WO2004112940A1 - 酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置 - Google Patents

酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置 Download PDF

Info

Publication number
WO2004112940A1
WO2004112940A1 PCT/JP2004/004521 JP2004004521W WO2004112940A1 WO 2004112940 A1 WO2004112940 A1 WO 2004112940A1 JP 2004004521 W JP2004004521 W JP 2004004521W WO 2004112940 A1 WO2004112940 A1 WO 2004112940A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
cylindrical
low
temperature plasma
gas
Prior art date
Application number
PCT/JP2004/004521
Other languages
English (en)
French (fr)
Inventor
Akemitsu Iida
Akira Mizuno
Original Assignee
Nittetsu Mining Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co. Ltd. filed Critical Nittetsu Mining Co. Ltd.
Priority to US10/560,980 priority Critical patent/US7347979B2/en
Priority to CA002529732A priority patent/CA2529732A1/en
Priority to JP2005507181A priority patent/JPWO2004112940A1/ja
Priority to EP04724399A priority patent/EP1649923A4/en
Priority to AU2004249019A priority patent/AU2004249019A1/en
Publication of WO2004112940A1 publication Critical patent/WO2004112940A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/0828Wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • B01J2219/083Details relating to the shape of the electrodes essentially linear cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0896Cold plasma

Definitions

  • the present invention relates to a gas processing method and a gas processing apparatus using an oxidation catalyst (for example, an oxidation catalyst containing a metal oxide such as manganese oxide and copper oxide, in particular, a hopcalite catalyst) and low-temperature plasma.
  • an oxidation catalyst for example, an oxidation catalyst containing a metal oxide such as manganese oxide and copper oxide, in particular, a hopcalite catalyst
  • harmful components for example, carbon monoxide or volatile organic compounds
  • Odor can be deodorized.
  • microorganisms can be eliminated or reduced from the treated gas. Background art
  • the hopcalite catalyst is an oxidizing catalyst composed of manganese oxide, copper oxide, and other metal oxides (for example, potassium oxide, silver oxide, or cobalt oxide), and has a function of removing carbon monoxide by oxidation.
  • oxidizing catalyst composed of manganese oxide, copper oxide, and other metal oxides (for example, potassium oxide, silver oxide, or cobalt oxide)
  • metal oxides for example, potassium oxide, silver oxide, or cobalt oxide
  • a method using a hopcalite catalyst for adsorbing carbon monoxide when producing medical-quality air Japanese Unexamined Patent Publication No. Hei 8-26666) No. 29
  • a method using a hopcalite catalyst as an adsorbent for carbon monoxide which is an impurity in an inert gas stream Japanese Patent Application Laid-Open No. H10-137530
  • a method using a hopcalite catalyst as a catalyst for removing an odor component from fuel Japanese Patent Application Laid-Open No. Hei 8-245576 is known.
  • a deodorization technique using low-temperature plasma is also known.
  • a low-temperature plasma deodorization apparatus including a high-pressure discharge unit capable of generating low-temperature plasma and a catalyst unit filled with an oxidation-promoting catalyst is known.
  • organic solvent removal method using low temperature plasma A method of removing nitrogen oxides as a gas oxidizing effect using low-temperature plasma is also known, but a method of converting carbon monoxide in gas into carbon dioxide using low-temperature plasma is particularly known.
  • there is no known technique for using a hopcalite catalyst and low-temperature plasma in combination and thus it is not known that the activity of the hopcalite catalyst is improved by low-temperature plasma. Disclosure of the invention
  • the inventor of the present invention has been studying the development of a technology for detoxifying a gas containing harmful components (for example, carbon monoxide and a nitric oxide compound) with high efficiency.
  • a gas containing harmful components for example, carbon monoxide and a nitric oxide compound
  • hopcalite catalyst has been found to have improved activity.
  • a metal oxide oxidation catalyst e.g., hopcalite catalyst
  • the present invention provides a method for generating low-temperature plasma in the presence of a metal oxide oxidation catalyst (for example, an oxidation catalyst containing metal oxides such as manganese oxide and copper oxide, in particular, a hopcalite catalyst or activated manganese dioxide). And a method for treating gas.
  • a metal oxide oxidation catalyst for example, an oxidation catalyst containing metal oxides such as manganese oxide and copper oxide, in particular, a hopcalite catalyst or activated manganese dioxide.
  • the gas is oxidized (for example, harmful components in the gas to be treated, for example, carbon monoxide or nitrogen monoxide are oxidized to carbon dioxide or nitrogen dioxide, respectively). Or decompose volatile organic compounds or deodorize odors.
  • the present invention has a low-temperature plasma generating section for holding a metal oxide oxidation catalyst (for example, an oxidation catalyst containing a metal oxide such as manganese oxide and copper oxide, particularly, a hopcalite catalyst or activated manganese dioxide).
  • a metal oxide oxidation catalyst for example, an oxidation catalyst containing a metal oxide such as manganese oxide and copper oxide, particularly, a hopcalite catalyst or activated manganese dioxide.
  • the low-temperature plasma generating section includes a cylindrical electrode, and a rod-shaped electrode arranged at a position of a center axis of the cylindrical electrode. Either a metal oxide oxidation catalyst supported so that the catalyst surface is exposed, or a metal oxide oxidation catalyst filled between the cylindrical electrode and the rod-shaped electrode is provided.
  • the low-temperature plasma generating section includes: a cylindrical insulator; a cylindrical electrode provided in contact with an outer surface of the cylindrical insulator; A plurality of strip electrodes arranged on the inner surface of the insulator; and a metal oxide oxidation catalyst also arranged on the inner surface of the cylindrical insulator, wherein the strip electrodes are cylindrical insulating.
  • the metal oxide oxidation catalyst extends axially parallel to each other on the inner surface of the body, and the metal oxide oxidation catalyst is supported between the band-shaped electrodes so that the particulate catalyst surface is exposed, or It is filled inside the cylindrical insulator.
  • the low-temperature plasma generating section includes a plurality of cylindrical electrodes divided into two groups that mutually discharge each other inside the housing, and a catalyst surface is formed on the cylindrical electrode surface. Either a metal oxide oxidation catalyst supported so as to be exposed is provided, or a metal oxide oxidation catalyst filled inside the housing is provided.
  • the low-temperature plasma generating section includes: (a) a cylindrical electrode including: (a) a core electrode; and a cylindrical insulating sheath body surrounding the core electrode.
  • a metal oxide oxide catalyst comprising: a protective electrode; and (b) a conductive mesh electrode; and a metal oxide oxidation catalyst supported on the conductive mesh electrode so that a catalyst surface is exposed. It has a metal oxide oxidation catalyst filled inside.
  • Fig. 1 is a schematic diagram of a low-temperature plasma generator according to the present invention in which a metal oxide oxidation catalyst is dispersed and supported on the inner wall of a cylinder of a coaxial cylindrical low-temperature plasma generator having a cylindrical electrode and a rod-shaped electrode. It is a perspective view.
  • FIG. 2 is a schematic sectional view of the low-temperature plasma generator of FIG.
  • FIG. 3 is a schematic diagram of a low-temperature plasma generator according to the present invention in which a metal oxide oxidation catalyst is filled inside a cylinder of a coaxial cylindrical low-temperature plasma generator similar to FIG. 1 having a cylindrical electrode and a rod-shaped electrode.
  • FIG. 1 is a schematic sectional view of the low-temperature plasma generator of FIG.
  • FIG. 3 is a schematic diagram of a low-temperature plasma generator according to the present invention in which a metal oxide oxidation catalyst is filled inside a cylinder of a coaxial cylindrical low-temperature plasma generator similar to FIG. 1 having a cylindrical electrode and a rod-shaped electrode.
  • Fig. 4 is a schematic diagram of a low-temperature plasma generator according to the present invention in which a metal oxide oxidation catalyst is dispersed and supported on the inner wall of a cylinder of a creeping discharge type low-temperature plasma generator having a cylindrical electrode and a strip electrode. It is a perspective view.
  • FIG. 5 is a schematic cross-sectional view of the creeping discharge type low-temperature plasma generator of FIG.
  • FIG. 6 is a schematic view of a low-temperature plasma generator according to the present invention in which a metal oxide oxidation catalyst is dispersed and supported on the surface of a column-shaped electrode group of a low-temperature plasma generation section having a column-shaped electrode group in a housing. It is a perspective view.
  • FIG. 7 shows a low-temperature low-temperature plasma according to the present invention in which a metal oxide oxidation catalyst is dispersed and supported on the surface of a mesh-like electrode group of a low-temperature plasma generating section having a columnar electrode group and a mesh-like electrode group in a housing. It is a typical perspective view of a plasma generator.
  • FIG. 8 is a schematic sectional view of the low-temperature plasma generator of FIG.
  • FIG. 9 is a schematic sectional view of a typical embodiment of the device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the gas to be treated by the method of the present invention and the apparatus of the present invention is not particularly limited as long as it is an oxidizable gaseous compound (that is, an inorganic compound or an organic compound).
  • an oxidizable gaseous compound that is, an inorganic compound or an organic compound.
  • Carbon monoxide, sulfur dioxide, hydrogen sulfide, or nitrogen oxides for example, nitric oxide
  • the organic compound volatile organic compounds (VOC) can be mentioned.
  • VOC volatile organic compounds
  • the gas to be treated include air, and the oxidizable gaseous inorganic compound or gaseous organic compound which may be mixed in the air can be treated.
  • the method and apparatus of the present invention are suitable for treating gases (e.g., polluted air) containing harmful components (e.g., carbon monoxide, nitric oxide, and / or volatile organic compounds), Suitable for treating gases containing low concentrations of harmful components.
  • harmful components e.g., carbon monoxide, nitric oxide, and / or volatile organic compounds
  • low concentration refers to the oxidizable compound (particularly, carbon monoxide, Nitrogen monoxide or volatile organic compounds) is preferably 1 ppm or less, more preferably 0.5 ppm or less.
  • the volatile organic compound and (VOC), for example, alcohols, ketones, esters, ethers, or Fang aromatic compound (e.g., phenol, toluene, styrene, or benzene) in the c present invention is the By subjecting the gas to be treated to low-temperature plasma treatment in the presence of a metal oxide oxidation catalyst (for example, hopcalite catalyst), carbon monoxide contained in the gas to be treated is converted into carbon dioxide. Can be converted to nitrogen with high efficiency, and independently of this, nitric oxide can be converted to nitrogen dioxide with high efficiency and easily subjected to adsorption treatment and chemical treatment. VOCs can be decomposed (eg, converted to carbon dioxide and water) with high efficiency to detoxify them.
  • the low-temperature plasma used in the present invention can be generated by a known method, for example, by electric discharge. As the discharge, for example, microwave discharge, AC discharge, or DC discharge can be used.
  • Electrode pairs used in these discharge methods include, for example, parallel cylindrical electrodes, coaxial cylinders — rod electrodes, spherical gap electrodes, parallel plate electrodes, cylindrical single-plate electrodes, creeping discharge electrodes, or special electrodes (eg, blade electrodes) Can be mentioned.
  • the electrode gap is set to about 1 Omm in a discharge using parallel plate electrodes, the gas between the electrodes can be turned into plasma by applying an AC voltage of tens to several tens of kV between the electrodes. it can.
  • a known oxidation catalyst containing, for example, manganese oxide and copper oxide for example, a hopcalite catalyst can be used as the metal oxide oxidation catalyst.
  • the metal oxide oxidation catalyst include the hopcalite catalyst and activated manganese dioxide.
  • the hopcalite catalyst is manufactured by solidifying a mixture of manganese oxide, copper oxide, and other metal oxides (for example, potassium oxide, silver oxide, or cobalt oxide) into particles and drying or sintering the mixture. You.
  • the shape of the metal oxide oxidation catalyst (for example, hopcalite catalyst) used in the present invention is not particularly limited, but it can be generally used in the form of powder or granules, for example, granules of about 1 to 3 mm.
  • a metal oxide oxidation catalyst for a low-temperature plasma generation electrode for example, the arrangement of the hopcalite catalyst is not particularly limited as long as the activity of the metal oxide oxidation catalyst can be improved by low-temperature plasma.
  • the metal oxide oxidation catalyst can be carried on the surface of all electrodes or the surface of some electrodes for generating low-temperature plasma.
  • both of a pair of electrodes for discharging for example, an ungrounded electrode and a grounded electrode
  • the electrode for example, an ungrounded electrode and a grounded electrode
  • an adhesive can be used.
  • an adhesive can be applied to the whole or a part of the electrode surface of the columnar electrode, and subsequently, a powdery or granular hopcalite catalyst can be shaken and fixed.
  • the shape of the electrode may be a shape that is suitable for supporting a powdery or granular metal oxide oxidation catalyst (for example, hopcalite catalyst) and has air permeability, for example, a mesh shape.
  • a powdery or granular metal oxide oxidation catalyst for example, hopcalite catalyst
  • has air permeability for example, a mesh shape.
  • a granular hopcalite catalyst having a mesh size smaller than the particle size of the granular hopcalite catalyst is simply placed on a mesh plate electrode arranged in the horizontal direction, and substantially the entire surface of the granular hopcalite catalyst is covered. It can be brought into contact with the processing gas.
  • an adhesive can be used for fixing to the mesh-shaped flat electrode.
  • the mesh-shaped flat electrode supporting the fixed granular hopcalite catalyst can be arranged in a direction other than the horizontal direction (for example, the vertical direction). it can. Further, an electrode having a form in which a granular hopcalite catalyst is confined inside a mesh-shaped three-
  • a pair of electrodes for performing discharge is a combination of a non-grounded electrode and a grounded electrode, and a particulate hopcalite catalyst is carried or placed on the electrode surface, it is preferable to dispose it on the grounded electrode side.
  • Powdered or granular metal oxide oxidation catalysts can be supported on portions other than the electrode surface (eg, the surface of the insulator in the surface discharge electrode). Can also be. In this case, the powdery or granular metal oxide oxidation catalyst is supported on portions other than the electrode surface, and the powdery or granular metal oxide oxidation catalyst is also supported or placed on the surface of each electrode. be able to.
  • a metal oxide oxidation catalyst (particularly, a powdery or granular metal oxide oxidation catalyst) can be filled in the low-temperature plasma generation section.
  • a metal oxide oxidation catalyst it is necessary to fill the space between the powdery or granular metal oxide oxidation catalysts so that the gas to be treated can pass through.
  • FIG. 1 shows a low-temperature plasma generator 10 according to the present invention in which a metal oxide oxidation catalyst is dispersed and supported on the inner wall of a cylinder of a coaxial cylindrical low-temperature plasma generator having a cylindrical electrode and a rod-shaped electrode.
  • FIG. 2 is a schematic perspective view, and FIG. 2 is a schematic sectional view thereof.
  • the low-temperature plasma generator 10 includes a cylindrical electrode 12 and a rod-shaped electrode 11 arranged at a position of a center axis of the cylindrical electrode 12.
  • a large number of granular hopcalite catalysts 13 supported by an appropriate method such as an adhesive so that the surface of the granular catalyst is exposed are provided on the inner surface of the cylindrical electrode 12.
  • the gas to be treated G is inserted from one opening of the cylindrical electrode 12, and the treated gas C is exhausted from the other opening.
  • the rod-shaped electrode 11 it is not necessary to ground both the rod-shaped electrode 11 and the cylindrical electrode 12, but it is preferable to ground either one from the viewpoint of operation safety.
  • the rod-shaped electrode 11 be on the non-ground side and the cylindrical electrode 12 be on the ground side.
  • the rod-shaped non-grounded electrode 11 is connected to the electric wire 17 A
  • the cylindrical grounded electrode 12 is connected to the grounded electric wire 17 B.
  • Each of the electric wires 17 A, 1 7 B is connected to an AC power supply 18 (shown only in FIG. 1), and applies a high voltage between the rod-shaped non-grounded electrode 11 and the cylindrical grounded electrode 12.
  • FIG. 3 shows a low-temperature plasma according to the present invention in which a metal oxide oxidation catalyst is filled inside a cylinder of a coaxial cylindrical low-temperature plasma generation part similar to Fig. 1 having a cylindrical electrode and a rod-shaped electrode.
  • FIG. 2 is a schematic cross-sectional view of the mass generation device 30.
  • the low-temperature plasma generator 30 is, like the low-temperature plasma generator 10 shown in FIG. 1, a cylindrical electrode 32 and a rod-shaped electrode 31 arranged at the center axis of the cylindrical electrode 32. It has. Further, unlike the low-temperature plasma generator 10 shown in FIG. 1, the internal space of the cylindrical electrode 32 is filled with a number of granular hopcalite catalysts 33.
  • a filter or the like be provided at the opening (not shown) for inflow of the gas to be treated and the opening (not shown) for discharging the treated gas so that the particulate hopcalite catalyst 33 is not discharged.
  • the gas to be treated G (not shown) is inserted from one opening of the cylindrical electrode 32, and the treated gas C (not shown) is exhausted from the other opening.
  • the rod-shaped electrode 31 and the cylindrical electrode 32 it is not necessary to ground both the rod-shaped electrode 31 and the cylindrical electrode 32, but it is preferable to ground either one from the viewpoint of operation safety.
  • the rod-shaped electrode 31 be on the non-ground side and the cylindrical electrode 32 be on the ground side.
  • the rod-shaped ungrounded electrode 31 is connected to a wire (not shown), and the cylindrical grounded electrode 32 is connected to a grounded wire (not shown). It is connected to a power supply (not shown), and applies a high voltage between the rod-shaped non-grounded electrode 31 and the cylindrical grounded electrode 32.
  • FIG. 4 is a schematic perspective view of a low-temperature plasma generator 20 using a surface discharge electrode
  • FIG. 5 is a schematic sectional view thereof.
  • the low-temperature plasma generator 20 includes a cylindrical insulator 24 and a cylindrical electrode 21.
  • the cylindrical electrode 21 is in contact with the outer surface of the cylindrical insulator 24.
  • the strip electrodes 22 extend axially in parallel with each other on the inner surface of the cylindrical insulator 24. Further, a large number of granular hopcalite catalysts 23 are supported between the strip electrodes 22 by an appropriate method such as an adhesive.
  • the gas to be treated G is inserted through one opening of the cylindrical insulator 24, and the treated gas C is exhausted through the other opening.
  • neither the cylindrical electrode 21 nor the strip electrode 22 need be grounded, but it is preferable to ground either one from the viewpoint of operation safety. If one of them is grounded, the cylindrical electrode 21 should be on the non-ground side and the strip electrode 22 should be on the ground side. Preferably.
  • the power supply and the electric wire are omitted in FIGS. 4 and 5, but the cylindrical non-grounded electrode 21 is connected to the electric wire, and the band-shaped grounded electrode 22 is grounded on the other side.
  • Each of the two wires is connected to an AC power source, and a high voltage is applied between the cylindrical non-ground electrode and the belt-like ground electrode 22. As in the low-temperature plasma generator 20 shown in FIGS.
  • the inside of the cylindrical insulator of the low-temperature plasma generator including the cylindrical insulator, the cylindrical electrode, and the strip electrode is shown in FIG. Similar to the low-temperature plasma generator 30, a large number of granular hopcalite catalysts can be filled. Also in this case, it is preferable to provide a filter or the like in the opening for inflow of the gas to be treated and the opening for discharging the treated gas.
  • FIG. 6 is a schematic perspective view showing a part of the side wall of the housing 51 of the low-temperature plasma generator 50, which is cut away.
  • the low-temperature plasma generator 50 has a substantially rectangular parallelepiped housing 51 provided with an opening 52 for inflow of the gas G to be treated and an opening 53 for exhaust of the treated gas C.
  • a large number of columnar electrodes 54 are provided inside 1.
  • the above-mentioned columnar electrode 54 is divided into two electrode groups. It is not necessary to ground these electrode groups, but it is preferable to ground either one from the viewpoint of operation safety.
  • the columnar electrode 54 is a protective electrode (a) including a core electrode and a cylindrical insulating sheath surrounding the core electrode (for example, cylindrical glass). Electrode) and (b) a combination of a cylindrical exposed electrode (for example, a cylindrical stainless steel electrode) whose electrode surface can directly contact the gas to be treated, or only the protective electrode (a). Can consist of When the protective electrode (a) and the exposed electrode (b) are combined, the protective electrode (a) is used as the non-grounded electrode group 54 A, and the exposed electrode (b) is used as the grounded electrode group 54. B and granular hopcalite catalyst Preferably, 56 is carried on the exposed electrode (b).
  • the low-temperature plasma generator 50 shown in FIG. 6 described above inside the housing of the low-temperature plasma generator having a columnar electrode group in the housing, like the low-temperature plasma generator 30 shown in FIG. A number of particulate hopcalite catalysts can also be packed. Also in this case, it is preferable to provide a filter or the like at the opening for inflow of the gas to be treated and the opening for discharge of the processed gas.
  • FIG. 7 is a schematic perspective view showing a part of a side wall of a housing 61 of the low-temperature plasma generator 60
  • FIG. 8 is a schematic sectional view thereof.
  • the low-temperature plasma generator 60 has a substantially rectangular parallelepiped housing 61 provided with an opening 62 for inflow of the gas G to be treated and an opening 63 for exhaust of the treated gas C, and the housing
  • a large number of cylindrical electrode groups 64 and a plurality of mesh electrode groups 69 are provided inside 61.
  • Each of the columnar electrode groups 64 is a protective electrode (for example, a cylindrical glass electrode) including a core electrode and a cylindrical insulating sheath surrounding the core electrode ( mesh electrode).
  • Group 69 can be a reticulated plate structure of a conductive material, for example, a metal (eg, stainless steel, a titanium alloy, or a nickel alloy).
  • the mesh-shaped electrode group 69 has a large number of granular hopcalite catalysts 66 fixed and supported so that the surface is exposed by an appropriate method such as an adhesive or the upper surface of the mesh-shaped electrode group 69. It is provided with a large number of granular hopcalite catalysts 66 simply placed.
  • neither the columnar electrode group 64 nor the mesh electrode group 69 need be grounded, but from the viewpoint of safety in operation. Preferably, one of them is grounded. When one of them is grounded, it is preferable that the columnar electrode group 64 be on the non-grounding side and the mesh electrode group 69 be on the grounding side. Further, although not shown in FIGS.
  • the cylindrical electrode group 64 and the mesh electrode group 69 are respectively connected to electric wires, and the electric wires are connected to an AC power supply.
  • the wires connected to the grounding electrode group (especially the mesh-like grounding electrode group 69) are grounded.
  • a high voltage is applied between the cylindrical electrode group 64 and the mesh electrode group 69.
  • the mesh-shaped flat electrode group 69 carries the granular hopcalite catalyst 66 simply on its surface (in an unfixed state), as shown in FIGS.
  • the mesh of the mesh-shaped flat electrode group 69 must be smaller than the particle size of the granular hopcalite catalyst 66.
  • the mesh-shaped flat electrode group 69 carries the granular hopcalite catalyst 66 on its surface by fixing it with an appropriate method such as an adhesive
  • the mesh-shaped flat electrode group 69 is The arrangement direction ⁇ screen is not particularly limited.
  • FIG. 9 shows a typical embodiment of the device of the present invention.
  • the gas processing apparatus 9 shown in FIG. 9 includes a low-temperature plasma generator 1 supporting a hopcalite catalyst. Further, the low-temperature plasma generator 1 is provided with a transfer pipe 8a as a supply means capable of supplying a gas to be treated (for example, polluted air) G, and the gas to be treated G is supplied to the low-temperature plasma. It can be introduced inside the generator 1. At the tip of the transfer pipe 8a, a gas to be treated (not shown) capable of continuously or intermittently taking in the gas to be treated G is provided.
  • a gas to be treated (not shown) capable of continuously or intermittently taking in the gas to be treated G is provided.
  • a transfer pipe 8b for transferring the processed gas C from the low-temperature plasma generator 1 to the exhaust port 5 is provided.
  • a forced air supply fan 6 can be provided downstream of the low-temperature plasma generator 1 via a transfer pipe 8b if necessary.
  • downstream and upstream mean downstream and upstream with respect to the flow direction of the gas to be treated G and the processed gas C, respectively.
  • An exhaust port 5 for the treated gas C is provided downstream of the forced air supply fan 6 via a transfer pipe 8c.
  • a forced air supply fan may be provided in the transfer pipe 8a instead of, or in addition to, the forced air supply fan 6.
  • the gas G to be treated is introduced into the low-temperature plasma generator 1 from the transfer pipe 8a. Subsequently, when low-temperature plasma is generated inside the low-temperature plasma generator 1, radicals are generated by the low-temperature plasma. In addition, low temperature plasma The activity of the light catalyst is improved. Therefore, by the action of the radical and the hopcalite catalyst, the carbon monoxide to be treated G is oxidized to carbon dioxide with high efficiency, and the volatile organic compound (VOC) is also decomposed into carbon dioxide and water with high efficiency. Is done. At the same time, odors are eliminated with high efficiency.
  • VOC volatile organic compound
  • the treated gas C thus obtained is exhausted from the exhaust port 5 via the transfer pipe 8c by the forced air supply fan 6 via the transfer pipe 8b.
  • the gas treatment apparatus 9 can treat the gas to be treated batchwise or preferably continuously. Particularly in the case of continuous treatment, the contaminants (especially carbon monoxide, nitrogen monoxide, and VOC) in the gas to be treated can be treated. ) Changes, it is possible to provide various concentration sensors in the transfer pipe 8a, the transfer pipe 8b, and / or the exhaust port 5 to control the gas flow rate and / or applied voltage of the gas to be treated. it can. Action
  • the mechanism by which the activity of a metal oxide oxidation catalyst for example, a hopcalite catalyst
  • low-temperature plasma a combination of metal oxide oxidation catalysts and low-temperature plasma can be used to detoxify carbon monoxide, nitrogen monoxide, or volatile organic compounds in the gas to be treated with unexpectedly high efficiency.
  • a metal oxide oxidation catalyst for example, a hopcalite catalyst
  • low-temperature plasma can be used to detoxify carbon monoxide, nitrogen monoxide, or volatile organic compounds in the gas to be treated with unexpectedly high efficiency.
  • the present invention is not limited to the following inference.
  • the hopcalite catalyst shows sufficient activity in a dry state, but is inactivated when it contains moisture.
  • the hopcalite catalyst is used in combination with the low-temperature plasma. When low-temperature plasma is generated, the temperature of the discharge electrode Since it rises, even if the humidity of the gas to be treated is relatively high, the hopcalite catalyst is easily maintained in a dry state, and deactivation of the hopcalite catalyst can be avoided.
  • ozone is generated together with the generation of radicals by the low-temperature plasma.
  • Ozone is typically consumed mostly in the gas treatment process, but some may be exhausted with the treated gas without being consumed. Since the discharge of ozone is not preferable, a conventionally known low-temperature plasma-type gas processing apparatus needs to arrange a porous adsorbent (for example, activated carbon) at an outlet for ozone adsorption.
  • porous adsorbents also adsorb dust contained in gases. The dust thus adsorbed by the porous adsorbent becomes a medium suitable for the growth of microorganisms.
  • the growth of microorganisms is suppressed because ozone is generated, but when the operation of the low-temperature plasma type gas treatment equipment is stopped, the growth of microorganisms is suppressed. As a result, microorganisms will propagate on the porous adsorbent. When the operation of the low-temperature plasma type gas processing apparatus is restarted in this state, microorganisms will be discharged together with the processed gas.
  • the conventional low-temperature plasma-type gas processing apparatus has these disadvantages.
  • the metal oxide oxidation catalyst (eg, hopcalite catalyst) used in the present invention has an ozone decomposing property, and therefore, a porous adsorbent (eg, activated carbon) is disposed at the outlet for ozone adsorption. There is no need to do this or use can be reduced.
  • the dust contained in the gas to be treated mainly adheres to the electrode surface, and the metal oxide oxidation catalyst carried on the electrode surface has an antibacterial activity. It is also suppressed from becoming a medium for microorganisms. Therefore, according to the present invention, even if the operation of the device is stopped and the operation is restarted, microbes can be eliminated or reduced in the treated gas.
  • the present invention exhibits an excellent treatment effect, for example, polluted air containing low concentrations of carbon monoxide, nitric oxide, and Z or VOC, for example, polluted air containing automobile exhaust gas, etc.
  • Suitable for treating air air in rooms that are not ventilated using long-term heating systems, and contaminated air containing tobacco smoke (eg, air in smoking rooms).
  • the present invention can eliminate or reduce microorganisms from the treated gas, and therefore it is desirable to supply a sterilized or sterilized gas. It can also be suitably applied to air purifiers used in new environments (for example, medical institutions and homes).
  • the cold plasma generator 1 in the gas processing device 9, shown in Figure 6 to structure similar
  • a low-temperature plasma generator 50 having the following was used.
  • the total number of the group 54B and the group 54A of the non-ground side cylindrical glass electrodes not supporting the hopcalite catalyst was 74, and the distance between the electrodes was 4.75 mm.
  • the hopcalite catalyst particles were supported on the surface of the cylindrical exposed SUS electrode 54 B at a density of about 0.17 g / cm 2 .
  • the gas to be treated smoke from smokers was collected and used in polytetrafluoroethylene (Teflon) bags.
  • the gas to be treated was introduced into the low-temperature plasma generator 1 (50) of the gas treatment device 9 from the transfer pipe 8a as the gas to be treated supply means (the low-temperature plasma was generated by setting the applied voltage to 8 kV.
  • the test was performed under the conditions of a temperature of 22 ° C. and a humidity of 60% Subsequently, the treated gas was exhausted from the exhaust port 5 via the transfer pipe 8 c by the forced air supply fan 6.
  • the processing capacity is determined by the concentration of volatile organic compounds (VOC) contained in the gas to be treated
  • VOC volatile organic compounds
  • the concentration of VOC contained in the treated gas treated by the gas treatment device of the present invention was measured, and the VOC removal rate by the gas treatment device of the present invention was calculated from the results.
  • the treated gas sample was collected at the treated gas inlet and the treated gas sample was collected at the treated gas outlet.
  • the measurement of the VOC concentration was carried out using a gas chromatograph mass spectrometer (Hület Packard; HP6890) equipped with a gas concentrator (Entec, Model I 7000). Table 1 shows the VOC measurement results and the VOC removal rates calculated from the results.
  • Example 1 The processing capacity when low-temperature plasma was generated in the absence of a hopcalite catalyst was investigated. Specifically, the low-temperature plasma generator 50 used in Example 1 does not carry a hopcalite catalyst in place of the ground-side cylindrical exposed S US electrode group 54 B carrying a hop-light catalyst. The test was performed in the same manner as in Example 1 except that the gas processing apparatus 9 including the low-temperature plasma generator having the ground-side cylindrical exposed SUS electrode group was used.
  • Table 1 shows the VOC concentration of each of the gas to be treated and the treated gas, and the VOC removal rate.
  • the processing capacity was investigated when the gas was treated only with the hopcalite catalyst without generating low-temperature plasma. Specifically, in the low-temperature plasma generator 50 used in Example 1, a test was performed in the same manner as in Example 1 except that the gas to be treated was processed without applying a voltage.
  • Table 1 shows the VOC concentration of each of the gas to be treated and the treated gas, and the VOC removal rate.
  • the activity of a metal oxide oxidation catalyst is improved by low-temperature plasma, so that harmful components (for example, carbon monoxide, nitrogen monoxide, Organic compounds) with high efficiency to make them harmless and to make odors odorless. Furthermore, microorganisms can be eliminated or reduced from the treated gas.
  • a metal oxide oxidation catalyst for example, a hopcalite catalyst
  • harmful components for example, carbon monoxide, nitrogen monoxide, Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 金属酸化物酸化触媒の存在下で低温プラズマを発生させることを特徴とする気体の処理方法及び金属酸化物酸化触媒を保持する低温プラズマ発生部を有することを特徴とする気体の処理装置を開示する。前記の処理方法及び処理装置によって、被処理気体中の有害成分(例えば、一酸化炭素又は揮発性有機化合物)を高効率で酸化して無害化し、臭気を無臭化し、更に、処理済み気体中から微生物を排除ないし低減化することができる。

Description

明 細 書 酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置 技術分野
本発明は、 酸化触媒 (例えば、 酸化マンガン及び酸化銅などの金属酸化物を含 む酸化触媒、 特には、 ホプカライト触媒) と低温プラズマとを利用する気体処理 方法及び気体処理装置に関する。 本発明によれば、 低温プラズマによって金属酸 化物酸化触媒の活性が向上するため、 被処理気体中の有害成分 (例えば、 一酸化 炭素又は揮発性有機化合物) を高効率で酸化して無害化し、 臭気を無臭化するこ とができる。 更に、 処理済み気体中から微生物を排除ないし低減化することがで さる。 背景技術
ホプカライト (hopca l e) 触媒は、 酸化マンガン、 酸化銅、 及びその他の金 属酸化物 (例えば、 酸化カリウム、 酸化銀、 又は酸化コバルト) からなる酸化触 媒であり、 一酸化炭素の酸化除去機能を有するだけでなく、 亜硫酸ガス、 塩化水 素、 硫化水素、 又は窒素酸化物に対する浄化機能や、 ホルムアルデヒドの除去機 能を有することが知られている。
ホプカライト触媒を用いて気体を処理する具体的な技術としては、 例えば、 医 療品質の空気を製造する際にホプカライト触媒を一酸化炭素吸着用として使用す る方法 (特開平 8— 2 6 6 6 2 9号公報) 、 又は不活性ガス気流中の不純物であ る一酸化炭素の吸着剤としてホプカライト触媒を使用する方法 (特開平 1 0—1 3 7 5 3 0号公報) 、 更には、 ガス燃料の臭気成分除去用触媒としてホプカライ ト触媒を用いる方法 (特開平 8— 2 4 5 7 6号公報) が知られている。
—方、 低温プラズマを利用した脱臭技術も公知であり、 例えば、 低温プラズマ を発生させることのできる高圧放電部と、 酸化促進触媒が充填されている触媒部 とを含む低温プラズマ脱臭装置が知られている (タクマ技報, V o L 5 , N o . 1 , 6 6 - 7 1 , 1 9 9 7 ) 。 また、 低温プラズマを利用した有機溶媒除去方法, 及び低温プラズマを利用したガスの酸化作用として、 窒素酸化物を除去する方法 も知られているが、 低温プラズマを利用して気体中の一酸化炭素を二酸化炭素に 変換する方法は特には知られていない。 更に、 ホプカライト触媒と低温プラズマ とを併用する技術も知られておらず、 従って、 低温プラズマによってホプカライ ト触媒の活性が向上することも知られていない。 発明の開示
本発明者は、 有害成分 (例えば、 一酸化炭素、 一酸化窒素化合物) を含む気体 を高効率で無害化する技術の開発を鋭意研究していたところ、 低温プラズマによ つて金属酸化物酸化触媒 (例えば、 ホプカライト触媒) の活性が向上することを 見出し、 金属酸化物酸化触媒 (例えば、 ホプカライト触媒) 存在下で低温プラズ マを発生させて有害成分を含む気体を処理すると、 向上した金属酸化物酸化触媒
(例えば、 ホプカライト触媒) の活性と、 低温プラズマの作用により、 高効率で 一酸化炭素が二酸化炭素に酸化され、 高効率で一酸化窒素が二酸化窒素に酸化さ れ、 更に揮発性有機化合物 (V O C ) も高効率で二酸化炭素と水とに分解される ことを見出した。 更に、 悪臭も同時に高効率で無臭化されることを見出した。 本発明はこうした知見に基づぐものである。
従って、 本発明は、 金属酸化物酸化触媒 (例えば、 酸化マンガン及び酸化銅な どの金属酸化物を含む酸化触媒、 特には、 ホプカライト触媒、 又は活性二酸化マ ンガン) の存在下で低温プラズマを発生させることを特徴とする気体の処理方法 に関する。
本発明の処理方法の好ましい態様によれば、 気体を酸化するか (例えば、 被処 理気体中の有害成分、 例えば、 一酸化炭素又は一酸化窒素をそれぞれ酸化して二 酸化炭素又は二酸化窒素にするか) 、 揮発性有機化合物を分解するか、 あるいは 悪臭を無臭化する。
また、 本発明は、 金属酸化物酸化触媒 (例えば、 酸化マンガン及び酸化銅など の金属酸化物を含む酸化触媒、 特には、 ホプカライト触媒、 又は活性二酸化マン ガン) を保持する低温プラズマ発生部を有することを特徴とする気体の処理装置 にも関する。 本発明の処理装置の好ましい態様においては、 低温プラズマ発生部が、 円筒型 電極と、 前記円筒型電極の中心軸の位置に配置した棒状電極を備えており、 前記 円筒型電極の内部表面に粒状触媒表面が露出するように担持された金属酸化物酸 化触媒を備えているか、 あるいは、 前記円筒型電極と棒状電極との間に充填され た金属酸化物酸化触媒を備えている。
本発明の処理装置の別の好ましい態様においては、 低温プラズマ発生部が、 円 筒型絶縁体と、 その円筒型絶縁体の外側表面に接触して設けられた円筒型電極と、 前記の円筒型絶縁体の内側表面上に配置された複数の帯状電極と、 同じく前記の 円筒型絶縁体の内側表面上に配置された金属酸化物酸化触媒とを備え、 前記の帯 状電極は、 円筒型絶縁体の内側表面上を、 相互に平行に軸方向に延びており、 金 属酸化物酸化触媒は、 前記の帯状電極の間に粒状触媒表面が露出するように担持 されているか、 あるいは、 前記の円筒型絶縁体の内側に充填されている。
本発明の処理装置の更に別の好ましい態様においては、 低温プラズマ発生部が、 ハウジング内部に、 相互に放電を行う 2群に分かれた多数の円柱状電極を備え、 円柱状電極表面に触媒表面が露出するように担持された金属酸化物酸化触媒を備 えているか、 あるいは、 前記ハウジング内部に充填された金属酸化物酸化触媒を 備えている。
本発明の処理装置の更に別の好ましい態様においては、 低温プラズマ発生部が、 ハウジング内部に、 (a ) 芯電極と、 その芯電極の周囲を包囲する円筒状絶縁性 鞘体とを含む円柱状保護電極と (b ) 導電性メッシュ状電極とを備え、 前記の導 電性メッシュ状電極上に触媒表面が露出するように担持された金属酸化物酸化触 媒を備えているか、 あるいは、 前記ハウジング内部に充填された金属酸化物酸化 触媒を備えている。 図面の簡単な説明
図 1は、 円筒型電極と棒状電極とを備えた同軸円筒型低温プラズマ発生部の円 筒内壁部に金属酸化物酸化触媒を分散させて担持させた本発明による低温プラズ マ発生装置の模式的斜視図である。
図 2は、 図 1の低温プラズマ発生装置の模式的断面図である。 図 3は、 円筒型電極と棒状電極とを備えた図 1と同様の同軸円筒型低温プラズ マ発生部の円筒内部に金属酸化物酸化触媒を充填させた本発明による低温プラズ マ発生装置の模式的断面図である。
図 4は、 円筒型電極と帯状電極とを備えた沿面放電型低温プラズマ発生部の円 筒内壁部に金属酸化物酸化触媒を分散させて担持させた本発明による低温プラズ マ発生装置の模式的斜視図である。
図 5は、 図 4の沿面放電型低温プラズマ発生装置の模式的断面図である。
図 6は、 ハウジング内に円柱状電極群を備えた低温プラズマ発生部の円柱状電 極群の表面に金属酸化物酸化触媒を分散させて担持させた本発明による低温ブラ ズマ発生装置の模式的斜視図である。
図 7は、 ハウジング内に円柱状電極群とメッシュ状電極群とを備えた低温ブラ ズマ発生部のメッシュ状電極群の表面に金属酸化物酸化触媒を分散させて担持さ せた本発明による低温プラズマ発生装置の模式的斜視図である。
図 8は、 図 7の低温プラズマ発生装置の模式的断面図である。
図 9は、 本発明装置の代表的態様の模式的断面図である。 発明を実施するための最良の形態
本発明方法及び本発明装置で処理される気体、 すなわち被処理気体は、 酸化可 能な気体状化合物 (すなわち、 無機化合物又は有機化合物) である限り特に限定 されず、 無機化合物としては、 例えば、 一酸化炭素、 亜硫酸ガス、 硫化水素、 又 は窒素酸化物 (例えば、 一酸化窒素) を挙げることができ、 有機化合物としては, 揮発性有機化合物 (Vo l at i l e organ i c compound; V O C ) を挙げることができ る。 また、 被処理気体としては、 例えば空気を挙げることもでき、 空気中に混在 することのある前記の酸化可能な気体状無機化合物若しくは気体状有機化合物を 処理することができる。
本発明方法及び本発明装置は、 有害成分 (例えば、 一酸化炭素、 一酸化窒素、 及び 又は揮発性有機化合物) を含有する気体 (例えば、 汚染大気) を処理する のに適しており、 特には、 低濃度の有害成分を含有する気体を処理するのに適し ている。 ここで 「低濃度」 とは、 前記の酸化可能な化合物 (特には、 一酸化炭素, 一酸化窒素、 又は揮発性有機化合物) のそれぞれに関して、 好ましくは 1 p p m 以下、 より好ましくは 0 . 5 p p m以下である。 なお、 揮発性有機化合物 (V O C ) とは、 例えば、 アルコール類、 ケトン類、 エステル類、 エーテル類、 又は芳 香族化合物 (例えば、 フエノール、 トルエン、 スチレン、 又はベンゼン) である c 本発明においては、 前記の被処理気体に対して、 金属酸化物酸化触媒 (例えば、 ホプカライト触媒) の存在下にて低温プラズマ処理を実施することにより、 被処 理気体に含まれている一酸化炭素を二酸化炭素に高効率で変換して無^化するこ とができ、 それとは独立して一酸化窒素を二酸化窒素に高効率で変換して容易に 吸着処理及び化学処理することができ、 更にそれとは独立して V O Cを高効率で 分解 (例えば、 二酸化炭素と水に変換) して無毒化することができる。 本発明で 用いる,低温プラズマは、 公知の方法によって、 例えば、 放電により発生させるこ とができる。 前記放電としては、 例えば、 マイクロ波放電、 交流放電、 又は直流 放電を用いることができる。
これらの放電方法で用いる電極対としては、 例えば、 平行円筒電極、 同軸円筒 —棒電極、 球ギャップ電極、 平行板電極、 円筒一平板電極、 沿面放電電極、 又は 特殊電極 (例えば、 刃形電極) を挙げることができる。 例えば、 平行板電極を用 いる放電において電極間隙を 1 O m m程度にすると、 電極間に十数 k V〜数十 k Vの交流電圧を印加することによって電極間の気体をプラズマ化することができ る。
また、 本発明では、 金属酸化物酸化触媒として、 例えば、 酸化マンガン及び酸 化銅を含む公知の酸化触媒、 例えば、 ホプカライ卜触媒を用いることができる。 金属酸化物酸化触媒としては、 前記ホプカライト触媒、 又は活性二酸化マンガン を挙げることができる。 ホプカライ卜触媒は、 前記の通り、 酸化マンガン、 酸化 銅、 及びその他の金属酸化物 (例えば、 酸化カリウム、 酸化銀、 又は酸化コバル ト) の混合物を粒状に固めて乾燥又は焼結して製造される。 本発明において用い る金属酸化物酸化触媒 (例えば、 ホプカライト触媒) の形状は特に限定されない が、 一般に、 粉末あるいは顆粒状、 例えば約 1〜3 m mの粒状で用いることがで きる。
本発明において、 低温プラズマ発生用電極に対する金属酸化物酸化触媒 (例え ば、 ホプカライト触媒) の配置は、 低温プラズマによって金属酸化物酸化触媒の 活性を向上させることが可能な配置である限り、 特に限定されない。 例えば、 金 属酸化物酸化触媒を、 低温プラズマ発生用の全電極の表面あるいは一部の電極の 表面に担持させることができる。 一部の電極の表面に担持させる場合は、 放電を 行う一対の電極 (例えば、 非接地電極及び接地電極) の両方のそれぞれ任意の一 部の電極表面に担持させるか、 あるいは放電を行う一対の電極 (例えば、 非接地 電極及び接地電極) のいずれか一方の一部若しくは全部の電極表面に担持させる ことができる。
金属酸化物酸化触媒 (例えば、 ホプカライト触媒) を電極表面に担持させる場 合は、 接着剤を用いることができる。 例えば、 円柱状電極の電極表面の全体又は 一部分に接着剤を塗布し、 続いて粉末状又は顆粒状のホプカライト触媒を振りか けて固定させることができる。 この場合は、 粉末状又は顆粒状のホプカライ卜触 媒の表面の少なくとも一部分が、 露出して被処理気体と接触可能な状態であるこ とが好ましく、 できる限り広い表面が露出しているのがよリ好ましい。
電極の形状を、 粉末状又は顆粒状の金属酸化物酸化触媒 (例えば、 ホプカライ ト触媒) の担持に好適で通気性を有する形状、 例えば、 メッシュ状にすることも できる。 例えば、 粒状ホプカライト触媒の粒径よりも小さいフルィ目を有し、 水 平方向に配置したメッシュ状平板電極上に粒状ホプカライ ト触媒を単に載置させ, 粒状ホプカライト触媒の実質的に全表面を被処理気体と接触可能な状態にするこ とができる。 必要により、 メッシュ状平板電極への固定に接着剤を用いることが でき、 固定された粒状ホプカライト触媒を担持するメッシュ状平板電極を、 水平 方向以外の方向 (例えば、 垂直方向) に配置することもできる。 更に、 メッシュ 状の立体構造体 (例えば、 円柱体) の内部に粒状ホプカライト触媒を閉じこめた 形態の電極を用いることもできる。
放電を行う一対の電極を非接地電極及び接地電極の組み合わせにし、 電極表面 に粒状ホプカライ卜触媒を担持あるいは載置させる場合には、 接地電極側に配置 するのが好ましい。
粉末状又は顆粒状の金属酸化物酸化触媒 (例えば、 ホプカライト触媒) は、 電 極表面以外の部分 (例えば、 沿面放電電極における絶縁体表面) に担持させるこ ともできる。 この場合、 電極表面以外の部分に粉末状又は顆粒状の金属酸化物酸 化触媒を担持させると共に、 各電極の表面にも粉末状又は顆粒状の金属酸化物酸 化触媒を担持あるいは載置させることができる。
また、 本発明においては、 金属酸化物酸化触媒 (特に粉末状又は顆粒状の金属 酸化物酸化触媒) を、 低温プラズマ発生部に充填させることもできる。 この場合, 粉末状又は顆粒状の金属酸化物酸化触媒の間を被処理気体が通過可能なように充 填する必要がある。 また、 低温プラズマ発生部から粉末状又は顆粒状の金属酸化 物酸化触媒が脱落しないように、 フィルターや蓋などの脱落防止手段を設けるこ とが好ましい。
金属酸化物酸化触媒としてのホプカライ卜触媒を低温プラズマ発生用電極に対 して配置する具体的態様を添付図面に沿って説明する。
図 1は、 円筒型電極と棒状電極とを備えた同軸円筒型低温プラズマ発生部の円 筒内壁部に金属酸化物酸化触媒を分散させて担持させた本発明による低温プラズ マ発生装置 1 0の模式的斜視図であり、 図 2はその模式的断面図である。 前記低 温プラズマ発生装置 1 0は、 円筒型電極 1 2と、 前記円筒型電極 1 2の中心軸の 位置に配置した棒状電極 1 1を備えている。 また、 前記円筒型電極 1 2の内部表 面には、 粒状触媒表面が露出するように接着剤等の適当な方法で担持された、 多 数の粒状ホプカライ ト触媒 1 3を備えている。 被処理気体 Gは、 前記円筒型電極 1 2の一方の開口部から挿入され、 処理済み気体 Cは、 もう一方の開口部から排 出される。
この態様では、 棒状電極 1 1及び円筒型電極 1 2のいずれも接地する必要はな いが、 操作の安全上からいずれか一方を接地することが好ましい。 いずれか一方 を接地する場合は、 棒状電極 1 1を非接地側とし、 円筒型電極 1 2を接地側とす るのが好ましい。 この場合、 棒状非接地側電極 1 1は、 電線 1 7 Aに接続し、 ま た円筒型接地側電極 1 2は、 アースされている電線 1 7 Bに接続し、 各電線 1 7 A , 1 7 Bは交流電源 1 8と接続しており (図 1にのみ示す) 、 棒状非接地側電 極 1 1と円筒型接地側電極 1 2との間に高電圧を印加する。
図 3は、 円筒型電極と棒状電極とを備えた図 1と同様の同軸円筒型低温プラズ マ発生部の円筒内部に金属酸化物酸化触媒を充填させた本発明による低温プラズ マ発生装置 3 0の模式的断面図である。 前記低温プラズマ発生装置 3 0は、 図 1 に示した低温プラズマ発生装置 1 0と同様に、 円筒型電極 3 2と、 前記円筒型電 極 3 2の中心軸の位置に配置した棒状電極 3 1を備えている。 また、 前記円筒型 電極 3 2の内部空間には、 図 1に示した低温プラズマ発生装置 1 0とは異なり、 多数の粒状ホプカライ卜触媒 3 3が充填されている。 これらの粒状ホプカライト 触媒 3 3が排出しないように、 被処理気体流入用開口部 (図示せず) 及び処理済 み気体排出用開口部 (図示せず) にはフィルターなどを設けることが好ましい。 被処理気体 G (図示せず) は、 前記円筒型電極 3 2の一方の開口部から挿入され, 処理済み気体 C (図示せず) は、 もう一方の開口部から排出される。
この態様では、 棒状電極 3 1及び円筒型電極 3 2のいずれも接地する必要はな いが、 操作の安全上からいずれか一方を接地することが好ましい。 いずれか一方 を接地する場合は、 棒状電極 3 1を非接地側とし、 円筒型電極 3 2を接地側とす るのが好ましい。 この場合、 棒状非接地側電極 3 1は、 電線 (図示せず) に接続 し、 また円筒型接地側電極 3 2は、 アースされている電線 (図示せず) に接続し, 各電線は交流電源 (図示せず) と接続しており、 棒状非接地側電極 3 1と円筒型 接地側電極 3 2との間に高電圧を印加する。
図 4は、 沿面放電型電極を用いた低温プラズマ発生装置 2 0の模式的斜視図で あり、 図 5はその模式的断面図である。
前記低温プラズマ発生装置 2 0は、 円筒型の絶縁体 2 4と、 円筒型電極 2 1を 備えている。 前記の円筒型電極 2 1は、 前記の円筒型絶縁体 2 4の外側表面と接 触している。 また、 前記の円筒型絶縁体 2 4の内側表面上には、 複数の帯状電極 2 2と、 多数の粒状ホプカライト触媒 2 3が配置されている。 前記の帯状電極 2 2は、 円筒型絶縁体 2 4の内側表面上を、 相互に平行に軸方向に延びている。 ま た、 多数の粒状ホプカライト触媒 2 3は、 前記の帯状電極 2 2の間に接着剤等の 適当な方法で担持されている。 被処理気体 Gは、 前記円筒型の絶縁体 2 4の一方 の開口部から挿入され、 処理済み気体 Cは、 もう一方の開口部から排出される。 この態様では、 円筒型電極 2 1及び帯状電極 2 2のいずれも接地する必要はな いが、 操作の安全上からいずれか一方を接地することが好ましい。 いずれか一方 を接地する場合は、 円筒型電極 2 1を非接地側とし、 帯状電極 2 2を接地側とす るのが好ましい。 この場合、 図 4及び図 5では、 電源及び電線を省略したが、 円 筒型非接地側電極 2 1は、 電線に接続し、 また帯状接地側電極 2 2は、 もう一方 のアースされている電線に接続し、 それぞれ前記二つの電線は交流電源と接続し ており、 円筒型非接地側電極と帯状接地側電極 2 2との間に高電圧を印加する。 前記の図 4及び図 5に示す低温プラズマ発生装置 2 0と同様に、 円筒型絶縁体 と円筒型電極と帯状電極とを含む低温プラズマ発生装置の円筒型絶縁体の内部に, 図 3の示す低温プラズマ発生装置 3 0と同様に、 多数の粒状ホプカライ 卜触媒を 充填することもできる。 この場合も、 被処理気体流入用開口部及び処理済み気体 排出用開口部にはフィルターなどを設けることが好ましい。
図 6は、 低温プラズマ発生装置 5 0のハウジング 5 1の側壁の一部を切り欠い て示す模式的斜視図である。 前記低温プラズマ発生装置 5 0は、 被処理気体 Gの 流入用開口部 5 2と処理済み気体 Cの排出用開口部 5 3とを備えた大略直方体状 のハウジング 5 1を有し、 前記ハウジング 5 1の内部には、 多数の円柱状電極 5 4を備えている。 更に、 前記の円柱状電極 5 4は、 2つの電極群に分かれており. これらの電極群を接地する必要はないが、 操作の安全上からいずれか一方を接地 することが好ましい。 前記の円柱状電極 5 4を非接地側電極群 5 4 Aと接地側電 極群 5 4 Bとに分ける場合は、 それぞれ電線 5 7 A , 5 7 Bに接続し、 電線 5 7 A , 5 7 Bは交流電源 5 8と接続している。 また、 接地側電極群 5 4 Bに接続す る電線 5 7 Bは、 アースされている。 更に、 接地側電極群 5 4 Bの円柱状電極表 面には、 触媒表面が露出するように接着剤等の適当な方法で担持された、 多数の 粒状ホプカライト触媒 5 6を備えている。 前記の非接地側電極群 5 4 Aと前記の 接地側電極群 5 4 Bとの間に高電圧を印加する。
なお、 図 6に示す態様において、 前記の円柱状電極 5 4は、 (a ) 芯電極と、 その芯電極の周囲を包囲する円筒状絶縁性鞘体とを含む保護電極 (例えば、 円筒 状ガラス電極) と、 (b ) 電極表面が被処理気体と直接接触可能な円柱状露出電 極 (例えば、 円筒状ステンレススチール電極) との組み合わせであるか、 あるい は、 前記保護電極 (a ) のみからなることができる。 前記の保護電極 (a ) と露 出電極 (b ) との組み合わせからなる場合は、 保護電極 (a ) を非接地側電極群 5 4 Aとし、 露出電極 (b ) を接地側電極群 5 4 Bとし、 粒状ホプカライ ト触媒 5 6を露出電極 (b ) 上に担持させるのが好ましい。
前記の図 6に示す低温プラズマ発生装置 5 0と同様に、 ハウジング内に円柱状 電極群を備えた低温プラズマ発生装置のハウジング内部に、 図 3の示す低温ブラ ズマ発生装置 3 0と同様に、 多数の粒状ホプカライト触媒を充填することもでき る。 この場合も、 被処理気体流入用開口部及び処理済み気体排出用開口部にはフ ィルターなどを設けることが好ましい。
図 7は、 低温プラズマ発生装置 6 0のハウジング 6 1の側壁の一部を切り欠い て示す模式的斜視図であり、 図 8はその模式的断面図である。 前記低温プラズマ 発生装置 6 0は、 被処理気体 Gの流入用開口部 6 2と処理済み気体 Cの排出用開 口部 6 3とを備えた大略直方体状のハウジング 6 1を有し、 前記ハウジング 6 1 の内部には、 多数の円柱状電極群 6 4と複数のメッシュ状電極群 6 9とを備えて いる。 前記の円柱状電極群 6 4のそれぞれは、 芯電極と、 その芯電極の周囲を包 囲する円筒状絶縁性鞘体とを含む保護電極 (例えば、 円筒状ガラス電極) である ( メッシュ状電極群 6 9は、 導電性材料、 例えば、 金属 (例えば、 ステンレススチ —ル、 チタン合金、 又はニッケル合金) の網状平板構造であることができる。
更に、 メッシュ状電極群 6 9には、 接着剤等の適当な方法で表面が露出するよ うに固定して担持させた多数の粒状ホプカライト触媒 6 6、 又はメッシュ状電極 群 6 9の上面に、 単に載置させた多数の粒状ホプカライト触媒 6 6を備えている, この態様では、 円柱状電極群 6 4及びメッシュ状電極群 6 9のいずれも接地す る必要はないが、 操作の安全上からいずれか一方を接地することが好ましい。 い ずれか一方を接地する場合は、 円柱状電極群 6 4を非接地側とし、 メッシュ状電 極群 6 9を接地側とするのが好ましい。 更に、 前記の円柱状電極群 6 4及ぴメッ シュ状電極群 6 9は、 図 7及び図 8中に図示していないが、 それぞれ電線に接続 し、 電線は交流電源と接続している。 接地側電極群 (特には、 メッシュ状接地側 電極群 6 9 ) に接続する電線は、 アースされている。 前記の円柱状電極群 6 4と 前記のメッシュ状電極群 6 9との間に高電圧を印加する。
メッシュ状平板型電極群 6 9がその表面上に粒状ホプカライ卜触媒 6 6を単に 載置して (非固定状態で) 担持している場合には、 図 7及び図 8に示すように、 粒状ホプカライ卜触媒 6 6が落下しないように、 メッシュ状平板型電極群 6 9を 水平方向に配置する。 また、 この場合には、 メッシュ状平板型電極群 6 9のフル ィ目は、 粒状ホプカライト触媒 6 6の粒径よりも小さくする必要がある。
一方、 メッシュ状平板型電極群 6 9が、 その表面上に粒状ホプカライト触媒 6 6を接着剤等の適当な方法で固定して担持している場合には、 メッシュ状平板型 電極群 6 9の配置方向ゃフルイ目は、 特に制限されない。
前記の図 7及び図 8に示す低温プラズマ発生装置 6 0と同様に、 ハウジング内 に円柱状電極群とメッシュ状平板型電極群とを備えた低温プラズマ発生装置のハ ウジング内部に、 図 3の示す低温プラズマ発生装置 3 0と同様に、 多数の粒状ホ プカライト触媒を充填することもできる。 この場合も、 被処理気体流入用開口部 及び処理済み気体排出用開口部にはフィルターなどを設けることが好ましい。 次に、 本発明装置の代表的態様を、 図 9に示す。
図 9に示す気体処理装置 9は、 ホプカライ卜触媒を担持した低温プラズマ発生 装置 1を備えている。 更に、 その低温プラズマ発生装置 1には、 被処理気体 (例 えば、 汚染大気) Gを供給することのできる供給手段としての移送管 8 aが設け られており、 被処理気体 Gを前記低温プラズマ発生装置 1の内部に導入すること ができる。 移送管 8 aの先端には、 被処理気体 Gを連続的又は断続的に取入れる ことのできる被処理気体取入手段 (図示せず) が設けられている。
更に、 前記低温プラズマ発生装置 1から処理済み気体 Cを排気口 5へ移送する 移送管 8 bが設けられている。 更に、 前記低温プラズマ発生装置 1の下流には、 必要により、 移送管 8 bを介して、 強制送気用ファン 6を設けることができる。 なお、 本明細書において 「下流」 及び 「上流」 とは、 被処理気体 G及び処理済み 気体 Cの流れ方向に関して下流及び上流を意味する。 また、 この強制送気用ファ ン 6の下流には、 移送管 8 cを介して、 処理済み気体 Cの排気口 5が設けられて いる。 なお、 強制送気用ファン 6に代えて、 あるいは強制送気用ファン 6に加え て、 移送管 8 a内に強制送気用ファンを設けることもできる。
図 9に示す気体処理装置 9によって、 被処理気体 Gを処理する場合には、 移送 管 8 aから被処理気体 Gを前記低温プラズマ発生装置 1の内部に導入する。 続い て、 前記低温プラズマ発生装置 1の内部において低温プラズマを発生させると、 低温プラズマによってラジカルが発生する。 また、 低温プラズマによってホプカ ライト触媒の活性が向上する。 従って、 そのラジカル及びホプカライト触媒の作 用により、 被処理気体 Gの一酸化炭素が高効率で二酸化炭素に酸化され、 更に揮 発性有機化合物 (V O C ) も高効率で二酸化炭素と水とに分解される。 また、 悪 臭も同時に高効率で無臭化される。
こうして得られた処理済み気体 Cは、 前記移送管 8 bを経て強制送気用ファン 6によって移送管 8 cを経由して排気口 5から排気される。 この気体処理装置 9 によって、 被処理気体をバッチ的又は好ましくは連続的に処理することができる 特に連続処理においては、 被処理気体中の汚染物質 (特に一酸化炭素、 一酸化窒 素、 及び V O C ) の量が変化するので、 前記移送管 8 a、 前記移送管 8 b、 及び 又は排気口 5に、 各種の濃度センサを設けて、 被処理気体の通気量及び 又は 印加電圧を制御することができる。 作用
本発明において、 低温プラズマによって金属酸化物酸化触媒 (例えば、 ホプカ ライ卜触媒) の活性が向上する機構は、 現在のところ判明していない。 しかしな がら、 金属酸化物酸化触媒と低温プラズマとの併用によって、 被処理気体中の一 酸化炭素や一酸化窒素、 あるいは揮発性有機化合物が予想外に高い効率で無害化 される機構の一部については以下のように推定することができる。 なお、 本発明 は、 以下の推論に限定されるものではない。
低温プラズマを発生させると、 そのプラズマ自体によって酸化反応が起きるだ けでなく、 オゾンも同時に発生する。 オゾンは、 金属酸化物酸化触媒の存在下で 酸素分子に還元されるので、 その還元反応と同時に酸化反応も発生する。 従って. その酸化反応が、 被処理気体中の一酸化炭素や一酸化窒素、 あるいは揮発性有機 化合物に作用することが考えられる。 もっとも、 低温プラズマによる作用の大部 分はラジカル発生によるものと考えられるので、 前記の酸化反応の寄与は、 本発 明によって得られる効果のごく一部であると思われる。
また、 特にホプカライ卜触媒は乾燥状態では充分な活性を示すが、 水分を含む と不活性化することが知られている。 しかしながら、 本発明では、 ホプカライト 触媒を低温プラズマと併用する。 低温プラズマ発生時には、 放電電極部の温度が 上昇するので、 仮に被処理気体の湿度が比較的高くても、 ホプカライト触媒は乾 燥状態に維持されやすく、 ホプカライ卜触媒の失活を回避することができる。
なお、 低温プラズマによる気体処理装置では、 低温プラズマによるラジカルの 発生と共に、 オゾンが発生する。 オゾンは、 通常、 その大部分が気体処理工程で 消費されるが、 一部は消費されずに処理済み気体と共に排出されることがある。 オゾンの排出は好ましいことではないので、 従来公知の低温プラズマ型気体処理 装置では、 オゾン吸着用に多孔質吸着剤 (例えば、 活性炭) を排出口に配置する 必要があった。 ところが、 多孔質吸着剤は、 気体中に含まれている粉塵も吸着す る。 こうして多孔質吸着剤に吸着された粉塵は、 微生物の増殖に好適な培地とな る。 低温プラズマ型気体処理装置を使用している際には、 オゾンが発生している ので、 微生物の増殖は抑制されているが、 低温プラズマ型気体処理装置の運転を 停止すると、 微生物の増殖が抑制されなくなるので、 多孔質吸着剤において微生 物が繁殖することになる。 この状態で低温プラズマ型気体処理装置の運転を再開 すると、 処理済み気体と共に微生物が排出されることになる。 従来の低温プラズ マ型気体処理装置には、 こうした欠点があった。
これに対して、 本発明で用いる金属酸化物酸化触媒 (例えば、 ホプカライト触 媒) は、 オゾン分解能を有しているので、 オゾン吸着用に多孔質吸着剤 (例えば、 活性炭) を排出口に配置する必要がないか、 あるいは使用量を低減することがで きる。 更に、 本発明によれば、 被処理気体中に含まれる粉塵は、 主に電極表面に 付着し、 電極表面に担持されている金属酸化物酸化触媒には、 抗菌活性があるの で、 粉塵が微生物の培地となることも抑制される。 従って、 本発明によれば、 装 置の運転停止と運転再開とが繰り返し行われても、 処理済み気体において、 微生 物を排除ないし低減化することができる。
以上のように、 本発明は優れた処理効果を示すので、 例えば、 低濃度の一酸化 炭素、 一酸化窒素、 及び Z又は V O Cを含有する汚染大気、 例えば、 自動車の排 気ガスなどを含む汚染大気、 長時間燃焼系暖房器具を使用して換気していない室 内の空気、 タバコの煙を含む汚染大気 (例えば、 喫煙室内部の空気) の処理に好 適である。 また、 本発明は前記のように、 処理済み気体中から微生物を排除ない し低減化することができるので、 殺菌又は滅菌状態の気体を供給することが望ま しい環境 (例えば、 医療機関や家庭) で用いる空気清浄機に好適に適用すること もできる。 実施例
以下、 実施例によって本発明を具体的に説明するが、 これらは本発明の範囲を 限定するものではない。
実施例 1
本実施例では、 図 9に示す態様と同様の構造を有する気体処理装置 9を用いた c また、 その気体処理装置 9における低温プラズマ発生装置 1としては、 図 6に示 す構造と同様の構造を有する低温プラズマ発生装置 50を用いた。 低温プラズマ 発生装置 50は、 ホプカライト触媒 (ジーエルサイエンス社製;平均粒径 =2m m ;かさ密度 =0. 82 gXcm3) を接着剤で表面上に固定して担持した接地 側円柱状露出 SUS電極群 54Bと、 ホプカライト触媒を担持していない非接地 側円柱状ガラス電極群 54 Aとを、 総数で 74本含み、 各電極間の距離は 4. 7 5mmであった。 ホプカライト触媒粒子は、 前記の円柱状露出 S US電極 54 B の表面上に、 0. 1 7 g/ cm2程度の密度で担持させた。 なお、 非接地側円柱 状ガラス電極としては、 棒状アルミニウム芯電極 (外径 = 1. 5mm) と、 円筒 状ガラス製鞘体 (外径 =4mm) とからなり、 ガラス製鞘体の内部に空気を充填 した保護電極を用いた。 また、 円柱状露出 S US電極としては、 外径が 4mmの 露出電極を用いた。 また、 更に、 低温プラズマ発生装置 50のハウジング 51と しては、 ポリフエ二レンサルファイド (P PS) 製の直方体 (縦 =48 cm ;横 =48 cm;奥行き- 1 1 cm) を用いた。
被処理気体としては、 喫煙者の排煙をポリテトラフルォロエチレン (テフ口 ン) 製袋に収集して用いた。 この被処理気体を、 被処理気体供給手段としての移 送管 8 aから前記気体処理装置 9の低温プラズマ発生装置 1 (50) に導入した ( 低温プラズマの発生は、 印加電圧を 8 k Vとし、 気温 22 °C及び湿度 60%の条 件下で実施した。 続いて、 処理済み気体を強制送気用ファン 6によって移送管 8 cを経由して排気口 5から排気した。
処理能力は、 被処理気体が含有する揮発性有機化合物 (VOC) の濃度と、 本 発明の気体処理装置で処理した処理済み気体が含有する V O Cの濃度とを測定し, それらの結果から、 本発明の気体処理装置による VOCの除去率を算出した。 被 処理気体サンプルは、 被処理気体吸入口で採取し、 処理済み気体サンプルは、 処 理済み気体の排気口で採取した。 VOC濃度の測定は、 ガス濃縮装置 (ェンテツ ク社製; Mo d e I 7000) を備えたガスクロマトグラフ質量分析装置 (ヒュ 一レットパッカード社製; HP6890) を用いて実施した。 VOCの測定結果 及びその結果から算出された VOCの除去率を表 1に示す。
比較例 1
ホプカライト触媒の不在下で、 低温プラズマを発生させた場合の処理能力を調 ベた。 具体的には、 実施例 1で用いた低温プラズマ発生装置 50において、 ホプ 力ライ卜触媒を担持した接地側円柱状露出 S US電極群 54 Bに代えて、 ホプカ ライト触媒を担持していない接地側円柱状露出 S US電極群を有する低温プラズ マ発生装置を備えた気体処理装置 9を用いること以外は、 実施例 1と同様に試験 を実施した。
被処理気体及び処理済み気体のそれぞれの V O Cの濃度と、 V O Cの除去率を 表 1に示す。
比較例 2
低温プラズマを発生させずに、 ホプカライ卜触媒のみで気体を処理した場合の 処理能力を調べた。 具体的には、 実施例 1で用いた低温プラズマ発生装置 50に おいて、 電圧を印加せずに被処理気体を処理すること以外は、 実施例 1と同様に 試験を実施した。
被処理気体及び処理済み気体のそれぞれの V O Cの濃度と、 V O Cの除去率を 表 1に示す。 表 1
Figure imgf000018_0001
産業上の利用可能性
本発明によれば、 低温プラズマによって金属酸化物酸化触媒 (例えば、 ホプカ ライ卜触媒) の活性が向上するため、 被処理気体中の有害成分 (例えば、 一酸化 炭素、 一酸化窒素、 又は揮発性有機化合物) を高効率で酸化して無害化し、 臭気 を無臭化することができる。 更に、 処理済み気体中から微生物を排除ないし低減 化することができる。 以上、 本発明を特定の態様に沿って説明したが、 当業者に自明の変形や改良は 本発明の範囲に含まれる。

Claims

請 求 の 範 囲
1 . 金属酸化物酸化触媒の存在下で低温プラズマを発生させることを特徴とする 気体の処理方法。
2 . 前記金属酸化物酸化触媒がホプカライ 卜触媒又は活性二酸化マンガンである. 請求項 1に記載の処理方法。
3 . 気体状化合物を酸化する、 請求項 1又は 2に記載の処理方法。
4 . 揮発性有機化合物を分解する、 請求項 1又は 2に記載の処理方法。
5 . 悪臭を無臭化する、 請求項 1又は 2に記載の処理方法。
6 . 金属酸化物酸化触媒を保持する低温プラズマ発生部を有することを特徴とす る気体の処理装置。
フ. 低温プラズマ発生部が、 円筒型電極と、 前記円筒型電極の中心軸の位置に配 置した棒状電極を備えておリ、 前記円筒型電極の内部表面に粒状触媒表面が露出 するように担持された金属酸化物酸化触媒を備えている、 請求項 6に記載の処理
8 . 低温プラズマ発生部が、 円筒型絶縁体と、 その円筒型絶縁体の外側表面に接 触して設けられた円筒型電極と、 前記の円筒型絶縁体の内側表面上に配置された 複数の帯状電極と、 同じく前記の円筒型絶縁体の内側表面上に配置された金属酸 化物酸化触媒とを備え、 前記の帯状電極は、 円筒型絶縁体の内側表面上を、 相互 に平行に軸方向に延びており、 金属酸化物酸化触媒は、 前記の帯状電極の間に粒 状触媒表面が露出するように担持されている、 請求項 6に記載の処理装置。
9 . 低温プラズマ発生部が、 ハウジング内部に、 相互に放電を行う 2群に分かれ た多数の円柱状電極を備え、 円柱状電極表面に触媒表面が露出するように担持さ れた金属酸化物酸化触媒を備えている、 請求項 6に記載の処理装置。
0 . 円柱状電極が、
( 1 ) ( a ) 芯電極と、 その芯電極の周囲を包囲する円筒状絶縁性鞘体とを含む 保護電極と、 (b ) 電極表面が被処理気体と直接接触可能な円柱状露出電極との 組み合わせであるか、 あるいは、
( 2 ) 前記保護電極のみからなる、 請求項 9に記載の処理装置。
1 1 . 低温プラズマ発生部が、 ハウジング内部に、 (a ) 芯電極と、 その芯電極 の周囲を包囲する円筒状絶縁性鞘体とを含む円柱状保護電極と (b ) 導電性メッ シュ状電極とを備え、 前記の導電性メッシュ状電極上に触媒表面が露出するよう に担持された金属酸化物酸化触媒を備えている、 請求項 6に記載の処理装置。
PCT/JP2004/004521 2003-06-17 2004-03-30 酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置 WO2004112940A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/560,980 US7347979B2 (en) 2003-06-17 2004-03-30 Gas processing method and gas processing apparatus utilizing oxidation catalyst and low-temperature plasma
CA002529732A CA2529732A1 (en) 2003-06-17 2004-03-30 Gas processing method and gas processing apparatus utilizing oxidation catalyst and low-temperature plasma
JP2005507181A JPWO2004112940A1 (ja) 2003-06-17 2004-03-30 酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置
EP04724399A EP1649923A4 (en) 2003-06-17 2004-03-30 GAS TREATMENT METHOD AND GAS TREATMENT DEVICE USING AN OXIDATION CATALYST AND LOW TEMPERATURE PLASMA
AU2004249019A AU2004249019A1 (en) 2003-06-17 2004-03-30 Gas processing method and gas processing apparatus utilizing oxidation catalyst and low-temperature plasma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003172553 2003-06-17
JP2003-172553 2003-06-17

Publications (1)

Publication Number Publication Date
WO2004112940A1 true WO2004112940A1 (ja) 2004-12-29

Family

ID=33534676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/004521 WO2004112940A1 (ja) 2003-06-17 2004-03-30 酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置

Country Status (8)

Country Link
US (1) US7347979B2 (ja)
EP (1) EP1649923A4 (ja)
JP (1) JPWO2004112940A1 (ja)
KR (1) KR20060026424A (ja)
CN (1) CN100482323C (ja)
AU (1) AU2004249019A1 (ja)
CA (1) CA2529732A1 (ja)
WO (1) WO2004112940A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291930A (ja) * 2005-04-14 2006-10-26 Toyota Motor Corp 排ガス浄化方法及び排ガス浄化装置
JP2006305194A (ja) * 2005-04-28 2006-11-09 Midori Anzen Co Ltd 触媒保持装置及びガス除去装置
US20080131333A1 (en) * 2006-12-04 2008-06-05 High Power-Factor Ac/Dc Converter With Parallel Power Processing Lateral-flow waste gas treatment device using nonthermal plasma
KR101039069B1 (ko) * 2010-06-28 2011-06-08 낙천 제임스 백 공기 청정 및 살균용 플라즈마 처리기
CN102361531A (zh) * 2011-10-26 2012-02-22 西安电子科技大学 大面积均匀非磁化等离子体产生装置及方法
JP2012521240A (ja) * 2009-03-24 2012-09-13 トゥリ−エアー ディベロップメンツ リミテッド 改良型の空気除染装置および方法
KR101779985B1 (ko) 2014-11-13 2017-09-19 한국기계연구원 플라즈마 반응기
CN108392951A (zh) * 2018-04-10 2018-08-14 佛山市三水万瑞达环保科技有限公司 一种低温等离子气体净化装置
CN108499333A (zh) * 2018-04-10 2018-09-07 佛山市三水万瑞达环保科技有限公司 一种低温等离子废气处理装置
CN108607338A (zh) * 2018-05-03 2018-10-02 佛山市三水万瑞达环保科技有限公司 一种环形废气处理装置组件
JP2018161648A (ja) * 2012-10-04 2018-10-18 フィパック・リサーチ・アンド・ディベロップメント・カンパニー 空気から不必要な物質を除去するための方法と装置
US10716312B2 (en) 2014-10-24 2020-07-21 Korea Basic Science Institute Ethylene disposal apparatus and ethylene disposal method using same
JP2021122796A (ja) * 2020-02-06 2021-08-30 公立大学法人大阪 粒子状物質除去装置
WO2023026031A1 (en) * 2021-08-23 2023-03-02 Equipmake Limited An air treatment device
KR102514108B1 (ko) * 2022-12-29 2023-03-24 배준형 이산화탄소 분해 및 바이러스와 세균 살균 플라즈마 디바이스
US20230211285A1 (en) * 2022-01-06 2023-07-06 Hyundai Motor Company Method and apparatus for treating exhaust gas

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20050373A1 (it) * 2005-03-09 2006-09-10 Nora Elettrodi S P A Elettrodo cilindrico
JPWO2007049595A1 (ja) * 2005-10-25 2009-04-30 日本碍子株式会社 殺菌滅菌装置
KR100719900B1 (ko) * 2005-11-11 2007-05-18 한국기계연구원 농축 플라즈마 방식 배출입자 처리장치
WO2008040154A1 (en) * 2006-09-05 2008-04-10 Alphatech International Limited Diffusive plasma treatment and material procession
KR101038295B1 (ko) * 2008-08-25 2011-06-01 인하대학교 산학협력단 글라이딩 아크 방전을 이용한 과불화 화합물 가스 분해장치
CN101856618B (zh) * 2010-05-18 2012-03-07 武汉理工大学 具有光热协同作用的铂/半导体氧化物催化剂的制备方法
CN102773007A (zh) * 2011-05-12 2012-11-14 魏飞 一种有机气体等离子催化器
CN102335550B (zh) * 2011-08-02 2013-06-12 浙江工商大学 过滤复合电催化氧化处理PAHs的反应器
KR101349973B1 (ko) * 2011-08-03 2014-01-23 주식회사 그린솔루스 가스상 황화수소 처리 장치
KR101349974B1 (ko) * 2011-08-03 2014-01-23 주식회사 그린솔루스 가스상 황화수소 처리 방법
CN102688670B (zh) * 2012-06-13 2014-07-02 长沙中联重科环卫机械有限公司 臭气处理方法和***
KR101458411B1 (ko) * 2012-12-10 2014-11-07 한국기초과학지원연구원 분말 플라즈마 처리 장치
CN103007328B (zh) * 2012-12-21 2014-10-01 成都老肯科技股份有限公司 一种等离子体空气消毒机
DE102013005606A1 (de) * 2013-04-02 2014-10-02 Steffen Emmerich lonenerzeuger für die Entkeimung (Behandlung) von Wasser u. Luft mit ionisierten Sauerstoff
US9138504B2 (en) * 2013-08-19 2015-09-22 Nano And Advanced Materials Institute Limited Plasma driven catalyst system for disinfection and purification of gases
CN103599697B (zh) * 2013-10-31 2015-04-15 浙江大学 采用外加电压法提升催化剂原位催化活性的方法
CN103638761B (zh) * 2013-11-28 2015-08-05 江苏省环境科学研究院 一种低温等离子体耦合催化氧化去除恶臭气体的方法及其装置
GB2524008A (en) * 2014-03-10 2015-09-16 Novaerus Patents Ltd Air disinfection and pollution removal method and apparatus
US9240308B2 (en) * 2014-03-06 2016-01-19 Applied Materials, Inc. Hall effect enhanced capacitively coupled plasma source, an abatement system, and vacuum processing system
EP2937633A1 (de) * 2014-04-22 2015-10-28 E.G.O. ELEKTRO-GERÄTEBAU GmbH Einrichtung zur Luftreinigung, Lüftungseinrichtung und Verfahren zur Luftreinigung
CN104084013A (zh) * 2014-07-15 2014-10-08 浙江惠尔涂装环保设备有限公司 一种低温等离子废气处理管
GB2529173B (en) 2014-08-12 2016-08-24 Novaerus Patents Ltd Flexible electrode assembly for plasma generation and air ducting system including the electrode assembly
US11821655B2 (en) 2014-08-12 2023-11-21 Novaerus Patents Limited Air treatment system, method and apparatus
CN104548925A (zh) * 2015-01-12 2015-04-29 北京科技大学 矩阵式介质阻挡等离子体协同吸附/催化分解脱硝装置
CN104990139B (zh) * 2015-06-08 2017-10-03 上海屹申环保科技有限公司 低温等离子体空气净化装置
CN105050304B (zh) * 2015-08-14 2017-08-18 山东电力工程咨询院有限公司 一种u型板式介质阻挡放电低温等离子反应器及反应***
CN105642108B (zh) * 2016-01-06 2018-11-20 中国科学院力学研究所 一种冶金行业中co回收处理的方法及***
CN105664679A (zh) * 2016-01-13 2016-06-15 长沙上意电子科技有限公司 Dbd等离子体废气处理设备
CN106979526B (zh) * 2016-01-19 2020-05-05 天津科技大学 一种VOCs催化自持燃烧的低温等离子体快速引燃方法
KR101669961B1 (ko) * 2016-04-07 2016-11-09 케이지메디텍 주식회사 과산화수소 플라즈마 멸균 장치
US9908081B2 (en) * 2016-05-17 2018-03-06 IONaer International Arizona, LLC Air ionization methods
US11331622B2 (en) * 2016-05-17 2022-05-17 IONaer International Arizona, LLC Air ionization systems and components
CN106422699A (zh) * 2016-08-29 2017-02-22 浙江工业大学 光/热双驱动催化耦合生物净化VOCs的方法及其装置
KR102034342B1 (ko) * 2017-03-14 2019-10-18 광운대학교 산학협력단 실린더형 대기압 표면방전 발생장치
KR101934100B1 (ko) * 2017-08-22 2019-03-25 유한회사 더프라임솔루션 배출가스의 입자상 물질 저감 시스템
CN108993134B (zh) * 2018-07-16 2021-05-25 天津大学 低温微波强化氧化铈负载的钯单原子催化剂降解酯类VOCs的方法
KR102383781B1 (ko) * 2018-07-27 2022-04-05 박상규 마이크로파 시스템
CN109351298A (zh) * 2018-10-09 2019-02-19 浙江工业大学 一种放电反应器及其在甲烷或乙烯转化中的应用
CN109599320A (zh) * 2019-01-29 2019-04-09 广州安诺科技股份有限公司 一种中心进气的质谱仪离子源
CN109731447B (zh) * 2019-03-20 2024-02-27 中钢集团马鞍山矿山研究院有限公司 一种介质阻挡放电净化有机废气装置
CN112619565A (zh) * 2019-10-09 2021-04-09 中国科学院大连化学物理研究所 低温等离子体结合催化剂诱导甲烷/天然气直接制低碳烃类的装置及方法
CN111530275A (zh) * 2020-05-13 2020-08-14 顾晓杰 一种有机废气处理用多膜式生物洗涤装置
CN111790399B (zh) * 2020-08-10 2022-02-15 厦门大学 一种协同低温等离子体技术处理废水的催化剂及其制备和应用、处理苯酚废水的方法
CN111888900B (zh) * 2020-08-22 2022-04-15 山东第一医科大学(山东省医学科学院) 一种基于低温等离子体反应器与耦合催化剂的二硫化碳脱除方法
CN112316679B (zh) * 2020-10-20 2022-02-25 中国科学院地球环境研究所 一种低温等离子体VOCs净化装置及方法
CN113019083A (zh) * 2021-03-01 2021-06-25 太原理工大学 VOCs低温等离子体协同吸附催化一体化装置及其处理VOCs方法
CN114130171A (zh) * 2021-10-12 2022-03-04 宁波大学 一种采用等离子体结合催化处理船舶尾气中颗粒物的装置
WO2024006463A1 (en) * 2022-06-29 2024-01-04 Georgia Tech Research Corporation Activated and catalytic low temperature plasma air purifiers
CN116236994A (zh) * 2023-02-25 2023-06-09 中国科学院山西煤炭化学研究所 一种硫化氢和二氧化碳混合气转化制合成气的反应器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309231A (ja) * 1992-05-12 1993-11-22 Mitsubishi Heavy Ind Ltd 排ガス処理装置
JPH0691138A (ja) * 1992-09-10 1994-04-05 Mitsui Eng & Shipbuild Co Ltd 排気ガス処理装置および方法
JPH08266854A (ja) * 1995-03-31 1996-10-15 Matsushita Electric Works Ltd 消臭装置
JP2001159309A (ja) * 1999-12-02 2001-06-12 Toyota Central Res & Dev Lab Inc 排気ガス浄化装置
JP2001179040A (ja) * 1999-12-22 2001-07-03 Matsushita Electric Works Ltd ガス分解装置
JP2002336653A (ja) * 2001-05-21 2002-11-26 Daikin Ind Ltd プラズマ触媒反応器、空気浄化装置、窒素酸化物浄化装置、燃焼排ガス浄化装置、ダイオキシン分解装置、及びフロンガス分解装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983021A (en) * 1971-06-09 1976-09-28 Monsanto Company Nitrogen oxide decomposition process
DE3723544A1 (de) * 1987-07-16 1989-01-26 Man Technologie Gmbh Elektrostatischer filter zum reinigen von gasen
US5637198A (en) * 1990-07-19 1997-06-10 Thermo Power Corporation Volatile organic compound and chlorinated volatile organic compound reduction methods and high efficiency apparatus
DE4209196C1 (en) * 1992-03-18 1993-07-29 Mannesmann Ag, 4000 Duesseldorf, De Polluted air cleaning by catalytic oxidn. - in electric field generated between electrically heated catalyst and electrode
GB9218207D0 (en) * 1992-08-27 1992-10-14 Atomic Energy Authority Uk The purification of internal combustion engine exhaust emissions
GB9301433D0 (en) * 1993-01-20 1993-03-17 Atomic Energy Authority Uk Gas purification
JP3746796B2 (ja) 1994-05-12 2006-02-15 ヤマハ発動機株式会社 ガスエンジンにおける脱臭方法及び脱臭装置
FR2727750B1 (fr) 1994-12-06 1997-01-10 France Prod Oxygenes Co Procede et dispositif pour la preparation d'air de qualite medicale
DE19534950C2 (de) 1995-09-20 1998-07-02 Siemens Ag Vorrichtung zur plasmachemischen Zersetzung und/oder Vernichtung von Schadstoffen
US5609736A (en) * 1995-09-26 1997-03-11 Research Triangle Institute Methods and apparatus for controlling toxic compounds using catalysis-assisted non-thermal plasma
DE19611332A1 (de) * 1996-03-22 1997-09-25 Abb Research Ltd Verfahren zur Konditionierung von Abgasen
DE19616206A1 (de) * 1996-04-23 1997-11-13 Fraunhofer Ges Forschung Vorrichtung zur Nachbehandlung von Abgas durch Kombination von Gasentladung und Katalysator
US5914015A (en) * 1996-07-15 1999-06-22 Battelle Memorial Institute Method and apparatus for processing exhaust gas with corona discharge
FR2751243B1 (fr) 1996-07-22 1998-08-21 Air Liquide Elimination o2/co d'un gaz inerte par adsoption sur oxyde metallique poreux
US5711147A (en) * 1996-08-19 1998-01-27 The Regents Of The University Of California Plasma-assisted catalytic reduction system
GB9801775D0 (en) 1998-01-29 1998-03-25 Aea Technology Plc Gas purification
CN2351151Y (zh) 1998-10-16 1999-12-01 北京理工大学 床式放电等离子体空气净化器
EP1180202A4 (en) * 1999-05-20 2004-08-18 Institue For Advanced Engineer EXHAUST PURIFICATION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
US6923890B2 (en) * 1999-12-15 2005-08-02 Plasmasol Corporation Chemical processing using non-thermal discharge plasma
AU2001244412A1 (en) * 2000-04-11 2001-10-23 Accentus Plc The plasma assisted catalytic treatment of gases
JP2002177373A (ja) * 2000-06-15 2002-06-25 Denso Corp 空気浄化装置
GB2366747B (en) * 2000-09-14 2004-06-30 Aea Technology Plc The plasma assisted catalytic treatment of gases
GB2396316B (en) * 2001-11-29 2005-06-01 Accentus Plc Non-thermal plasma reactor with filter
US6852200B2 (en) * 2002-02-14 2005-02-08 Delphi Technologies, Inc. Non-thermal plasma reactor gas treatment system
AU2003237780A1 (en) * 2002-02-19 2003-09-29 Plasmasol Corporation Slot discharge non-thermal plasma apparatus and process for promoting chemical reaction
TWI264313B (en) * 2002-08-07 2006-10-21 Access Business Group Int Llc Nonthermal plasma air treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05309231A (ja) * 1992-05-12 1993-11-22 Mitsubishi Heavy Ind Ltd 排ガス処理装置
JPH0691138A (ja) * 1992-09-10 1994-04-05 Mitsui Eng & Shipbuild Co Ltd 排気ガス処理装置および方法
JPH08266854A (ja) * 1995-03-31 1996-10-15 Matsushita Electric Works Ltd 消臭装置
JP2001159309A (ja) * 1999-12-02 2001-06-12 Toyota Central Res & Dev Lab Inc 排気ガス浄化装置
JP2001179040A (ja) * 1999-12-22 2001-07-03 Matsushita Electric Works Ltd ガス分解装置
JP2002336653A (ja) * 2001-05-21 2002-11-26 Daikin Ind Ltd プラズマ触媒反応器、空気浄化装置、窒素酸化物浄化装置、燃焼排ガス浄化装置、ダイオキシン分解装置、及びフロンガス分解装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1649923A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635693B2 (ja) * 2005-04-14 2011-02-23 トヨタ自動車株式会社 排ガス浄化方法及び排ガス浄化装置
JP2006291930A (ja) * 2005-04-14 2006-10-26 Toyota Motor Corp 排ガス浄化方法及び排ガス浄化装置
JP2006305194A (ja) * 2005-04-28 2006-11-09 Midori Anzen Co Ltd 触媒保持装置及びガス除去装置
JP4636930B2 (ja) * 2005-04-28 2011-02-23 ミドリ安全株式会社 触媒保持装置及びガス除去装置
US20080131333A1 (en) * 2006-12-04 2008-06-05 High Power-Factor Ac/Dc Converter With Parallel Power Processing Lateral-flow waste gas treatment device using nonthermal plasma
JP2012521240A (ja) * 2009-03-24 2012-09-13 トゥリ−エアー ディベロップメンツ リミテッド 改良型の空気除染装置および方法
KR101039069B1 (ko) * 2010-06-28 2011-06-08 낙천 제임스 백 공기 청정 및 살균용 플라즈마 처리기
CN102361531A (zh) * 2011-10-26 2012-02-22 西安电子科技大学 大面积均匀非磁化等离子体产生装置及方法
JP2018161648A (ja) * 2012-10-04 2018-10-18 フィパック・リサーチ・アンド・ディベロップメント・カンパニー 空気から不必要な物質を除去するための方法と装置
JP2020110800A (ja) * 2012-10-04 2020-07-27 フィパック・リサーチ・アンド・ディベロップメント・カンパニー 空気から不必要な物質を除去するための方法と装置
US10716312B2 (en) 2014-10-24 2020-07-21 Korea Basic Science Institute Ethylene disposal apparatus and ethylene disposal method using same
KR101779985B1 (ko) 2014-11-13 2017-09-19 한국기계연구원 플라즈마 반응기
CN108499333A (zh) * 2018-04-10 2018-09-07 佛山市三水万瑞达环保科技有限公司 一种低温等离子废气处理装置
CN108392951A (zh) * 2018-04-10 2018-08-14 佛山市三水万瑞达环保科技有限公司 一种低温等离子气体净化装置
CN108607338A (zh) * 2018-05-03 2018-10-02 佛山市三水万瑞达环保科技有限公司 一种环形废气处理装置组件
JP2021122796A (ja) * 2020-02-06 2021-08-30 公立大学法人大阪 粒子状物質除去装置
JP7421793B2 (ja) 2020-02-06 2024-01-25 公立大学法人大阪 粒子状物質除去装置
WO2023026031A1 (en) * 2021-08-23 2023-03-02 Equipmake Limited An air treatment device
US20230211285A1 (en) * 2022-01-06 2023-07-06 Hyundai Motor Company Method and apparatus for treating exhaust gas
US11731079B2 (en) * 2022-01-06 2023-08-22 Hyundai Motor Company Method and apparatus for treating exhaust gas
KR102514108B1 (ko) * 2022-12-29 2023-03-24 배준형 이산화탄소 분해 및 바이러스와 세균 살균 플라즈마 디바이스

Also Published As

Publication number Publication date
JPWO2004112940A1 (ja) 2006-07-27
EP1649923A1 (en) 2006-04-26
CN100482323C (zh) 2009-04-29
US20070098614A1 (en) 2007-05-03
EP1649923A4 (en) 2007-05-16
US7347979B2 (en) 2008-03-25
KR20060026424A (ko) 2006-03-23
CN1809413A (zh) 2006-07-26
CA2529732A1 (en) 2004-12-29
AU2004249019A1 (en) 2004-12-29

Similar Documents

Publication Publication Date Title
WO2004112940A1 (ja) 酸化触媒と低温プラズマとを利用する気体処理方法及び気体処理装置
JP4718344B2 (ja) 空気浄化装置およびそれを用いた空気浄化方法
KR102260282B1 (ko) 플라즈마를 이용한 공기정화장치
CA2343723C (en) Air purification device
JP4457603B2 (ja) ガス浄化装置
JP2015070921A (ja) 脱臭装置
JPH08266854A (ja) 消臭装置
JP5108492B2 (ja) 空気浄化方法及び空気浄化装置
JP3632579B2 (ja) 空気浄化装置
JP2002343535A (ja) ガス処理装置
JP4719459B2 (ja) タバコ煙含有気体の処理方法及び処理装置
KR20040092811A (ko) 공기정화시스템 및 정화방법
JP2001179040A (ja) ガス分解装置
JP2001104754A (ja) 空気清浄機
JP2007144278A (ja) 脱臭装置およびそれを備えた空気調和装置
KR101817907B1 (ko) 유해 및 악취가스 제거장치
JP2004290882A (ja) 空気浄化フィルタ及び空気浄化装置
JP2004008517A (ja) 空気浄化装置
JP2010029865A (ja) ガス浄化装置
KR101174137B1 (ko) 플라즈마를 이용한 대기오염물질 처리장치
JP2003135582A (ja) 空気浄化装置
JP2002336343A (ja) プラズマ触媒反応器及び空気浄化装置
JP2004025056A (ja) 放電式ガス処理装置
JP2004358399A (ja) 空気中の揮発性有機化合物除去方法及びそれに用いる除去装置
CN110645605A (zh) 抽油烟机

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005507181

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007098614

Country of ref document: US

Ref document number: 2529732

Country of ref document: CA

Ref document number: 1020057024179

Country of ref document: KR

Ref document number: 10560980

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048171480

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004249019

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004724399

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004249019

Country of ref document: AU

Date of ref document: 20040330

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057024179

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004724399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10560980

Country of ref document: US