WO2005003232A1 - Polyacetal resin composition - Google Patents

Polyacetal resin composition Download PDF

Info

Publication number
WO2005003232A1
WO2005003232A1 PCT/JP2004/009526 JP2004009526W WO2005003232A1 WO 2005003232 A1 WO2005003232 A1 WO 2005003232A1 JP 2004009526 W JP2004009526 W JP 2004009526W WO 2005003232 A1 WO2005003232 A1 WO 2005003232A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyacetal resin
weight
resin composition
parts
glass
Prior art date
Application number
PCT/JP2004/009526
Other languages
French (fr)
Japanese (ja)
Inventor
Hiraku Iketani
Sachio Anada
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Publication of WO2005003232A1 publication Critical patent/WO2005003232A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals

Definitions

  • the present invention relates to a polyacetal resin composition having excellent mechanical properties.
  • Patent Document 1 JP-A-49-98458 (Claims)
  • Patent Document 2 JP-A-60-219252 (Claims)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-236851 (Claims 118, 913)
  • Patent Document 4 Japanese Patent Application Laid-Open No. 62-91551 (Claims 1, 2)
  • An object of the present invention is to provide a polyacetal resin composition capable of solving a powerful problem and responding to higher mechanical properties required in recent years as the field of use of polyacetal resin is expanded. I do.
  • the present invention provides a polyacetal resin composition
  • a polyacetal resin composition comprising 100 parts by weight of a polyacetal resin component (A) and 3 to 200 parts by weight of a glass-based inorganic filler (B).
  • (A) is characterized by comprising 99.9 to 80 parts by weight of a polyacetal resin having a substantially linear molecular structure (A1) and 0.1 to 20 parts by weight of a polyacetal resin having a branched or crosslinked structure (A2). Is a polyacetal resin composition.
  • the present invention incorporates a glass-based inorganic filler.
  • the polyacetal resin component (A) comprises a polyacetal resin (A1) having a substantially linear molecular structure and a polyacetal resin (A2) having a branched or crosslinked structure. It is characterized by.
  • the polyacetal resin (A1) having a substantially linear molecular structure used in the present invention is a high molecular compound having an oxymethylene group (one CH0-) as a main structural unit, and is a polyoxymethylene homopolymer, an oxymethylene group.
  • a copolymer including block copolymers
  • Copolymers are high molecular weight compounds having a weight average molecular weight of 5000 or more, in which oxyalkylene groups having 2 to 6 carbon atoms are dispersed in repeating units mainly composed of oxymethylene groups (one CH 0—). In general, it is produced by copolymerizing trioxane, which is a cyclic trimer of formaldehyde, with a compound selected from a cyclic ether compound and a cyclic formaldehyde compound. Removed and stabilized against thermal decomposition.
  • trioxane which is a cyclic trimer of formaldehyde
  • a copolymer obtained by copolymerizing 99.9 to 90.0% by weight of trioxane (a) and 0.1 to 10% by weight of a compound (b) selected from a cyclic ether compound and a cyclic formal compound is preferable.
  • a copolymer obtained by copolymerizing 99.9 to 90.0% by weight of trioxane (a) and 0.1 to 10% by weight of a compound (b) selected from a cyclic ether compound and a cyclic formal compound is preferable.
  • the effects of the present invention are particularly prominent.
  • cyclic ether compound or cyclic formal compound for copolymerization for example, ethylene oxide, 1,3-dioxolan, diethylene glycol formal, 1,4-butanediol formal, and the like are used. These do not form a branched or crosslinked structure.
  • a component for adjusting the molecular weight is generally used in combination to adjust the molecular weight of the obtained polymer.
  • a component for adjusting the molecular weight a chain transfer agent that does not form an unstable terminal, that is, a compound having an alkoxy group such as methylal, methoxymethylal, dimethoxymethylal, trimethoxymethylal, or oxymethylenedi_n_butyl ether One or two or more are exemplified.
  • the polyacetal resin (A1) as described above used in the present invention preferably has a melt index (Ml) measured at 190 ° C and a load of 2160 g of 1 to 50 g / min. Ml is small If the amount is too large, the workability is poor.
  • the polyacetal resin (A2) having a branched or crosslinked structure used in the present invention can be copolymerized with formaldehyde or trioxane and the like in the production of the polyacetal resin (A1) as described above. Then, a compound capable of forming a branched or crosslinked unit is further added and copolymerized.
  • a polyacetal resin (A2) having a branched or crosslinked structure is a compound (b) 0 selected from trioxane (a): 99.99 90% by weight, a cyclic ether compound and a cyclic formali conjugate. It is obtained by copolymerizing 10% by weight and 0.011.0% by weight of a polyfunctional glycidinole ether compound (c).
  • the compound (b) selected from the group consisting of trioxane (a), cyclic ether compound and cyclic formal compound used in the production of the branched or crosslinked polyacetal resin (A2) described above is the same as that of the polyacetal resin (A1).
  • the compound is as described in detail above.
  • the compound (b) used for producing the branched or crosslinked polyacetal resin (A2) may be the same as or different from the compound used for producing the polyacetal resin (A1).
  • such a compound (b) is not particularly essential as a component of the strong polyacetal resin (A2) having a branched or crosslinked structure, but stably produces the branched / crosslinked polyacetal resin (A2).
  • polyfunctional glycidyl ether conjugate (c) those having 3 or 4 daricidyl ether groups in one molecule are particularly preferred, specifically, trimethylolpropane triol.
  • Preferred compounds include glycidinole ether, glycerol triglycidyl ether and pentaerythritol tetraglycidyl ether.
  • the copolymerization ratio of the polyfunctional glycidyl ether compound (c) is 0.01 to 1.0% by weight, particularly preferably 0.02 to 0.5% by weight.
  • the branched or crosslinked polyacetal resin (A2) used in the present invention is generally the same as the polyacetal resin (A1), except that an appropriate amount of a molecular weight modifier is added thereto, and a cationic polymerization catalyst is used. And the like.
  • polymerization equipment, polymerization conditions, polymerization The subsequent catalyst deactivation treatment and subsequent post-treatment may be performed according to the method for producing the polyacetal resin (A1).
  • the polyacetal resin (A2) as described above used in the present invention is preferably one having a melt index (Ml) force S of 0.1 to 10 g / min measured at 190 ° C and a load of 2160 g. If Ml is too small, processability is poor, and if it is too large, the effects of the present invention are less likely to be produced.
  • Ml melt index
  • the glass-based inorganic filler (B) used in the present invention includes fibrous (glass fiber), granular (glass bead), powder (milled glass fiber), plate (glass flake) and the like. And a hollow (glass balloon) filler. Any known filler having no particular restriction on the particle size, fiber length and the like can be used.
  • one or more kinds selected from these fillers can be used in combination according to the purpose.
  • these glass-based inorganic fillers can be used even if they have not been treated.
  • inorganic materials that have been subjected to a surface treatment with a surface treatment agent such as a silane-based or titanate-based coupling agent can be used. It is better to use a filler.
  • silane coupling agent examples include vinylalkoxysilane, epoxyalkoxysilane, aminoalkoxysilane, mercaptoalkoxysilane, and arylalkoxysilane.
  • vinylalkoxysilanes include, for example, burtriethoxysilane, burtrimethoxysilane, burtris ( ⁇ -methoxyethoxy) silane, and the like.
  • Ripyltriethoxysilane and the like can be mentioned.
  • Examples of aminoalkoxysilanes include, for example, ⁇ -c- , 7-T-diethoxysilane, ⁇ -ami y
  • titanate-based surface treatment agent examples include titanium-i-propoxyotatilene glycolate, tetra- n -butoxytitanium, and tetrakis (2-ethylhexoxy) titanium.
  • the amount of the surface treatment agent to be used is 0.01 to 20 parts by weight, preferably 0.05 to 10 parts by weight, particularly preferably 0.05 to 5 parts by weight based on 100 parts by weight of the inorganic filler.
  • the glass-based inorganic filler (B) is a glass fiber
  • those using a polymer binder, an adhesion promoter, other auxiliaries and the like as a sizing agent are preferably used.
  • the polymer binder generally known materials such as organic materials, for example, water-dispersible / water-soluble polyvinyl acetate, polyester, epoxide, polyurethane, polyatalylate or polyolefin resin, and mixtures thereof are preferably used.
  • the blending amount of the glass-based inorganic filler (B) is 3200 parts by weight, preferably 5150 parts by weight, particularly preferably 10 1 to 100 parts by weight, per 100 parts by weight of the polyacetal resin component (A). Parts by weight. If the amount is less than 3 parts by weight, the mechanical properties are not sufficiently improved, and if the amount exceeds 200 parts by weight, the molding force becomes difficult.
  • the polyacetal resin composition of the present invention may further contain various known stabilizers' additives.
  • stabilizers include hindered phenol compounds, nitrogen-containing compounds such as melamine, guanamine, hydrazide, and urea, hydroxides of alkali or alkaline earth metals, and inorganic compounds.
  • One or more kinds of salts, carboxylate salts and the like can be mentioned.
  • the additives used in the present invention include general additives for thermoplastic resins, for example, coloring agents such as dyes and pigments, lubricants, nucleating agents, release agents, antistatic agents, and surfactants. One or more of the agents can be mentioned.
  • fibrous or plate-like materials such as known inorganic, organic, and metal other than the glass-based inorganic filler can be used. It is also possible to compound one or more kinds of fillers such as powders and the like. Examples of such fillers include, but are not limited to, talc, my strength, wollastonite, carbon fiber, and the like.
  • the addition of a boric acid compound described in JP-A-9-1151298 and the addition of a hydroxycarboxylic acid compound described in JP-A-2002-371168 Further, addition of a conventionally known organic acid or inorganic acid can be carried out at the same time, and further improvement in mechanical properties can be achieved.
  • the composition of the present invention can be easily prepared by known facilities and methods generally used as conventional resin composition preparation methods, which are not particularly limited. For example, i) a method of mixing each component, kneading and extruding with an extruder to prepare pellets, and then molding, and ii) once preparing pellets having a different composition, mixing a predetermined amount of the pellets and molding. Any of the following methods can be used: a method of obtaining a molded article having a desired composition after molding; m) a method of directly charging one or more of each component to a molding machine. Mixing and adding a part of the resin component as a fine powder with other components is a preferable method for uniformly blending these components.
  • the resin composition according to the present invention can be molded by any of extrusion molding, injection molding, compression molding, vacuum molding, blow molding, and foam molding.
  • Melt index (Ml) is 190 according to ASTM D-1238.
  • C load of 2160g Measured under the following conditions:
  • a tensile test piece according to IS03167 was heated at a temperature of 23 ° C and a humidity of 50. The sample was left for 48 hours under the condition of / o, and measured according to IS0527.
  • a paddle is attached using a continuous mixing reactor consisting of a barrel that has a jacket through which a heat (cold) medium passes and a cross section of two circles partially overlapped, and a rotary shaft with paddles.
  • Table 1 shows trioxane (a), a compound selected from cyclic ether compounds and cyclic formal compounds (b), and a polyfunctional daricidyl ether compound (c) while rotating the two rotating shafts at 150 rpm.
  • methylal as a molecular weight regulator was continuously supplied, and boron trifluoride as a catalyst was continuously added and supplied in an amount of 0.005% by weight based on trioxane to perform bulk polymerization.
  • the reaction product discharged from the polymerization machine was immediately passed through a crusher and added to a 60 ° C aqueous solution containing 0.05% by weight of triethylamine to deactivate the catalyst. Further, after separation, washing and drying, a crude polyacetal resin was obtained.
  • Toryechiruamin 5 wt% aqueous solution 3 wt 0/0, pentaerythrityl over tetrakis [3_ (3, 5_ di tert- butyl-4-hydrin Rokishifueniru) Propionate] was added in an amount of 0.3% by weight, and the mixture was melt-kneaded at 210 ° C. in a twin-screw extruder to remove unstable portions, to obtain a polyacetal resin in pellet form, which was used for preparing a polyacetal resin composition.
  • Table 1 shows the compositions and melt indexes of these polyacetal resins. The abbreviations in the table are as follows.
  • Example 1 99 A2-1 1 B1 35 121 2.6
  • Example 2 97 A2-1 3 B1 35 138 2.9
  • Example 3 95 A2-1 5 B1 35 141 3.1
  • Example 4 97 A2-2 3 B1 35 132 2.6
  • Example 5 97 A2-3 3 B1 35 130 2.4
  • Example 6 97 A2-1 3 B2 35 128 2.4
  • Comparative example 1 100 B1 35 113 1.9 Comparative Example 2 100 B2 35 110 1.8 Comparative Example 3 100 B3 35 119 2.0
  • Example 8 97 A2-1 3 B4 35 57 16 Example 9 99 A2-1 1 B5 35 53 15 Example 10 97 A2-1 3 B5 35 62 18 Example 11 95 A2-1 5 B5 35 64 19 Example 12 97 A2-2 3 B5 35 59 16 Example 13 97 A2-3 3 B5 35 60 17 Example 14 97 A2-1 3 B6 35 60 17 Example 15 97 A2-1 3 B7 35 59 17 Comparative example 4 100 B4 35 45 11 Comparative example 5 100 B5 35 47 12 Comparative example 6 100 B6 35 48 13 Comparative example 7 100 B7 35 48 13
  • a linear polyacetal resin (manufactured by Polyplastics Co., Ltd., trade name: DURACON MO) was blended with the following milled glass fibers (B8, B9) and a branched 'crosslinked polyacetal resin in the proportions shown in Table 4, The mixture was melt-kneaded with an extruder at a cylinder temperature of 200 ° C to prepare a pellet-shaped composition. Next, test pieces were molded from the pellet-like composition using an injection molding machine, and physical properties were evaluated. Table 4 shows the results.
  • the following glass flakes and branched 'crosslinked' polyacetal resins (A2-1-A2-3) are blended with a linear polyacetal resin (manufactured by Polyplastics Co., Ltd., trade name: DURACON M90) in the proportions shown in Table 5. Then, the mixture was melt-kneaded with an extruder having a cylinder temperature of 200 ° C to prepare a pellet-shaped composition. Next, test pieces were molded from the pellet-shaped composition using an injection molding machine, and physical properties were evaluated. Table 5 shows the results.
  • BIO Glass flakes surface-treated with y-aminopropyltriethoxysilane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A polyacetal resin composition containing a glass inorganic filler is disclosed which has achieved excellent mechanical strength by improving adhesion between the glass inorganic filler and the polyacetal resin. The polyacetal resin composition is obtained by blending 100 parts by weight of a polyacetal resin component (A) with 3-200 parts by weight of a glass inorganic filler (B). As the polyacetal resin component (A), 99.9-80 parts by weight of a polyacetal resin (A1) substantially having a straight-chain molecular structure is used in combination with 0.1-20 parts by weight of a polyacetal resin (A2) having a branched or crosslinked structure.

Description

明 細 書  Specification
ポリアセタール樹脂組成物  Polyacetal resin composition
技術分野  Technical field
[0001] 本発明は、機械的特性の優れたポリアセタール樹脂組成物に関するものである 背景技術  TECHNICAL FIELD [0001] The present invention relates to a polyacetal resin composition having excellent mechanical properties.
[0002] ポリアセタール樹脂の機械的特性、例えば強度や剛性を向上させるために、ガラス 系無機充填材などの強化材を配合することが知られている。  [0002] It is known to incorporate a reinforcing material such as a glass-based inorganic filler in order to improve the mechanical properties of the polyacetal resin, for example, strength and rigidity.
[0003] し力 ながら、ポリアセタール樹脂は活性に乏しぐまたガラス系無機充填材も活性 に乏しいため、単にポリアセタール樹脂にガラス系無機充填材を配合し溶融混練し ただけでは両者の密着性は不十分なものとなり、期待するほどの機械的特性の向上 が得られない場合が多い。  [0003] However, since the polyacetal resin has poor activity and the glass-based inorganic filler has poor activity, the adhesion between the two is not achieved simply by blending the glass-based inorganic filler with the polyacetal resin and melt-kneading the mixture. In many cases, it is not enough to achieve the expected improvement in mechanical properties.
[0004] そこで、ポリアセタール樹脂とガラス系無機充填材との密着性を向上させて機械的 特性を改良するための各種の方法が提案されている。  [0004] Therefore, various methods for improving the mechanical properties by improving the adhesion between the polyacetal resin and the glass-based inorganic filler have been proposed.
[0005] 例えば、ポリアセタール樹脂にガラス繊維とフエノキシ樹脂を配合すること(特開昭 4 9一 98458号公報、特許請求の範囲参照)、ポリアセタール樹脂にガラス繊維と過酸 化物とシラン系カップリング剤を添加すること(特開昭 60—219252号公報、特許請 求の範囲参照)、ポリオキシメチレン (ポリアセタール樹脂)にポリウレタンェマルジヨン でサイジングしたガラス繊維を配合すること、更にポリウレタンェマルジヨンにシラン力 ップリング剤を含有させること(特開昭 61— 236851号公報、特許請求の範囲第 1一 8 項、第 9一 13項参照)、ポリオキシメチレン (ポリアセタール樹脂)に、好ましくはシラン カップリング剤で表面処理したガラス繊維及びガラスフレークを配合すること(特開昭 62—91551号公報、特許請求の範囲 1、 2参照)、ポリアセタール樹脂にガラス系無 機充填剤とホウ酸化号物を添加すること、更に該ガラス系無機充填剤を特定のシラン 化合物で表面処理すること(特開平 9一 151298号公報、特許請求の範囲、請求項 1 、請求項 4参照)、ポリアセタール樹脂にガラス系無機充填材とヒドロキシカルボン酸 化合物を添加すること、更に該ガラス系無機充填材を特定のシラン化合物で表面処 理すること(特開 2002— 371168号公報、特許請求の範囲、請求項 1、請求項 3参照 )などが知られている。 [0005] For example, blending glass fiber and phenoxy resin with polyacetal resin (see Japanese Patent Application Laid-Open No. 49-98458, claims), glass fiber, peroxide, and silane coupling agent with polyacetal resin. (Refer to Japanese Patent Application Laid-Open No. Sho 60-219252, the scope of patent application), blending polyoxymethylene (polyacetal resin) with glass fibers sized with polyurethane emulsion, and further adding polyurethane emulsion. Inclusion of a silane coupling agent (see JP-A-61-236851, claims 118 and 913), polyoxymethylene (polyacetal resin), preferably silane coupling Mixing glass fibers and glass flakes surface-treated with an agent (see JP-A-62-91551, claims 1 and 2); Adding a glass-based inorganic filler and a boride compound to an acetal resin, and further subjecting the glass-based inorganic filler to a surface treatment with a specific silane compound (Japanese Patent Application Laid-Open No. 9-1151298, claims, (See claims 1 and 4), adding a glass-based inorganic filler and a hydroxycarboxylic acid compound to a polyacetal resin, and subjecting the glass-based inorganic filler to a surface treatment with a specific silane compound (Japanese Patent Application Laid-Open No. 2002-2002). — See Patent No. 371168, Claims, Claims 1 and 3 ) Are known.
特許文献 1 :特開昭 49一 98458号公報 (特許請求の範囲)  Patent Document 1: JP-A-49-98458 (Claims)
特許文献 2 :特開昭 60-219252号公報 (特許請求の範囲)  Patent Document 2: JP-A-60-219252 (Claims)
特許文献 3 :特開昭 61—236851号公報(特許請求の範囲第 1一 8項、第 9一 13項) 特許文献 4 :特開昭 62— 91551号公報 (特許請求の範囲 1、 2)  Patent Document 3: Japanese Patent Application Laid-Open No. 61-236851 (Claims 118, 913) Patent Document 4: Japanese Patent Application Laid-Open No. 62-91551 (Claims 1, 2)
特許文献 5 :特開平 9 - 151298号公報(特許請求の範囲、請求項 1、請求項 4) 特許文献 6 :特開 2002 - 371168号公報(特許請求の範囲、請求項 1、請求項 3) 発明の開示  Patent Document 5: JP-A-9-151298 (Claims, Claims 1, Claims 4) Patent Document 6: JP-A-2002-371168 (Claims, Claims 1, Claims 3) Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力、しながら、これらの手法はいずれも、ガラス系無機充填材の化学的活性を高め るためには機能するものの、これだけでは化学的に不活性なポリアセタール樹脂との 密着性を改善し優れた機械的強度を達成するためには必ずしも十分ではない。 [0006] However, although all of these methods work to enhance the chemical activity of the glass-based inorganic filler, they alone cannot improve the adhesion to the chemically inactive polyacetal resin. It is not always enough to improve and achieve excellent mechanical strength.
[0007] 本発明は、力かる課題を解決し、近年、ポリアセタール樹脂の利用分野の拡大に伴 い要求されるより高度の機械的特性に応え得るポリアセタール樹脂組成物を提供す ることを目的とする。 [0007] An object of the present invention is to provide a polyacetal resin composition capable of solving a powerful problem and responding to higher mechanical properties required in recent years as the field of use of polyacetal resin is expanded. I do.
課題を解決するための手段  Means for solving the problem
[0008] 本発明者らはかかる課題に鑑み、優れた機械的物性を持つ強化ポリアセタール樹 脂組成物を得るべく鋭意研究を重ねた結果、ポリアセタール樹脂成分の 1つとして分 岐又は架橋構造を導入したポリアセタール樹脂を特定割合で配合することにより、か 力る課題が顕著に改善されることを見出し、本発明を完成するに至った。 [0008] In view of such problems, the present inventors have conducted intensive studies to obtain a reinforced polyacetal resin composition having excellent mechanical properties, and as a result, introduced a branched or crosslinked structure as one of the polyacetal resin components. It has been found that by blending the obtained polyacetal resin in a specific ratio, the problem to be solved is remarkably improved, and the present invention has been completed.
[0009] 即ち、本発明は、ポリアセタール樹脂成分 (A) 100重量部にガラス系無機充填材 (B ) 3— 200重量部を配合してなるポリアセタール樹脂組成物であって、該ポリアセター ル樹脂成分 (A)が、実質的に直鎖の分子構造を有するポリアセタール樹脂 (A1) 99.9一 80重量部と、分岐又は架橋構造を有するポリアセタール樹脂 (A2) 0.1— 20重 量部とからなることを特徴とするポリアセタール樹脂組成物である。  That is, the present invention provides a polyacetal resin composition comprising 100 parts by weight of a polyacetal resin component (A) and 3 to 200 parts by weight of a glass-based inorganic filler (B). (A) is characterized by comprising 99.9 to 80 parts by weight of a polyacetal resin having a substantially linear molecular structure (A1) and 0.1 to 20 parts by weight of a polyacetal resin having a branched or crosslinked structure (A2). Is a polyacetal resin composition.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 以下、本発明について詳細に説明する。本発明は、ガラス系無機充填材を配合し て強化したポリアセタール樹脂組成物において、ポリアセタール樹脂成分 (A)が、実 質的に直鎖の分子構造を有するポリアセタール樹脂 (A1)と、分岐又は架橋構造を 有するポリアセタール樹脂 (A2)とからなることを特徴とする。 Hereinafter, the present invention will be described in detail. The present invention incorporates a glass-based inorganic filler. In the reinforced polyacetal resin composition, the polyacetal resin component (A) comprises a polyacetal resin (A1) having a substantially linear molecular structure and a polyacetal resin (A2) having a branched or crosslinked structure. It is characterized by.
[0011] 本発明に用いられる実質的に直鎖の分子構造を有するポリアセタール樹脂 (A1)は ォキシメチレン基 (一 CH 0—)を主たる構成単位とする高分子化合物で、ポリオキシメ チレンホモポリマー、ォキシメチレン基以外に他の構成単位を少量含有するコポリマ 一(ブロックコポリマーを含む)の何れにてもょレ、が、特にコポリマーを用いるのが好ま しい。 [0011] The polyacetal resin (A1) having a substantially linear molecular structure used in the present invention is a high molecular compound having an oxymethylene group (one CH0-) as a main structural unit, and is a polyoxymethylene homopolymer, an oxymethylene group. In addition to any of the copolymers (including block copolymers) containing a small amount of other structural units, it is particularly preferable to use a copolymer.
[0012] コポリマーは、主としてォキシメチレン基 (一 CH 0—)力 なる繰り返し単位中に、炭 素数 2— 6のォキシアルキレン基が散在してなる、重量平均分子量が 5000以上の高 分子化合物であり、一般的には、ホルムアルデヒドの環状三量体であるトリオキサンと 、環状エーテル化合物及び環状ホルマールィヒ合物から選ばれる化合物とを共重合 することによって製造され、通常、加水分解によって末端の不安定部分を除去して熱 分解に対して安定化される。力かるコポリマーとしては、トリオキサン (a)99.9— 90.0重 量%と環状エーテル化合物及び環状ホルマール化合物から選ばれる化合物 (b)0.1 一 10重量%とを共重合して得られる共重合体が好ましい。かかる共重合体を用いた 場合、本発明の効果が特に顕著に生じる。  [0012] Copolymers are high molecular weight compounds having a weight average molecular weight of 5000 or more, in which oxyalkylene groups having 2 to 6 carbon atoms are dispersed in repeating units mainly composed of oxymethylene groups (one CH 0—). In general, it is produced by copolymerizing trioxane, which is a cyclic trimer of formaldehyde, with a compound selected from a cyclic ether compound and a cyclic formaldehyde compound. Removed and stabilized against thermal decomposition. As the powerful copolymer, a copolymer obtained by copolymerizing 99.9 to 90.0% by weight of trioxane (a) and 0.1 to 10% by weight of a compound (b) selected from a cyclic ether compound and a cyclic formal compound is preferable. When such a copolymer is used, the effects of the present invention are particularly prominent.
[0013] 共重合のための環状エーテル化合物又は環状ホルマール化合物としては、例えば エチレンオキサイド、 1, 3—ジォキソラン、ジエチレングリコールホルマール、 1, 4ーブ タンジオールホルマール等が用いられる。これらは、分岐或いは架橋構造を形成しな いものである。 As the cyclic ether compound or cyclic formal compound for copolymerization, for example, ethylene oxide, 1,3-dioxolan, diethylene glycol formal, 1,4-butanediol formal, and the like are used. These do not form a branched or crosslinked structure.
[0014] 又、上記成分の他に一般的には分子量を調整する成分が併用され、得られる重合 体の分子量が調整される。分子量調整をする成分としては、不安定末端を形成する ことのない連鎖移動剤、即ち、メチラール、メトキシメチラール、ジメトキシメチラール、 トリメトキシメチラール、ォキシメチレンジ _n_ブチルエーテルの如きアルコキシ基を 有する化合物の 1種または 2種以上が例示される。  [0014] In addition to the above components, a component for adjusting the molecular weight is generally used in combination to adjust the molecular weight of the obtained polymer. As a component for adjusting the molecular weight, a chain transfer agent that does not form an unstable terminal, that is, a compound having an alkoxy group such as methylal, methoxymethylal, dimethoxymethylal, trimethoxymethylal, or oxymethylenedi_n_butyl ether One or two or more are exemplified.
[0015] 本発明において使用する上記の如きポリアセタール樹脂 (A1)は、 190°C、荷重 2160 gで測定されるメルトインデックス(Ml)が 1一 50g/minのものが好ましレ、。 Mlが小さ 過ぎる場合は加工性に劣るものになり、大き過ぎると本発明の効果が生じ難くなる。 [0015] The polyacetal resin (A1) as described above used in the present invention preferably has a melt index (Ml) measured at 190 ° C and a load of 2160 g of 1 to 50 g / min. Ml is small If the amount is too large, the workability is poor.
[0016] 次に、本発明において用いる分岐又は架橋構造を有するポリアセタール樹脂 (A2) は、上記の如きポリアセタール樹脂 (A1)の製造において、ホルムアルデヒド或いはトリ ォキサン等と共重合可能であり、かつ共重合することによって分岐或いは架橋単位を 形成し得る化合物を更に添加して共重合することによって得られる。  [0016] Next, the polyacetal resin (A2) having a branched or crosslinked structure used in the present invention can be copolymerized with formaldehyde or trioxane and the like in the production of the polyacetal resin (A1) as described above. Then, a compound capable of forming a branched or crosslinked unit is further added and copolymerized.
[0017] 分岐又は架橋構造を有するかかるポリアセタール樹脂 (A2)として特に好ましレ、の は、トリオキサン (a)99.99 90重量%、環状エーテル化合物及び環状ホルマールイ匕 合物から選ばれる化合物 (b)0 10重量%及び多官能グリシジノレエーテル化合物 (c )0.01 1.0重量%を共重合することによって得られるものである。  Particularly preferred as such a polyacetal resin (A2) having a branched or crosslinked structure is a compound (b) 0 selected from trioxane (a): 99.99 90% by weight, a cyclic ether compound and a cyclic formali conjugate. It is obtained by copolymerizing 10% by weight and 0.011.0% by weight of a polyfunctional glycidinole ether compound (c).
[0018] ここで、上記による分岐又は架橋ポリアセタール樹脂 (A2)の製造に用いるトリオキ サン (a)、環状エーテル化合物及び環状ホルマール化合物から選ばれる化合物 (b) は、前記ポリアセタール樹脂 (A1)の説明で詳述した通りの化合物である。分岐又は 架橋ポリアセタール樹脂 (A2)の製造に用いる化合物(b)は、ポリアセタール樹脂 (A 1)の製造に用いる化合物と同一でも、各々異なっていてもよい。また、かかる化合物( b)は、分岐又は架橋構造を有する力かるポリアセタール樹脂 (A2)の構成成分として 特に必須とされるものではないが、分岐 ·架橋ポリアセタール樹脂 (A2)の製造を安定 して行なうため、また得られる分岐 ·架橋ポリアセタール樹脂 (A2)の熱安定性や加工 性を高めるためには、 0.1— 10重量%を共重合させるのが好ましぐ特に好ましくは 0.5— 5重量%である。  Here, the compound (b) selected from the group consisting of trioxane (a), cyclic ether compound and cyclic formal compound used in the production of the branched or crosslinked polyacetal resin (A2) described above is the same as that of the polyacetal resin (A1). The compound is as described in detail above. The compound (b) used for producing the branched or crosslinked polyacetal resin (A2) may be the same as or different from the compound used for producing the polyacetal resin (A1). Further, such a compound (b) is not particularly essential as a component of the strong polyacetal resin (A2) having a branched or crosslinked structure, but stably produces the branched / crosslinked polyacetal resin (A2). In order to improve the thermal stability and processability of the resulting branched and crosslinked polyacetal resin (A2), it is preferable to copolymerize 0.1 to 10% by weight, particularly preferably 0.5 to 5% by weight. is there.
[0019] また、多官能グリシジルエーテルィ匕合物 (c)としては、 1分子中に 3個又は 4個のダリ シジルエーテル基を有するものが特に好ましぐ具体的にはトリメチロールプロパント リグリシジノレエーテル、グリセロールトリグリシジルエーテル及びペンタエリスリトールテ トラグリシジルエーテルが好ましい化合物として挙げられる。力、かる多官能グリシジル エーテル化合物 (c)の共重合割合は 0.01— 1.0重量%であり、特に好ましくは 0.02— 0.5重量%である。  Further, as the polyfunctional glycidyl ether conjugate (c), those having 3 or 4 daricidyl ether groups in one molecule are particularly preferred, specifically, trimethylolpropane triol. Preferred compounds include glycidinole ether, glycerol triglycidyl ether and pentaerythritol tetraglycidyl ether. The copolymerization ratio of the polyfunctional glycidyl ether compound (c) is 0.01 to 1.0% by weight, particularly preferably 0.02 to 0.5% by weight.
[0020] 本発明で用いる分岐又は架橋ポリアセタール樹脂 (A2)は、前記ポリアセタール樹 脂 (A1)と同様に、一般的には適量の分子量調整剤を添加して、カチオン重合触媒 を用いてカチオン重合を行う等の方法で得られる。また、重合装置、重合条件、重合 後の触媒の失活処理及びこれに続く後処理等も、ポリアセタール樹脂 (A1)の製造 法に準じて行えばよい。 [0020] The branched or crosslinked polyacetal resin (A2) used in the present invention is generally the same as the polyacetal resin (A1), except that an appropriate amount of a molecular weight modifier is added thereto, and a cationic polymerization catalyst is used. And the like. In addition, polymerization equipment, polymerization conditions, polymerization The subsequent catalyst deactivation treatment and subsequent post-treatment may be performed according to the method for producing the polyacetal resin (A1).
[0021] 本発明において使用する上記の如きポリアセタール樹脂 (A2)は、 190°C、荷重 2160 gで測定されるメルトインデックス(Ml)力 S0.1— 10g/minのものが好ましレ、。 Mlが小 さ過ぎる場合は加工性に劣るものになり、大き過ぎると本発明の効果が生じ難くなる。  [0021] The polyacetal resin (A2) as described above used in the present invention is preferably one having a melt index (Ml) force S of 0.1 to 10 g / min measured at 190 ° C and a load of 2160 g. If Ml is too small, processability is poor, and if it is too large, the effects of the present invention are less likely to be produced.
[0022] 本発明において、ポリアセタール樹脂成分 (A)を構成するポリアセタール樹脂 (A1) と分岐又は架橋ポリアセタール樹脂 (A2)の重量比は、 AlZA2 = 99.9— 80重量部/ 0.1— 20重量部である。分岐又は架橋ポリアセタール樹脂 (A2)が 0.1重量部未満、或 レ、は、 20重量部を超える場合では、いずれも機械的物性の改善が不十分となる。ポリ ァセタール樹脂 (A1)と分岐又は架橋ポリアセタール樹脂 (A2)の一般的に好ましレ、 割合は、 AlZA2 = 99.5— 90重量部 /0.5— 10重量部である。  In the present invention, the weight ratio of the polyacetal resin (A1) and the branched or crosslinked polyacetal resin (A2) constituting the polyacetal resin component (A) is AlZA2 = 99.9—80 parts by weight / 0.1—20 parts by weight. . If the amount of the branched or crosslinked polyacetal resin (A2) is less than 0.1 part by weight, or if the amount exceeds 20 parts by weight, the mechanical properties are all insufficiently improved. Generally preferred ratios of the polyacetal resin (A1) and the branched or crosslinked polyacetal resin (A2) are AlZA2 = 99.5-90 parts by weight / 0.5-10 parts by weight.
[0023] 次に、本発明で用いられるガラス系無機充填材 (B)としては、繊維状 (ガラスフアイ バー)、粒状 (ガラスビーズ)、粉状 (ミルドガラスファイバー)、板状 (ガラスフレーク)及 び中空状 (ガラスバルーン)の充填材が挙げられ、その粒径、繊維長等に特に制限 はなぐ公知の何れのものも使用できる。  Next, the glass-based inorganic filler (B) used in the present invention includes fibrous (glass fiber), granular (glass bead), powder (milled glass fiber), plate (glass flake) and the like. And a hollow (glass balloon) filler. Any known filler having no particular restriction on the particle size, fiber length and the like can be used.
[0024] 本発明においては、 目的に応じてこれらの充填材から選択した 1種又は 2種以上を 混合して使用することができる。  In the present invention, one or more kinds selected from these fillers can be used in combination according to the purpose.
[0025] 本発明において、これらのガラス系無機充填材は未処理のものでも使用できるが、 シラン系、或いは、チタネート系カップリング剤等の表面処理剤で表面処理を施され てレ、る無機充填材を使用する方が好ましレ、。  [0025] In the present invention, these glass-based inorganic fillers can be used even if they have not been treated. However, inorganic materials that have been subjected to a surface treatment with a surface treatment agent such as a silane-based or titanate-based coupling agent can be used. It is better to use a filler.
[0026] シラン系カップリング剤としては、例えばビニルアルコキシシラン、エポキシアルコキ シシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、ァリルアルコキシシラ ン等が挙げられる。  [0026] Examples of the silane coupling agent include vinylalkoxysilane, epoxyalkoxysilane, aminoalkoxysilane, mercaptoalkoxysilane, and arylalkoxysilane.
[0027] ビュルアルコキシシランとしては、例えばビュルトリエトキシシラン、ビュルトリメトキシ シラン、ビュルトリス( β -メトキシエトキシ)シラン等が挙げられる。  [0027] Examples of the vinylalkoxysilanes include, for example, burtriethoxysilane, burtrimethoxysilane, burtris (β-methoxyethoxy) silane, and the like.
[0028] [0028]
Figure imgf000006_0001
Figure imgf000006_0001
ロピルトリエトキシシラン等が挙げられる。 [0029] アミノアルコキシシランとしては、例えば、 Ί—丁 ,、 7 -T ― 〗ェトキシシラン、 γ—アミ y一アミノプ Ripyltriethoxysilane and the like can be mentioned. [0029] Examples of aminoalkoxysilanes include, for example, Ί-c- , 7-T-diethoxysilane, γ-ami y
Ν—フエニノレー γ—アミ 等が挙げら れる。  Ν-Feninolee γ-Ami and the like.
[0030] " コ :、例えば、 τ  [0030] "Ko: For example, τ
ン、 y エトキシシラン等が挙げられる。  And y ethoxysilane.
[0031] コキシシランとしては、例えば Ί [0031] The Kokishishiran, for example Ί
Figure imgf000007_0001
Figure imgf000007_0001
等が挙げられる。  And the like.
[0032] これらの内、特にアミノアルコキシシランが好ましく使用される。  [0032] Of these, aminoalkoxysilanes are particularly preferably used.
[0033] また、チタネート系表面処理剤としては、例えば、チタニウム— i一プロポキシオタチレ ングリコレート、テトラ— n_ブトキシチタン、テトラキス(2—ェチルへキソキシ)チタン等 が挙げられる。 [0033] Examples of the titanate-based surface treatment agent include titanium-i-propoxyotatilene glycolate, tetra- n -butoxytitanium, and tetrakis (2-ethylhexoxy) titanium.
[0034] 表面処理剤の使用量は、無機充填材 100重量部に対して 0.01— 20重量部、好まし くは 0.05— 10重量部、特に好ましくは 0.05— 5重量部である。  [0034] The amount of the surface treatment agent to be used is 0.01 to 20 parts by weight, preferably 0.05 to 10 parts by weight, particularly preferably 0.05 to 5 parts by weight based on 100 parts by weight of the inorganic filler.
[0035] 又、ガラス系無機充填材 (B)がガラスファイバーの場合においては、更にサイズ剤と して、ポリマーバインダー、接着促進剤、他の助剤などを使用しているものが好適に 使用される。ポリマーバインダーとしては、一般に有機系の材料、例えば水分散性/ 水溶性の酢酸ポリビュル、ポリエステル、エポキシド、ポリウレタン、ポリアタリレートま たはポリオレフイン樹脂、それらの混合物など、従来公知のものが好適に使用される  When the glass-based inorganic filler (B) is a glass fiber, those using a polymer binder, an adhesion promoter, other auxiliaries and the like as a sizing agent are preferably used. Is done. As the polymer binder, generally known materials such as organic materials, for example, water-dispersible / water-soluble polyvinyl acetate, polyester, epoxide, polyurethane, polyatalylate or polyolefin resin, and mixtures thereof are preferably used. Be done
[0036] 本発明において、ガラス系無機充填材 (B)の配合量は、ポリアセタール樹脂成分( A) 100重量部に対して 3 200重量部、好ましくは 5 150重量部、特に好ましくは 10 一 100重量部である。 3重量部未満では機械的物性の改善が不十分であり、 200重量 部を越えると成形力卩ェが困難になる。 In the present invention, the blending amount of the glass-based inorganic filler (B) is 3200 parts by weight, preferably 5150 parts by weight, particularly preferably 10 1 to 100 parts by weight, per 100 parts by weight of the polyacetal resin component (A). Parts by weight. If the amount is less than 3 parts by weight, the mechanical properties are not sufficiently improved, and if the amount exceeds 200 parts by weight, the molding force becomes difficult.
[0037] 本発明のポリアセタール樹脂組成物には、更に公知の各種安定剤'添加剤を配合 し得る。安定剤としては、ヒンダートフエノール系化合物、メラミン、グアナミン、ヒドラジ ド、尿素等の窒素含有化合物、アルカリ或いはアルカリ土類金属の水酸化物、無機 塩、カルボン酸塩等のいずれ力 1種または 2種以上を挙げることができる。又、本発 明で用レ、られる添加剤としては、熱可塑性樹脂に対する一般的な添加剤、例えば染 料、顔料等の着色剤、滑剤、核剤、離型剤、帯電防止剤、界面活性剤のいずれか 1 種または 2種以上を挙げることができる。 [0037] The polyacetal resin composition of the present invention may further contain various known stabilizers' additives. Examples of stabilizers include hindered phenol compounds, nitrogen-containing compounds such as melamine, guanamine, hydrazide, and urea, hydroxides of alkali or alkaline earth metals, and inorganic compounds. One or more kinds of salts, carboxylate salts and the like can be mentioned. The additives used in the present invention include general additives for thermoplastic resins, for example, coloring agents such as dyes and pigments, lubricants, nucleating agents, release agents, antistatic agents, and surfactants. One or more of the agents can be mentioned.
[0038] 又、本発明の目的とする成形品の性能を大幅に低下させないような範囲であるなら ば、ガラス系無機充填材以外の公知の無機、有機、及び金属等の繊維状、板状、粉 粒状等の充填剤を 1種又は 2種以上複合させて配合することも可能である。このような 充填剤の例としては、タルク、マイ力、ウォラストナイト、炭素繊維等が挙げられるが、 何らこれらに限定されるものではない。  [0038] In addition, as long as the performance of the molded article aimed at by the present invention is not significantly reduced, fibrous or plate-like materials such as known inorganic, organic, and metal other than the glass-based inorganic filler can be used. It is also possible to compound one or more kinds of fillers such as powders and the like. Examples of such fillers include, but are not limited to, talc, my strength, wollastonite, carbon fiber, and the like.
[0039] 又、本発明のポリアセタール樹脂組成物には、例えば、特開平 9一 151298号公報 に記載のホウ酸化合物の添加、特開 2002—371168号公報に記載のヒドロキシカル ボン酸化合物の添加、又、従来公知の有機酸や無機酸の添加等を、併せて実施す ることもでき、更なる機械的物性の改善を図ることも可能である。  Further, to the polyacetal resin composition of the present invention, for example, the addition of a boric acid compound described in JP-A-9-1151298 and the addition of a hydroxycarboxylic acid compound described in JP-A-2002-371168 Further, addition of a conventionally known organic acid or inorganic acid can be carried out at the same time, and further improvement in mechanical properties can be achieved.
[0040] 本発明の組成物の調製法は特に制限がなぐ従来の樹脂組成物調製法として一 般に用いられている公知の設備と方法により容易に調製される。例えば、 i)各成分を 混合した後、押出機により練込押出してペレットを調製し、しかる後に成形する方法、 ii)いったん組成の異なるペレットを調製し、そのペレットを所定量混合して成形に供 し、成形後に目的組成の成形品を得る方法、 m)成形機に各成分の 1又は 2種以上を 直接仕込む方法等、何れも使用できる。また、樹脂成分の一部を細かい粉体としてこ れ以外の成分と混合し添加することは、これらの成分の均一配合を行う上で好ましい 方法である。  [0040] The composition of the present invention can be easily prepared by known facilities and methods generally used as conventional resin composition preparation methods, which are not particularly limited. For example, i) a method of mixing each component, kneading and extruding with an extruder to prepare pellets, and then molding, and ii) once preparing pellets having a different composition, mixing a predetermined amount of the pellets and molding. Any of the following methods can be used: a method of obtaining a molded article having a desired composition after molding; m) a method of directly charging one or more of each component to a molding machine. Mixing and adding a part of the resin component as a fine powder with other components is a preferable method for uniformly blending these components.
[0041] また、本発明に係る樹脂組成物は、押出成形、射出成形、圧縮成形、真空成形、 吹込成形、発泡成形の何れによっても成形可能である。  [0041] The resin composition according to the present invention can be molded by any of extrusion molding, injection molding, compression molding, vacuum molding, blow molding, and foam molding.
実施例  Example
[0042] 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限 定されるものではなレ、。なお、評価は以下の方法で行った。 メルトインデックス(Ml)は、 ASTM D—1238に準じて、 190。C、荷重 2160gの条 件下で測定した。 Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. The evaluation was performed by the following method. Melt index (Ml) is 190 according to ASTM D-1238. C, load of 2160g Measured under the following conditions:
〔共重合組成〕  (Copolymer composition)
へキサフルォロイソプロパノール d2を溶媒とする1 H—NMR測定により、その共重 合組成を確認した。 Its copolymer composition was confirmed by 1 H-NMR measurement using hexafluoroisopropanol d2 as a solvent.
ぐ引張強度及び伸び >  Tensile strength and elongation>
IS03167に準じた引張り試験片を温度 23°C、湿度 50。/oの条件下に 48時間放置 し、 IS0527に準じて測定した。  A tensile test piece according to IS03167 was heated at a temperature of 23 ° C and a humidity of 50. The sample was left for 48 hours under the condition of / o, and measured according to IS0527.
製造例 1一 3 (分岐又は架橋ポリアセタール樹脂 (A2))  Production Example 1-3 (Branched or crosslinked polyacetal resin (A2))
外側に熱 (冷)媒を通すジャケットが付き、断面が 2つの円が一部重なる形状を有す るバレルと、パドル付き回転軸で構成される連続式混合反応機を用い、パドルを付し た 2本の回転軸をそれぞれ 150rpmで回転させながら、トリオキサン(a)、環状エーテ ル化合物及び環状ホルマール化合物から選ばれた化合物 (b)、及び多官能ダリシジ ルエーテル化合物(c)を表 1に示す割合で加え、更に分子量調整剤としてメチラー ルを連続的に供給し、触媒の三フッ化ホウ素をトリオキサンに対して 0.005重量%、連 続的に添加供給し塊状重合を行った。重合機から排出された反応生成物は速やか に破碎機に通しながら、トリェチルァミンを 0.05重量%含有する 60°Cの水溶液に加え 触媒を失活した。さらに、分離、洗浄、乾燥後、粗ポリアセタール樹脂を得た。  A paddle is attached using a continuous mixing reactor consisting of a barrel that has a jacket through which a heat (cold) medium passes and a cross section of two circles partially overlapped, and a rotary shaft with paddles. Table 1 shows trioxane (a), a compound selected from cyclic ether compounds and cyclic formal compounds (b), and a polyfunctional daricidyl ether compound (c) while rotating the two rotating shafts at 150 rpm. In addition, methylal as a molecular weight regulator was continuously supplied, and boron trifluoride as a catalyst was continuously added and supplied in an amount of 0.005% by weight based on trioxane to perform bulk polymerization. The reaction product discharged from the polymerization machine was immediately passed through a crusher and added to a 60 ° C aqueous solution containing 0.05% by weight of triethylamine to deactivate the catalyst. Further, after separation, washing and drying, a crude polyacetal resin was obtained.
[0043] 次いで、この粗ポリアセタール樹脂 100重量部に対して、トリェチルァミン 5重量%水 溶液を 3重量0 /0、ペンタエリスリチルーテトラキス〔3_ (3, 5_ジー tert—ブチルー 4—ヒド ロキシフエニル)プロピオネート〕を 0.3重量%添加し、 2軸押出機にて 210°Cで溶融混 練し不安定部分を除去し、ペレット状のポリアセタール樹脂を得て、ポリアセタール榭 脂組成物の調製に用いた。 [0043] Then, with respect to 100 parts by weight of the crude polyacetal resin, Toryechiruamin 5 wt% aqueous solution 3 wt 0/0, pentaerythrityl over tetrakis [3_ (3, 5_ di tert- butyl-4-hydrin Rokishifueniru) Propionate] was added in an amount of 0.3% by weight, and the mixture was melt-kneaded at 210 ° C. in a twin-screw extruder to remove unstable portions, to obtain a polyacetal resin in pellet form, which was used for preparing a polyacetal resin composition.
[0044] これらポリアセタール樹脂の組成とメルトインデックスを表 1に示す。尚、表中の略号 は以下の通りである。  Table 1 shows the compositions and melt indexes of these polyacetal resins. The abbreviations in the table are as follows.
(b)成分  (b) ingredient
DO : l, 3—ジォキソラン  DO: l, 3—dioxolan
BF : 1 , 4_ブタンジオールホルマール  BF: 1,4_butanediol formal
(c)成分 TMPTGE :トリメチロー 一テノレ (c) component TMPTGE: Trimethylo One Tenoré
[0045] [表 1] [Table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[0046] 実施例 1一 7、比較例 1一 3 Example 117, Comparative Example 113
直鎖のポリアセタール樹脂(ポリプラスチックス (株)製、商品名ジユラコン M90)に、 以下に示す各種のガラスファイバー (B1— B3)及び分岐'架橋ポリアセタール樹脂 (A 2-1— A2-3)を、表 2に示す割合で配合し、シリンダー温度 200°Cの押出機で溶融混 練してペレット状の組成物を調製した。次いで、このペレット状の組成物力、ら射出成 形機を用いて試験片を成形し、以下に示す評価法にて物性評価を行った。結果を表 2に示す。  To a linear polyacetal resin (manufactured by Polyplastics Co., Ltd., trade name: Zyuracon M90), various glass fibers (B1-B3) and a branched 'crosslinked polyacetal resin (A2-1-A2-3) shown below are added. And blended in the proportions shown in Table 2 and melt-kneaded with an extruder at a cylinder temperature of 200 ° C to prepare a pellet-shaped composition. Next, a test piece was molded using the pellet-shaped composition power and an injection molding machine, and physical properties were evaluated by the following evaluation methods. Table 2 shows the results.
[0047] 一方、比較のため、分岐'架橋ポリアセタールを添加しない場合についても同様に してペレット状の組成物を調製し、物性評価を行った。結果を表 2に併せて示す。 <使用した無機ガラス系充填材 >  [0047] On the other hand, for comparison, a pellet-shaped composition was prepared in the same manner also in the case where no branched-crosslinked polyacetal was added, and the physical properties were evaluated. The results are shown in Table 2. <Inorganic glass filler used>
B1 : γ—ァミノプロピルトリエトキシシランで表面処理したガラスファイバー  B1: Glass fiber surface-treated with γ-aminopropyltriethoxysilane
Β2:チタニウム _i_プロポキシオタチレングリコレートで表面処理したガラスファイバー B3: B1に更にエポキシドをポリマーバインダーとして処理したガラスファイバー  Β2: Glass fiber treated with titanium _i_propoxyotatilene glycolate B3: Glass fiber treated with epoxide as polymer binder in addition to B1
[0048] [表 2] [Table 2]
樹脂組成 物性評価結果 Resin composition Physical property evaluation results
(A1 )ポリ (A2)分岐'架橋ポリア (B)力"ラス系無機充填材 a I張強 jff フ ァセターノレ セタール樹脂  (A1) Poly (A2) Branched 'cross-linked poly (B) Force "Lath-based inorganic filler a I Zhangqiang jff Facenole resin
樹脂  Resin
重量部 種類 重量部 重量部 (MPa) {%) 実施例 1 99 A2-1 1 B1 35 121 2.6 実施例 2 97 A2-1 3 B1 35 138 2.9 実施例 3 95 A2-1 5 B1 35 141 3.1 実施例 4 97 A2-2 3 B1 35 132 2.6 実施例 5 97 A2-3 3 B1 35 130 2.4 実施例 6 97 A2-1 3 B2 35 128 2.4 実施例 Ί 97 A2-1 3 B3 35 139 3.0 比較例 1 100 B1 35 113 1.9 比較例 2 100 B2 35 110 1.8 比較例 3 100 B3 35 119 2.0  Parts by weight Type Parts by weight Parts by weight (MPa) (%) Example 1 99 A2-1 1 B1 35 121 2.6 Example 2 97 A2-1 3 B1 35 138 2.9 Example 3 95 A2-1 5 B1 35 141 3.1 Example 4 97 A2-2 3 B1 35 132 2.6 Example 5 97 A2-3 3 B1 35 130 2.4 Example 6 97 A2-1 3 B2 35 128 2.4 Example Ί 97 A2-1 3 B3 35 139 3.0 Comparative example 1 100 B1 35 113 1.9 Comparative Example 2 100 B2 35 110 1.8 Comparative Example 3 100 B3 35 119 2.0
[0049] 実施例 8— 15、比較例 4一 7 Examples 8 to 15 and Comparative Examples 4 to 7
直鎖ポリアセタール樹脂(ポリプラスチックス (株)製、商品名ジユラコン M90)に、以 下に示す各種のガラスビーズ (B4— B7)および分岐'架橋ポリアセタール樹脂 (A2-1 一 A2-3)を、表 3に示す割合で配合し、シリンダー温度 200°Cの押出機で溶融混練し てペレット状の組成物を調製した。次いで、このペレット状の組成物から射出成形機 を用いて試験片を成形し、物性評価を行った。結果を表 3に示す。  To a linear polyacetal resin (manufactured by Polyplastics Co., Ltd., trade name: Dyuracon M90), various glass beads (B4-B7) and a branched 'crosslinked polyacetal resin (A2-1-A2-3) shown below were added to They were blended at the ratios shown in Table 3 and melt-kneaded with an extruder at a cylinder temperature of 200 ° C to prepare pellet-shaped compositions. Next, test pieces were molded from the pellet-shaped composition using an injection molding machine, and physical properties were evaluated. Table 3 shows the results.
[0050] 一方、比較のため、分岐'架橋ポリアセタールを添加しない場合についても同様に してペレット状の組成物を調製し、物性評価を行った。結果を表 3に併せて示す。 く使用した無機ガラス系充填材 >  [0050] On the other hand, for comparison, a pellet-shaped composition was prepared in the same manner even when no branched or crosslinked polyacetal was added, and the physical properties were evaluated. The results are shown in Table 3. Inorganic glass filler used well>
B4:表面処理剤無使用のガラスビーズ  B4: Glass beads without surface treatment agent
B5 : yーァミノプロピルトリエトキシシランで表面処理したガラスビーズ  B5: Glass beads surface-treated with y-aminopropyltriethoxysilane
B6:ビニルトリエトキシシランで表面処理したガラスビーズ  B6: Glass beads surface-treated with vinyltriethoxysilane
B7 : γーグリシドキシプロピルトリエトキシシランで表面処理したガラスビーズ  B7: Glass beads surface-treated with γ-glycidoxypropyltriethoxysilane
[0051] [表 3] 樹脂組成 物性評価結果 [Table 3] Resin composition Physical property evaluation results
( A1 )ポリ (A2)分岐 ·架橋ポリア ほ)力'ラス系無機充填材 引張強度 引張伸び ァセターノレ セタール樹脂  (A1) Poly (A2) Branched / cross-linked polya) Force's inorganic filler Tensile strength Tensile elongation
樹脂  Resin
重量部 重量部 重量部 (MPa) (%) 実施例 8 97 A2-1 3 B4 35 57 16 実施例 9 99 A2-1 1 B5 35 53 15 実施例 10 97 A2-1 3 B5 35 62 18 実施例 11 95 A2-1 5 B5 35 64 19 実施例 12 97 A2-2 3 B5 35 59 16 実施例 13 97 A2-3 3 B5 35 60 17 実施例 14 97 A2-1 3 B6 35 60 17 実施例 15 97 A2-1 3 B7 35 59 17 比較例 4 100 B4 35 45 11 比較例 5 100 B5 35 47 12 比較例 6 100 B6 35 48 13 比較例 7 100 B7 35 48 13  Parts by weight Parts by weight Parts by weight (MPa) (%) Example 8 97 A2-1 3 B4 35 57 16 Example 9 99 A2-1 1 B5 35 53 15 Example 10 97 A2-1 3 B5 35 62 18 Example 11 95 A2-1 5 B5 35 64 19 Example 12 97 A2-2 3 B5 35 59 16 Example 13 97 A2-3 3 B5 35 60 17 Example 14 97 A2-1 3 B6 35 60 17 Example 15 97 A2-1 3 B7 35 59 17 Comparative example 4 100 B4 35 45 11 Comparative example 5 100 B5 35 47 12 Comparative example 6 100 B6 35 48 13 Comparative example 7 100 B7 35 48 13
[0052] 実施例 16— 21、比較例 8— 9 [0052] Examples 16-21, Comparative Examples 8-9
直鎖ポリアセタール樹脂(ポリプラスチックス (株)製、商品名ジユラコン M O)に、以 下に示す各種ミルドガラスファイバー (B8、 B9)及び分岐'架橋ポリアセタール樹脂を、 表 4に示す割合で配合し、シリンダー温度 200°Cの押出機で溶融混練してペレット状 の組成物を調製した。次いで、このペレット状の組成物から射出成形機を用いて試験 片を成形し、物性評価を行った。結果を表 4に示す。  A linear polyacetal resin (manufactured by Polyplastics Co., Ltd., trade name: DURACON MO) was blended with the following milled glass fibers (B8, B9) and a branched 'crosslinked polyacetal resin in the proportions shown in Table 4, The mixture was melt-kneaded with an extruder at a cylinder temperature of 200 ° C to prepare a pellet-shaped composition. Next, test pieces were molded from the pellet-like composition using an injection molding machine, and physical properties were evaluated. Table 4 shows the results.
[0053] 一方、比較のため、分岐'架橋ポリアセタールを添カ卩しない場合についても同様に してペレット状の組成物を調製し、物性評価を行った。結果を表 4に併せて示す。[0053] On the other hand, for comparison, a pellet-shaped composition was prepared in the same manner even when no branched or crosslinked polyacetal was added, and physical properties were evaluated. The results are shown in Table 4.
<使用した無機ガラス系充填材 > <Inorganic glass filler used>
B8:表面処理剤無使用のミルドガラスファイバー  B8: Milled glass fiber without surface treatment agent
B9 : 7—ァミノプロピルトリエトキシシランで表面処理したミルドガラスファイバー  B9: Milled glass fiber surface-treated with 7-aminopropyltriethoxysilane
[0054] [表 4] [Table 4]
樹脂組成 物性評価結果 Resin composition Physical property evaluation result
( A1 )ポリ (A2)分岐■架橋ポリア (B)力"ラス系無機充填材 引張強度 引張伸び ァセターノレ セタール樹脂  (A1) Poly (A2) Branched ■ Crosslinked Polya (B) Force "Las-based inorganic filler Tensile strength Tensile elongation
樹脂  Resin
重量部 重量部 種類 重量部 (MPa) (%) 実施例 16 99 A2-1 1 B8 30 54 13 実施例 17 97 A2- 1 3 B8 30 58 15 実施例 18 95 A2-1 5 B8 30 60 16 実施例 19 97 A2-2 3 B8 30 57 15 実施例 20 97 A2-3 3 B8 30 60 16 実施例 21 97 A2-1 3 B9 30 63 18 比較例 8 100 B8 30 45 11 比較例 9 100 B9 30 47 12  Parts by weight Parts by weight Type Parts by weight (MPa) (%) Example 16 99 A2-1 1 B8 30 54 13 Example 17 97 A2-1-3 B8 30 58 15 Example 18 95 A2-1 5 B8 30 60 16 Example Example 19 97 A2-2 3 B8 30 57 15 Example 20 97 A2-3 3 B8 30 60 16 Example 21 97 A2-1 3 B9 30 63 18 Comparative example 8 100 B8 30 45 11 Comparative example 9 100 B9 30 47 12
[0055] 実施例 22— 26、比較例 10 [0055] Examples 22-26, Comparative Example 10
直鎖ポリアセタール樹脂(ポリプラスチックス (株)製、商品名ジユラコン M90)に、以 下に示すガラスフレーク及び分岐'架橋ポリアセタール樹脂 (A2-1— A2-3)を、表 5 に示す割合で配合し、シリンダー温度 200°Cの押出機で溶融混練してペレット状の組 成物を調製した。次いで、このペレット状の組成物から射出成形機を用いて試験片を 成形し、物性評価を行った。結果を表 5に示す。  The following glass flakes and branched 'crosslinked' polyacetal resins (A2-1-A2-3) are blended with a linear polyacetal resin (manufactured by Polyplastics Co., Ltd., trade name: DURACON M90) in the proportions shown in Table 5. Then, the mixture was melt-kneaded with an extruder having a cylinder temperature of 200 ° C to prepare a pellet-shaped composition. Next, test pieces were molded from the pellet-shaped composition using an injection molding machine, and physical properties were evaluated. Table 5 shows the results.
[0056] 一方、比較のため、分岐'架橋ポリアセタールを添加しない場合についても同様に してペレット状の組成物を調製し、物性評価を行った。結果を表 5に併せて示す。 <使用した無機ガラス系充填材 >  [0056] On the other hand, for comparison, a pellet-shaped composition was prepared in the same manner also in the case where no branched-crosslinked polyacetal was added, and the physical properties were evaluated. The results are shown in Table 5. <Inorganic glass filler used>
BIO : y -ァミノプロピルトリエトキシシランで表面処理したガラスフレーク  BIO: Glass flakes surface-treated with y-aminopropyltriethoxysilane
[0057] [表 5] 樹脂組成 物性評価結果[Table 5] Resin composition Physical property evaluation results
( A1 )ポリ (A2)分岐'架橋ポリア (B)力'ラス系無機充填材 引張強度 引張伸び ァセターノレ セタール樹脂 (A1) Poly (A2) Branched 'cross-linked polya (B) Force' Lath inorganic filler Tensile strength Tensile elongation
樹脂  Resin
重量部 種類 重量部 種類 (MPa) (%) 実施例 22 99 A2-1 1 B10 35 66 4.3 実施例 23 97 A2-1 3 B10 35 70 4.6 実施例 24 95 A2-1 5 B10 35 72 4.8 実施例 25 97 A2-2 3 B10 35 69 4.4 実施例 26 97 A2-3 3 B10 35 69 4.5 比較例 10 100 B10 35 59 3.7  Parts by weight Type Parts by weight Type (MPa) (%) Example 22 99 A2-1 1 B10 35 66 4.3 Example 23 97 A2-1 3 B10 35 70 4.6 Example 24 95 A2-1 5 B10 35 72 4.8 Example 25 97 A2-2 3 B10 35 69 4.4 Example 26 97 A2-3 3 B10 35 69 4.5 Comparative example 10 100 B10 35 59 3.7

Claims

請求の範囲 The scope of the claims
[1] ポリアセタール樹脂成分 (A) 100重量部にガラス系無機充填材 (B) 3 200重量部 を配合してなるポリアセタール樹脂組成物であって、該ポリアセタール樹脂成分 (A) が、実質的に直鎖の分子構造を有するポリアセタール樹脂 (A1) 99.9— 80重量部と、 分岐又は架橋構造を有するポリアセタール樹脂 (A2) 0.1 20重量部とからなることを 特徴とするポリアセタール樹脂組成物。  [1] A polyacetal resin composition comprising 100 parts by weight of a polyacetal resin component (A) and 200 parts by weight of a glass-based inorganic filler (B), wherein the polyacetal resin component (A) substantially comprises A polyacetal resin composition comprising 99.9 to 80 parts by weight of a polyacetal resin having a linear molecular structure (A1) and 0.120 parts by weight of a polyacetal resin having a branched or crosslinked structure (A2).
[2] ポリアセタール樹脂 (A1)力 トリオキサン( 99.9ー90.0重量%と環状ェーテル化 合物及び環状ホルマール化合物から選ばれる化合物 (b) 0.1— 10重量%とを共重合 することによって得られる共重合体である請求項 1記載のポリアセタール樹脂組成物  [2] Polyacetal resin (A1) Copolymer obtained by copolymerizing trioxane (99.9 to 90.0% by weight with a compound selected from cyclic ether compounds and cyclic formal compounds (b) 0.1 to 10% by weight) The polyacetal resin composition according to claim 1, which is
[3] 分岐又は架橋構造を有するポリアセタール樹脂 (A2)力 トリオキサン(a) 99.99— 90.0重量%、環状エーテル化合物及び環状ホルマール化合物から選ばれる化合物 (b) 0— 10重量%及び多官能グリシジルエーテルィ匕合物(c) 0.01— 1.0重量%を共重 合することによって得られる共重合体である請求項 1記載のポリアセタール樹脂組成 物。 [3] Polyacetal resin having a branched or crosslinked structure (A2) strength Trioxane (a) 99.99 to 90.0% by weight, a compound selected from cyclic ether compounds and cyclic formal compounds (b) 0 to 10% by weight and polyfunctional glycidyl ether 2. The polyacetal resin composition according to claim 1, which is a copolymer obtained by copolymerizing 0.01 to 1.0% by weight of the conjugated product (c).
[4] 多官能グリシジノレエーテル化合物(c) 3個又は 4個のグリシジノレ基を有するもの である請求項 3記載のポリアセタール樹脂組成物。  4. The polyacetal resin composition according to claim 3, wherein the polyfunctional glycidinole ether compound (c) has three or four glycidinole groups.
[5] 多官能グリシジノレエーテル化合物(c) トリメチロールプロパントリグリシジルエー テル、グリセロールトリグリシジルエーテル及びペンタエリスリトールテトラグリシジルェ 一テルから選ばれるものである請求項 3記載のポリアセタール樹脂組成物。  5. The polyacetal resin composition according to claim 3, wherein the polyfunctional glycidinole ether compound (c) is selected from trimethylolpropane triglycidyl ether, glycerol triglycidyl ether and pentaerythritol tetraglycidyl ether.
[6] ポリアセタール樹脂(A1)が 1一 50gZminのメルトインデックスを有するものであり、 分岐又は架橋構造を有するポリアセタール樹脂 (A2)が 0.1— 10g/minのメルトイン デッタスを有するものである請求項 1一 5の何れ力、 1項に記載のポリアセタール樹脂 組成物。  [6] The polyacetal resin (A1) has a melt index of 110 to 50 gZmin, and the polyacetal resin (A2) having a branched or crosslinked structure has a melt index of 0.1 to 10 g / min. Item 5. The polyacetal resin composition according to item 1,
[7] ガラス系無機充填材 (B)力 ガラスファイバー、ガラスビーズ、ミルドガラスファイバ 一及びガラスフレークから選ばれた少なくとも 1種である請求項 1一 5の何れ力 1項に 記載のポリアセタール樹脂組成物。  [7] The polyacetal resin composition according to any one of [1] to [5], wherein the polyacetal resin is at least one selected from the group consisting of glass fiber, glass beads, milled glass fiber and glass flake. object.
[8] ガラス系無機充填材 (B) 、シラン系カップリング剤で表面処理されたものである請 求項 1に記載のポリアセタール樹脂組成物。 [8] A glass-based inorganic filler (B), which has been surface-treated with a silane-based coupling agent 3. The polyacetal resin composition according to claim 1.
[9] シラン系カップリング^ flj力 了;— )請求項 8記載のポリアセタ ール樹脂組成物。 [9] The polyacetal resin composition according to claim 8, wherein the silane-based coupling is performed.
PCT/JP2004/009526 2003-07-08 2004-07-05 Polyacetal resin composition WO2005003232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003271825A JP2005029714A (en) 2003-07-08 2003-07-08 Polyacetal resin composition
JP2003-271825 2003-07-08

Publications (1)

Publication Number Publication Date
WO2005003232A1 true WO2005003232A1 (en) 2005-01-13

Family

ID=33562676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009526 WO2005003232A1 (en) 2003-07-08 2004-07-05 Polyacetal resin composition

Country Status (3)

Country Link
JP (1) JP2005029714A (en)
CN (1) CN1331940C (en)
WO (1) WO2005003232A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123709A1 (en) * 2006-12-25 2009-11-25 Polyplastics Co., Ltd. Polyacetal resin composition

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044995A (en) * 2006-08-11 2008-02-28 Polyplastics Co Polyacetal resin composition
JP5612262B2 (en) * 2008-12-24 2014-10-22 ポリプラスチックス株式会社 Polyacetal resin composition
USD779248S1 (en) 2016-02-12 2017-02-21 Haworth, Inc. Armrests for a chair
USD779255S1 (en) 2016-02-12 2017-02-21 Haworth, Inc. Headrest for a chair
USD779254S1 (en) 2016-02-12 2017-02-21 Haworth, Inc. Armrests for a chair
USD779252S1 (en) 2016-02-12 2017-02-21 Haworth, Inc. Back support for a chair
USD779251S1 (en) 2016-02-12 2017-02-21 Haworth, Inc. Lumbar support for a chair
USD782859S1 (en) 2016-02-12 2017-04-04 Haworth, Inc. Back support for a chair
USD793787S1 (en) 2016-02-12 2017-08-08 Haworth, Inc. Portion of a back support for a chair
USD779250S1 (en) 2016-02-12 2017-02-21 Haworth, Inc. Portion of a back support for a chair
USD782241S1 (en) 2016-02-12 2017-03-28 Haworth, Inc. Back support for a chair
USD779253S1 (en) 2016-02-12 2017-02-21 Haworth, Inc. Back support for a chair
USD784749S1 (en) 2016-02-12 2017-04-25 Haworth, Inc. Lumbar support for a chair
JP2017179265A (en) * 2016-03-31 2017-10-05 ポリプラスチックス株式会社 Polyacetal resin composition
JP7339812B2 (en) * 2019-08-30 2023-09-06 ポリプラスチックス株式会社 Polyacetal resin composition and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219252A (en) * 1984-04-13 1985-11-01 Nitto Boseki Co Ltd Glass fiber reinforced polyacetal resin composition
WO2001009213A1 (en) * 1999-07-30 2001-02-08 Asahi Kasei Kabushiki Kaisha Polyacetal block copolymer
JP2001089631A (en) * 1999-09-24 2001-04-03 Polyplastics Co Branched polyacetal resin composition
JP2002302589A (en) * 2001-04-05 2002-10-18 Asahi Kasei Corp Polyoxymethylene resin composition
JP2003243442A (en) * 2002-02-19 2003-08-29 Seiko Epson Corp Semiconductor device and manufacturing method thereof, circuit substrate and electronic apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3285480B2 (en) * 1995-09-29 2002-05-27 ポリプラスチックス株式会社 Polyacetal resin composition
JP3083474B2 (en) * 1996-03-05 2000-09-04 ポリプラスチックス株式会社 Polyacetal resin composition and molded article
JP4762387B2 (en) * 1999-06-23 2011-08-31 ポリプラスチックス株式会社 Polyacetal resin composition
JP4979857B2 (en) * 2001-06-15 2012-07-18 ポリプラスチックス株式会社 Polyacetal resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219252A (en) * 1984-04-13 1985-11-01 Nitto Boseki Co Ltd Glass fiber reinforced polyacetal resin composition
WO2001009213A1 (en) * 1999-07-30 2001-02-08 Asahi Kasei Kabushiki Kaisha Polyacetal block copolymer
JP2001089631A (en) * 1999-09-24 2001-04-03 Polyplastics Co Branched polyacetal resin composition
JP2002302589A (en) * 2001-04-05 2002-10-18 Asahi Kasei Corp Polyoxymethylene resin composition
JP2003243442A (en) * 2002-02-19 2003-08-29 Seiko Epson Corp Semiconductor device and manufacturing method thereof, circuit substrate and electronic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123709A1 (en) * 2006-12-25 2009-11-25 Polyplastics Co., Ltd. Polyacetal resin composition
EP2123709A4 (en) * 2006-12-25 2011-11-09 Polyplastics Co Polyacetal resin composition

Also Published As

Publication number Publication date
JP2005029714A (en) 2005-02-03
CN1576314A (en) 2005-02-09
CN1331940C (en) 2007-08-15

Similar Documents

Publication Publication Date Title
WO2005003232A1 (en) Polyacetal resin composition
US7619020B2 (en) Polyacetal resin composition
JPH01146958A (en) Thermoplastic resin composition
WO2006025547A1 (en) Polyacetal resin composition
US10131782B2 (en) Polyoxymethylene compositions, method of manufacture, and articles made therefrom
JP5005159B2 (en) Polyacetal resin composition
WO2010035351A1 (en) Polyacetal resin composition
KR100196682B1 (en) Polyacetal resin composition
JP6105305B2 (en) Polyacetal resin composition and method for producing the same
WO2003102078A1 (en) Polyacetal resin composition
JP2683442B2 (en) Polyarylene sulfide resin composition and method for producing the same
JPH11181232A (en) Fiber-reinforced conductive polyacetal resin composition
JP5336710B2 (en) Polyacetal resin composition
EP1215245B1 (en) Polyacetal resin composition
JP6373727B2 (en) Resin molded body
WO2001040375A1 (en) Branched polyacetal resin composition
JP3224158B2 (en) Polyacetal resin composition
JP4467669B2 (en) Branched polyacetal resin composition
US5356992A (en) Compatibilized blends of PPE/polyethylene copolymer
JP2002003696A (en) Polyacetal resin composition
JP2001002886A (en) Branched polyacetal resin composition
JP4472302B2 (en) Process for producing polyacetal copolymer
JPH07286024A (en) Modified polyoxymethylene copolymer, its production and composition containing this copolymer
JP2023043157A (en) Oxymethylene resin composition
JP3320555B2 (en) Polyolefin resin composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase