WO2004111292A1 - ガス浸炭方法 - Google Patents

ガス浸炭方法 Download PDF

Info

Publication number
WO2004111292A1
WO2004111292A1 PCT/JP2003/007450 JP0307450W WO2004111292A1 WO 2004111292 A1 WO2004111292 A1 WO 2004111292A1 JP 0307450 W JP0307450 W JP 0307450W WO 2004111292 A1 WO2004111292 A1 WO 2004111292A1
Authority
WO
WIPO (PCT)
Prior art keywords
carburizing
gas
treated
carbon
temperature
Prior art date
Application number
PCT/JP2003/007450
Other languages
English (en)
French (fr)
Inventor
Showa Tachisato
Original Assignee
Koyo Thermo Systems Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co., Ltd. filed Critical Koyo Thermo Systems Co., Ltd.
Priority to PCT/JP2003/007450 priority Critical patent/WO2004111292A1/ja
Priority to AU2003244116A priority patent/AU2003244116A1/en
Priority to US10/838,747 priority patent/US8317939B2/en
Priority to CNB2004100489298A priority patent/CN1296510C/zh
Publication of WO2004111292A1 publication Critical patent/WO2004111292A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the present invention relates to a gas carburizing method used for modifying metal parts in, for example, the automobile industry and the industrial machine industry. Background art
  • the carburizing temperature that has been practically used for gas carburizing of steel objects is the eutectic point at which the liquid phase transforms into iron and cementite (for example, the equilibrium of iron and carbon shown in Fig. 1). In the phase diagram, the temperature at point C was less than 1 1 4 7).
  • the carburization temperature is limited to less than the eutectic point, the diffusion speed of carbon atoms in austenite is slow, and it takes time for the carburization depth to increase from the surface of the object to be treated. I can't shorten it. Therefore, it is conceivable to increase the carburization temperature above the eutectic point to increase the diffusion velocity of carbon atoms in austenite to shorten the carburization time.
  • An object of the present invention is to provide a gas carburizing method capable of solving the above-mentioned conventional problems. Disclosure of the invention
  • the carbon potential and the carburizing temperature of the carburizing gas are constant, if the carbon potential is small, it takes time for the carburizing depth to reach the target value, and if the carbon potential is excessive, the carburizing depth becomes Before reaching the target value Since the surface carbon concentration exceeds the solid volume limit, the object to be treated is melted. Therefore, if the carbon potential and the carburizing temperature of the carburizing gas are constant, the carburizing time is longer than the time required for the surface carbon concentration of the object to be treated to reach the solid volume limit (for example, to reach the JE line in Figure 1) I can't shorten it.
  • the time required for carburizing treatment is reduced by a novel relationship between the carbon potential of the carburizing gas, the carburizing time and the surface carbon concentration of the object to be treated.
  • the characteristics of the gas carburizing method according to the present invention are as follows: (5) Peritectic point at which iron and liquid phase are transformed to iron (for example, point J in Fig. 1), and are transformed from liquid phase to iron and cementite At a carburizing temperature equal to or higher than the eutectic point, the object to be treated is heated in a carburizing atmosphere containing a carburizing gas until the surface carbon concentration of the steel object reaches a final target value equal to or less than the solid volume limit.
  • the surface carbon concentration of the object to be treated is maintained at the final target value.
  • the carburization temperature in the second step is equal to or lower than the peritectic point and the eutectic.
  • the surface carbon concentration of the object to be treated is made to reach the final target value in a short time, and in the second step, the carburizing depth is reduced without melting the object to be treated.
  • the carburizing temperature maintained at a constant value
  • the relationship between the carbon potential of the carburizing gas and time required to maintain the surface carbon concentration of the object to be processed at the final target value is obtained.
  • the carbon potential of the carburizing gas is determined with respect to time so as to satisfy the determined relationship.
  • the diffusion velocity of carbon atoms on the surface of the object is determined from the carbon potential of the carburizing gas if the carburizing temperature is constant.
  • the relationship between the carbon potential and the time required to maintain the surface carbon concentration of the object to be treated at the final target value depends on the surface carbon of the object to be treated. It can be obtained by obtaining the relationship between the diffusion velocity of carbon atoms and time when the concentration is the final target value.
  • the time required to obtain a desired carburizing depth may be obtained in advance by an experiment.
  • the relationship between the carbon potential of the carburizing gas, the carburizing temperature, and the carburizing time until the surface carbon concentration of the object to be treated reaches the final target value is determined in advance, and in the first step, The carbon potential, the carburizing temperature, and the carburizing time of the carburizing gas until the surface carbon concentration of the processing target reaches the final target value are set so as to satisfy the obtained relationship, and in the first step, Maintaining the carbon potential of the carburizing gas and the carburizing temperature constant, making the constant carburizing temperature in the second step equal to the constant carburizing temperature in the first step, and carburizing in the second step.
  • the initial carbon potential of the gas is equal to the constant carbon potential in the first step.
  • the first step and the second step are performed continuously, and the carburizing treatment can be automated.
  • the final target value of the surface carbon concentration of the processing target corresponds to the solid volume limit of carbon on the surface of the processing target.
  • the carburizing time can be reduced as much as possible.
  • the final target value may be smaller than the solid capacity limit, and as much as possible according to the ability to control the surface carbon concentration of the object to be treated. Should be matched.
  • energy consumption and gas consumption required for gas carburizing can be reduced by shortening the carburizing time.
  • FIG. 1 is an equilibrium diagram of iron and carbon
  • FIG. 2 is a diagram showing a state in which a sample of an object to be treated is heated by the gas carburizing apparatus according to the embodiment of the present invention.
  • FIG. 3 shows the relationship between the carburizing time, the carburizing gas concentration, and the surface carbon concentration until the surface of the object to be treated starts melting at a carburizing temperature of 130 in the embodiment of the present invention.
  • Diagram showing the relationship between the surface carbon concentration of the object to be treated and the carburizing time in the form, and the relationship between the carburizing gas concentration and the carburizing time necessary to maintain the surface carbon concentration at the final target value
  • Figure 5 shows the relationship between the carbon potential and the concentration of carburizing gas.
  • FIG. 6 is a diagram showing a state in which an object to be treated is heated by the gas carburizing apparatus according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the carbon concentration and time in the object to be treated according to the embodiment of the present invention and the conventional example
  • FIG. 2 shows a gas carburizing apparatus used in an embodiment of the present invention.
  • the gas carburizing apparatus includes a vacuum vessel 1, a heating apparatus 2, a vacuum pump 3 for reducing the pressure in the vacuum vessel 1, and a gas source 4 for supplying a carburizing atmosphere gas into the vacuum vessel 1.
  • the heating device 2 performs induction heating in the vacuum vessel 1 by the coil 2 a connected to the power supply 7.
  • the output from the power supply 7 to the coil 2a is variable.
  • a thermocouple 6 is welded to the surface of the sample 5 ′ set in the heating device 2 as a temperature detection sensor.
  • the temperature detecting means is not limited to a thermocouple.
  • the air in the vacuum vessel 1 is evacuated by the vacuum pump 3 to reduce the pressure in the vacuum vessel 1, and at this point, the internal pressure of the vacuum vessel 1 is preferably reduced to about 27 Pa or less.
  • a gas for carburizing atmosphere is introduced into the vacuum vessel 1 from the gas source 4.
  • the inside of the vacuum vessel 1 is filled with the carburizing atmosphere, and the total pressure of the carburizing atmosphere is increased.
  • the pressure of the carburizing atmosphere in the vacuum vessel 1 is increased to about 80 kPa.
  • the carburizing atmosphere gas of the present embodiment is composed of a carburizing gas and a diluting gas. .
  • the type of the carburizing gas or the dilution gas is not particularly limited.
  • the carburizing gas of this embodiment is methane gas, and the diluent gas is nitrogen gas.
  • Non-oxidative carburizing can be realized by using hydrocarbon-based gas as the carburizing gas.
  • Carburizing gas is not limited to hydrocarbon gas.
  • the carburizing atmosphere may include some carburizing gas or all may be carburizing gas.
  • the gas for the carburizing atmosphere flows at a constant flow rate of, for example, 0.5 L Zmin in the vacuum vessel 1, and the total pressure of the carburizing atmosphere is maintained at, for example, about 80 kPa. That is, a carburizing atmosphere containing a carburizing gas at a constant partial pressure flows in the vacuum vessel 1.
  • the partial pressure of the carburizing gas is a value obtained by multiplying the total pressure of the carburizing atmosphere in the vacuum vessel 1 by the mole fraction or the volume% of the carburizing gas, and corresponds to the carbon potential of the carburizing gas.
  • the concentration (volume%) of the carburizing gas corresponding to the carbon potential of the carburizing gas can be changed by changing the total pressure of the carburizing atmosphere in the vacuum vessel 1 or changing the flow ratio of the carburizing gas and the dilution gas.
  • the heating device 2 heats the sample 5 'to the set carburizing temperature.
  • the carburization temperature is set to be equal to or lower than the peritectic temperature at which the iron and liquid phase transforms to iron and to the eutectic temperature at which the liquid phase transforms to iron and cementite. Can be adjusted by changing the output to the coil 2a of the heating device 2.
  • the final target value of the surface carbon concentration of the object to be treated is determined by determining the carburizing time until the surface carbon concentration of the object to be treated reaches the solid capacity limit. This corresponds to the carbon capacity limit on the surface, whereby the carbon potential of the carburizing gas, the carburizing temperature, and the carburizing time until the surface carbon concentration of the object to be treated reaches the final target value are determined. Between Is required. For example, FIG.
  • the surface carbon concentration of the object to be treated changes as shown by the solid line L 2 in the figure, reaches the solid solubility limit in about 5 minutes, and the carburizing gas concentration decreases.
  • the surface carbon concentration of the object changes as shown by the solid line L 3 in the figure, reaches the solid solubility limit in about 2 minutes during carburization, and the carburizing gas concentration becomes 10 V
  • the surface carbon concentration of the object to be treated changes as shown by the solid line L4 in the figure, and reaches the solid solubility limit in about 1 minute of carburizing time.
  • the diffusion velocity of carbon atoms on the surface of the object to be treated is proportional to the deviation obtained by subtracting the surface carbon concentration of the object to be treated from the carbon potential of the carburizing gas when the carburizing temperature is constant. Therefore, while maintaining the carburizing temperature at a constant value, the relationship between the carbon potential and the time required to maintain the surface carbon concentration of the object to be treated at the final target value is determined by the surface carbon concentration of the object to be treated. Can be obtained by obtaining the relationship between the diffusion velocity of carbon atoms and time when is the final target value.
  • the diffusion velocity of carbon atoms is proportional to the deviation obtained by subtracting the solid solubility limit of carbon on the surface of the object to be treated from the carbon potential of the carburizing gas
  • the relationship between the diffusion velocity of carbon atoms and time is It can be obtained from experiments or known relations.
  • the known relations and spreadsheet software can be found in Engineering Concepts, which was contributed to Industrial Heating by Dave Van Aken on May 1, 2000. It is described that an approximate value can be easily obtained by using the above. For example, when the surface carbon concentration of sample 5 'is 1.15 wt% of the solid solubility limit, which is the final target value, and the carburization temperature is 1300 0, the diffusion velocity of carbon atoms on the surface of sample 5' Ask for a relationship with time.
  • the relationship between the carbon potential of the carburizing gas and the concentration of carburizing gas (volume%) is that if the carburizing gas concentration is kept constant and carburizing is performed for a long time, the surface carbon concentration of the object to be treated becomes the carbon potential. Since they match, it can be determined in advance by experiments.
  • FIG. 5 shows an example of an experimentally determined relationship between the concentration of carburizing gas (% by volume) and the carbon potential (% by weight).
  • This carburizing of the object to be treated can be performed in the same manner as the carburizing of sample 5 '. That is, as shown in FIG. 6, the object 5 to be treated is set in the heating device 2, the air in the vacuum vessel 1 is exhausted by the vacuum pump 3, and the carburizing atmosphere gas is introduced into the vacuum vessel 1 from the gas source 4. Pressurize the carburizing atmosphere to the set pressure, supply the carburizing atmosphere gas at a constant flow rate from the gas source 4 into the vacuum vessel 1, and exhaust the carburizing atmosphere gas at a constant flow rate with the vacuum pump 3. Thereby, the concentration of the carburizing gas corresponding to the carbon potential of the carburizing gas in the vacuum vessel 1 is set to a constant value.
  • the carburizing temperature of the object 5 to be treated by the heating device 2 is kept below the peritectic point at which ⁇ 5 iron and the liquid phase transform to iron and the eutectic point at which the liquid phase transforms to iron and cementite.
  • the first step of heating is performed. In this first step, the carburizing time and the carburizing gas concentration corresponding to the carbon potential of the carburizing gas until the surface carbon concentration of the treatment object 5 reaches the final target value are calculated as shown in FIG.
  • the final target value of the surface carbon concentration of the treatment object 5 is assumed to correspond to the solid volume limit (1.15% by weight), and the carburization temperature in the first step is 1300, The carburizing gas (methane gas) concentration is set to 10 V o 1% and the carburizing time is set to 1 minute.
  • the surface carbon The concentration changes as indicated by the dashed arrow X1 in FIG. 1 and reaches the vicinity of the point X on the JE line indicating the solid capacity in a short time.
  • a second step of performing gas carburization so as to increase the carburizing depth of the object 5 is performed.
  • the carbon potential of the carburizing gas is reduced by reducing the concentration of the carburizing gas.
  • the carbon potential of the carburizing gas is changed with respect to time so as to satisfy the relationship obtained in advance.
  • the concentration (volume%) of the carburizing gas is reduced with time so as to satisfy the relationship indicated by the solid line L6.
  • the carbon potential of the carburizing gas and the carburizing temperature are kept constant in the first step
  • the constant carburizing temperature in the second step is made equal to the constant carburizing temperature in the first step
  • the second The initial carbon potential of the carburizing gas in the process is equal to the constant carbon potential in the first process.
  • the solid line 7 in FIG. 7 shows the relationship between the carbon concentration and the carburizing time at a position 0.5 mm from the surface of the processing target 5 subjected to gas carburizing by the method of the above embodiment according to the present invention.
  • the time required for the carbon concentration at the position of 0.5 mm from the surface of the processing object 5 to reach 0.4% by weight is about 3.6 minutes according to the method of the above embodiment.
  • the change of the carbon potential of the carburizing gas is not limited to the one performed by changing the concentration of the carburizing gas in the carburizing atmosphere, but may be performed by mixing a carburizing gas having a different number of carbon atoms into the carburizing atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

ガス浸炭方法における第1の工程においては、δ鉄と液相からγ鉄に変態する包晶点以下であって、液相からγ鉄とセメンタイトに変態する共晶点以上の浸炭温度において、鋼製処理対象物の表面炭素濃度が固容限以下の最終目標値に到達するまで、前記処理対象物を浸炭ガスを含む浸炭雰囲気において加熱する。第1の工程の後の第2の工程においては、前記浸炭ガスのカーボンポテンシャルを時間経過に伴って減少させることで、前記処理対象物の表面炭素濃度を最終目標値に維持しつつ、前記処理対象物の浸炭深さが増加するようにガス浸炭を進行させる。

Description

ガス浸炭方法 技術分野
本発明は、 例えば自動車工業や産業機械工業において金属製部品を改質するため に用いられるガス浸炭方法に関する。 背景技術
従来、 鋼製の処理対象物のガス浸炭を行う場合の実用化されている浸炭温度は、 液相からァ鉄とセメンタイ卜に変態する共晶点 (例えば図 1に示す鉄と炭素の平 衡状態図においては C点温度で 1 1 4 7で) 未満とされていた。 しかし、 浸炭温 度を共晶点未満に制限した場合、 オーステナイト中における炭素原子の拡散流速 が遅く、 処理対象物の表面からの浸炭深さが増加するのに時間を要するため、 浸 炭時間を短縮することができない。 そこで、 浸炭温度を上記共晶点以上にすることで、 オーステナイト中における炭 素原子の拡散流速を増加させて浸炭時間の短縮を図ることが考えられる。 しかし、 たとえ浸炭温度を上記共晶点以上にしても、 処理対象物の表面炭素濃度 が目標値になるまでに時間を要するため、 浸炭時間のより一層の短縮は困難であ つた。 本発明は、 上記従来の問題を解決することのできるガス浸炭方法を提供すること を目的とする。 発明の開示
浸炭ガスのカーボンポテンシャルと浸炭温度が一定の場合、 そのカーボンポテン シャルが小さいと、 浸炭深さが目標値に到達するのに時間を要し、 そのカーボン ポテンシャルが過大であると、 浸炭深さが目標値に到達する前に処理対象物の表 面炭素濃度が固容限を超えるために処理対象物が溶けてしまう。 そのため、 浸炭 ガスのカーボンポテンシャルと浸炭温度が一定の場合、 浸炭時間を、 処理対象物 の表面炭素濃度が固容限に到達する (例えば図 1における J E線に到達する) の に要する時間よりも短くできない。 これに対して本発明によれば、 浸炭ガスの力 一ボンポテンシャル、 浸炭時間と処理対象物の表面炭素濃度との間の新規な関係 により浸炭処理に要する時間の短縮を図る。 本発明によるガス浸炭方法の特徴は、 (5鉄と液相からア鉄に変態する包晶点 (例 えば図 1における J点) 以下であって、 液相からァ鉄とセメン夕イトに変態する 共晶点以上の浸炭温度において、 鋼製処理対象物の表面炭素濃度が固容限以下の 最終目標値に到達するまで、 前記処理対象物を浸炭ガスを含む浸炭雰囲気におい て加熱する第 1の工程と、 前記第 1の工程の後に、 前記浸炭ガスのカーボンポテ ンシャル (平衡炭素濃度) を時間経過に伴って減少させることで、 前記処理対象 物の表面炭素濃度を最終目標値に維持しつつ、 前記処理対象物の浸炭深さが増加 するようにガス浸炭を進行させる第 2の工程とを備える点にある。 第 2の工程の 浸炭温度は前記包晶点以下であって前記共晶点以上とされるのが好ましい。 本発明の第 1の特徴によれば、 第 1の工程において処理対象物の表面炭素濃度を 固容限以下の最終目標値に到達させ、 第 2の工程において浸炭ガスのカーボンポ テンシャルを時間経過に伴って減少させつつ浸炭深さを増加させる。 よって、 第 1の工程において処理対象物の表面炭素濃度を短時間で最終目標値に到達させ、 第 2の工程において処理対象物を溶かすことなく浸炭深さを短時間で増加させる ことができる。 浸炭温度を一定値に維持した状態で、 前記処理対象物の表面炭素濃度を前記最終 目標値に維持する上で必要な浸炭ガスのカーボンポテンシャルと時間との間の関 係を予め求め、 前記第 2の工程において、 浸炭温度を前記一定値に維持した状態 で、 前記浸炭ガスのカーボンポテンシャルを、 その求めた閧係を充足するように 時間に対して変化させるのが好ましい。 処理対象物の表面における炭素原子の拡 散流速は、 浸炭温度が一定であれば、 浸炭ガスのカーボンポテンシャルから処理 対象物の表面炭素濃度を差し引くことで求められる偏差に比例する。 よって、 一 定の浸炭温度下の第 2の工程において、 処理対象物の表面炭素濃度を最終目標値 に維持する上で必要なカーボンポテンシャルと時間との問の関係は、 処理対象物 の表面炭素濃度が最終目標値である時の炭素原子の拡散流速と時間との間の関係 を求めることで求めることができる。 第 2の工程における浸炭時間は、 所望の浸 炭深さを得るのに必要な時間を予め実験により求めればよい。 前記浸炭ガスのカーボンポテンシャルと、 浸炭温度と、 前記処理対象物の表面炭 素濃度が前記最終目標値に到達するまでの浸炭時間との問の関係を予め求め、 前 記第 1の工程において、 前記処理対象物の表面炭素濃度が前記最終目標値に到達 するまでの前記浸炭ガスのカーボンポテンシャルと浸炭温度と浸炭時間を、 その 求めた関係を充足するように設定し、 前記第 1の工程において浸炭ガスのカーボ ンポテンシャルと浸炭温度とを一定に維持し、 前記第 2の工程における一定の浸 炭温度を前記第 1の工程における一定の浸炭温度と等しくし、 前記第 2の工程に おける浸炭ガスの当初のカーボンポテンシャルを前記第 1の工程における一定の カーボンポテンシャルと等しするのが好ましい。 これにより第 1の工程と第 2の 工程とを連続して行い、 浸炭処理の自動化を図ることができる。 前記処理対象物の表面炭素濃度の最終目標値を、 前記処理対象物の表面における 炭素の固容限に対応させるのが好ましい。 これにより浸炭時間を可及的に短縮で きる。 この場合、 最終目標値を固容限に完全に一致させる必要はなく、 その最終 目標値を固容限より小さくしてもよく、 処理対象物の表面炭素濃度の制御能力に 応じて可及的に一致させればよい。 本発明によれば浸炭時間を短縮することでガス浸炭に要するエネルギー及びガス の消費量を減らすことができる。 図面の簡単な説明
図 1は鉄と炭素の平衡状態図 図 2は本発明の実施形態のガス浸炭用装置により処理対象物のサンプルを加熱す る状態を示す図
図 3は本発明の実施形態において浸炭温度 1 3 0 で処理対象物の表面が溶融 を開始するまでの浸炭時間と浸炭ガス濃度と表面炭素濃度との関係を示す図 図 4は本発明の実施形態において処理対象物の表面炭素濃度と浸炭時間との関係 、 および、 その表面炭素濃度を最終目標値に維持する上で必要な浸炭ガス濃度と 浸炭時間との関係を示す図
図 5は浸炭ガスのカーボンポテンシャルと濃度との関係を示す図
図 6は本発明の実施形態のガス浸炭用装置により処理対象物を加熱する状態を示 す図
図 7は本発明の実施形態と従来例それぞれの処理対象物における炭素濃度と時間 との関係を示す図 発明を実施するための最良の形態
図 2は本発明の実施形態に用いるガス浸炭用装置を示す。 そのガス浸炭用装置は 、 真空容器 1 と、 加熱装置 2と、 その真空容器 1内を減圧するための真空ポンプ 3と、 その真空容器 1内に浸炭雰囲気用ガスを供給するガス源 4とを備える。 加 熱装置 2は、 本実施形態 は電源 7に接続されたコイル 2 aによって真空容器 1 内で誘導加熱を行う。 電源 7からコイル 2 aへの出力は可変とされている。 鋼製処理対象物のガス浸炭を行うのに先立って、 鋼製処理対象物のサンプル 5 ' のガス浸炭を行う。 そのため、 加熱装置 2にセットされたサンプル 5 ' の表面に 温度検出用センサとして熱電対 6を溶接する。 なお、 温度の検出手段は熱電対に 限定されない。 しかる後に、 真空容器 1内の空気を真空ポンプ 3により排気する ことで真空容器 1内を減圧し、 この時点で真空容器 1の内圧を 2 7 P a程度以下 にするのが好ましい。 その減圧後に真空容器 1内にガス源 4から浸炭雰囲気用ガ スを導入する。 これにより真空容器 1内を浸炭雰囲気で満たし、 その浸炭雰囲気 の全圧を上昇させる。 例えば真空容器 1内の浸炭雰囲気を 8 0 k P a程度まで昇 圧する。 本実施形態の浸炭雰囲気用ガスは浸炭ガスと希釈ガスとから耩成される 。 その浸炭ガスや希釈ガスの種類は特に限定されない。 本実施形態の浸炭ガスは メタンガスであり、 希釈ガスは窒素ガスである。 浸炭ガスとして炭化水素系ガス を用いることで無酸化浸炭を実現できる。 浸炭ガスは炭化水素系ガスに限定され ない。 浸炭雰囲気は浸炭ガスを部分的に含むものでもよく、 あるいは全てが浸炭 ガスでもよい。 真空容器 1内の浸炭雰囲気の全圧を一定に保持する場合、 真空容器 1内にガス源 4から浸炭雰囲気用ガスを一定流量で供給すると共に、 真空ポンプ 3により浸炭 雰囲気を一定流量で排気する。 これにより、 真空容器 1内で浸炭雰囲気用ガスが 例えば 0 . 5 L Zm i nの一定流量で流れ、 浸炭雰囲気の全圧が例えば 8 0 k P a程度に保持される。 すなわち、 真空容器 1内で一定分圧の浸炭ガスを含む浸炭 雰囲気が流動する。 その浸炭ガスの分圧は、 真空容器 1内の浸炭雰囲気の全圧に 浸炭ガスのモル分率または容積%を乗じた値であり、 浸炭ガスのカーボンポテン シャルに対応する。 真空容器 1内の浸炭雰囲気の全圧を変更したり、 浸炭ガスと 希釈ガスの流量比を変更することで、 浸炭ガスのカーボンポテンシャルに対応す る浸炭ガスの濃度 (容積%) を変更できる。 加熱装置 2によりサンプル 5 ' を設定された浸炭温度まで加熱する。 その浸炭温 度は、 (5鉄と液相からァ鉄に変態する包晶点温度以下であって、 液相から τ鉄と セメンタイ トに変態する共晶点温度以上に設定する。 その浸炭温度の設定値は加 熱装置 2のコイル 2 aへの出力を変更することで調整できる。 設定された浸炭ガスのカーボンポテンシャルおよび設定された浸炭温度の下で、 サンブル 5 ' の表面が溶融する直前までの浸炭時間、 すなわち処理対象物の表面 炭素濃度が固容限に到達するまでの浸炭時間を予め求める。 本実施形態では処理 対象物の表面炭素濃度の最終目標値が、 その処理対象物の表面における炭素の固 容限に対応するものとされる。 これにより、 浸炭ガスのカーボンポテンシャルと 、 浸炭温度と、 処理対象物の表面炭素濃度が最終目標値に到達するまでの浸炭時 間との間の関係が求められる。 例えば図 3は、 浸炭温度 1 3 0 0でで処理対象物 の表面炭素濃度が固容限 ( 1 . 1 5重量%) に到達するまでの、 その表面炭素濃 度 (重量%) と浸炭時間 (分) と浸炭ガス (メタン) のカーボンポテンシャルに 対応する濃度 (容積%) との間の関係の一例を示す。 図 3において、 浸炭ガス濃 度が 3 V 0 1 %の場合、 処理対象物の表面炭素濃度は図中実線 L 1で示すように 変化して浸炭時間約 1 0分で固溶限に到達し、 浸炭ガス濃度が 4 V o 1 %の場合 、 処理対象物の表面炭素濃度は図中実線 L 2で示すように変化して浸炭時間約 5 分で固溶限に到達し、 浸炭ガス濃度が 7 V o 1 %の場合、 処理対象物の表面炭素 濃度は図中実線 L 3で示すように変化して浸炭時問約 2分で固溶限に到達し、 浸 炭ガス濃度が 1 0 V 0 1 %の場合、 処理対象物の表面炭素濃度は図中実線 L 4で 示すように変化して浸炭時間約 1分で固溶限に到達する。 また、 処理対象物の表面における炭素原子の拡散流速は、 浸炭温度が一定であれ ば、 浸炭ガスのカーボンポテンシャルから処理対象物の表面炭素濃度を差し引く ことで求められる偏差に比例する。 よって、 浸炭温度を一定値に維持した状態で 、 処理対象物の表面炭素濃度を最終目標値に維持する上で必要なカーボンポテン シャルと時間との間の関係は、 処理対象物の表面炭素濃度が最終目標値である時 の炭素原子の拡散流速と時間との間の関係を求めることで、 求めることができる 。 その炭素原子の拡散流速は、 浸炭ガスのカーボンポテンシャルから処理対象物 の表面における炭素の固溶限を差し引くことで求められる偏差に比例することか ら、 炭素原子の拡散流速と時間との関係は実験あるいは既知の関係式から求める ことができ、 例えば、 Indus t rial Heat ingに 2 0 0 0年 5月 1 日付けで Dave Van Akenによって寄稿された Engineering Conceptsに、 既知の関係式と表計算ソフト を利用して簡易に近似値が求められることが記載されている。 例えば、 サンブル 5 ' の表面炭素濃度が最終目標値である固溶限の 1 . 1 5重量%、 浸炭温度が 1 3 0 0 ¾の時の、 サンプル 5 ' の表面における炭素原子の拡散流速と時間との関 係を関係を求める。 しかる後に、 一定の浸炭温度下において、 処理対象物の表面 炭素濃度を最終目標値である固溶限に維持する上で必要なカーボンポテンシャル と時間との間の関係を、 求めた拡散流速と時間との関係と既知の固溶限とから求 める。 図 4において、 処理対象物の表面炭素濃度 (重量%) と浸炭時間 (分) と の関係を実線 L 5で示し、 その表面炭素濃度を最終目標値である固溶限 ( 1 . 1 5重量%) に達した後に維持する上で必要な浸炭ガスのカーボンポテンシャルに 対応する浸炭ガスの濃度 (容積%) と時間 (分) との関係を実線 L 6で示す。 な お、 浸炭ガスのカーボンポテンシャルと浸炭ガスの濃度 (容積%) との間の関係 は、 浸炭ガスの濃度を一定にして長時間にわたり浸炭を行えば処理対象物の表面 炭素濃度はカーボンポテンシャルに一致することから、 予め実験により求めるこ とができる。 図 5は、 浸炭ガスの濃度 (容積%) とカーボンポテンシャル (重量 % ) との間の実験により求めた関係の一例を示す。 サンブル 5 ' のガス浸炭により図 3、 図 4に示される関係を予め求めたならば、 上記ガス浸炭用装置を用いて鋼製処理対象物のガス浸炭を行う。 この処理対象物 の浸炭はサンプル 5 ' の浸炭と同様に行うことができる。 すなわち図 6に示すよ うに、 処理対象物 5を加熱装置 2にセットし、 真空容器 1内の空気を真空ポンプ 3により排気し、 真空容器 1内にガス源 4から浸炭雰囲気用ガスを導入して設定 圧力まで浸炭雰囲気を昇圧し、 真空容器 1内にガス源 4から浸炭雰囲気用ガスを 一定流量で供給すると共に、 真空ポンプ 3により浸炭雰囲気用ガスを一定流量で 排気する。 これにより、 真空容器 1内の浸炭ガスのカーボンポテンシャルに対応 する浸炭ガス濃度を一定碴に設定する。 また、 加熱装置 2により処理対象物 5の 浸炭温度を <5鉄と液相からァ鉄に変態する包晶点以下であって、 液相から τ鉄と セメンタイトに変態する共晶点以上の一定値に設定する。 その設定した浸炭ガス 濃度、 浸炭温度において、 処理対象物 5の表面炭素濃度が固容限以下の最終目標 値に到達するまで、 処理対象物 5を設定した浸炭時間だけ浸炭ガスを含む浸炭雰 囲気において加熱する第 1の工程を行う。 この第 1の工程において、 処理対象物 5の表面炭素濃度が最終目標値に到達するまでの浸炭時間と浸炭ガスのカーボン ポテンシャルに対応する浸炭ガス濃度と浸炭温度とは、 図 3に示される予め求め た関係を充足するように設定される。 本実施形態では、 処理対象物 5の表面炭素 濃度の最終目標値は固容限 ( 1 . 1 5重量%) に対応するものとされ、 第 1のェ 程における浸炭温度は 1 3 0 0 、 浸炭ガス (メタンガス) 濃度は 1 0 V o 1 % 、 浸炭時間は 1分にそれぞれ設定される。 これにより、 処理対象物 5の表面炭素 濃度は、 図 1における破線矢印 X 1で示すように変化して J E線上にある固容限 を示す X点近傍に短時間で到達する。 上記第 1の工程の後に、 浸炭ガスのカーボンポテンシャルを時間経過に伴って減 少させることで、 処理対象物 5の表面炭素濃度を固容限に対応する最終目標値に 維持しつつ、 処理対象物 5の浸炭深さが増加するようにガス浸炭を進行させる第 2の工程を行う。 浸炭ガスのカーボンポテンシャルは浸炭ガスの濃度を減少させ ることで減少させる。 この第 2の工程においては、 浸炭温度を一定値に維持した 状態で、 浸炭ガスのカーボンポテンシャルを、 予め求めた関係を充足するように 時間に対して変化させる。 本実施形態では、 浸炭温度を 1 3 0 0 に維持した状 態で、 処理対象物 5の表面炭素濃度を最終目標値である固溶限 ( 1 . 1 5重量% ) に維持するために、 図 4において実線 L 6で示される関係を充足するように浸 炭ガスの濃度 (容積%) を時間経過に伴って減少させる。 これにより、 第 1のェ 程において浸炭ガスのカーボンポテンシャルと浸炭温度とを一定に維持し、 第 2 の工程における一定の浸炭温度は第 1の工程における一定の浸炭温度と等しくし 、 第 2の工程における浸炭ガスの当初のカーボンポテンシャルは第 1の工程にお ける一定のカーボンポテンシャルと等しくする。 図 7における実線し 7は、 本発明による上記実施形態の方法によりガス浸炭を行 つた処理対象物 5における表面から 0 . 5 mmの位置での炭素濃度と浸炭時間と の関係を示す。 また、 図 7における実線 L 8は、 従来の方法によりガス浸炭を行 つた処理対象物における表面から 0 . 5 mmの位置での炭素濃度と浸炭時間との 関係を示し、 この従来例においては浸炭温度を 1 3 0 0で、 浸炭ガスのカーボン ポテンシャルに対応する濃度 (容積%) を 3 V o 1 %とし、 浸炭開始から終了ま で一定に維持した。 この図 7より、 処理対象物 5における表面から 0 . 5 mmの 位置での炭素濃度が 0 . 4重量%に達するまでの時間は、 上記実施形態の方法に よれば約 3 . 6分であるのに対し、 従来の方法によれば約 7 . 8分である。 すな わち、 上記実施形態によれば浸炭時間を約 5 0 %短縮できるのを計算上確認でき る。 本発明は上記実施形態に限定されるものではなく、 本発明の範囲内で種々の変更 が可能である。 例えば、 浸炭ガスのカーボンポテンシャルの変更は、 浸炭雰囲気 における浸炭ガスの濃度変更により行うものに限定されず、 炭素原子数の異なる 浸炭ガスを浸炭雰囲気に混入することで行ってもよい。

Claims

請求の範囲
1 . (5鉄と液相からァ鉄に変態する包晶点以下であって、 液相から T鉄とセメン タイトに変態する共晶点以上の浸炭温度において、 鋼製処理対象物の表面炭素濃 度が固容限以下の最終目標値に到達するまで、 前記処理対象物を浸炭ガスを含む 浸炭雰囲気において加熱する第 1の工程と、
前記第 1の工程の後に、 前記浸炭ガスのカーボンポテンシャルを時間経過に伴つ て減少させることで、 前記処理対象物の表面炭素濃度を最終目標値に維持しつつ
、 前記処理対象物の浸炭深さが増加するようにガス浸炭を進行させる第 2の工程 とを備えるガス浸炭方法。
2 . 浸炭温度を一定値に維持した状態で、 前記処理対象物の表面炭素濃度を前記 最終目標値に維持する上で必要な浸炭ガスの力一ボンポテンシャルと時間との間 の関係を予め求め、
前記第 2の工程において、 浸炭温度を前記一定値に維持した状態で、 前記浸炭ガ スのカーボンポテンシャルを、 その求めた関係を充足するように時間に対して変 化させる請求項 1に記載のガス浸炭方法。
3 . 前記浸炭ガスのカーボンポテンシャルと、 浸炭温度と、 前記処理対象物の表 面炭素濃度が前記最終目標値に到達するまでの浸炭時間との間の関係を予め求め 前記第 1の工程において、 前記処理対象物の表面炭素濃度が前記最終目標値に到 達するまでの前記浸炭ガスのカーボンポテンシャルと浸炭温度と浸炭時間を、 そ の求めた関係を充足するように設定し、
前記第 1の工程において浸炭ガスのカーボンポテンシャルと浸炭温度とを一定に 維持し、 前記第 2の工程における一定の浸炭温度を前記第 1の工程における一定 の浸炭温度と等しくし、 前記第 2の工程における浸炭ガスの当初のカーボンポテ ンシャルを前記第 1の工程における一定のカーボンポテンシャルと等しくする請 求項 1または 2に記載のガス浸炭方法。
4 . 前記処理対象物の表面炭素濃度の最終目標値を、 前記処理対象物の表面にお ける炭素の固容限に対応させる請求項 1〜.3の中の何れかに記載のガス浸炭方法
PCT/JP2003/007450 2003-06-12 2003-06-12 ガス浸炭方法 WO2004111292A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2003/007450 WO2004111292A1 (ja) 2003-06-12 2003-06-12 ガス浸炭方法
AU2003244116A AU2003244116A1 (en) 2003-06-12 2003-06-12 Method of gas carburizing
US10/838,747 US8317939B2 (en) 2003-06-12 2004-05-04 Method of gas carburizing
CNB2004100489298A CN1296510C (zh) 2003-06-12 2004-06-11 气体渗碳方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/007450 WO2004111292A1 (ja) 2003-06-12 2003-06-12 ガス浸炭方法

Publications (1)

Publication Number Publication Date
WO2004111292A1 true WO2004111292A1 (ja) 2004-12-23

Family

ID=33495958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007450 WO2004111292A1 (ja) 2003-06-12 2003-06-12 ガス浸炭方法

Country Status (4)

Country Link
US (1) US8317939B2 (ja)
CN (1) CN1296510C (ja)
AU (1) AU2003244116A1 (ja)
WO (1) WO2004111292A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216776A (ja) * 2015-05-19 2016-12-22 大同特殊鋼株式会社 高濃度浸炭鋼の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100348770C (zh) * 2004-05-15 2007-11-14 洛阳轴承集团有限公司 高温渗碳钢H10Cr4Mo4Ni4V的热处理渗碳工艺
CN1304624C (zh) * 2005-03-29 2007-03-14 大连华锐股份有限公司 机械零件表面补碳的工艺方法
JP4932712B2 (ja) * 2005-06-30 2012-05-16 三井化学株式会社 ゴム組成物およびその用途
WO2009025659A1 (en) * 2007-08-17 2009-02-26 Gkn Sinter Metals, Llc Variable case depth powder metal gear and method thereof
JP5550276B2 (ja) * 2009-07-23 2014-07-16 光洋サーモシステム株式会社 ガス浸炭処理装置およびガス浸炭方法
JP5658934B2 (ja) * 2010-07-22 2015-01-28 光洋サーモシステム株式会社 浸炭焼入方法
CN101984139B (zh) * 2010-11-30 2012-07-04 江苏丰东热技术股份有限公司 一种用于风力发电的风电齿轮的渗碳方法
CN112051380A (zh) * 2020-08-21 2020-12-08 北京科技大学 一种测定碳素材料渗碳速率的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192815A (ja) * 1992-12-28 1994-07-12 Kawasaki Steel Corp 金属帯の連続浸炭設備
JPH0959756A (ja) * 1995-08-22 1997-03-04 Kobe Steel Ltd 耐高面圧浸炭部品の製法
JPH1136060A (ja) * 1997-07-18 1999-02-09 Toa Steel Co Ltd 肌焼鋼材の熱処理歪み防止焼入れ方法
JPH11200009A (ja) * 1998-01-14 1999-07-27 Nissan Motor Co Ltd 高面圧用機械構造用鋼
JP2001214255A (ja) * 2000-01-31 2001-08-07 Oriental Engineering Co Ltd 金属表面のガス硬化処理方法
JP2003147506A (ja) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd 鋼材部品の浸炭方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012165A (en) 1931-10-05 1935-08-20 Hevi Duty Electric Co Heat treating in circulatory gases
US4145232A (en) * 1977-06-03 1979-03-20 Union Carbide Corporation Process for carburizing steel
JPH0645868A (ja) 1991-10-22 1994-02-18 Toyo Commun Equip Co Ltd 超薄板多段縦続接続多重モ−ドフィルタ
JP3329210B2 (ja) 1996-10-16 2002-09-30 住友金属工業株式会社 肌焼鋼の製造方法及びその方法により製造された肌焼鋼
JP3409236B2 (ja) 1997-02-18 2003-05-26 同和鉱業株式会社 熱処理炉の雰囲気制御方法
JP4100751B2 (ja) * 1998-01-30 2008-06-11 株式会社小松製作所 転動部材とその製造方法
JP4041602B2 (ja) 1998-10-28 2008-01-30 Dowaホールディングス株式会社 鋼部品の減圧浸炭方法
JP2001081543A (ja) 1999-09-14 2001-03-27 Chugai Ro Co Ltd 真空浸炭方法
JP3531736B2 (ja) * 2001-01-19 2004-05-31 オリエンタルエンヂニアリング株式会社 浸炭方法及び浸炭装置
US7276204B2 (en) * 2001-06-05 2007-10-02 Dowa Thermotech Co., Ltd. Carburization treatment method and carburization treatment apparatus
JP5428032B2 (ja) * 2001-06-05 2014-02-26 Dowaサーモテック株式会社 浸炭処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192815A (ja) * 1992-12-28 1994-07-12 Kawasaki Steel Corp 金属帯の連続浸炭設備
JPH0959756A (ja) * 1995-08-22 1997-03-04 Kobe Steel Ltd 耐高面圧浸炭部品の製法
JPH1136060A (ja) * 1997-07-18 1999-02-09 Toa Steel Co Ltd 肌焼鋼材の熱処理歪み防止焼入れ方法
JPH11200009A (ja) * 1998-01-14 1999-07-27 Nissan Motor Co Ltd 高面圧用機械構造用鋼
JP2001214255A (ja) * 2000-01-31 2001-08-07 Oriental Engineering Co Ltd 金属表面のガス硬化処理方法
JP2003147506A (ja) * 2001-11-09 2003-05-21 Chugai Ro Co Ltd 鋼材部品の浸炭方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216776A (ja) * 2015-05-19 2016-12-22 大同特殊鋼株式会社 高濃度浸炭鋼の製造方法

Also Published As

Publication number Publication date
AU2003244116A1 (en) 2005-01-04
CN1572896A (zh) 2005-02-02
US20040250922A1 (en) 2004-12-16
US8317939B2 (en) 2012-11-27
CN1296510C (zh) 2007-01-24

Similar Documents

Publication Publication Date Title
WO2004111292A1 (ja) ガス浸炭方法
Edenhofer et al. Carburizing of steels
Chang et al. Kinetics of bainite-to-austenite transformation during continuous reheating in low carbon microalloyed steel
WO2006030686A1 (ja) 高周波熱処理装置、高周波熱処理方法および高周波熱処理製品
CN106424721A (zh) 烧结体制造方法、脱脂体制造方法以及加热炉
JP6503122B1 (ja) 表面硬化処理装置及び表面硬化処理方法
JP3899081B2 (ja) ガス浸炭方法
JP5550276B2 (ja) ガス浸炭処理装置およびガス浸炭方法
WO2005003401A1 (ja) ガス浸炭方法
KR100592757B1 (ko) 가스 침탄 방법
JP3899077B2 (ja) ガス浸炭方法
JP2017197822A (ja) 表面硬化処理方法および表面硬化処理装置
US20160305007A1 (en) Method of manufacturing ferrous metal component
JPH04107256A (ja) 浸炭炉
WO2003104515A1 (ja) ガス浸炭方法
US7416614B2 (en) Method of gas carburizing
JP4858071B2 (ja) 鋼材の表面処理方法及び表面処理された鋼材
JP6752623B2 (ja) 鉄製ワークの脱炭処理方法
JP2013151746A (ja) オーステナイト系ステンレス鋼の浸炭処理方法及びその加工品
Herring A case for acetylene based low pressure carburizing of gears
JP5029541B2 (ja) 浸炭処理方法および装置
JPH11315363A (ja) 真空浸炭処理方法
JP2023149560A (ja) 熱間加工試験方法、及び熱間加工試験装置
JP2005163056A (ja) ガス浸炭方法
JP2009221558A (ja) 浸炭深さ制御方法及び浸炭装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase