutes suivi d'une descente en température. Le diffractogramme de poudre aux rayons X des nanoperles selon l'invention, réalisé avec un diffractomètre PHILIPS à anticathode de cuivre (λ = 0,15418 nm) montre des pics caractéristiques, exprimés en 2Θ, à approximativement 8, 24 et 44 °. Les nanoperles sont donc composées d'une superposition, de façon concentrique, de copeaux de graphite dont la dimension latérale est estimée à 4 nm environ (détectés par Microscopie en transmission haute résolution). Cette superposition définit de façon statistique une structure cristallographique en 3 dimensions de (2 nm)3 mise en évidence par des mesures de diffraction des rayons X. La Fig. 5 présente les chapelets de nanoperles de carbone obtenus disposés de façon discrète sur le support.II - Filtration The ground powder obtained from the sol-gel process is dispersed by ultrasound in a methanol solution. A pre-filtration of the particles in solution is carried out, in a vacuum flask equipped with a water pump, with a Duran filtration funnel with a filter of porosity 3 (16 to 40 μm). Then, the progressive filtration is done by Magna PCTE polycarbonate membranes with successive filtration thresholds of 10; 2; 0.2 and 0.1 μm (on the same system). In the process according to the invention, nickel nanoparticles will preferably be used as catalysts for the growth of graphite. It could also be envisaged to use nanoparticles of iron, cobalt and / or nickel as a mixture. III - Deposition by decantation The deposition is carried out on a silicon support 1 cm × 1 cm in size. In the case of the use of approximately 1 mm of unfiltered powder obtained by the sol-gel process, after filtration in a methanol volume of approximately 150 ml, the dispersion of nanoparticles represented in FIG. 1 can be obtained by having 1.5 cm of suspension on the support. Nanoparticles are spaced a few micrometers and the deposition density obtained is approximately 2.4.10 "g nanoparticles per m holder IV -. Growth carbon nanoperles the various stages of the growth procedure CND at atmospheric pressure are following: The oven is firstly heated to 700 ° C., then the growth support on which the Ni nanoparticles are deposited. A 10-minute sweep under nitrogen (N 2 ) atmosphere is carried out, then scanning with a gas mixture composed of acetylene C 2 H (20%) and nitrogen N 2 (80%) is maintained for 30 seconds corresponding to the duration of CND growth of these compounds, finally the CND growth is stopped by a final scan with nitrogen of ten minutes followed by a drop in temperature. The X-ray powder diffractogram of the nanobeads according to the invention, produced with a PHILIPS diffractometer with copper anticathode (λ = 0.15418 nm) shows characteristic peaks, expressed in 2Θ, at approximately 8, 24 and 44 °. The nanobeads are therefore composed of a concentric superposition of graphite shavings whose lateral dimension is estimated at around 4 nm (detected by high resolution transmission microscopy). This superposition statistically defines a 3-dimensional crystallographic structure of (2 nm) 3 highlighted by X-ray diffraction measurements. FIG. 5 shows the strings of carbon nanobeads obtained discreetly arranged on the support.
Exemple 2 : croissance de faa n discrète de nanotubes de carbone On procède comme décrit aux paragraphes I à III de l'exemple 1. La croissance des nanotubes est ensuite réalisée par PE-CND. (balayage avec un mélange gazeux acétylène/ammoniac sous un champ électrique, pendant 30 minutes à 700°C, sous une pression de 13,3 Pa). La Fig. 4 présente les nanotubes obtenus, répartis de façon discrète sur le support de croissance.Example 2: Discrete Fa n Growth of Carbon Nanotubes The procedure is as described in paragraphs I to III of Example 1. The growth of the nanotubes is then carried out by PE-CND. (scanning with an acetylene / ammonia gas mixture under an electric field, for 30 minutes at 700 ° C., under a pressure of 13.3 Pa). Fig. 4 shows the nanotubes obtained, distributed discreetly on the growth support.
Exemple 3 : croissance en vrac de nanoperles de carbone On procède comme décrit aux paragraphes I à IN de l'exemple 1, à la différence près, qu'au paragraphe III, on dépose une densité de 1 g de nanoparticules de Ni par m de support et qu'au paragraphe IV, le balayage avec le mélange acétylène/azote est maintenu pendant 5 minutes. Les Fig. 6 et 7 présentent la structure en trois dimensions obtenue. Example 3 Bulk Growth of Carbon Nanobeads The procedure is as described in paragraphs I to IN of Example 1, with the difference that in paragraph III, a density of 1 g of nanoparticles of Ni is deposited per m of support and in paragraph IV, the scanning with the acetylene / nitrogen mixture is maintained for 5 minutes. Figs. 6 and 7 show the three-dimensional structure obtained.

Claims

REVENDICATIONS 1 - Procédé de fabrication de nanocomposés de carbone graphitique comprenant les étapes successives suivantes : a) préparation par procédé sol-gel d'une poudre de nanoparticules de métal ferromagnétique, b) filtration de la poudre de nanoparticules de métal ferromagnétique préparée précédemment, de façon à obtenir une poudre calibrée de nanoparticules de métal ferromagnétique dont le diamètre moyen est inférieur ou égal à 200 nm, c) dépôt de la poudre calibrée de nanoparticules de métal ferromagnétique ainsi obtenue sur un support de croissance, d) croissance de nanocomposés de carbone graphitique sur le support de croissance, par la technique dite CVD de dépôt de composés chimiques en phase vapeur, les nanoparticules de métal ferromagnétique jouant le rôle de catalyseur. 2 - Procédé selon la revendication 1, caractérisé en ce qu'à l'étape b) la filtration utilisée permet d'obtenir une poudre calibrée de nanoparticules de métal ferromagnétique dont le diamètre moyen est inférieur ou égal à 100 nm et de préférence de l'ordre de 100 nm. 3 - Procédé selon la revendication 1 ou 2, caractérisé en ce qu'à l'étape c), le dépôt est effectué avec contrôle de la densité de dépôt des nanoparticules de métal ferromagnétique. 4 - Procédé selon la revendication 1 à 3, caractérisé en ce qu'à l'étape c), le dépôt est effectué par décantation de la poudre calibrée de nanoparticules de métal ferromagnétique en suspension dans un solvant donné et evaporation dudit solvant. 5 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'à l'étape c), les nanoparticules sont déposées de façon discrète. 6 - Procédé selon la revendication 5, caractérisé en ce qu'à l'étape c) la densité de dépôt est comprise entre 2.10"3 et 0,5 g/m2. 7 - Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'à l'étape c) les nanoparticules sont déposées en vrac. 8 - Procédé selon la revendication 7, caractérisé en ce qu'à l'étape c) la densité de dépôt est supérieure à 1 g/m2. 9 - Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'une poudre de nanoparticules de nickel, en tant que métal ferromagnétique, est utilisée. 10 - Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'à l'étape d), le support est chauffé à une température de l'ordre de 600°C de façon à obtenir une croissance de nanotubes de carbone graphitique. 11 - Procédé selon l'une des revendications 1 à 9, caractérisé en ce qu'à l'étape d), le support est chauffé à une température de l'ordre de 700°C de façon à obtenir une croissance de nanoperles de carbone graphitique. 12 - Chapelets associant des nanoperles isodisperses de carbone graphitique par forces de Van der Waals, les dites nanoperles étant susceptibles d'être obtenues par le procédé de croissance selon la revendication 11 et de forme sensiblement sphérique, de diamètre compris entre 80 et 150 nm, de préférence de l'ordre de 100 nm, et dont le diffractogramme de poudre aux rayons X aux petits angles révèle la présence de structures élémentaires cohérentes. 13 - Mousse tridimentionnelle formée par un enchevêtrement de chapelet selon la revendication 12. 14 - Mousse tridimentionnelle selon la revendication 13 caractérisée en ce qu'elle présente en surface des chaînes linéaires de nanoperles émergentes dont la partie émergente est supérieure ou égale à 500nm. 15 - Mousse tridimentionnelle selon la revendication 14 caractérisée en ce que la densité de chaînes émergentes en surface est supérieure ou égale à 10 1 /1cm -.2 16 - Utilisation de chapelets de nanoperles selon la revendication 12 ou d'une mousse tridimentionnelle selon l'une des revendications 13 à 15 pour la fabrication de cathode froide en émission de champs électroniques, de support de catalyseurs, de renforts pour la fabrication de nanocomposites à matrice organique. CLAIMS 1 - Process for the manufacture of graphitic carbon nanocompounds comprising the following successive stages: a) preparation by sol-gel process of a powder of nanoparticles of ferromagnetic metal, b) filtration of the powder of nanoparticles of ferromagnetic metal prepared previously, of so as to obtain a calibrated powder of ferromagnetic metal nanoparticles whose average diameter is less than or equal to 200 nm, c) depositing the calibrated powder of ferromagnetic metal nanoparticles thus obtained on a growth support, d) growth of carbon nanocomposites graphitic on the growth support, by the CVD technique of deposition of chemical compounds in the vapor phase, the nanoparticles of ferromagnetic metal playing the role of catalyst. 2 - Method according to claim 1, characterized in that in step b) the filtration used allows to obtain a calibrated powder of nanoparticles of ferromagnetic metal whose average diameter is less than or equal to 100 nm and preferably l '' order of 100 nm. 3 - Method according to claim 1 or 2, characterized in that in step c), the deposition is carried out with control of the deposition density of the ferromagnetic metal nanoparticles. 4 - Process according to claim 1 to 3, characterized in that in step c), the deposition is carried out by decantation of the calibrated powder of nanoparticles of ferromagnetic metal in suspension in a given solvent and evaporation of said solvent. 5 - Method according to one of claims 1 to 4, characterized in that in step c), the nanoparticles are deposited discretely. 6 - Method according to claim 5, characterized in that in step c) the deposit density is between 2.10 "3 and 0.5 g / m 2. 7 - Method according to one of claims 1 to 4 , characterized in that in step c) the nanoparticles are deposited in bulk. 8 - Process according to claim 7, characterized in that in step c) the deposit density is greater than 1 g / m 2 . 9 - Method according to one of claims 1 to 5, characterized in that a powder of nickel nanoparticles, as a ferromagnetic metal, is used. 10 - Method according to one of claims 1 to 9, characterized in that in step d), the support is heated to a temperature of about 600 ° C so as to obtain growth of carbon nanotubes graphitic. 11 - Method according to one of claims 1 to 9, characterized in that in step d), the support is heated to a temperature of about 700 ° C so as to obtain a growth of carbon nanobeads graphitic. 12 - Rosaries associating isodisperse graphite carbon nanopearls by Van der Waals forces, the said nanopearls being capable of being obtained by the growth process according to claim 11 and of substantially spherical shape, with a diameter between 80 and 150 nm, preferably of the order of 100 nm, and whose X-ray powder diffractogram at small angles reveals the presence of coherent elementary structures. 13 - three-dimensional foam formed by a tangle of beads according to claim 12. 14 - three-dimensional foam according to claim 13 characterized in that it has on the surface linear chains of emerging nanobeads whose emerging part is greater than or equal to 500nm. 15 - Three-dimensional foam according to claim 14 characterized in that the density of emerging chains on the surface is greater than or equal to 10 1 / 1cm -.2 16 - Use of strings of nanopereads according to claim 12 or a three-dimensional foam according to l 'one of claims 13 to 15 for the manufacture of cold cathode in emission of electronic fields, catalyst support, reinforcements for the manufacture of organic matrix nanocomposites.
PCT/FR2004/001979 2003-07-23 2004-07-23 Method for producing graphitic carbon nanocomposites in particular nanopearls in bulk or in an individual manner WO2005009900A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0308973A FR2857955B1 (en) 2003-07-23 2003-07-23 PROCESS FOR MANUFACTURING NANOCOMPOSES OF GRAPHIC CARBON AND PARTICULARLY NANOPERLES, IN BULK OR INDIVIDUALIZED
FR0308973 2003-07-23

Publications (2)

Publication Number Publication Date
WO2005009900A2 true WO2005009900A2 (en) 2005-02-03
WO2005009900A3 WO2005009900A3 (en) 2005-05-19

Family

ID=33561012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/001979 WO2005009900A2 (en) 2003-07-23 2004-07-23 Method for producing graphitic carbon nanocomposites in particular nanopearls in bulk or in an individual manner

Country Status (2)

Country Link
FR (1) FR2857955B1 (en)
WO (1) WO2005009900A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736440A1 (en) * 2005-06-20 2006-12-27 Nanocyl S.A. Process for preparing carbon nanotubes
DE102005032072A1 (en) * 2005-07-08 2007-01-11 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung e.V. Carbon nanoparticles, their preparation and their use
WO2008054839A2 (en) * 2006-03-03 2008-05-08 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220056599A1 (en) * 2019-03-01 2022-02-24 Commonwealth Scientifice and Industrial Research Organisation Vertical Branched Graphene

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205437A1 (en) * 1999-05-27 2002-05-15 Eiji Osawa Method for preparing nano-size particulate graphite
US20030004058A1 (en) * 2001-05-21 2003-01-02 Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205437A1 (en) * 1999-05-27 2002-05-15 Eiji Osawa Method for preparing nano-size particulate graphite
US20030004058A1 (en) * 2001-05-21 2003-01-02 Trustees Of Boston College Varied morphology carbon nanotubes and method for their manufacture

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHEN X H ET AL: "New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition" CHEMICAL PHYSICS LETTERS, 16 MARCH 2001, ELSEVIER, NETHERLANDS, vol. 336, no. 3-4, 16 mars 2001 (2001-03-16), pages 201-204, XP002268197 ISSN: 0009-2614 *
LEVESQUE A ET AL: "Field emission under extreme conditions from carbon nanopearls in a foam-like arrangement" 11 juillet 2004 (2004-07-11), VACUUM NANOELECTRONICS CONFERENCE, 2004. IVNC 2004. TECHNICAL DIGEST OF THE 17TH INTERNATIONAL CAMBRIDGE, MA, USA 11-16 JULY 2004, PISCATAWAY, NJ, USA,IEEE, US, PAGE(S) 64-65 , XP010738165 ISBN: 0-7803-8397-4 abrégé *
RODE A V ET AL: "Formation of cluster-assembled carbon nano-foam by high-repetition-rate laser ablation" APPLIED PHYSICS A (MATERIALS SCIENCE PROCESSING) SPRINGER-VERLAG GERMANY, vol. A70, no. 2, 21 janvier 2000 (2000-01-21), pages 135-144, XP002314578 ISSN: 0947-8396 *
SHARON M. ET AL: "Spongy carbon nanobeads-a new material" ARBON, vol. 36, no. 5-6, 1998, pages 507-511, XP002314579 *
TSAI S H ET AL: "A novel technique for the formation of carbon-encapsulated metal nanoparticles on silicon" CARBON, ELSEVIER SCIENCE PUBLISHING, NEW YORK, NY, US, vol. 38, no. 5, 2000, pages 781-785, XP004191742 ISSN: 0008-6223 *
WANG SHENG-GAO ET AL: "Synthesis of carbon nanotubes by MWPCVD at a low temperature" PLASMA SCIENCE & TECHNOLOGY, FEB. 2002, INST. PLASMA PHYS, CHINA, vol. 4, no. 1, 2002, pages 1135-1140, XP009024444 ISSN: 1009-0630 *
Z. L. WANG ET AL: "Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process" J. PHYS. CHEM., vol. 100, 1996, pages 17725-17731, XP002314577 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736440A1 (en) * 2005-06-20 2006-12-27 Nanocyl S.A. Process for preparing carbon nanotubes
WO2006135991A1 (en) * 2005-06-20 2006-12-28 Nanocyl S.A. Method for producing carbon nanotubes
DE102005032072A1 (en) * 2005-07-08 2007-01-11 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung e.V. Carbon nanoparticles, their preparation and their use
WO2008054839A2 (en) * 2006-03-03 2008-05-08 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
WO2008054839A3 (en) * 2006-03-03 2009-04-30 Univ Rice William M Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
US8124503B2 (en) 2006-03-03 2012-02-28 William Marsh Rice University Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces

Also Published As

Publication number Publication date
WO2005009900A3 (en) 2005-05-19
FR2857955A1 (en) 2005-01-28
FR2857955B1 (en) 2006-12-01

Similar Documents

Publication Publication Date Title
JP5456309B2 (en) Method for manufacturing and coating nanostructured components
JP5027167B2 (en) Carbon nanotube structure and manufacturing method thereof
JP5747333B2 (en) Method for producing aligned carbon nanotube assembly
US8541054B2 (en) Methods for preparation of one-dimensional carbon nanostructures
Chen et al. Electroless deposition of Ni nanoparticles on carbon nanotubes with the aid of supercritical CO2 fluid and a synergistic hydrogen storage property of the composite
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
US20060067872A1 (en) Method of preparing catalyst base for manufacturing carbon nanotubes and method of manufacturing carbon nanotubes employing the same
JP5403284B2 (en) Nanotube / nanohorn complex and method for producing the same
WO2008029927A1 (en) Method for production of carbon nanotube
EP2467205A2 (en) Two-layer catalyst, process for preparing same and use for the manufacture of nanotubes
US9409781B2 (en) Large-area carbon nanomesh from polymer and method of preparing the same
WO2013093358A1 (en) Method for producing an assembly of carbon nanotubes and graphene
JP2010173862A (en) Method for producing microstructural material
Zhou et al. Multi-directional growth of aligned carbon nanotubes over catalyst film prepared by atomic layer deposition
JP5770166B2 (en) New adjustable gas storage and gas sensing materials
JP2012213716A (en) Base material for producing aligned carbon-nanotube aggregate, method for producing aligned carbon-nanotube aggregate, and method for producing base material for producing aligned carbon-nanotube aggregate
TW201420499A (en) Carbon nanotubes conformally coated with diamond nanocrystals or silicon carbide, methods of making the same and methods of their use
WO2005033001A2 (en) Methods for preparation of one-dimensional carbon nanostructures
Muhl et al. Transparent conductive carbon nanotube films
WO2005009900A2 (en) Method for producing graphitic carbon nanocomposites in particular nanopearls in bulk or in an individual manner
JP2969503B2 (en) How to make carbonaceous fiber
US20230311098A1 (en) The formation of catalyst pt nanodots by pulsed/sequential cvd or atomic layer deposition
JP2010042942A (en) Method for manufacturing substrate for forming carbon nanotube and method for manufacturing carbon nanotube using the substrate
FR3086673A1 (en) MULTILAYER STACK FOR CVD GROWTH OF CARBON NANOTUBES
JP5390483B2 (en) Nanotube formation method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D UN DROIT CONFORMEMENT A LA REGLE 69(1)CBE (FORM 1205A - 10.05.2006)

122 Ep: pct application non-entry in european phase