WO2005003409A1 - Method for producing nanocarbon material and method for manufacturing wiring structure - Google Patents

Method for producing nanocarbon material and method for manufacturing wiring structure Download PDF

Info

Publication number
WO2005003409A1
WO2005003409A1 PCT/JP2003/016831 JP0316831W WO2005003409A1 WO 2005003409 A1 WO2005003409 A1 WO 2005003409A1 JP 0316831 W JP0316831 W JP 0316831W WO 2005003409 A1 WO2005003409 A1 WO 2005003409A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst metal
semiconductor
carbon
nanocarbon material
electrolysis
Prior art date
Application number
PCT/JP2003/016831
Other languages
French (fr)
Japanese (ja)
Inventor
Haruo Yokomichi
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to CA002530976A priority Critical patent/CA2530976A1/en
Priority to US10/563,018 priority patent/US20060163077A1/en
Publication of WO2005003409A1 publication Critical patent/WO2005003409A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • the present invention relates to a method for producing a nanocarbon material such as a carbon nanotube, and a method for producing a wiring structure using a nanocarbon material for wiring.
  • Nanocarbon materials such as so-called carbon nanotubes. Since these nanocarbon materials have different properties from the conventional carbon materials such as Graphite-Diamond, they are expected to be applied to electron emission sources for electrodes, conductive films, battery electrodes, and the like. Nanocarbon materials are also considered suitable for wiring applications.
  • a method for producing (synthesizing) the nanocarbon such as the carbon nanotubes described above a gas phase synthesis method and an arc discharge method are known.
  • DLC diamond-like carbon
  • carbon films have been studied as new carbon materials.
  • these DLCs and carbon films have been generally manufactured by vapor deposition (CVD, PVD), but recently, a manufacturing method by electrolytic deposition has been proposed (Hao Wang, et al. “Deposition of Diamond— ⁇ ike carbon ii ⁇ ms by electrolysis of methanol solution” ⁇ Deposition of Diamond— ⁇ ike carbon ii ⁇ ms by electrolysis of methanol solution Applied Physics Letters, August 19, 1969, 69 (8), ⁇ .
  • the present invention has been made to solve the above-described problems, and has as its object to provide a method for manufacturing a nanocarbon material and a method for manufacturing a wiring structure, which have a simple apparatus and can be manufactured at a low temperature. Disclosure of the invention
  • the present inventors have found that the use of a predetermined cathode and an electrolytic solution makes it possible to produce a nanocarbon material by electrolysis with a simpler apparatus and at a lower temperature (for example, room temperature) than before.
  • the method for producing a nanocarbon material of the present invention uses a semiconductor in which a catalyst metal is formed non-uniformly as a cathode and performs electrolysis in an electrolytic solution containing an organic solvent. A nanocarbon material is formed on the surface of the catalyst metal.
  • the method for producing a nanocarbon material of the present invention includes the steps of: electrolyzing a semiconductor in a electrolyte containing ions of a catalyst metal using a semiconductor as a cathode, and forming the catalyst metal unevenly on the surface of the semiconductor; Forming a nano-sized carbon material on the surface of the catalyst metal by subjecting the semiconductor in which the metal is formed non-uniformly to a cathode and performing electrolysis in an electrolytic solution containing an organic solvent. I do.
  • the method for producing a nanocarbon material according to the present invention includes the steps of: etching a catalyst metal formed on a surface of a semiconductor to form the catalyst metal non-uniformly on the surface of the semiconductor; Forming a nanocarbon material on the surface of the catalytic metal by electrolysis in an electrolyte containing an organic solvent using the formed semiconductor as a cathode.
  • the wiring structure is formed at both ends of a wiring forming position in a projecting shape.
  • the catalyst metal thus obtained is used as a cathode and a cathode or an anode, and is electrolyzed in an electrolytic solution containing an organic solvent to form a nanocarbon material as a wiring between the catalyst metals.
  • FIG. 1 is a diagram showing a configuration of an electrolysis apparatus suitable for use in producing the nanocarbon material of the present invention.
  • FIG. 2 is a diagram schematically showing a mode in which a nanocarbon material is electrodeposited.
  • FIG. 3 is another diagram schematically showing a mode in which the nanocarbon material is electrodeposited.
  • FIG. 4 (a) is a process drawing showing an aspect of performing the method of manufacturing a wiring structure of the present invention.
  • FIG. 4 (b) is a view following FIG. 4 (a).
  • FIG. 5 is another diagram showing an embodiment in which the method of manufacturing a wiring structure according to the present invention is performed.
  • FIG. 6 is a view showing an SEM image of a semiconductor substrate on which Ni is formed unevenly.
  • FIG. 7 is a diagram showing an SEM image of the substrate surface after electrodeposition.
  • FIG. 8 is a diagram showing a partially enlarged SEM image of FIG.
  • FIG. 9 is a diagram showing a partially enlarged SEM image of FIG.
  • FIG. 10 is a diagram showing a partially enlarged SEM image of FIG.
  • FIG. 11 is a diagram showing an SEM image of another place on the substrate surface after electrodeposition.
  • FIG. 12 is a diagram showing a partially enlarged SEM image of FIG. 11.
  • FIG. 13 is a diagram showing a TEM image of the deposit.
  • FIG. 14 is a diagram showing a TEM image of another measurement region of an electrodeposit.
  • FIG. 15 is a diagram showing a partially enlarged TEM image of FIG.
  • Figure 16 is a diagram showing an SEM image of another substrate surface after electrodeposition.
  • FIG. 17 is a diagram showing an SEM image of the substrate surface after electrodeposition in the comparative example.
  • FIG. 18 is a diagram showing a partially enlarged SEM image of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the method for producing a nanocarbon material according to the present invention includes the steps of: using a semiconductor on which a catalyst metal is formed non-uniformly as a cathode, and performing electrolysis in an electrolytic solution containing an organic solvent, so that the nanocarbon material Is formed.
  • the nanocarbon material produced according to the present invention refers to a carbon material having a structure having a size of about 0.111111 to several 10011 m.
  • Examples include tubular fibrous materials having a diameter of 0.111111 to several 10 nm), carbon nanowires (examples include solid fibrous materials having a diameter of several 100 nm), and carbon onions.
  • Examples are spherical fine particles having a diameter of several nm to several hundred nm and a graphite layer of several hundred to several hundred layers stacked in an onion shape), a radial aggregate of carbon nanowires (a large number of carbon nanowires are bundled radially). And expanded like a flower).
  • the present invention is suitable for producing an elongated fibrous material such as carbon nanotubes and carbon nanowires.
  • silicon is easily available and preferable, but other than this, a semiconductor such as germanium or a metal having a high resistance can be used. In the case where silicon is used, it is preferable to use silicon doped with impurities, since the electric resistance is reduced.
  • the catalyst metal is formed non-uniformly on the surface of the semiconductor.
  • the non-uniform formation referred to here is, for example, an island-like or granular dispersion formed on the semiconductor surface. It is thought that the current is concentrated on the portion where the catalyst metal is formed because the conductivity is higher than that of the semiconductor, and the carbon atoms of the organic solvent in the electrolyte are electrodeposited with the portion forming the nucleus as a nucleus.
  • the catalyst metal may be any as long as it has conductivity, and examples thereof include Ni, Co, Fe, Al, Cu, and Zn.
  • Ni, Co, and Fe are preferable, and particularly, Ni is most preferable, and then, Co and Fe are more preferable.
  • the catalyst metal is preferably formed on the surface of the semiconductor with a thickness of several nm to several 10 nm, preferably about 10 nm. Note that a plurality of types of catalytic metals (for example, Ni and Fe) and alloys thereof may be formed on one semiconductor.
  • each island-shaped (or granular) catalyst metal unevenly formed on the semiconductor surface is considered to determine the type of nanocarbon material mainly formed on the surface.
  • the size (diameter) of each catalyst metal is 0.1 to several 10 nm, preferably 0.1 nm.
  • 10 nm more preferably 0.1 to 0.5 nm, mainly a carbon nanotube is manufactured. This is because the electrolytic effect concentrates on the edge of the catalyst metal due to the so-called edge effect, and carbon is deposited on the edge, while electrodeposition becomes difficult at the center of the catalyst metal, and a tubular carbon nanotube grows. It is possible to do.
  • each catalyst metal when the size (diameter) of each catalyst metal is several 100 nm, preferably 100 to 200 ⁇ m, mainly carbon nanowires are produced.
  • the edge effect does not occur because the diameter increases, and an electrolytic current flows over the entire surface of the catalyst metal, carbon is deposited on the entire surface of the catalyst metal, and solid carbon-carbon nanowires grow. It is possible.
  • catalyst metals of various sizes (diameters) exist on the semiconductor surface various nanocarbon materials are formed according to the diameters.
  • Examples of a method for forming the catalyst metal non-uniformly on the semiconductor surface include, for example, a method in which electrolysis is performed using the semiconductor as a cathode in an electrolytic solution containing ions of the catalyst metal, and the catalyst metal is non-uniformly deposited on the surface of the semiconductor.
  • the catalyst metal can be formed non-uniformly by lowering the concentration of the catalyst metal ion in the electrolytic solution or by electrolyzing at a low current density.
  • the metal ions may be dissolved in the electrolyte in such an amount that the film thickness becomes about 10 nm. .
  • the concentration varies depending on the amount of the electrolytic solution. Therefore, the concentration is appropriately adjusted to meet the above conditions.
  • the electrolytic solution for example, a solution obtained by dissolving the above-mentioned catalyst metal nitrate (nickel nitrate, cobalt nitrate, ferrous nitrate, etc.) in an alcohol (eg, ethyl alcohol) can be used.
  • a method of forming the catalyst metal on the surface of the semiconductor and etching the catalyst metal there is a method of forming the catalyst metal on the surface of the semiconductor and etching the catalyst metal.
  • a catalytic metal such as Ni is formed on the surface of the semiconductor by sputtering to a predetermined thickness, and this is placed in an etching gas (for example, ammonia gas), whereby Ni is partially etched away.
  • the amount of metal ions in the electrolytic solution is increased so that the catalyst metal becomes large particles. can do.
  • the catalyst metal is usually The size of the grains is fairly widespread, with the size of large grains often a few meters and the size of small grains often a few nanometers.
  • the organic solvent contained in the electrolyte is not particularly limited, and examples thereof include alcohol, nitrile, benzene, and xylene.
  • alcohol such as methanol or ethanol, or tolethane-tolyl (acetonitrile) in methane is used.
  • Aliphatic nitriles are preferred.
  • the electrolyte may be an organic solvent alone, a mixture of a plurality of types of organic solvents, or a mixture of an organic solvent with water, a conduction aid, or the like.
  • the electrolytic solution is electrolyzed, and the anode is not particularly limited.
  • a carbon electrode, various insoluble anodes and the like can be used.
  • electrolytic conditions is not particularly limited, for example, to several 1 O m AZ cm 2, preferably may be direct electrolysis at a current density of 2 ⁇ 6 m AZ cm 2.
  • the electrolysis voltage (the voltage between the cathode and the anode) varies depending on the distance between the electrodes and the electric conductivity of the electrolyte, but is preferably 0.1 to a few tens of yen, more preferably 0.1 to 1 5 kV.
  • alternating electrolysis may be performed.
  • the above semiconductor may be used for either or both of the cathode and the anode.
  • the electrolysis temperature is not particularly limited, and may be a temperature at which the electrolyte does not boil, for example, room temperature to about 50 ° C.
  • the electrolytic solution may be appropriately cooled.
  • the electrolysis time varies depending on the electrolysis conditions. For example, the electrolysis may be performed for about 1 to 10 hours. .
  • an electrolytic device shown in FIG. 1 can be used.
  • an electrolyzer 10 includes an electrolyzer 2, a magnetic stirrer 3, a cathode 4 made of a semiconductor substrate, an anode 6, a thermometer 7, and a DC power supply 8.
  • the electrolytic bath 2 contains an electrolytic solution containing an organic solvent.
  • the catalyst metal 4 a is formed non-uniformly on the surface of the cathode 4 facing the anode 6. Then, by electrolysis, carbon atoms in the organic solvent are electrodeposited on the catalytic metal 4a and grow toward the anode 6 side.
  • the nanocarbon material prayed may be recovered by, for example, peeling it off from the catalytic metal by a mechanical method.
  • a nanocarbon material containing a catalyst metal or a nanocarbon material having a catalyst metal formed at the bottom can be obtained.
  • electrodeposition on semiconductors It may be used as it is.
  • FIG. 2 schematically show how the nanocarbon material is electrodeposited.
  • the catalytic metal 40a is formed in an island shape on the surface of the semiconductor substrate 40, and the nano-car is formed from the edge of the catalytic metal 40a toward the anode side (upward in the figure) by the edge effect described above.
  • the carbon material has grown and tubular carbon nanotubes have been formed.
  • the catalyst metal 41a is formed in an island shape on the surface of the semiconductor substrate 41, and in this case, the nanocarbon material is applied to the entire surface (including the side surface) of the catalyst metal 40a.
  • the catalyst has formed a carbon onion containing the catalyst metal.
  • the method for manufacturing a wiring structure of the present invention is performed in the same procedure as the above-described method for manufacturing a nanocarbon material, except that catalyst metals formed in a protruding shape at both ends of a wiring forming position are used as a cathode and an anode. It is different from the above method.
  • a nanocarbon material is formed as a wiring between a catalyst metal serving as a cathode and an anode. This will be described with reference to FIG.
  • wiring patterns 200 and 201 are formed on the surfaces of two circuit boards 100 and 101, respectively (FIG. 4 (a)). Now, it is assumed that the end (right end) of the wiring pattern 200 and the end (left end) of the wiring pattern 201 are to be wired and connected. In this case, first, the ends (right end) of the wiring pattern 200 and the ends (left end) of the wiring pattern 201, which are both ends of the wiring forming position, are formed with protrusions 200a made of a catalyst metal, respectively. 21a is formed in advance. Next, the wiring forming position including at least the protrusions 200a and 201a is immersed (or contacted) in an electrolytic solution containing an organic solvent. In this case, the entire circuit board 100, 101 may be immersed in the electrolytic solution, or an electrolytic cell in which only the wiring formation position is immersed in the electrolytic solution may be used.
  • the projections 200 a and 201 a are respectively used as a cathode and an anode (any one of them may be a cathode, but in this embodiment, the projection 200 a is assumed to be a cathode).
  • the nanocarbon material deposited on the protrusion 200a grows toward the protrusion 201a, and then the nanocarbon material is connected to the protrusion 201a. In this way, the nanocarbon material is formed as wiring 300 between the protrusions 200a and 201a. (Fig. 4 (b)).
  • the electrolysis may be DC electrolysis or alternating electrolysis.
  • the power source is connected to each wiring pattern 200, It may be connected to 201 and electrolyzed.
  • the size (diameter) of the protrusions 200a and 20la may be the same as the size (diameter) of the catalyst metal in the above-described method for producing a nanocarbon material, and by controlling the diameter, the nanocarbon material is obtained. This is also the same as in the case of the above-described method for producing a nanocarbon material.
  • the height of the protrusions 200a and 20la may be, for example, several nm to several 10 nm. The point is that the current only needs to be concentrated on the protrusions 200a and 201a.
  • a projection 2110a is formed in the wiring pattern 210, and a projection 2111a is formed in the wiring pattern 211.
  • the wiring patterns 210 and 211 are to be opposed to each other, and that wiring is to be performed between the protrusion 210a and the protrusion 211a.
  • the wiring pattern 210 is located above the wiring pattern 211, and the protrusion 210a is on an extension of the protrusion 211a.
  • the nanocarbon material is formed as the wiring 301 between the protrusions 210a and the protrusions 211a. It should be noted that even if the protrusion 2110a is shifted from the extension of the protrusion 211a to some extent, the nanocarbon material is formed as a wiring.
  • wiring can be performed at a low temperature such as room temperature using a nanocarbon material, and fine wiring, which has been extremely difficult in the past, can be easily performed. it can. That is, since current concentrates on the protruding portion at the wiring formation position, a nanocarbon material can be selectively deposited on a portion where wiring is desired to be formed as a wiring.
  • FIG. 1 shows an SEM (scanning electron microscope) image of a semiconductor substrate with non-uniform Ni.
  • the white part in the figure is the granular Ni, and the granular Ni with a size (diameter) of about 0.1 to 0.5 ⁇ is mainly seen.
  • Granular Ni with a nm particle size was also confirmed (not shown).
  • the semiconductor substrate produced by this etching method is referred to as substrate 1.
  • the electrolytic device shown in FIG. 1 was prepared.
  • the substrate 1 was used as a cathode.
  • a carbon rod with an outer diameter of 5 mm was used for the anode.
  • Electrolysis was performed using 5 OmL of methane nitrile (purity 99.5 vol%, reagent grade) as the electrolyte, current density 4 mA / cm 2 , distance between electrodes 5 mm, electrolysis voltage lkV, and electrolyte volume 50 mL. An electrodeposit was obtained on the cathode surface. Electrolysis was performed at room temperature, but the liquid temperature increased only 2-3 ° C after electrolysis. ⁇ Example 2>
  • non-uniform precipitation of Ni on the semiconductor substrate and electrodeposition of a nanocarbon material were simultaneously performed using the following electrolytic solution.
  • Electrolysis was carried out in exactly the same manner as in Example 1 above, except that the above-mentioned semiconductor substrate was used without forming Ni, and ethanol was used as the electrolytic solution. An electrodeposit was obtained.
  • the electrodeposits obtained in each Example and Comparative Example were identified by the following method.
  • SEM scanning electron microscope: JSM-5600 (electron beam: 15 kV)
  • TEM transmission electron microscope: JEOL
  • EDS Energy dispersive spectroscopy: an energy dispersive X-ray spectrometer, Link ISIS made by Oxford (electron beam 15 kV)
  • FIGS. 7 to 18 and Table 1 The results are summarized in FIGS. 7 to 18 and Table 1.
  • FIG. 7 is an SEM image of the substrate surface after electrodeposition in Example 2
  • FIG. 8 is a partially enlarged SEM image of FIG. 7
  • FIG. 9 is a partially enlarged SEM image of FIG.
  • FIG. 10 is a partially enlarged SEM image of FIG.
  • the white part indicates the precipitate
  • the black part indicates the deposit of the amorphous carbon film. It can be seen that this precipitate grows in a spike (needle) shape with a predetermined portion of the semiconductor substrate as a nucleus.
  • FIG. 11 is an SEM image of another place on the substrate surface after electrodeposition in Example 2
  • FIG. 12 is a partially enlarged SEM image of FIG.
  • the white portion indicates a precipitate, which indicates that the precipitate has grown into a fibrous form.
  • elemental analysis was performed by EDX on the same measurement area as the measurement samples in Figs. 7 and 11 above, and it was found that the white part in each figure was carbon. From FIGS. 7 to 12 described above, it can be seen that in Example 2, a fibrous carbon structure having a diameter of about 100 nm was generated, which can be said to be a carbon nanowire.
  • FIG. 13 is a TEM image of the electrodeposit in Example 2.
  • an onion-like carbon structure having a diameter of about 10 to 20 nm and a large number of graphite layers laminated is generated.
  • the composition of this structure is carbon from the result of the EDX analysis, and from these, the precipitate can be identified as carbon onion.
  • FIG. 14 shows the T values of the deposits in Example 2 in a different measurement area from Fig. 13.
  • FIG. 15 is a partially enlarged TEM image of FIG. According to FIG. 15, it can be seen that this fibrous precipitate has a large number of graphite layers laminated and a hollow core. According to Fig. 15, it can be read that the interval between the graphite layers is about 0.33 to 0.36 nm, and the outer diameter is about 30 nm and the inner diameter is about 2 nm. Usually, the layer spacing of carbon nanotubes is said to be 0.34 nm, from which the precipitate can be identified as carbon nanotubes.
  • FIG. 16 is an SEM image of the substrate surface after electrodeposition in Example 1, and a spiked electrodeposit with Ni as a nucleus can be seen in the center part of the figure, slightly to the right. According to EDX, this deposit was also composed of carbon, so it is considered to be a carbon nanowire.
  • FIG. 17 is an SEM image of the substrate surface after electrodeposition in the comparative example. Both the white and black parts in the figure are amorphous carbon films, and it is probable that the white and black parts were photographed due to differences in film thickness (irregularities on the film surface).
  • FIG. 18 is a partially enlarged SEM image of FIG. Although film-like substances were deposited on almost the entire surface of the substrate, no fibrous carbon materials such as carbon nanotubes and carbon nanowires were found. When Raman spectroscopy was performed on this film-like material, no sharp signal as seen in diamond-like force was observed. This is considered to be an amorphous carbon film.

Abstract

By conducting electrolysis in an electrolytic solution containing an organic solvent using a semiconductor on which a catalyst metal is formed non-uniformly as a cathode, a nanocarbon material is formed on the surface of the catalyst metal.

Description

明 細 書 ナノカーボン材料の製造方法、 及び配線構造の製造方法 技術分野  Description Manufacturing method of nanocarbon material and manufacturing method of wiring structure
本発明は、 カーボンナノチューブ等のナノカーボン材料の製造方法、 及ぴナノ カーボン材料を配線に用いた配線構造の製造方法に関する。 背景技術  The present invention relates to a method for producing a nanocarbon material such as a carbon nanotube, and a method for producing a wiring structure using a nanocarbon material for wiring. Background art
近年、 いわゆるカーボンナノチューブ等のナノカーボン材料が注目されている 。 これらのナノカーボン材料は従来の炭素材料であるグラフアイ トゃダイヤモン ドと異なる物性を有しているため、 電極の電子放出源、 伝導性膜、 電池電極等へ の応用が期待されている。 また、 ナノカーボン材料は配線用途としても適してい ると考えられる。 上記カーボンナノチューブ等のナノカーボンの製造 (合成) 方 法としては、 気相合成法やアーク放電法が知られている。  In recent years, attention has been paid to nanocarbon materials such as so-called carbon nanotubes. Since these nanocarbon materials have different properties from the conventional carbon materials such as Graphite-Diamond, they are expected to be applied to electron emission sources for electrodes, conductive films, battery electrodes, and the like. Nanocarbon materials are also considered suitable for wiring applications. As a method for producing (synthesizing) the nanocarbon such as the carbon nanotubes described above, a gas phase synthesis method and an arc discharge method are known.
—方、 上記ナノカーボン材料とは異なるが、 新規なカーボン材料としてダイヤ モンドライクカーボン (DLC) やカーボン膜が研究されている。 従来、 この D LCやカーボン膜は蒸着法 (CVD、 P VD) によって一般に製造されてきたが 、 最近、 電解析出による製造方法が提案されている (ハオ ' ウォン(Hao Wang), 外 4名、 「デポジション 'ォブ 'ダイヤモンドライク 'カーボン ' フィルムズ 'ノ ィ ' エ レク ト リ シス ■ ォブ ' メタノーノレ ' ソリ ューショ ン(Deposition of Diamond—丄 ike carbon ii丄 ms by electrolysis of methanol solution)」, (米 HI) , アプライ ド · フィジックス ■ レターズ (Applied Physics Letters ) , 1 9 9 6年 8月 1 9日, 69 (8), ρ . 1074— 1076、 及び、 ョシカッ ·ナンバ (Yoshikatsu Namba)、 「ァテンプト ' トウ ' グロ一' ダイヤモンド ' フェーズ '力 一ボン■ フイノレムズ ' フロム 'アン 'オーガニック · ソリユーション (Attempt to grow diamond phase carbon films from an organic solution)」, 未国), シャ 一ナノレ'ォブ'ノ キューム 'サイエンス■テクノ口ジー (Journal of vacuum science technology), 1 9 92年 9Zl O月, A10 (5), p. 3368— 3 370 しかしながら、 カーボンナノチューブ等のナノカーボン材料を電気化学的に製 造する技術については、 全く検討されていない。 そして、 カーボンナノチューブ を気相合成するには約 5 5 0 °Cの温度が必要とされるため、 製造コストが大とな つたり、 カーボンナノチューブの応用分野が制限されるという問題がある。 例え ばカーボンナノチューブを回路基板上に直接形成させて配線に用いようとする場 合、 回路基板の耐熱温度が低いために上記気相合成法を適用することは困難であ る。 —On the other hand, although different from the above nanocarbon materials, diamond-like carbon (DLC) and carbon films have been studied as new carbon materials. Conventionally, these DLCs and carbon films have been generally manufactured by vapor deposition (CVD, PVD), but recently, a manufacturing method by electrolytic deposition has been proposed (Hao Wang, et al. “Deposition of Diamond— 丄 ike carbon ii 丄 ms by electrolysis of methanol solution” ■ Deposition of Diamond— 丄 ike carbon ii 丄 ms by electrolysis of methanol solution Applied Physics Letters, August 19, 1969, 69 (8), ρ. 1074-1076, and Yoshikatsu Namba, "Atempt to grow diamond phase carbon films from an organic solution", "China", Shahna Les' O Breakfast 'Roh Kyumu' science ■ Techno opening Gee (Journal of vacuum science technology), 1 9 92 year 9Zl O month, A10 (5), p. 3368- 3 370 However, no technology has been studied for electrochemically producing nanocarbon materials such as carbon nanotubes. In addition, since a temperature of about 550 ° C. is required for vapor-phase synthesis of carbon nanotubes, there are problems in that the production cost increases and the application field of carbon nanotubes is limited. For example, when carbon nanotubes are formed directly on a circuit board and used for wiring, it is difficult to apply the gas phase synthesis method because the circuit board has a low heat-resistant temperature.
本発明は上記の課題を解決するためになされたものであり、 装置が簡易で、 低 温で製造が可能なナノカーボン材料の製造方法、 及び配線構造の製造方法の提供 を目的とする。 発明の開示  The present invention has been made to solve the above-described problems, and has as its object to provide a method for manufacturing a nanocarbon material and a method for manufacturing a wiring structure, which have a simple apparatus and can be manufactured at a low temperature. Disclosure of the invention
本発明者らは種々検討した結果、 所定の陰極及び電解液を用いることで、 ナノ カーボン材料を電気分解によって、 装置が簡易で、 従来より低温 (例えば常温) で製造できることを見出した。 つまり、 上記した目的を達成するために、 本発明 のナノカーボン材料の製造方法は、 触媒金属が不均一に形成された半導体を陰極 とし、 有機溶媒を含む電解液中で電気分解することにより、 前記触媒金属の表面 にナノカーボン材料を形成させることを特徴とする。  As a result of various studies, the present inventors have found that the use of a predetermined cathode and an electrolytic solution makes it possible to produce a nanocarbon material by electrolysis with a simpler apparatus and at a lower temperature (for example, room temperature) than before. In other words, in order to achieve the above object, the method for producing a nanocarbon material of the present invention uses a semiconductor in which a catalyst metal is formed non-uniformly as a cathode and performs electrolysis in an electrolytic solution containing an organic solvent. A nanocarbon material is formed on the surface of the catalyst metal.
また、 本発明のナノカーボン材料の製造方法は、 触媒金属のイオンを含む電解 液中で半導体を陰極として電気分解し、 該半導体の表面に前記触媒金属を不均一 に形成させる工程と、 前記触媒金属が不均一に形成された半導体を陰極とし、 有 機溶媒を含む電解液中で電気分解することにより、 前記触媒金属の表面にナノ力 一ボン材料を形成させる工程とを有することを特徴とする。  Further, the method for producing a nanocarbon material of the present invention includes the steps of: electrolyzing a semiconductor in a electrolyte containing ions of a catalyst metal using a semiconductor as a cathode, and forming the catalyst metal unevenly on the surface of the semiconductor; Forming a nano-sized carbon material on the surface of the catalyst metal by subjecting the semiconductor in which the metal is formed non-uniformly to a cathode and performing electrolysis in an electrolytic solution containing an organic solvent. I do.
さらに、 本発明のナノカーボン材料の製造方法は、 半導体の表面に形成された 触媒金属をエッチングし、 該半導体の表面に前記触媒金属を不均一に形成させる 工程と、 前記触媒金属が不均一に形成された半導体を陰極とし、 有機溶媒を含む 電解液中で電気分解することにより、 前記触媒金属の表面にナノカーボン材料を 形成させる工程とを有することを特徴とする。  Further, the method for producing a nanocarbon material according to the present invention includes the steps of: etching a catalyst metal formed on a surface of a semiconductor to form the catalyst metal non-uniformly on the surface of the semiconductor; Forming a nanocarbon material on the surface of the catalytic metal by electrolysis in an electrolyte containing an organic solvent using the formed semiconductor as a cathode.
本発明の配線構造の製造方法は、 配線形成位置の両端にそれぞれ突状に形成さ れた触媒金属を陰極及びノ又は陽極とし、 有機溶媒を含む電解液中で電気分解す ることにより、 前記触媒金属間にナノカーボン材料を配線として形成させること を特徴とする。 図面の簡単な説明 In the method for manufacturing a wiring structure according to the present invention, the wiring structure is formed at both ends of a wiring forming position in a projecting shape. The catalyst metal thus obtained is used as a cathode and a cathode or an anode, and is electrolyzed in an electrolytic solution containing an organic solvent to form a nanocarbon material as a wiring between the catalyst metals. Brief Description of Drawings
図 1は、 本発明のナノカーボン材料の製造に用いて好適な電解装置の構成を示 す図である。  FIG. 1 is a diagram showing a configuration of an electrolysis apparatus suitable for use in producing the nanocarbon material of the present invention.
図 2は、 ナノカーボン材料が電析する態様を模式的に示す図である。  FIG. 2 is a diagram schematically showing a mode in which a nanocarbon material is electrodeposited.
図 3は、 ナノカーボン材料が電析する態様を模式的に示す別の図である。  FIG. 3 is another diagram schematically showing a mode in which the nanocarbon material is electrodeposited.
図 4 (a)は、 本発明の配線構造の製造方法を行う態様を示す工程図である。 図 4 (b)は、 図 4 (a)に続く図である。  FIG. 4 (a) is a process drawing showing an aspect of performing the method of manufacturing a wiring structure of the present invention. FIG. 4 (b) is a view following FIG. 4 (a).
図 5は、 本発明の配線構造の製造方法を行う態様を示す別の図である。  FIG. 5 is another diagram showing an embodiment in which the method of manufacturing a wiring structure according to the present invention is performed.
図 6は、 N iが不均一に形成された半導体基板の S EM像を示す図である。 図 7は、 電析後の基板表面の S EM像を示す図である。  FIG. 6 is a view showing an SEM image of a semiconductor substrate on which Ni is formed unevenly. FIG. 7 is a diagram showing an SEM image of the substrate surface after electrodeposition.
図 8は、 図 7の部分拡大 S EM像を示す図である。  FIG. 8 is a diagram showing a partially enlarged SEM image of FIG.
図 9は、 図 8の部分拡大 S EM像を示す図である。  FIG. 9 is a diagram showing a partially enlarged SEM image of FIG.
図 1 0は、 図 9の部分拡大 S EM像を示す図である。  FIG. 10 is a diagram showing a partially enlarged SEM image of FIG.
図 1 1は、 電析後の基板表面の別の場所の S EM像を示す図である。  FIG. 11 is a diagram showing an SEM image of another place on the substrate surface after electrodeposition.
図 1 2は、 図 1 1の部分拡大 S EM像を示す図である。  FIG. 12 is a diagram showing a partially enlarged SEM image of FIG. 11.
図 1 3は、 電析物の TEM像を示す図である。  FIG. 13 is a diagram showing a TEM image of the deposit.
図 14は、 電析物の別の測定領域の TEM像を示す図である。  FIG. 14 is a diagram showing a TEM image of another measurement region of an electrodeposit.
図 1 5は、 図 14の部分拡大 TEM像を示す図である。  FIG. 15 is a diagram showing a partially enlarged TEM image of FIG.
図 1 6は、 電析後の別の基板表面の S EM像を示す図である。  Figure 16 is a diagram showing an SEM image of another substrate surface after electrodeposition.
図 1 7は、 比較例における電析後の基板表面の S EM像を示す図である。  FIG. 17 is a diagram showing an SEM image of the substrate surface after electrodeposition in the comparative example.
図 1 8は、 図 1 7の部分拡大 S EM像を示す図である。 発明を実施するための最良の形態  FIG. 18 is a diagram showing a partially enlarged SEM image of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明に係るナノカーボン材料の製造方法の実施の形態について説明す る。 本発明に係るナノカーボン材料の製造方法は、 触媒金属が不均一に形成された 半導体を陰極とし、 有機溶媒を含む電解液中で電気分解することにより、 前記触 媒金属の表面にナノカーボン材料を形成させるものである。 Hereinafter, embodiments of the method for producing a nanocarbon material according to the present invention will be described. The method for producing a nanocarbon material according to the present invention includes the steps of: using a semiconductor on which a catalyst metal is formed non-uniformly as a cathode, and performing electrolysis in an electrolytic solution containing an organic solvent, so that the nanocarbon material Is formed.
本発明により製造されるナノカーボン材料とは、 0. 1 11111程度〜数1 00 11 mのサイズの構造体からなるカーボン材料をいい、 例えばカーボンナノチューブ The nanocarbon material produced according to the present invention refers to a carbon material having a structure having a size of about 0.111111 to several 10011 m.
(直径が 0. 111111〜数1 0 nmの管状繊維状物が例示される)、カーボンナノヮ ィヤー(直径が数 1 00 n mの中実の繊維状物が例示される)、カーボンオニオン(Examples include tubular fibrous materials having a diameter of 0.111111 to several 10 nm), carbon nanowires (examples include solid fibrous materials having a diameter of several 100 nm), and carbon onions.
(直径が数 nm〜数 1 00 nmでタマネギ状に黒鉛層が数 1 0〜数 1 00層積層 した球状微粒子が例示される)、カーボンナノワイヤーの放射状集合体(カーボン ナノワイヤが多数放射状に束ねられ、 花のように拡がったもの) が挙げられる。 特に、 本発明は、 カーボンナノチューブやカーボンナノワイヤー等、 細長く繊維 状の材料の製造に適している。 (Examples are spherical fine particles having a diameter of several nm to several hundred nm and a graphite layer of several hundred to several hundred layers stacked in an onion shape), a radial aggregate of carbon nanowires (a large number of carbon nanowires are bundled radially). And expanded like a flower). In particular, the present invention is suitable for producing an elongated fibrous material such as carbon nanotubes and carbon nanowires.
陰極に用いる半導体としては、 シリコンが入手しやすく好ましいが、 この他に ゲルマニウム等の半導体や、 高抵抗の金属を用いることができる。 又、 シリコン を用いる場合は、 不純物がドーピングされたものを用いると、 電気抵抗が低くな るので好ましい。  As the semiconductor used for the cathode, silicon is easily available and preferable, but other than this, a semiconductor such as germanium or a metal having a high resistance can be used. In the case where silicon is used, it is preferable to use silicon doped with impurities, since the electric resistance is reduced.
この半導体の表面には触媒金属が不均一に形成しているが、 ここでいう不均一 形成とは半導体表面に例えば島状、 粒状に分散して形成することをいい、 触媒金 属の形成部分が半導体に比べて導電性が高いために、 電流がこの触媒金属の形成 部分に集中し、 電解液中の有機溶媒の炭素原子がこの形成部分を核として電析す るものと考えられる。 触媒金属は導電性を有するものであれば何でもよいが、 例 えば N i、 C o、 F e、 A l、 Cu、 Z nを例示することができる。 好ましくは N i、 C o、 F eがよく、 特に N iが最も好ましく、 次に C o、 F eの順で好ま' しい。 触媒金属は、 半導体の表面に数 nm〜数 1 0 nm、 好ましくは 1 0 nm程 度の厚みで形成させるのが好ましい。 なお、 複数種類の触媒金属 (例えば N i と F e) やこれらの合金を 1つの半導体上に形成させてもよい。  The catalyst metal is formed non-uniformly on the surface of the semiconductor. The non-uniform formation referred to here is, for example, an island-like or granular dispersion formed on the semiconductor surface. It is thought that the current is concentrated on the portion where the catalyst metal is formed because the conductivity is higher than that of the semiconductor, and the carbon atoms of the organic solvent in the electrolyte are electrodeposited with the portion forming the nucleus as a nucleus. The catalyst metal may be any as long as it has conductivity, and examples thereof include Ni, Co, Fe, Al, Cu, and Zn. Preferably, Ni, Co, and Fe are preferable, and particularly, Ni is most preferable, and then, Co and Fe are more preferable. The catalyst metal is preferably formed on the surface of the semiconductor with a thickness of several nm to several 10 nm, preferably about 10 nm. Note that a plurality of types of catalytic metals (for example, Ni and Fe) and alloys thereof may be formed on one semiconductor.
半導体表面に不均一形成された個々の島状 (又は粒状) の触媒金属の大きさは 、 その表面に主に形成されるナノカーボン材料の種類を決めると考えられる。 例 えば、 個々の触媒金属の大きさ (径) を 0. 1〜数 1 0 nm、 好ましくは 0. 1 〜 1 0 n m、 より好ましくは 0 . 1 〜 0 . 5 n mとすると、 主にカーボンナノチ ユーブが製造される。 これは、 いわゆるエッジ効果により触媒金属の縁部に電解 電流が集中して該縁部に炭素が電析し、 一方で触媒金属の中心部には電析し難く なり、 管状のカーボンナノチューブが成長することが考えられる。 また、 例えば 、 個々の触媒金属の大きさ (径) を数 1 0 0 n m、 好ましくは 1 0 0〜 2 0 0 η mとすると、 主にカーボンナノワイヤーが製造される。 このようにすると、 径が 大きくなるためにエッジ効果は生じず触媒金属の表面全体に電解電流が流れ、 触 媒金属の表面全体に炭素が電析し、 中実のカーボンカーボンナノワイヤーが成長 することが考えられる。 なお、 種々の大きさ (径) の触媒金属が半導体表面に存 在する場合、 その径に応じて各種のナノカーボン材料が形成される。 The size of each island-shaped (or granular) catalyst metal unevenly formed on the semiconductor surface is considered to determine the type of nanocarbon material mainly formed on the surface. For example, the size (diameter) of each catalyst metal is 0.1 to several 10 nm, preferably 0.1 nm. When it is set to 10 nm, more preferably 0.1 to 0.5 nm, mainly a carbon nanotube is manufactured. This is because the electrolytic effect concentrates on the edge of the catalyst metal due to the so-called edge effect, and carbon is deposited on the edge, while electrodeposition becomes difficult at the center of the catalyst metal, and a tubular carbon nanotube grows. It is possible to do. Further, for example, when the size (diameter) of each catalyst metal is several 100 nm, preferably 100 to 200 ηm, mainly carbon nanowires are produced. In this case, the edge effect does not occur because the diameter increases, and an electrolytic current flows over the entire surface of the catalyst metal, carbon is deposited on the entire surface of the catalyst metal, and solid carbon-carbon nanowires grow. It is possible. When catalyst metals of various sizes (diameters) exist on the semiconductor surface, various nanocarbon materials are formed according to the diameters.
半導体表面に触媒金属を不均一に形成させる方法としては、 例えば触媒金属の イオンを含む電解液中で半導体を陰極として電気分解し、 半導体の表面に前記触 媒金属を不均一に電析させる方法がある。 この場合、 電解液中の触媒金属イオン 濃度を低く したり、 低電流密度で電解することにより、 触媒金属を不均一形成さ せることができる。 この場合、溶液中に溶解している金属イオンが全て基板表面( 片面)に堆積したとすると、その膜厚が 1 0 n m程度になるような分量だけ、金属 イオンを電解液に溶解すればよい。 従って、 電解液の量に応じて濃度が異なるの で、 上記条件に沿うよう適宜調整する。 電解液としては、 例えば上記触媒金属の 硝酸塩 (硝酸ニッケル、 硝酸コバルト、 硝酸第 1鉄等) をアルコール (例えばェ チルアルコール) に溶解したものを用いることができる。  Examples of a method for forming the catalyst metal non-uniformly on the semiconductor surface include, for example, a method in which electrolysis is performed using the semiconductor as a cathode in an electrolytic solution containing ions of the catalyst metal, and the catalyst metal is non-uniformly deposited on the surface of the semiconductor. There is. In this case, the catalyst metal can be formed non-uniformly by lowering the concentration of the catalyst metal ion in the electrolytic solution or by electrolyzing at a low current density. In this case, assuming that all the metal ions dissolved in the solution are deposited on the substrate surface (one side), the metal ions may be dissolved in the electrolyte in such an amount that the film thickness becomes about 10 nm. . Therefore, the concentration varies depending on the amount of the electrolytic solution. Therefore, the concentration is appropriately adjusted to meet the above conditions. As the electrolytic solution, for example, a solution obtained by dissolving the above-mentioned catalyst metal nitrate (nickel nitrate, cobalt nitrate, ferrous nitrate, etc.) in an alcohol (eg, ethyl alcohol) can be used.
半導体表面に触媒金属を不均一に形成させる他の方法としては、 半導体の表面 に触媒金属を形成し、 この触媒金属をエッチングする方法がある。 この場合、 例 えば半導体の表面に N i等の触媒金属をスパッタリングにより所定厚み形成し、 これをエッチングガス (例えばアンモニアガス) 中に置くことで、 N iが部分的 にエッチング除去される。  As another method for forming the catalyst metal unevenly on the semiconductor surface, there is a method of forming the catalyst metal on the surface of the semiconductor and etching the catalyst metal. In this case, for example, a catalytic metal such as Ni is formed on the surface of the semiconductor by sputtering to a predetermined thickness, and this is placed in an etching gas (for example, ammonia gas), whereby Ni is partially etched away.
不均一に形成された個々の触媒金属の大きさ (径) を制御する方法としては、 上記電析の場合は、 電解液中の金属イオンの量を多くすることで触媒金属を大き な粒とすることができる。 上記エッチングの場合は、 エッチング温度が高く、 時 間が長い方が触媒金属が小さな粒となる。 なお、 いずれの場合も通常、 触媒金属 の大きさはかなり広範囲に分布し、 大きい粒の粒径は数 m、 小さい粒の粒径は 数 n mであることが多い。 As a method for controlling the size (diameter) of each nonuniformly formed catalyst metal, in the case of the above-mentioned electrodeposition, the amount of metal ions in the electrolytic solution is increased so that the catalyst metal becomes large particles. can do. In the case of the above etching, the higher the etching temperature and the longer the time, the smaller the catalyst metal particles. In each case, the catalyst metal is usually The size of the grains is fairly widespread, with the size of large grains often a few meters and the size of small grains often a few nanometers.
電解液に含まれる有機溶媒としては特に制限はないが、 アルコール、 二トリル 、 ベンゼン、 キシレンを例示することができ、 好ましくはメタノールやエタノー ル等のアルコールや、 メタンにトリルゃェタン-トリル (ァセトニトリル) 等の 脂肪族二トリルがよい。 電解液は有機溶媒単体であってもよく、 又、 複数種類の 有機溶媒を混合したものであってもよく、 さらに、 有機溶媒に水、 電導助剤等を 加えたものでもよい。  The organic solvent contained in the electrolyte is not particularly limited, and examples thereof include alcohol, nitrile, benzene, and xylene. Preferably, alcohol such as methanol or ethanol, or tolethane-tolyl (acetonitrile) in methane is used. Aliphatic nitriles are preferred. The electrolyte may be an organic solvent alone, a mixture of a plurality of types of organic solvents, or a mixture of an organic solvent with water, a conduction aid, or the like.
本発明は上記電解液を電気分解するものであり、 陽極としては特に制限されな いが、 例えばカーボン電極、 各種の不溶性陽極等を用いることができる。 又、 電 解条件も特に制限されないが、 例えば 1〜数 1 O m AZ c m 2、 好ましくは 2〜 6 m AZ c m 2の電流密度で直流電解すればよい。 電解電圧 (陰極と陽極間の電 圧) は、 電極間距離、 電解液の電気電導度に応じて変化するが、 好ましくは 0 . 1 〜数1 0 1^ ¥、 より好ましくは 0 . l〜5 k Vとする。 電解電圧をこのよ うに高くすることで、 有機溶媒中の炭素原子がァニオンとなって電析し易くなる 可能性がある。 又、 交番電解してもよく、 この場合は陰極と陽極のいずれか、 好 ましくは両方に上記半導体を用いればよい。 なお、 電解温度も特に制限はなく、 電解液が沸騰しない温度、 例えば室温〜 5 0 °C程度とすればよい。 電解による発 熱を防止するため、 適宜電解液を冷却してもよい。 電解時間は電解条件によって 変化するが、 例えば 1〜 1 0時間程度電解すればよい。 . In the present invention, the electrolytic solution is electrolyzed, and the anode is not particularly limited. For example, a carbon electrode, various insoluble anodes and the like can be used. Moreover, electrolytic conditions is not particularly limited, for example, to several 1 O m AZ cm 2, preferably may be direct electrolysis at a current density of 2~ 6 m AZ cm 2. The electrolysis voltage (the voltage between the cathode and the anode) varies depending on the distance between the electrodes and the electric conductivity of the electrolyte, but is preferably 0.1 to a few tens of yen, more preferably 0.1 to 1 5 kV. By increasing the electrolysis voltage in this way, carbon atoms in the organic solvent may become anions, which may facilitate electrodeposition. Alternatively, alternating electrolysis may be performed. In this case, the above semiconductor may be used for either or both of the cathode and the anode. The electrolysis temperature is not particularly limited, and may be a temperature at which the electrolyte does not boil, for example, room temperature to about 50 ° C. In order to prevent heat generation due to electrolysis, the electrolytic solution may be appropriately cooled. The electrolysis time varies depending on the electrolysis conditions. For example, the electrolysis may be performed for about 1 to 10 hours. .
電気分解を行うには、 例えば図 1に示す電解装置を用いることができる。 この 図において、 電解装置 1 0は、 電解槽 2、 マグネチックスターラ 3、 半導体基板 からなる陰極 4、 陽極 6、 温度計 7、 D C電源 8を備えている。 電解槽 2内には 有機溶媒を含む電解液が入っている。 陰極 4のうち陽極 6との対向面には触媒金 属 4 aが不均一に形成されている。 そして、 電解により、 有機溶媒中の炭素原子 が触媒金属 4 a上に電析し、 陽極 6側へ成長してゆく。  To perform the electrolysis, for example, an electrolytic device shown in FIG. 1 can be used. In this figure, an electrolyzer 10 includes an electrolyzer 2, a magnetic stirrer 3, a cathode 4 made of a semiconductor substrate, an anode 6, a thermometer 7, and a DC power supply 8. The electrolytic bath 2 contains an electrolytic solution containing an organic solvent. The catalyst metal 4 a is formed non-uniformly on the surface of the cathode 4 facing the anode 6. Then, by electrolysis, carbon atoms in the organic solvent are electrodeposited on the catalytic metal 4a and grow toward the anode 6 side.
ところで、 電祈したナノカーボン材料は、 例えば触媒金属から機械的方法で剥 いで回収してもよい。 又、 触媒金属を内包したナノカーボン材料や、 触媒金属が 底部に形成されたナノカーボン材料を得ることができる。 また、 半導体上に電析 したままで使用してもよい。 By the way, the nanocarbon material prayed may be recovered by, for example, peeling it off from the catalytic metal by a mechanical method. In addition, a nanocarbon material containing a catalyst metal or a nanocarbon material having a catalyst metal formed at the bottom can be obtained. In addition, electrodeposition on semiconductors It may be used as it is.
図 2、 3に、 ナノカーボン材料が電析する態様を模式的に示す。 図 2において 、 半導体基板 4 0の表面に触媒金属 4 0 aが島状に形成され、 既に述べたエッジ 効果により触媒金属 4 0 aの縁部から陽極側 (図の上方向) に向かってナノカー ボン材料が成長し、 管状のカーボンナノチューブが形成されている。 又、 図 3に おいては、 半導体基板 4 1の表面に触媒金属 4 1 aが島状に形成され、 この場合 は触媒金属 4 0 aの表面全体 (側面を含む) にナノカーボン材料が電析し、 触媒 金属を内包したカーボンオニオンが形成されている。  Figures 2 and 3 schematically show how the nanocarbon material is electrodeposited. In FIG. 2, the catalytic metal 40a is formed in an island shape on the surface of the semiconductor substrate 40, and the nano-car is formed from the edge of the catalytic metal 40a toward the anode side (upward in the figure) by the edge effect described above. The carbon material has grown and tubular carbon nanotubes have been formed. Further, in FIG. 3, the catalyst metal 41a is formed in an island shape on the surface of the semiconductor substrate 41, and in this case, the nanocarbon material is applied to the entire surface (including the side surface) of the catalyst metal 40a. The catalyst has formed a carbon onion containing the catalyst metal.
次に、 本発明の配線構造の製造方法の一実施形態について説明する。 本発明の 配線構造の製造方法は、 上記ナノカーボン材料の製造方法と同様な手順により行 われるが、 陰極及び陽極として、 配線形成位置の両端にそれぞれ突状に形成され た触媒金属を用いる点が上記方法と異なっている。 そして、 本発明の配線構造の 製造方法においては、 陰極及び陽極となる触媒金属間にナノカーボン材料を配線 として形成させるものであるが、 これについて図 4を参照して説明する。  Next, an embodiment of a method for manufacturing a wiring structure according to the present invention will be described. The method for manufacturing a wiring structure of the present invention is performed in the same procedure as the above-described method for manufacturing a nanocarbon material, except that catalyst metals formed in a protruding shape at both ends of a wiring forming position are used as a cathode and an anode. It is different from the above method. In the method of manufacturing a wiring structure according to the present invention, a nanocarbon material is formed as a wiring between a catalyst metal serving as a cathode and an anode. This will be described with reference to FIG.
図 4において、 2つの回路基板 1 0 0、 1 0 1の表面にはそれぞれ配線パター ン 2 0 0、 2 0 1が形成されている (図 4 ( a ) )。 いま、 配線パターン 2 0 0の 端部 (右端) と、 配線パターン 2 0 1の端部 (左端) とを配線して接続したいと する。 この場合、 まず配線形成位置の両端となる、 配線パターン 2 0 0の端部 ( 右端) と配線パターン 2 0 1の端部 (左端) とに、 それぞれ触媒金属からなる突 部 2 0 0 a、 2 0 1 aを予め形成しておく。 次に、 少なくとも突部 2 0 0 a、 2 0 1 aを含む上記配線形成位置が、 有機溶媒を含む電解液に浸漬 (又は接触) す るようにする。 この場合、 各回路基板 1 0 0、 1 0 1全体を上記電解液に浸漬し てもよく、 又、 上記配線形成位置のみが電解液に浸漬されるような電解セルを用 いてもよレヽ。  In FIG. 4, wiring patterns 200 and 201 are formed on the surfaces of two circuit boards 100 and 101, respectively (FIG. 4 (a)). Now, it is assumed that the end (right end) of the wiring pattern 200 and the end (left end) of the wiring pattern 201 are to be wired and connected. In this case, first, the ends (right end) of the wiring pattern 200 and the ends (left end) of the wiring pattern 201, which are both ends of the wiring forming position, are formed with protrusions 200a made of a catalyst metal, respectively. 21a is formed in advance. Next, the wiring forming position including at least the protrusions 200a and 201a is immersed (or contacted) in an electrolytic solution containing an organic solvent. In this case, the entire circuit board 100, 101 may be immersed in the electrolytic solution, or an electrolytic cell in which only the wiring formation position is immersed in the electrolytic solution may be used.
そして、 この状態で突部 2 0 0 a、 2 0 1 aをそれぞれ陰極, 陽極 (いずれが 陰極であってもよいがこの実施形態では仮に突部 2 0 0 aを陰極とする) として 電気分解すると、 突部 2 0 0 aに電析したナノカーボン材料が、 突部 2 0 1 a側 に向かって成長し、 やがてナノカーボン材料は突部 2 0 1 aに接続する。 このよ うにして、 突部 2 0 0 a、 2 0 1 a間にナノカーボン材料が配線 3 0 0として形 成される (図 4 ( b ) )。 なお、 電気分解は直流電解でもよく、 又、 交番電解でも よい。 なお、 実際には、 突部 2 0 0 aが配線パターン 2 0 0と導通し、 突部 2 0 1 aが配線パターン 2 0 1と導通しているので、 電源を各配線パターン 2 0 0、 2 0 1に接続して電解すればよい。 なお、 直流電解を行う場合、 アノード側の突 部には、 不溶性の金属やカーボン材料を電極として形成するのが好ましい。 Then, in this state, the projections 200 a and 201 a are respectively used as a cathode and an anode (any one of them may be a cathode, but in this embodiment, the projection 200 a is assumed to be a cathode). Then, the nanocarbon material deposited on the protrusion 200a grows toward the protrusion 201a, and then the nanocarbon material is connected to the protrusion 201a. In this way, the nanocarbon material is formed as wiring 300 between the protrusions 200a and 201a. (Fig. 4 (b)). The electrolysis may be DC electrolysis or alternating electrolysis. Actually, since the protrusion 200 a is electrically connected to the wiring pattern 200 and the protrusion 201 a is electrically connected to the wiring pattern 201, the power source is connected to each wiring pattern 200, It may be connected to 201 and electrolyzed. In the case of performing DC electrolysis, it is preferable to form an insoluble metal or carbon material as an electrode on the protrusion on the anode side.
突部 2 0 0 a、 2 0 l aの大きさ (径) は、 上記したナノカーボン材料の製造 方法における触媒金属の大きさ (径) と同等でよく、 径を制御することにより、 ナノカーボン材料の種類も変化する点についても'、 上記したナノカーボン材料の 製造方法の場合と同様である。 突部 2 0 0 a、 2 0 l aの高さは、 例えば数 n m 〜数 1 0 n mとすればよい。 要は、 突部 2 0 0 a、 2 0 1 aに電流が集中すれば よい。  The size (diameter) of the protrusions 200a and 20la may be the same as the size (diameter) of the catalyst metal in the above-described method for producing a nanocarbon material, and by controlling the diameter, the nanocarbon material is obtained. This is also the same as in the case of the above-described method for producing a nanocarbon material. The height of the protrusions 200a and 20la may be, for example, several nm to several 10 nm. The point is that the current only needs to be concentrated on the protrusions 200a and 201a.
次に、 本発明の配線構造の製造方法の他の実施形態について、 図 5を参照して 説明する。 図 5において、 配線パターン 2 1 0には突部 2 1 0 aが形成され、 配 線パターン 2 1 1には突部 2 1 1 aが形成されている。 いま、 配線パターン 2 1 0、 2 1 1を対向させ、 突部 2 1 0 aと突部 2 1 1 aの間を配線したいとする。 なお、 この図において、 配線パターン 2 1 0は配線パターン 2 1 1の上側に位置 し、 突部 2 1 0 aは突部 2 1 1 aの延長線上にあるものとする。  Next, another embodiment of the method for manufacturing a wiring structure according to the present invention will be described with reference to FIG. In FIG. 5, a projection 2110a is formed in the wiring pattern 210, and a projection 2111a is formed in the wiring pattern 211. Now, it is assumed that the wiring patterns 210 and 211 are to be opposed to each other, and that wiring is to be performed between the protrusion 210a and the protrusion 211a. In this figure, it is assumed that the wiring pattern 210 is located above the wiring pattern 211, and the protrusion 210a is on an extension of the protrusion 211a.
そして、 少なくとも突部 2 1 0 aと突部 2 1 1 aの間に上記電解液を満たした 状態で、 電源を各配線パターン 2 1 0 , 2 1 1に接続して電解すると、 上記図 4 の場合と同様に、 突部 2 1 0 aと突部 2 1 1 aの間にナノカーボン材料が配線 3 0 1として形成される。 なお、 突部 2 1 0 aが突部 2 1 1 aの延長線からある程 度ずれていても、 ナノカーボン材料が配線として形成される。  Then, when at least the protruding portion 210a and the protruding portion 211a are filled with the electrolytic solution, a power source is connected to each of the wiring patterns 210, 211 and electrolysis is performed. As in the case of (1), the nanocarbon material is formed as the wiring 301 between the protrusions 210a and the protrusions 211a. It should be noted that even if the protrusion 2110a is shifted from the extension of the protrusion 211a to some extent, the nanocarbon material is formed as a wiring.
以上のように、 本発明の配線構造の製造方法によれば、 ナノカーボン材料を用 いて常温等の低温で配線ができ、 また、 従来は極めて困難であった微細な配線を 簡易に行うことができる。 すなわち、 配線形成位置における突状部に電流が集中 するので、 配線したい部分に選択的にナノカーボン材料を電析させて配線として 形成できる。  As described above, according to the method for manufacturing a wiring structure of the present invention, wiring can be performed at a low temperature such as room temperature using a nanocarbon material, and fine wiring, which has been extremely difficult in the past, can be easily performed. it can. That is, since current concentrates on the protruding portion at the wiring formation position, a nanocarbon material can be selectively deposited on a portion where wiring is desired to be formed as a wiring.
(実施例)  (Example)
次に、 実施例を挙げて本発明をさらに詳細に説明するが、 本発明はこれらに限 定されるものではない。 Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. It is not specified.
ぐ実施例 1 > Example 1>
1. 半導体基板表面への触媒金属の形成  1. Formation of catalytic metal on semiconductor substrate surface
p型のシリコン結晶からなる半導体基板 (抵抗率: 0. 5 Ω c m、 電極面積 5 0 mm2) の表面に、 スパッタリングによって厚み 30 nmの N iを形成した後 、 アンモニアガス雰囲気 (1 3. 33 k P a、 800 °C) に 1◦分間置いた。 こ れにより、 N iが部分的にエッチング除去されて粒状の N iが残存した半導体基 板が得られた。 N iが不均一に形成された半導体基板を S EM (走查型電子顕微 鏡) で撮影した像を図 6に示す。 図の白い部分が粒状の N iであり、 0. 1〜0 . 5 μιη程度の大きさ (径) の粒状 N iが主に見られるが、 さらに倍率を高くし た SEM像で数 1 0 nm粒径の粒状 N iも確認した(不図示)。 このエッチング法に より作製した半導体基板を基板 1とする。 After forming a 30-nm-thick Ni by sputtering on the surface of a semiconductor substrate (resistivity: 0.5 Ωcm, electrode area: 50 mm 2 ) made of p-type silicon crystal, an ammonia gas atmosphere (13. (KPa at 800 ° C) for 1◦min. As a result, a semiconductor substrate was obtained in which Ni was partially etched away and granular Ni remained. Figure 6 shows an SEM (scanning electron microscope) image of a semiconductor substrate with non-uniform Ni. The white part in the figure is the granular Ni, and the granular Ni with a size (diameter) of about 0.1 to 0.5 μιη is mainly seen. Granular Ni with a nm particle size was also confirmed (not shown). The semiconductor substrate produced by this etching method is referred to as substrate 1.
2. 電気分解による陰極への電析 +  2. Electrodeposition on cathode by electrolysis +
前記図 1に示した電解装置を準備した。 陰極には上記基板 1を用いた。 陽極に は 5 mm外径のカーボン棒を用いた。 そして、 電解液としてメタン二トリル (純 度 99.5 vol%,試薬特級) 5 OmLを用い、 電流密度 4mA/cm2、 電極間距 離 5mm、 電解電圧 l k V、 電解液量 50 m Lで電解を行い、 陰極表面に電析物 を得た。 電解は室温で行ったが、 電解後も液温度は 2〜3°Cしか上昇しなかった <実施例 2 > The electrolytic device shown in FIG. 1 was prepared. The substrate 1 was used as a cathode. A carbon rod with an outer diameter of 5 mm was used for the anode. Electrolysis was performed using 5 OmL of methane nitrile (purity 99.5 vol%, reagent grade) as the electrolyte, current density 4 mA / cm 2 , distance between electrodes 5 mm, electrolysis voltage lkV, and electrolyte volume 50 mL. An electrodeposit was obtained on the cathode surface. Electrolysis was performed at room temperature, but the liquid temperature increased only 2-3 ° C after electrolysis. <Example 2>
この実施例では、 下記の電解液により上記半導体基板への N iの不均一析出と 、 ナノカーボン材料の電析とを同時に行った。  In this example, non-uniform precipitation of Ni on the semiconductor substrate and electrodeposition of a nanocarbon material were simultaneously performed using the following electrolytic solution.
まず、 硝酸 N i 4. 4 X 1 0— 2mgをエタノール (純度 99.5 vol°ん試薬特級 ) 2. 5mLに溶かした後、 これをエタノール 5 OmLに溶かして電解液を作製 した。 この電解液中で、 上記電解装置を用い、 上記半導体基板を陰極とし、 上記 カーボン棒を陽極として、 上記実施例 1と同一の電解条件で電解し、 陰極表面に 電析物を得た。 電解時間は 8時間とした。 この電解では、 初期に N iが半導体基 板上に粒状に析出し、 次に N i粒上にナノカーボン材料が電析したものと考えら れる。 <比較例 > First, were dissolved in nitric acid N i 4. 4 X 1 0- 2 mg of ethanol (purity 99.5 vol ° N reagent grade) 2. 5 mL, to prepare an electrolyte solution by dissolving it in ethanol 5 OML. In this electrolytic solution, using the electrolytic apparatus, the semiconductor substrate was used as a cathode, and the carbon rod was used as an anode, and electrolysis was performed under the same electrolytic conditions as in Example 1 to obtain an electrodeposit on the cathode surface. The electrolysis time was 8 hours. In this electrolysis, it is probable that Ni was initially precipitated in particles on the semiconductor substrate, and then the nanocarbon material was deposited on the Ni particles. <Comparative example>
基板として、 N iを形成させずに上記半導体基板を用いたことと、 電解液とし てエタノールを用いたことの他は、 上記実施例 1とまったく同様にして電解を行 レ、、 陰極表面に電析物を得た。  Electrolysis was carried out in exactly the same manner as in Example 1 above, except that the above-mentioned semiconductor substrate was used without forming Ni, and ethanol was used as the electrolytic solution. An electrodeposit was obtained.
各実施例及び比較例で得られた電析物の同定を次の方法で行った。 まず、 電析 物が得られた陰極の S EM (走査型電子顕微鏡: 日本電子製 JSM- 5600 (電子線 15kV) ) 測定を行い、 また、 電析物の TEM (透過型電子顕微鏡: 日本電子製 JEM-201 OF (電子線 200kV) ) 測定を行った。 また、 上記 S E M測定と同じ測定領 域における EDS (Energy dispersive spectroscopy:エネルギー分散型 X線分光 装置、 オックスフォード製 Link ISIS (電子線 15kV))測定を行った。 結果は図 7〜図 1 8、 及び表 1にまとめた通りである。  The electrodeposits obtained in each Example and Comparative Example were identified by the following method. First, SEM (scanning electron microscope: JSM-5600 (electron beam: 15 kV)) measurement of the cathode from which the deposit was obtained, and TEM (transmission electron microscope: JEOL) of the deposit JEM-201 OF (electron beam 200 kV)) was measured. In addition, EDS (Energy dispersive spectroscopy: an energy dispersive X-ray spectrometer, Link ISIS made by Oxford (electron beam 15 kV)) was measured in the same measurement area as the above SEM measurement. The results are summarized in FIGS. 7 to 18 and Table 1.
まず、 図 7は、 実施例 2における電析後の基板表面の S EM像であり、 図 8は 図 7の部分拡大 S EM像であり、 図 9は図 8の部分拡大 S EM像であり、 図 1 0 は図 9の部分拡大 S EM像である。 各図中、 白い部分が析出物を示し、 黒い部分 はアモルファス的カーボン膜の堆積物を示す。 この析出物は半導体基板の所定部 分を核としてスパイク状 (針状) に成長していることがわかる。  First, FIG. 7 is an SEM image of the substrate surface after electrodeposition in Example 2, FIG. 8 is a partially enlarged SEM image of FIG. 7, and FIG. 9 is a partially enlarged SEM image of FIG. FIG. 10 is a partially enlarged SEM image of FIG. In each figure, the white part indicates the precipitate, and the black part indicates the deposit of the amorphous carbon film. It can be seen that this precipitate grows in a spike (needle) shape with a predetermined portion of the semiconductor substrate as a nucleus.
図 1 1は、 実施例 2における電析後の基板表面の別の場所の S EM像であり、 図 1 2は図 1 1の部分拡大 S EM像である。 各図中、 白い部分が析出物を示し、 この析出物は繊維状に成長していることがわかる。 さらに、 上記各図 7, 1 1の 測定試料と同一の測定領域について、 EDXにより元素分析を行ったところ、 各 図の白い部分が炭素であることが判明した。 以上の図 7〜図 1 2より、 実施例 2 においては直径約 1 00 nmで繊維状の炭素構造物が生成していることがわかり 、 これはカーボンナノワイヤであるということができる。  FIG. 11 is an SEM image of another place on the substrate surface after electrodeposition in Example 2, and FIG. 12 is a partially enlarged SEM image of FIG. In each figure, the white portion indicates a precipitate, which indicates that the precipitate has grown into a fibrous form. Furthermore, elemental analysis was performed by EDX on the same measurement area as the measurement samples in Figs. 7 and 11 above, and it was found that the white part in each figure was carbon. From FIGS. 7 to 12 described above, it can be seen that in Example 2, a fibrous carbon structure having a diameter of about 100 nm was generated, which can be said to be a carbon nanowire.
図 1 3は、 実施例 2における電析物の TEM像である。 この図において、 直径 が 1 0〜20 nm程度で、 黒鉛層が多数積層したタマネギ状の炭素構造体が生成 していることがわかる。 また、 上記 EDX分析の結果からこの構造体の組成は炭 素であり、 これらのことから、 この析出物はカーボンオニオンであると同定する ことができる。  FIG. 13 is a TEM image of the electrodeposit in Example 2. In this figure, it can be seen that an onion-like carbon structure having a diameter of about 10 to 20 nm and a large number of graphite layers laminated is generated. Further, the composition of this structure is carbon from the result of the EDX analysis, and from these, the precipitate can be identified as carbon onion.
図 14は、 実施例 2における電析物のうち、 図 1 3と別の測定領域における T EM像であり、 図 1 5は図 14の部分拡大 T EM像である。 図 1 5によれば、 こ の繊維状の析出物は、 黒鉛層が多数積層しており、 また芯部は空洞であることが わかる。 そして、 図 1 5によれば、 各黒鉛層の層間隔はおよそ 0. 33〜0. 3 6 nmで、 外径約 30 nm、 内径約 2 n mであると読み取れた。 通常、 カーボン ナノチューブの層間隔は 0. 34 nmといわれており、 これより、 この析出物は カーボンナノチューブであると同定することができる。 Fig. 14 shows the T values of the deposits in Example 2 in a different measurement area from Fig. 13. FIG. 15 is a partially enlarged TEM image of FIG. According to FIG. 15, it can be seen that this fibrous precipitate has a large number of graphite layers laminated and a hollow core. According to Fig. 15, it can be read that the interval between the graphite layers is about 0.33 to 0.36 nm, and the outer diameter is about 30 nm and the inner diameter is about 2 nm. Usually, the layer spacing of carbon nanotubes is said to be 0.34 nm, from which the precipitate can be identified as carbon nanotubes.
図 1 6は、 実施例 1における電析後の基板表面の S EM像であり、 図の中央部 やや右よりの部分には、 N iを核としてスパイク状の電析物が見られる。 この電 析物も E D Xによれば炭素からなることが判明したので、 カーボンナノワイヤで あると考えられる。  FIG. 16 is an SEM image of the substrate surface after electrodeposition in Example 1, and a spiked electrodeposit with Ni as a nucleus can be seen in the center part of the figure, slightly to the right. According to EDX, this deposit was also composed of carbon, so it is considered to be a carbon nanowire.
図 1 7は、 比較例における電析後の基板表面の S EM像である。 図の白い部分 と黒い部分は、 いずれもアモルファス的カーボン膜であり、 膜厚の相違 (膜表面 の凹凸) により、 白い部分と黒い部分が撮影されたと考えられる。 また、 図 1 8 は、 図 1 7の部分拡大 S EM像である。 膜状物が基板表面のほぼ全面に析出した が、 力一ボンナノチューブやカーボンナノワイヤー等の繊維状の炭素材料は見ら れなかった。 なお、 この膜状物のラマン分光を行ったところ、 ダイヤモンド的力 一ボンに見られるようなシャープな信号は観測されなかったため、 これはァモル ファス構造のカーボン膜であると考えられる。  FIG. 17 is an SEM image of the substrate surface after electrodeposition in the comparative example. Both the white and black parts in the figure are amorphous carbon films, and it is probable that the white and black parts were photographed due to differences in film thickness (irregularities on the film surface). FIG. 18 is a partially enlarged SEM image of FIG. Although film-like substances were deposited on almost the entire surface of the substrate, no fibrous carbon materials such as carbon nanotubes and carbon nanowires were found. When Raman spectroscopy was performed on this film-like material, no sharp signal as seen in diamond-like force was observed. This is considered to be an amorphous carbon film.
以上の結果を表 1にまとめる。  Table 1 summarizes the above results.
Figure imgf000012_0001
表 1から明らかなように、 実施例 1、 2の場合、 カーボンナノチューブ、 カー ボンナノワイヤーや、 カーボンオニオンが得られた。 一方、 比較例の場合、 ァモ ルファス構造の炭素膜層が得られたが、 カーボンナノチューブやカーボンナノヮ ィヤーが得られなかった。 本発明のナノカーボン材料の製造方法によれば、 電気分解法という簡易な方法 により、 装置が簡易で、 かつ従来より低温 (例えば常温) でナノカーボン材料を 製造することができ、 特にカーボンナノチューブやカーボンナノワイヤー等の繊 維状のナノカーボン材料の製造に適している。
Figure imgf000012_0001
As is clear from Table 1, in Examples 1 and 2, carbon nanotubes, carbon nanowires, and carbon onions were obtained. On the other hand, in the case of the comparative example, a carbon film layer having an amorphous structure was obtained, but no carbon nanotube or carbon nanolayer was obtained. According to the method for producing a nanocarbon material of the present invention, a simple method called electrolysis can be used to produce a nanocarbon material at a lower temperature (for example, room temperature) than a conventional apparatus. It is suitable for producing fiber-like nanocarbon materials such as carbon nanowires.

Claims

請 求 の 範 囲 触媒金属が不均一に形成された半導体を陰極とし、 有機溶媒を含む電解液中 で電気分解することにより、 前記触媒金属の表面にナノカーボン材料を形成 させることを特徴とするナノカーボン材料の製造方法。 Scope of the Claim The present invention is characterized in that a nano-carbon material is formed on the surface of the catalyst metal by performing electrolysis in an electrolyte containing an organic solvent, using a semiconductor on which the catalyst metal is formed non-uniformly as a cathode. Manufacturing method of nanocarbon material.
触媒金属のイオンを含む電解液中で半導体を陰極として電気分解し、 該半導 体の表面に前記触媒金属を不均一に形成させる工程と、 前記触媒金属が不均 一に形成された半導体を陰極とし、 有機溶媒を含む電解液中で電気分解する ことにより、 前記触媒金属の表面にナノカーボン材料を形成させる工程とを 有することを特徴とするナノカーボン材料の製造方法。 Electrolyzing a semiconductor in an electrolytic solution containing ions of a catalyst metal, using the semiconductor as a cathode, and forming the catalyst metal non-uniformly on the surface of the semiconductor; Forming a nanocarbon material on the surface of the catalyst metal by electrolysis in an electrolytic solution containing an organic solvent as a cathode, the method comprising the steps of:
半導体の表面に形成された触媒金属をエッチングし、 該半導体の表面に前記 触媒金属を不均一に形成させる工程と、 前記触媒金属が不均一に形成された 半導体を陰極とし、 有機溶媒を含む電解液中で電気分解することにより、 前 記触媒金属の表面にナノカーボン材料を形成させる工程とを有することを特 徴とするナノカーボン材料の製造方法。 Etching the catalyst metal formed on the surface of the semiconductor to form the catalyst metal non-uniformly on the surface of the semiconductor; and using the semiconductor having the catalyst metal formed non-uniformly as a cathode and electrolysis including an organic solvent. Forming a nanocarbon material on the surface of the catalyst metal by electrolysis in a liquid. A method for producing a nanocarbon material, the method comprising:
配線形成位置の両端にそれぞれ突状に形成された触媒金属を陰極及び Z又は 陽極とし、 有機溶媒を含む電解液中で電気分解することにより、 前記触媒金 属間にナノカーポン材料を配線として形成させることを特徴とする配線構造 の製造方法。 Catalytic metals formed in a protruding shape at both ends of the wiring forming position are used as a cathode and a Z or an anode, respectively, and are electrolyzed in an electrolytic solution containing an organic solvent, thereby forming a nano-carbon material between the catalytic metals as a wiring. A method for manufacturing a wiring structure, comprising:
PCT/JP2003/016831 2003-07-02 2003-12-25 Method for producing nanocarbon material and method for manufacturing wiring structure WO2005003409A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002530976A CA2530976A1 (en) 2003-07-02 2003-12-25 Method for producing nanocarbon material and method for manufacturing wiring structure
US10/563,018 US20060163077A1 (en) 2003-07-02 2003-12-25 Method for producing nanocarbon material and method for manufacturing wiring structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-270361 2003-07-02
JP2003270361A JP4133655B2 (en) 2003-07-02 2003-07-02 Method for producing nanocarbon material and method for producing wiring structure

Publications (1)

Publication Number Publication Date
WO2005003409A1 true WO2005003409A1 (en) 2005-01-13

Family

ID=33562613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/016831 WO2005003409A1 (en) 2003-07-02 2003-12-25 Method for producing nanocarbon material and method for manufacturing wiring structure

Country Status (4)

Country Link
US (1) US20060163077A1 (en)
JP (1) JP4133655B2 (en)
CA (1) CA2530976A1 (en)
WO (1) WO2005003409A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625955B2 (en) * 2005-08-23 2011-02-02 国立大学法人電気通信大学 Carbon tube and carbon tube manufacturing method
TWI363367B (en) * 2007-12-26 2012-05-01 Tatung Co Composite field emission source and method of fabricating the same
WO2011111791A1 (en) * 2010-03-11 2011-09-15 国立大学法人北海道大学 Method for producing carbon nanotube
US9075148B2 (en) * 2011-03-22 2015-07-07 Savannah River Nuclear Solutions, Llc Nano structural anodes for radiation detectors
CN104591855B (en) * 2013-10-31 2017-07-25 刘广安 The method for preparing the nano-carbon powder for fertilizer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167714A (en) * 1996-12-16 1998-06-23 Osaka Gas Co Ltd Production of carbon material
WO2003000590A1 (en) * 2001-06-26 2003-01-03 Japan Science And Technology Agency Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid
JP2003115259A (en) * 2001-10-03 2003-04-18 Sony Corp Electron emitting device and manufacturing method for it, cold cathode field electron emitting element and manufacturing method for it, cold cathode field electron emitting display device and manufacturing method for it, and method for etching thin film
WO2004000728A1 (en) * 2002-06-24 2003-12-31 Honda Giken Kogyo Kabushiki Kaisha Method for making carbon nanotubes
JP2004071654A (en) * 2002-08-01 2004-03-04 Semiconductor Energy Lab Co Ltd Method of manufacturing carbon nanotube semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627647A (en) * 1969-05-19 1971-12-14 Cogar Corp Fabrication method for semiconductor devices
WO2003076332A1 (en) * 2002-03-08 2003-09-18 Communications Research Laboratory, Independent Administrative Institution Production device and production method for conductive nano-wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10167714A (en) * 1996-12-16 1998-06-23 Osaka Gas Co Ltd Production of carbon material
WO2003000590A1 (en) * 2001-06-26 2003-01-03 Japan Science And Technology Agency Method and device for synthesizing high orientationally arranged carbon nano-tube by using organic liquid
JP2003115259A (en) * 2001-10-03 2003-04-18 Sony Corp Electron emitting device and manufacturing method for it, cold cathode field electron emitting element and manufacturing method for it, cold cathode field electron emitting display device and manufacturing method for it, and method for etching thin film
WO2004000728A1 (en) * 2002-06-24 2003-12-31 Honda Giken Kogyo Kabushiki Kaisha Method for making carbon nanotubes
JP2004071654A (en) * 2002-08-01 2004-03-04 Semiconductor Energy Lab Co Ltd Method of manufacturing carbon nanotube semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YOKOMICHI, H. "Ekisochu ni okeru Shitsuon deno Nano Carbon no Gosei", 2003 Nen Shunki Dai 50 Kai Oyo Butsurigaku Kankei Rengo Koenkai Koen Yokoshu, 27 March 2003, No. 2, page 1030 *
YOKOMICHI, H. "Electrochemical Deposition of Nanosize-Carbons, Dai 24 Kai Fullerene.Nanotube Sogo Symposium Koen Yoshishu, 08 January 2003, page 36 *

Also Published As

Publication number Publication date
JP4133655B2 (en) 2008-08-13
US20060163077A1 (en) 2006-07-27
JP2005023408A (en) 2005-01-27
CA2530976A1 (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP3804594B2 (en) Catalyst supporting substrate, carbon nanotube growth method using the same, and transistor using carbon nanotubes
US9206049B2 (en) Method for making carbon nanotubes
WO2004012932A1 (en) Method for synthesizing nanoscale structures in defined locations
JPH11194134A (en) Carbon nano tube device, its manufacture and elecfron emission element
JP2007070689A (en) Nanocarbon/aluminum composite material, method for producing the same, and plating liquid used therefor
KR20100054555A (en) Single crystalline coxge1-x nanowire, coxge1-x nanowire structure, and the fabrication method thereof
JP4975005B2 (en) Catalyst particles on the tip
JP2008297197A (en) Growth method of branch type carbon nanotubes
JP2007533581A (en) Method for synthesizing small-diameter carbon nanotubes having electron field emission characteristics
Wang et al. Novel C/Cu sheath/core nanostructures synthesized via low-temperature MOCVD
CN101570329B (en) Method for preparing carbon nanofiber
Shen et al. Highly conductive vertically aligned molybdenum nanowalls and their field emission property
Shen et al. Pyramid-shaped single-crystalline nanostructure of molybdenum with excellent mechanical, electrical, and optical properties
Joo et al. Field emission characterization of vertically oriented uniformly grown nickel nanorod arrays on metal-coated silicon substrate
JPWO2011111791A1 (en) Method for producing carbon nanotube
JP2003277029A (en) Carbon nanotube and method for manufacturing the same
US10697073B2 (en) Method for manufacturing electrode for hydrogen production using tungsten carbide nanoflake and electrode for hydrogen production manufactured thereby
WO2005003409A1 (en) Method for producing nanocarbon material and method for manufacturing wiring structure
CN100573778C (en) Field-transmitting cathode and manufacture method thereof
Hu et al. Pulse deposition of large area, patterned manganese oxide nanowires in variable aspect ratios without templates
JP2005126323A (en) Catalyst carrying substrate, method for growing carbon nanotube using the same, and transistor using the carbon nanotube
KR101369285B1 (en) 2D-nanostructured tungsten carbide and method for fabricating the same
Yen et al. Density control for carbon nanotube arrays synthesized by ICP-CVD using AAO/Si as a nanotemplate
KR100743018B1 (en) Method for producing field emitter electrode and field emitter electrode produced by using the same
Wang et al. Well-aligned carbon nanotube array membrane and its field emission properties

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2006163077

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10563018

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2530976

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 10563018

Country of ref document: US